]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/gimple-ssa-strength-reduction.c
[Ada] Fold Enum_Rep attribute in evaluation and not in expansion
[thirdparty/gcc.git] / gcc / gimple-ssa-strength-reduction.c
1 /* Straight-line strength reduction.
2 Copyright (C) 2012-2020 Free Software Foundation, Inc.
3 Contributed by Bill Schmidt, IBM <wschmidt@linux.ibm.com>
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
10 version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
20
21 /* There are many algorithms for performing strength reduction on
22 loops. This is not one of them. IVOPTS handles strength reduction
23 of induction variables just fine. This pass is intended to pick
24 up the crumbs it leaves behind, by considering opportunities for
25 strength reduction along dominator paths.
26
27 Strength reduction addresses explicit multiplies, and certain
28 multiplies implicit in addressing expressions. It would also be
29 possible to apply strength reduction to divisions and modulos,
30 but such opportunities are relatively uncommon.
31
32 Strength reduction is also currently restricted to integer operations.
33 If desired, it could be extended to floating-point operations under
34 control of something like -funsafe-math-optimizations. */
35
36 #include "config.h"
37 #include "system.h"
38 #include "coretypes.h"
39 #include "backend.h"
40 #include "rtl.h"
41 #include "tree.h"
42 #include "gimple.h"
43 #include "cfghooks.h"
44 #include "tree-pass.h"
45 #include "ssa.h"
46 #include "expmed.h"
47 #include "gimple-pretty-print.h"
48 #include "fold-const.h"
49 #include "gimple-iterator.h"
50 #include "gimplify-me.h"
51 #include "stor-layout.h"
52 #include "cfgloop.h"
53 #include "tree-cfg.h"
54 #include "domwalk.h"
55 #include "tree-ssa-address.h"
56 #include "tree-affine.h"
57 #include "tree-eh.h"
58 #include "builtins.h"
59 \f
60 /* Information about a strength reduction candidate. Each statement
61 in the candidate table represents an expression of one of the
62 following forms (the special case of CAND_REF will be described
63 later):
64
65 (CAND_MULT) S1: X = (B + i) * S
66 (CAND_ADD) S1: X = B + (i * S)
67
68 Here X and B are SSA names, i is an integer constant, and S is
69 either an SSA name or a constant. We call B the "base," i the
70 "index", and S the "stride."
71
72 Any statement S0 that dominates S1 and is of the form:
73
74 (CAND_MULT) S0: Y = (B + i') * S
75 (CAND_ADD) S0: Y = B + (i' * S)
76
77 is called a "basis" for S1. In both cases, S1 may be replaced by
78
79 S1': X = Y + (i - i') * S,
80
81 where (i - i') * S is folded to the extent possible.
82
83 All gimple statements are visited in dominator order, and each
84 statement that may contribute to one of the forms of S1 above is
85 given at least one entry in the candidate table. Such statements
86 include addition, pointer addition, subtraction, multiplication,
87 negation, copies, and nontrivial type casts. If a statement may
88 represent more than one expression of the forms of S1 above,
89 multiple "interpretations" are stored in the table and chained
90 together. Examples:
91
92 * An add of two SSA names may treat either operand as the base.
93 * A multiply of two SSA names, likewise.
94 * A copy or cast may be thought of as either a CAND_MULT with
95 i = 0 and S = 1, or as a CAND_ADD with i = 0 or S = 0.
96
97 Candidate records are allocated from an obstack. They are addressed
98 both from a hash table keyed on S1, and from a vector of candidate
99 pointers arranged in predominator order.
100
101 Opportunity note
102 ----------------
103 Currently we don't recognize:
104
105 S0: Y = (S * i') - B
106 S1: X = (S * i) - B
107
108 as a strength reduction opportunity, even though this S1 would
109 also be replaceable by the S1' above. This can be added if it
110 comes up in practice.
111
112 Strength reduction in addressing
113 --------------------------------
114 There is another kind of candidate known as CAND_REF. A CAND_REF
115 describes a statement containing a memory reference having
116 complex addressing that might benefit from strength reduction.
117 Specifically, we are interested in references for which
118 get_inner_reference returns a base address, offset, and bitpos as
119 follows:
120
121 base: MEM_REF (T1, C1)
122 offset: MULT_EXPR (PLUS_EXPR (T2, C2), C3)
123 bitpos: C4 * BITS_PER_UNIT
124
125 Here T1 and T2 are arbitrary trees, and C1, C2, C3, C4 are
126 arbitrary integer constants. Note that C2 may be zero, in which
127 case the offset will be MULT_EXPR (T2, C3).
128
129 When this pattern is recognized, the original memory reference
130 can be replaced with:
131
132 MEM_REF (POINTER_PLUS_EXPR (T1, MULT_EXPR (T2, C3)),
133 C1 + (C2 * C3) + C4)
134
135 which distributes the multiply to allow constant folding. When
136 two or more addressing expressions can be represented by MEM_REFs
137 of this form, differing only in the constants C1, C2, and C4,
138 making this substitution produces more efficient addressing during
139 the RTL phases. When there are not at least two expressions with
140 the same values of T1, T2, and C3, there is nothing to be gained
141 by the replacement.
142
143 Strength reduction of CAND_REFs uses the same infrastructure as
144 that used by CAND_MULTs and CAND_ADDs. We record T1 in the base (B)
145 field, MULT_EXPR (T2, C3) in the stride (S) field, and
146 C1 + (C2 * C3) + C4 in the index (i) field. A basis for a CAND_REF
147 is thus another CAND_REF with the same B and S values. When at
148 least two CAND_REFs are chained together using the basis relation,
149 each of them is replaced as above, resulting in improved code
150 generation for addressing.
151
152 Conditional candidates
153 ======================
154
155 Conditional candidates are best illustrated with an example.
156 Consider the code sequence:
157
158 (1) x_0 = ...;
159 (2) a_0 = x_0 * 5; MULT (B: x_0; i: 0; S: 5)
160 if (...)
161 (3) x_1 = x_0 + 1; ADD (B: x_0, i: 1; S: 1)
162 (4) x_2 = PHI <x_0, x_1>; PHI (B: x_0, i: 0, S: 1)
163 (5) x_3 = x_2 + 1; ADD (B: x_2, i: 1, S: 1)
164 (6) a_1 = x_3 * 5; MULT (B: x_2, i: 1; S: 5)
165
166 Here strength reduction is complicated by the uncertain value of x_2.
167 A legitimate transformation is:
168
169 (1) x_0 = ...;
170 (2) a_0 = x_0 * 5;
171 if (...)
172 {
173 (3) [x_1 = x_0 + 1;]
174 (3a) t_1 = a_0 + 5;
175 }
176 (4) [x_2 = PHI <x_0, x_1>;]
177 (4a) t_2 = PHI <a_0, t_1>;
178 (5) [x_3 = x_2 + 1;]
179 (6r) a_1 = t_2 + 5;
180
181 where the bracketed instructions may go dead.
182
183 To recognize this opportunity, we have to observe that statement (6)
184 has a "hidden basis" (2). The hidden basis is unlike a normal basis
185 in that the statement and the hidden basis have different base SSA
186 names (x_2 and x_0, respectively). The relationship is established
187 when a statement's base name (x_2) is defined by a phi statement (4),
188 each argument of which (x_0, x_1) has an identical "derived base name."
189 If the argument is defined by a candidate (as x_1 is by (3)) that is a
190 CAND_ADD having a stride of 1, the derived base name of the argument is
191 the base name of the candidate (x_0). Otherwise, the argument itself
192 is its derived base name (as is the case with argument x_0).
193
194 The hidden basis for statement (6) is the nearest dominating candidate
195 whose base name is the derived base name (x_0) of the feeding phi (4),
196 and whose stride is identical to that of the statement. We can then
197 create the new "phi basis" (4a) and feeding adds along incoming arcs (3a),
198 allowing the final replacement of (6) by the strength-reduced (6r).
199
200 To facilitate this, a new kind of candidate (CAND_PHI) is introduced.
201 A CAND_PHI is not a candidate for replacement, but is maintained in the
202 candidate table to ease discovery of hidden bases. Any phi statement
203 whose arguments share a common derived base name is entered into the
204 table with the derived base name, an (arbitrary) index of zero, and a
205 stride of 1. A statement with a hidden basis can then be detected by
206 simply looking up its feeding phi definition in the candidate table,
207 extracting the derived base name, and searching for a basis in the
208 usual manner after substituting the derived base name.
