]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/gimple-range.cc
Ranger classes.
[thirdparty/gcc.git] / gcc / gimple-range.cc
1 /* Code for GIMPLE range related routines.
2 Copyright (C) 2019-2020 Free Software Foundation, Inc.
3 Contributed by Andrew MacLeod <amacleod@redhat.com>
4 and Aldy Hernandez <aldyh@redhat.com>.
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3, or (at your option)
11 any later version.
12
13 GCC is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
21
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "backend.h"
26 #include "insn-codes.h"
27 #include "rtl.h"
28 #include "tree.h"
29 #include "gimple.h"
30 #include "ssa.h"
31 #include "gimple-pretty-print.h"
32 #include "gimple-iterator.h"
33 #include "optabs-tree.h"
34 #include "gimple-fold.h"
35 #include "tree-cfg.h"
36 #include "fold-const.h"
37 #include "tree-cfg.h"
38 #include "wide-int.h"
39 #include "fold-const.h"
40 #include "case-cfn-macros.h"
41 #include "omp-general.h"
42 #include "cfgloop.h"
43 #include "tree-ssa-loop.h"
44 #include "tree-scalar-evolution.h"
45 #include "dbgcnt.h"
46 #include "alloc-pool.h"
47 #include "vr-values.h"
48 #include "gimple-range.h"
49
50
51 // Adjust the range for a pointer difference where the operands came
52 // from a memchr.
53 //
54 // This notices the following sequence:
55 //
56 // def = __builtin_memchr (arg, 0, sz)
57 // n = def - arg
58 //
59 // The range for N can be narrowed to [0, PTRDIFF_MAX - 1].
60
61 static void
62 adjust_pointer_diff_expr (irange &res, const gimple *diff_stmt)
63 {
64 tree op0 = gimple_assign_rhs1 (diff_stmt);
65 tree op1 = gimple_assign_rhs2 (diff_stmt);
66 tree op0_ptype = TREE_TYPE (TREE_TYPE (op0));
67 tree op1_ptype = TREE_TYPE (TREE_TYPE (op1));
68 gimple *call;
69
70 if (TREE_CODE (op0) == SSA_NAME
71 && TREE_CODE (op1) == SSA_NAME
72 && (call = SSA_NAME_DEF_STMT (op0))
73 && is_gimple_call (call)
74 && gimple_call_builtin_p (call, BUILT_IN_MEMCHR)
75 && TYPE_MODE (op0_ptype) == TYPE_MODE (char_type_node)
76 && TYPE_PRECISION (op0_ptype) == TYPE_PRECISION (char_type_node)
77 && TYPE_MODE (op1_ptype) == TYPE_MODE (char_type_node)
78 && TYPE_PRECISION (op1_ptype) == TYPE_PRECISION (char_type_node)
79 && gimple_call_builtin_p (call, BUILT_IN_MEMCHR)
80 && vrp_operand_equal_p (op1, gimple_call_arg (call, 0))
81 && integer_zerop (gimple_call_arg (call, 1)))
82 {
83 tree max = vrp_val_max (ptrdiff_type_node);
84 wide_int wmax = wi::to_wide (max, TYPE_PRECISION (TREE_TYPE (max)));
85 tree expr_type = gimple_expr_type (diff_stmt);
86 tree range_min = build_zero_cst (expr_type);
87 tree range_max = wide_int_to_tree (expr_type, wmax - 1);
88 int_range<2> r (range_min, range_max);
89 res.intersect (r);
90 }
91 }
92
93 // This function looks for situations when walking the use/def chains
94 // may provide additonal contextual range information not exposed on
95 // this statement. Like knowing the IMAGPART return value from a
96 // builtin function is a boolean result.
97
98 // We should rework how we're called, as we have an op_unknown entry
99 // for IMAGPART_EXPR and POINTER_DIFF_EXPR in range-ops just so this
100 // function gets called.
101
102 static void
103 gimple_range_adjustment (irange &res, const gimple *stmt)
104 {
105 switch (gimple_expr_code (stmt))
106 {
107 case POINTER_DIFF_EXPR:
108 adjust_pointer_diff_expr (res, stmt);
109 return;
110
111 case IMAGPART_EXPR:
112 {
113 tree name = TREE_OPERAND (gimple_assign_rhs1 (stmt), 0);
114 if (TREE_CODE (name) == SSA_NAME)
115 {
116 gimple *def_stmt = SSA_NAME_DEF_STMT (name);
117 if (def_stmt && is_gimple_call (def_stmt)
118 && gimple_call_internal_p (def_stmt))
119 {
120 switch (gimple_call_internal_fn (def_stmt))
121 {
122 case IFN_ADD_OVERFLOW:
123 case IFN_SUB_OVERFLOW:
124 case IFN_MUL_OVERFLOW:
125 case IFN_ATOMIC_COMPARE_EXCHANGE:
126 {
127 int_range<2> r;
128 r.set_varying (boolean_type_node);
129 tree type = TREE_TYPE (gimple_assign_lhs (stmt));
130 range_cast (r, type);
131 res.intersect (r);
132 }
133 default:
134 break;
135 }
136 }
137 }
138 break;
139 }
140
141 default:
142 break;
143 }
144 }
145
146 // Return a range in R for the tree EXPR. Return true if a range is
147 // representable.
148
149 bool
150 get_tree_range (irange &r, tree expr)
151 {
152 tree type;
153 if (TYPE_P (expr))
154 type = expr;
155 else
156 type = TREE_TYPE (expr);
157
158 // Return false if the type isn't suported.
