]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/gimple-fold.c
Merge with trunk.
[thirdparty/gcc.git] / gcc / gimple-fold.c
1 /* Statement simplification on GIMPLE.
2 Copyright (C) 2010-2013 Free Software Foundation, Inc.
3 Split out from tree-ssa-ccp.c.
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it
8 under the terms of the GNU General Public License as published by the
9 Free Software Foundation; either version 3, or (at your option) any
10 later version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT
13 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
20
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "tm.h"
25 #include "tree.h"
26 #include "stringpool.h"
27 #include "expr.h"
28 #include "stmt.h"
29 #include "stor-layout.h"
30 #include "flags.h"
31 #include "function.h"
32 #include "dumpfile.h"
33 #include "bitmap.h"
34 #include "basic-block.h"
35 #include "tree-ssa-alias.h"
36 #include "internal-fn.h"
37 #include "gimple-fold.h"
38 #include "gimple-expr.h"
39 #include "is-a.h"
40 #include "gimple.h"
41 #include "gimplify.h"
42 #include "gimple-iterator.h"
43 #include "gimple-ssa.h"
44 #include "tree-ssanames.h"
45 #include "tree-into-ssa.h"
46 #include "tree-dfa.h"
47 #include "tree-ssa.h"
48 #include "tree-ssa-propagate.h"
49 #include "target.h"
50 #include "ipa-utils.h"
51 #include "gimple-pretty-print.h"
52 #include "tree-ssa-address.h"
53 #include "langhooks.h"
54
55 /* Return true when DECL can be referenced from current unit.
56 FROM_DECL (if non-null) specify constructor of variable DECL was taken from.
57 We can get declarations that are not possible to reference for various
58 reasons:
59
60 1) When analyzing C++ virtual tables.
61 C++ virtual tables do have known constructors even
62 when they are keyed to other compilation unit.
63 Those tables can contain pointers to methods and vars
64 in other units. Those methods have both STATIC and EXTERNAL
65 set.
66 2) In WHOPR mode devirtualization might lead to reference
67 to method that was partitioned elsehwere.
68 In this case we have static VAR_DECL or FUNCTION_DECL
69 that has no corresponding callgraph/varpool node
70 declaring the body.
71 3) COMDAT functions referred by external vtables that
72 we devirtualize only during final compilation stage.
73 At this time we already decided that we will not output
74 the function body and thus we can't reference the symbol
75 directly. */
76
77 static bool
78 can_refer_decl_in_current_unit_p (tree decl, tree from_decl)
79 {
80 struct varpool_node *vnode;
81 struct cgraph_node *node;
82 symtab_node *snode;
83
84 if (DECL_ABSTRACT (decl))
85 return false;
86
87 /* We are concerned only about static/external vars and functions. */
88 if ((!TREE_STATIC (decl) && !DECL_EXTERNAL (decl))
89 || (TREE_CODE (decl) != VAR_DECL && TREE_CODE (decl) != FUNCTION_DECL))
90 return true;
91
92 /* Static objects can be referred only if they was not optimized out yet. */
93 if (!TREE_PUBLIC (decl) && !DECL_EXTERNAL (decl))
94 {
95 snode = symtab_get_node (decl);
96 if (!snode)
97 return false;
98 node = dyn_cast <cgraph_node> (snode);
99 return !node || !node->global.inlined_to;
100 }
101
102 /* We will later output the initializer, so we can refer to it.
103 So we are concerned only when DECL comes from initializer of
104 external var. */
105 if (!from_decl
106 || TREE_CODE (from_decl) != VAR_DECL
107 || !DECL_EXTERNAL (from_decl)
108 || (flag_ltrans
109 && symtab_get_node (from_decl)->in_other_partition))
110 return true;
111 /* We are folding reference from external vtable. The vtable may reffer
112 to a symbol keyed to other compilation unit. The other compilation
113 unit may be in separate DSO and the symbol may be hidden. */
114 if (DECL_VISIBILITY_SPECIFIED (decl)
115 && DECL_EXTERNAL (decl)
116 && (!(snode = symtab_get_node (decl)) || !snode->in_other_partition))
117 return false;
118 /* When function is public, we always can introduce new reference.
119 Exception are the COMDAT functions where introducing a direct
120 reference imply need to include function body in the curren tunit. */
121 if (TREE_PUBLIC (decl) && !DECL_COMDAT (decl))
122 return true;
123 /* We are not at ltrans stage; so don't worry about WHOPR.
124 Also when still gimplifying all referred comdat functions will be
125 produced.
126
127 As observed in PR20991 for already optimized out comdat virtual functions
128 it may be tempting to not necessarily give up because the copy will be
129 output elsewhere when corresponding vtable is output.
130 This is however not possible - ABI specify that COMDATs are output in
131 units where they are used and when the other unit was compiled with LTO
132 it is possible that vtable was kept public while the function itself
133 was privatized. */
134 if (!flag_ltrans && (!DECL_COMDAT (decl) || !cgraph_function_flags_ready))
135 return true;
136
137 /* OK we are seeing either COMDAT or static variable. In this case we must
138 check that the definition is still around so we can refer it. */
139 if (TREE_CODE (decl) == FUNCTION_DECL)
140 {
141 node = cgraph_get_node (decl);
142 /* Check that we still have function body and that we didn't took
143 the decision to eliminate offline copy of the function yet.
144 The second is important when devirtualization happens during final
145 compilation stage when making a new reference no longer makes callee
146 to be compiled. */
147 if (!node || !node->definition || node->global.inlined_to)
148 {
149 gcc_checking_assert (!TREE_ASM_WRITTEN (decl));
150 return false;
151 }
152 }
153 else if (TREE_CODE (decl) == VAR_DECL)
154 {
155 vnode = varpool_get_node (decl);
156 if (!vnode || !vnode->definition)
157 {
158 gcc_checking_assert (!TREE_ASM_WRITTEN (decl));
159 return false;
160 }
161 }
162 return true;
163 }
164
165 /* CVAL is value taken from DECL_INITIAL of variable. Try to transform it into
166 acceptable form for is_gimple_min_invariant.
167 FROM_DECL (if non-NULL) specify variable whose constructor contains CVAL. */
168
169 tree
170 canonicalize_constructor_val (tree cval, tree from_decl)
171 {
172 tree orig_cval = cval;
173 STRIP_NOPS (cval);
174 if (TREE_CODE (cval) == POINTER_PLUS_EXPR
175 && TREE_CODE (TREE_OPERAND (cval, 1)) == INTEGER_CST)
176 {
177 tree ptr = TREE_OPERAND (cval, 0);
178 if (is_gimple_min_invariant (ptr))
179 cval = build1_loc (EXPR_LOCATION (cval),
180 ADDR_EXPR, TREE_TYPE (ptr),
181 fold_build2 (MEM_REF, TREE_TYPE (TREE_TYPE (ptr)),
182 ptr,
183 fold_convert (ptr_type_node,
184 TREE_OPERAND (cval, 1))));
185 }
186 if (TREE_CODE (cval) == ADDR_EXPR)
187 {
188 tree base = NULL_TREE;
189 if (TREE_CODE (TREE_OPERAND (cval, 0)) == COMPOUND_LITERAL_EXPR)
190 {
191 base = COMPOUND_LITERAL_EXPR_DECL (TREE_OPERAND (cval, 0));
192 if (base)
193 TREE_OPERAND (cval, 0) = base;
194 }
195 else
196 base = get_base_address (TREE_OPERAND (cval, 0));
197 if (!base)
198 return NULL_TREE;
199
200 if ((TREE_CODE (base) == VAR_DECL
201 || TREE_CODE (base) == FUNCTION_DECL)
202 && !can_refer_decl_in_current_unit_p (base, from_decl))
203 return NULL_TREE;
204 if (TREE_CODE (base) == VAR_DECL)
205 TREE_ADDRESSABLE (base) = 1;
206 else if (TREE_CODE (base) == FUNCTION_DECL)
207 {
208 /* Make sure we create a cgraph node for functions we'll reference.
209 They can be non-existent if the reference comes from an entry
210 of an external vtable for example. */
211 cgraph_get_create_node (base);
212 }
213 /* Fixup types in global initializers. */
214 if (TREE_TYPE (TREE_TYPE (cval)) != TREE_TYPE (TREE_OPERAND (cval, 0)))
215 cval = build_fold_addr_expr (TREE_OPERAND (cval, 0));
216
217 if (!useless_type_conversion_p (TREE_TYPE (orig_cval), TREE_TYPE (cval)))
218 cval = fold_convert (TREE_TYPE (orig_cval), cval);
219 return cval;
220 }
221 if (TREE_OVERFLOW_P (cval))
222 return drop_tree_overflow (cval);
223 return orig_cval;
224 }
225
226 /* If SYM is a constant variable with known value, return the value.
227 NULL_TREE is returned otherwise. */
228
229 tree
230 get_symbol_constant_value (tree sym)
231 {
232 tree val = ctor_for_folding (sym);
233 if (val != error_mark_node)
234 {
235 if (val)
236 {
237 val = canonicalize_constructor_val (unshare_expr (val), sym);
238 if (val && is_gimple_min_invariant (val))
239 return val;
240 else
241 return NULL_TREE;
242 }
243 /* Variables declared 'const' without an initializer
244 have zero as the initializer if they may not be
245 overridden at link or run time. */
246 if (!val
247 && (INTEGRAL_TYPE_P (TREE_TYPE (sym))
248 || SCALAR_FLOAT_TYPE_P (TREE_TYPE (sym))))
249 return build_zero_cst (TREE_TYPE (sym));
250 }
251
252 return NULL_TREE;
253 }
254
255
256
257 /* Subroutine of fold_stmt. We perform several simplifications of the
258 memory reference tree EXPR and make sure to re-gimplify them properly
259 after propagation of constant addresses. IS_LHS is true if the
260 reference is supposed to be an lvalue. */
261
262 static tree
263 maybe_fold_reference (tree expr, bool is_lhs)
264 {
265 tree *t = &expr;
266 tree result;
267
268 if ((TREE_CODE (expr) == VIEW_CONVERT_EXPR
269 || TREE_CODE (expr) == REALPART_EXPR
270 || TREE_CODE (expr) == IMAGPART_EXPR)
271 && CONSTANT_CLASS_P (TREE_OPERAND (expr, 0)))
272 return fold_unary_loc (EXPR_LOCATION (expr),
273 TREE_CODE (expr),
274 TREE_TYPE (expr),
275 TREE_OPERAND (expr, 0));
276 else if (TREE_CODE (expr) == BIT_FIELD_REF
277 && CONSTANT_CLASS_P (TREE_OPERAND (expr, 0)))
278 return fold_ternary_loc (EXPR_LOCATION (expr),
279 TREE_CODE (expr),
280 TREE_TYPE (expr),
281 TREE_OPERAND (expr, 0),
282 TREE_OPERAND (expr, 1),
283 TREE_OPERAND (expr, 2));
284
285 while (handled_component_p (*t))
286 t = &TREE_OPERAND (*t, 0);
287
288 /* Canonicalize MEM_REFs invariant address operand. Do this first
289 to avoid feeding non-canonical MEM_REFs elsewhere. */
290 if (TREE_CODE (*t) == MEM_REF
291 && !is_gimple_mem_ref_addr (TREE_OPERAND (*t, 0)))
292 {
293 bool volatile_p = TREE_THIS_VOLATILE (*t);
294 tree tem = fold_binary (MEM_REF, TREE_TYPE (*t),
295 TREE_OPERAND (*t, 0),
296 TREE_OPERAND (*t, 1));
297 if (tem)
298 {
299 TREE_THIS_VOLATILE (tem) = volatile_p;
300 *t = tem;
301 tem = maybe_fold_reference (expr, is_lhs);
302 if (tem)
303 return tem;
304 return expr;
305 }
306 }
307
308 if (!is_lhs
309 && (result = fold_const_aggregate_ref (expr))
310 && is_gimple_min_invariant (result))
311 return result;
312
313 /* Fold back MEM_REFs to reference trees. */
314 if (TREE_CODE (*t) == MEM_REF
315 && TREE_CODE (TREE_OPERAND (*t, 0)) == ADDR_EXPR
316 && integer_zerop (TREE_OPERAND (*t, 1))
317 && (TREE_THIS_VOLATILE (*t)
318 == TREE_THIS_VOLATILE (TREE_OPERAND (TREE_OPERAND (*t, 0), 0)))
319 && !TYPE_REF_CAN_ALIAS_ALL (TREE_TYPE (TREE_OPERAND (*t, 1)))
320 && (TYPE_MAIN_VARIANT (TREE_TYPE (*t))
321 == TYPE_MAIN_VARIANT (TREE_TYPE (TREE_TYPE (TREE_OPERAND (*t, 1)))))
322 /* We have to look out here to not drop a required conversion
323 from the rhs to the lhs if is_lhs, but we don't have the
324 rhs here to verify that. Thus require strict type
325 compatibility. */
326 && types_compatible_p (TREE_TYPE (*t),
327 TREE_TYPE (TREE_OPERAND
328 (TREE_OPERAND (*t, 0), 0))))
329 {
330 tree tem;
331 *t = TREE_OPERAND (TREE_OPERAND (*t, 0), 0);
332 tem = maybe_fold_reference (expr, is_lhs);
333 if (tem)
334 return tem;
335 return expr;
336 }
337 else if (TREE_CODE (*t) == TARGET_MEM_REF)
338 {
339 tree tem = maybe_fold_tmr (*t);
340 if (tem)
341 {
342 *t = tem;
343 tem = maybe_fold_reference (expr, is_lhs);
344 if (tem)
345 return tem;
346 return expr;
347 }
348 }
349
350 return NULL_TREE;
351 }
352
353
354 /* Attempt to fold an assignment statement pointed-to by SI. Returns a
355 replacement rhs for the statement or NULL_TREE if no simplification
356 could be made. It is assumed that the operands have been previously
357 folded. */
358
359 static tree
360 fold_gimple_assign (gimple_stmt_iterator *si)
361 {
362 gimple stmt = gsi_stmt (*si);
363 enum tree_code subcode = gimple_assign_rhs_code (stmt);
364 location_t loc = gimple_location (stmt);
365
366 tree result = NULL_TREE;
367
368 switch (get_gimple_rhs_class (subcode))
369 {
370 case GIMPLE_SINGLE_RHS:
371 {
372 tree rhs = gimple_assign_rhs1 (stmt);
373
374 if (REFERENCE_CLASS_P (rhs))
375 return maybe_fold_reference (rhs, false);
376
377 else if (TREE_CODE (rhs) == ADDR_EXPR)
378 {
379 tree ref = TREE_OPERAND (rhs, 0);
380 tree tem = maybe_fold_reference (ref, true);
381 if (tem
382 && TREE_CODE (tem) == MEM_REF
383 && integer_zerop (TREE_OPERAND (tem, 1)))
384 result = fold_convert (TREE_TYPE (rhs), TREE_OPERAND (tem, 0));
385 else if (tem)
386 result = fold_convert (TREE_TYPE (rhs),
387 build_fold_addr_expr_loc (loc, tem));
388 else if (TREE_CODE (ref) == MEM_REF
389 && integer_zerop (TREE_OPERAND (ref, 1)))
390 result = fold_convert (TREE_TYPE (rhs), TREE_OPERAND (ref, 0));
391 }
392
393 else if (TREE_CODE (rhs) == CONSTRUCTOR
394 && TREE_CODE (TREE_TYPE (rhs)) == VECTOR_TYPE
395 && (CONSTRUCTOR_NELTS (rhs)
396 == TYPE_VECTOR_SUBPARTS (TREE_TYPE (rhs))))
397 {
398 /* Fold a constant vector CONSTRUCTOR to VECTOR_CST. */
399 unsigned i;
400 tree val;
401
402 FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (rhs), i, val)
403 if (TREE_CODE (val) != INTEGER_CST
404 && TREE_CODE (val) != REAL_CST
405 && TREE_CODE (val) != FIXED_CST)
406 return NULL_TREE;
407
408 return build_vector_from_ctor (TREE_TYPE (rhs),
409 CONSTRUCTOR_ELTS (rhs));
410 }
411
412 else if (DECL_P (rhs))
413 return get_symbol_constant_value (rhs);
414
415 /* If we couldn't fold the RHS, hand over to the generic
416 fold routines. */
417 if (result == NULL_TREE)
418 result = fold (rhs);
419
420 /* Strip away useless type conversions. Both the NON_LVALUE_EXPR
421 that may have been added by fold, and "useless" type
422 conversions that might now be apparent due to propagation. */
423 STRIP_USELESS_TYPE_CONVERSION (result);
424
425 if (result != rhs && valid_gimple_rhs_p (result))
426 return result;
427
428 return NULL_TREE;
429 }
430 break;
431
432 case GIMPLE_UNARY_RHS:
433 {
434 tree rhs = gimple_assign_rhs1 (stmt);
435
436 result = fold_unary_loc (loc, subcode, gimple_expr_type (stmt), rhs);
437 if (result)
438 {
439 /* If the operation was a conversion do _not_ mark a
440 resulting constant with TREE_OVERFLOW if the original
441 constant was not. These conversions have implementation
442 defined behavior and retaining the TREE_OVERFLOW flag
443 here would confuse later passes such as VRP. */
444 if (CONVERT_EXPR_CODE_P (subcode)
445 && TREE_CODE (result) == INTEGER_CST
446 && TREE_CODE (rhs) == INTEGER_CST)
447 TREE_OVERFLOW (result) = TREE_OVERFLOW (rhs);
448
449 STRIP_USELESS_TYPE_CONVERSION (result);
450 if (valid_gimple_rhs_p (result))
451 return result;
452 }
453 }
454 break;
455
456 case GIMPLE_BINARY_RHS:
457 /* Try to canonicalize for boolean-typed X the comparisons
458 X == 0, X == 1, X != 0, and X != 1. */
459 if (gimple_assign_rhs_code (stmt) == EQ_EXPR
460 || gimple_assign_rhs_code (stmt) == NE_EXPR)
461 {
462 tree lhs = gimple_assign_lhs (stmt);
463 tree op1 = gimple_assign_rhs1 (stmt);
464 tree op2 = gimple_assign_rhs2 (stmt);
465 tree type = TREE_TYPE (op1);
466
467 /* Check whether the comparison operands are of the same boolean
468 type as the result type is.
