]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/gimple-range.cc
Fix PR97325.
[thirdparty/gcc.git] / gcc / gimple-range.cc
1 /* Code for GIMPLE range related routines.
2 Copyright (C) 2019-2020 Free Software Foundation, Inc.
3 Contributed by Andrew MacLeod <amacleod@redhat.com>
4 and Aldy Hernandez <aldyh@redhat.com>.
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3, or (at your option)
11 any later version.
12
13 GCC is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
21
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "backend.h"
26 #include "insn-codes.h"
27 #include "rtl.h"
28 #include "tree.h"
29 #include "gimple.h"
30 #include "ssa.h"
31 #include "gimple-pretty-print.h"
32 #include "gimple-iterator.h"
33 #include "optabs-tree.h"
34 #include "gimple-fold.h"
35 #include "tree-cfg.h"
36 #include "fold-const.h"
37 #include "tree-cfg.h"
38 #include "wide-int.h"
39 #include "fold-const.h"
40 #include "case-cfn-macros.h"
41 #include "omp-general.h"
42 #include "cfgloop.h"
43 #include "tree-ssa-loop.h"
44 #include "tree-scalar-evolution.h"
45 #include "dbgcnt.h"
46 #include "alloc-pool.h"
47 #include "vr-values.h"
48 #include "gimple-range.h"
49
50
51 // Adjust the range for a pointer difference where the operands came
52 // from a memchr.
53 //
54 // This notices the following sequence:
55 //
56 // def = __builtin_memchr (arg, 0, sz)
57 // n = def - arg
58 //
59 // The range for N can be narrowed to [0, PTRDIFF_MAX - 1].
60
61 static void
62 adjust_pointer_diff_expr (irange &res, const gimple *diff_stmt)
63 {
64 tree op0 = gimple_assign_rhs1 (diff_stmt);
65 tree op1 = gimple_assign_rhs2 (diff_stmt);
66 tree op0_ptype = TREE_TYPE (TREE_TYPE (op0));
67 tree op1_ptype = TREE_TYPE (TREE_TYPE (op1));
68 gimple *call;
69
70 if (TREE_CODE (op0) == SSA_NAME
71 && TREE_CODE (op1) == SSA_NAME
72 && (call = SSA_NAME_DEF_STMT (op0))
73 && is_gimple_call (call)
74 && gimple_call_builtin_p (call, BUILT_IN_MEMCHR)
75 && TYPE_MODE (op0_ptype) == TYPE_MODE (char_type_node)
76 && TYPE_PRECISION (op0_ptype) == TYPE_PRECISION (char_type_node)
77 && TYPE_MODE (op1_ptype) == TYPE_MODE (char_type_node)
78 && TYPE_PRECISION (op1_ptype) == TYPE_PRECISION (char_type_node)
79 && gimple_call_builtin_p (call, BUILT_IN_MEMCHR)
80 && vrp_operand_equal_p (op1, gimple_call_arg (call, 0))
81 && integer_zerop (gimple_call_arg (call, 1)))
82 {
83 tree max = vrp_val_max (ptrdiff_type_node);
84 wide_int wmax = wi::to_wide (max, TYPE_PRECISION (TREE_TYPE (max)));
85 tree expr_type = gimple_expr_type (diff_stmt);
86 tree range_min = build_zero_cst (expr_type);
87 tree range_max = wide_int_to_tree (expr_type, wmax - 1);
88 int_range<2> r (range_min, range_max);
89 res.intersect (r);
90 }
91 }
92
93 // This function looks for situations when walking the use/def chains
94 // may provide additonal contextual range information not exposed on
95 // this statement. Like knowing the IMAGPART return value from a
96 // builtin function is a boolean result.
97
98 // We should rework how we're called, as we have an op_unknown entry
99 // for IMAGPART_EXPR and POINTER_DIFF_EXPR in range-ops just so this
100 // function gets called.
101
102 static void
103 gimple_range_adjustment (irange &res, const gimple *stmt)
104 {
105 switch (gimple_expr_code (stmt))
106 {
107 case POINTER_DIFF_EXPR:
108 adjust_pointer_diff_expr (res, stmt);
109 return;
110
111 case IMAGPART_EXPR:
112 {
113 tree name = TREE_OPERAND (gimple_assign_rhs1 (stmt), 0);
114 if (TREE_CODE (name) == SSA_NAME)
115 {
116 gimple *def_stmt = SSA_NAME_DEF_STMT (name);
117 if (def_stmt && is_gimple_call (def_stmt)
118 && gimple_call_internal_p (def_stmt))
119 {
120 switch (gimple_call_internal_fn (def_stmt))
121 {
122 case IFN_ADD_OVERFLOW:
123 case IFN_SUB_OVERFLOW:
124 case IFN_MUL_OVERFLOW:
125 case IFN_ATOMIC_COMPARE_EXCHANGE:
126 {
127 int_range<2> r;
128 r.set_varying (boolean_type_node);
129 tree type = TREE_TYPE (gimple_assign_lhs (stmt));
130 range_cast (r, type);
131 res.intersect (r);
132 }
133 default:
134 break;
135 }
136 }
137 }
138 break;
139 }
140
141 default:
142 break;
143 }
144 }
145
146 // Return a range in R for the tree EXPR. Return true if a range is
147 // representable.
148
149 bool
150 get_tree_range (irange &r, tree expr)
151 {
152 tree type;
153 if (TYPE_P (expr))
154 type = expr;
155 else
156 type = TREE_TYPE (expr);
157
158 // Return false if the type isn't suported.