209
210 Note that the transformation is only valid when the original phi and
211 the statements that define the phi's arguments are all at the same
212 position in the loop hierarchy. */
213
214
215 /* Index into the candidate vector, offset by 1. VECs are zero-based,
216 while cand_idx's are one-based, with zero indicating null. */
217 typedef unsigned cand_idx;
218
219 /* The kind of candidate. */
220 enum cand_kind
221 {
222 CAND_MULT,
223 CAND_ADD,
224 CAND_REF,
225 CAND_PHI
226 };
227
228 class slsr_cand_d
229 {
230 public:
231 /* The candidate statement S1. */
232 gimple *cand_stmt;
233
234 /* The base expression B: often an SSA name, but not always. */
235 tree base_expr;
236
237 /* The stride S. */
238 tree stride;
239
240 /* The index constant i. */
241 widest_int index;
242
243 /* The type of the candidate. This is normally the type of base_expr,
244 but casts may have occurred when combining feeding instructions.
245 A candidate can only be a basis for candidates of the same final type.
246 (For CAND_REFs, this is the type to be used for operand 1 of the
247 replacement MEM_REF.) */
248 tree cand_type;
249
250 /* The type to be used to interpret the stride field when the stride
251 is not a constant. Normally the same as the type of the recorded
252 stride, but when the stride has been cast we need to maintain that
253 knowledge in order to make legal substitutions without losing
254 precision. When the stride is a constant, this will be sizetype. */
255 tree stride_type;
256
257 /* The kind of candidate (CAND_MULT, etc.). */
258 enum cand_kind kind;
259
260 /* Index of this candidate in the candidate vector. */
261 cand_idx cand_num;
262
263 /* Index of the next candidate record for the same statement.
264 A statement may be useful in more than one way (e.g., due to
265 commutativity). So we can have multiple "interpretations"
266 of a statement. */
267 cand_idx next_interp;
268
269 /* Index of the first candidate record in a chain for the same
270 statement. */
271 cand_idx first_interp;
272
273 /* Index of the basis statement S0, if any, in the candidate vector. */
274 cand_idx basis;
275
276 /* First candidate for which this candidate is a basis, if one exists. */
277 cand_idx dependent;
278
279 /* Next candidate having the same basis as this one. */
280 cand_idx sibling;
281
282 /* If this is a conditional candidate, the CAND_PHI candidate
283 that defines the base SSA name B. */
284 cand_idx def_phi;
285
286 /* Savings that can be expected from eliminating dead code if this
287 candidate is replaced. */
288 int dead_savings;
289
290 /* For PHI candidates, use a visited flag to keep from processing the
291 same PHI twice from multiple paths. */
292 int visited;
293
294 /* We sometimes have to cache a phi basis with a phi candidate to
295 avoid processing it twice. Valid only if visited==1. */
296 tree cached_basis;
297 };
298
299 typedef class slsr_cand_d slsr_cand, *slsr_cand_t;
300 typedef const class slsr_cand_d *const_slsr_cand_t;
301
302 /* Pointers to candidates are chained together as part of a mapping
303 from base expressions to the candidates that use them. */
304
305 struct cand_chain_d
306 {
307 /* Base expression for the chain of candidates: often, but not
308 always, an SSA name. */
309 tree base_expr;
310
311 /* Pointer to a candidate. */
312 slsr_cand_t cand;
313
314 /* Chain pointer. */
315 struct cand_chain_d *next;
316
317 };
318
319 typedef struct cand_chain_d cand_chain, *cand_chain_t;
320 typedef const struct cand_chain_d *const_cand_chain_t;
321
322 /* Information about a unique "increment" associated with candidates
323 having an SSA name for a stride. An increment is the difference
324 between the index of the candidate and the index of its basis,
325 i.e., (i - i') as discussed in the module commentary.
326
327 When we are not going to generate address arithmetic we treat
328 increments that differ only in sign as the same, allowing sharing
329 of the cost of initializers. The absolute value of the increment
330 is stored in the incr_info. */
331
332 class incr_info_d
333 {
334 public:
335 /* The increment that relates a candidate to its basis. */
336 widest_int incr;
337
338 /* How many times the increment occurs in the candidate tree. */
339 unsigned count;
340
341 /* Cost of replacing candidates using this increment. Negative and
342 zero costs indicate replacement should be performed. */
343 int cost;
344
345 /* If this increment is profitable but is not -1, 0, or 1, it requires
346 an initializer T_0 = stride * incr to be found or introduced in the
347 nearest common dominator of all candidates. This field holds T_0
348 for subsequent use. */
349 tree initializer;
350
351 /* If the initializer was found to already exist, this is the block
352 where it was found. */
353 basic_block init_bb;
354 };
355
356 typedef class incr_info_d incr_info, *incr_info_t;
357
358 /* Candidates are maintained in a vector. If candidate X dominates
359 candidate Y, then X appears before Y in the vector; but the
360 converse does not necessarily hold. */
361 static vec<slsr_cand_t> cand_vec;
362
363 enum cost_consts
364 {
365 COST_NEUTRAL = 0,
366 COST_INFINITE = 1000
367 };
368
369 enum stride_status
370 {
371 UNKNOWN_STRIDE = 0,
372 KNOWN_STRIDE = 1
373 };
374
375 enum phi_adjust_status
376 {
377 NOT_PHI_ADJUST = 0,
378 PHI_ADJUST = 1
379 };
380
381 enum count_phis_status
382 {
383 DONT_COUNT_PHIS = 0,
384 COUNT_PHIS = 1
385 };
386
387 /* Constrain how many PHI nodes we will visit for a conditional
388 candidate (depth and breadth). */
389 const int MAX_SPREAD = 16;
390
391 /* Pointer map embodying a mapping from statements to candidates. */
392 static hash_map<gimple *, slsr_cand_t> *stmt_cand_map;
393
394 /* Obstack for candidates. */
395 static struct obstack cand_obstack;
396
397 /* Obstack for candidate chains. */
398 static struct obstack chain_obstack;
399
400 /* An array INCR_VEC of incr_infos is used during analysis of related
401 candidates having an SSA name for a stride. INCR_VEC_LEN describes
402 its current length. MAX_INCR_VEC_LEN is used to avoid costly
403 pathological cases. */
404 static incr_info_t incr_vec;
405 static unsigned incr_vec_len;
406 const int MAX_INCR_VEC_LEN = 16;
407
408 /* For a chain of candidates with unknown stride, indicates whether or not
409 we must generate pointer arithmetic when replacing statements. */
410 static bool address_arithmetic_p;
411
412 /* Forward function declarations. */
413 static slsr_cand_t base_cand_from_table (tree);
414 static tree introduce_cast_before_cand (slsr_cand_t, tree, tree);
415 static bool legal_cast_p_1 (tree, tree);
416 \f
417 /* Produce a pointer to the IDX'th candidate in the candidate vector. */
418
419 static slsr_cand_t
420 lookup_cand (cand_idx idx)
421 {
422 return cand_vec[idx];
423 }
424
425 /* Helper for hashing a candidate chain header. */
426
427 struct cand_chain_hasher : nofree_ptr_hash <cand_chain>
428 {
429 static inline hashval_t hash (const cand_chain *);
430 static inline bool equal (const cand_chain *, const cand_chain *);
431 };
432
433 inline hashval_t
434 cand_chain_hasher::hash (const cand_chain *p)
435 {
436 tree base_expr = p->base_expr;
437 return iterative_hash_expr (base_expr, 0);
438 }
439
440 inline bool
441 cand_chain_hasher::equal (const cand_chain *chain1, const cand_chain *chain2)
442 {
443 return operand_equal_p (chain1->base_expr, chain2->base_expr, 0);
444 }
445
446 /* Hash table embodying a mapping from base exprs to chains of candidates. */
447 static hash_table<cand_chain_hasher> *base_cand_map;
448 \f
449 /* Pointer map used by tree_to_aff_combination_expand. */
450 static hash_map<tree, name_expansion *> *name_expansions;
451 /* Pointer map embodying a mapping from bases to alternative bases. */
452 static hash_map<tree, tree> *alt_base_map;
453
454 /* Given BASE, use the tree affine combiniation facilities to
455 find the underlying tree expression for BASE, with any
456 immediate offset excluded.
