]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/gimple-range-fold.cc
Add relation_trio class for range-ops.
[thirdparty/gcc.git] / gcc / gimple-range-fold.cc
1 /* Code for GIMPLE range related routines.
2 Copyright (C) 2019-2022 Free Software Foundation, Inc.
3 Contributed by Andrew MacLeod <amacleod@redhat.com>
4 and Aldy Hernandez <aldyh@redhat.com>.
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3, or (at your option)
11 any later version.
12
13 GCC is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
21
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "backend.h"
26 #include "insn-codes.h"
27 #include "tree.h"
28 #include "gimple.h"
29 #include "ssa.h"
30 #include "gimple-pretty-print.h"
31 #include "optabs-tree.h"
32 #include "gimple-iterator.h"
33 #include "gimple-fold.h"
34 #include "wide-int.h"
35 #include "fold-const.h"
36 #include "case-cfn-macros.h"
37 #include "omp-general.h"
38 #include "cfgloop.h"
39 #include "tree-ssa-loop.h"
40 #include "tree-scalar-evolution.h"
41 #include "langhooks.h"
42 #include "vr-values.h"
43 #include "range.h"
44 #include "value-query.h"
45 #include "gimple-range-op.h"
46 #include "gimple-range.h"
47 // Construct a fur_source, and set the m_query field.
48
49 fur_source::fur_source (range_query *q)
50 {
51 if (q)
52 m_query = q;
53 else if (cfun)
54 m_query = get_range_query (cfun);
55 else
56 m_query = get_global_range_query ();
57 m_gori = NULL;
58 }
59
60 // Invoke range_of_expr on EXPR.
61
62 bool
63 fur_source::get_operand (vrange &r, tree expr)
64 {
65 return m_query->range_of_expr (r, expr);
66 }
67
68 // Evaluate EXPR for this stmt as a PHI argument on edge E. Use the current
69 // range_query to get the range on the edge.
70
71 bool
72 fur_source::get_phi_operand (vrange &r, tree expr, edge e)
73 {
74 return m_query->range_on_edge (r, e, expr);
75 }
76
77 // Default is no relation.
78
79 relation_kind
80 fur_source::query_relation (tree op1 ATTRIBUTE_UNUSED,
81 tree op2 ATTRIBUTE_UNUSED)
82 {
83 return VREL_VARYING;
84 }
85
86 // Default registers nothing.
87
88 void
89 fur_source::register_relation (gimple *s ATTRIBUTE_UNUSED,
90 relation_kind k ATTRIBUTE_UNUSED,
91 tree op1 ATTRIBUTE_UNUSED,
92 tree op2 ATTRIBUTE_UNUSED)
93 {
94 }
95
96 // Default registers nothing.
97
98 void
99 fur_source::register_relation (edge e ATTRIBUTE_UNUSED,
100 relation_kind k ATTRIBUTE_UNUSED,
101 tree op1 ATTRIBUTE_UNUSED,
102 tree op2 ATTRIBUTE_UNUSED)
103 {
104 }
105
106 // This version of fur_source will pick a range up off an edge.
107
108 class fur_edge : public fur_source
109 {
110 public:
111 fur_edge (edge e, range_query *q = NULL);
112 virtual bool get_operand (vrange &r, tree expr) override;
113 virtual bool get_phi_operand (vrange &r, tree expr, edge e) override;
114 private:
115 edge m_edge;
116 };
117
118 // Instantiate an edge based fur_source.
119
120 inline
121 fur_edge::fur_edge (edge e, range_query *q) : fur_source (q)
122 {
123 m_edge = e;
124 }
125
126 // Get the value of EXPR on edge m_edge.
127
128 bool
129 fur_edge::get_operand (vrange &r, tree expr)
130 {
131 return m_query->range_on_edge (r, m_edge, expr);
132 }
133
134 // Evaluate EXPR for this stmt as a PHI argument on edge E. Use the current
135 // range_query to get the range on the edge.
136
137 bool
138 fur_edge::get_phi_operand (vrange &r, tree expr, edge e)
139 {
140 // Edge to edge recalculations not supoprted yet, until we sort it out.
141 gcc_checking_assert (e == m_edge);
142 return m_query->range_on_edge (r, e, expr);
143 }
144
145 // Instantiate a stmt based fur_source.
146
147 fur_stmt::fur_stmt (gimple *s, range_query *q) : fur_source (q)
148 {
149 m_stmt = s;
150 }
151
152 // Retreive range of EXPR as it occurs as a use on stmt M_STMT.
153
154 bool
155 fur_stmt::get_operand (vrange &r, tree expr)
156 {
157 return m_query->range_of_expr (r, expr, m_stmt);
158 }
159
160 // Evaluate EXPR for this stmt as a PHI argument on edge E. Use the current
161 // range_query to get the range on the edge.
162
163 bool
164 fur_stmt::get_phi_operand (vrange &r, tree expr, edge e)
165 {
166 // Pick up the range of expr from edge E.
167 fur_edge e_src (e, m_query);
168 return e_src.get_operand (r, expr);
169 }
170
171 // Return relation based from m_stmt.
172
173 relation_kind
174 fur_stmt::query_relation (tree op1, tree op2)
175 {
176 return m_query->query_relation (m_stmt, op1, op2);
177 }
178
179 // Instantiate a stmt based fur_source with a GORI object.