159 if (!irange::supports_type_p (type))
160 return false;
161
162 switch (TREE_CODE (expr))
163 {
164 case INTEGER_CST:
165 r.set (expr, expr);
166 return true;
167
168 case SSA_NAME:
169 r = gimple_range_global (expr);
170 return true;
171
172 case ADDR_EXPR:
173 {
174 // Handle &var which can show up in phi arguments.
175 bool ov;
176 if (tree_single_nonzero_warnv_p (expr, &ov))
177 {
178 r = range_nonzero (type);
179 return true;
180 }
181 break;
182 }
183
184 default:
185 break;
186 }
187 r.set_varying (type);
188 return true;
189 }
190
191 // Fold this unary statement using R1 as operand1's range, returning
192 // the result in RES. Return false if the operation fails.
193
194 bool
195 gimple_range_fold (irange &res, const gimple *stmt, const irange &r1)
196 {
197 gcc_checking_assert (gimple_range_handler (stmt));
198
199 tree type = gimple_expr_type (stmt);
200 // Unary SSA operations require the LHS type as the second range.
201 int_range<2> r2 (type);
202
203 return gimple_range_fold (res, stmt, r1, r2);
204 }
205
206 // Fold this binary statement using R1 and R2 as the operands ranges,
207 // returning the result in RES. Return false if the operation fails.
208
209 bool
210 gimple_range_fold (irange &res, const gimple *stmt,
211 const irange &r1, const irange &r2)
212 {
213 gcc_checking_assert (gimple_range_handler (stmt));
214
215 gimple_range_handler (stmt)->fold_range (res, gimple_expr_type (stmt),
216 r1, r2);
217
218 // If there are any gimple lookups, do those now.
219 gimple_range_adjustment (res, stmt);
220 return true;
221 }
222
223 // Return the base of the RHS of an assignment.
224
225 tree
226 gimple_range_base_of_assignment (const gimple *stmt)
227 {
228 gcc_checking_assert (gimple_code (stmt) == GIMPLE_ASSIGN);
229 tree op1 = gimple_assign_rhs1 (stmt);
230 if (gimple_assign_rhs_code (stmt) == ADDR_EXPR)
231 return get_base_address (TREE_OPERAND (op1, 0));
232 return op1;
233 }
234
235 // Return the first operand of this statement if it is a valid operand
236 // supported by ranges, otherwise return NULL_TREE. Special case is
237 // &(SSA_NAME expr), return the SSA_NAME instead of the ADDR expr.
238
239 tree
240 gimple_range_operand1 (const gimple *stmt)
241 {
242 gcc_checking_assert (gimple_range_handler (stmt));
243
244 switch (gimple_code (stmt))
245 {
246 case GIMPLE_COND:
247 return gimple_cond_lhs (stmt);
248 case GIMPLE_ASSIGN:
249 {
250 tree base = gimple_range_base_of_assignment (stmt);
251 if (base && TREE_CODE (base) == MEM_REF)
252 {
253 // If the base address is an SSA_NAME, we return it
254 // here. This allows processing of the range of that
255 // name, while the rest of the expression is simply
256 // ignored. The code in range_ops will see the
257 // ADDR_EXPR and do the right thing.
258 tree ssa = TREE_OPERAND (base, 0);
259 if (TREE_CODE (ssa) == SSA_NAME)
260 return ssa;
261 }
262 return base;
263 }
264 default:
265 break;
266 }
267 return NULL;
268 }
269
270 // Return the second operand of statement STMT, otherwise return NULL_TREE.
271
272 tree
273 gimple_range_operand2 (const gimple *stmt)
274 {
275 gcc_checking_assert (gimple_range_handler (stmt));
276
277 switch (gimple_code (stmt))
278 {
279 case GIMPLE_COND:
280 return gimple_cond_rhs (stmt);
281 case GIMPLE_ASSIGN:
282 if (gimple_num_ops (stmt) >= 3)
283 return gimple_assign_rhs2 (stmt);
284 default:
285 break;
286 }
287 return NULL_TREE;
288 }
289
290 // Calculate what we can determine of the range of this unary
291 // statement's operand if the lhs of the expression has the range
292 // LHS_RANGE. Return false if nothing can be determined.
293
294 bool
295 gimple_range_calc_op1 (irange &r, const gimple *stmt, const irange &lhs_range)
296 {
297 gcc_checking_assert (gimple_num_ops (stmt) < 3);
298
299 // An empty range is viral.
300 tree type = TREE_TYPE (gimple_range_operand1 (stmt));
301 if (lhs_range.undefined_p ())
302 {
303 r.set_undefined ();
304 return true;
305 }
306 // Unary operations require the type of the first operand in the
307 // second range position.
308 int_range<2> type_range (type);
309 return gimple_range_handler (stmt)->op1_range (r, type, lhs_range,
310 type_range);
311 }
312
313 // Calculate what we can determine of the range of this statement's
314 // first operand if the lhs of the expression has the range LHS_RANGE
315 // and the second operand has the range OP2_RANGE. Return false if
316 // nothing can be determined.
317
318 bool
319 gimple_range_calc_op1 (irange &r, const gimple *stmt,
320 const irange &lhs_range, const irange &op2_range)
321 {
322 // Unary operation are allowed to pass a range in for second operand
323 // as there are often additional restrictions beyond the type which
324 // can be imposed. See operator_cast::op1_range().
325 tree type = TREE_TYPE (gimple_range_operand1 (stmt));
326 // An empty range is viral.
327 if (op2_range.undefined_p () || lhs_range.undefined_p ())
328 {
329 r.set_undefined ();
330 return true;
331 }
332 return gimple_range_handler (stmt)->op1_range (r, type, lhs_range,
333 op2_range);
334 }
335
336 // Calculate what we can determine of the range of this statement's
337 // second operand if the lhs of the expression has the range LHS_RANGE
338 // and the first operand has the range OP1_RANGE. Return false if
339 // nothing can be determined.