457
458 N.B. we should eliminate this backtracking with better forward
459 analysis in a future release. */
460
461 static tree
462 get_alternative_base (tree base)
463 {
464 tree *result = alt_base_map->get (base);
465
466 if (result == NULL)
467 {
468 tree expr;
469 aff_tree aff;
470
471 tree_to_aff_combination_expand (base, TREE_TYPE (base),
472 &aff, &name_expansions);
473 aff.offset = 0;
474 expr = aff_combination_to_tree (&aff);
475
476 gcc_assert (!alt_base_map->put (base, base == expr ? NULL : expr));
477
478 return expr == base ? NULL : expr;
479 }
480
481 return *result;
482 }
483
484 /* Look in the candidate table for a CAND_PHI that defines BASE and
485 return it if found; otherwise return NULL. */
486
487 static cand_idx
488 find_phi_def (tree base)
489 {
490 slsr_cand_t c;
491
492 if (TREE_CODE (base) != SSA_NAME)
493 return 0;
494
495 c = base_cand_from_table (base);
496
497 if (!c || c->kind != CAND_PHI
498 || SSA_NAME_OCCURS_IN_ABNORMAL_PHI (gimple_phi_result (c->cand_stmt)))
499 return 0;
500
501 return c->cand_num;
502 }
503
504 /* Determine whether all uses of NAME are directly or indirectly
505 used by STMT. That is, we want to know whether if STMT goes
506 dead, the definition of NAME also goes dead. */
507 static bool
508 uses_consumed_by_stmt (tree name, gimple *stmt, unsigned recurse = 0)
509 {
510 gimple *use_stmt;
511 imm_use_iterator iter;
512 bool retval = true;
513
514 FOR_EACH_IMM_USE_STMT (use_stmt, iter, name)
515 {
516 if (use_stmt == stmt || is_gimple_debug (use_stmt))
517 continue;
518
519 if (!is_gimple_assign (use_stmt)
520 || !gimple_get_lhs (use_stmt)
521 || !is_gimple_reg (gimple_get_lhs (use_stmt))
522 || recurse >= 10
523 || !uses_consumed_by_stmt (gimple_get_lhs (use_stmt), stmt,
524 recurse + 1))
525 {
526 retval = false;
527 BREAK_FROM_IMM_USE_STMT (iter);
528 }
529 }
530
531 return retval;
532 }
533
534 /* Helper routine for find_basis_for_candidate. May be called twice:
535 once for the candidate's base expr, and optionally again either for
536 the candidate's phi definition or for a CAND_REF's alternative base
537 expression. */
538
539 static slsr_cand_t
540 find_basis_for_base_expr (slsr_cand_t c, tree base_expr)
541 {
542 cand_chain mapping_key;
543 cand_chain_t chain;
544 slsr_cand_t basis = NULL;
545
546 // Limit potential of N^2 behavior for long candidate chains.
547 int iters = 0;
548 int max_iters = param_max_slsr_candidate_scan;
549
550 mapping_key.base_expr = base_expr;
551 chain = base_cand_map->find (&mapping_key);
552
553 for (; chain && iters < max_iters; chain = chain->next, ++iters)
554 {
555 slsr_cand_t one_basis = chain->cand;
556
557 if (one_basis->kind != c->kind
558 || one_basis->cand_stmt == c->cand_stmt
559 || !operand_equal_p (one_basis->stride, c->stride, 0)
560 || !types_compatible_p (one_basis->cand_type, c->cand_type)
561 || !types_compatible_p (one_basis->stride_type, c->stride_type)
562 || !dominated_by_p (CDI_DOMINATORS,
563 gimple_bb (c->cand_stmt),
564 gimple_bb (one_basis->cand_stmt)))
565 continue;
566
567 tree lhs = gimple_assign_lhs (one_basis->cand_stmt);
568 if (lhs && TREE_CODE (lhs) == SSA_NAME
569 && SSA_NAME_OCCURS_IN_ABNORMAL_PHI (lhs))
570 continue;
571
572 if (!basis || basis->cand_num < one_basis->cand_num)
573 basis = one_basis;
574 }
575
576 return basis;
577 }
578
579 /* Use the base expr from candidate C to look for possible candidates
580 that can serve as a basis for C. Each potential basis must also
581 appear in a block that dominates the candidate statement and have
582 the same stride and type. If more than one possible basis exists,
583 the one with highest index in the vector is chosen; this will be
584 the most immediately dominating basis. */
585
586 static int
587 find_basis_for_candidate (slsr_cand_t c)
588 {
589 slsr_cand_t basis = find_basis_for_base_expr (c, c->base_expr);
590
591 /* If a candidate doesn't have a basis using its base expression,
592 it may have a basis hidden by one or more intervening phis. */
593 if (!basis && c->def_phi)
594 {
595 basic_block basis_bb, phi_bb;
596 slsr_cand_t phi_cand = lookup_cand (c->def_phi);
597 basis = find_basis_for_base_expr (c, phi_cand->base_expr);
598
599 if (basis)
600 {
601 /* A hidden basis must dominate the phi-definition of the
602 candidate's base name. */
603 phi_bb = gimple_bb (phi_cand->cand_stmt);
604 basis_bb = gimple_bb (basis->cand_stmt);
605
606 if (phi_bb == basis_bb
607 || !dominated_by_p (CDI_DOMINATORS, phi_bb, basis_bb))
608 {
609 basis = NULL;
610 c->basis = 0;
611 }
612
613 /* If we found a hidden basis, estimate additional dead-code
614 savings if the phi and its feeding statements can be removed. */
615 tree feeding_var = gimple_phi_result (phi_cand->cand_stmt);
616 if (basis && uses_consumed_by_stmt (feeding_var, c->cand_stmt))
617 c->dead_savings += phi_cand->dead_savings;
618 }
619 }
620
621 if (flag_expensive_optimizations && !basis && c->kind == CAND_REF)
622 {
623 tree alt_base_expr = get_alternative_base (c->base_expr);
624 if (alt_base_expr)
625 basis = find_basis_for_base_expr (c, alt_base_expr);
626 }
627
628 if (basis)
629 {
630 c->sibling = basis->dependent;
631 basis->dependent = c->cand_num;
632 return basis->cand_num;
633 }
634
635 return 0;
636 }
637
638 /* Record a mapping from BASE to C, indicating that C may potentially serve
639 as a basis using that base expression. BASE may be the same as
640 C->BASE_EXPR; alternatively BASE can be a different tree that share the
641 underlining expression of C->BASE_EXPR. */
642
643 static void
644 record_potential_basis (slsr_cand_t c, tree base)
645 {
646 cand_chain_t node;
647 cand_chain **slot;
648
649 gcc_assert (base);
650
651 node = (cand_chain_t) obstack_alloc (&chain_obstack, sizeof (cand_chain));
652 node->base_expr = base;
653 node->cand = c;
654 node->next = NULL;
655 slot = base_cand_map->find_slot (node, INSERT);
656
657 if (*slot)
658 {
659 cand_chain_t head = (cand_chain_t) (*slot);
660 node->next = head->next;
661 head->next = node;
662 }
663 else
664 *slot = node;
665 }
666
667 /* Allocate storage for a new candidate and initialize its fields.
668 Attempt to find a basis for the candidate.
669
670 For CAND_REF, an alternative base may also be recorded and used
671 to find a basis. This helps cases where the expression hidden
672 behind BASE (which is usually an SSA_NAME) has immediate offset,
673 e.g.
674
675 a2[i][j] = 1;
676 a2[i + 20][j] = 2; */
677
678 static slsr_cand_t
679 alloc_cand_and_find_basis (enum cand_kind kind, gimple *gs, tree base,
680 const widest_int &index, tree stride, tree ctype,
681 tree stype, unsigned savings)
682 {
683 slsr_cand_t c = (slsr_cand_t) obstack_alloc (&cand_obstack,
684 sizeof (slsr_cand));
685 c->cand_stmt = gs;
686 c->base_expr = base;
687 c->stride = stride;
688 c->index = index;
689 c->cand_type = ctype;
690 c->stride_type = stype;
691 c->kind = kind;
692 c->cand_num = cand_vec.length ();
693 c->next_interp = 0;
694 c->first_interp = c->cand_num;
695 c->dependent = 0;
696 c->sibling = 0;
697 c->def_phi = kind == CAND_MULT ? find_phi_def (base) : 0;
698 c->dead_savings = savings;
699 c->visited = 0;
700 c->cached_basis = NULL_TREE;
701
702 cand_vec.safe_push (c);
703
704 if (kind == CAND_PHI)
705 c->basis = 0;
706 else
707 c->basis = find_basis_for_candidate (c);
708
709 record_potential_basis (c, base);
710 if (flag_expensive_optimizations && kind == CAND_REF)
711 {
712 tree alt_base = get_alternative_base (base);
713 if (alt_base)
714 record_potential_basis (c, alt_base);
715 }
716
717 return c;
718 }
719
720 /* Determine the target cost of statement GS when compiling according
721 to SPEED. */
722
723 static int
724 stmt_cost (gimple *gs, bool speed)
725 {
726 tree lhs, rhs1, rhs2;
727 machine_mode lhs_mode;
728
729 gcc_assert (is_gimple_assign (gs));
730 lhs = gimple_assign_lhs (gs);
731 rhs1 = gimple_assign_rhs1 (gs);
732 lhs_mode = TYPE_MODE (TREE_TYPE (lhs));
733
734 switch (gimple_assign_rhs_code (gs))
735 {
736 case MULT_EXPR:
737 rhs2 = gimple_assign_rhs2 (gs);
738
739 if (tree_fits_shwi_p (rhs2))
740 return mult_by_coeff_cost (tree_to_shwi (rhs2), lhs_mode, speed);
741
742 gcc_assert (TREE_CODE (rhs1) != INTEGER_CST);
743 return mul_cost (speed, lhs_mode);
744
745 case PLUS_EXPR:
746 case POINTER_PLUS_EXPR:
747 case MINUS_EXPR:
748 return add_cost (speed, lhs_mode);
749
750 case NEGATE_EXPR:
751 return neg_cost (speed, lhs_mode);
752
753 CASE_CONVERT:
754 return convert_cost (lhs_mode, TYPE_MODE (TREE_TYPE (rhs1)), speed);
755
756 /* Note that we don't assign costs to copies that in most cases
757 will go away. */
758 case SSA_NAME:
759 return 0;
760
761 default:
762 ;
763 }
764
765 gcc_unreachable ();
766 return 0;
767 }
768
769 /* Look up the defining statement for BASE_IN and return a pointer
770 to its candidate in the candidate table, if any; otherwise NULL.