180
181
182 fur_depend::fur_depend (gimple *s, gori_compute *gori, range_query *q)
183 : fur_stmt (s, q)
184 {
185 gcc_checking_assert (gori);
186 m_gori = gori;
187 // Set relations if there is an oracle in the range_query.
188 // This will enable registering of relationships as they are discovered.
189 m_oracle = q->oracle ();
190
191 }
192
193 // Register a relation on a stmt if there is an oracle.
194
195 void
196 fur_depend::register_relation (gimple *s, relation_kind k, tree op1, tree op2)
197 {
198 if (m_oracle)
199 m_oracle->register_stmt (s, k, op1, op2);
200 }
201
202 // Register a relation on an edge if there is an oracle.
203
204 void
205 fur_depend::register_relation (edge e, relation_kind k, tree op1, tree op2)
206 {
207 if (m_oracle)
208 m_oracle->register_edge (e, k, op1, op2);
209 }
210
211 // This version of fur_source will pick a range up from a list of ranges
212 // supplied by the caller.
213
214 class fur_list : public fur_source
215 {
216 public:
217 fur_list (vrange &r1);
218 fur_list (vrange &r1, vrange &r2);
219 fur_list (unsigned num, vrange **list);
220 virtual bool get_operand (vrange &r, tree expr) override;
221 virtual bool get_phi_operand (vrange &r, tree expr, edge e) override;
222 private:
223 vrange *m_local[2];
224 vrange **m_list;
225 unsigned m_index;
226 unsigned m_limit;
227 };
228
229 // One range supplied for unary operations.
230
231 fur_list::fur_list (vrange &r1) : fur_source (NULL)
232 {
233 m_list = m_local;
234 m_index = 0;
235 m_limit = 1;
236 m_local[0] = &r1;
237 }
238
239 // Two ranges supplied for binary operations.
240
241 fur_list::fur_list (vrange &r1, vrange &r2) : fur_source (NULL)
242 {
243 m_list = m_local;
244 m_index = 0;
245 m_limit = 2;
246 m_local[0] = &r1;
247 m_local[1] = &r2;
248 }
249
250 // Arbitrary number of ranges in a vector.
251
252 fur_list::fur_list (unsigned num, vrange **list) : fur_source (NULL)
253 {
254 m_list = list;
255 m_index = 0;
256 m_limit = num;
257 }
258
259 // Get the next operand from the vector, ensure types are compatible.
260
261 bool
262 fur_list::get_operand (vrange &r, tree expr)
263 {
264 if (m_index >= m_limit)
265 return m_query->range_of_expr (r, expr);
266 r = *m_list[m_index++];
267 gcc_checking_assert (range_compatible_p (TREE_TYPE (expr), r.type ()));
268 return true;
269 }
270
271 // This will simply pick the next operand from the vector.
272 bool
273 fur_list::get_phi_operand (vrange &r, tree expr, edge e ATTRIBUTE_UNUSED)
274 {
275 return get_operand (r, expr);
276 }
277
278 // Fold stmt S into range R using R1 as the first operand.
279
280 bool
281 fold_range (vrange &r, gimple *s, vrange &r1)
282 {
283 fold_using_range f;
284 fur_list src (r1);
285 return f.fold_stmt (r, s, src);
286 }
287
288 // Fold stmt S into range R using R1 and R2 as the first two operands.
289
290 bool
291 fold_range (vrange &r, gimple *s, vrange &r1, vrange &r2)
292 {
293 fold_using_range f;
294 fur_list src (r1, r2);
295 return f.fold_stmt (r, s, src);
296 }
297
298 // Fold stmt S into range R using NUM_ELEMENTS from VECTOR as the initial
299 // operands encountered.
300
301 bool
302 fold_range (vrange &r, gimple *s, unsigned num_elements, vrange **vector)
303 {
304 fold_using_range f;
305 fur_list src (num_elements, vector);
306 return f.fold_stmt (r, s, src);
307 }
308
309 // Fold stmt S into range R using range query Q.
310
311 bool
312 fold_range (vrange &r, gimple *s, range_query *q)
313 {
314 fold_using_range f;
315 fur_stmt src (s, q);
316 return f.fold_stmt (r, s, src);
317 }
318
319 // Recalculate stmt S into R using range query Q as if it were on edge ON_EDGE.
320
321 bool
322 fold_range (vrange &r, gimple *s, edge on_edge, range_query *q)
323 {
324 fold_using_range f;
325 fur_edge src (on_edge, q);
326 return f.fold_stmt (r, s, src);
327 }
328
329 // -------------------------------------------------------------------------
330
331 // Adjust the range for a pointer difference where the operands came
332 // from a memchr.
333 //
334 // This notices the following sequence:
335 //
336 // def = __builtin_memchr (arg, 0, sz)
337 // n = def - arg
338 //
339 // The range for N can be narrowed to [0, PTRDIFF_MAX - 1].