340
341 bool
342 gimple_range_calc_op2 (irange &r, const gimple *stmt,
343 const irange &lhs_range, const irange &op1_range)
344 {
345 tree type = TREE_TYPE (gimple_range_operand2 (stmt));
346 // An empty range is viral.
347 if (op1_range.undefined_p () || lhs_range.undefined_p ())
348 {
349 r.set_undefined ();
350 return true;
351 }
352 return gimple_range_handler (stmt)->op2_range (r, type, lhs_range,
353 op1_range);
354 }
355
356 // Calculate a range for statement S and return it in R. If NAME is provided it
357 // represents the SSA_NAME on the LHS of the statement. It is only required
358 // if there is more than one lhs/output. If a range cannot
359 // be calculated, return false.
360
361 bool
362 gimple_ranger::calc_stmt (irange &r, gimple *s, tree name)
363 {
364 bool res = false;
365 // If name is specified, make sure it is an LHS of S.
366 gcc_checking_assert (name ? SSA_NAME_DEF_STMT (name) == s : true);
367
368 if (gimple_range_handler (s))
369 res = range_of_range_op (r, s);
370 else if (is_a<gphi *>(s))
371 res = range_of_phi (r, as_a<gphi *> (s));
372 else if (is_a<gcall *>(s))
373 res = range_of_call (r, as_a<gcall *> (s));
374 else if (is_a<gassign *> (s) && gimple_assign_rhs_code (s) == COND_EXPR)
375 res = range_of_cond_expr (r, as_a<gassign *> (s));
376 else
377 {
378 // If no name is specified, try the expression kind.
379 if (!name)
380 {
381 tree t = gimple_expr_type (s);
382 if (!irange::supports_type_p (t))
383 return false;
384 r.set_varying (t);
385 return true;
386 }
387 // We don't understand the stmt, so return the global range.
388 r = gimple_range_global (name);
389 return true;
390 }
391 if (res)
392 {
393 if (r.undefined_p ())
394 return true;
395 if (name && TREE_TYPE (name) != r.type ())
396 range_cast (r, TREE_TYPE (name));
397 return true;
398 }
399 return false;
400 }
401
402 // Calculate a range for range_op statement S and return it in R. If any
403 // If a range cannot be calculated, return false.
404
405 bool
406 gimple_ranger::range_of_range_op (irange &r, gimple *s)
407 {
408 int_range_max range1, range2;
409 tree type = gimple_expr_type (s);
410 gcc_checking_assert (irange::supports_type_p (type));
411
412 tree op1 = gimple_range_operand1 (s);
413 tree op2 = gimple_range_operand2 (s);
414
415 if (range_of_non_trivial_assignment (r, s))
416 return true;
417
418 if (range_of_expr (range1, op1, s))
419 {
420 if (!op2)
421 return gimple_range_fold (r, s, range1);
422
423 if (range_of_expr (range2, op2, s))
424 return gimple_range_fold (r, s, range1, range2);
425 }
426 r.set_varying (type);
427 return true;
428 }
429
430 // Calculate the range of a non-trivial assignment. That is, is one
431 // inolving arithmetic on an SSA name (for example, an ADDR_EXPR).
432 // Return the range in R.
433 //
434 // If a range cannot be calculated, return false.
435
436 bool
437 gimple_ranger::range_of_non_trivial_assignment (irange &r, gimple *stmt)
438 {
439 if (gimple_code (stmt) != GIMPLE_ASSIGN)
440 return false;
441
442 tree base = gimple_range_base_of_assignment (stmt);
443 if (base && TREE_CODE (base) == MEM_REF
444 && TREE_CODE (TREE_OPERAND (base, 0)) == SSA_NAME)
445 {
446 int_range_max range1;
447 tree ssa = TREE_OPERAND (base, 0);
448 if (range_of_expr (range1, ssa, stmt))
449 {
450 tree type = TREE_TYPE (ssa);
451 range_operator *op = range_op_handler (POINTER_PLUS_EXPR, type);
452 int_range<2> offset (TREE_OPERAND (base, 1), TREE_OPERAND (base, 1));
453 op->fold_range (r, type, range1, offset);
454 return true;
455 }
456 }
457 return false;
458 }
459
460 // Calculate a range for phi statement S and return it in R.
461 // If a range cannot be calculated, return false.
462
463 bool
464 gimple_ranger::range_of_phi (irange &r, gphi *phi)
465 {
466 tree phi_def = gimple_phi_result (phi);
467 tree type = TREE_TYPE (phi_def);
468 int_range_max arg_range;
469 unsigned x;
470
471 if (!irange::supports_type_p (type))
472 return false;
473
474 // Start with an empty range, unioning in each argument's range.
475 r.set_undefined ();
476 for (x = 0; x < gimple_phi_num_args (phi); x++)
477 {
478 tree arg = gimple_phi_arg_def (phi, x);
479 edge e = gimple_phi_arg_edge (phi, x);
480
481 range_on_edge (arg_range, e, arg);
482 r.union_ (arg_range);
483 // Once the value reaches varying, stop looking.
484 if (r.varying_p ())
485 break;
486 }
487
488 // If SCEV is available, query if this PHI has any knonwn values.