771 Only CAND_ADD and CAND_MULT candidates are returned. */
772
773 static slsr_cand_t
774 base_cand_from_table (tree base_in)
775 {
776 slsr_cand_t *result;
777
778 gimple *def = SSA_NAME_DEF_STMT (base_in);
779 if (!def)
780 return (slsr_cand_t) NULL;
781
782 result = stmt_cand_map->get (def);
783
784 if (result && (*result)->kind != CAND_REF)
785 return *result;
786
787 return (slsr_cand_t) NULL;
788 }
789
790 /* Add an entry to the statement-to-candidate mapping. */
791
792 static void
793 add_cand_for_stmt (gimple *gs, slsr_cand_t c)
794 {
795 gcc_assert (!stmt_cand_map->put (gs, c));
796 }
797 \f
798 /* Given PHI which contains a phi statement, determine whether it
799 satisfies all the requirements of a phi candidate. If so, create
800 a candidate. Note that a CAND_PHI never has a basis itself, but
801 is used to help find a basis for subsequent candidates. */
802
803 static void
804 slsr_process_phi (gphi *phi, bool speed)
805 {
806 unsigned i;
807 tree arg0_base = NULL_TREE, base_type;
808 slsr_cand_t c;
809 class loop *cand_loop = gimple_bb (phi)->loop_father;
810 unsigned savings = 0;
811
812 /* A CAND_PHI requires each of its arguments to have the same
813 derived base name. (See the module header commentary for a
814 definition of derived base names.) Furthermore, all feeding
815 definitions must be in the same position in the loop hierarchy
816 as PHI. */
817
818 for (i = 0; i < gimple_phi_num_args (phi); i++)
819 {
820 slsr_cand_t arg_cand;
821 tree arg = gimple_phi_arg_def (phi, i);
822 tree derived_base_name = NULL_TREE;
823 gimple *arg_stmt = NULL;
824 basic_block arg_bb = NULL;
825
826 if (TREE_CODE (arg) != SSA_NAME)
827 return;
828
829 arg_cand = base_cand_from_table (arg);
830
831 if (arg_cand)
832 {
833 while (arg_cand->kind != CAND_ADD && arg_cand->kind != CAND_PHI)
834 {
835 if (!arg_cand->next_interp)
836 return;
837
838 arg_cand = lookup_cand (arg_cand->next_interp);
839 }
840
841 if (!integer_onep (arg_cand->stride))
842 return;
843
844 derived_base_name = arg_cand->base_expr;
845 arg_stmt = arg_cand->cand_stmt;
846 arg_bb = gimple_bb (arg_stmt);
847
848 /* Gather potential dead code savings if the phi statement
849 can be removed later on. */
850 if (uses_consumed_by_stmt (arg, phi))
851 {
852 if (gimple_code (arg_stmt) == GIMPLE_PHI)
853 savings += arg_cand->dead_savings;
854 else
855 savings += stmt_cost (arg_stmt, speed);
856 }
857 }
858 else if (SSA_NAME_IS_DEFAULT_DEF (arg))
859 {
860 derived_base_name = arg;
861 arg_bb = single_succ (ENTRY_BLOCK_PTR_FOR_FN (cfun));
862 }
863
864 if (!arg_bb || arg_bb->loop_father != cand_loop)
865 return;
866
867 if (i == 0)
868 arg0_base = derived_base_name;
869 else if (!operand_equal_p (derived_base_name, arg0_base, 0))
870 return;
871 }
872
873 /* Create the candidate. "alloc_cand_and_find_basis" is named
874 misleadingly for this case, as no basis will be sought for a
875 CAND_PHI. */
876 base_type = TREE_TYPE (arg0_base);
877
878 c = alloc_cand_and_find_basis (CAND_PHI, phi, arg0_base,
879 0, integer_one_node, base_type,
880 sizetype, savings);
881
882 /* Add the candidate to the statement-candidate mapping. */
883 add_cand_for_stmt (phi, c);
884 }
885
886 /* Given PBASE which is a pointer to tree, look up the defining
887 statement for it and check whether the candidate is in the
888 form of:
889
890 X = B + (1 * S), S is integer constant
891 X = B + (i * S), S is integer one
892
893 If so, set PBASE to the candidate's base_expr and return double
894 int (i * S).
895 Otherwise, just return double int zero. */
896
897 static widest_int
898 backtrace_base_for_ref (tree *pbase)
899 {
900 tree base_in = *pbase;
901 slsr_cand_t base_cand;
902
903 STRIP_NOPS (base_in);
904
905 /* Strip off widening conversion(s) to handle cases where
906 e.g. 'B' is widened from an 'int' in order to calculate
907 a 64-bit address. */
908 if (CONVERT_EXPR_P (base_in)
909 && legal_cast_p_1 (TREE_TYPE (base_in),
910 TREE_TYPE (TREE_OPERAND (base_in, 0))))
911 base_in = get_unwidened (base_in, NULL_TREE);
912
913 if (TREE_CODE (base_in) != SSA_NAME)
914 return 0;
915
916 base_cand = base_cand_from_table (base_in);
917
918 while (base_cand && base_cand->kind != CAND_PHI)
919 {
920 if (base_cand->kind == CAND_ADD
921 && base_cand->index == 1
922 && TREE_CODE (base_cand->stride) == INTEGER_CST)
923 {
924 /* X = B + (1 * S), S is integer constant. */
925 *pbase = base_cand->base_expr;
926 return wi::to_widest (base_cand->stride);
927 }
928 else if (base_cand->kind == CAND_ADD
929 && TREE_CODE (base_cand->stride) == INTEGER_CST
930 && integer_onep (base_cand->stride))
931 {
932 /* X = B + (i * S), S is integer one. */
933 *pbase = base_cand->base_expr;
934 return base_cand->index;
935 }
936
937 base_cand = lookup_cand (base_cand->next_interp);
938 }
939
940 return 0;
941 }
942
943 /* Look for the following pattern:
944
945 *PBASE: MEM_REF (T1, C1)
946
947 *POFFSET: MULT_EXPR (T2, C3) [C2 is zero]