340
341 static void
342 adjust_pointer_diff_expr (irange &res, const gimple *diff_stmt)
343 {
344 tree op0 = gimple_assign_rhs1 (diff_stmt);
345 tree op1 = gimple_assign_rhs2 (diff_stmt);
346 tree op0_ptype = TREE_TYPE (TREE_TYPE (op0));
347 tree op1_ptype = TREE_TYPE (TREE_TYPE (op1));
348 gimple *call;
349
350 if (TREE_CODE (op0) == SSA_NAME
351 && TREE_CODE (op1) == SSA_NAME
352 && (call = SSA_NAME_DEF_STMT (op0))
353 && is_gimple_call (call)
354 && gimple_call_builtin_p (call, BUILT_IN_MEMCHR)
355 && TYPE_MODE (op0_ptype) == TYPE_MODE (char_type_node)
356 && TYPE_PRECISION (op0_ptype) == TYPE_PRECISION (char_type_node)
357 && TYPE_MODE (op1_ptype) == TYPE_MODE (char_type_node)
358 && TYPE_PRECISION (op1_ptype) == TYPE_PRECISION (char_type_node)
359 && gimple_call_builtin_p (call, BUILT_IN_MEMCHR)
360 && vrp_operand_equal_p (op1, gimple_call_arg (call, 0))
361 && integer_zerop (gimple_call_arg (call, 1)))
362 {
363 tree max = vrp_val_max (ptrdiff_type_node);
364 unsigned prec = TYPE_PRECISION (TREE_TYPE (max));
365 wide_int wmaxm1 = wi::to_wide (max, prec) - 1;
366 res.intersect (int_range<2> (TREE_TYPE (max), wi::zero (prec), wmaxm1));
367 }
368 }
369
370 // Adjust the range for an IMAGPART_EXPR.
371
372 static void
373 adjust_imagpart_expr (vrange &res, const gimple *stmt)
374 {
375 tree name = TREE_OPERAND (gimple_assign_rhs1 (stmt), 0);
376
377 if (TREE_CODE (name) != SSA_NAME || !SSA_NAME_DEF_STMT (name))
378 return;
379
380 gimple *def_stmt = SSA_NAME_DEF_STMT (name);
381 if (is_gimple_call (def_stmt) && gimple_call_internal_p (def_stmt))
382 {
383 switch (gimple_call_internal_fn (def_stmt))
384 {
385 case IFN_ADD_OVERFLOW:
386 case IFN_SUB_OVERFLOW:
387 case IFN_MUL_OVERFLOW:
388 case IFN_ATOMIC_COMPARE_EXCHANGE:
389 {
390 int_range<2> r;
391 r.set_varying (boolean_type_node);
392 tree type = TREE_TYPE (gimple_assign_lhs (stmt));
393 range_cast (r, type);
394 res.intersect (r);
395 }
396 default:
397 break;
398 }
399 return;
400 }
401 if (is_gimple_assign (def_stmt)
402 && gimple_assign_rhs_code (def_stmt) == COMPLEX_CST)
403 {
404 tree cst = gimple_assign_rhs1 (def_stmt);
405 if (TREE_CODE (cst) == COMPLEX_CST)
406 {
407 int_range<2> imag (TREE_IMAGPART (cst), TREE_IMAGPART (cst));
408 res.intersect (imag);
409 }
410 }
411 }
412
413 // Adjust the range for a REALPART_EXPR.
414
415 static void
416 adjust_realpart_expr (vrange &res, const gimple *stmt)
417 {
418 tree name = TREE_OPERAND (gimple_assign_rhs1 (stmt), 0);
419
420 if (TREE_CODE (name) != SSA_NAME)
421 return;
422
423 gimple *def_stmt = SSA_NAME_DEF_STMT (name);
424 if (!SSA_NAME_DEF_STMT (name))
425 return;
426
427 if (is_gimple_assign (def_stmt)
428 && gimple_assign_rhs_code (def_stmt) == COMPLEX_CST)
429 {
430 tree cst = gimple_assign_rhs1 (def_stmt);
431 if (TREE_CODE (cst) == COMPLEX_CST)
432 {
433 tree imag = TREE_REALPART (cst);
434 int_range<2> tmp (imag, imag);
435 res.intersect (tmp);
436 }
437 }
438 }
439
440 // This function looks for situations when walking the use/def chains
441 // may provide additonal contextual range information not exposed on
442 // this statement.
443
444 static void
445 gimple_range_adjustment (vrange &res, const gimple *stmt)
446 {
447 switch (gimple_expr_code (stmt))
448 {
449 case POINTER_DIFF_EXPR:
450 adjust_pointer_diff_expr (as_a <irange> (res), stmt);
451 return;
452
453 case IMAGPART_EXPR:
454 adjust_imagpart_expr (res, stmt);
455 return;
456
457 case REALPART_EXPR:
458 adjust_realpart_expr (res, stmt);
459 return;
460
461 default:
462 break;
463 }
464 }
465
466 // Calculate a range for statement S and return it in R. If NAME is provided it
467 // represents the SSA_NAME on the LHS of the statement. It is only required
468 // if there is more than one lhs/output. If a range cannot
469 // be calculated, return false.
470
471 bool
472 fold_using_range::fold_stmt (vrange &r, gimple *s, fur_source &src, tree name)
473 {
474 bool res = false;
475 // If name and S are specified, make sure it is an LHS of S.
476 gcc_checking_assert (!name || !gimple_get_lhs (s) ||
477 name == gimple_get_lhs (s));
478
479 if (!name)
480 name = gimple_get_lhs (s);
481
482 // Process addresses.