489 if (scev_initialized_p () && !POINTER_TYPE_P (TREE_TYPE (phi_def)))
490 {
491 value_range loop_range;
492 class loop *l = loop_containing_stmt (phi);
493 if (l)
494 {
495 range_of_ssa_name_with_loop_info (loop_range, phi_def, l, phi);
496 if (!loop_range.varying_p ())
497 {
498 if (dump_file && (dump_flags & TDF_DETAILS))
499 {
500 fprintf (dump_file, " Loops range found for ");
501 print_generic_expr (dump_file, phi_def, TDF_SLIM);
502 fprintf (dump_file, ": ");
503 loop_range.dump (dump_file);
504 fprintf (dump_file, " and calculated range :");
505 r.dump (dump_file);
506 fprintf (dump_file, "\n");
507 }
508 r.intersect (loop_range);
509 }
510 }
511 }
512
513 return true;
514 }
515
516 // Calculate a range for call statement S and return it in R.
517 // If a range cannot be calculated, return false.
518
519 bool
520 gimple_ranger::range_of_call (irange &r, gcall *call)
521 {
522 tree type = gimple_call_return_type (call);
523 tree lhs = gimple_call_lhs (call);
524 bool strict_overflow_p;
525
526 if (!irange::supports_type_p (type))
527 return false;
528
529 if (range_of_builtin_call (r, call))
530 ;
531 else if (gimple_stmt_nonnegative_warnv_p (call, &strict_overflow_p))
532 r.set (build_int_cst (type, 0), TYPE_MAX_VALUE (type));
533 else if (gimple_call_nonnull_result_p (call)
534 || gimple_call_nonnull_arg (call))
535 r = range_nonzero (type);
536 else
537 r.set_varying (type);
538
539 // If there is an LHS, intersect that with what is known.
540 if (lhs)
541 {
542 value_range def;
543 def = gimple_range_global (lhs);
544 r.intersect (def);
545 }
546 return true;
547 }
548
549
550 void
551 gimple_ranger::range_of_builtin_ubsan_call (irange &r, gcall *call,
552 tree_code code)
553 {
554 gcc_checking_assert (code == PLUS_EXPR || code == MINUS_EXPR
555 || code == MULT_EXPR);
556 tree type = gimple_call_return_type (call);
557 range_operator *op = range_op_handler (code, type);
558 gcc_checking_assert (op);
559 int_range_max ir0, ir1;
560 tree arg0 = gimple_call_arg (call, 0);
561 tree arg1 = gimple_call_arg (call, 1);
562 gcc_assert (range_of_expr (ir0, arg0, call));
563 gcc_assert (range_of_expr (ir1, arg1, call));
564
565 bool saved_flag_wrapv = flag_wrapv;
566 // Pretend the arithmetic is wrapping. If there is any overflow,
567 // we'll complain, but will actually do wrapping operation.
568 flag_wrapv = 1;
569 op->fold_range (r, type, ir0, ir1);
570 flag_wrapv = saved_flag_wrapv;
571
572 // If for both arguments vrp_valueize returned non-NULL, this should
573 // have been already folded and if not, it wasn't folded because of
574 // overflow. Avoid removing the UBSAN_CHECK_* calls in that case.
575 if (r.singleton_p ())
576 r.set_varying (type);
577 }
578
579
580 bool
581 gimple_ranger::range_of_builtin_call (irange &r, gcall *call)
582 {
583 combined_fn func = gimple_call_combined_fn (call);
584 if (func == CFN_LAST)
585 return false;
586
587 tree type = gimple_call_return_type (call);
588 tree arg;
589 int mini, maxi, zerov, prec;
590 scalar_int_mode mode;
591
592 switch (func)
593 {
594 case CFN_BUILT_IN_CONSTANT_P:
595 if (cfun->after_inlining)
596 {
597 r.set_zero (type);
598 // r.equiv_clear ();
599 return true;
600 }
601 arg = gimple_call_arg (call, 0);
602 if (range_of_expr (r, arg, call) && r.singleton_p ())
603 {
604 r.set (build_one_cst (type), build_one_cst (type));
605 return true;
606 }
607 break;
608
609 CASE_CFN_FFS:
610 CASE_CFN_POPCOUNT:
611 // __builtin_ffs* and __builtin_popcount* return [0, prec].
612 arg = gimple_call_arg (call, 0);
613 prec = TYPE_PRECISION (TREE_TYPE (arg));
614 mini = 0;
615 maxi = prec;
616 gcc_assert (range_of_expr (r, arg, call));
617 // If arg is non-zero, then ffs or popcount are non-zero.
618 if (!range_includes_zero_p (&r))
619 mini = 1;
620 // If some high bits are known to be zero, decrease the maximum.
621 if (!r.undefined_p ())
622 {
623 wide_int max = r.upper_bound ();
624 maxi = wi::floor_log2 (max) + 1;
625 }
626 r.set (build_int_cst (type, mini), build_int_cst (type, maxi));
627 return true;
628
629 CASE_CFN_PARITY:
630 r.set (build_zero_cst (type), build_one_cst (type));
631 return true;
632
633 CASE_CFN_CLZ:
634 // __builtin_c[lt]z* return [0, prec-1], except when the
635 // argument is 0, but that is undefined behavior.
636 //
637 // On many targets where the CLZ RTL or optab value is defined
638 // for 0, the value is prec, so include that in the range by
639 // default.
640 arg = gimple_call_arg (call, 0);
641 prec = TYPE_PRECISION (TREE_TYPE (arg));
642 mini = 0;
643 maxi = prec;
644 mode = SCALAR_INT_TYPE_MODE (TREE_TYPE (arg));
645 if (optab_handler (clz_optab, mode) != CODE_FOR_nothing
646 && CLZ_DEFINED_VALUE_AT_ZERO (mode, zerov)
647 // Only handle the single common value.
648 && zerov != prec)
649 // Magic value to give up, unless we can prove arg is non-zero.
650 mini = -2;
651
652 gcc_assert (range_of_expr (r, arg, call));
653 // From clz of minimum we can compute result maximum.