948 or
949 MULT_EXPR (PLUS_EXPR (T2, C2), C3)
950 or
951 MULT_EXPR (MINUS_EXPR (T2, -C2), C3)
952
953 *PINDEX: C4 * BITS_PER_UNIT
954
955 If not present, leave the input values unchanged and return FALSE.
956 Otherwise, modify the input values as follows and return TRUE:
957
958 *PBASE: T1
959 *POFFSET: MULT_EXPR (T2, C3)
960 *PINDEX: C1 + (C2 * C3) + C4
961
962 When T2 is recorded by a CAND_ADD in the form of (T2' + C5), it
963 will be further restructured to:
964
965 *PBASE: T1
966 *POFFSET: MULT_EXPR (T2', C3)
967 *PINDEX: C1 + (C2 * C3) + C4 + (C5 * C3) */
968
969 static bool
970 restructure_reference (tree *pbase, tree *poffset, widest_int *pindex,
971 tree *ptype)
972 {
973 tree base = *pbase, offset = *poffset;
974 widest_int index = *pindex;
975 tree mult_op0, t1, t2, type;
976 widest_int c1, c2, c3, c4, c5;
977 offset_int mem_offset;
978
979 if (!base
980 || !offset
981 || TREE_CODE (base) != MEM_REF
982 || !mem_ref_offset (base).is_constant (&mem_offset)
983 || TREE_CODE (offset) != MULT_EXPR
984 || TREE_CODE (TREE_OPERAND (offset, 1)) != INTEGER_CST
985 || wi::umod_floor (index, BITS_PER_UNIT) != 0)
986 return false;
987
988 t1 = TREE_OPERAND (base, 0);
989 c1 = widest_int::from (mem_offset, SIGNED);
990 type = TREE_TYPE (TREE_OPERAND (base, 1));
991
992 mult_op0 = TREE_OPERAND (offset, 0);
993 c3 = wi::to_widest (TREE_OPERAND (offset, 1));
994
995 if (TREE_CODE (mult_op0) == PLUS_EXPR)
996
997 if (TREE_CODE (TREE_OPERAND (mult_op0, 1)) == INTEGER_CST)
998 {
999 t2 = TREE_OPERAND (mult_op0, 0);
1000 c2 = wi::to_widest (TREE_OPERAND (mult_op0, 1));
1001 }
1002 else
1003 return false;
1004
1005 else if (TREE_CODE (mult_op0) == MINUS_EXPR)
1006
1007 if (TREE_CODE (TREE_OPERAND (mult_op0, 1)) == INTEGER_CST)
1008 {
1009 t2 = TREE_OPERAND (mult_op0, 0);
1010 c2 = -wi::to_widest (TREE_OPERAND (mult_op0, 1));
1011 }
1012 else
1013 return false;
1014
1015 else
1016 {
1017 t2 = mult_op0;
1018 c2 = 0;
1019 }
1020
1021 c4 = index >> LOG2_BITS_PER_UNIT;
1022 c5 = backtrace_base_for_ref (&t2);
1023
1024 *pbase = t1;
1025 *poffset = fold_build2 (MULT_EXPR, sizetype, fold_convert (sizetype, t2),
1026 wide_int_to_tree (sizetype, c3));
1027 *pindex = c1 + c2 * c3 + c4 + c5 * c3;
1028 *ptype = type;
1029
1030 return true;
1031 }
1032
1033 /* Given GS which contains a data reference, create a CAND_REF entry in
1034 the candidate table and attempt to find a basis. */
1035
1036 static void
1037 slsr_process_ref (gimple *gs)
1038 {
1039 tree ref_expr, base, offset, type;
1040 poly_int64 bitsize, bitpos;
1041 machine_mode mode;
1042 int unsignedp, reversep, volatilep;
1043 slsr_cand_t c;
1044
1045 if (gimple_vdef (gs))
1046 ref_expr = gimple_assign_lhs (gs);
1047 else
1048 ref_expr = gimple_assign_rhs1 (gs);
1049
1050 if (!handled_component_p (ref_expr)
1051 || TREE_CODE (ref_expr) == BIT_FIELD_REF
1052 || (TREE_CODE (ref_expr) == COMPONENT_REF
1053 && DECL_BIT_FIELD (TREE_OPERAND (ref_expr, 1))))
1054 return;
1055
1056 base = get_inner_reference (ref_expr, &bitsize, &bitpos, &offset, &mode,
1057 &unsignedp, &reversep, &volatilep);
1058 HOST_WIDE_INT cbitpos;
1059 if (reversep || !bitpos.is_constant (&cbitpos))
1060 return;
1061 widest_int index = cbitpos;
1062
1063 if (!restructure_reference (&base, &offset, &index, &type))
1064 return;
1065
1066 c = alloc_cand_and_find_basis (CAND_REF, gs, base, index, offset,
1067 type, sizetype, 0);
1068
1069 /* Add the candidate to the statement-candidate mapping. */
1070 add_cand_for_stmt (gs, c);
1071 }
1072
1073 /* Create a candidate entry for a statement GS, where GS multiplies
1074 two SSA names BASE_IN and STRIDE_IN. Propagate any known information
1075 about the two SSA names into the new candidate. Return the new
1076 candidate. */
1077
1078 static slsr_cand_t
1079 create_mul_ssa_cand (gimple *gs, tree base_in, tree stride_in, bool speed)
1080 {
1081 tree base = NULL_TREE, stride = NULL_TREE, ctype = NULL_TREE;
1082 tree stype = NULL_TREE;
1083 widest_int index;
1084 unsigned savings = 0;
1085 slsr_cand_t c;
1086 slsr_cand_t base_cand = base_cand_from_table (base_in);
1087
1088 /* Look at all interpretations of the base candidate, if necessary,
1089 to find information to propagate into this candidate. */
1090 while (base_cand && !base && base_cand->kind != CAND_PHI)
1091 {
1092
1093 if (base_cand->kind == CAND_MULT && integer_onep (base_cand->stride))
1094 {
1095 /* Y = (B + i') * 1
1096 X = Y * Z
1097 ================
1098 X = (B + i') * Z */
1099 base = base_cand->base_expr;
1100 index = base_cand->index;
1101 stride = stride_in;
1102 ctype = base_cand->cand_type;
1103 stype = TREE_TYPE (stride_in);
1104 if (has_single_use (base_in))
1105 savings = (base_cand->dead_savings
1106 + stmt_cost (base_cand->cand_stmt, speed));
1107 }
1108 else if (base_cand->kind == CAND_ADD
1109 && TREE_CODE (base_cand->stride) == INTEGER_CST)
1110 {
1111 /* Y = B + (i' * S), S constant
1112 X = Y * Z
1113 ============================
1114 X = B + ((i' * S) * Z) */
1115 base = base_cand->base_expr;
1116 index = base_cand->index * wi::to_widest (base_cand->stride);
1117 stride = stride_in;
1118 ctype = base_cand->cand_type;
1119 stype = TREE_TYPE (stride_in);
1120 if (has_single_use (base_in))
1121 savings = (base_cand->dead_savings
1122 + stmt_cost (base_cand->cand_stmt, speed));
1123 }
1124
1125 base_cand = lookup_cand (base_cand->next_interp);
1126 }
1127
1128 if (!base)
1129 {
1130 /* No interpretations had anything useful to propagate, so
1131 produce X = (Y + 0) * Z. */
1132 base = base_in;
1133 index = 0;
1134 stride = stride_in;
1135 ctype = TREE_TYPE (base_in);
1136 stype = TREE_TYPE (stride_in);
1137 }
1138
1139 c = alloc_cand_and_find_basis (CAND_MULT, gs, base, index, stride,
1140 ctype, stype, savings);
1141 return c;
1142 }
1143
1144 /* Create a candidate entry for a statement GS, where GS multiplies
1145 SSA name BASE_IN by constant STRIDE_IN. Propagate any known
1146 information about BASE_IN into the new candidate. Return the new
1147 candidate. */
1148
1149 static slsr_cand_t
1150 create_mul_imm_cand (gimple *gs, tree base_in, tree stride_in, bool speed)
1151 {
1152 tree base = NULL_TREE, stride = NULL_TREE, ctype = NULL_TREE;
1153 widest_int index, temp;
1154 unsigned savings = 0;
1155 slsr_cand_t c;
1156 slsr_cand_t base_cand = base_cand_from_table (base_in);
1157
1158 /* Look at all interpretations of the base candidate, if necessary,
1159 to find information to propagate into this candidate. */
1160 while (base_cand && !base && base_cand->kind != CAND_PHI)
1161 {
1162 if (base_cand->kind == CAND_MULT
1163 && TREE_CODE (base_cand->stride) == INTEGER_CST)
1164 {
1165 /* Y = (B + i') * S, S constant
1166 X = Y * c
1167 ============================
1168 X = (B + i') * (S * c) */
1169 temp = wi::to_widest (base_cand->stride) * wi::to_widest (stride_in);
1170 if (wi::fits_to_tree_p (temp, TREE_TYPE (stride_in)))
1171 {
1172 base = base_cand->base_expr;
1173 index = base_cand->index;
1174 stride = wide_int_to_tree (TREE_TYPE (stride_in), temp);
1175 ctype = base_cand->cand_type;
1176 if (has_single_use (base_in))
1177 savings = (base_cand->dead_savings
1178 + stmt_cost (base_cand->cand_stmt, speed));
1179 }
1180 }
1181 else if (base_cand->kind == CAND_ADD && integer_onep (base_cand->stride))
1182 {
1183 /* Y = B + (i' * 1)
1184 X = Y * c
1185 ===========================
1186 X = (B + i') * c */
1187 base = base_cand->base_expr;
1188 index = base_cand->index;
1189 stride = stride_in;
1190 ctype = base_cand->cand_type;
1191 if (has_single_use (base_in))
1192 savings = (base_cand->dead_savings
1193 + stmt_cost (base_cand->cand_stmt, speed));
1194 }
1195 else if (base_cand->kind == CAND_ADD
1196 && base_cand->index == 1
1197 && TREE_CODE (base_cand->stride) == INTEGER_CST)
1198 {
1199 /* Y = B + (1 * S), S constant
1200 X = Y * c
1201 ===========================
1202 X = (B + S) * c */
1203 base = base_cand->base_expr;
1204 index = wi::to_widest (base_cand->stride);
1205 stride = stride_in;
1206 ctype = base_cand->cand_type;
1207 if (has_single_use (base_in))
1208 savings = (base_cand->dead_savings
1209 + stmt_cost (base_cand->cand_stmt, speed));
1210 }
1211
1212 base_cand = lookup_cand (base_cand->next_interp);
1213 }
1214
1215 if (!base)
1216 {
1217 /* No interpretations had anything useful to propagate, so
1218 produce X = (Y + 0) * c. */
1219 base = base_in;
1220 index = 0;
1221 stride = stride_in;
1222 ctype = TREE_TYPE (base_in);
1223 }
1224
1225 c = alloc_cand_and_find_basis (CAND_MULT, gs, base, index, stride,
1226 ctype, sizetype, savings);
1227 return c;
1228 }
1229
1230 /* Given GS which is a multiply of scalar integers, make an appropriate
1231 entry in the candidate table. If this is a multiply of two SSA names,
1232 create two CAND_MULT interpretations and attempt to find a basis for
1233 each of them. Otherwise, create a single CAND_MULT and attempt to
1234 find a basis. */
1235
1236 static void
1237 slsr_process_mul (gimple *gs, tree rhs1, tree rhs2, bool speed)
1238 {
1239 slsr_cand_t c, c2;
1240
1241 /* If this is a multiply of an SSA name with itself, it is highly
1242 unlikely that we will get a strength reduction opportunity, so
1243 don't record it as a candidate. This simplifies the logic for
1244 finding a basis, so if this is removed that must be considered. */
1245 if (rhs1 == rhs2)
1246 return;
1247
1248 if (TREE_CODE (rhs2) == SSA_NAME)
1249 {
1250 /* Record an interpretation of this statement in the candidate table
1251 assuming RHS1 is the base expression and RHS2 is the stride. */
1252 c = create_mul_ssa_cand (gs, rhs1, rhs2, speed);
1253
1254 /* Add the first interpretation to the statement-candidate mapping. */
1255 add_cand_for_stmt (gs, c);
1256
1257 /* Record another interpretation of this statement assuming RHS1
1258 is the stride and RHS2 is the base expression. */
1259 c2 = create_mul_ssa_cand (gs, rhs2, rhs1, speed);
1260 c->next_interp = c2->cand_num;
1261 c2->first_interp = c->cand_num;
1262 }
1263 else if (TREE_CODE (rhs2) == INTEGER_CST && !integer_zerop (rhs2))
1264 {
1265 /* Record an interpretation for the multiply-immediate. */
1266 c = create_mul_imm_cand (gs, rhs1, rhs2, speed);
1267
1268 /* Add the interpretation to the statement-candidate mapping. */
1269 add_cand_for_stmt (gs, c);
1270 }
1271 }
1272
1273 /* Create a candidate entry for a statement GS, where GS adds two
1274 SSA names BASE_IN and ADDEND_IN if SUBTRACT_P is false, and
1275 subtracts ADDEND_IN from BASE_IN otherwise. Propagate any known
1276 information about the two SSA names into the new candidate.