483 if (gimple_code (s) == GIMPLE_ASSIGN
484 && gimple_assign_rhs_code (s) == ADDR_EXPR)
485 return range_of_address (as_a <irange> (r), s, src);
486
487 gimple_range_op_handler handler (s);
488 if (handler)
489 res = range_of_range_op (r, handler, src);
490 else if (is_a<gphi *>(s))
491 res = range_of_phi (r, as_a<gphi *> (s), src);
492 else if (is_a<gcall *>(s))
493 res = range_of_call (r, as_a<gcall *> (s), src);
494 else if (is_a<gassign *> (s) && gimple_assign_rhs_code (s) == COND_EXPR)
495 res = range_of_cond_expr (r, as_a<gassign *> (s), src);
496
497 if (!res)
498 {
499 // If no name specified or range is unsupported, bail.
500 if (!name || !gimple_range_ssa_p (name))
501 return false;
502 // We don't understand the stmt, so return the global range.
503 gimple_range_global (r, name);
504 return true;
505 }
506
507 if (r.undefined_p ())
508 return true;
509
510 // We sometimes get compatible types copied from operands, make sure
511 // the correct type is being returned.
512 if (name && TREE_TYPE (name) != r.type ())
513 {
514 gcc_checking_assert (range_compatible_p (r.type (), TREE_TYPE (name)));
515 range_cast (r, TREE_TYPE (name));
516 }
517 return true;
518 }
519
520 // Calculate a range for range_op statement S and return it in R. If any
521 // If a range cannot be calculated, return false.
522
523 bool
524 fold_using_range::range_of_range_op (vrange &r,
525 gimple_range_op_handler &handler,
526 fur_source &src)
527 {
528 gcc_checking_assert (handler);
529 gimple *s = handler.stmt ();
530 tree type = gimple_range_type (s);
531 if (!type)
532 return false;
533
534 tree lhs = handler.lhs ();
535 tree op1 = handler.operand1 ();
536 tree op2 = handler.operand2 ();
537
538 // Certain types of builtin functions may have no arguments.
539 if (!op1)
540 {
541 Value_Range r1 (type);
542 if (!handler.fold_range (r, type, r1, r1))
543 r.set_varying (type);
544 return true;
545 }
546
547 Value_Range range1 (TREE_TYPE (op1));
548 Value_Range range2 (op2 ? TREE_TYPE (op2) : TREE_TYPE (op1));
549
550 if (src.get_operand (range1, op1))
551 {
552 if (!op2)
553 {
554 // Fold range, and register any dependency if available.
555 Value_Range r2 (type);
556 r2.set_varying (type);
557 if (!handler.fold_range (r, type, range1, r2))
558 r.set_varying (type);
559 if (lhs && gimple_range_ssa_p (op1))
560 {
561 if (src.gori ())
562 src.gori ()->register_dependency (lhs, op1);
563 relation_kind rel;
564 rel = handler.lhs_op1_relation (r, range1, range1);
565 if (rel != VREL_VARYING)
566 src.register_relation (s, rel, lhs, op1);
567 }
568 }
569 else if (src.get_operand (range2, op2))
570 {
571 relation_kind rel = src.query_relation (op1, op2);
572 if (dump_file && (dump_flags & TDF_DETAILS) && rel != VREL_VARYING)
573 {
574 fprintf (dump_file, " folding with relation ");
575 print_generic_expr (dump_file, op1, TDF_SLIM);
576 print_relation (dump_file, rel);
577 print_generic_expr (dump_file, op2, TDF_SLIM);
578 fputc ('\n', dump_file);
579 }
580 // Fold range, and register any dependency if available.
581 if (!handler.fold_range (r, type, range1, range2,
582 relation_trio::op1_op2 (rel)))
583 r.set_varying (type);
584 if (irange::supports_p (type))
585 relation_fold_and_or (as_a <irange> (r), s, src);
586 if (lhs)
587 {
588 if (src.gori ())
589 {
590 src.gori ()->register_dependency (lhs, op1);
591 src.gori ()->register_dependency (lhs, op2);
592 }
593 if (gimple_range_ssa_p (op1))
594 {
595 rel = handler.lhs_op1_relation (r, range1, range2, rel);
596 if (rel != VREL_VARYING)
597 src.register_relation (s, rel, lhs, op1);
598 }
599 if (gimple_range_ssa_p (op2))
600 {
601 rel = handler.lhs_op2_relation (r, range1, range2, rel);
602 if (rel != VREL_VARYING)
603 src.register_relation (s, rel, lhs, op2);
604 }
605 }
606 // Check for an existing BB, as we maybe asked to fold an
607 // artificial statement not in the CFG.
608 else if (is_a<gcond *> (s) && gimple_bb (s))
609 {
610 basic_block bb = gimple_bb (s);
611 edge e0 = EDGE_SUCC (bb, 0);
612 edge e1 = EDGE_SUCC (bb, 1);
613
614 if (!single_pred_p (e0->dest))
615 e0 = NULL;
616 if (!single_pred_p (e1->dest))
617 e1 = NULL;
618 src.register_outgoing_edges (as_a<gcond *> (s),
619 as_a <irange> (r), e0, e1);
620 }
621 }
622 else
623 r.set_varying (type);
624 }
625 else
626 r.set_varying (type);
627 // Make certain range-op adjustments that aren't handled any other way.