159 if (!irange::supports_type_p (type))
160 return false;
161
162 switch (TREE_CODE (expr))
163 {
164 case INTEGER_CST:
165 r.set (expr, expr);
166 return true;
167
168 case SSA_NAME:
169 r = gimple_range_global (expr);
170 return true;
171
172 case ADDR_EXPR:
173 {
174 // Handle &var which can show up in phi arguments.
175 bool ov;
176 if (tree_single_nonzero_warnv_p (expr, &ov))
177 {
178 r = range_nonzero (type);
179 return true;
180 }
181 break;
182 }
183
184 default:
185 break;
186 }
187 r.set_varying (type);
188 return true;
189 }
190
191 // Fold this unary statement using R1 as operand1's range, returning
192 // the result in RES. Return false if the operation fails.
193
194 bool
195 gimple_range_fold (irange &res, const gimple *stmt, const irange &r1)
196 {
197 gcc_checking_assert (gimple_range_handler (stmt));
198
199 tree type = gimple_expr_type (stmt);
200 // Unary SSA operations require the LHS type as the second range.
201 int_range<2> r2 (type);
202
203 return gimple_range_fold (res, stmt, r1, r2);
204 }
205
206 // Fold this binary statement using R1 and R2 as the operands ranges,
207 // returning the result in RES. Return false if the operation fails.
208
209 bool
210 gimple_range_fold (irange &res, const gimple *stmt,
211 const irange &r1, const irange &r2)
212 {
213 gcc_checking_assert (gimple_range_handler (stmt));
214
215 gimple_range_handler (stmt)->fold_range (res, gimple_expr_type (stmt),
216 r1, r2);
217
218 // If there are any gimple lookups, do those now.
219 gimple_range_adjustment (res, stmt);
220 return true;
221 }
222
223 // Return the base of the RHS of an assignment.
224
225 tree
226 gimple_range_base_of_assignment (const gimple *stmt)
227 {
228 gcc_checking_assert (gimple_code (stmt) == GIMPLE_ASSIGN);
229 tree op1 = gimple_assign_rhs1 (stmt);
230 if (gimple_assign_rhs_code (stmt) == ADDR_EXPR)
231 return get_base_address (TREE_OPERAND (op1, 0));
232 return op1;
233 }
234
235 // Return the first operand of this statement if it is a valid operand
236 // supported by ranges, otherwise return NULL_TREE. Special case is
237 // &(SSA_NAME expr), return the SSA_NAME instead of the ADDR expr.
238
239 tree
240 gimple_range_operand1 (const gimple *stmt)
241 {
242 gcc_checking_assert (gimple_range_handler (stmt));
243
244 switch (gimple_code (stmt))
245 {
246 case GIMPLE_COND:
247 return gimple_cond_lhs (stmt);
248 case GIMPLE_ASSIGN:
249 {
250 tree base = gimple_range_base_of_assignment (stmt);
251 if (base && TREE_CODE (base) == MEM_REF)
252 {
253 // If the base address is an SSA_NAME, we return it
254 // here. This allows processing of the range of that
255 // name, while the rest of the expression is simply
256 // ignored. The code in range_ops will see the
257 // ADDR_EXPR and do the right thing.
258 tree ssa = TREE_OPERAND (base, 0);
259 if (TREE_CODE (ssa) == SSA_NAME)
260 return ssa;
261 }
262 return base;
263 }
264 default:
265 break;
266 }
267 return NULL;
268 }
269
270 // Return the second operand of statement STMT, otherwise return NULL_TREE.
271
272 tree
273 gimple_range_operand2 (const gimple *stmt)
274 {
275 gcc_checking_assert (gimple_range_handler (stmt));
276
277 switch (gimple_code (stmt))
278 {
279 case GIMPLE_COND:
280 return gimple_cond_rhs (stmt);
281 case GIMPLE_ASSIGN:
282 if (gimple_num_ops (stmt) >= 3)
283 return gimple_assign_rhs2 (stmt);
284 default:
285 break;
286 }
287 return NULL_TREE;
288 }
289
290 // Calculate what we can determine of the range of this unary
291 // statement's operand if the lhs of the expression has the range
292 // LHS_RANGE. Return false if nothing can be determined.
293
294 bool
295 gimple_range_calc_op1 (irange &r, const gimple *stmt, const irange &lhs_range)
296 {
297 gcc_checking_assert (gimple_num_ops (stmt) < 3);
298
299 // An empty range is viral.
300 tree type = TREE_TYPE (gimple_range_operand1 (stmt));
301 if (lhs_range.undefined_p ())
302 {
303 r.set_undefined ();
304 return true;
305 }
306 // Unary operations require the type of the first operand in the
307 // second range position.
308 int_range<2> type_range (type);
309 return gimple_range_handler (stmt)->op1_range (r, type, lhs_range,
310 type_range);
311 }
312
313 // Calculate what we can determine of the range of this statement's
314 // first operand if the lhs of the expression has the range LHS_RANGE
315 // and the second operand has the range OP2_RANGE. Return false if
316 // nothing can be determined.
317
318 bool
319 gimple_range_calc_op1 (irange &r, const gimple *stmt,
320 const irange &lhs_range, const irange &op2_range)
321 {
322 // Unary operation are allowed to pass a range in for second operand
323 // as there are often additional restrictions beyond the type which
324 // can be imposed. See operator_cast::op1_range().
325 tree type = TREE_TYPE (gimple_range_operand1 (stmt));
326 // An empty range is viral.
327 if (op2_range.undefined_p () || lhs_range.undefined_p ())
328 {
329 r.set_undefined ();
330 return true;
331 }
332 return gimple_range_handler (stmt)->op1_range (r, type, lhs_range,
333 op2_range);
334 }
335
336 // Calculate what we can determine of the range of this statement's
337 // second operand if the lhs of the expression has the range LHS_RANGE
338 // and the first operand has the range OP1_RANGE. Return false if
339 // nothing can be determined.