1277 Return the new candidate. */
1278
1279 static slsr_cand_t
1280 create_add_ssa_cand (gimple *gs, tree base_in, tree addend_in,
1281 bool subtract_p, bool speed)
1282 {
1283 tree base = NULL_TREE, stride = NULL_TREE, ctype = NULL_TREE;
1284 tree stype = NULL_TREE;
1285 widest_int index;
1286 unsigned savings = 0;
1287 slsr_cand_t c;
1288 slsr_cand_t base_cand = base_cand_from_table (base_in);
1289 slsr_cand_t addend_cand = base_cand_from_table (addend_in);
1290
1291 /* The most useful transformation is a multiply-immediate feeding
1292 an add or subtract. Look for that first. */
1293 while (addend_cand && !base && addend_cand->kind != CAND_PHI)
1294 {
1295 if (addend_cand->kind == CAND_MULT
1296 && addend_cand->index == 0
1297 && TREE_CODE (addend_cand->stride) == INTEGER_CST)
1298 {
1299 /* Z = (B + 0) * S, S constant
1300 X = Y +/- Z
1301 ===========================
1302 X = Y + ((+/-1 * S) * B) */
1303 base = base_in;
1304 index = wi::to_widest (addend_cand->stride);
1305 if (subtract_p)
1306 index = -index;
1307 stride = addend_cand->base_expr;
1308 ctype = TREE_TYPE (base_in);
1309 stype = addend_cand->cand_type;
1310 if (has_single_use (addend_in))
1311 savings = (addend_cand->dead_savings
1312 + stmt_cost (addend_cand->cand_stmt, speed));
1313 }
1314
1315 addend_cand = lookup_cand (addend_cand->next_interp);
1316 }
1317
1318 while (base_cand && !base && base_cand->kind != CAND_PHI)
1319 {
1320 if (base_cand->kind == CAND_ADD
1321 && (base_cand->index == 0
1322 || operand_equal_p (base_cand->stride,
1323 integer_zero_node, 0)))
1324 {
1325 /* Y = B + (i' * S), i' * S = 0
1326 X = Y +/- Z
1327 ============================
1328 X = B + (+/-1 * Z) */
1329 base = base_cand->base_expr;
1330 index = subtract_p ? -1 : 1;
1331 stride = addend_in;
1332 ctype = base_cand->cand_type;
1333 stype = (TREE_CODE (addend_in) == INTEGER_CST ? sizetype
1334 : TREE_TYPE (addend_in));
1335 if (has_single_use (base_in))
1336 savings = (base_cand->dead_savings
1337 + stmt_cost (base_cand->cand_stmt, speed));
1338 }
1339 else if (subtract_p)
1340 {
1341 slsr_cand_t subtrahend_cand = base_cand_from_table (addend_in);
1342
1343 while (subtrahend_cand && !base && subtrahend_cand->kind != CAND_PHI)
1344 {
1345 if (subtrahend_cand->kind == CAND_MULT
1346 && subtrahend_cand->index == 0
1347 && TREE_CODE (subtrahend_cand->stride) == INTEGER_CST)
1348 {
1349 /* Z = (B + 0) * S, S constant
1350 X = Y - Z
1351 ===========================
1352 Value: X = Y + ((-1 * S) * B) */
1353 base = base_in;
1354 index = wi::to_widest (subtrahend_cand->stride);
1355 index = -index;
1356 stride = subtrahend_cand->base_expr;
1357 ctype = TREE_TYPE (base_in);
1358 stype = subtrahend_cand->cand_type;
1359 if (has_single_use (addend_in))
1360 savings = (subtrahend_cand->dead_savings
1361 + stmt_cost (subtrahend_cand->cand_stmt, speed));
1362 }
1363
1364 subtrahend_cand = lookup_cand (subtrahend_cand->next_interp);
1365 }
1366 }
1367
1368 base_cand = lookup_cand (base_cand->next_interp);
1369 }
1370
1371 if (!base)
1372 {
1373 /* No interpretations had anything useful to propagate, so
1374 produce X = Y + (1 * Z). */
1375 base = base_in;
1376 index = subtract_p ? -1 : 1;
1377 stride = addend_in;
1378 ctype = TREE_TYPE (base_in);
1379 stype = (TREE_CODE (addend_in) == INTEGER_CST ? sizetype
1380 : TREE_TYPE (addend_in));
1381 }
1382
1383 c = alloc_cand_and_find_basis (CAND_ADD, gs, base, index, stride,
1384 ctype, stype, savings);
1385 return c;
1386 }
1387
1388 /* Create a candidate entry for a statement GS, where GS adds SSA
1389 name BASE_IN to constant INDEX_IN. Propagate any known information
1390 about BASE_IN into the new candidate. Return the new candidate. */
1391
1392 static slsr_cand_t
1393 create_add_imm_cand (gimple *gs, tree base_in, const widest_int &index_in,
1394 bool speed)
1395 {
1396 enum cand_kind kind = CAND_ADD;
1397 tree base = NULL_TREE, stride = NULL_TREE, ctype = NULL_TREE;
1398 tree stype = NULL_TREE;
1399 widest_int index, multiple;
1400 unsigned savings = 0;
1401 slsr_cand_t c;
1402 slsr_cand_t base_cand = base_cand_from_table (base_in);
1403
1404 while (base_cand && !base && base_cand->kind != CAND_PHI)
1405 {
1406 signop sign = TYPE_SIGN (TREE_TYPE (base_cand->stride));
1407
1408 if (TREE_CODE (base_cand->stride) == INTEGER_CST
1409 && wi::multiple_of_p (index_in, wi::to_widest (base_cand->stride),
1410 sign, &multiple))
1411 {
1412 /* Y = (B + i') * S, S constant, c = kS for some integer k
1413 X = Y + c
1414 ============================
1415 X = (B + (i'+ k)) * S
1416 OR
1417 Y = B + (i' * S), S constant, c = kS for some integer k
1418 X = Y + c
1419 ============================
1420 X = (B + (i'+ k)) * S */
1421 kind = base_cand->kind;
1422 base = base_cand->base_expr;
1423 index = base_cand->index + multiple;
1424 stride = base_cand->stride;
1425 ctype = base_cand->cand_type;
1426 stype = base_cand->stride_type;
1427 if (has_single_use (base_in))
1428 savings = (base_cand->dead_savings
1429 + stmt_cost (base_cand->cand_stmt, speed));
1430 }
1431
1432 base_cand = lookup_cand (base_cand->next_interp);
1433 }
1434
1435 if (!base)
1436 {
1437 /* No interpretations had anything useful to propagate, so
1438 produce X = Y + (c * 1). */
1439 kind = CAND_ADD;
1440 base = base_in;
1441 index = index_in;
1442 stride = integer_one_node;
1443 ctype = TREE_TYPE (base_in);
1444 stype = sizetype;
1445 }
1446
1447 c = alloc_cand_and_find_basis (kind, gs, base, index, stride,
1448 ctype, stype, savings);
1449 return c;
1450 }
1451
1452 /* Given GS which is an add or subtract of scalar integers or pointers,
1453 make at least one appropriate entry in the candidate table. */
1454
1455 static void
1456 slsr_process_add (gimple *gs, tree rhs1, tree rhs2, bool speed)
1457 {
1458 bool subtract_p = gimple_assign_rhs_code (gs) == MINUS_EXPR;
1459 slsr_cand_t c = NULL, c2;
1460
1461 if (TREE_CODE (rhs2) == SSA_NAME)
1462 {
1463 /* First record an interpretation assuming RHS1 is the base expression
1464 and RHS2 is the stride. But it doesn't make sense for the
1465 stride to be a pointer, so don't record a candidate in that case. */
1466 if (!POINTER_TYPE_P (TREE_TYPE (rhs2)))
1467 {
1468 c = create_add_ssa_cand (gs, rhs1, rhs2, subtract_p, speed);
1469
