]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/gimple-expr.c
genattrtab.c (write_header): Include hash-set.h...
[thirdparty/gcc.git] / gcc / gimple-expr.c
1 /* Gimple decl, type, and expression support functions.
2
3 Copyright (C) 2007-2015 Free Software Foundation, Inc.
4 Contributed by Aldy Hernandez <aldyh@redhat.com>
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
12
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
21
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "tm.h"
26 #include "hash-set.h"
27 #include "machmode.h"
28 #include "vec.h"
29 #include "double-int.h"
30 #include "input.h"
31 #include "alias.h"
32 #include "symtab.h"
33 #include "wide-int.h"
34 #include "inchash.h"
35 #include "tree.h"
36 #include "fold-const.h"
37 #include "predict.h"
38 #include "hard-reg-set.h"
39 #include "input.h"
40 #include "function.h"
41 #include "basic-block.h"
42 #include "tree-ssa-alias.h"
43 #include "internal-fn.h"
44 #include "tree-eh.h"
45 #include "gimple-expr.h"
46 #include "is-a.h"
47 #include "gimple.h"
48 #include "stringpool.h"
49 #include "gimplify.h"
50 #include "stor-layout.h"
51 #include "demangle.h"
52 #include "gimple-ssa.h"
53
54 /* ----- Type related ----- */
55
56 /* Return true if the conversion from INNER_TYPE to OUTER_TYPE is a
57 useless type conversion, otherwise return false.
58
59 This function implicitly defines the middle-end type system. With
60 the notion of 'a < b' meaning that useless_type_conversion_p (a, b)
61 holds and 'a > b' meaning that useless_type_conversion_p (b, a) holds,
62 the following invariants shall be fulfilled:
63
64 1) useless_type_conversion_p is transitive.
65 If a < b and b < c then a < c.
66
67 2) useless_type_conversion_p is not symmetric.
68 From a < b does not follow a > b.
69
70 3) Types define the available set of operations applicable to values.
71 A type conversion is useless if the operations for the target type
72 is a subset of the operations for the source type. For example
73 casts to void* are useless, casts from void* are not (void* can't
74 be dereferenced or offsetted, but copied, hence its set of operations
75 is a strict subset of that of all other data pointer types). Casts
76 to const T* are useless (can't be written to), casts from const T*
77 to T* are not. */
78
79 bool
80 useless_type_conversion_p (tree outer_type, tree inner_type)
81 {
82 /* Do the following before stripping toplevel qualifiers. */
83 if (POINTER_TYPE_P (inner_type)
84 && POINTER_TYPE_P (outer_type))
85 {
86 /* Do not lose casts between pointers to different address spaces. */
87 if (TYPE_ADDR_SPACE (TREE_TYPE (outer_type))
88 != TYPE_ADDR_SPACE (TREE_TYPE (inner_type)))
89 return false;
90 }
91
92 /* From now on qualifiers on value types do not matter. */
93 inner_type = TYPE_MAIN_VARIANT (inner_type);
94 outer_type = TYPE_MAIN_VARIANT (outer_type);
95
96 if (inner_type == outer_type)
97 return true;
98
99 /* If we know the canonical types, compare them. */
100 if (TYPE_CANONICAL (inner_type)
101 && TYPE_CANONICAL (inner_type) == TYPE_CANONICAL (outer_type))
102 return true;
103
104 /* Changes in machine mode are never useless conversions unless we
105 deal with aggregate types in which case we defer to later checks. */
106 if (TYPE_MODE (inner_type) != TYPE_MODE (outer_type)
107 && !AGGREGATE_TYPE_P (inner_type))
108 return false;
109
110 /* If both the inner and outer types are integral types, then the