469 Check that second operand is an integer-constant with value
470 one or zero. */
471 if (TREE_CODE (op2) == INTEGER_CST
472 && (integer_zerop (op2) || integer_onep (op2))
473 && useless_type_conversion_p (TREE_TYPE (lhs), type))
474 {
475 enum tree_code cmp_code = gimple_assign_rhs_code (stmt);
476 bool is_logical_not = false;
477
478 /* X == 0 and X != 1 is a logical-not.of X
479 X == 1 and X != 0 is X */
480 if ((cmp_code == EQ_EXPR && integer_zerop (op2))
481 || (cmp_code == NE_EXPR && integer_onep (op2)))
482 is_logical_not = true;
483
484 if (is_logical_not == false)
485 result = op1;
486 /* Only for one-bit precision typed X the transformation
487 !X -> ~X is valied. */
488 else if (TYPE_PRECISION (type) == 1)
489 result = build1_loc (gimple_location (stmt), BIT_NOT_EXPR,
490 type, op1);
491 /* Otherwise we use !X -> X ^ 1. */
492 else
493 result = build2_loc (gimple_location (stmt), BIT_XOR_EXPR,
494 type, op1, build_int_cst (type, 1));
495
496 }
497 }
498
499 if (!result)
500 result = fold_binary_loc (loc, subcode,
501 TREE_TYPE (gimple_assign_lhs (stmt)),
502 gimple_assign_rhs1 (stmt),
503 gimple_assign_rhs2 (stmt));
504
505 if (result)
506 {
507 STRIP_USELESS_TYPE_CONVERSION (result);
508 if (valid_gimple_rhs_p (result))
509 return result;
510 }
511 break;
512
513 case GIMPLE_TERNARY_RHS:
514 /* Try to fold a conditional expression. */
515 if (gimple_assign_rhs_code (stmt) == COND_EXPR)
516 {
517 tree op0 = gimple_assign_rhs1 (stmt);
518 tree tem;
519 bool set = false;
520 location_t cond_loc = gimple_location (stmt);
521
522 if (COMPARISON_CLASS_P (op0))
523 {
524 fold_defer_overflow_warnings ();
525 tem = fold_binary_loc (cond_loc,
526 TREE_CODE (op0), TREE_TYPE (op0),
527 TREE_OPERAND (op0, 0),
528 TREE_OPERAND (op0, 1));
529 /* This is actually a conditional expression, not a GIMPLE
530 conditional statement, however, the valid_gimple_rhs_p
531 test still applies. */
532 set = (tem && is_gimple_condexpr (tem)
533 && valid_gimple_rhs_p (tem));
534 fold_undefer_overflow_warnings (set, stmt, 0);
535 }
536 else if (is_gimple_min_invariant (op0))
537 {
538 tem = op0;
539 set = true;
540 }
541 else
542 return NULL_TREE;
543
544 if (set)
545 result = fold_build3_loc (cond_loc, COND_EXPR,
546 TREE_TYPE (gimple_assign_lhs (stmt)), tem,
547 gimple_assign_rhs2 (stmt),
548 gimple_assign_rhs3 (stmt));
549 }
550
551 if (!result)
552 result = fold_ternary_loc (loc, subcode,
553 TREE_TYPE (gimple_assign_lhs (stmt)),
554 gimple_assign_rhs1 (stmt),
555 gimple_assign_rhs2 (stmt),
556 gimple_assign_rhs3 (stmt));
557
558 if (result)
559 {
560 STRIP_USELESS_TYPE_CONVERSION (result);
561 if (valid_gimple_rhs_p (result))
562 return result;
563 }
564 break;
565
566 case GIMPLE_INVALID_RHS:
567 gcc_unreachable ();
568 }
569
570 return NULL_TREE;
571 }
572
573 /* Attempt to fold a conditional statement. Return true if any changes were
574 made. We only attempt to fold the condition expression, and do not perform
575 any transformation that would require alteration of the cfg. It is
576 assumed that the operands have been previously folded. */
577
578 static bool
579 fold_gimple_cond (gimple stmt)
580 {
581 tree result = fold_binary_loc (gimple_location (stmt),
582 gimple_cond_code (stmt),
583 boolean_type_node,
584 gimple_cond_lhs (stmt),
585 gimple_cond_rhs (stmt));
586
587 if (result)
588 {
589 STRIP_USELESS_TYPE_CONVERSION (result);
590 if (is_gimple_condexpr (result) && valid_gimple_rhs_p (result))
591 {
592 gimple_cond_set_condition_from_tree (stmt, result);
593 return true;
594 }
595 }
596
597 return false;
598 }
599
600 /* Convert EXPR into a GIMPLE value suitable for substitution on the
601 RHS of an assignment. Insert the necessary statements before
602 iterator *SI_P. The statement at *SI_P, which must be a GIMPLE_CALL
603 is replaced. If the call is expected to produces a result, then it
604 is replaced by an assignment of the new RHS to the result variable.
605 If the result is to be ignored, then the call is replaced by a
606 GIMPLE_NOP. A proper VDEF chain is retained by making the first
607 VUSE and the last VDEF of the whole sequence be the same as the replaced
608 statement and using new SSA names for stores in between. */
609
610 void
611 gimplify_and_update_call_from_tree (gimple_stmt_iterator *si_p, tree expr)
612 {
613 tree lhs;
614 gimple stmt, new_stmt;
615 gimple_stmt_iterator i;
616 gimple_seq stmts = NULL;
617 gimple laststore;
618 tree reaching_vuse;
619
620 stmt = gsi_stmt (*si_p);
621
622 gcc_assert (is_gimple_call (stmt));
623
624 push_gimplify_context (gimple_in_ssa_p (cfun));
625
626 lhs = gimple_call_lhs (stmt);
627 if (lhs == NULL_TREE)
628 {
629 gimplify_and_add (expr, &stmts);
630 /* We can end up with folding a memcpy of an empty class assignment
631 which gets optimized away by C++ gimplification. */
632 if (gimple_seq_empty_p (stmts))
633 {
634 pop_gimplify_context (NULL);
635 if (gimple_in_ssa_p (cfun))
636 {
637 unlink_stmt_vdef (stmt);
638 release_defs (stmt);
639 }
640 gsi_replace (si_p, gimple_build_nop (), true);
641 return;
642 }
643 }
644 else
645 {
646 tree tmp = get_initialized_tmp_var (expr, &stmts, NULL);
647 new_stmt = gimple_build_assign (lhs, tmp);
648 i = gsi_last (stmts);
649 gsi_insert_after_without_update (&i, new_stmt,
650 GSI_CONTINUE_LINKING);
651 }
652
653 pop_gimplify_context (NULL);
654
655 if (gimple_has_location (stmt))
656 annotate_all_with_location (stmts, gimple_location (stmt));
657
658 /* First iterate over the replacement statements backward, assigning
659 virtual operands to their defining statements. */
660 laststore = NULL;
661 for (i = gsi_last (stmts); !gsi_end_p (i); gsi_prev (&i))
662 {
663 new_stmt = gsi_stmt (i);
664 if ((gimple_assign_single_p (new_stmt)
665 && !is_gimple_reg (gimple_assign_lhs (new_stmt)))
666 || (is_gimple_call (new_stmt)
667 && (gimple_call_flags (new_stmt)
668 & (ECF_NOVOPS | ECF_PURE | ECF_CONST | ECF_NORETURN)) == 0))
669 {
670 tree vdef;
671 if (!laststore)
672 vdef = gimple_vdef (stmt);
673 else
674 vdef = make_ssa_name (gimple_vop (cfun), new_stmt);
675 gimple_set_vdef (new_stmt, vdef);
676 if (vdef && TREE_CODE (vdef) == SSA_NAME)
677 SSA_NAME_DEF_STMT (vdef) = new_stmt;
678 laststore = new_stmt;
679 }
680 }
681
682 /* Second iterate over the statements forward, assigning virtual
683 operands to their uses. */
684 reaching_vuse = gimple_vuse (stmt);
685 for (i = gsi_start (stmts); !gsi_end_p (i); gsi_next (&i))
686 {
687 new_stmt = gsi_stmt (i);
688 /* If the new statement possibly has a VUSE, update it with exact SSA
689 name we know will reach this one. */
690 if (gimple_has_mem_ops (new_stmt))
691 gimple_set_vuse (new_stmt, reaching_vuse);
692 gimple_set_modified (new_stmt, true);
693 if (gimple_vdef (new_stmt))
694 reaching_vuse = gimple_vdef (new_stmt);
695 }
696
697 /* If the new sequence does not do a store release the virtual
698 definition of the original statement. */
699 if (reaching_vuse
700 && reaching_vuse == gimple_vuse (stmt))
701 {
702 tree vdef = gimple_vdef (stmt);
703 if (vdef
704 && TREE_CODE (vdef) == SSA_NAME)
705 {
706 unlink_stmt_vdef (stmt);
707 release_ssa_name (vdef);
708 }
709 }
710
711 /* Finally replace the original statement with the sequence. */
712 gsi_replace_with_seq (si_p, stmts, false);
713 }
714
715 /* Return the string length, maximum string length or maximum value of
716 ARG in LENGTH.
717 If ARG is an SSA name variable, follow its use-def chains. If LENGTH
718 is not NULL and, for TYPE == 0, its value is not equal to the length
719 we determine or if we are unable to determine the length or value,
720 return false. VISITED is a bitmap of visited variables.
721 TYPE is 0 if string length should be returned, 1 for maximum string
722 length and 2 for maximum value ARG can have. */
723
724 static bool
725 get_maxval_strlen (tree arg, tree *length, bitmap visited, int type)
726 {
727 tree var, val;
728 gimple def_stmt;
729
730 if (TREE_CODE (arg) != SSA_NAME)
731 {
732 /* We can end up with &(*iftmp_1)[0] here as well, so handle it. */
733 if (TREE_CODE (arg) == ADDR_EXPR
734 && TREE_CODE (TREE_OPERAND (arg, 0)) == ARRAY_REF
735 && integer_zerop (TREE_OPERAND (TREE_OPERAND (arg, 0), 1)))
736 {
737 tree aop0 = TREE_OPERAND (TREE_OPERAND (arg, 0), 0);
738 if (TREE_CODE (aop0) == INDIRECT_REF
739 && TREE_CODE (TREE_OPERAND (aop0, 0)) == SSA_NAME)
740 return get_maxval_strlen (TREE_OPERAND (aop0, 0),
741 length, visited, type);
742 }
743
744 if (type == 2)
745 {
746 val = arg;
747 if (TREE_CODE (val) != INTEGER_CST
748 || tree_int_cst_sgn (val) < 0)
749 return false;
750 }
751 else
752 val = c_strlen (arg, 1);
753 if (!val)
754 return false;
755
756 if (*length)
757 {
758 if (type > 0)
759 {
760 if (TREE_CODE (*length) != INTEGER_CST
761 || TREE_CODE (val) != INTEGER_CST)
762 return false;
763
764 if (tree_int_cst_lt (*length, val))
765 *length = val;
766 return true;
767 }
768 else if (simple_cst_equal (val, *length) != 1)
769 return false;
770 }
771
772 *length = val;
773 return true;
774 }
775
776 /* If ARG is registered for SSA update we cannot look at its defining
777 statement. */
778 if (name_registered_for_update_p (arg))
779 return false;
780
781 /* If we were already here, break the infinite cycle. */
782 if (!bitmap_set_bit (visited, SSA_NAME_VERSION (arg)))
783 return true;
784
785 var = arg;
786 def_stmt = SSA_NAME_DEF_STMT (var);
787
788 switch (gimple_code (def_stmt))
789 {
790 case GIMPLE_ASSIGN:
791 /* The RHS of the statement defining VAR must either have a
792 constant length or come from another SSA_NAME with a constant
793 length. */
794 if (gimple_assign_single_p (def_stmt)
795 || gimple_assign_unary_nop_p (def_stmt))
796 {
797 tree rhs = gimple_assign_rhs1 (def_stmt);
798 return get_maxval_strlen (rhs, length, visited, type);
799 }
800 else if (gimple_assign_rhs_code (def_stmt) == COND_EXPR)
801 {
802 tree op2 = gimple_assign_rhs2 (def_stmt);
803 tree op3 = gimple_assign_rhs3 (def_stmt);
804 return get_maxval_strlen (op2, length, visited, type)
805 && get_maxval_strlen (op3, length, visited, type);
806 }
807 return false;
808
809 case GIMPLE_PHI:
810 {
811 /* All the arguments of the PHI node must have the same constant
812 length. */
813 unsigned i;
814
815 for (i = 0; i < gimple_phi_num_args (def_stmt); i++)
816 {
817 tree arg = gimple_phi_arg (def_stmt, i)->def;
818
819 /* If this PHI has itself as an argument, we cannot
820 determine the string length of this argument. However,
821 if we can find a constant string length for the other
822 PHI args then we can still be sure that this is a
823 constant string length. So be optimistic and just
824 continue with the next argument. */
825 if (arg == gimple_phi_result (def_stmt))
826 continue;
827
828 if (!get_maxval_strlen (arg, length, visited, type))
829 return false;
830 }
831 }
832 return true;
833
834 default:
835 return false;
836 }
837 }
838
839
840 /* Fold builtin call in statement STMT. Returns a simplified tree.
841 We may return a non-constant expression, including another call
842 to a different function and with different arguments, e.g.,
843 substituting memcpy for strcpy when the string length is known.