628 gimple_range_adjustment (r, s);
629 return true;
630 }
631
632 // Calculate the range of an assignment containing an ADDR_EXPR.
633 // Return the range in R.
634 // If a range cannot be calculated, set it to VARYING and return true.
635
636 bool
637 fold_using_range::range_of_address (irange &r, gimple *stmt, fur_source &src)
638 {
639 gcc_checking_assert (gimple_code (stmt) == GIMPLE_ASSIGN);
640 gcc_checking_assert (gimple_assign_rhs_code (stmt) == ADDR_EXPR);
641
642 bool strict_overflow_p;
643 tree expr = gimple_assign_rhs1 (stmt);
644 poly_int64 bitsize, bitpos;
645 tree offset;
646 machine_mode mode;
647 int unsignedp, reversep, volatilep;
648 tree base = get_inner_reference (TREE_OPERAND (expr, 0), &bitsize,
649 &bitpos, &offset, &mode, &unsignedp,
650 &reversep, &volatilep);
651
652
653 if (base != NULL_TREE
654 && TREE_CODE (base) == MEM_REF
655 && TREE_CODE (TREE_OPERAND (base, 0)) == SSA_NAME)
656 {
657 tree ssa = TREE_OPERAND (base, 0);
658 tree lhs = gimple_get_lhs (stmt);
659 if (lhs && gimple_range_ssa_p (ssa) && src.gori ())
660 src.gori ()->register_dependency (lhs, ssa);
661 src.get_operand (r, ssa);
662 range_cast (r, TREE_TYPE (gimple_assign_rhs1 (stmt)));
663
664 poly_offset_int off = 0;
665 bool off_cst = false;
666 if (offset == NULL_TREE || TREE_CODE (offset) == INTEGER_CST)
667 {
668 off = mem_ref_offset (base);
669 if (offset)
670 off += poly_offset_int::from (wi::to_poly_wide (offset),
671 SIGNED);
672 off <<= LOG2_BITS_PER_UNIT;
673 off += bitpos;
674 off_cst = true;
675 }
676 /* If &X->a is equal to X, the range of X is the result. */
677 if (off_cst && known_eq (off, 0))
678 return true;
679 else if (flag_delete_null_pointer_checks
680 && !TYPE_OVERFLOW_WRAPS (TREE_TYPE (expr)))
681 {
682 /* For -fdelete-null-pointer-checks -fno-wrapv-pointer we don't
683 allow going from non-NULL pointer to NULL. */
684 if (r.undefined_p () || !r.contains_p (build_zero_cst (r.type ())))
685 {
686 /* We could here instead adjust r by off >> LOG2_BITS_PER_UNIT
687 using POINTER_PLUS_EXPR if off_cst and just fall back to
688 this. */
689 r.set_nonzero (TREE_TYPE (gimple_assign_rhs1 (stmt)));
690 return true;
691 }
692 }
693 /* If MEM_REF has a "positive" offset, consider it non-NULL
694 always, for -fdelete-null-pointer-checks also "negative"
695 ones. Punt for unknown offsets (e.g. variable ones). */
696 if (!TYPE_OVERFLOW_WRAPS (TREE_TYPE (expr))
697 && off_cst
698 && known_ne (off, 0)
699 && (flag_delete_null_pointer_checks || known_gt (off, 0)))
700 {
701 r.set_nonzero (TREE_TYPE (gimple_assign_rhs1 (stmt)));
702 return true;
703 }
704 r.set_varying (TREE_TYPE (gimple_assign_rhs1 (stmt)));
705 return true;
706 }
707
708 // Handle "= &a".
709 if (tree_single_nonzero_warnv_p (expr, &strict_overflow_p))
710 {
711 r.set_nonzero (TREE_TYPE (gimple_assign_rhs1 (stmt)));
712 return true;
713 }
714
715 // Otherwise return varying.
716 r.set_varying (TREE_TYPE (gimple_assign_rhs1 (stmt)));
717 return true;
718 }
719
720 // Calculate a range for phi statement S and return it in R.
721 // If a range cannot be calculated, return false.
722
723 bool
724 fold_using_range::range_of_phi (vrange &r, gphi *phi, fur_source &src)
725 {
726 tree phi_def = gimple_phi_result (phi);
727 tree type = gimple_range_type (phi);
728 Value_Range arg_range (type);
729 Value_Range equiv_range (type);
730 unsigned x;
731
732 if (!type)
733 return false;
734
735 // Track if all executable arguments are the same.
736 tree single_arg = NULL_TREE;
737 bool seen_arg = false;
738
739 // Start with an empty range, unioning in each argument's range.
740 r.set_undefined ();
741 for (x = 0; x < gimple_phi_num_args (phi); x++)
742 {
743 tree arg = gimple_phi_arg_def (phi, x);
744 // An argument that is the same as the def provides no new range.
745 if (arg == phi_def)
746 continue;
747
748 edge e = gimple_phi_arg_edge (phi, x);
749
750 // Get the range of the argument on its edge.
751 src.get_phi_operand (arg_range, arg, e);
752
753 if (!arg_range.undefined_p ())
754 {
755 // Register potential dependencies for stale value tracking.