111 conversion is not necessary if they have the same mode and
112 signedness and precision, and both or neither are boolean. */
113 if (INTEGRAL_TYPE_P (inner_type)
114 && INTEGRAL_TYPE_P (outer_type))
115 {
116 /* Preserve changes in signedness or precision. */
117 if (TYPE_UNSIGNED (inner_type) != TYPE_UNSIGNED (outer_type)
118 || TYPE_PRECISION (inner_type) != TYPE_PRECISION (outer_type))
119 return false;
120
121 /* Preserve conversions to/from BOOLEAN_TYPE if types are not
122 of precision one. */
123 if (((TREE_CODE (inner_type) == BOOLEAN_TYPE)
124 != (TREE_CODE (outer_type) == BOOLEAN_TYPE))
125 && TYPE_PRECISION (outer_type) != 1)
126 return false;
127
128 /* We don't need to preserve changes in the types minimum or
129 maximum value in general as these do not generate code
130 unless the types precisions are different. */
131 return true;
132 }
133
134 /* Scalar floating point types with the same mode are compatible. */
135 else if (SCALAR_FLOAT_TYPE_P (inner_type)
136 && SCALAR_FLOAT_TYPE_P (outer_type))
137 return true;
138
139 /* Fixed point types with the same mode are compatible. */
140 else if (FIXED_POINT_TYPE_P (inner_type)
141 && FIXED_POINT_TYPE_P (outer_type))
142 return true;
143
144 /* We need to take special care recursing to pointed-to types. */
145 else if (POINTER_TYPE_P (inner_type)
146 && POINTER_TYPE_P (outer_type))
147 {
148 /* Do not lose casts to function pointer types. */
149 if ((TREE_CODE (TREE_TYPE (outer_type)) == FUNCTION_TYPE
150 || TREE_CODE (TREE_TYPE (outer_type)) == METHOD_TYPE)
151 && !(TREE_CODE (TREE_TYPE (inner_type)) == FUNCTION_TYPE
152 || TREE_CODE (TREE_TYPE (inner_type)) == METHOD_TYPE))
153 return false;
154
155 /* We do not care for const qualification of the pointed-to types
156 as const qualification has no semantic value to the middle-end. */
157
158 /* Otherwise pointers/references are equivalent. */
159 return true;
160 }
161
162 /* Recurse for complex types. */
163 else if (TREE_CODE (inner_type) == COMPLEX_TYPE
164 && TREE_CODE (outer_type) == COMPLEX_TYPE)
165 return useless_type_conversion_p (TREE_TYPE (outer_type),
166 TREE_TYPE (inner_type));
167
168 /* Recurse for vector types with the same number of subparts. */
169 else if (TREE_CODE (inner_type) == VECTOR_TYPE
170 && TREE_CODE (outer_type) == VECTOR_TYPE
171 && TYPE_PRECISION (inner_type) == TYPE_PRECISION (outer_type))
172 return useless_type_conversion_p (TREE_TYPE (outer_type),
173 TREE_TYPE (inner_type));
174
175 else if (TREE_CODE (inner_type) == ARRAY_TYPE
176 && TREE_CODE (outer_type) == ARRAY_TYPE)
177 {
178 /* Preserve string attributes. */
179 if (TYPE_STRING_FLAG (inner_type) != TYPE_STRING_FLAG (outer_type))
180 return false;
181
182 /* Conversions from array types with unknown extent to
183 array types with known extent are not useless. */
184 if (!TYPE_DOMAIN (inner_type)
185 && TYPE_DOMAIN (outer_type))
186 return false;
187
188 /* Nor are conversions from array types with non-constant size to
189 array types with constant size or to different size. */
190 if (TYPE_SIZE (outer_type)
191 && TREE_CODE (TYPE_SIZE (outer_type)) == INTEGER_CST
192 && (!TYPE_SIZE (inner_type)
193 || TREE_CODE (TYPE_SIZE (inner_type)) != INTEGER_CST
194 || !tree_int_cst_equal (TYPE_SIZE (outer_type),
195 TYPE_SIZE (inner_type))))
196 return false;
197
198 /* Check conversions between arrays with partially known extents.