844 Note that some builtins expand into inline code that may not
845 be valid in GIMPLE. Callers must take care. */
846
847 tree
848 gimple_fold_builtin (gimple stmt)
849 {
850 tree result, val[3];
851 tree callee, a;
852 int arg_idx, type;
853 bitmap visited;
854 bool ignore;
855 int nargs;
856 location_t loc = gimple_location (stmt);
857
858 gcc_assert (is_gimple_call (stmt));
859
860 ignore = (gimple_call_lhs (stmt) == NULL);
861
862 /* First try the generic builtin folder. If that succeeds, return the
863 result directly. */
864 result = fold_call_stmt (stmt, ignore);
865 if (result)
866 {
867 if (ignore)
868 STRIP_NOPS (result);
869 return result;
870 }
871
872 /* Ignore MD builtins. */
873 callee = gimple_call_fndecl (stmt);
874 if (DECL_BUILT_IN_CLASS (callee) == BUILT_IN_MD)
875 return NULL_TREE;
876
877 /* Give up for always_inline inline builtins until they are
878 inlined. */
879 if (avoid_folding_inline_builtin (callee))
880 return NULL_TREE;
881
882 /* If the builtin could not be folded, and it has no argument list,
883 we're done. */
884 nargs = gimple_call_num_args (stmt);
885 if (nargs == 0)
886 return NULL_TREE;
887
888 /* Limit the work only for builtins we know how to simplify. */
889 switch (DECL_FUNCTION_CODE (callee))
890 {
891 case BUILT_IN_STRLEN:
892 case BUILT_IN_FPUTS:
893 case BUILT_IN_FPUTS_UNLOCKED:
894 arg_idx = 0;
895 type = 0;
896 break;
897 case BUILT_IN_STRCPY:
898 case BUILT_IN_STRNCPY:
899 arg_idx = 1;
900 type = 0;
901 break;
902 case BUILT_IN_MEMCPY_CHK:
903 case BUILT_IN_MEMPCPY_CHK:
904 case BUILT_IN_MEMMOVE_CHK:
905 case BUILT_IN_MEMSET_CHK:
906 case BUILT_IN_STRNCPY_CHK:
907 case BUILT_IN_STPNCPY_CHK:
908 arg_idx = 2;
909 type = 2;
910 break;
911 case BUILT_IN_STRCPY_CHK:
912 case BUILT_IN_STPCPY_CHK:
913 arg_idx = 1;
914 type = 1;
915 break;
916 case BUILT_IN_SNPRINTF_CHK:
917 case BUILT_IN_VSNPRINTF_CHK:
918 arg_idx = 1;
919 type = 2;
920 break;
921 default:
922 return NULL_TREE;
923 }
924
925 if (arg_idx >= nargs)
926 return NULL_TREE;
927
928 /* Try to use the dataflow information gathered by the CCP process. */
929 visited = BITMAP_ALLOC (NULL);
930 bitmap_clear (visited);
931
932 memset (val, 0, sizeof (val));
933 a = gimple_call_arg (stmt, arg_idx);
934 if (!get_maxval_strlen (a, &val[arg_idx], visited, type))
935 val[arg_idx] = NULL_TREE;
936
937 BITMAP_FREE (visited);
938
939 result = NULL_TREE;
940 switch (DECL_FUNCTION_CODE (callee))
941 {
942 case BUILT_IN_STRLEN:
943 if (val[0] && nargs == 1)
944 {
945 tree new_val =
946 fold_convert (TREE_TYPE (gimple_call_lhs (stmt)), val[0]);
947
948 /* If the result is not a valid gimple value, or not a cast
949 of a valid gimple value, then we cannot use the result. */
950 if (is_gimple_val (new_val)
951 || (CONVERT_EXPR_P (new_val)
952 && is_gimple_val (TREE_OPERAND (new_val, 0))))
953 return new_val;
954 }
955 break;
956
957 case BUILT_IN_STRCPY:
958 if (val[1] && is_gimple_val (val[1]) && nargs == 2)
959 result = fold_builtin_strcpy (loc, callee,
960 gimple_call_arg (stmt, 0),
961 gimple_call_arg (stmt, 1),
962 val[1]);
963 break;
964
965 case BUILT_IN_STRNCPY:
966 if (val[1] && is_gimple_val (val[1]) && nargs == 3)
967 result = fold_builtin_strncpy (loc, callee,
968 gimple_call_arg (stmt, 0),
969 gimple_call_arg (stmt, 1),
970 gimple_call_arg (stmt, 2),
971 val[1]);
972 break;
973
974 case BUILT_IN_FPUTS:
975 if (nargs == 2)
976 result = fold_builtin_fputs (loc, gimple_call_arg (stmt, 0),
977 gimple_call_arg (stmt, 1),
978 ignore, false, val[0]);
979 break;
980
981 case BUILT_IN_FPUTS_UNLOCKED:
982 if (nargs == 2)
983 result = fold_builtin_fputs (loc, gimple_call_arg (stmt, 0),
984 gimple_call_arg (stmt, 1),
985 ignore, true, val[0]);
986 break;
987
988 case BUILT_IN_MEMCPY_CHK:
989 case BUILT_IN_MEMPCPY_CHK:
990 case BUILT_IN_MEMMOVE_CHK:
991 case BUILT_IN_MEMSET_CHK:
992 if (val[2] && is_gimple_val (val[2]) && nargs == 4)
993 result = fold_builtin_memory_chk (loc, callee,
994 gimple_call_arg (stmt, 0),
995 gimple_call_arg (stmt, 1),
996 gimple_call_arg (stmt, 2),
997 gimple_call_arg (stmt, 3),
998 val[2], ignore,
999 DECL_FUNCTION_CODE (callee));
1000 break;
1001
1002 case BUILT_IN_STRCPY_CHK:
1003 case BUILT_IN_STPCPY_CHK:
1004 if (val[1] && is_gimple_val (val[1]) && nargs == 3)
1005 result = fold_builtin_stxcpy_chk (loc, callee,
1006 gimple_call_arg (stmt, 0),
1007 gimple_call_arg (stmt, 1),
1008 gimple_call_arg (stmt, 2),
1009 val[1], ignore,
1010 DECL_FUNCTION_CODE (callee));
1011 break;
1012
1013 case BUILT_IN_STRNCPY_CHK:
1014 case BUILT_IN_STPNCPY_CHK:
1015 if (val[2] && is_gimple_val (val[2]) && nargs == 4)
1016 result = fold_builtin_stxncpy_chk (loc, gimple_call_arg (stmt, 0),
1017 gimple_call_arg (stmt, 1),
1018 gimple_call_arg (stmt, 2),
1019 gimple_call_arg (stmt, 3),
1020 val[2], ignore,
1021 DECL_FUNCTION_CODE (callee));
1022 break;
1023
1024 case BUILT_IN_SNPRINTF_CHK:
1025 case BUILT_IN_VSNPRINTF_CHK:
1026 if (val[1] && is_gimple_val (val[1]))
1027 result = gimple_fold_builtin_snprintf_chk (stmt, val[1],
1028 DECL_FUNCTION_CODE (callee));
1029 break;
1030
1031 default:
1032 gcc_unreachable ();
1033 }
1034
1035 if (result && ignore)
1036 result = fold_ignored_result (result);
1037 return result;
1038 }
1039
1040
1041 /* Return a binfo to be used for devirtualization of calls based on an object
1042 represented by a declaration (i.e. a global or automatically allocated one)
1043 or NULL if it cannot be found or is not safe. CST is expected to be an
1044 ADDR_EXPR of such object or the function will return NULL. Currently it is
1045 safe to use such binfo only if it has no base binfo (i.e. no ancestors)
1046 EXPECTED_TYPE is type of the class virtual belongs to. */
1047
1048 tree
1049 gimple_extract_devirt_binfo_from_cst (tree cst, tree expected_type)
1050 {
1051 HOST_WIDE_INT offset, size, max_size;
1052 tree base, type, binfo;
1053 bool last_artificial = false;
1054
1055 if (!flag_devirtualize
1056 || TREE_CODE (cst) != ADDR_EXPR
1057 || TREE_CODE (TREE_TYPE (TREE_TYPE (cst))) != RECORD_TYPE)
1058 return NULL_TREE;
1059
1060 cst = TREE_OPERAND (cst, 0);
1061 base = get_ref_base_and_extent (cst, &offset, &size, &max_size);
1062 type = TREE_TYPE (base);
1063 if (!DECL_P (base)
1064 || max_size == -1
1065 || max_size != size
1066 || TREE_CODE (type) != RECORD_TYPE)
1067 return NULL_TREE;
1068
1069 /* Find the sub-object the constant actually refers to and mark whether it is
1070 an artificial one (as opposed to a user-defined one). */
1071 while (true)
1072 {
1073 HOST_WIDE_INT pos, size;
1074 tree fld;
1075
1076 if (types_same_for_odr (type, expected_type))
1077 break;
1078 if (offset < 0)
1079 return NULL_TREE;
1080
1081 for (fld = TYPE_FIELDS (type); fld; fld = DECL_CHAIN (fld))
1082 {
1083 if (TREE_CODE (fld) != FIELD_DECL)
1084 continue;
1085
1086 pos = int_bit_position (fld);
1087 size = tree_to_uhwi (DECL_SIZE (fld));
1088 if (pos <= offset && (pos + size) > offset)
1089 break;
1090 }
1091 if (!fld || TREE_CODE (TREE_TYPE (fld)) != RECORD_TYPE)
1092 return NULL_TREE;
1093
1094 last_artificial = DECL_ARTIFICIAL (fld);
1095 type = TREE_TYPE (fld);
1096 offset -= pos;
1097 }
1098 /* Artificial sub-objects are ancestors, we do not want to use them for
1099 devirtualization, at least not here. */
1100 if (last_artificial)
1101 return NULL_TREE;
1102 binfo = TYPE_BINFO (type);
1103 if (!binfo || BINFO_N_BASE_BINFOS (binfo) > 0)
1104 return NULL_TREE;
1105 else
1106 return binfo;
1107 }
1108
1109 /* Attempt to fold a call statement referenced by the statement iterator GSI.
1110 The statement may be replaced by another statement, e.g., if the call
1111 simplifies to a constant value. Return true if any changes were made.
1112 It is assumed that the operands have been previously folded. */
1113
1114 static bool
1115 gimple_fold_call (gimple_stmt_iterator *gsi, bool inplace)
1116 {
1117 gimple stmt = gsi_stmt (*gsi);
1118 tree callee;
1119 bool changed = false;
1120 unsigned i;
1121
1122 /* Fold *& in call arguments. */
1123 for (i = 0; i < gimple_call_num_args (stmt); ++i)
1124 if (REFERENCE_CLASS_P (gimple_call_arg (stmt, i)))
1125 {
1126 tree tmp = maybe_fold_reference (gimple_call_arg (stmt, i), false);
1127 if (tmp)
1128 {
1129 gimple_call_set_arg (stmt, i, tmp);
1130 changed = true;
1131 }
1132 }
1133
1134 /* Check for virtual calls that became direct calls. */
1135 callee = gimple_call_fn (stmt);
1136 if (callee && TREE_CODE (callee) == OBJ_TYPE_REF)
1137 {
1138 if (gimple_call_addr_fndecl (OBJ_TYPE_REF_EXPR (callee)) != NULL_TREE)
1139 {
1140 if (dump_file && virtual_method_call_p (callee)
1141 && !possible_polymorphic_call_target_p
1142 (callee, cgraph_get_node (gimple_call_addr_fndecl
1143 (OBJ_TYPE_REF_EXPR (callee)))))
1144 {
1145 fprintf (dump_file,
1146 "Type inheritnace inconsistent devirtualization of ");
1147 print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM);
1148 fprintf (dump_file, " to ");
1149 print_generic_expr (dump_file, callee, TDF_SLIM);
1150 fprintf (dump_file, "\n");
1151 }
1152
1153 gimple_call_set_fn (stmt, OBJ_TYPE_REF_EXPR (callee));
1154 changed = true;
1155 }
1156 else if (virtual_method_call_p (callee))
1157 {
1158 tree obj = OBJ_TYPE_REF_OBJECT (callee);
1159 tree binfo = gimple_extract_devirt_binfo_from_cst
1160 (obj, obj_type_ref_class (callee));
1161 if (binfo)
1162 {
1163 HOST_WIDE_INT token
1164 = TREE_INT_CST_LOW (OBJ_TYPE_REF_TOKEN (callee));
1165 tree fndecl = gimple_get_virt_method_for_binfo (token, binfo);
1166 if (fndecl)
1167 {
1168 #ifdef ENABLE_CHECKING
1169 gcc_assert (possible_polymorphic_call_target_p
1170 (callee, cgraph_get_node (fndecl)));
1171
1172 #endif
1173 gimple_call_set_fndecl (stmt, fndecl);
1174 changed = true;
1175 }
1176 }
1177 }
1178 }
1179
1180 if (inplace)
1181 return changed;
1182
1183 /* Check for builtins that CCP can handle using information not
1184 available in the generic fold routines. */
1185 callee = gimple_call_fndecl (stmt);
1186 if (callee && DECL_BUILT_IN (callee))
1187 {
1188 tree result = gimple_fold_builtin (stmt);
1189 if (result)
1190 {
1191 if (!update_call_from_tree (gsi, result))
1192 gimplify_and_update_call_from_tree (gsi, result);
1193 changed = true;
1194 }
1195 else if (DECL_BUILT_IN_CLASS (callee) == BUILT_IN_MD)
1196 changed |= targetm.gimple_fold_builtin (gsi);
1197 }
1198
1199 return changed;
1200 }
1201
1202 /* Worker for both fold_stmt and fold_stmt_inplace. The INPLACE argument
1203 distinguishes both cases. */
1204
1205 static bool
1206 fold_stmt_1 (gimple_stmt_iterator *gsi, bool inplace)
1207 {
1208 bool changed = false;
1209 gimple stmt = gsi_stmt (*gsi);
1210 unsigned i;
1211
1212 /* Fold the main computation performed by the statement. */
1213 switch (gimple_code (stmt))
1214 {
1215 case GIMPLE_ASSIGN:
1216 {
1217 unsigned old_num_ops = gimple_num_ops (stmt);
1218 enum tree_code subcode = gimple_assign_rhs_code (stmt);
1219 tree lhs = gimple_assign_lhs (stmt);
1220 tree new_rhs;
1221 /* First canonicalize operand order. This avoids building new
1222 trees if this is the only thing fold would later do. */
1223 if ((commutative_tree_code (subcode)
1224 || commutative_ternary_tree_code (subcode))
1225 && tree_swap_operands_p (gimple_assign_rhs1 (stmt),
1226 gimple_assign_rhs2 (stmt), false))
1227 {
1228 tree tem = gimple_assign_rhs1 (stmt);
1229 gimple_assign_set_rhs1 (stmt, gimple_assign_rhs2 (stmt));
1230 gimple_assign_set_rhs2 (stmt, tem);
1231 changed = true;
1232 }
1233 new_rhs = fold_gimple_assign (gsi);
1234 if (new_rhs
1235 && !useless_type_conversion_p (TREE_TYPE (lhs),
1236 TREE_TYPE (new_rhs)))
1237 new_rhs = fold_convert (TREE_TYPE (lhs), new_rhs);
1238 if (new_rhs
1239 && (!inplace
1240 || get_gimple_rhs_num_ops (TREE_CODE (new_rhs)) < old_num_ops))
1241 {
1242 gimple_assign_set_rhs_from_tree (gsi, new_rhs);
1243 changed = true;
1244 }
1245 break;
1246 }
1247
1248 case GIMPLE_COND:
1249 changed |= fold_gimple_cond (stmt);
1250 break;
1251
1252 case GIMPLE_CALL:
1253 changed |= gimple_fold_call (gsi, inplace);
1254 break;
1255
1256 case GIMPLE_ASM:
1257 /* Fold *& in asm operands. */
1258 {
1259 size_t noutputs;
1260 const char **oconstraints;
1261 const char *constraint;
1262 bool allows_mem, allows_reg;
1263
1264 noutputs = gimple_asm_noutputs (stmt);
1265 oconstraints = XALLOCAVEC (const char *, noutputs);
1266
1267 for (i = 0; i < gimple_asm_noutputs (stmt); ++i)
1268 {
1269 tree link = gimple_asm_output_op (stmt, i);
1270 tree op = TREE_VALUE (link);
1271 oconstraints[i]
1272 = TREE_STRING_POINTER (TREE_VALUE (TREE_PURPOSE (link)));
1273 if (REFERENCE_CLASS_P (op)
1274 && (op = maybe_fold_reference (op, true)) != NULL_TREE)
1275 {
1276 TREE_VALUE (link) = op;
1277 changed = true;
1278 }
1279 }
1280 for (i = 0; i < gimple_asm_ninputs (stmt); ++i)
1281 {
1282 tree link = gimple_asm_input_op (stmt, i);
1283 tree op = TREE_VALUE (link);
1284 constraint
1285 = TREE_STRING_POINTER (TREE_VALUE (TREE_PURPOSE (link)));
1286 parse_input_constraint (&constraint, 0, 0, noutputs, 0,
1287 oconstraints, &allows_mem, &allows_reg);
1288 if (REFERENCE_CLASS_P (op)
1289 && (op = maybe_fold_reference (op, !allows_reg && allows_mem))
1290 != NULL_TREE)
1291 {
1292 TREE_VALUE (link) = op;
1293 changed = true;
1294 }
1295 }
1296 }
1297 break;
1298
1299 case GIMPLE_DEBUG:
1300 if (gimple_debug_bind_p (stmt))
1301 {
1302 tree val = gimple_debug_bind_get_value (stmt);
1303 if (val
1304 && REFERENCE_CLASS_P (val))
1305 {
1306 tree tem = maybe_fold_reference (val, false);
1307 if (tem)
1308 {
1309 gimple_debug_bind_set_value (stmt, tem);
1310 changed = true;
1311 }
1312 }
1313 else if (val
1314 && TREE_CODE (val) == ADDR_EXPR)
1315 {
1316 tree ref = TREE_OPERAND (val, 0);
1317 tree tem = maybe_fold_reference (ref, false);
1318 if (tem)
1319 {
1320 tem = build_fold_addr_expr_with_type (tem, TREE_TYPE (val));
1321 gimple_debug_bind_set_value (stmt, tem);
1322 changed = true;
1323 }
1324 }
1325 }
1326 break;
1327
1328 default:;
1329 }
1330
1331 stmt = gsi_stmt (*gsi);
1332
1333 /* Fold *& on the lhs. */
1334 if (gimple_has_lhs (stmt))
1335 {
1336 tree lhs = gimple_get_lhs (stmt);
1337 if (lhs && REFERENCE_CLASS_P (lhs))
1338 {
1339 tree new_lhs = maybe_fold_reference (lhs, true);
1340 if (new_lhs)
1341 {
1342 gimple_set_lhs (stmt, new_lhs);
1343 changed = true;
1344 }
1345 }
1346 }
1347
1348 return changed;
1349 }
1350
1351 /* Fold the statement pointed to by GSI. In some cases, this function may
1352 replace the whole statement with a new one. Returns true iff folding
1353 makes any changes.
1354 The statement pointed to by GSI should be in valid gimple form but may
1355 be in unfolded state as resulting from for example constant propagation
1356 which can produce *&x = 0. */
1357
1358 bool
1359 fold_stmt (gimple_stmt_iterator *gsi)
1360 {
1361 return fold_stmt_1 (gsi, false);
1362 }
1363
1364 /* Perform the minimal folding on statement *GSI. Only operations like
1365 *&x created by constant propagation are handled. The statement cannot
1366 be replaced with a new one. Return true if the statement was
1367 changed, false otherwise.
1368 The statement *GSI should be in valid gimple form but may
1369 be in unfolded state as resulting from for example constant propagation
1370 which can produce *&x = 0. */
1371
1372 bool
1373 fold_stmt_inplace (gimple_stmt_iterator *gsi)
1374 {
1375 gimple stmt = gsi_stmt (*gsi);
1376 bool changed = fold_stmt_1 (gsi, true);
1377 gcc_assert (gsi_stmt (*gsi) == stmt);
1378 return changed;
1379 }
1380
1381 /* Canonicalize and possibly invert the boolean EXPR; return NULL_TREE
1382 if EXPR is null or we don't know how.