654 if (r.constant_p ())
655 {
656 maxi = prec - 1 - wi::floor_log2 (r.lower_bound ());
657 if (maxi != prec)
658 mini = 0;
659 }
660 else if (!range_includes_zero_p (&r))
661 {
662 maxi = prec - 1;
663 mini = 0;
664 }
665 if (mini == -2)
666 break;
667 // From clz of maximum we can compute result minimum.
668 if (r.constant_p ())
669 {
670 mini = prec - 1 - wi::floor_log2 (r.upper_bound ());
671 if (mini == prec)
672 break;
673 }
674 if (mini == -2)
675 break;
676 r.set (build_int_cst (type, mini), build_int_cst (type, maxi));
677 return true;
678
679 CASE_CFN_CTZ:
680 // __builtin_ctz* return [0, prec-1], except for when the
681 // argument is 0, but that is undefined behavior.
682 //
683 // If there is a ctz optab for this mode and
684 // CTZ_DEFINED_VALUE_AT_ZERO, include that in the range,
685 // otherwise just assume 0 won't be seen.
686 arg = gimple_call_arg (call, 0);
687 prec = TYPE_PRECISION (TREE_TYPE (arg));
688 mini = 0;
689 maxi = prec - 1;
690 mode = SCALAR_INT_TYPE_MODE (TREE_TYPE (arg));
691 if (optab_handler (ctz_optab, mode) != CODE_FOR_nothing
692 && CTZ_DEFINED_VALUE_AT_ZERO (mode, zerov))
693 {
694 // Handle only the two common values.
695 if (zerov == -1)
696 mini = -1;
697 else if (zerov == prec)
698 maxi = prec;
699 else
700 // Magic value to give up, unless we can prove arg is non-zero.
701 mini = -2;
702 }
703 gcc_assert (range_of_expr (r, arg, call));
704 if (!r.undefined_p ())
705 {
706 if (r.lower_bound () != 0)
707 {
708 mini = 0;
709 maxi = prec - 1;
710 }
711 // If some high bits are known to be zero, we can decrease
712 // the maximum.
713 wide_int max = r.upper_bound ();
714 if (max == 0)
715 break;
716 maxi = wi::floor_log2 (max);
717 }
718 if (mini == -2)
719 break;
720 r.set (build_int_cst (type, mini), build_int_cst (type, maxi));
721 return true;
722
723 CASE_CFN_CLRSB:
724 arg = gimple_call_arg (call, 0);
725 prec = TYPE_PRECISION (TREE_TYPE (arg));
726 r.set (build_int_cst (type, 0), build_int_cst (type, prec - 1));
727 return true;
728 case CFN_UBSAN_CHECK_ADD:
729 range_of_builtin_ubsan_call (r, call, PLUS_EXPR);
730 return true;
731 case CFN_UBSAN_CHECK_SUB:
732 range_of_builtin_ubsan_call (r, call, MINUS_EXPR);
733 return true;
734 case CFN_UBSAN_CHECK_MUL:
735 range_of_builtin_ubsan_call (r, call, MULT_EXPR);
736 return true;
737
738 case CFN_GOACC_DIM_SIZE:
739 case CFN_GOACC_DIM_POS:
740 // Optimizing these two internal functions helps the loop
741 // optimizer eliminate outer comparisons. Size is [1,N]
742 // and pos is [0,N-1].
743 {
744 bool is_pos = func == CFN_GOACC_DIM_POS;
745 int axis = oacc_get_ifn_dim_arg (call);
746 int size = oacc_get_fn_dim_size (current_function_decl, axis);
747 if (!size)
748 // If it's dynamic, the backend might know a hardware limitation.
749 size = targetm.goacc.dim_limit (axis);
750
751 r.set (build_int_cst (type, is_pos ? 0 : 1),
752 size
753 ? build_int_cst (type, size - is_pos) : vrp_val_max (type));
754 return true;
755 }
756
757 case CFN_BUILT_IN_STRLEN:
758 if (tree lhs = gimple_call_lhs (call))
759 if (ptrdiff_type_node
760 && (TYPE_PRECISION (ptrdiff_type_node)
761 == TYPE_PRECISION (TREE_TYPE (lhs))))
762 {
763 tree type = TREE_TYPE (lhs);
764 tree max = vrp_val_max (ptrdiff_type_node);
765 wide_int wmax
766 = wi::to_wide (max, TYPE_PRECISION (TREE_TYPE (max)));
767 tree range_min = build_zero_cst (type);
768 // To account for the terminating NULL, the maximum length
769 // is one less than the maximum array size, which in turn
770 // is one less than PTRDIFF_MAX (or SIZE_MAX where it's
771 // smaller than the former type).
772 // FIXME: Use max_object_size() - 1 here.
773 tree range_max = wide_int_to_tree (type, wmax - 2);
774 r.set (range_min, range_max);
775 return true;
776 }
777 break;
778 default:
779 break;
780 }
781 return false;
782 }
783
784
785
786 // Calculate a range for COND_EXPR statement S and return it in R.
787 // If a range cannot be calculated, return false.
788
789 bool
790 gimple_ranger::range_of_cond_expr (irange &r, gassign *s)
791 {
792 int_range_max cond_range, range1, range2;
793 tree cond = gimple_assign_rhs1 (s);
794 tree op1 = gimple_assign_rhs2 (s);
795 tree op2 = gimple_assign_rhs3 (s);
796
797 gcc_checking_assert (gimple_assign_rhs_code (s) == COND_EXPR);
798 gcc_checking_assert (useless_type_conversion_p (TREE_TYPE (op1),
799 TREE_TYPE (op2)));
800 if (!irange::supports_type_p (TREE_TYPE (op1)))
801 return false;
802
803 gcc_assert (range_of_expr (cond_range, cond, s));
804 gcc_assert (range_of_expr (range1, op1, s));
805 gcc_assert (range_of_expr (range2, op2, s));
806
807 // If the condition is known, choose the appropriate expression.