199 If the array min/max values are constant they have to match.
200 Otherwise allow conversions to unknown and variable extents.
201 In particular this declares conversions that may change the
202 mode to BLKmode as useless. */
203 if (TYPE_DOMAIN (inner_type)
204 && TYPE_DOMAIN (outer_type)
205 && TYPE_DOMAIN (inner_type) != TYPE_DOMAIN (outer_type))
206 {
207 tree inner_min = TYPE_MIN_VALUE (TYPE_DOMAIN (inner_type));
208 tree outer_min = TYPE_MIN_VALUE (TYPE_DOMAIN (outer_type));
209 tree inner_max = TYPE_MAX_VALUE (TYPE_DOMAIN (inner_type));
210 tree outer_max = TYPE_MAX_VALUE (TYPE_DOMAIN (outer_type));
211
212 /* After gimplification a variable min/max value carries no
213 additional information compared to a NULL value. All that
214 matters has been lowered to be part of the IL. */
215 if (inner_min && TREE_CODE (inner_min) != INTEGER_CST)
216 inner_min = NULL_TREE;
217 if (outer_min && TREE_CODE (outer_min) != INTEGER_CST)
218 outer_min = NULL_TREE;
219 if (inner_max && TREE_CODE (inner_max) != INTEGER_CST)
220 inner_max = NULL_TREE;
221 if (outer_max && TREE_CODE (outer_max) != INTEGER_CST)
222 outer_max = NULL_TREE;
223
224 /* Conversions NULL / variable <- cst are useless, but not
225 the other way around. */
226 if (outer_min
227 && (!inner_min
228 || !tree_int_cst_equal (inner_min, outer_min)))
229 return false;
230 if (outer_max
231 && (!inner_max
232 || !tree_int_cst_equal (inner_max, outer_max)))
233 return false;
234 }
235
236 /* Recurse on the element check. */
237 return useless_type_conversion_p (TREE_TYPE (outer_type),
238 TREE_TYPE (inner_type));
239 }
240
241 else if ((TREE_CODE (inner_type) == FUNCTION_TYPE
242 || TREE_CODE (inner_type) == METHOD_TYPE)
243 && TREE_CODE (inner_type) == TREE_CODE (outer_type))
244 {
245 tree outer_parm, inner_parm;
246
247 /* If the return types are not compatible bail out. */
248 if (!useless_type_conversion_p (TREE_TYPE (outer_type),
249 TREE_TYPE (inner_type)))
250 return false;
251
252 /* Method types should belong to a compatible base class. */
253 if (TREE_CODE (inner_type) == METHOD_TYPE
254 && !useless_type_conversion_p (TYPE_METHOD_BASETYPE (outer_type),
255 TYPE_METHOD_BASETYPE (inner_type)))
256 return false;
257
258 /* A conversion to an unprototyped argument list is ok. */
259 if (!prototype_p (outer_type))
260 return true;
261
262 /* If the unqualified argument types are compatible the conversion
263 is useless. */
264 if (TYPE_ARG_TYPES (outer_type) == TYPE_ARG_TYPES (inner_type))
265 return true;
266
267 for (outer_parm = TYPE_ARG_TYPES (outer_type),
268 inner_parm = TYPE_ARG_TYPES (inner_type);
269 outer_parm && inner_parm;
270 outer_parm = TREE_CHAIN (outer_parm),
271 inner_parm = TREE_CHAIN (inner_parm))
272 if (!useless_type_conversion_p
273 (TYPE_MAIN_VARIANT (TREE_VALUE (outer_parm)),
274 TYPE_MAIN_VARIANT (TREE_VALUE (inner_parm))))
275 return false;
276
277 /* If there is a mismatch in the number of arguments the functions
278 are not compatible. */
279 if (outer_parm || inner_parm)
280 return false;
281
282 /* Defer to the target if necessary. */
283 if (TYPE_ATTRIBUTES (inner_type) || TYPE_ATTRIBUTES (outer_type))
284 return comp_type_attributes (outer_type, inner_type) != 0;
285
286 return true;
287 }
288
289 /* For aggregates we rely on TYPE_CANONICAL exclusively and require
290 explicit conversions for types involving to be structurally
291 compared types. */
292 else if (AGGREGATE_TYPE_P (inner_type)
293 && TREE_CODE (inner_type) == TREE_CODE (outer_type))
294 return false;
295
296 return false;
297 }
298
299
300 /* ----- Decl related ----- */
301
302 /* Set sequence SEQ to be the GIMPLE body for function FN. */