1383 If non-null, the result always has boolean type. */
1384
1385 static tree
1386 canonicalize_bool (tree expr, bool invert)
1387 {
1388 if (!expr)
1389 return NULL_TREE;
1390 else if (invert)
1391 {
1392 if (integer_nonzerop (expr))
1393 return boolean_false_node;
1394 else if (integer_zerop (expr))
1395 return boolean_true_node;
1396 else if (TREE_CODE (expr) == SSA_NAME)
1397 return fold_build2 (EQ_EXPR, boolean_type_node, expr,
1398 build_int_cst (TREE_TYPE (expr), 0));
1399 else if (TREE_CODE_CLASS (TREE_CODE (expr)) == tcc_comparison)
1400 return fold_build2 (invert_tree_comparison (TREE_CODE (expr), false),
1401 boolean_type_node,
1402 TREE_OPERAND (expr, 0),
1403 TREE_OPERAND (expr, 1));
1404 else
1405 return NULL_TREE;
1406 }
1407 else
1408 {
1409 if (TREE_CODE (TREE_TYPE (expr)) == BOOLEAN_TYPE)
1410 return expr;
1411 if (integer_nonzerop (expr))
1412 return boolean_true_node;
1413 else if (integer_zerop (expr))
1414 return boolean_false_node;
1415 else if (TREE_CODE (expr) == SSA_NAME)
1416 return fold_build2 (NE_EXPR, boolean_type_node, expr,
1417 build_int_cst (TREE_TYPE (expr), 0));
1418 else if (TREE_CODE_CLASS (TREE_CODE (expr)) == tcc_comparison)
1419 return fold_build2 (TREE_CODE (expr),
1420 boolean_type_node,
1421 TREE_OPERAND (expr, 0),
1422 TREE_OPERAND (expr, 1));
1423 else
1424 return NULL_TREE;
1425 }
1426 }
1427
1428 /* Check to see if a boolean expression EXPR is logically equivalent to the
1429 comparison (OP1 CODE OP2). Check for various identities involving
1430 SSA_NAMEs. */
1431
1432 static bool
1433 same_bool_comparison_p (const_tree expr, enum tree_code code,
1434 const_tree op1, const_tree op2)
1435 {
1436 gimple s;
1437
1438 /* The obvious case. */
1439 if (TREE_CODE (expr) == code
1440 && operand_equal_p (TREE_OPERAND (expr, 0), op1, 0)
1441 && operand_equal_p (TREE_OPERAND (expr, 1), op2, 0))
1442 return true;
1443
1444 /* Check for comparing (name, name != 0) and the case where expr
1445 is an SSA_NAME with a definition matching the comparison. */
1446 if (TREE_CODE (expr) == SSA_NAME
1447 && TREE_CODE (TREE_TYPE (expr)) == BOOLEAN_TYPE)
1448 {
1449 if (operand_equal_p (expr, op1, 0))
1450 return ((code == NE_EXPR && integer_zerop (op2))
1451 || (code == EQ_EXPR && integer_nonzerop (op2)));
1452 s = SSA_NAME_DEF_STMT (expr);
1453 if (is_gimple_assign (s)
1454 && gimple_assign_rhs_code (s) == code
1455 && operand_equal_p (gimple_assign_rhs1 (s), op1, 0)
1456 && operand_equal_p (gimple_assign_rhs2 (s), op2, 0))
1457 return true;
1458 }
1459
1460 /* If op1 is of the form (name != 0) or (name == 0), and the definition
1461 of name is a comparison, recurse. */
1462 if (TREE_CODE (op1) == SSA_NAME
1463 && TREE_CODE (TREE_TYPE (op1)) == BOOLEAN_TYPE)
1464 {
1465 s = SSA_NAME_DEF_STMT (op1);
1466 if (is_gimple_assign (s)
1467 && TREE_CODE_CLASS (gimple_assign_rhs_code (s)) == tcc_comparison)
1468 {
1469 enum tree_code c = gimple_assign_rhs_code (s);
1470 if ((c == NE_EXPR && integer_zerop (op2))
1471 || (c == EQ_EXPR && integer_nonzerop (op2)))
1472 return same_bool_comparison_p (expr, c,
1473 gimple_assign_rhs1 (s),
1474 gimple_assign_rhs2 (s));
1475 if ((c == EQ_EXPR && integer_zerop (op2))
1476 || (c == NE_EXPR && integer_nonzerop (op2)))
1477 return same_bool_comparison_p (expr,
1478 invert_tree_comparison (c, false),
1479 gimple_assign_rhs1 (s),
1480 gimple_assign_rhs2 (s));
1481 }
1482 }
1483 return false;
1484 }
1485
1486 /* Check to see if two boolean expressions OP1 and OP2 are logically
1487 equivalent. */
1488
1489 static bool
1490 same_bool_result_p (const_tree op1, const_tree op2)
1491 {
1492 /* Simple cases first. */
1493 if (operand_equal_p (op1, op2, 0))
1494 return true;
1495
1496 /* Check the cases where at least one of the operands is a comparison.
1497 These are a bit smarter than operand_equal_p in that they apply some
1498 identifies on SSA_NAMEs. */
1499 if (TREE_CODE_CLASS (TREE_CODE (op2)) == tcc_comparison
1500 && same_bool_comparison_p (op1, TREE_CODE (op2),
1501 TREE_OPERAND (op2, 0),
1502 TREE_OPERAND (op2, 1)))
1503 return true;
1504 if (TREE_CODE_CLASS (TREE_CODE (op1)) == tcc_comparison
1505 && same_bool_comparison_p (op2, TREE_CODE (op1),
1506 TREE_OPERAND (op1, 0),
1507 TREE_OPERAND (op1, 1)))
1508 return true;
1509
1510 /* Default case. */
1511 return false;
1512 }
1513
1514 /* Forward declarations for some mutually recursive functions. */
1515
1516 static tree
1517 and_comparisons_1 (enum tree_code code1, tree op1a, tree op1b,
1518 enum tree_code code2, tree op2a, tree op2b);
1519 static tree
1520 and_var_with_comparison (tree var, bool invert,
1521 enum tree_code code2, tree op2a, tree op2b);
1522 static tree
1523 and_var_with_comparison_1 (gimple stmt,
1524 enum tree_code code2, tree op2a, tree op2b);
1525 static tree
1526 or_comparisons_1 (enum tree_code code1, tree op1a, tree op1b,
1527 enum tree_code code2, tree op2a, tree op2b);
1528 static tree
1529 or_var_with_comparison (tree var, bool invert,
1530 enum tree_code code2, tree op2a, tree op2b);
1531 static tree
1532 or_var_with_comparison_1 (gimple stmt,
1533 enum tree_code code2, tree op2a, tree op2b);
1534
1535 /* Helper function for and_comparisons_1: try to simplify the AND of the
1536 ssa variable VAR with the comparison specified by (OP2A CODE2 OP2B).
1537 If INVERT is true, invert the value of the VAR before doing the AND.
1538 Return NULL_EXPR if we can't simplify this to a single expression. */
1539
1540 static tree
1541 and_var_with_comparison (tree var, bool invert,
1542 enum tree_code code2, tree op2a, tree op2b)
1543 {
1544 tree t;
1545 gimple stmt = SSA_NAME_DEF_STMT (var);
1546
1547 /* We can only deal with variables whose definitions are assignments. */
1548 if (!is_gimple_assign (stmt))
1549 return NULL_TREE;
1550
1551 /* If we have an inverted comparison, apply DeMorgan's law and rewrite
1552 !var AND (op2a code2 op2b) => !(var OR !(op2a code2 op2b))
1553 Then we only have to consider the simpler non-inverted cases. */
1554 if (invert)
1555 t = or_var_with_comparison_1 (stmt,
1556 invert_tree_comparison (code2, false),
1557 op2a, op2b);
1558 else
1559 t = and_var_with_comparison_1 (stmt, code2, op2a, op2b);
1560 return canonicalize_bool (t, invert);
1561 }
1562
1563 /* Try to simplify the AND of the ssa variable defined by the assignment
1564 STMT with the comparison specified by (OP2A CODE2 OP2B).
1565 Return NULL_EXPR if we can't simplify this to a single expression. */
1566
1567 static tree
1568 and_var_with_comparison_1 (gimple stmt,
1569 enum tree_code code2, tree op2a, tree op2b)
1570 {
1571 tree var = gimple_assign_lhs (stmt);
1572 tree true_test_var = NULL_TREE;
1573 tree false_test_var = NULL_TREE;
1574 enum tree_code innercode = gimple_assign_rhs_code (stmt);
1575
1576 /* Check for identities like (var AND (var == 0)) => false. */
1577 if (TREE_CODE (op2a) == SSA_NAME
1578 && TREE_CODE (TREE_TYPE (var)) == BOOLEAN_TYPE)
1579 {
1580 if ((code2 == NE_EXPR && integer_zerop (op2b))
1581 || (code2 == EQ_EXPR && integer_nonzerop (op2b)))
1582 {
1583 true_test_var = op2a;
1584 if (var == true_test_var)
1585 return var;
1586 }
1587 else if ((code2 == EQ_EXPR && integer_zerop (op2b))
1588 || (code2 == NE_EXPR && integer_nonzerop (op2b)))
1589 {
1590 false_test_var = op2a;
1591 if (var == false_test_var)
1592 return boolean_false_node;
1593 }
1594 }
1595
1596 /* If the definition is a comparison, recurse on it. */
1597 if (TREE_CODE_CLASS (innercode) == tcc_comparison)
1598 {
1599 tree t = and_comparisons_1 (innercode,
1600 gimple_assign_rhs1 (stmt),
1601 gimple_assign_rhs2 (stmt),
1602 code2,
1603 op2a,
1604 op2b);
1605 if (t)
1606 return t;
1607 }
1608
1609 /* If the definition is an AND or OR expression, we may be able to
1610 simplify by reassociating. */
1611 if (TREE_CODE (TREE_TYPE (var)) == BOOLEAN_TYPE
1612 && (innercode == BIT_AND_EXPR || innercode == BIT_IOR_EXPR))
1613 {
1614 tree inner1 = gimple_assign_rhs1 (stmt);
1615 tree inner2 = gimple_assign_rhs2 (stmt);
1616 gimple s;
1617 tree t;
1618 tree partial = NULL_TREE;
1619 bool is_and = (innercode == BIT_AND_EXPR);
1620
1621 /* Check for boolean identities that don't require recursive examination
1622 of inner1/inner2:
1623 inner1 AND (inner1 AND inner2) => inner1 AND inner2 => var
1624 inner1 AND (inner1 OR inner2) => inner1
1625 !inner1 AND (inner1 AND inner2) => false
1626 !inner1 AND (inner1 OR inner2) => !inner1 AND inner2
1627 Likewise for similar cases involving inner2. */
1628 if (inner1 == true_test_var)
1629 return (is_and ? var : inner1);
1630 else if (inner2 == true_test_var)
1631 return (is_and ? var : inner2);
1632 else if (inner1 == false_test_var)
1633 return (is_and
1634 ? boolean_false_node
1635 : and_var_with_comparison (inner2, false, code2, op2a, op2b));
1636 else if (inner2 == false_test_var)
1637 return (is_and
1638 ? boolean_false_node
1639 : and_var_with_comparison (inner1, false, code2, op2a, op2b));
1640
1641 /* Next, redistribute/reassociate the AND across the inner tests.
1642 Compute the first partial result, (inner1 AND (op2a code op2b)) */
1643 if (TREE_CODE (inner1) == SSA_NAME
1644 && is_gimple_assign (s = SSA_NAME_DEF_STMT (inner1))
1645 && TREE_CODE_CLASS (gimple_assign_rhs_code (s)) == tcc_comparison
1646 && (t = maybe_fold_and_comparisons (gimple_assign_rhs_code (s),
1647 gimple_assign_rhs1 (s),
1648 gimple_assign_rhs2 (s),
1649 code2, op2a, op2b)))
1650 {
1651 /* Handle the AND case, where we are reassociating:
1652 (inner1 AND inner2) AND (op2a code2 op2b)
1653 => (t AND inner2)
1654 If the partial result t is a constant, we win. Otherwise
1655 continue on to try reassociating with the other inner test. */
1656 if (is_and)
1657 {
1658 if (integer_onep (t))
1659 return inner2;
1660 else if (integer_zerop (t))
1661 return boolean_false_node;
1662 }
1663
1664 /* Handle the OR case, where we are redistributing:
1665 (inner1 OR inner2) AND (op2a code2 op2b)
1666 => (t OR (inner2 AND (op2a code2 op2b))) */
1667 else if (integer_onep (t))
1668 return boolean_true_node;
1669
1670 /* Save partial result for later. */
1671 partial = t;
1672 }
1673
1674 /* Compute the second partial result, (inner2 AND (op2a code op2b)) */
1675 if (TREE_CODE (inner2) == SSA_NAME
1676 && is_gimple_assign (s = SSA_NAME_DEF_STMT (inner2))
1677 && TREE_CODE_CLASS (gimple_assign_rhs_code (s)) == tcc_comparison
1678 && (t = maybe_fold_and_comparisons (gimple_assign_rhs_code (s),
1679 gimple_assign_rhs1 (s),
1680 gimple_assign_rhs2 (s),
1681 code2, op2a, op2b)))
1682 {
1683 /* Handle the AND case, where we are reassociating:
1684 (inner1 AND inner2) AND (op2a code2 op2b)
1685 => (inner1 AND t) */
1686 if (is_and)
1687 {
1688 if (integer_onep (t))
1689 return inner1;
1690 else if (integer_zerop (t))
1691 return boolean_false_node;
1692 /* If both are the same, we can apply the identity
1693 (x AND x) == x. */
1694 else if (partial && same_bool_result_p (t, partial))
1695 return t;
1696 }
1697
1698 /* Handle the OR case. where we are redistributing:
1699 (inner1 OR inner2) AND (op2a code2 op2b)
1700 => (t OR (inner1 AND (op2a code2 op2b)))
1701 => (t OR partial) */
1702 else
1703 {
1704 if (integer_onep (t))
1705 return boolean_true_node;
1706 else if (partial)
1707 {
1708 /* We already got a simplification for the other
1709 operand to the redistributed OR expression. The
1710 interesting case is when at least one is false.
1711 Or, if both are the same, we can apply the identity
1712 (x OR x) == x. */
1713 if (integer_zerop (partial))
1714 return t;
1715 else if (integer_zerop (t))
1716 return partial;
1717 else if (same_bool_result_p (t, partial))
1718 return t;
1719 }
1720 }
1721 }
1722 }
1723 return NULL_TREE;
1724 }
1725
1726 /* Try to simplify the AND of two comparisons defined by
1727 (OP1A CODE1 OP1B) and (OP2A CODE2 OP2B), respectively.
1728 If this can be done without constructing an intermediate value,
1729 return the resulting tree; otherwise NULL_TREE is returned.