1470 /* Add the first interpretation to the statement-candidate
1471 mapping. */
1472 add_cand_for_stmt (gs, c);
1473 }
1474
1475 /* If the two RHS operands are identical, or this is a subtract,
1476 we're done. */
1477 if (operand_equal_p (rhs1, rhs2, 0) || subtract_p)
1478 return;
1479
1480 /* Otherwise, record another interpretation assuming RHS2 is the
1481 base expression and RHS1 is the stride, again provided that the
1482 stride is not a pointer. */
1483 if (!POINTER_TYPE_P (TREE_TYPE (rhs1)))
1484 {
1485 c2 = create_add_ssa_cand (gs, rhs2, rhs1, false, speed);
1486 if (c)
1487 {
1488 c->next_interp = c2->cand_num;
1489 c2->first_interp = c->cand_num;
1490 }
1491 else
1492 add_cand_for_stmt (gs, c2);
1493 }
1494 }
1495 else if (TREE_CODE (rhs2) == INTEGER_CST)
1496 {
1497 /* Record an interpretation for the add-immediate. */
1498 widest_int index = wi::to_widest (rhs2);
1499 if (subtract_p)
1500 index = -index;
1501
1502 c = create_add_imm_cand (gs, rhs1, index, speed);
1503
1504 /* Add the interpretation to the statement-candidate mapping. */
1505 add_cand_for_stmt (gs, c);
1506 }
1507 }
1508
1509 /* Given GS which is a negate of a scalar integer, make an appropriate
1510 entry in the candidate table. A negate is equivalent to a multiply
1511 by -1. */
1512
1513 static void
1514 slsr_process_neg (gimple *gs, tree rhs1, bool speed)
1515 {
1516 /* Record a CAND_MULT interpretation for the multiply by -1. */
1517 slsr_cand_t c = create_mul_imm_cand (gs, rhs1, integer_minus_one_node, speed);
1518
1519 /* Add the interpretation to the statement-candidate mapping. */
1520 add_cand_for_stmt (gs, c);
1521 }
1522
1523 /* Help function for legal_cast_p, operating on two trees. Checks
1524 whether it's allowable to cast from RHS to LHS. See legal_cast_p
1525 for more details. */
1526
1527 static bool
1528 legal_cast_p_1 (tree lhs_type, tree rhs_type)
1529 {
1530 unsigned lhs_size, rhs_size;
1531 bool lhs_wraps, rhs_wraps;
1532
1533 lhs_size = TYPE_PRECISION (lhs_type);
1534 rhs_size = TYPE_PRECISION (rhs_type);
1535 lhs_wraps = ANY_INTEGRAL_TYPE_P (lhs_type) && TYPE_OVERFLOW_WRAPS (lhs_type);
1536 rhs_wraps = ANY_INTEGRAL_TYPE_P (rhs_type) && TYPE_OVERFLOW_WRAPS (rhs_type);
1537
1538 if (lhs_size < rhs_size
1539 || (rhs_wraps && !lhs_wraps)
1540 || (rhs_wraps && lhs_wraps && rhs_size != lhs_size))
1541 return false;
1542
1543 return true;
1544 }
1545
1546 /* Return TRUE if GS is a statement that defines an SSA name from
1547 a conversion and is legal for us to combine with an add and multiply
1548 in the candidate table. For example, suppose we have:
1549
1550 A = B + i;
1551 C = (type) A;
1552 D = C * S;
1553
1554 Without the type-cast, we would create a CAND_MULT for D with base B,
1555 index i, and stride S. We want to record this candidate only if it
1556 is equivalent to apply the type cast following the multiply:
1557
1558 A = B + i;
1559 E = A * S;
1560 D = (type) E;
1561
1562 We will record the type with the candidate for D. This allows us
1563 to use a similar previous candidate as a basis. If we have earlier seen
1564
1565 A' = B + i';
1566 C' = (type) A';
1567 D' = C' * S;
1568
1569 we can replace D with
1570
1571 D = D' + (i - i') * S;
1572
1573 But if moving the type-cast would change semantics, we mustn't do this.
1574
1575 This is legitimate for casts from a non-wrapping integral type to
1576 any integral type of the same or larger size. It is not legitimate
1577 to convert a wrapping type to a non-wrapping type, or to a wrapping
1578 type of a different size. I.e., with a wrapping type, we must
1579 assume that the addition B + i could wrap, in which case performing
1580 the multiply before or after one of the "illegal" type casts will
1581 have different semantics. */
1582
1583 static bool
1584 legal_cast_p (gimple *gs, tree rhs)
1585 {
1586 if (!is_gimple_assign (gs)
1587 || !CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (gs)))
1588 return false;
1589
1590 return legal_cast_p_1 (TREE_TYPE (gimple_assign_lhs (gs)), TREE_TYPE (rhs));
1591 }
1592
1593 /* Given GS which is a cast to a scalar integer type, determine whether
1594 the cast is legal for strength reduction. If so, make at least one
1595 appropriate entry in the candidate table. */
1596
1597 static void
1598 slsr_process_cast (gimple *gs, tree rhs1, bool speed)
1599 {
1600 tree lhs, ctype;
1601 slsr_cand_t base_cand, c = NULL, c2;
1602 unsigned savings = 0;
1603
1604 if (!legal_cast_p (gs, rhs1))
1605 return;
1606
1607 lhs = gimple_assign_lhs (gs);
1608 base_cand = base_cand_from_table (rhs1);
1609 ctype = TREE_TYPE (lhs);
1610
1611 if (base_cand && base_cand->kind != CAND_PHI)
1612 {
1613 slsr_cand_t first_cand = NULL;
1614
1615 while (base_cand)
1616 {
1617 /* Propagate all data from the base candidate except the type,
1618 which comes from the cast, and the base candidate's cast,
1619 which is no longer applicable. */
1620 if (has_single_use (rhs1))
1621 savings = (base_cand->dead_savings
1622 + stmt_cost (base_cand->cand_stmt, speed));
1623
1624 c = alloc_cand_and_find_basis (base_cand->kind, gs,
1625 base_cand->base_expr,
1626 base_cand->index, base_cand->stride,
1627 ctype, base_cand->stride_type,
1628 savings);
1629 if (!first_cand)
1630 first_cand = c;
1631
1632 if (first_cand != c)
1633 c->first_interp = first_cand->cand_num;
1634
1635 base_cand = lookup_cand (base_cand->next_interp);
1636 }
1637 }
1638 else
1639 {
1640 /* If nothing is known about the RHS, create fresh CAND_ADD and
1641 CAND_MULT interpretations:
1642
1643 X = Y + (0 * 1)
1644 X = (Y + 0) * 1
1645
1646 The first of these is somewhat arbitrary, but the choice of
1647 1 for the stride simplifies the logic for propagating casts
1648 into their uses. */
1649 c = alloc_cand_and_find_basis (CAND_ADD, gs, rhs1, 0,
1650 integer_one_node, ctype, sizetype, 0);
1651 c2 = alloc_cand_and_find_basis (CAND_MULT, gs, rhs1, 0,
1652 integer_one_node, ctype, sizetype, 0);
1653 c->next_interp = c2->cand_num;
1654 c2->first_interp = c->cand_num;
1655 }
1656
1657 /* Add the first (or only) interpretation to the statement-candidate
1658 mapping. */
1659 add_cand_for_stmt (gs, c);
1660 }
1661
1662 /* Given GS which is a copy of a scalar integer type, make at least one
1663 appropriate entry in the candidate table.