303
304 void
305 gimple_set_body (tree fndecl, gimple_seq seq)
306 {
307 struct function *fn = DECL_STRUCT_FUNCTION (fndecl);
308 if (fn == NULL)
309 {
310 /* If FNDECL still does not have a function structure associated
311 with it, then it does not make sense for it to receive a
312 GIMPLE body. */
313 gcc_assert (seq == NULL);
314 }
315 else
316 fn->gimple_body = seq;
317 }
318
319
320 /* Return the body of GIMPLE statements for function FN. After the
321 CFG pass, the function body doesn't exist anymore because it has
322 been split up into basic blocks. In this case, it returns
323 NULL. */
324
325 gimple_seq
326 gimple_body (tree fndecl)
327 {
328 struct function *fn = DECL_STRUCT_FUNCTION (fndecl);
329 return fn ? fn->gimple_body : NULL;
330 }
331
332 /* Return true when FNDECL has Gimple body either in unlowered
333 or CFG form. */
334 bool
335 gimple_has_body_p (tree fndecl)
336 {
337 struct function *fn = DECL_STRUCT_FUNCTION (fndecl);
338 return (gimple_body (fndecl) || (fn && fn->cfg));
339 }
340
341 /* Return a printable name for symbol DECL. */
342
343 const char *
344 gimple_decl_printable_name (tree decl, int verbosity)
345 {
346 if (!DECL_NAME (decl))
347 return NULL;
348
349 if (DECL_ASSEMBLER_NAME_SET_P (decl))
350 {
351 const char *str, *mangled_str;
352 int dmgl_opts = DMGL_NO_OPTS;
353
354 if (verbosity >= 2)
355 {
356 dmgl_opts = DMGL_VERBOSE
357 | DMGL_ANSI
358 | DMGL_GNU_V3
359 | DMGL_RET_POSTFIX;
360 if (TREE_CODE (decl) == FUNCTION_DECL)
361 dmgl_opts |= DMGL_PARAMS;
362 }
363
364 mangled_str = IDENTIFIER_POINTER (DECL_ASSEMBLER_NAME (decl));
365 str = cplus_demangle_v3 (mangled_str, dmgl_opts);
366 return (str) ? str : mangled_str;
367 }
368
369 return IDENTIFIER_POINTER (DECL_NAME (decl));
370 }
371
372
373 /* Create a new VAR_DECL and copy information from VAR to it. */
374
375 tree
376 copy_var_decl (tree var, tree name, tree type)
377 {
378 tree copy = build_decl (DECL_SOURCE_LOCATION (var), VAR_DECL, name, type);
379
380 TREE_ADDRESSABLE (copy) = TREE_ADDRESSABLE (var);
381 TREE_THIS_VOLATILE (copy) = TREE_THIS_VOLATILE (var);
382 DECL_GIMPLE_REG_P (copy) = DECL_GIMPLE_REG_P (var);
383 DECL_ARTIFICIAL (copy) = DECL_ARTIFICIAL (var);
384 DECL_IGNORED_P (copy) = DECL_IGNORED_P (var);
385 DECL_CONTEXT (copy) = DECL_CONTEXT (var);
386 TREE_NO_WARNING (copy) = TREE_NO_WARNING (var);
387 TREE_USED (copy) = 1;
388 DECL_SEEN_IN_BIND_EXPR_P (copy) = 1;
389 DECL_ATTRIBUTES (copy) = DECL_ATTRIBUTES (var);
390
391 return copy;
392 }
393
394 /* Given SSA_NAMEs NAME1 and NAME2, return true if they are candidates for
395 coalescing together, false otherwise.
396
397 This must stay consistent with var_map_base_init in tree-ssa-live.c. */
398
399 bool
400 gimple_can_coalesce_p (tree name1, tree name2)
401 {
402 /* First check the SSA_NAME's associated DECL. We only want to
403 coalesce if they have the same DECL or both have no associated DECL. */
404 tree var1 = SSA_NAME_VAR (name1);
405 tree var2 = SSA_NAME_VAR (name2);
406 var1 = (var1 && (!VAR_P (var1) || !DECL_IGNORED_P (var1))) ? var1 : NULL_TREE;
407 var2 = (var2 && (!VAR_P (var2) || !DECL_IGNORED_P (var2))) ? var2 : NULL_TREE;
408 if (var1 != var2)
409 return false;
410
411 /* Now check the types. If the types are the same, then we should
412 try to coalesce V1 and V2. */
413 tree t1 = TREE_TYPE (name1);
414 tree t2 = TREE_TYPE (name2);
415 if (t1 == t2)
416 return true;
417
418 /* If the types are not the same, check for a canonical type match. This
419 (for example) allows coalescing when the types are fundamentally the
420 same, but just have different names.