1730 This function is deliberately asymmetric as it recurses on SSA_DEFs
1731 in the first comparison but not the second. */
1732
1733 static tree
1734 and_comparisons_1 (enum tree_code code1, tree op1a, tree op1b,
1735 enum tree_code code2, tree op2a, tree op2b)
1736 {
1737 tree truth_type = truth_type_for (TREE_TYPE (op1a));
1738
1739 /* First check for ((x CODE1 y) AND (x CODE2 y)). */
1740 if (operand_equal_p (op1a, op2a, 0)
1741 && operand_equal_p (op1b, op2b, 0))
1742 {
1743 /* Result will be either NULL_TREE, or a combined comparison. */
1744 tree t = combine_comparisons (UNKNOWN_LOCATION,
1745 TRUTH_ANDIF_EXPR, code1, code2,
1746 truth_type, op1a, op1b);
1747 if (t)
1748 return t;
1749 }
1750
1751 /* Likewise the swapped case of the above. */
1752 if (operand_equal_p (op1a, op2b, 0)
1753 && operand_equal_p (op1b, op2a, 0))
1754 {
1755 /* Result will be either NULL_TREE, or a combined comparison. */
1756 tree t = combine_comparisons (UNKNOWN_LOCATION,
1757 TRUTH_ANDIF_EXPR, code1,
1758 swap_tree_comparison (code2),
1759 truth_type, op1a, op1b);
1760 if (t)
1761 return t;
1762 }
1763
1764 /* If both comparisons are of the same value against constants, we might
1765 be able to merge them. */
1766 if (operand_equal_p (op1a, op2a, 0)
1767 && TREE_CODE (op1b) == INTEGER_CST
1768 && TREE_CODE (op2b) == INTEGER_CST)
1769 {
1770 int cmp = tree_int_cst_compare (op1b, op2b);
1771
1772 /* If we have (op1a == op1b), we should either be able to
1773 return that or FALSE, depending on whether the constant op1b
1774 also satisfies the other comparison against op2b. */
1775 if (code1 == EQ_EXPR)
1776 {
1777 bool done = true;
1778 bool val;
1779 switch (code2)
1780 {
1781 case EQ_EXPR: val = (cmp == 0); break;
1782 case NE_EXPR: val = (cmp != 0); break;
1783 case LT_EXPR: val = (cmp < 0); break;
1784 case GT_EXPR: val = (cmp > 0); break;
1785 case LE_EXPR: val = (cmp <= 0); break;
1786 case GE_EXPR: val = (cmp >= 0); break;
1787 default: done = false;
1788 }
1789 if (done)
1790 {
1791 if (val)
1792 return fold_build2 (code1, boolean_type_node, op1a, op1b);
1793 else
1794 return boolean_false_node;
1795 }
1796 }
1797 /* Likewise if the second comparison is an == comparison. */
1798 else if (code2 == EQ_EXPR)
1799 {
1800 bool done = true;
1801 bool val;
1802 switch (code1)
1803 {
1804 case EQ_EXPR: val = (cmp == 0); break;
1805 case NE_EXPR: val = (cmp != 0); break;
1806 case LT_EXPR: val = (cmp > 0); break;
1807 case GT_EXPR: val = (cmp < 0); break;
1808 case LE_EXPR: val = (cmp >= 0); break;
1809 case GE_EXPR: val = (cmp <= 0); break;
1810 default: done = false;
1811 }
1812 if (done)
1813 {
1814 if (val)
1815 return fold_build2 (code2, boolean_type_node, op2a, op2b);
1816 else
1817 return boolean_false_node;
1818 }
1819 }
1820
1821 /* Same business with inequality tests. */
1822 else if (code1 == NE_EXPR)
1823 {
1824 bool val;
1825 switch (code2)
1826 {
1827 case EQ_EXPR: val = (cmp != 0); break;
1828 case NE_EXPR: val = (cmp == 0); break;
1829 case LT_EXPR: val = (cmp >= 0); break;
1830 case GT_EXPR: val = (cmp <= 0); break;
1831 case LE_EXPR: val = (cmp > 0); break;
1832 case GE_EXPR: val = (cmp < 0); break;
1833 default:
1834 val = false;
1835 }
1836 if (val)
1837 return fold_build2 (code2, boolean_type_node, op2a, op2b);
1838 }
1839 else if (code2 == NE_EXPR)
1840 {
1841 bool val;
1842 switch (code1)
1843 {
1844 case EQ_EXPR: val = (cmp == 0); break;
1845 case NE_EXPR: val = (cmp != 0); break;
1846 case LT_EXPR: val = (cmp <= 0); break;
1847 case GT_EXPR: val = (cmp >= 0); break;
1848 case LE_EXPR: val = (cmp < 0); break;
1849 case GE_EXPR: val = (cmp > 0); break;
1850 default:
1851 val = false;
1852 }
1853 if (val)
1854 return fold_build2 (code1, boolean_type_node, op1a, op1b);
1855 }
1856
1857 /* Chose the more restrictive of two < or <= comparisons. */
1858 else if ((code1 == LT_EXPR || code1 == LE_EXPR)
1859 && (code2 == LT_EXPR || code2 == LE_EXPR))
1860 {
1861 if ((cmp < 0) || (cmp == 0 && code1 == LT_EXPR))
1862 return fold_build2 (code1, boolean_type_node, op1a, op1b);
1863 else
1864 return fold_build2 (code2, boolean_type_node, op2a, op2b);
1865 }
1866
1867 /* Likewise chose the more restrictive of two > or >= comparisons. */
1868 else if ((code1 == GT_EXPR || code1 == GE_EXPR)
1869 && (code2 == GT_EXPR || code2 == GE_EXPR))
1870 {
1871 if ((cmp > 0) || (cmp == 0 && code1 == GT_EXPR))
1872 return fold_build2 (code1, boolean_type_node, op1a, op1b);
1873 else
1874 return fold_build2 (code2, boolean_type_node, op2a, op2b);
1875 }
1876
1877 /* Check for singleton ranges. */
1878 else if (cmp == 0
1879 && ((code1 == LE_EXPR && code2 == GE_EXPR)
1880 || (code1 == GE_EXPR && code2 == LE_EXPR)))
1881 return fold_build2 (EQ_EXPR, boolean_type_node, op1a, op2b);
1882
1883 /* Check for disjoint ranges. */
1884 else if (cmp <= 0
1885 && (code1 == LT_EXPR || code1 == LE_EXPR)
1886 && (code2 == GT_EXPR || code2 == GE_EXPR))
1887 return boolean_false_node;
1888 else if (cmp >= 0
1889 && (code1 == GT_EXPR || code1 == GE_EXPR)
1890 && (code2 == LT_EXPR || code2 == LE_EXPR))
1891 return boolean_false_node;
1892 }
1893
1894 /* Perhaps the first comparison is (NAME != 0) or (NAME == 1) where
1895 NAME's definition is a truth value. See if there are any simplifications
1896 that can be done against the NAME's definition. */
1897 if (TREE_CODE (op1a) == SSA_NAME
1898 && (code1 == NE_EXPR || code1 == EQ_EXPR)
1899 && (integer_zerop (op1b) || integer_onep (op1b)))
1900 {
1901 bool invert = ((code1 == EQ_EXPR && integer_zerop (op1b))
1902 || (code1 == NE_EXPR && integer_onep (op1b)));
1903 gimple stmt = SSA_NAME_DEF_STMT (op1a);
1904 switch (gimple_code (stmt))
1905 {
1906 case GIMPLE_ASSIGN:
1907 /* Try to simplify by copy-propagating the definition. */
1908 return and_var_with_comparison (op1a, invert, code2, op2a, op2b);
1909
1910 case GIMPLE_PHI:
1911 /* If every argument to the PHI produces the same result when
1912 ANDed with the second comparison, we win.
1913 Do not do this unless the type is bool since we need a bool
1914 result here anyway. */
1915 if (TREE_CODE (TREE_TYPE (op1a)) == BOOLEAN_TYPE)
1916 {
1917 tree result = NULL_TREE;
1918 unsigned i;
1919 for (i = 0; i < gimple_phi_num_args (stmt); i++)
1920 {
1921 tree arg = gimple_phi_arg_def (stmt, i);
1922
1923 /* If this PHI has itself as an argument, ignore it.
1924 If all the other args produce the same result,
1925 we're still OK. */
1926 if (arg == gimple_phi_result (stmt))
1927 continue;
1928 else if (TREE_CODE (arg) == INTEGER_CST)
1929 {
1930 if (invert ? integer_nonzerop (arg) : integer_zerop (arg))
1931 {
1932 if (!result)
1933 result = boolean_false_node;
1934 else if (!integer_zerop (result))
1935 return NULL_TREE;
1936 }
1937 else if (!result)
1938 result = fold_build2 (code2, boolean_type_node,
1939 op2a, op2b);
1940 else if (!same_bool_comparison_p (result,
1941 code2, op2a, op2b))
1942 return NULL_TREE;
1943 }
1944 else if (TREE_CODE (arg) == SSA_NAME
1945 && !SSA_NAME_IS_DEFAULT_DEF (arg))
1946 {
1947 tree temp;
1948 gimple def_stmt = SSA_NAME_DEF_STMT (arg);
1949 /* In simple cases we can look through PHI nodes,
1950 but we have to be careful with loops.
1951 See PR49073. */
1952 if (! dom_info_available_p (CDI_DOMINATORS)
1953 || gimple_bb (def_stmt) == gimple_bb (stmt)
1954 || dominated_by_p (CDI_DOMINATORS,
1955 gimple_bb (def_stmt),
1956 gimple_bb (stmt)))
1957 return NULL_TREE;
1958 temp = and_var_with_comparison (arg, invert, code2,
1959 op2a, op2b);
1960 if (!temp)
1961 return NULL_TREE;
1962 else if (!result)
1963 result = temp;
1964 else if (!same_bool_result_p (result, temp))
1965 return NULL_TREE;
1966 }
1967 else
1968 return NULL_TREE;
1969 }
1970 return result;
1971 }
1972
1973 default:
1974 break;
1975 }
1976 }
1977 return NULL_TREE;
1978 }
1979
1980 /* Try to simplify the AND of two comparisons, specified by
1981 (OP1A CODE1 OP1B) and (OP2B CODE2 OP2B), respectively.
1982 If this can be simplified to a single expression (without requiring
1983 introducing more SSA variables to hold intermediate values),
1984 return the resulting tree. Otherwise return NULL_TREE.
1985 If the result expression is non-null, it has boolean type. */
1986
1987 tree
1988 maybe_fold_and_comparisons (enum tree_code code1, tree op1a, tree op1b,
1989 enum tree_code code2, tree op2a, tree op2b)
1990 {
1991 tree t = and_comparisons_1 (code1, op1a, op1b, code2, op2a, op2b);
1992 if (t)
1993 return t;
1994 else
1995 return and_comparisons_1 (code2, op2a, op2b, code1, op1a, op1b);
1996 }
1997
1998 /* Helper function for or_comparisons_1: try to simplify the OR of the
1999 ssa variable VAR with the comparison specified by (OP2A CODE2 OP2B).
2000 If INVERT is true, invert the value of VAR before doing the OR.
2001 Return NULL_EXPR if we can't simplify this to a single expression. */
2002
2003 static tree
2004 or_var_with_comparison (tree var, bool invert,
2005 enum tree_code code2, tree op2a, tree op2b)
2006 {
2007 tree t;
2008 gimple stmt = SSA_NAME_DEF_STMT (var);
2009
2010 /* We can only deal with variables whose definitions are assignments. */
2011 if (!is_gimple_assign (stmt))
2012 return NULL_TREE;
2013
2014 /* If we have an inverted comparison, apply DeMorgan's law and rewrite
2015 !var OR (op2a code2 op2b) => !(var AND !(op2a code2 op2b))
2016 Then we only have to consider the simpler non-inverted cases. */
2017 if (invert)
2018 t = and_var_with_comparison_1 (stmt,
2019 invert_tree_comparison (code2, false),
2020 op2a, op2b);
2021 else
2022 t = or_var_with_comparison_1 (stmt, code2, op2a, op2b);
2023 return canonicalize_bool (t, invert);
2024 }
2025
2026 /* Try to simplify the OR of the ssa variable defined by the assignment
2027 STMT with the comparison specified by (OP2A CODE2 OP2B).
2028 Return NULL_EXPR if we can't simplify this to a single expression. */
2029
2030 static tree
2031 or_var_with_comparison_1 (gimple stmt,
2032 enum tree_code code2, tree op2a, tree op2b)
2033 {
2034 tree var = gimple_assign_lhs (stmt);
2035 tree true_test_var = NULL_TREE;
2036 tree false_test_var = NULL_TREE;
2037 enum tree_code innercode = gimple_assign_rhs_code (stmt);
2038
2039 /* Check for identities like (var OR (var != 0)) => true . */
2040 if (TREE_CODE (op2a) == SSA_NAME
2041 && TREE_CODE (TREE_TYPE (var)) == BOOLEAN_TYPE)
2042 {
2043 if ((code2 == NE_EXPR && integer_zerop (op2b))
2044 || (code2 == EQ_EXPR && integer_nonzerop (op2b)))
2045 {
2046 true_test_var = op2a;
2047 if (var == true_test_var)
2048 return var;
2049 }
2050 else if ((code2 == EQ_EXPR && integer_zerop (op2b))
2051 || (code2 == NE_EXPR && integer_nonzerop (op2b)))
2052 {
2053 false_test_var = op2a;
2054 if (var == false_test_var)
2055 return boolean_true_node;
2056 }
2057 }
2058
2059 /* If the definition is a comparison, recurse on it. */
2060 if (TREE_CODE_CLASS (innercode) == tcc_comparison)
2061 {
2062 tree t = or_comparisons_1 (innercode,
2063 gimple_assign_rhs1 (stmt),
2064 gimple_assign_rhs2 (stmt),
2065 code2,
2066 op2a,
2067 op2b);
2068 if (t)
2069 return t;
2070 }
2071
2072 /* If the definition is an AND or OR expression, we may be able to
2073 simplify by reassociating. */
2074 if (TREE_CODE (TREE_TYPE (var)) == BOOLEAN_TYPE
2075 && (innercode == BIT_AND_EXPR || innercode == BIT_IOR_EXPR))
2076 {
2077 tree inner1 = gimple_assign_rhs1 (stmt);
2078 tree inner2 = gimple_assign_rhs2 (stmt);
2079 gimple s;
2080 tree t;
2081 tree partial = NULL_TREE;
2082 bool is_or = (innercode == BIT_IOR_EXPR);
2083
2084 /* Check for boolean identities that don't require recursive examination
2085 of inner1/inner2:
2086 inner1 OR (inner1 OR inner2) => inner1 OR inner2 => var
2087 inner1 OR (inner1 AND inner2) => inner1
2088 !inner1 OR (inner1 OR inner2) => true
2089 !inner1 OR (inner1 AND inner2) => !inner1 OR inner2
2090 */
2091 if (inner1 == true_test_var)
2092 return (is_or ? var : inner1);
2093 else if (inner2 == true_test_var)
2094 return (is_or ? var : inner2);
2095 else if (inner1 == false_test_var)
2096 return (is_or
2097 ? boolean_true_node
2098 : or_var_with_comparison (inner2, false, code2, op2a, op2b));
2099 else if (inner2 == false_test_var)
2100 return (is_or
2101 ? boolean_true_node
2102 : or_var_with_comparison (inner1, false, code2, op2a, op2b));
2103
2104 /* Next, redistribute/reassociate the OR across the inner tests.
2105 Compute the first partial result, (inner1 OR (op2a code op2b)) */
2106 if (TREE_CODE (inner1) == SSA_NAME
2107 && is_gimple_assign (s = SSA_NAME_DEF_STMT (inner1))
2108 && TREE_CODE_CLASS (gimple_assign_rhs_code (s)) == tcc_comparison
2109 && (t = maybe_fold_or_comparisons (gimple_assign_rhs_code (s),
2110 gimple_assign_rhs1 (s),
2111 gimple_assign_rhs2 (s),
2112 code2, op2a, op2b)))
2113 {
2114 /* Handle the OR case, where we are reassociating:
2115 (inner1 OR inner2) OR (op2a code2 op2b)
2116 => (t OR inner2)
2117 If the partial result t is a constant, we win. Otherwise
2118 continue on to try reassociating with the other inner test. */
2119 if (is_or)
2120 {
2121 if (integer_onep (t))
2122 return boolean_true_node;
2123 else if (integer_zerop (t))
2124 return inner2;
2125 }
2126
2127 /* Handle the AND case, where we are redistributing:
2128 (inner1 AND inner2) OR (op2a code2 op2b)
2129 => (t AND (inner2 OR (op2a code op2b))) */
2130 else if (integer_zerop (t))
2131 return boolean_false_node;
2132
2133 /* Save partial result for later. */
2134 partial = t;
2135 }
2136
2137 /* Compute the second partial result, (inner2 OR (op2a code op2b)) */
2138 if (TREE_CODE (inner2) == SSA_NAME
2139 && is_gimple_assign (s = SSA_NAME_DEF_STMT (inner2))
2140 && TREE_CODE_CLASS (gimple_assign_rhs_code (s)) == tcc_comparison
2141 && (t = maybe_fold_or_comparisons (gimple_assign_rhs_code (s),
2142 gimple_assign_rhs1 (s),
2143 gimple_assign_rhs2 (s),
2144 code2, op2a, op2b)))
2145 {
2146 /* Handle the OR case, where we are reassociating:
2147 (inner1 OR inner2) OR (op2a code2 op2b)
2148 => (inner1 OR t)
2149 => (t OR partial) */
2150 if (is_or)
2151 {
2152 if (integer_zerop (t))
2153 return inner1;
2154 else if (integer_onep (t))
2155 return boolean_true_node;
2156 /* If both are the same, we can apply the identity
2157 (x OR x) == x. */
2158 else if (partial && same_bool_result_p (t, partial))
2159 return t;
2160 }
2161
2162 /* Handle the AND case, where we are redistributing:
2163 (inner1 AND inner2) OR (op2a code2 op2b)
2164 => (t AND (inner1 OR (op2a code2 op2b)))
2165 => (t AND partial) */
2166 else
2167 {
2168 if (integer_zerop (t))
2169 return boolean_false_node;
2170 else if (partial)
2171 {
2172 /* We already got a simplification for the other
2173 operand to the redistributed AND expression. The
2174 interesting case is when at least one is true.
2175 Or, if both are the same, we can apply the identity
2176 (x AND x) == x. */
2177 if (integer_onep (partial))
2178 return t;
2179 else if (integer_onep (t))
2180 return partial;
2181 else if (same_bool_result_p (t, partial))
2182 return t;
2183 }
2184 }
2185 }
2186 }
2187 return NULL_TREE;
2188 }
2189
2190 /* Try to simplify the OR of two comparisons defined by
2191 (OP1A CODE1 OP1B) and (OP2A CODE2 OP2B), respectively.
2192 If this can be done without constructing an intermediate value,
2193 return the resulting tree; otherwise NULL_TREE is returned.