808 if (cond_range.singleton_p ())
809 {
810 // False, pick second operand.
811 if (cond_range.zero_p ())
812 r = range2;
813 else
814 r = range1;
815 }
816 else
817 {
818 r = range1;
819 r.union_ (range2);
820 }
821 return true;
822 }
823
824 bool
825 gimple_ranger::range_of_expr (irange &r, tree expr, gimple *stmt)
826 {
827 if (!gimple_range_ssa_p (expr))
828 return get_tree_range (r, expr);
829
830 // If there is no statement, just get the global value.
831 if (!stmt)
832 {
833 if (!m_cache.m_globals.get_global_range (r, expr))
834 r = gimple_range_global (expr);
835 return true;
836 }
837
838 basic_block bb = gimple_bb (stmt);
839 gimple *def_stmt = SSA_NAME_DEF_STMT (expr);
840
841 // If name is defined in this block, try to get an range from S.
842 if (def_stmt && gimple_bb (def_stmt) == bb)
843 gcc_assert (range_of_stmt (r, def_stmt, expr));
844 else
845 // Otherwise OP comes from outside this block, use range on entry.
846 range_on_entry (r, bb, expr);
847
848 // No range yet, see if there is a dereference in the block.
849 // We don't care if it's between the def and a use within a block
850 // because the entire block must be executed anyway.
851 // FIXME:?? For non-call exceptions we could have a statement throw
852 // which causes an early block exit.
853 // in which case we may need to walk from S back to the def/top of block
854 // to make sure the deref happens between S and there before claiming
855 // there is a deref. Punt for now.
856 if (!cfun->can_throw_non_call_exceptions && r.varying_p () &&
857 m_cache.m_non_null.non_null_deref_p (expr, bb))
858 r = range_nonzero (TREE_TYPE (expr));
859
860 return true;
861 }
862
863 // Return the range of NAME on entry to block BB in R.
864
865 void
866 gimple_ranger::range_on_entry (irange &r, basic_block bb, tree name)
867 {
868 int_range_max entry_range;
869 gcc_checking_assert (gimple_range_ssa_p (name));
870
871 // Start with any known range
872 gcc_assert (range_of_stmt (r, SSA_NAME_DEF_STMT (name), name));
873
874 // Now see if there is any on_entry value which may refine it.
875 if (m_cache.block_range (entry_range, bb, name))
876 r.intersect (entry_range);
877 }
878
879 // Calculate the range for NAME at the end of block BB and return it in R.
880 // Return false if no range can be calculated.
881
882 void
883 gimple_ranger::range_on_exit (irange &r, basic_block bb, tree name)
884 {
885 // on-exit from the exit block?
886 gcc_checking_assert (bb != EXIT_BLOCK_PTR_FOR_FN (cfun));
887
888 gimple *s = last_stmt (bb);
889 // If there is no statement in the block and this isn't the entry
890 // block, go get the range_on_entry for this block. For the entry
891 // block, a NULL stmt will return the global value for NAME.
892 if (!s && bb != ENTRY_BLOCK_PTR_FOR_FN (cfun))
893 range_on_entry (r, bb, name);
894 else
895 gcc_assert (range_of_expr (r, name, s));
896 gcc_checking_assert (r.undefined_p ()
897 || types_compatible_p (r.type(), TREE_TYPE (name)));
898 }
899
900 // Calculate a range for NAME on edge E and return it in R.
901
902 bool
903 gimple_ranger::range_on_edge (irange &r, edge e, tree name)
904 {
905 int_range_max edge_range;
906 gcc_checking_assert (irange::supports_type_p (TREE_TYPE (name)));
907
908 // PHI arguments can be constants, catch these here.
909 if (!gimple_range_ssa_p (name))
910 {
911 gcc_assert (range_of_expr (r, name));
912 return true;
913 }
914
915 range_on_exit (r, e->src, name);
916 gcc_checking_assert (r.undefined_p ()
917 || types_compatible_p (r.type(), TREE_TYPE (name)));
918
919 // Check to see if NAME is defined on edge e.
920 if (m_cache.outgoing_edge_range_p (edge_range, e, name))
921 r.intersect (edge_range);
922
923 return true;
924 }
925
926 // Calculate a range for statement S and return it in R. If NAME is
927 // provided it represents the SSA_NAME on the LHS of the statement.
928 // It is only required if there is more than one lhs/output. Check
929 // the global cache for NAME first to see if the evaluation can be
930 // avoided. If a range cannot be calculated, return false.
931
932 bool
933 gimple_ranger::range_of_stmt (irange &r, gimple *s, tree name)
934 {
935 // If no name, simply call the base routine.
936 if (!name)
937 name = gimple_get_lhs (s);
938
939 if (!name)
940 return calc_stmt (r, s, NULL_TREE);
941
942 gcc_checking_assert (TREE_CODE (name) == SSA_NAME &&
943 irange::supports_type_p (TREE_TYPE (name)));
944
945 // If this STMT has already been processed, return that value.
946 if (m_cache.m_globals.get_global_range (r, name))
947 return true;
948 // Avoid infinite recursion by initializing global cache
949 int_range_max tmp = gimple_range_global (name);
950 m_cache.m_globals.set_global_range (name, tmp);
951
952 gcc_assert (calc_stmt (r, s, name));
953
954 if (is_a<gphi *> (s))
955 r.intersect (tmp);
956 m_cache.m_globals.set_global_range (name, r);
957 return true;
958 }
959
960 // This routine will export whatever global ranges are known to GCC
961 // SSA_RANGE_NAME_INFO fields.