421
422 Note pointer types with different address spaces may have the same
423 canonical type. Those are rejected for coalescing by the
424 types_compatible_p check. */
425 if (TYPE_CANONICAL (t1)
426 && TYPE_CANONICAL (t1) == TYPE_CANONICAL (t2)
427 && types_compatible_p (t1, t2))
428 return true;
429
430 return false;
431 }
432
433 /* Strip off a legitimate source ending from the input string NAME of
434 length LEN. Rather than having to know the names used by all of
435 our front ends, we strip off an ending of a period followed by
436 up to five characters. (Java uses ".class".) */
437
438 static inline void
439 remove_suffix (char *name, int len)
440 {
441 int i;
442
443 for (i = 2; i < 8 && len > i; i++)
444 {
445 if (name[len - i] == '.')
446 {
447 name[len - i] = '\0';
448 break;
449 }
450 }
451 }
452
453 /* Create a new temporary name with PREFIX. Return an identifier. */
454
455 static GTY(()) unsigned int tmp_var_id_num;
456
457 tree
458 create_tmp_var_name (const char *prefix)
459 {
460 char *tmp_name;
461
462 if (prefix)
463 {
464 char *preftmp = ASTRDUP (prefix);
465
466 remove_suffix (preftmp, strlen (preftmp));
467 clean_symbol_name (preftmp);
468
469 prefix = preftmp;
470 }
471
472 ASM_FORMAT_PRIVATE_NAME (tmp_name, prefix ? prefix : "T", tmp_var_id_num++);
473 return get_identifier (tmp_name);
474 }
475
476 /* Create a new temporary variable declaration of type TYPE.
477 Do NOT push it into the current binding. */
478
479 tree
480 create_tmp_var_raw (tree type, const char *prefix)
481 {
482 tree tmp_var;
483
484 tmp_var = build_decl (input_location,
485 VAR_DECL, prefix ? create_tmp_var_name (prefix) : NULL,
486 type);
487
488 /* The variable was declared by the compiler. */
489 DECL_ARTIFICIAL (tmp_var) = 1;
490 /* And we don't want debug info for it. */
491 DECL_IGNORED_P (tmp_var) = 1;
492
493 /* Make the variable writable. */
494 TREE_READONLY (tmp_var) = 0;
495
496 DECL_EXTERNAL (tmp_var) = 0;
497 TREE_STATIC (tmp_var) = 0;
498 TREE_USED (tmp_var) = 1;
499
500 return tmp_var;
501 }
502
503 /* Create a new temporary variable declaration of type TYPE. DO push the
504 variable into the current binding. Further, assume that this is called
505 only from gimplification or optimization, at which point the creation of
506 certain types are bugs. */
507
508 tree
509 create_tmp_var (tree type, const char *prefix)
510 {
511 tree tmp_var;
512
513 /* We don't allow types that are addressable (meaning we can't make copies),
514 or incomplete. We also used to reject every variable size objects here,
515 but now support those for which a constant upper bound can be obtained.
516 The processing for variable sizes is performed in gimple_add_tmp_var,
517 point at which it really matters and possibly reached via paths not going
518 through this function, e.g. after direct calls to create_tmp_var_raw. */
519 gcc_assert (!TREE_ADDRESSABLE (type) && COMPLETE_TYPE_P (type));
520
521 tmp_var = create_tmp_var_raw (type, prefix);
522 gimple_add_tmp_var (tmp_var);
523 return tmp_var;
524 }
525
526 /* Create a new temporary variable declaration of type TYPE by calling
527 create_tmp_var and if TYPE is a vector or a complex number, mark the new
528 temporary as gimple register. */
529
530 tree
531 create_tmp_reg (tree type, const char *prefix)
532 {
533 tree tmp;
534
535 tmp = create_tmp_var (type, prefix);
536 if (TREE_CODE (type) == COMPLEX_TYPE
537 || TREE_CODE (type) == VECTOR_TYPE)
538 DECL_GIMPLE_REG_P (tmp) = 1;
539
540 return tmp;
541 }
542
543 /* Create a new temporary variable declaration of type TYPE by calling
544 create_tmp_var and if TYPE is a vector or a complex number, mark the new