340
341 bool
342 gimple_range_calc_op2 (irange &r, const gimple *stmt,
343 const irange &lhs_range, const irange &op1_range)
344 {
345 tree type = TREE_TYPE (gimple_range_operand2 (stmt));
346 // An empty range is viral.
347 if (op1_range.undefined_p () || lhs_range.undefined_p ())
348 {
349 r.set_undefined ();
350 return true;
351 }
352 return gimple_range_handler (stmt)->op2_range (r, type, lhs_range,
353 op1_range);
354 }
355
356 // Calculate a range for statement S and return it in R. If NAME is provided it
357 // represents the SSA_NAME on the LHS of the statement. It is only required
358 // if there is more than one lhs/output. If a range cannot
359 // be calculated, return false.
360
361 bool
362 gimple_ranger::calc_stmt (irange &r, gimple *s, tree name)
363 {
364 bool res = false;
365 // If name is specified, make sure it is an LHS of S.
366 gcc_checking_assert (name ? SSA_NAME_DEF_STMT (name) == s : true);
367
368 if (gimple_range_handler (s))
369 res = range_of_range_op (r, s);
370 else if (is_a<gphi *>(s))
371 res = range_of_phi (r, as_a<gphi *> (s));
372 else if (is_a<gcall *>(s))
373 res = range_of_call (r, as_a<gcall *> (s));
374 else if (is_a<gassign *> (s) && gimple_assign_rhs_code (s) == COND_EXPR)
375 res = range_of_cond_expr (r, as_a<gassign *> (s));
376 else
377 {
378 // If no name is specified, try the expression kind.
379 if (!name)
380 {
381 tree t = gimple_expr_type (s);
382 if (!irange::supports_type_p (t))
383 return false;
384 r.set_varying (t);
385 return true;
386 }
387 // We don't understand the stmt, so return the global range.
388 r = gimple_range_global (name);
389 return true;
390 }
391 if (res)
392 {
393 if (r.undefined_p ())
394 return true;
395 if (name && TREE_TYPE (name) != r.type ())
396 range_cast (r, TREE_TYPE (name));
397 return true;
398 }
399 return false;
400 }
401
402 // Calculate a range for range_op statement S and return it in R. If any
403 // If a range cannot be calculated, return false.
404
405 bool
406 gimple_ranger::range_of_range_op (irange &r, gimple *s)
407 {
408 int_range_max range1, range2;
409 tree type = gimple_expr_type (s);
410 gcc_checking_assert (irange::supports_type_p (type));
411
412 tree op1 = gimple_range_operand1 (s);
413 tree op2 = gimple_range_operand2 (s);
414
415 if (range_of_non_trivial_assignment (r, s))
416 return true;
417
418 if (range_of_expr (range1, op1, s))
419 {
420 if (!op2)
421 return gimple_range_fold (r, s, range1);
422
423 if (range_of_expr (range2, op2, s))
424 return gimple_range_fold (r, s, range1, range2);
425 }
426 r.set_varying (type);
427 return true;
428 }
429
430 // Calculate the range of a non-trivial assignment. That is, is one
431 // inolving arithmetic on an SSA name (for example, an ADDR_EXPR).
432 // Return the range in R.
433 //
434 // If a range cannot be calculated, return false.
435
436 bool
437 gimple_ranger::range_of_non_trivial_assignment (irange &r, gimple *stmt)
438 {
439 if (gimple_code (stmt) != GIMPLE_ASSIGN)
440 return false;
441
442 tree base = gimple_range_base_of_assignment (stmt);
443 if (base && TREE_CODE (base) == MEM_REF
444 && TREE_CODE (TREE_OPERAND (base, 0)) == SSA_NAME)
445 {
446 int_range_max range1;
447 tree ssa = TREE_OPERAND (base, 0);
448 if (range_of_expr (range1, ssa, stmt))
449 {
450 tree type = TREE_TYPE (ssa);
451 range_operator *op = range_op_handler (POINTER_PLUS_EXPR, type);
452 int_range<2> offset (TREE_OPERAND (base, 1), TREE_OPERAND (base, 1));
453 op->fold_range (r, type, range1, offset);
454 return true;
455 }
456 }
457 return false;
458 }
459
460 // Calculate a range for phi statement S and return it in R.
461 // If a range cannot be calculated, return false.
462
463 bool
464 gimple_ranger::range_of_phi (irange &r, gphi *phi)
465 {
466 tree phi_def = gimple_phi_result (phi);
467 tree type = TREE_TYPE (phi_def);
468 int_range_max arg_range;
469 unsigned x;
470
471 if (!irange::supports_type_p (type))
472 return false;
473
474 // Start with an empty range, unioning in each argument's range.
475 r.set_undefined ();
476 for (x = 0; x < gimple_phi_num_args (phi); x++)
477 {
478 tree arg = gimple_phi_arg_def (phi, x);
479 edge e = gimple_phi_arg_edge (phi, x);
480
481 range_on_edge (arg_range, e, arg);
482 r.union_ (arg_range);
483 // Once the value reaches varying, stop looking.
484 if (r.varying_p ())
485 break;
486 }
487
488 // If SCEV is available, query if this PHI has any knonwn values.
489 if (scev_initialized_p () && !POINTER_TYPE_P (TREE_TYPE (phi_def)))
490 {
491 value_range loop_range;
492 class loop *l = loop_containing_stmt (phi);
493 if (l)
494 {
495 range_of_ssa_name_with_loop_info (loop_range, phi_def, l, phi);
496 if (!loop_range.varying_p ())
497 {
498 if (dump_file && (dump_flags & TDF_DETAILS))
499 {
500 fprintf (dump_file, " Loops range found for ");
501 print_generic_expr (dump_file, phi_def, TDF_SLIM);
502 fprintf (dump_file, ": ");
503 loop_range.dump (dump_file);
504 fprintf (dump_file, " and calculated range :");
505 r.dump (dump_file);
506 fprintf (dump_file, "\n");
507 }
508 r.intersect (loop_range);
509 }
510 }
511 }
512
513 return true;
514 }
515
516 // Calculate a range for call statement S and return it in R.