756 // Likewise, if the incoming PHI argument is equivalent to this
757 // PHI definition, it provides no new info. Accumulate these ranges
758 // in case all arguments are equivalences.
759 if (src.query ()->query_relation (e, arg, phi_def, false) == VREL_EQ)
760 equiv_range.union_(arg_range);
761 else
762 r.union_ (arg_range);
763
764 if (gimple_range_ssa_p (arg) && src.gori ())
765 src.gori ()->register_dependency (phi_def, arg);
766
767 // Track if all arguments are the same.
768 if (!seen_arg)
769 {
770 seen_arg = true;
771 single_arg = arg;
772 }
773 else if (single_arg != arg)
774 single_arg = NULL_TREE;
775 }
776
777 // Once the value reaches varying, stop looking.
778 if (r.varying_p () && single_arg == NULL_TREE)
779 break;
780 }
781
782 // If all arguments were equivalences, use the equivalence ranges as no
783 // arguments were processed.
784 if (r.undefined_p () && !equiv_range.undefined_p ())
785 r = equiv_range;
786
787 // If the PHI boils down to a single effective argument, look at it.
788 if (single_arg)
789 {
790 // Symbolic arguments are equivalences.
791 if (gimple_range_ssa_p (single_arg))
792 src.register_relation (phi, VREL_EQ, phi_def, single_arg);
793 else if (src.get_operand (arg_range, single_arg)
794 && arg_range.singleton_p ())
795 {
796 // Numerical arguments that are a constant can be returned as
797 // the constant. This can help fold later cases where even this
798 // constant might have been UNDEFINED via an unreachable edge.
799 r = arg_range;
800 return true;
801 }
802 }
803
804 // If SCEV is available, query if this PHI has any knonwn values.
805 if (scev_initialized_p ()
806 && !POINTER_TYPE_P (TREE_TYPE (phi_def)))
807 {
808 class loop *l = loop_containing_stmt (phi);
809 if (l && loop_outer (l))
810 {
811 Value_Range loop_range (type);
812 range_of_ssa_name_with_loop_info (loop_range, phi_def, l, phi, src);
813 if (!loop_range.varying_p ())
814 {
815 if (dump_file && (dump_flags & TDF_DETAILS))
816 {
817 fprintf (dump_file, " Loops range found for ");
818 print_generic_expr (dump_file, phi_def, TDF_SLIM);
819 fprintf (dump_file, ": ");
820 loop_range.dump (dump_file);
821 fprintf (dump_file, " and calculated range :");
822 r.dump (dump_file);
823 fprintf (dump_file, "\n");
824 }
825 r.intersect (loop_range);
826 }
827 }
828 }
829
830 return true;
831 }
832
833 // Calculate a range for call statement S and return it in R.
834 // If a range cannot be calculated, return false.
835
836 bool
837 fold_using_range::range_of_call (vrange &r, gcall *call, fur_source &)
838 {
839 tree type = gimple_range_type (call);
840 if (!type)
841 return false;
842
843 tree lhs = gimple_call_lhs (call);
844 bool strict_overflow_p;
845
846 if (gimple_stmt_nonnegative_warnv_p (call, &strict_overflow_p))
847 r.set_nonnegative (type);
848 else if (gimple_call_nonnull_result_p (call)
849 || gimple_call_nonnull_arg (call))
850 r.set_nonzero (type);
851 else
852 r.set_varying (type);
853
854 // If there is an LHS, intersect that with what is known.
855 if (lhs)
856 {
857 Value_Range def (TREE_TYPE (lhs));
858 gimple_range_global (def, lhs);
859 r.intersect (def);
860 }
861 return true;
862 }
863
864 // Calculate a range for COND_EXPR statement S and return it in R.
865 // If a range cannot be calculated, return false.
866
867 bool
868 fold_using_range::range_of_cond_expr (vrange &r, gassign *s, fur_source &src)
869 {
870 tree cond = gimple_assign_rhs1 (s);
871 tree op1 = gimple_assign_rhs2 (s);
872 tree op2 = gimple_assign_rhs3 (s);
873
874 tree type = gimple_range_type (s);
875 if (!type)
876 return false;
877
878 Value_Range range1 (TREE_TYPE (op1));
879 Value_Range range2 (TREE_TYPE (op2));
880 Value_Range cond_range (TREE_TYPE (cond));
881 gcc_checking_assert (gimple_assign_rhs_code (s) == COND_EXPR);
882 gcc_checking_assert (range_compatible_p (TREE_TYPE (op1), TREE_TYPE (op2)));
883 src.get_operand (cond_range, cond);
884 src.get_operand (range1, op1);
885 src.get_operand (range2, op2);
886
887 // Try to see if there is a dependence between the COND and either operand
888 if (src.gori ())
889 if (src.gori ()->condexpr_adjust (range1, range2, s, cond, op1, op2, src))
890 if (dump_file && (dump_flags & TDF_DETAILS))
891 {
892 fprintf (dump_file, "Possible COND_EXPR adjustment. Range op1 : ");
893 range1.dump(dump_file);
894 fprintf (dump_file, " and Range op2: ");
895 range2.dump(dump_file);
896 fprintf (dump_file, "\n");
897 }
898
899 // If the condition is known, choose the appropriate expression.
900 if (cond_range.singleton_p ())
901 {
902 // False, pick second operand.