545 temporary as gimple register. */
546
547 tree
548 create_tmp_reg_fn (struct function *fn, tree type, const char *prefix)
549 {
550 tree tmp;
551
552 tmp = create_tmp_var_raw (type, prefix);
553 gimple_add_tmp_var_fn (fn, tmp);
554 if (TREE_CODE (type) == COMPLEX_TYPE
555 || TREE_CODE (type) == VECTOR_TYPE)
556 DECL_GIMPLE_REG_P (tmp) = 1;
557
558 return tmp;
559 }
560
561
562 /* ----- Expression related ----- */
563
564 /* Extract the operands and code for expression EXPR into *SUBCODE_P,
565 *OP1_P, *OP2_P and *OP3_P respectively. */
566
567 void
568 extract_ops_from_tree_1 (tree expr, enum tree_code *subcode_p, tree *op1_p,
569 tree *op2_p, tree *op3_p)
570 {
571 enum gimple_rhs_class grhs_class;
572
573 *subcode_p = TREE_CODE (expr);
574 grhs_class = get_gimple_rhs_class (*subcode_p);
575
576 if (grhs_class == GIMPLE_TERNARY_RHS)
577 {
578 *op1_p = TREE_OPERAND (expr, 0);
579 *op2_p = TREE_OPERAND (expr, 1);
580 *op3_p = TREE_OPERAND (expr, 2);
581 }
582 else if (grhs_class == GIMPLE_BINARY_RHS)
583 {
584 *op1_p = TREE_OPERAND (expr, 0);
585 *op2_p = TREE_OPERAND (expr, 1);
586 *op3_p = NULL_TREE;
587 }
588 else if (grhs_class == GIMPLE_UNARY_RHS)
589 {
590 *op1_p = TREE_OPERAND (expr, 0);
591 *op2_p = NULL_TREE;
592 *op3_p = NULL_TREE;
593 }
594 else if (grhs_class == GIMPLE_SINGLE_RHS)
595 {
596 *op1_p = expr;
597 *op2_p = NULL_TREE;
598 *op3_p = NULL_TREE;
599 }
600 else
601 gcc_unreachable ();
602 }
603
604 /* Extract operands for a GIMPLE_COND statement out of COND_EXPR tree COND. */
605
606 void
607 gimple_cond_get_ops_from_tree (tree cond, enum tree_code *code_p,
608 tree *lhs_p, tree *rhs_p)
609 {
610 gcc_assert (TREE_CODE_CLASS (TREE_CODE (cond)) == tcc_comparison
611 || TREE_CODE (cond) == TRUTH_NOT_EXPR
612 || is_gimple_min_invariant (cond)
613 || SSA_VAR_P (cond));
614
615 extract_ops_from_tree (cond, code_p, lhs_p, rhs_p);
616
617 /* Canonicalize conditionals of the form 'if (!VAL)'. */
618 if (*code_p == TRUTH_NOT_EXPR)
619 {
620 *code_p = EQ_EXPR;
621 gcc_assert (*lhs_p && *rhs_p == NULL_TREE);
622 *rhs_p = build_zero_cst (TREE_TYPE (*lhs_p));
623 }
624 /* Canonicalize conditionals of the form 'if (VAL)' */
625 else if (TREE_CODE_CLASS (*code_p) != tcc_comparison)
626 {
627 *code_p = NE_EXPR;
628 gcc_assert (*lhs_p && *rhs_p == NULL_TREE);
629 *rhs_p = build_zero_cst (TREE_TYPE (*lhs_p));
630 }
631 }
632
633 /* Return true if T is a valid LHS for a GIMPLE assignment expression. */
634
635 bool
636 is_gimple_lvalue (tree t)
637 {
638 return (is_gimple_addressable (t)
639 || TREE_CODE (t) == WITH_SIZE_EXPR
640 /* These are complex lvalues, but don't have addresses, so they
641 go here. */
642 || TREE_CODE (t) == BIT_FIELD_REF);
643 }
644
645 /* Return true if T is a GIMPLE condition. */
646
647 bool
648 is_gimple_condexpr (tree t)
649 {
650 return (is_gimple_val (t) || (COMPARISON_CLASS_P (t)
651 && !tree_could_throw_p (t)
652 && is_gimple_val (TREE_OPERAND (t, 0))
653 && is_gimple_val (TREE_OPERAND (t, 1))));
654 }
655
656 /* Return true if T is a gimple address. */
657
658 bool
659 is_gimple_address (const_tree t)
660 {
661 tree op;
662
663 if (TREE_CODE (t) != ADDR_EXPR)
664 return false;
665
666 op = TREE_OPERAND (t, 0);
667 while (handled_component_p (op))
668 {
669 if ((TREE_CODE (op) == ARRAY_REF
670 || TREE_CODE (op) == ARRAY_RANGE_REF)
671 && !is_gimple_val (TREE_OPERAND (op, 1)))
672 return false;
673
674 op = TREE_OPERAND (op, 0);
675 }
676
677 if (CONSTANT_CLASS_P (op) || TREE_CODE (op) == MEM_REF)
678 return true;
679
680 switch (TREE_CODE (op))
681 {
682 case PARM_DECL:
683 case RESULT_DECL:
684 case LABEL_DECL:
685 case FUNCTION_DECL:
686 case VAR_DECL:
687 case CONST_DECL:
688 return true;
689
690 default:
691 return false;
692 }
693 }
694
695 /* Return true if T is a gimple invariant address. */
696
697 bool
698 is_gimple_invariant_address (const_tree t)
699 {
700 const_tree op;
701
702 if (TREE_CODE (t) != ADDR_EXPR)
703 return false;
704
705 op = strip_invariant_refs (TREE_OPERAND (t, 0));
706 if (!op)
707 return false;
708
709 if (TREE_CODE (op) == MEM_REF)
710 {
711 const_tree op0 = TREE_OPERAND (op, 0);
712 return (TREE_CODE (op0) == ADDR_EXPR
713 && (CONSTANT_CLASS_P (TREE_OPERAND (op0, 0))
714 || decl_address_invariant_p (TREE_OPERAND (op0, 0))));
715 }
716
717 return CONSTANT_CLASS_P (op) || decl_address_invariant_p (op);
718 }
719
720 /* Return true if T is a gimple invariant address at IPA level
721 (so addresses of variables on stack are not allowed). */
722
723 bool
724 is_gimple_ip_invariant_address (const_tree t)
725 {
726 const_tree op;
727
728 if (TREE_CODE (t) != ADDR_EXPR)
729 return false;
730
731 op = strip_invariant_refs (TREE_OPERAND (t, 0));
732 if (!op)
733 return false;
734
735 if (TREE_CODE (op) == MEM_REF)
736 {
737 const_tree op0 = TREE_OPERAND (op, 0);
738 return (TREE_CODE (op0) == ADDR_EXPR
739 && (CONSTANT_CLASS_P (TREE_OPERAND (op0, 0))
740 || decl_address_ip_invariant_p (TREE_OPERAND (op0, 0))));
741 }
742
743 return CONSTANT_CLASS_P (op) || decl_address_ip_invariant_p (op);
744 }
745
746 /* Return true if T is a GIMPLE minimal invariant. It's a restricted
747 form of function invariant. */
748
749 bool
750 is_gimple_min_invariant (const_tree t)
751 {
752 if (TREE_CODE (t) == ADDR_EXPR)
753 return is_gimple_invariant_address (t);
754
755 return is_gimple_constant (t);
756 }
757
758 /* Return true if T is a GIMPLE interprocedural invariant. It's a restricted
759 form of gimple minimal invariant. */
760
761 bool
762 is_gimple_ip_invariant (const_tree t)
763 {
764 if (TREE_CODE (t) == ADDR_EXPR)
765 return is_gimple_ip_invariant_address (t);
766
767 return is_gimple_constant (t);
768 }
769
770 /* Return true if T is a non-aggregate register variable. */
771
772 bool
773 is_gimple_reg (tree t)
774 {
775 if (virtual_operand_p (t))
776 return false;
777
778 if (TREE_CODE (t) == SSA_NAME)
779 return true;
780
781 if (!is_gimple_variable (t))
782 return false;
783
784 if (!is_gimple_reg_type (TREE_TYPE (t)))
785 return false;
786
787 /* A volatile decl is not acceptable because we can't reuse it as
788 needed. We need to copy it into a temp first. */
789 if (TREE_THIS_VOLATILE (t))
790 return false;
791
792 /* We define "registers" as things that can be renamed as needed,
793 which with our infrastructure does not apply to memory. */
794 if (needs_to_live_in_memory (t))
795 return false;
796
797 /* Hard register variables are an interesting case. For those that
798 are call-clobbered, we don't know where all the calls are, since
799 we don't (want to) take into account which operations will turn
800 into libcalls at the rtl level. For those that are call-saved,
801 we don't currently model the fact that calls may in fact change
802 global hard registers, nor do we examine ASM_CLOBBERS at the tree
803 level, and so miss variable changes that might imply. All around,
804 it seems safest to not do too much optimization with these at the
805 tree level at all. We'll have to rely on the rtl optimizers to
806 clean this up, as there we've got all the appropriate bits exposed. */
807 if (TREE_CODE (t) == VAR_DECL && DECL_HARD_REGISTER (t))
808 return false;
809
810 /* Complex and vector values must have been put into SSA-like form.