517 // If a range cannot be calculated, return false.
518
519 bool
520 gimple_ranger::range_of_call (irange &r, gcall *call)
521 {
522 tree type = gimple_call_return_type (call);
523 tree lhs = gimple_call_lhs (call);
524 bool strict_overflow_p;
525
526 if (!irange::supports_type_p (type))
527 return false;
528
529 if (range_of_builtin_call (r, call))
530 ;
531 else if (gimple_stmt_nonnegative_warnv_p (call, &strict_overflow_p))
532 r.set (build_int_cst (type, 0), TYPE_MAX_VALUE (type));
533 else if (gimple_call_nonnull_result_p (call)
534 || gimple_call_nonnull_arg (call))
535 r = range_nonzero (type);
536 else
537 r.set_varying (type);
538
539 // If there is an LHS, intersect that with what is known.
540 if (lhs)
541 {
542 value_range def;
543 def = gimple_range_global (lhs);
544 r.intersect (def);
545 }
546 return true;
547 }
548
549
550 void
551 gimple_ranger::range_of_builtin_ubsan_call (irange &r, gcall *call,
552 tree_code code)
553 {
554 gcc_checking_assert (code == PLUS_EXPR || code == MINUS_EXPR
555 || code == MULT_EXPR);
556 tree type = gimple_call_return_type (call);
557 range_operator *op = range_op_handler (code, type);
558 gcc_checking_assert (op);
559 int_range_max ir0, ir1;
560 tree arg0 = gimple_call_arg (call, 0);
561 tree arg1 = gimple_call_arg (call, 1);
562 gcc_assert (range_of_expr (ir0, arg0, call));
563 gcc_assert (range_of_expr (ir1, arg1, call));
564
565 bool saved_flag_wrapv = flag_wrapv;
566 // Pretend the arithmetic is wrapping. If there is any overflow,
567 // we'll complain, but will actually do wrapping operation.
568 flag_wrapv = 1;
569 op->fold_range (r, type, ir0, ir1);
570 flag_wrapv = saved_flag_wrapv;
571
572 // If for both arguments vrp_valueize returned non-NULL, this should
573 // have been already folded and if not, it wasn't folded because of
574 // overflow. Avoid removing the UBSAN_CHECK_* calls in that case.
575 if (r.singleton_p ())
576 r.set_varying (type);
577 }
578
579
580 bool
581 gimple_ranger::range_of_builtin_call (irange &r, gcall *call)
582 {
583 combined_fn func = gimple_call_combined_fn (call);
584 if (func == CFN_LAST)
585 return false;
586
587 tree type = gimple_call_return_type (call);
588 tree arg;
589 int mini, maxi, zerov, prec;
590 scalar_int_mode mode;
591
592 switch (func)
593 {
594 case CFN_BUILT_IN_CONSTANT_P:
595 if (cfun->after_inlining)
596 {
597 r.set_zero (type);
598 // r.equiv_clear ();
599 return true;
600 }
601 arg = gimple_call_arg (call, 0);
602 if (range_of_expr (r, arg, call) && r.singleton_p ())
603 {
604 r.set (build_one_cst (type), build_one_cst (type));
605 return true;
606 }
607 break;
608
609 CASE_CFN_FFS:
610 CASE_CFN_POPCOUNT:
611 // __builtin_ffs* and __builtin_popcount* return [0, prec].
612 arg = gimple_call_arg (call, 0);
613 prec = TYPE_PRECISION (TREE_TYPE (arg));
614 mini = 0;
615 maxi = prec;
616 gcc_assert (range_of_expr (r, arg, call));
617 // If arg is non-zero, then ffs or popcount are non-zero.
618 if (!range_includes_zero_p (&r))
619 mini = 1;
620 // If some high bits are known to be zero, decrease the maximum.
621 if (!r.undefined_p ())
622 {
623 if (TYPE_SIGN (r.type ()) == SIGNED)
624 range_cast (r, unsigned_type_for (r.type ()));
625 wide_int max = r.upper_bound ();
626 maxi = wi::floor_log2 (max) + 1;
627 }
628 r.set (build_int_cst (type, mini), build_int_cst (type, maxi));
629 return true;
630
631 CASE_CFN_PARITY:
632 r.set (build_zero_cst (type), build_one_cst (type));
633 return true;
634
635 CASE_CFN_CLZ:
636 // __builtin_c[lt]z* return [0, prec-1], except when the
637 // argument is 0, but that is undefined behavior.
638 //
639 // On many targets where the CLZ RTL or optab value is defined
640 // for 0, the value is prec, so include that in the range by
641 // default.
642 arg = gimple_call_arg (call, 0);
643 prec = TYPE_PRECISION (TREE_TYPE (arg));
644 mini = 0;
645 maxi = prec;
646 mode = SCALAR_INT_TYPE_MODE (TREE_TYPE (arg));
647 if (optab_handler (clz_optab, mode) != CODE_FOR_nothing
648 && CLZ_DEFINED_VALUE_AT_ZERO (mode, zerov)
649 // Only handle the single common value.
650 && zerov != prec)
651 // Magic value to give up, unless we can prove arg is non-zero.
652 mini = -2;
653
654 gcc_assert (range_of_expr (r, arg, call));
655 // From clz of minimum we can compute result maximum.