962
963 void
964 gimple_ranger::export_global_ranges ()
965 {
966 unsigned x;
967 int_range_max r;
968 if (dump_file)
969 {
970 fprintf (dump_file, "Exported global range table\n");
971 fprintf (dump_file, "===========================\n");
972 }
973
974 for ( x = 1; x < num_ssa_names; x++)
975 {
976 tree name = ssa_name (x);
977 if (name && !SSA_NAME_IN_FREE_LIST (name)
978 && gimple_range_ssa_p (name)
979 && m_cache.m_globals.get_global_range (r, name)
980 && !r.varying_p())
981 {
982 // Make sure the new range is a subset of the old range.
983 int_range_max old_range;
984 old_range = gimple_range_global (name);
985 old_range.intersect (r);
986 /* Disable this while we fix tree-ssa/pr61743-2.c. */
987 //gcc_checking_assert (old_range == r);
988
989 // WTF? Can't write non-null pointer ranges?? stupid set_range_info!
990 if (!POINTER_TYPE_P (TREE_TYPE (name)) && !r.undefined_p ())
991 {
992 value_range vr = r;
993 set_range_info (name, vr);
994 if (dump_file)
995 {
996 print_generic_expr (dump_file, name , TDF_SLIM);
997 fprintf (dump_file, " --> ");
998 vr.dump (dump_file);
999 fprintf (dump_file, "\n");
1000 fprintf (dump_file, " irange : ");
1001 r.dump (dump_file);
1002 fprintf (dump_file, "\n");
1003 }
1004 }
1005 }
1006 }
1007 }
1008
1009 // Print the known table values to file F.
1010
1011 void
1012 gimple_ranger::dump (FILE *f)
1013 {
1014 basic_block bb;
1015
1016 FOR_EACH_BB_FN (bb, cfun)
1017 {
1018 unsigned x;
1019 edge_iterator ei;
1020 edge e;
1021 int_range_max range;
1022 fprintf (f, "\n=========== BB %d ============\n", bb->index);
1023 m_cache.m_on_entry.dump (f, bb);
1024
1025 dump_bb (f, bb, 4, TDF_NONE);
1026
1027 // Now find any globals defined in this block.
1028 for (x = 1; x < num_ssa_names; x++)
1029 {
1030 tree name = ssa_name (x);
1031 if (gimple_range_ssa_p (name) && SSA_NAME_DEF_STMT (name) &&
1032 gimple_bb (SSA_NAME_DEF_STMT (name)) == bb &&
1033 m_cache.m_globals.get_global_range (range, name))
1034 {
1035 if (!range.varying_p ())
1036 {
1037 print_generic_expr (f, name, TDF_SLIM);
1038 fprintf (f, " : ");
1039 range.dump (f);
1040 fprintf (f, "\n");
1041 }
1042
1043 }
1044 }
1045
1046 // And now outgoing edges, if they define anything.
1047 FOR_EACH_EDGE (e, ei, bb->succs)
1048 {
1049 for (x = 1; x < num_ssa_names; x++)
1050 {
1051 tree name = gimple_range_ssa_p (ssa_name (x));
1052 if (name && m_cache.outgoing_edge_range_p (range, e, name))
1053 {
1054 gimple *s = SSA_NAME_DEF_STMT (name);
1055 // Only print the range if this is the def block, or
1056 // the on entry cache for either end of the edge is
1057 // set.
1058 if ((s && bb == gimple_bb (s)) ||
1059 m_cache.block_range (range, bb, name, false) ||
1060 m_cache.block_range (range, e->dest, name, false))
1061 {
1062 range_on_edge (range, e, name);
1063 if (!range.varying_p ())
1064 {
1065 fprintf (f, "%d->%d ", e->src->index,
1066 e->dest->index);
1067 char c = ' ';
1068 if (e->flags & EDGE_TRUE_VALUE)
1069 fprintf (f, " (T)%c", c);
1070 else if (e->flags & EDGE_FALSE_VALUE)
1071 fprintf (f, " (F)%c", c);
1072 else
1073 fprintf (f, " ");
1074 print_generic_expr (f, name, TDF_SLIM);
1075 fprintf(f, " : \t");
1076 range.dump(f);
1077 fprintf (f, "\n");
1078 }
1079 }
1080 }
1081 }
1082 }
1083 }
1084
1085 m_cache.m_globals.dump (dump_file);
1086 fprintf (f, "\n");
1087
1088 if (dump_flags & TDF_DETAILS)
1089 {
1090 fprintf (f, "\nDUMPING GORI MAP\n");
1091 m_cache.dump (f);
1092 fprintf (f, "\n");
1093 }
1094 }
1095
1096 // If SCEV has any information about phi node NAME, return it as a range in R.
1097
1098 void
1099 gimple_ranger::range_of_ssa_name_with_loop_info (irange &r, tree name,
1100 class loop *l, gphi *phi)
1101 {
1102 gcc_checking_assert (TREE_CODE (name) == SSA_NAME);
1103 tree min, max, type = TREE_TYPE (name);
1104 if (bounds_of_var_in_loop (&min, &max, this, l, phi, name))
1105 {
1106 // ?? We could do better here. Since MIN/MAX can only be an
1107 // SSA, SSA +- INTEGER_CST, or INTEGER_CST, we could easily call
1108 // the ranger and solve anything not an integer.
1109 if (TREE_CODE (min) != INTEGER_CST)
1110 min = vrp_val_min (type);
1111 if (TREE_CODE (max) != INTEGER_CST)
1112 max = vrp_val_max (type);
1113 r.set (min, max);
1114 }
1115 else
1116 r.set_varying (type);
1117 }
1118
1119 // --------------------------------------------------------------------------
1120 // trace_ranger implementation.