2194 This function is deliberately asymmetric as it recurses on SSA_DEFs
2195 in the first comparison but not the second. */
2196
2197 static tree
2198 or_comparisons_1 (enum tree_code code1, tree op1a, tree op1b,
2199 enum tree_code code2, tree op2a, tree op2b)
2200 {
2201 tree truth_type = truth_type_for (TREE_TYPE (op1a));
2202
2203 /* First check for ((x CODE1 y) OR (x CODE2 y)). */
2204 if (operand_equal_p (op1a, op2a, 0)
2205 && operand_equal_p (op1b, op2b, 0))
2206 {
2207 /* Result will be either NULL_TREE, or a combined comparison. */
2208 tree t = combine_comparisons (UNKNOWN_LOCATION,
2209 TRUTH_ORIF_EXPR, code1, code2,
2210 truth_type, op1a, op1b);
2211 if (t)
2212 return t;
2213 }
2214
2215 /* Likewise the swapped case of the above. */
2216 if (operand_equal_p (op1a, op2b, 0)
2217 && operand_equal_p (op1b, op2a, 0))
2218 {
2219 /* Result will be either NULL_TREE, or a combined comparison. */
2220 tree t = combine_comparisons (UNKNOWN_LOCATION,
2221 TRUTH_ORIF_EXPR, code1,
2222 swap_tree_comparison (code2),
2223 truth_type, op1a, op1b);
2224 if (t)
2225 return t;
2226 }
2227
2228 /* If both comparisons are of the same value against constants, we might
2229 be able to merge them. */
2230 if (operand_equal_p (op1a, op2a, 0)
2231 && TREE_CODE (op1b) == INTEGER_CST
2232 && TREE_CODE (op2b) == INTEGER_CST)
2233 {
2234 int cmp = tree_int_cst_compare (op1b, op2b);
2235
2236 /* If we have (op1a != op1b), we should either be able to
2237 return that or TRUE, depending on whether the constant op1b
2238 also satisfies the other comparison against op2b. */
2239 if (code1 == NE_EXPR)
2240 {
2241 bool done = true;
2242 bool val;
2243 switch (code2)
2244 {
2245 case EQ_EXPR: val = (cmp == 0); break;
2246 case NE_EXPR: val = (cmp != 0); break;
2247 case LT_EXPR: val = (cmp < 0); break;
2248 case GT_EXPR: val = (cmp > 0); break;
2249 case LE_EXPR: val = (cmp <= 0); break;
2250 case GE_EXPR: val = (cmp >= 0); break;
2251 default: done = false;
2252 }
2253 if (done)
2254 {
2255 if (val)
2256 return boolean_true_node;
2257 else
2258 return fold_build2 (code1, boolean_type_node, op1a, op1b);
2259 }
2260 }
2261 /* Likewise if the second comparison is a != comparison. */
2262 else if (code2 == NE_EXPR)
2263 {
2264 bool done = true;
2265 bool val;
2266 switch (code1)
2267 {
2268 case EQ_EXPR: val = (cmp == 0); break;
2269 case NE_EXPR: val = (cmp != 0); break;
2270 case LT_EXPR: val = (cmp > 0); break;
2271 case GT_EXPR: val = (cmp < 0); break;
2272 case LE_EXPR: val = (cmp >= 0); break;
2273 case GE_EXPR: val = (cmp <= 0); break;
2274 default: done = false;
2275 }
2276 if (done)
2277 {
2278 if (val)
2279 return boolean_true_node;
2280 else
2281 return fold_build2 (code2, boolean_type_node, op2a, op2b);
2282 }
2283 }
2284
2285 /* See if an equality test is redundant with the other comparison. */
2286 else if (code1 == EQ_EXPR)
2287 {
2288 bool val;
2289 switch (code2)
2290 {
2291 case EQ_EXPR: val = (cmp == 0); break;
2292 case NE_EXPR: val = (cmp != 0); break;
2293 case LT_EXPR: val = (cmp < 0); break;
2294 case GT_EXPR: val = (cmp > 0); break;
2295 case LE_EXPR: val = (cmp <= 0); break;
2296 case GE_EXPR: val = (cmp >= 0); break;
2297 default:
2298 val = false;
2299 }
2300 if (val)
2301 return fold_build2 (code2, boolean_type_node, op2a, op2b);
2302 }
2303 else if (code2 == EQ_EXPR)
2304 {
2305 bool val;
2306 switch (code1)
2307 {
2308 case EQ_EXPR: val = (cmp == 0); break;
2309 case NE_EXPR: val = (cmp != 0); break;
2310 case LT_EXPR: val = (cmp > 0); break;
2311 case GT_EXPR: val = (cmp < 0); break;
2312 case LE_EXPR: val = (cmp >= 0); break;
2313 case GE_EXPR: val = (cmp <= 0); break;
2314 default:
2315 val = false;
2316 }
2317 if (val)
2318 return fold_build2 (code1, boolean_type_node, op1a, op1b);
2319 }
2320
2321 /* Chose the less restrictive of two < or <= comparisons. */
2322 else if ((code1 == LT_EXPR || code1 == LE_EXPR)
2323 && (code2 == LT_EXPR || code2 == LE_EXPR))
2324 {
2325 if ((cmp < 0) || (cmp == 0 && code1 == LT_EXPR))
2326 return fold_build2 (code2, boolean_type_node, op2a, op2b);
2327 else
2328 return fold_build2 (code1, boolean_type_node, op1a, op1b);
2329 }
2330
2331 /* Likewise chose the less restrictive of two > or >= comparisons. */
2332 else if ((code1 == GT_EXPR || code1 == GE_EXPR)
2333 && (code2 == GT_EXPR || code2 == GE_EXPR))
2334 {
2335 if ((cmp > 0) || (cmp == 0 && code1 == GT_EXPR))
2336 return fold_build2 (code2, boolean_type_node, op2a, op2b);
2337 else
2338 return fold_build2 (code1, boolean_type_node, op1a, op1b);
2339 }
2340
2341 /* Check for singleton ranges. */
2342 else if (cmp == 0
2343 && ((code1 == LT_EXPR && code2 == GT_EXPR)
2344 || (code1 == GT_EXPR && code2 == LT_EXPR)))
2345 return fold_build2 (NE_EXPR, boolean_type_node, op1a, op2b);
2346
2347 /* Check for less/greater pairs that don't restrict the range at all. */
2348 else if (cmp >= 0
2349 && (code1 == LT_EXPR || code1 == LE_EXPR)
2350 && (code2 == GT_EXPR || code2 == GE_EXPR))
2351 return boolean_true_node;
2352 else if (cmp <= 0
2353 && (code1 == GT_EXPR || code1 == GE_EXPR)
2354 && (code2 == LT_EXPR || code2 == LE_EXPR))
2355 return boolean_true_node;
2356 }
2357
2358 /* Perhaps the first comparison is (NAME != 0) or (NAME == 1) where
2359 NAME's definition is a truth value. See if there are any simplifications
2360 that can be done against the NAME's definition. */
2361 if (TREE_CODE (op1a) == SSA_NAME
2362 && (code1 == NE_EXPR || code1 == EQ_EXPR)
2363 && (integer_zerop (op1b) || integer_onep (op1b)))
2364 {
2365 bool invert = ((code1 == EQ_EXPR && integer_zerop (op1b))
2366 || (code1 == NE_EXPR && integer_onep (op1b)));
2367 gimple stmt = SSA_NAME_DEF_STMT (op1a);
2368 switch (gimple_code (stmt))
2369 {
2370 case GIMPLE_ASSIGN:
2371 /* Try to simplify by copy-propagating the definition. */
2372 return or_var_with_comparison (op1a, invert, code2, op2a, op2b);
2373
2374 case GIMPLE_PHI:
2375 /* If every argument to the PHI produces the same result when
2376 ORed with the second comparison, we win.
2377 Do not do this unless the type is bool since we need a bool
2378 result here anyway. */
2379 if (TREE_CODE (TREE_TYPE (op1a)) == BOOLEAN_TYPE)
2380 {
2381 tree result = NULL_TREE;
2382 unsigned i;
2383 for (i = 0; i < gimple_phi_num_args (stmt); i++)
2384 {
2385 tree arg = gimple_phi_arg_def (stmt, i);
2386
2387 /* If this PHI has itself as an argument, ignore it.
2388 If all the other args produce the same result,
2389 we're still OK. */
2390 if (arg == gimple_phi_result (stmt))
2391 continue;
2392 else if (TREE_CODE (arg) == INTEGER_CST)
2393 {
2394 if (invert ? integer_zerop (arg) : integer_nonzerop (arg))
2395 {
2396 if (!result)
2397 result = boolean_true_node;
2398 else if (!integer_onep (result))
2399 return NULL_TREE;
2400 }
2401 else if (!result)
2402 result = fold_build2 (code2, boolean_type_node,
2403 op2a, op2b);
2404 else if (!same_bool_comparison_p (result,
2405 code2, op2a, op2b))
2406 return NULL_TREE;
2407 }
2408 else if (TREE_CODE (arg) == SSA_NAME
2409 && !SSA_NAME_IS_DEFAULT_DEF (arg))
2410 {
2411 tree temp;
2412 gimple def_stmt = SSA_NAME_DEF_STMT (arg);
2413 /* In simple cases we can look through PHI nodes,
2414 but we have to be careful with loops.
2415 See PR49073. */
2416 if (! dom_info_available_p (CDI_DOMINATORS)
2417 || gimple_bb (def_stmt) == gimple_bb (stmt)
2418 || dominated_by_p (CDI_DOMINATORS,
2419 gimple_bb (def_stmt),
2420 gimple_bb (stmt)))
2421 return NULL_TREE;
2422 temp = or_var_with_comparison (arg, invert, code2,
2423 op2a, op2b);
2424 if (!temp)
2425 return NULL_TREE;
2426 else if (!result)
2427 result = temp;
2428 else if (!same_bool_result_p (result, temp))
2429 return NULL_TREE;
2430 }
2431 else
2432 return NULL_TREE;
2433 }
2434 return result;
2435 }
2436
2437 default:
2438 break;
2439 }
2440 }
2441 return NULL_TREE;
2442 }
2443
2444 /* Try to simplify the OR of two comparisons, specified by
2445 (OP1A CODE1 OP1B) and (OP2B CODE2 OP2B), respectively.
2446 If this can be simplified to a single expression (without requiring
2447 introducing more SSA variables to hold intermediate values),
2448 return the resulting tree. Otherwise return NULL_TREE.
2449 If the result expression is non-null, it has boolean type. */
2450
2451 tree
2452 maybe_fold_or_comparisons (enum tree_code code1, tree op1a, tree op1b,
2453 enum tree_code code2, tree op2a, tree op2b)
2454 {
2455 tree t = or_comparisons_1 (code1, op1a, op1b, code2, op2a, op2b);
2456 if (t)
2457 return t;
2458 else
2459 return or_comparisons_1 (code2, op2a, op2b, code1, op1a, op1b);
2460 }
2461
2462
2463 /* Fold STMT to a constant using VALUEIZE to valueize SSA names.
2464
2465 Either NULL_TREE, a simplified but non-constant or a constant
2466 is returned.
2467
2468 ??? This should go into a gimple-fold-inline.h file to be eventually
2469 privatized with the single valueize function used in the various TUs
2470 to avoid the indirect function call overhead. */
2471
2472 tree
2473 gimple_fold_stmt_to_constant_1 (gimple stmt, tree (*valueize) (tree))
2474 {
2475 location_t loc = gimple_location (stmt);
2476 switch (gimple_code (stmt))
2477 {
2478 case GIMPLE_ASSIGN:
2479 {
2480 enum tree_code subcode = gimple_assign_rhs_code (stmt);
2481
2482 switch (get_gimple_rhs_class (subcode))
2483 {
2484 case GIMPLE_SINGLE_RHS:
2485 {
2486 tree rhs = gimple_assign_rhs1 (stmt);
2487 enum tree_code_class kind = TREE_CODE_CLASS (subcode);
2488
2489 if (TREE_CODE (rhs) == SSA_NAME)
2490 {
2491 /* If the RHS is an SSA_NAME, return its known constant value,
2492 if any. */
2493 return (*valueize) (rhs);
2494 }
2495 /* Handle propagating invariant addresses into address
2496 operations. */
2497 else if (TREE_CODE (rhs) == ADDR_EXPR
2498 && !is_gimple_min_invariant (rhs))
2499 {
2500 HOST_WIDE_INT offset = 0;
2501 tree base;
2502 base = get_addr_base_and_unit_offset_1 (TREE_OPERAND (rhs, 0),
2503 &offset,
2504 valueize);
2505 if (base
2506 && (CONSTANT_CLASS_P (base)
2507 || decl_address_invariant_p (base)))
2508 return build_invariant_address (TREE_TYPE (rhs),
2509 base, offset);
2510 }
2511 else if (TREE_CODE (rhs) == CONSTRUCTOR
2512 && TREE_CODE (TREE_TYPE (rhs)) == VECTOR_TYPE
2513 && (CONSTRUCTOR_NELTS (rhs)
2514 == TYPE_VECTOR_SUBPARTS (TREE_TYPE (rhs))))
2515 {
2516 unsigned i;
2517 tree val, *vec;
2518
2519 vec = XALLOCAVEC (tree,
2520 TYPE_VECTOR_SUBPARTS (TREE_TYPE (rhs)));
2521 FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (rhs), i, val)
2522 {
2523 val = (*valueize) (val);
2524 if (TREE_CODE (val) == INTEGER_CST
2525 || TREE_CODE (val) == REAL_CST
2526 || TREE_CODE (val) == FIXED_CST)
2527 vec[i] = val;
2528 else
2529 return NULL_TREE;
2530 }
2531
2532 return build_vector (TREE_TYPE (rhs), vec);
2533 }
2534
2535 if (kind == tcc_reference)
2536 {
2537 if ((TREE_CODE (rhs) == VIEW_CONVERT_EXPR
2538 || TREE_CODE (rhs) == REALPART_EXPR
2539 || TREE_CODE (rhs) == IMAGPART_EXPR)
2540 && TREE_CODE (TREE_OPERAND (rhs, 0)) == SSA_NAME)
2541 {
2542 tree val = (*valueize) (TREE_OPERAND (rhs, 0));
2543 return fold_unary_loc (EXPR_LOCATION (rhs),
2544 TREE_CODE (rhs),
2545 TREE_TYPE (rhs), val);
2546 }
2547 else if (TREE_CODE (rhs) == BIT_FIELD_REF
2548 && TREE_CODE (TREE_OPERAND (rhs, 0)) == SSA_NAME)
2549 {
2550 tree val = (*valueize) (TREE_OPERAND (rhs, 0));
2551 return fold_ternary_loc (EXPR_LOCATION (rhs),
2552 TREE_CODE (rhs),
2553 TREE_TYPE (rhs), val,
2554 TREE_OPERAND (rhs, 1),
2555 TREE_OPERAND (rhs, 2));
2556 }
2557 else if (TREE_CODE (rhs) == MEM_REF
2558 && TREE_CODE (TREE_OPERAND (rhs, 0)) == SSA_NAME)
2559 {
2560 tree val = (*valueize) (TREE_OPERAND (rhs, 0));
2561 if (TREE_CODE (val) == ADDR_EXPR
2562 && is_gimple_min_invariant (val))
2563 {
2564 tree tem = fold_build2 (MEM_REF, TREE_TYPE (rhs),
2565 unshare_expr (val),
2566 TREE_OPERAND (rhs, 1));
2567 if (tem)
2568 rhs = tem;
2569 }
2570 }
2571 return fold_const_aggregate_ref_1 (rhs, valueize);
2572 }
2573 else if (kind == tcc_declaration)
2574 return get_symbol_constant_value (rhs);
2575 return rhs;
2576 }
2577
2578 case GIMPLE_UNARY_RHS:
2579 {
2580 /* Handle unary operators that can appear in GIMPLE form.
2581 Note that we know the single operand must be a constant,
2582 so this should almost always return a simplified RHS. */
2583 tree lhs = gimple_assign_lhs (stmt);
2584 tree op0 = (*valueize) (gimple_assign_rhs1 (stmt));
2585
2586 /* Conversions are useless for CCP purposes if they are
2587 value-preserving. Thus the restrictions that
2588 useless_type_conversion_p places for restrict qualification
2589 of pointer types should not apply here.
2590 Substitution later will only substitute to allowed places. */
2591 if (CONVERT_EXPR_CODE_P (subcode)
2592 && POINTER_TYPE_P (TREE_TYPE (lhs))
2593 && POINTER_TYPE_P (TREE_TYPE (op0))
2594 && TYPE_ADDR_SPACE (TREE_TYPE (lhs))
2595 == TYPE_ADDR_SPACE (TREE_TYPE (op0))
2596 && TYPE_MODE (TREE_TYPE (lhs))
2597 == TYPE_MODE (TREE_TYPE (op0)))
2598 return op0;
2599
2600 return
2601 fold_unary_ignore_overflow_loc (loc, subcode,
2602 gimple_expr_type (stmt), op0);
2603 }
2604
2605 case GIMPLE_BINARY_RHS:
2606 {
2607 /* Handle binary operators that can appear in GIMPLE form. */
2608 tree op0 = (*valueize) (gimple_assign_rhs1 (stmt));
2609 tree op1 = (*valueize) (gimple_assign_rhs2 (stmt));
2610
2611 /* Translate &x + CST into an invariant form suitable for
2612 further propagation. */
2613 if (gimple_assign_rhs_code (stmt) == POINTER_PLUS_EXPR
2614 && TREE_CODE (op0) == ADDR_EXPR
2615 && TREE_CODE (op1) == INTEGER_CST)
2616 {
2617 tree off = fold_convert (ptr_type_node, op1);
2618 return build_fold_addr_expr_loc
2619 (loc,
2620 fold_build2 (MEM_REF,
2621 TREE_TYPE (TREE_TYPE (op0)),
2622 unshare_expr (op0), off));
2623 }
2624
2625 return fold_binary_loc (loc, subcode,
2626 gimple_expr_type (stmt), op0, op1);
2627 }
2628
2629 case GIMPLE_TERNARY_RHS:
2630 {
2631 /* Handle ternary operators that can appear in GIMPLE form. */
2632 tree op0 = (*valueize) (gimple_assign_rhs1 (stmt));
2633 tree op1 = (*valueize) (gimple_assign_rhs2 (stmt));
2634 tree op2 = (*valueize) (gimple_assign_rhs3 (stmt));
2635
2636 /* Fold embedded expressions in ternary codes. */
2637 if ((subcode == COND_EXPR
2638 || subcode == VEC_COND_EXPR)
2639 && COMPARISON_CLASS_P (op0))
2640 {
2641 tree op00 = (*valueize) (TREE_OPERAND (op0, 0));
2642 tree op01 = (*valueize) (TREE_OPERAND (op0, 1));
2643 tree tem = fold_binary_loc (loc, TREE_CODE (op0),
2644 TREE_TYPE (op0), op00, op01);
2645 if (tem)
2646 op0 = tem;
2647 }
2648
2649 return fold_ternary_loc (loc, subcode,
2650 gimple_expr_type (stmt), op0, op1, op2);
2651 }
2652
2653 default:
2654 gcc_unreachable ();
2655 }
2656 }
2657
2658 case GIMPLE_CALL:
2659 {
2660 tree fn;
2661
2662 if (gimple_call_internal_p (stmt))
2663 /* No folding yet for these functions. */
2664 return NULL_TREE;
2665
2666 fn = (*valueize) (gimple_call_fn (stmt));
2667 if (TREE_CODE (fn) == ADDR_EXPR
2668 && TREE_CODE (TREE_OPERAND (fn, 0)) == FUNCTION_DECL
2669 && DECL_BUILT_IN (TREE_OPERAND (fn, 0)))
2670 {
2671 tree *args = XALLOCAVEC (tree, gimple_call_num_args (stmt));
2672 tree call, retval;
2673 unsigned i;
2674 for (i = 0; i < gimple_call_num_args (stmt); ++i)
2675 args[i] = (*valueize) (gimple_call_arg (stmt, i));
2676 call = build_call_array_loc (loc,
2677 gimple_call_return_type (stmt),
2678 fn, gimple_call_num_args (stmt), args);
2679 retval = fold_call_expr (EXPR_LOCATION (call), call, false);
2680 if (retval)
2681 /* fold_call_expr wraps the result inside a NOP_EXPR. */
2682 STRIP_NOPS (retval);
2683 return retval;
2684 }
2685 return NULL_TREE;
2686 }
2687
2688 default:
2689 return NULL_TREE;
2690 }
2691 }
2692
2693 /* Fold STMT to a constant using VALUEIZE to valueize SSA names.