656 if (r.constant_p ())
657 {
658 maxi = prec - 1 - wi::floor_log2 (r.lower_bound ());
659 if (maxi != prec)
660 mini = 0;
661 }
662 else if (!range_includes_zero_p (&r))
663 {
664 maxi = prec - 1;
665 mini = 0;
666 }
667 if (mini == -2)
668 break;
669 // From clz of maximum we can compute result minimum.
670 if (r.constant_p ())
671 {
672 mini = prec - 1 - wi::floor_log2 (r.upper_bound ());
673 if (mini == prec)
674 break;
675 }
676 if (mini == -2)
677 break;
678 r.set (build_int_cst (type, mini), build_int_cst (type, maxi));
679 return true;
680
681 CASE_CFN_CTZ:
682 // __builtin_ctz* return [0, prec-1], except for when the
683 // argument is 0, but that is undefined behavior.
684 //
685 // If there is a ctz optab for this mode and
686 // CTZ_DEFINED_VALUE_AT_ZERO, include that in the range,
687 // otherwise just assume 0 won't be seen.
688 arg = gimple_call_arg (call, 0);
689 prec = TYPE_PRECISION (TREE_TYPE (arg));
690 mini = 0;
691 maxi = prec - 1;
692 mode = SCALAR_INT_TYPE_MODE (TREE_TYPE (arg));
693 if (optab_handler (ctz_optab, mode) != CODE_FOR_nothing
694 && CTZ_DEFINED_VALUE_AT_ZERO (mode, zerov))
695 {
696 // Handle only the two common values.
697 if (zerov == -1)
698 mini = -1;
699 else if (zerov == prec)
700 maxi = prec;
701 else
702 // Magic value to give up, unless we can prove arg is non-zero.
703 mini = -2;
704 }
705 gcc_assert (range_of_expr (r, arg, call));
706 if (!r.undefined_p ())
707 {
708 if (r.lower_bound () != 0)
709 {
710 mini = 0;
711 maxi = prec - 1;
712 }
713 // If some high bits are known to be zero, we can decrease
714 // the maximum.
715 wide_int max = r.upper_bound ();
716 if (max == 0)
717 break;
718 maxi = wi::floor_log2 (max);
719 }
720 if (mini == -2)
721 break;
722 r.set (build_int_cst (type, mini), build_int_cst (type, maxi));
723 return true;
724
725 CASE_CFN_CLRSB:
726 arg = gimple_call_arg (call, 0);
727 prec = TYPE_PRECISION (TREE_TYPE (arg));
728 r.set (build_int_cst (type, 0), build_int_cst (type, prec - 1));
729 return true;
730 case CFN_UBSAN_CHECK_ADD:
731 range_of_builtin_ubsan_call (r, call, PLUS_EXPR);
732 return true;
733 case CFN_UBSAN_CHECK_SUB:
734 range_of_builtin_ubsan_call (r, call, MINUS_EXPR);
735 return true;
736 case CFN_UBSAN_CHECK_MUL:
737 range_of_builtin_ubsan_call (r, call, MULT_EXPR);
738 return true;
739
740 case CFN_GOACC_DIM_SIZE:
741 case CFN_GOACC_DIM_POS:
742 // Optimizing these two internal functions helps the loop
743 // optimizer eliminate outer comparisons. Size is [1,N]
744 // and pos is [0,N-1].
745 {
746 bool is_pos = func == CFN_GOACC_DIM_POS;
747 int axis = oacc_get_ifn_dim_arg (call);
748 int size = oacc_get_fn_dim_size (current_function_decl, axis);
749 if (!size)
750 // If it's dynamic, the backend might know a hardware limitation.
751 size = targetm.goacc.dim_limit (axis);
752
753 r.set (build_int_cst (type, is_pos ? 0 : 1),
754 size
755 ? build_int_cst (type, size - is_pos) : vrp_val_max (type));
756 return true;
757 }
758
759 case CFN_BUILT_IN_STRLEN:
760 if (tree lhs = gimple_call_lhs (call))
761 if (ptrdiff_type_node
762 && (TYPE_PRECISION (ptrdiff_type_node)
763 == TYPE_PRECISION (TREE_TYPE (lhs))))
764 {
765 tree type = TREE_TYPE (lhs);
766 tree max = vrp_val_max (ptrdiff_type_node);
767 wide_int wmax
768 = wi::to_wide (max, TYPE_PRECISION (TREE_TYPE (max)));
769 tree range_min = build_zero_cst (type);
770 // To account for the terminating NULL, the maximum length
771 // is one less than the maximum array size, which in turn
772 // is one less than PTRDIFF_MAX (or SIZE_MAX where it's
773 // smaller than the former type).
774 // FIXME: Use max_object_size() - 1 here.
775 tree range_max = wide_int_to_tree (type, wmax - 2);
776 r.set (range_min, range_max);
777 return true;
778 }
779 break;
780 default:
781 break;
782 }
783 return false;
784 }
785
786
787
788 // Calculate a range for COND_EXPR statement S and return it in R.
789 // If a range cannot be calculated, return false.
790
791 bool
792 gimple_ranger::range_of_cond_expr (irange &r, gassign *s)
793 {
794 int_range_max cond_range, range1, range2;
795 tree cond = gimple_assign_rhs1 (s);
796 tree op1 = gimple_assign_rhs2 (s);
797 tree op2 = gimple_assign_rhs3 (s);
798
799 gcc_checking_assert (gimple_assign_rhs_code (s) == COND_EXPR);
800 gcc_checking_assert (useless_type_conversion_p (TREE_TYPE (op1),
801 TREE_TYPE (op2)));
802 if (!irange::supports_type_p (TREE_TYPE (op1)))
803 return false;
804
805 gcc_assert (range_of_expr (cond_range, cond, s));
806 gcc_assert (range_of_expr (range1, op1, s));
807 gcc_assert (range_of_expr (range2, op2, s));
808
809 // If the condition is known, choose the appropriate expression.