903 if (cond_range.zero_p ())
904 r = range2;
905 else
906 r = range1;
907 }
908 else
909 {
910 r = range1;
911 r.union_ (range2);
912 }
913 gcc_checking_assert (r.undefined_p ()
914 || range_compatible_p (r.type (), type));
915 return true;
916 }
917
918 // Return the lower bound of R as a tree.
919
920 static inline tree
921 tree_lower_bound (const vrange &r, tree type)
922 {
923 if (is_a <irange> (r))
924 return wide_int_to_tree (type, as_a <irange> (r).lower_bound ());
925 // ?? Handle floats when they contain endpoints.
926 return NULL;
927 }
928
929 // Return the upper bound of R as a tree.
930
931 static inline tree
932 tree_upper_bound (const vrange &r, tree type)
933 {
934 if (is_a <irange> (r))
935 return wide_int_to_tree (type, as_a <irange> (r).upper_bound ());
936 // ?? Handle floats when they contain endpoints.
937 return NULL;
938 }
939
940 // If SCEV has any information about phi node NAME, return it as a range in R.
941
942 void
943 fold_using_range::range_of_ssa_name_with_loop_info (vrange &r, tree name,
944 class loop *l, gphi *phi,
945 fur_source &src)
946 {
947 gcc_checking_assert (TREE_CODE (name) == SSA_NAME);
948 tree min, max, type = TREE_TYPE (name);
949 if (bounds_of_var_in_loop (&min, &max, src.query (), l, phi, name))
950 {
951 if (!is_gimple_constant (min))
952 {
953 if (src.query ()->range_of_expr (r, min, phi) && !r.undefined_p ())
954 min = tree_lower_bound (r, type);
955 else
956 min = vrp_val_min (type);
957 }
958 if (!is_gimple_constant (max))
959 {
960 if (src.query ()->range_of_expr (r, max, phi) && !r.undefined_p ())
961 max = tree_upper_bound (r, type);
962 else
963 max = vrp_val_max (type);
964 }
965 if (min && max)
966 {
967 r.set (min, max);
968 return;
969 }
970 }
971 r.set_varying (type);
972 }
973
974 // -----------------------------------------------------------------------
975
976 // Check if an && or || expression can be folded based on relations. ie
977 // c_2 = a_6 > b_7
978 // c_3 = a_6 < b_7
979 // c_4 = c_2 && c_3
980 // c_2 and c_3 can never be true at the same time,
981 // Therefore c_4 can always resolve to false based purely on the relations.
982
983 void
984 fold_using_range::relation_fold_and_or (irange& lhs_range, gimple *s,
985 fur_source &src)
986 {
987 // No queries or already folded.
988 if (!src.gori () || !src.query ()->oracle () || lhs_range.singleton_p ())
989 return;
990
991 // Only care about AND and OR expressions.
992 enum tree_code code = gimple_expr_code (s);
993 bool is_and = false;
994 if (code == BIT_AND_EXPR || code == TRUTH_AND_EXPR)
995 is_and = true;
996 else if (code != BIT_IOR_EXPR && code != TRUTH_OR_EXPR)
997 return;
998
999 gimple_range_op_handler handler (s);
1000 tree lhs = handler.lhs ();
1001 tree ssa1 = gimple_range_ssa_p (handler.operand1 ());
1002 tree ssa2 = gimple_range_ssa_p (handler.operand2 ());
1003
1004 // Deal with || and && only when there is a full set of symbolics.
1005 if (!lhs || !ssa1 || !ssa2
1006 || (TREE_CODE (TREE_TYPE (lhs)) != BOOLEAN_TYPE)
1007 || (TREE_CODE (TREE_TYPE (ssa1)) != BOOLEAN_TYPE)
1008 || (TREE_CODE (TREE_TYPE (ssa2)) != BOOLEAN_TYPE))
1009 return;
1010
1011 // Now we know its a boolean AND or OR expression with boolean operands.
1012 // Ideally we search dependencies for common names, and see what pops out.
1013 // until then, simply try to resolve direct dependencies.
1014
1015 gimple *ssa1_stmt = SSA_NAME_DEF_STMT (ssa1);
1016 gimple *ssa2_stmt = SSA_NAME_DEF_STMT (ssa2);
1017
1018 gimple_range_op_handler handler1 (ssa1_stmt);
1019 gimple_range_op_handler handler2 (ssa2_stmt);
1020
1021 // If either handler is not present, no relation can be found.
1022 if (!handler1 || !handler2)
1023 return;
1024
1025 // Both stmts will need to have 2 ssa names in the stmt.
1026 tree ssa1_dep1 = gimple_range_ssa_p (handler1.operand1 ());
1027 tree ssa1_dep2 = gimple_range_ssa_p (handler1.operand2 ());
1028 tree ssa2_dep1 = gimple_range_ssa_p (handler2.operand1 ());
1029 tree ssa2_dep2 = gimple_range_ssa_p (handler2.operand2 ());
1030
1031 if (!ssa1_dep1 || !ssa1_dep2 || !ssa2_dep1 || !ssa2_dep2)
1032 return;
1033
1034 // Make sure they are the same dependencies, and detect the order of the
1035 // relationship.