2694 Returns NULL_TREE if folding to a constant is not possible, otherwise
2695 returns a constant according to is_gimple_min_invariant. */
2696
2697 tree
2698 gimple_fold_stmt_to_constant (gimple stmt, tree (*valueize) (tree))
2699 {
2700 tree res = gimple_fold_stmt_to_constant_1 (stmt, valueize);
2701 if (res && is_gimple_min_invariant (res))
2702 return res;
2703 return NULL_TREE;
2704 }
2705
2706
2707 /* The following set of functions are supposed to fold references using
2708 their constant initializers. */
2709
2710 static tree fold_ctor_reference (tree type, tree ctor,
2711 unsigned HOST_WIDE_INT offset,
2712 unsigned HOST_WIDE_INT size, tree);
2713
2714 /* See if we can find constructor defining value of BASE.
2715 When we know the consructor with constant offset (such as
2716 base is array[40] and we do know constructor of array), then
2717 BIT_OFFSET is adjusted accordingly.
2718
2719 As a special case, return error_mark_node when constructor
2720 is not explicitly available, but it is known to be zero
2721 such as 'static const int a;'. */
2722 static tree
2723 get_base_constructor (tree base, HOST_WIDE_INT *bit_offset,
2724 tree (*valueize)(tree))
2725 {
2726 HOST_WIDE_INT bit_offset2, size, max_size;
2727 if (TREE_CODE (base) == MEM_REF)
2728 {
2729 if (!integer_zerop (TREE_OPERAND (base, 1)))
2730 {
2731 if (!tree_fits_shwi_p (TREE_OPERAND (base, 1)))
2732 return NULL_TREE;
2733 *bit_offset += (mem_ref_offset (base).to_short_addr ()
2734 * BITS_PER_UNIT);
2735 }
2736
2737 if (valueize
2738 && TREE_CODE (TREE_OPERAND (base, 0)) == SSA_NAME)
2739 base = valueize (TREE_OPERAND (base, 0));
2740 if (!base || TREE_CODE (base) != ADDR_EXPR)
2741 return NULL_TREE;
2742 base = TREE_OPERAND (base, 0);
2743 }
2744
2745 /* Get a CONSTRUCTOR. If BASE is a VAR_DECL, get its
2746 DECL_INITIAL. If BASE is a nested reference into another
2747 ARRAY_REF or COMPONENT_REF, make a recursive call to resolve
2748 the inner reference. */
2749 switch (TREE_CODE (base))
2750 {
2751 case VAR_DECL:
2752 case CONST_DECL:
2753 {
2754 tree init = ctor_for_folding (base);
2755
2756 /* Our semantic is exact opposite of ctor_for_folding;
2757 NULL means unknown, while error_mark_node is 0. */
2758 if (init == error_mark_node)
2759 return NULL_TREE;
2760 if (!init)
2761 return error_mark_node;
2762 return init;
2763 }
2764
2765 case ARRAY_REF:
2766 case COMPONENT_REF:
2767 base = get_ref_base_and_extent (base, &bit_offset2, &size, &max_size);
2768 if (max_size == -1 || size != max_size)
2769 return NULL_TREE;
2770 *bit_offset += bit_offset2;
2771 return get_base_constructor (base, bit_offset, valueize);
2772
2773 case STRING_CST:
2774 case CONSTRUCTOR:
2775 return base;
2776
2777 default:
2778 return NULL_TREE;
2779 }
2780 }
2781
2782 /* CTOR is STRING_CST. Fold reference of type TYPE and size SIZE
2783 to the memory at bit OFFSET.
2784
2785 We do only simple job of folding byte accesses. */
2786
2787 static tree
2788 fold_string_cst_ctor_reference (tree type, tree ctor,
2789 unsigned HOST_WIDE_INT offset,
2790 unsigned HOST_WIDE_INT size)
2791 {
2792 if (INTEGRAL_TYPE_P (type)
2793 && (TYPE_MODE (type)
2794 == TYPE_MODE (TREE_TYPE (TREE_TYPE (ctor))))
2795 && (GET_MODE_CLASS (TYPE_MODE (TREE_TYPE (TREE_TYPE (ctor))))
2796 == MODE_INT)
2797 && GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (TREE_TYPE (ctor)))) == 1
2798 && size == BITS_PER_UNIT
2799 && !(offset % BITS_PER_UNIT))
2800 {
2801 offset /= BITS_PER_UNIT;
2802 if (offset < (unsigned HOST_WIDE_INT) TREE_STRING_LENGTH (ctor))
2803 return build_int_cst_type (type, (TREE_STRING_POINTER (ctor)
2804 [offset]));
2805 /* Folding
2806 const char a[20]="hello";
2807 return a[10];
2808
2809 might lead to offset greater than string length. In this case we
2810 know value is either initialized to 0 or out of bounds. Return 0
2811 in both cases. */
2812 return build_zero_cst (type);
2813 }
2814 return NULL_TREE;
2815 }
2816
2817 /* CTOR is CONSTRUCTOR of an array type. Fold reference of type TYPE and size
2818 SIZE to the memory at bit OFFSET. */
2819
2820 static tree
2821 fold_array_ctor_reference (tree type, tree ctor,
2822 unsigned HOST_WIDE_INT offset,
2823 unsigned HOST_WIDE_INT size,
2824 tree from_decl)
2825 {
2826 unsigned HOST_WIDE_INT cnt;
2827 tree cfield, cval;
2828 offset_int low_bound;
2829 offset_int elt_size;
2830 offset_int index, max_index;
2831 offset_int access_index;
2832 tree domain_type = NULL_TREE, index_type = NULL_TREE;
2833 HOST_WIDE_INT inner_offset;
2834
2835 /* Compute low bound and elt size. */
2836 if (TREE_CODE (TREE_TYPE (ctor)) == ARRAY_TYPE)
2837 domain_type = TYPE_DOMAIN (TREE_TYPE (ctor));
2838 if (domain_type && TYPE_MIN_VALUE (domain_type))
2839 {
2840 /* Static constructors for variably sized objects makes no sense. */
2841 gcc_assert (TREE_CODE (TYPE_MIN_VALUE (domain_type)) == INTEGER_CST);
2842 index_type = TREE_TYPE (TYPE_MIN_VALUE (domain_type));
2843 low_bound = wi::to_offset (TYPE_MIN_VALUE (domain_type));
2844 }
2845 else
2846 low_bound = 0;
2847 /* Static constructors for variably sized objects makes no sense. */
2848 gcc_assert (TREE_CODE (TYPE_SIZE_UNIT (TREE_TYPE (TREE_TYPE (ctor))))
2849 == INTEGER_CST);
2850 elt_size = wi::to_offset (TYPE_SIZE_UNIT (TREE_TYPE (TREE_TYPE (ctor))));
2851
2852 /* We can handle only constantly sized accesses that are known to not
2853 be larger than size of array element. */
2854 if (!TYPE_SIZE_UNIT (type)
2855 || TREE_CODE (TYPE_SIZE_UNIT (type)) != INTEGER_CST
2856 || wi::lts_p (elt_size, wi::to_offset (TYPE_SIZE_UNIT (type))))
2857 return NULL_TREE;
2858
2859 /* Compute the array index we look for. */
2860 access_index = wi::udiv_trunc (offset_int (offset / BITS_PER_UNIT),
2861 elt_size);
2862 access_index += low_bound;
2863 if (index_type)
2864 access_index = wi::ext (access_index, TYPE_PRECISION (index_type),
2865 TYPE_SIGN (index_type));
2866
2867 /* And offset within the access. */
2868 inner_offset = offset % (elt_size.to_uhwi () * BITS_PER_UNIT);
2869
2870 /* See if the array field is large enough to span whole access. We do not
2871 care to fold accesses spanning multiple array indexes. */
2872 if (inner_offset + size > elt_size.to_uhwi () * BITS_PER_UNIT)
2873 return NULL_TREE;
2874
2875 index = low_bound - 1;
2876 if (index_type)
2877 index = wi::ext (index, TYPE_PRECISION (index_type),
2878 TYPE_SIGN (index_type));
2879
2880 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (ctor), cnt, cfield, cval)
2881 {
2882 /* Array constructor might explicitely set index, or specify range
2883 or leave index NULL meaning that it is next index after previous
2884 one. */
2885 if (cfield)
2886 {
2887 if (TREE_CODE (cfield) == INTEGER_CST)
2888 max_index = index = wi::to_offset (cfield);
2889 else
2890 {
2891 gcc_assert (TREE_CODE (cfield) == RANGE_EXPR);
2892 index = wi::to_offset (TREE_OPERAND (cfield, 0));
2893 max_index = wi::to_offset (TREE_OPERAND (cfield, 1));
2894 }
2895 }
2896 else
2897 {
2898 index += 1;
2899 if (index_type)
2900 index = wi::ext (index, TYPE_PRECISION (index_type),
2901 TYPE_SIGN (index_type));
2902 max_index = index;
2903 }
2904
2905 /* Do we have match? */
2906 if (wi::cmpu (access_index, index) >= 0
2907 && wi::cmpu (access_index, max_index) <= 0)
2908 return fold_ctor_reference (type, cval, inner_offset, size,
2909 from_decl);
2910 }
2911 /* When memory is not explicitely mentioned in constructor,
2912 it is 0 (or out of range). */
2913 return build_zero_cst (type);
2914 }
2915
2916 /* CTOR is CONSTRUCTOR of an aggregate or vector.
2917 Fold reference of type TYPE and size SIZE to the memory at bit OFFSET. */
2918
2919 static tree
2920 fold_nonarray_ctor_reference (tree type, tree ctor,
2921 unsigned HOST_WIDE_INT offset,
2922 unsigned HOST_WIDE_INT size,
2923 tree from_decl)
2924 {
2925 unsigned HOST_WIDE_INT cnt;
2926 tree cfield, cval;
2927
2928 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (ctor), cnt, cfield,
2929 cval)
2930 {
2931 tree byte_offset = DECL_FIELD_OFFSET (cfield);
2932 tree field_offset = DECL_FIELD_BIT_OFFSET (cfield);
2933 tree field_size = DECL_SIZE (cfield);
2934 offset_int bitoffset;
2935 offset_int bitoffset_end, access_end;
2936
2937 /* Variable sized objects in static constructors makes no sense,
2938 but field_size can be NULL for flexible array members. */
2939 gcc_assert (TREE_CODE (field_offset) == INTEGER_CST
2940 && TREE_CODE (byte_offset) == INTEGER_CST
2941 && (field_size != NULL_TREE
2942 ? TREE_CODE (field_size) == INTEGER_CST
2943 : TREE_CODE (TREE_TYPE (cfield)) == ARRAY_TYPE));
2944
2945 /* Compute bit offset of the field. */
2946 bitoffset = (wi::to_offset (field_offset)
2947 + wi::lshift (wi::to_offset (byte_offset),
2948 LOG2_BITS_PER_UNIT));
2949 /* Compute bit offset where the field ends. */
2950 if (field_size != NULL_TREE)
2951 bitoffset_end = bitoffset + wi::to_offset (field_size);
2952 else
2953 bitoffset_end = 0;
2954
2955 access_end = offset_int (offset) + size;
2956
2957 /* Is there any overlap between [OFFSET, OFFSET+SIZE) and
2958 [BITOFFSET, BITOFFSET_END)? */
2959 if (wi::cmps (access_end, bitoffset) > 0
2960 && (field_size == NULL_TREE
2961 || wi::lts_p (offset, bitoffset_end)))
2962 {
2963 offset_int inner_offset = offset_int (offset) - bitoffset;
2964 /* We do have overlap. Now see if field is large enough to
2965 cover the access. Give up for accesses spanning multiple
2966 fields. */
2967 if (wi::cmps (access_end, bitoffset_end) > 0)
2968 return NULL_TREE;
2969 if (wi::lts_p (offset, bitoffset))
2970 return NULL_TREE;
2971 return fold_ctor_reference (type, cval,
2972 inner_offset.to_uhwi (), size,
2973 from_decl);
2974 }
2975 }
2976 /* When memory is not explicitely mentioned in constructor, it is 0. */
2977 return build_zero_cst (type);
2978 }
2979
2980 /* CTOR is value initializing memory, fold reference of type TYPE and size SIZE
2981 to the memory at bit OFFSET. */
2982
2983 static tree
2984 fold_ctor_reference (tree type, tree ctor, unsigned HOST_WIDE_INT offset,
2985 unsigned HOST_WIDE_INT size, tree from_decl)
2986 {
2987 tree ret;
2988
2989 /* We found the field with exact match. */
2990 if (useless_type_conversion_p (type, TREE_TYPE (ctor))
2991 && !offset)
2992 return canonicalize_constructor_val (unshare_expr (ctor), from_decl);
2993
2994 /* We are at the end of walk, see if we can view convert the
2995 result. */
2996 if (!AGGREGATE_TYPE_P (TREE_TYPE (ctor)) && !offset
2997 /* VIEW_CONVERT_EXPR is defined only for matching sizes. */
2998 && operand_equal_p (TYPE_SIZE (type),
2999 TYPE_SIZE (TREE_TYPE (ctor)), 0))
3000 {
3001 ret = canonicalize_constructor_val (unshare_expr (ctor), from_decl);
3002 ret = fold_unary (VIEW_CONVERT_EXPR, type, ret);
3003 if (ret)
3004 STRIP_NOPS (ret);
3005 return ret;
3006 }
3007 if (TREE_CODE (ctor) == STRING_CST)
3008 return fold_string_cst_ctor_reference (type, ctor, offset, size);
3009 if (TREE_CODE (ctor) == CONSTRUCTOR)
3010 {
3011
3012 if (TREE_CODE (TREE_TYPE (ctor)) == ARRAY_TYPE
3013 || TREE_CODE (TREE_TYPE (ctor)) == VECTOR_TYPE)
3014 return fold_array_ctor_reference (type, ctor, offset, size,
3015 from_decl);
3016 else
3017 return fold_nonarray_ctor_reference (type, ctor, offset, size,
3018 from_decl);
3019 }
3020
3021 return NULL_TREE;
3022 }
3023
3024 /* Return the tree representing the element referenced by T if T is an
3025 ARRAY_REF or COMPONENT_REF into constant aggregates valuezing SSA
3026 names using VALUEIZE. Return NULL_TREE otherwise. */
3027
3028 tree
3029 fold_const_aggregate_ref_1 (tree t, tree (*valueize) (tree))
3030 {
3031 tree ctor, idx, base;
3032 HOST_WIDE_INT offset, size, max_size;
3033 tree tem;
3034
3035 if (TREE_THIS_VOLATILE (t))
3036 return NULL_TREE;
3037
3038 if (TREE_CODE_CLASS (TREE_CODE (t)) == tcc_declaration)
3039 return get_symbol_constant_value (t);
3040
3041 tem = fold_read_from_constant_string (t);
3042 if (tem)
3043 return tem;
3044
3045 switch (TREE_CODE (t))
3046 {
3047 case ARRAY_REF:
3048 case ARRAY_RANGE_REF:
3049 /* Constant indexes are handled well by get_base_constructor.