810 if (cond_range.singleton_p ())
811 {
812 // False, pick second operand.
813 if (cond_range.zero_p ())
814 r = range2;
815 else
816 r = range1;
817 }
818 else
819 {
820 r = range1;
821 r.union_ (range2);
822 }
823 return true;
824 }
825
826 bool
827 gimple_ranger::range_of_expr (irange &r, tree expr, gimple *stmt)
828 {
829 if (!gimple_range_ssa_p (expr))
830 return get_tree_range (r, expr);
831
832 // If there is no statement, just get the global value.
833 if (!stmt)
834 {
835 if (!m_cache.m_globals.get_global_range (r, expr))
836 r = gimple_range_global (expr);
837 return true;
838 }
839
840 basic_block bb = gimple_bb (stmt);
841 gimple *def_stmt = SSA_NAME_DEF_STMT (expr);
842
843 // If name is defined in this block, try to get an range from S.
844 if (def_stmt && gimple_bb (def_stmt) == bb)
845 gcc_assert (range_of_stmt (r, def_stmt, expr));
846 else
847 // Otherwise OP comes from outside this block, use range on entry.
848 range_on_entry (r, bb, expr);
849
850 // No range yet, see if there is a dereference in the block.
851 // We don't care if it's between the def and a use within a block
852 // because the entire block must be executed anyway.
853 // FIXME:?? For non-call exceptions we could have a statement throw
854 // which causes an early block exit.
855 // in which case we may need to walk from S back to the def/top of block
856 // to make sure the deref happens between S and there before claiming
857 // there is a deref. Punt for now.
858 if (!cfun->can_throw_non_call_exceptions && r.varying_p () &&
859 m_cache.m_non_null.non_null_deref_p (expr, bb))
860 r = range_nonzero (TREE_TYPE (expr));
861
862 return true;
863 }
864
865 // Return the range of NAME on entry to block BB in R.
866
867 void
868 gimple_ranger::range_on_entry (irange &r, basic_block bb, tree name)
869 {
870 int_range_max entry_range;
871 gcc_checking_assert (gimple_range_ssa_p (name));
872
873 // Start with any known range
874 gcc_assert (range_of_stmt (r, SSA_NAME_DEF_STMT (name), name));
875
876 // Now see if there is any on_entry value which may refine it.
877 if (m_cache.block_range (entry_range, bb, name))
878 r.intersect (entry_range);
879 }
880
881 // Calculate the range for NAME at the end of block BB and return it in R.
882 // Return false if no range can be calculated.
883
884 void
885 gimple_ranger::range_on_exit (irange &r, basic_block bb, tree name)
886 {
887 // on-exit from the exit block?
888 gcc_checking_assert (bb != EXIT_BLOCK_PTR_FOR_FN (cfun));
889
890 gimple *s = last_stmt (bb);
891 // If there is no statement in the block and this isn't the entry
892 // block, go get the range_on_entry for this block. For the entry
893 // block, a NULL stmt will return the global value for NAME.
894 if (!s && bb != ENTRY_BLOCK_PTR_FOR_FN (cfun))
895 range_on_entry (r, bb, name);
896 else
897 gcc_assert (range_of_expr (r, name, s));
898 gcc_checking_assert (r.undefined_p ()
899 || types_compatible_p (r.type(), TREE_TYPE (name)));
900 }
901
902 // Calculate a range for NAME on edge E and return it in R.
903
904 bool
905 gimple_ranger::range_on_edge (irange &r, edge e, tree name)
906 {
907 int_range_max edge_range;
908 gcc_checking_assert (irange::supports_type_p (TREE_TYPE (name)));
909
910 // PHI arguments can be constants, catch these here.
911 if (!gimple_range_ssa_p (name))
912 {
913 gcc_assert (range_of_expr (r, name));
914 return true;
915 }
916
917 range_on_exit (r, e->src, name);
918 gcc_checking_assert (r.undefined_p ()
919 || types_compatible_p (r.type(), TREE_TYPE (name)));
920
921 // Check to see if NAME is defined on edge e.
922 if (m_cache.outgoing_edge_range_p (edge_range, e, name))
923 r.intersect (edge_range);
924
925 return true;
926 }
927
928 // Calculate a range for statement S and return it in R. If NAME is
929 // provided it represents the SSA_NAME on the LHS of the statement.
930 // It is only required if there is more than one lhs/output. Check
931 // the global cache for NAME first to see if the evaluation can be
932 // avoided. If a range cannot be calculated, return false.
933
934 bool
935 gimple_ranger::range_of_stmt (irange &r, gimple *s, tree name)
936 {
937 // If no name, simply call the base routine.
938 if (!name)
939 name = gimple_get_lhs (s);
940
941 if (!name)
942 return calc_stmt (r, s, NULL_TREE);
943
944 gcc_checking_assert (TREE_CODE (name) == SSA_NAME &&
945 irange::supports_type_p (TREE_TYPE (name)));
946
947 // If this STMT has already been processed, return that value.
948 if (m_cache.m_globals.get_global_range (r, name))
949 return true;
950 // Avoid infinite recursion by initializing global cache
951 int_range_max tmp = gimple_range_global (name);
952 m_cache.m_globals.set_global_range (name, tmp);
953
954 gcc_assert (calc_stmt (r, s, name));
955
956 if (is_a<gphi *> (s))
957 r.intersect (tmp);
958 m_cache.m_globals.set_global_range (name, r);
959 return true;
960 }
961
962 // This routine will export whatever global ranges are known to GCC
963 // SSA_RANGE_NAME_INFO fields.