811 That is, no assignments to the individual components. */
812 if (TREE_CODE (TREE_TYPE (t)) == COMPLEX_TYPE
813 || TREE_CODE (TREE_TYPE (t)) == VECTOR_TYPE)
814 return DECL_GIMPLE_REG_P (t);
815
816 return true;
817 }
818
819
820 /* Return true if T is a GIMPLE rvalue, i.e. an identifier or a constant. */
821
822 bool
823 is_gimple_val (tree t)
824 {
825 /* Make loads from volatiles and memory vars explicit. */
826 if (is_gimple_variable (t)
827 && is_gimple_reg_type (TREE_TYPE (t))
828 && !is_gimple_reg (t))
829 return false;
830
831 return (is_gimple_variable (t) || is_gimple_min_invariant (t));
832 }
833
834 /* Similarly, but accept hard registers as inputs to asm statements. */
835
836 bool
837 is_gimple_asm_val (tree t)
838 {
839 if (TREE_CODE (t) == VAR_DECL && DECL_HARD_REGISTER (t))
840 return true;
841
842 return is_gimple_val (t);
843 }
844
845 /* Return true if T is a GIMPLE minimal lvalue. */
846
847 bool
848 is_gimple_min_lval (tree t)
849 {
850 if (!(t = CONST_CAST_TREE (strip_invariant_refs (t))))
851 return false;
852 return (is_gimple_id (t) || TREE_CODE (t) == MEM_REF);
853 }
854
855 /* Return true if T is a valid function operand of a CALL_EXPR. */
856
857 bool
858 is_gimple_call_addr (tree t)
859 {
860 return (TREE_CODE (t) == OBJ_TYPE_REF || is_gimple_val (t));
861 }
862
863 /* Return true if T is a valid address operand of a MEM_REF. */
864
865 bool
866 is_gimple_mem_ref_addr (tree t)
867 {
868 return (is_gimple_reg (t)
869 || TREE_CODE (t) == INTEGER_CST
870 || (TREE_CODE (t) == ADDR_EXPR
871 && (CONSTANT_CLASS_P (TREE_OPERAND (t, 0))
872 || decl_address_invariant_p (TREE_OPERAND (t, 0)))));
873 }
874
875 /* Mark X addressable. Unlike the langhook we expect X to be in gimple
876 form and we don't do any syntax checking. */
877
878 void
879 mark_addressable (tree x)
880 {
881 while (handled_component_p (x))
882 x = TREE_OPERAND (x, 0);
883 if (TREE_CODE (x) == MEM_REF
884 && TREE_CODE (TREE_OPERAND (x, 0)) == ADDR_EXPR)
885 x = TREE_OPERAND (TREE_OPERAND (x, 0), 0);
886 if (TREE_CODE (x) != VAR_DECL
887 && TREE_CODE (x) != PARM_DECL
888 && TREE_CODE (x) != RESULT_DECL)
889 return;
890 TREE_ADDRESSABLE (x) = 1;
891
892 /* Also mark the artificial SSA_NAME that points to the partition of X. */
893 if (TREE_CODE (x) == VAR_DECL
894 && !DECL_EXTERNAL (x)
895 && !TREE_STATIC (x)
896 && cfun->gimple_df != NULL
897 && cfun->gimple_df->decls_to_pointers != NULL)
898 {
899 tree *namep = cfun->gimple_df->decls_to_pointers->get (x);
900 if (namep)
901 TREE_ADDRESSABLE (*namep) = 1;
902 }
903 }
904
905 /* Returns true iff T is a valid RHS for an assignment to a renamed
906 user -- or front-end generated artificial -- variable. */
907
908 bool
909 is_gimple_reg_rhs (tree t)
910 {
911 return get_gimple_rhs_class (TREE_CODE (t)) != GIMPLE_INVALID_RHS;
912 }
913
914 #include "gt-gimple-expr.h"