1121
1122
1123 trace_ranger::trace_ranger ()
1124 {
1125 indent = 0;
1126 trace_count = 0;
1127 }
1128
1129 // If dumping, return true and print the prefix for the next output line.
1130
1131 bool
1132 trace_ranger::dumping (unsigned counter, bool trailing)
1133 {
1134 if (dump_file && (dump_flags & TDF_DETAILS))
1135 {
1136 // Print counter index as well as INDENT spaces.
1137 if (!trailing)
1138 fprintf (dump_file, " %-7u ", counter);
1139 else
1140 fprintf (dump_file, " ");
1141 unsigned x;
1142 for (x = 0; x< indent; x++)
1143 fputc (' ', dump_file);
1144 return true;
1145 }
1146 return false;
1147 }
1148
1149 // After calling a routine, if dumping, print the CALLER, NAME, and RESULT,
1150 // returning RESULT.
1151
1152 bool
1153 trace_ranger::trailer (unsigned counter, const char *caller, bool result,
1154 tree name, const irange &r)
1155 {
1156 if (dumping (counter, true))
1157 {
1158 indent -= bump;
1159 fputs(result ? "TRUE : " : "FALSE : ", dump_file);
1160 fprintf (dump_file, "(%u) ", counter);
1161 fputs (caller, dump_file);
1162 fputs (" (",dump_file);
1163 if (name)
1164 print_generic_expr (dump_file, name, TDF_SLIM);
1165 fputs (") ",dump_file);
1166 if (result)
1167 {
1168 r.dump (dump_file);
1169 fputc('\n', dump_file);
1170 }
1171 else
1172 fputc('\n', dump_file);
1173 // Marks the end of a request.
1174 if (indent == 0)
1175 fputc('\n', dump_file);
1176 }
1177 return result;
1178 }
1179
1180 // Tracing version of range_on_edge. Call it with printing wrappers.
1181
1182 bool
1183 trace_ranger::range_on_edge (irange &r, edge e, tree name)
1184 {
1185 unsigned idx = ++trace_count;
1186 if (dumping (idx))
1187 {
1188 fprintf (dump_file, "range_on_edge (");
1189 print_generic_expr (dump_file, name, TDF_SLIM);
1190 fprintf (dump_file, ") on edge %d->%d\n", e->src->index, e->dest->index);
1191 indent += bump;
1192 }
1193
1194 bool res = gimple_ranger::range_on_edge (r, e, name);
1195 trailer (idx, "range_on_edge", true, name, r);
1196 return res;
1197 }
1198
1199 // Tracing version of range_on_entry. Call it with printing wrappers.
1200
1201 void
1202 trace_ranger::range_on_entry (irange &r, basic_block bb, tree name)
1203 {
1204 unsigned idx = ++trace_count;
1205 if (dumping (idx))
1206 {
1207 fprintf (dump_file, "range_on_entry (");
1208 print_generic_expr (dump_file, name, TDF_SLIM);
1209 fprintf (dump_file, ") to BB %d\n", bb->index);
1210 indent += bump;
1211 }
1212
1213 gimple_ranger::range_on_entry (r, bb, name);
1214
1215 trailer (idx, "range_on_entry", true, name, r);
1216 }
1217
1218 // Tracing version of range_on_exit. Call it with printing wrappers.
1219
1220 void
1221 trace_ranger::range_on_exit (irange &r, basic_block bb, tree name)
1222 {
1223 unsigned idx = ++trace_count;
1224 if (dumping (idx))
1225 {
1226 fprintf (dump_file, "range_on_exit (");
1227 print_generic_expr (dump_file, name, TDF_SLIM);
1228 fprintf (dump_file, ") from BB %d\n", bb->index);
1229 indent += bump;
1230 }
1231
1232 gimple_ranger::range_on_exit (r, bb, name);
1233
1234 trailer (idx, "range_on_exit", true, name, r);
1235 }
1236
1237 // Tracing version of range_of_stmt. Call it with printing wrappers.
1238
1239 bool
1240 trace_ranger::range_of_stmt (irange &r, gimple *s, tree name)
1241 {
1242 bool res;
1243 unsigned idx = ++trace_count;
1244 if (dumping (idx))
1245 {
1246 fprintf (dump_file, "range_of_stmt (");
1247 if (name)
1248 print_generic_expr (dump_file, name, TDF_SLIM);
1249 fputs (") at stmt ", dump_file);
1250 print_gimple_stmt (dump_file, s, 0, TDF_SLIM);
1251 indent += bump;
1252 }
1253
1254 res = gimple_ranger::range_of_stmt (r, s, name);
1255
1256 return trailer (idx, "range_of_stmt", res, name, r);
1257 }
1258
1259 // Tracing version of range_of_expr. Call it with printing wrappers.
1260
1261 bool
1262 trace_ranger::range_of_expr (irange &r, tree name, gimple *s)
1263 {
1264 bool res;
1265 unsigned idx = ++trace_count;
1266 if (dumping (idx))
1267 {
1268 fprintf (dump_file, "range_of_expr(");
1269 print_generic_expr (dump_file, name, TDF_SLIM);
1270 fputs (")", dump_file);
1271 if (s)
1272 {
1273 fputs (" at stmt ", dump_file);
1274 print_gimple_stmt (dump_file, s, 0, TDF_SLIM);
1275 }
1276 else
1277 fputs ("\n", dump_file);
1278 indent += bump;
1279 }
1280
1281 res = gimple_ranger::range_of_expr (r, name, s);
1282
1283 return trailer (idx, "range_of_expr", res, name, r);
1284 }