964
965 void
966 gimple_ranger::export_global_ranges ()
967 {
968 unsigned x;
969 int_range_max r;
970 if (dump_file)
971 {
972 fprintf (dump_file, "Exported global range table\n");
973 fprintf (dump_file, "===========================\n");
974 }
975
976 for ( x = 1; x < num_ssa_names; x++)
977 {
978 tree name = ssa_name (x);
979 if (name && !SSA_NAME_IN_FREE_LIST (name)
980 && gimple_range_ssa_p (name)
981 && m_cache.m_globals.get_global_range (r, name)
982 && !r.varying_p())
983 {
984 // Make sure the new range is a subset of the old range.
985 int_range_max old_range;
986 old_range = gimple_range_global (name);
987 old_range.intersect (r);
988 /* Disable this while we fix tree-ssa/pr61743-2.c. */
989 //gcc_checking_assert (old_range == r);
990
991 // WTF? Can't write non-null pointer ranges?? stupid set_range_info!
992 if (!POINTER_TYPE_P (TREE_TYPE (name)) && !r.undefined_p ())
993 {
994 value_range vr = r;
995 set_range_info (name, vr);
996 if (dump_file)
997 {
998 print_generic_expr (dump_file, name , TDF_SLIM);
999 fprintf (dump_file, " --> ");
1000 vr.dump (dump_file);
1001 fprintf (dump_file, "\n");
1002 fprintf (dump_file, " irange : ");
1003 r.dump (dump_file);
1004 fprintf (dump_file, "\n");
1005 }
1006 }
1007 }
1008 }
1009 }
1010
1011 // Print the known table values to file F.
1012
1013 void
1014 gimple_ranger::dump (FILE *f)
1015 {
1016 basic_block bb;
1017
1018 FOR_EACH_BB_FN (bb, cfun)
1019 {
1020 unsigned x;
1021 edge_iterator ei;
1022 edge e;
1023 int_range_max range;
1024 fprintf (f, "\n=========== BB %d ============\n", bb->index);
1025 m_cache.m_on_entry.dump (f, bb);
1026
1027 dump_bb (f, bb, 4, TDF_NONE);
1028
1029 // Now find any globals defined in this block.
1030 for (x = 1; x < num_ssa_names; x++)
1031 {
1032 tree name = ssa_name (x);
1033 if (gimple_range_ssa_p (name) && SSA_NAME_DEF_STMT (name) &&
1034 gimple_bb (SSA_NAME_DEF_STMT (name)) == bb &&
1035 m_cache.m_globals.get_global_range (range, name))
1036 {
1037 if (!range.varying_p ())
1038 {
1039 print_generic_expr (f, name, TDF_SLIM);
1040 fprintf (f, " : ");
1041 range.dump (f);
1042 fprintf (f, "\n");
1043 }
1044
1045 }
1046 }
1047
1048 // And now outgoing edges, if they define anything.
1049 FOR_EACH_EDGE (e, ei, bb->succs)
1050 {
1051 for (x = 1; x < num_ssa_names; x++)
1052 {
1053 tree name = gimple_range_ssa_p (ssa_name (x));
1054 if (name && m_cache.outgoing_edge_range_p (range, e, name))
1055 {
1056 gimple *s = SSA_NAME_DEF_STMT (name);
1057 // Only print the range if this is the def block, or
1058 // the on entry cache for either end of the edge is
1059 // set.
1060 if ((s && bb == gimple_bb (s)) ||
1061 m_cache.block_range (range, bb, name, false) ||
1062 m_cache.block_range (range, e->dest, name, false))
1063 {
1064 range_on_edge (range, e, name);
1065 if (!range.varying_p ())
1066 {
1067 fprintf (f, "%d->%d ", e->src->index,
1068 e->dest->index);
1069 char c = ' ';
1070 if (e->flags & EDGE_TRUE_VALUE)
1071 fprintf (f, " (T)%c", c);
1072 else if (e->flags & EDGE_FALSE_VALUE)
1073 fprintf (f, " (F)%c", c);
1074 else
1075 fprintf (f, " ");
1076 print_generic_expr (f, name, TDF_SLIM);
1077 fprintf(f, " : \t");
1078 range.dump(f);
1079 fprintf (f, "\n");
1080 }
1081 }
1082 }
1083 }
1084 }
1085 }
1086
1087 m_cache.m_globals.dump (dump_file);
1088 fprintf (f, "\n");
1089
1090 if (dump_flags & TDF_DETAILS)
1091 {
1092 fprintf (f, "\nDUMPING GORI MAP\n");
1093 m_cache.dump (f);
1094 fprintf (f, "\n");
1095 }
1096 }
1097
1098 // If SCEV has any information about phi node NAME, return it as a range in R.
1099
1100 void
1101 gimple_ranger::range_of_ssa_name_with_loop_info (irange &r, tree name,
1102 class loop *l, gphi *phi)
1103 {
1104 gcc_checking_assert (TREE_CODE (name) == SSA_NAME);
1105 tree min, max, type = TREE_TYPE (name);
1106 if (bounds_of_var_in_loop (&min, &max, this, l, phi, name))
1107 {
1108 // ?? We could do better here. Since MIN/MAX can only be an
1109 // SSA, SSA +- INTEGER_CST, or INTEGER_CST, we could easily call
1110 // the ranger and solve anything not an integer.
1111 if (TREE_CODE (min) != INTEGER_CST)
1112 min = vrp_val_min (type);
1113 if (TREE_CODE (max) != INTEGER_CST)
1114 max = vrp_val_max (type);
1115 r.set (min, max);
1116 }
1117 else
1118 r.set_varying (type);
1119 }
1120
1121 // --------------------------------------------------------------------------
1122 // trace_ranger implementation.