1036 bool reverse_op2 = true;
1037 if (ssa1_dep1 == ssa2_dep1 && ssa1_dep2 == ssa2_dep2)
1038 reverse_op2 = false;
1039 else if (ssa1_dep1 != ssa2_dep2 || ssa1_dep2 != ssa2_dep1)
1040 return;
1041
1042 int_range<2> bool_one (boolean_true_node, boolean_true_node);
1043
1044 relation_kind relation1 = handler1.op1_op2_relation (bool_one);
1045 relation_kind relation2 = handler2.op1_op2_relation (bool_one);
1046 if (relation1 == VREL_VARYING || relation2 == VREL_VARYING)
1047 return;
1048
1049 if (reverse_op2)
1050 relation2 = relation_negate (relation2);
1051
1052 // x && y is false if the relation intersection of the true cases is NULL.
1053 if (is_and && relation_intersect (relation1, relation2) == VREL_UNDEFINED)
1054 lhs_range = int_range<2> (boolean_false_node, boolean_false_node);
1055 // x || y is true if the union of the true cases is NO-RELATION..
1056 // ie, one or the other being true covers the full range of possibilties.
1057 else if (!is_and && relation_union (relation1, relation2) == VREL_VARYING)
1058 lhs_range = bool_one;
1059 else
1060 return;
1061
1062 range_cast (lhs_range, TREE_TYPE (lhs));
1063 if (dump_file && (dump_flags & TDF_DETAILS))
1064 {
1065 fprintf (dump_file, " Relation adjustment: ");
1066 print_generic_expr (dump_file, ssa1, TDF_SLIM);
1067 fprintf (dump_file, " and ");
1068 print_generic_expr (dump_file, ssa2, TDF_SLIM);
1069 fprintf (dump_file, " combine to produce ");
1070 lhs_range.dump (dump_file);
1071 fputc ('\n', dump_file);
1072 }
1073
1074 return;
1075 }
1076
1077 // Register any outgoing edge relations from a conditional branch.
1078
1079 void
1080 fur_source::register_outgoing_edges (gcond *s, irange &lhs_range, edge e0, edge e1)
1081 {
1082 int_range<2> e0_range, e1_range;
1083 tree name;
1084 basic_block bb = gimple_bb (s);
1085
1086 gimple_range_op_handler handler (s);
1087 if (!handler)
1088 return;
1089
1090 if (e0)
1091 {
1092 // If this edge is never taken, ignore it.
1093 gcond_edge_range (e0_range, e0);
1094 e0_range.intersect (lhs_range);
1095 if (e0_range.undefined_p ())
1096 e0 = NULL;
1097 }
1098
1099 if (e1)
1100 {
1101 // If this edge is never taken, ignore it.
1102 gcond_edge_range (e1_range, e1);
1103 e1_range.intersect (lhs_range);
1104 if (e1_range.undefined_p ())
1105 e1 = NULL;
1106 }
1107
1108 if (!e0 && !e1)
1109 return;
1110
1111 // First, register the gcond itself. This will catch statements like
1112 // if (a_2 < b_5)
1113 tree ssa1 = gimple_range_ssa_p (handler.operand1 ());
1114 tree ssa2 = gimple_range_ssa_p (handler.operand2 ());
1115 if (ssa1 && ssa2)
1116 {
1117 if (e0)
1118 {
1119 relation_kind relation = handler.op1_op2_relation (e0_range);
1120 if (relation != VREL_VARYING)
1121 register_relation (e0, relation, ssa1, ssa2);
1122 }
1123 if (e1)
1124 {
1125 relation_kind relation = handler.op1_op2_relation (e1_range);
1126 if (relation != VREL_VARYING)
1127 register_relation (e1, relation, ssa1, ssa2);
1128 }
1129 }
1130
1131 // Outgoing relations of GORI exports require a gori engine.
1132 if (!gori ())
1133 return;
1134
1135 // Now look for other relations in the exports. This will find stmts
1136 // leading to the condition such as:
1137 // c_2 = a_4 < b_7
1138 // if (c_2)
1139 FOR_EACH_GORI_EXPORT_NAME (*(gori ()), bb, name)
1140 {
1141 if (TREE_CODE (TREE_TYPE (name)) != BOOLEAN_TYPE)
1142 continue;
1143 gimple *stmt = SSA_NAME_DEF_STMT (name);
1144 gimple_range_op_handler handler (stmt);
1145 if (!handler)
1146 continue;
1147 tree ssa1 = gimple_range_ssa_p (handler.operand1 ());
1148 tree ssa2 = gimple_range_ssa_p (handler.operand2 ());
1149 Value_Range r (TREE_TYPE (name));
1150 if (ssa1 && ssa2)
1151 {
1152 if (e0 && gori ()->outgoing_edge_range_p (r, e0, name, *m_query)
1153 && r.singleton_p ())
1154 {
1155 relation_kind relation = handler.op1_op2_relation (r);
1156 if (relation != VREL_VARYING)
1157 register_relation (e0, relation, ssa1, ssa2);
1158 }
1159 if (e1 && gori ()->outgoing_edge_range_p (r, e1, name, *m_query)
1160 && r.singleton_p ())
1161 {
1162 relation_kind relation = handler.op1_op2_relation (r);
1163 if (relation != VREL_VARYING)
1164 register_relation (e1, relation, ssa1, ssa2);
1165 }
1166 }
1167 }
1168 }