3050 Only special case variable offsets.
3051 FIXME: This code can't handle nested references with variable indexes
3052 (they will be handled only by iteration of ccp). Perhaps we can bring
3053 get_ref_base_and_extent here and make it use a valueize callback. */
3054 if (TREE_CODE (TREE_OPERAND (t, 1)) == SSA_NAME
3055 && valueize
3056 && (idx = (*valueize) (TREE_OPERAND (t, 1)))
3057 && TREE_CODE (idx) == INTEGER_CST)
3058 {
3059 tree low_bound = array_ref_low_bound (t);
3060 tree unit_size = array_ref_element_size (t);
3061
3062 /* If the resulting bit-offset is constant, track it. */
3063 if (TREE_CODE (low_bound) == INTEGER_CST
3064 && tree_fits_uhwi_p (unit_size))
3065 {
3066 offset_int woffset
3067 = wi::sext (wi::to_offset (idx) - wi::to_offset (low_bound),
3068 TYPE_PRECISION (TREE_TYPE (idx)));
3069
3070 if (wi::fits_shwi_p (woffset))
3071 {
3072 offset = woffset.to_shwi ();
3073 /* TODO: This code seems wrong, multiply then check
3074 to see if it fits. */
3075 offset *= tree_to_uhwi (unit_size);
3076 offset *= BITS_PER_UNIT;
3077
3078 base = TREE_OPERAND (t, 0);
3079 ctor = get_base_constructor (base, &offset, valueize);
3080 /* Empty constructor. Always fold to 0. */
3081 if (ctor == error_mark_node)
3082 return build_zero_cst (TREE_TYPE (t));
3083 /* Out of bound array access. Value is undefined,
3084 but don't fold. */
3085 if (offset < 0)
3086 return NULL_TREE;
3087 /* We can not determine ctor. */
3088 if (!ctor)
3089 return NULL_TREE;
3090 return fold_ctor_reference (TREE_TYPE (t), ctor, offset,
3091 tree_to_uhwi (unit_size)
3092 * BITS_PER_UNIT,
3093 base);
3094 }
3095 }
3096 }
3097 /* Fallthru. */
3098
3099 case COMPONENT_REF:
3100 case BIT_FIELD_REF:
3101 case TARGET_MEM_REF:
3102 case MEM_REF:
3103 base = get_ref_base_and_extent (t, &offset, &size, &max_size);
3104 ctor = get_base_constructor (base, &offset, valueize);
3105
3106 /* Empty constructor. Always fold to 0. */
3107 if (ctor == error_mark_node)
3108 return build_zero_cst (TREE_TYPE (t));
3109 /* We do not know precise address. */
3110 if (max_size == -1 || max_size != size)
3111 return NULL_TREE;
3112 /* We can not determine ctor. */
3113 if (!ctor)
3114 return NULL_TREE;
3115
3116 /* Out of bound array access. Value is undefined, but don't fold. */
3117 if (offset < 0)
3118 return NULL_TREE;
3119
3120 return fold_ctor_reference (TREE_TYPE (t), ctor, offset, size,
3121 base);
3122
3123 case REALPART_EXPR:
3124 case IMAGPART_EXPR:
3125 {
3126 tree c = fold_const_aggregate_ref_1 (TREE_OPERAND (t, 0), valueize);
3127 if (c && TREE_CODE (c) == COMPLEX_CST)
3128 return fold_build1_loc (EXPR_LOCATION (t),
3129 TREE_CODE (t), TREE_TYPE (t), c);
3130 break;
3131 }
3132
3133 default:
3134 break;
3135 }
3136
3137 return NULL_TREE;
3138 }
3139
3140 tree
3141 fold_const_aggregate_ref (tree t)
3142 {
3143 return fold_const_aggregate_ref_1 (t, NULL);
3144 }
3145
3146 /* Return a declaration of a function which an OBJ_TYPE_REF references. TOKEN
3147 is integer form of OBJ_TYPE_REF_TOKEN of the reference expression.
3148 KNOWN_BINFO carries the binfo describing the true type of
3149 OBJ_TYPE_REF_OBJECT(REF). */
3150
3151 tree
3152 gimple_get_virt_method_for_binfo (HOST_WIDE_INT token, tree known_binfo)
3153 {
3154 unsigned HOST_WIDE_INT offset, size;
3155 tree v, fn, vtable, init;
3156
3157 vtable = v = BINFO_VTABLE (known_binfo);
3158 /* If there is no virtual methods table, leave the OBJ_TYPE_REF alone. */
3159 if (!v)
3160 return NULL_TREE;
3161
3162 if (TREE_CODE (v) == POINTER_PLUS_EXPR)
3163 {
3164 offset = tree_to_uhwi (TREE_OPERAND (v, 1)) * BITS_PER_UNIT;
3165 v = TREE_OPERAND (v, 0);
3166 }
3167 else
3168 offset = 0;
3169
3170 if (TREE_CODE (v) != ADDR_EXPR)
3171 return NULL_TREE;
3172 v = TREE_OPERAND (v, 0);
3173
3174 if (TREE_CODE (v) != VAR_DECL
3175 || !DECL_VIRTUAL_P (v))
3176 return NULL_TREE;
3177 init = ctor_for_folding (v);
3178
3179 /* The virtual tables should always be born with constructors.
3180 and we always should assume that they are avaialble for
3181 folding. At the moment we do not stream them in all cases,
3182 but it should never happen that ctor seem unreachable. */
3183 gcc_assert (init);
3184 if (init == error_mark_node)
3185 {
3186 gcc_assert (in_lto_p);
3187 return NULL_TREE;
3188 }
3189 gcc_checking_assert (TREE_CODE (TREE_TYPE (v)) == ARRAY_TYPE);
3190 size = tree_to_uhwi (TYPE_SIZE (TREE_TYPE (TREE_TYPE (v))));
3191 offset += token * size;
3192 fn = fold_ctor_reference (TREE_TYPE (TREE_TYPE (v)), init,
3193 offset, size, v);
3194 if (!fn || integer_zerop (fn))
3195 return NULL_TREE;
3196 gcc_assert (TREE_CODE (fn) == ADDR_EXPR
3197 || TREE_CODE (fn) == FDESC_EXPR);
3198 fn = TREE_OPERAND (fn, 0);
3199 gcc_assert (TREE_CODE (fn) == FUNCTION_DECL);
3200
3201 /* When cgraph node is missing and function is not public, we cannot
3202 devirtualize. This can happen in WHOPR when the actual method
3203 ends up in other partition, because we found devirtualization
3204 possibility too late. */
3205 if (!can_refer_decl_in_current_unit_p (fn, vtable))
3206 return NULL_TREE;
3207
3208 /* Make sure we create a cgraph node for functions we'll reference.
3209 They can be non-existent if the reference comes from an entry
3210 of an external vtable for example. */
3211 cgraph_get_create_node (fn);
3212
3213 return fn;
3214 }
3215
3216 /* Return true iff VAL is a gimple expression that is known to be
3217 non-negative. Restricted to floating-point inputs. */
3218
3219 bool
3220 gimple_val_nonnegative_real_p (tree val)
3221 {
3222 gimple def_stmt;
3223
3224 gcc_assert (val && SCALAR_FLOAT_TYPE_P (TREE_TYPE (val)));
3225
3226 /* Use existing logic for non-gimple trees. */
3227 if (tree_expr_nonnegative_p (val))
3228 return true;
3229
3230 if (TREE_CODE (val) != SSA_NAME)
3231 return false;
3232
3233 /* Currently we look only at the immediately defining statement
3234 to make this determination, since recursion on defining
3235 statements of operands can lead to quadratic behavior in the
3236 worst case. This is expected to catch almost all occurrences
3237 in practice. It would be possible to implement limited-depth
3238 recursion if important cases are lost. Alternatively, passes
3239 that need this information (such as the pow/powi lowering code
3240 in the cse_sincos pass) could be revised to provide it through
3241 dataflow propagation. */
3242
3243 def_stmt = SSA_NAME_DEF_STMT (val);
3244
3245 if (is_gimple_assign (def_stmt))
3246 {
3247 tree op0, op1;
3248
3249 /* See fold-const.c:tree_expr_nonnegative_p for additional
3250 cases that could be handled with recursion. */
3251
3252 switch (gimple_assign_rhs_code (def_stmt))
3253 {
3254 case ABS_EXPR:
3255 /* Always true for floating-point operands. */
3256 return true;
3257
3258 case MULT_EXPR:
3259 /* True if the two operands are identical (since we are
3260 restricted to floating-point inputs). */
3261 op0 = gimple_assign_rhs1 (def_stmt);
3262 op1 = gimple_assign_rhs2 (def_stmt);
3263
3264 if (op0 == op1
3265 || operand_equal_p (op0, op1, 0))
3266 return true;
3267
3268 default:
3269 return false;
3270 }
3271 }
3272 else if (is_gimple_call (def_stmt))
3273 {
3274 tree fndecl = gimple_call_fndecl (def_stmt);
3275 if (fndecl
3276 && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL)
3277 {
3278 tree arg1;
3279
3280 switch (DECL_FUNCTION_CODE (fndecl))
3281 {
3282 CASE_FLT_FN (BUILT_IN_ACOS):
3283 CASE_FLT_FN (BUILT_IN_ACOSH):
3284 CASE_FLT_FN (BUILT_IN_CABS):
3285 CASE_FLT_FN (BUILT_IN_COSH):
3286 CASE_FLT_FN (BUILT_IN_ERFC):
3287 CASE_FLT_FN (BUILT_IN_EXP):
3288 CASE_FLT_FN (BUILT_IN_EXP10):
3289 CASE_FLT_FN (BUILT_IN_EXP2):
3290 CASE_FLT_FN (BUILT_IN_FABS):
3291 CASE_FLT_FN (BUILT_IN_FDIM):
3292 CASE_FLT_FN (BUILT_IN_HYPOT):
3293 CASE_FLT_FN (BUILT_IN_POW10):
3294 return true;
3295
3296 CASE_FLT_FN (BUILT_IN_SQRT):
3297 /* sqrt(-0.0) is -0.0, and sqrt is not defined over other
3298 nonnegative inputs. */
3299 if (!HONOR_SIGNED_ZEROS (TYPE_MODE (TREE_TYPE (val))))
3300 return true;
3301
3302 break;
3303
3304 CASE_FLT_FN (BUILT_IN_POWI):
3305 /* True if the second argument is an even integer. */
3306 arg1 = gimple_call_arg (def_stmt, 1);
3307
3308 if (TREE_CODE (arg1) == INTEGER_CST
3309 && (TREE_INT_CST_LOW (arg1) & 1) == 0)
3310 return true;
3311
3312 break;
3313
3314 CASE_FLT_FN (BUILT_IN_POW):
3315 /* True if the second argument is an even integer-valued
3316 real. */
3317 arg1 = gimple_call_arg (def_stmt, 1);
3318
3319 if (TREE_CODE (arg1) == REAL_CST)
3320 {
3321 REAL_VALUE_TYPE c;
3322 HOST_WIDE_INT n;
3323
3324 c = TREE_REAL_CST (arg1);
3325 n = real_to_integer (&c);
3326
3327 if ((n & 1) == 0)
3328 {
3329 REAL_VALUE_TYPE cint;
3330 real_from_integer (&cint, VOIDmode, n, SIGNED);
3331 if (real_identical (&c, &cint))
3332 return true;
3333 }
3334 }
3335
3336 break;
3337
3338 default:
3339 return false;
3340 }
3341 }
3342 }
3343
3344 return false;
3345 }
3346
3347 /* Given a pointer value OP0, return a simplified version of an
3348 indirection through OP0, or NULL_TREE if no simplification is
3349 possible. Note that the resulting type may be different from
3350 the type pointed to in the sense that it is still compatible
3351 from the langhooks point of view. */
3352
3353 tree
3354 gimple_fold_indirect_ref (tree t)
3355 {
3356 tree ptype = TREE_TYPE (t), type = TREE_TYPE (ptype);
3357 tree sub = t;
3358 tree subtype;
3359
3360 STRIP_NOPS (sub);
3361 subtype = TREE_TYPE (sub);
3362 if (!POINTER_TYPE_P (subtype))
3363 return NULL_TREE;
3364
3365 if (TREE_CODE (sub) == ADDR_EXPR)
3366 {
3367 tree op = TREE_OPERAND (sub, 0);
3368 tree optype = TREE_TYPE (op);
3369 /* *&p => p */
3370 if (useless_type_conversion_p (type, optype))
3371 return op;
3372
3373 /* *(foo *)&fooarray => fooarray[0] */
3374 if (TREE_CODE (optype) == ARRAY_TYPE
3375 && TREE_CODE (TYPE_SIZE (TREE_TYPE (optype))) == INTEGER_CST
3376 && useless_type_conversion_p (type, TREE_TYPE (optype)))
3377 {
3378 tree type_domain = TYPE_DOMAIN (optype);
3379 tree min_val = size_zero_node;
3380 if (type_domain && TYPE_MIN_VALUE (type_domain))
3381 min_val = TYPE_MIN_VALUE (type_domain);
3382 if (TREE_CODE (min_val) == INTEGER_CST)
3383 return build4 (ARRAY_REF, type, op, min_val, NULL_TREE, NULL_TREE);
3384 }
3385 /* *(foo *)&complexfoo => __real__ complexfoo */
3386 else if (TREE_CODE (optype) == COMPLEX_TYPE
3387 && useless_type_conversion_p (type, TREE_TYPE (optype)))
3388 return fold_build1 (REALPART_EXPR, type, op);
3389 /* *(foo *)&vectorfoo => BIT_FIELD_REF<vectorfoo,...> */
3390 else if (TREE_CODE (optype) == VECTOR_TYPE
3391 && useless_type_conversion_p (type, TREE_TYPE (optype)))
3392 {
3393 tree part_width = TYPE_SIZE (type);
3394 tree index = bitsize_int (0);
3395 return fold_build3 (BIT_FIELD_REF, type, op, part_width, index);
3396 }
3397 }
3398
3399 /* *(p + CST) -> ... */
3400 if (TREE_CODE (sub) == POINTER_PLUS_EXPR
3401 && TREE_CODE (TREE_OPERAND (sub, 1)) == INTEGER_CST)
3402 {
3403 tree addr = TREE_OPERAND (sub, 0);
3404 tree off = TREE_OPERAND (sub, 1);
3405 tree addrtype;
3406
3407 STRIP_NOPS (addr);
3408 addrtype = TREE_TYPE (addr);
3409
3410 /* ((foo*)&vectorfoo)[1] -> BIT_FIELD_REF<vectorfoo,...> */
3411 if (TREE_CODE (addr) == ADDR_EXPR
3412 && TREE_CODE (TREE_TYPE (addrtype)) == VECTOR_TYPE
3413 && useless_type_conversion_p (type, TREE_TYPE (TREE_TYPE (addrtype)))
3414 && tree_fits_uhwi_p (off))
3415 {
3416 unsigned HOST_WIDE_INT offset = tree_to_uhwi (off);
3417 tree part_width = TYPE_SIZE (type);
3418 unsigned HOST_WIDE_INT part_widthi
3419 = tree_to_shwi (part_width) / BITS_PER_UNIT;
3420 unsigned HOST_WIDE_INT indexi = offset * BITS_PER_UNIT;
3421 tree index = bitsize_int (indexi);
3422 if (offset / part_widthi
3423 < TYPE_VECTOR_SUBPARTS (TREE_TYPE (addrtype)))
3424 return fold_build3 (BIT_FIELD_REF, type, TREE_OPERAND (addr, 0),
3425 part_width, index);
3426 }
3427
3428 /* ((foo*)&complexfoo)[1] -> __imag__ complexfoo */
3429 if (TREE_CODE (addr) == ADDR_EXPR
3430 && TREE_CODE (TREE_TYPE (addrtype)) == COMPLEX_TYPE
3431 && useless_type_conversion_p (type, TREE_TYPE (TREE_TYPE (addrtype))))
3432 {
3433 tree size = TYPE_SIZE_UNIT (type);
3434 if (tree_int_cst_equal (size, off))
3435 return fold_build1 (IMAGPART_EXPR, type, TREE_OPERAND (addr, 0));
3436 }
3437
3438 /* *(p + CST) -> MEM_REF <p, CST>. */
3439 if (TREE_CODE (addr) != ADDR_EXPR
3440 || DECL_P (TREE_OPERAND (addr, 0)))
3441 return fold_build2 (MEM_REF, type,
3442 addr,
3443 wide_int_to_tree (ptype, off));
3444 }
3445
3446 /* *(foo *)fooarrptr => (*fooarrptr)[0] */
3447 if (TREE_CODE (TREE_TYPE (subtype)) == ARRAY_TYPE
3448 && TREE_CODE (TYPE_SIZE (TREE_TYPE (TREE_TYPE (subtype)))) == INTEGER_CST
3449 && useless_type_conversion_p (type, TREE_TYPE (TREE_TYPE (subtype))))
3450 {
3451 tree type_domain;
3452 tree min_val = size_zero_node;
3453 tree osub = sub;
3454 sub = gimple_fold_indirect_ref (sub);
3455 if (! sub)
3456 sub = build1 (INDIRECT_REF, TREE_TYPE (subtype), osub);
3457 type_domain = TYPE_DOMAIN (TREE_TYPE (sub));
3458 if (type_domain && TYPE_MIN_VALUE (type_domain))
3459 min_val = TYPE_MIN_VALUE (type_domain);
3460 if (TREE_CODE (min_val) == INTEGER_CST)
3461 return build4 (ARRAY_REF, type, sub, min_val, NULL_TREE, NULL_TREE);
3462 }
3463
3464 return NULL_TREE;
3465 }