1123
1124
1125 trace_ranger::trace_ranger ()
1126 {
1127 indent = 0;
1128 trace_count = 0;
1129 }
1130
1131 // If dumping, return true and print the prefix for the next output line.
1132
1133 bool
1134 trace_ranger::dumping (unsigned counter, bool trailing)
1135 {
1136 if (dump_file && (dump_flags & TDF_DETAILS))
1137 {
1138 // Print counter index as well as INDENT spaces.
1139 if (!trailing)
1140 fprintf (dump_file, " %-7u ", counter);
1141 else
1142 fprintf (dump_file, " ");
1143 unsigned x;
1144 for (x = 0; x< indent; x++)
1145 fputc (' ', dump_file);
1146 return true;
1147 }
1148 return false;
1149 }
1150
1151 // After calling a routine, if dumping, print the CALLER, NAME, and RESULT,
1152 // returning RESULT.
1153
1154 bool
1155 trace_ranger::trailer (unsigned counter, const char *caller, bool result,
1156 tree name, const irange &r)
1157 {
1158 if (dumping (counter, true))
1159 {
1160 indent -= bump;
1161 fputs(result ? "TRUE : " : "FALSE : ", dump_file);
1162 fprintf (dump_file, "(%u) ", counter);
1163 fputs (caller, dump_file);
1164 fputs (" (",dump_file);
1165 if (name)
1166 print_generic_expr (dump_file, name, TDF_SLIM);
1167 fputs (") ",dump_file);
1168 if (result)
1169 {
1170 r.dump (dump_file);
1171 fputc('\n', dump_file);
1172 }
1173 else
1174 fputc('\n', dump_file);
1175 // Marks the end of a request.
1176 if (indent == 0)
1177 fputc('\n', dump_file);
1178 }
1179 return result;
1180 }
1181
1182 // Tracing version of range_on_edge. Call it with printing wrappers.
1183
1184 bool
1185 trace_ranger::range_on_edge (irange &r, edge e, tree name)
1186 {
1187 unsigned idx = ++trace_count;
1188 if (dumping (idx))
1189 {
1190 fprintf (dump_file, "range_on_edge (");
1191 print_generic_expr (dump_file, name, TDF_SLIM);
1192 fprintf (dump_file, ") on edge %d->%d\n", e->src->index, e->dest->index);
1193 indent += bump;
1194 }
1195
1196 bool res = gimple_ranger::range_on_edge (r, e, name);
1197 trailer (idx, "range_on_edge", true, name, r);
1198 return res;
1199 }
1200
1201 // Tracing version of range_on_entry. Call it with printing wrappers.
1202
1203 void
1204 trace_ranger::range_on_entry (irange &r, basic_block bb, tree name)
1205 {
1206 unsigned idx = ++trace_count;
1207 if (dumping (idx))
1208 {
1209 fprintf (dump_file, "range_on_entry (");
1210 print_generic_expr (dump_file, name, TDF_SLIM);
1211 fprintf (dump_file, ") to BB %d\n", bb->index);
1212 indent += bump;
1213 }
1214
1215 gimple_ranger::range_on_entry (r, bb, name);
1216
1217 trailer (idx, "range_on_entry", true, name, r);
1218 }
1219
1220 // Tracing version of range_on_exit. Call it with printing wrappers.
1221
1222 void
1223 trace_ranger::range_on_exit (irange &r, basic_block bb, tree name)
1224 {
1225 unsigned idx = ++trace_count;
1226 if (dumping (idx))
1227 {
1228 fprintf (dump_file, "range_on_exit (");
1229 print_generic_expr (dump_file, name, TDF_SLIM);
1230 fprintf (dump_file, ") from BB %d\n", bb->index);
1231 indent += bump;
1232 }
1233
1234 gimple_ranger::range_on_exit (r, bb, name);
1235
1236 trailer (idx, "range_on_exit", true, name, r);
1237 }
1238
1239 // Tracing version of range_of_stmt. Call it with printing wrappers.
1240
1241 bool
1242 trace_ranger::range_of_stmt (irange &r, gimple *s, tree name)
1243 {
1244 bool res;
1245 unsigned idx = ++trace_count;
1246 if (dumping (idx))
1247 {
1248 fprintf (dump_file, "range_of_stmt (");
1249 if (name)
1250 print_generic_expr (dump_file, name, TDF_SLIM);
1251 fputs (") at stmt ", dump_file);
1252 print_gimple_stmt (dump_file, s, 0, TDF_SLIM);
1253 indent += bump;
1254 }
1255
1256 res = gimple_ranger::range_of_stmt (r, s, name);
1257
1258 return trailer (idx, "range_of_stmt", res, name, r);
1259 }
1260
1261 // Tracing version of range_of_expr. Call it with printing wrappers.
1262
1263 bool
1264 trace_ranger::range_of_expr (irange &r, tree name, gimple *s)
1265 {
1266 bool res;
1267 unsigned idx = ++trace_count;
1268 if (dumping (idx))
1269 {
1270 fprintf (dump_file, "range_of_expr(");
1271 print_generic_expr (dump_file, name, TDF_SLIM);
1272 fputs (")", dump_file);
1273 if (s)
1274 {
1275 fputs (" at stmt ", dump_file);
1276 print_gimple_stmt (dump_file, s, 0, TDF_SLIM);
1277 }
1278 else
1279 fputs ("\n", dump_file);
1280 indent += bump;
1281 }
1282
1283 res = gimple_ranger::range_of_expr (r, name, s);
1284
1285 return trailer (idx, "range_of_expr", res, name, r);
1286 }