1664
1665 This interface is included for completeness, but is unnecessary
1666 if this pass immediately follows a pass that performs copy
1667 propagation, such as DOM. */
1668
1669 static void
1670 slsr_process_copy (gimple *gs, tree rhs1, bool speed)
1671 {
1672 slsr_cand_t base_cand, c = NULL, c2;
1673 unsigned savings = 0;
1674
1675 base_cand = base_cand_from_table (rhs1);
1676
1677 if (base_cand && base_cand->kind != CAND_PHI)
1678 {
1679 slsr_cand_t first_cand = NULL;
1680
1681 while (base_cand)
1682 {
1683 /* Propagate all data from the base candidate. */
1684 if (has_single_use (rhs1))
1685 savings = (base_cand->dead_savings
1686 + stmt_cost (base_cand->cand_stmt, speed));
1687
1688 c = alloc_cand_and_find_basis (base_cand->kind, gs,
1689 base_cand->base_expr,
1690 base_cand->index, base_cand->stride,
1691 base_cand->cand_type,
1692 base_cand->stride_type, savings);
1693 if (!first_cand)
1694 first_cand = c;
1695
1696 if (first_cand != c)
1697 c->first_interp = first_cand->cand_num;
1698
1699 base_cand = lookup_cand (base_cand->next_interp);
1700 }
1701 }
1702 else
1703 {
1704 /* If nothing is known about the RHS, create fresh CAND_ADD and
1705 CAND_MULT interpretations:
1706
1707 X = Y + (0 * 1)
1708 X = (Y + 0) * 1
1709
1710 The first of these is somewhat arbitrary, but the choice of
1711 1 for the stride simplifies the logic for propagating casts
1712 into their uses. */
1713 c = alloc_cand_and_find_basis (CAND_ADD, gs, rhs1, 0,
1714 integer_one_node, TREE_TYPE (rhs1),
1715 sizetype, 0);
1716 c2 = alloc_cand_and_find_basis (CAND_MULT, gs, rhs1, 0,
1717 integer_one_node, TREE_TYPE (rhs1),
1718 sizetype, 0);
1719 c->next_interp = c2->cand_num;
1720 c2->first_interp = c->cand_num;
1721 }
1722
1723 /* Add the first (or only) interpretation to the statement-candidate
1724 mapping. */
1725 add_cand_for_stmt (gs, c);
1726 }
1727 \f
1728 class find_candidates_dom_walker : public dom_walker
1729 {
1730 public:
1731 find_candidates_dom_walker (cdi_direction direction)
1732 : dom_walker (direction) {}
1733 virtual edge before_dom_children (basic_block);
1734 };
1735
1736 /* Find strength-reduction candidates in block BB. */
1737
1738 edge
1739 find_candidates_dom_walker::before_dom_children (basic_block bb)
1740 {
1741 bool speed = optimize_bb_for_speed_p (bb);
1742
1743 for (gphi_iterator gsi = gsi_start_phis (bb); !gsi_end_p (gsi);
1744 gsi_next (&gsi))
1745 slsr_process_phi (gsi.phi (), speed);
1746
1747 for (gimple_stmt_iterator gsi = gsi_start_bb (bb); !gsi_end_p (gsi);
1748 gsi_next (&gsi))
1749 {
1750 gimple *gs = gsi_stmt (gsi);
1751
1752 if (stmt_could_throw_p (cfun, gs))
1753 continue;
1754
1755 if (gimple_vuse (gs) && gimple_assign_single_p (gs))
1756 slsr_process_ref (gs);
1757
1758 else if (is_gimple_assign (gs)
1759 && (INTEGRAL_TYPE_P (TREE_TYPE (gimple_assign_lhs (gs)))
1760 || POINTER_TYPE_P (TREE_TYPE (gimple_assign_lhs (gs)))))
1761 {
1762 tree rhs1 = NULL_TREE, rhs2 = NULL_TREE;
1763
1764 switch (gimple_assign_rhs_code (gs))
1765 {
1766 case MULT_EXPR:
1767 case PLUS_EXPR:
1768 rhs1 = gimple_assign_rhs1 (gs);
1769 rhs2 = gimple_assign_rhs2 (gs);
1770 /* Should never happen, but currently some buggy situations
1771 in earlier phases put constants in rhs1. */
1772 if (TREE_CODE (rhs1) != SSA_NAME)
1773 continue;
1774 break;
1775
1776 /* Possible future opportunity: rhs1 of a ptr+ can be
1777 an ADDR_EXPR. */
1778 case POINTER_PLUS_EXPR:
1779 case MINUS_EXPR:
1780 rhs2 = gimple_assign_rhs2 (gs);
1781 gcc_fallthrough ();
1782
1783 CASE_CONVERT:
1784 case SSA_NAME:
1785 case NEGATE_EXPR:
1786 rhs1 = gimple_assign_rhs1 (gs);
1787 if (TREE_CODE (rhs1) != SSA_NAME)
1788 continue;
1789 break;
1790
1791 default:
1792 ;
1793 }
1794
1795 switch (gimple_assign_rhs_code (gs))
1796 {
1797 case MULT_EXPR:
1798 slsr_process_mul (gs, rhs1, rhs2, speed);
1799 break;
1800
1801 case PLUS_EXPR:
1802 case POINTER_PLUS_EXPR:
1803 case MINUS_EXPR:
1804 slsr_process_add (gs, rhs1, rhs2, speed);
1805 break;
1806
1807 case NEGATE_EXPR:
1808 slsr_process_neg (gs, rhs1, speed);
1809 break;
1810
1811 CASE_CONVERT:
1812 slsr_process_cast (gs, rhs1, speed);
1813 break;
1814
1815 case SSA_NAME:
1816 slsr_process_copy (gs, rhs1, speed);
1817 break;
1818
1819 default:
1820 ;
1821 }
1822 }
1823 }
1824 return NULL;
1825 }
1826 \f
1827 /* Dump a candidate for debug. */
1828
1829 static void
1830 dump_candidate (slsr_cand_t c)
1831 {
1832 fprintf (dump_file, "%3d [%d] ", c->cand_num,
1833 gimple_bb (c->cand_stmt)->index);
1834 print_gimple_stmt (dump_file, c->cand_stmt, 0);
1835 switch (c->kind)
1836 {
1837 case CAND_MULT:
1838 fputs (" MULT : (", dump_file);
1839 print_generic_expr (dump_file, c->base_expr);
1840 fputs (" + ", dump_file);
1841 print_decs (c->index, dump_file);
1842 fputs (") * ", dump_file);
1843 if (TREE_CODE (c->stride) != INTEGER_CST
1844 && c->stride_type != TREE_TYPE (c->stride))
1845 {
1846 fputs ("(", dump_file);
1847 print_generic_expr (dump_file, c->stride_type);
1848 fputs (")", dump_file);
1849 }
1850 print_generic_expr (dump_file, c->stride);
1851 fputs (" : ", dump_file);
1852 break;
1853 case CAND_ADD:
1854 fputs (" ADD : ", dump_file);
1855 print_generic_expr (dump_file, c->base_expr);
1856 fputs (" + (", dump_file);
1857 print_decs (c->index, dump_file);
1858 fputs (" * ", dump_file);
1859 if (TREE_CODE (c->stride) != INTEGER_CST
1860 && c->stride_type != TREE_TYPE (c->stride))
1861 {
1862 fputs ("(", dump_file);
1863 print_generic_expr (dump_file, c->stride_type);
1864 fputs (")", dump_file);
1865 }
1866 print_generic_expr (dump_file, c->stride);
1867 fputs (") : ", dump_file);
1868 break;
1869 case CAND_REF:
1870 fputs (" REF : ", dump_file);
1871 print_generic_expr (dump_file, c->base_expr);
1872 fputs (" + (", dump_file);
1873 print_generic_expr (dump_file, c->stride);
1874 fputs (") + ", dump_file);
1875 print_decs (c->index, dump_file);
1876 fputs (" : ", dump_file);
1877 break;
1878 case CAND_PHI:
1879 fputs (" PHI : ", dump_file);
1880 print_generic_expr (dump_file, c->base_expr);
1881 fputs (" + (unknown * ", dump_file);
1882 print_generic_expr (dump_file, c->stride);
1883 fputs (") : ", dump_file);
1884 break;
1885 default:
1886 gcc_unreachable ();
1887 }
1888 print_generic_expr (dump_file, c->cand_type);
1889 fprintf (dump_file, "\n basis: %d dependent: %d sibling: %d\n",
1890 c->basis, c->dependent, c->sibling);
1891 fprintf (dump_file,
1892 " next-interp: %d first-interp: %d dead-savings: %d\n",
1893 c->next_interp, c->first_interp, c->dead_savings);
1894 if (c->def_phi)
1895 fprintf (dump_file, " phi: %d\n", c->def_phi);
1896 fputs ("\n", dump_file);
1897 }
1898
1899 /* Dump the candidate vector for debug. */
1900
1901 static void
1902 dump_cand_vec (void)
1903 {
1904 unsigned i;
1905 slsr_cand_t c;
1906
1907 fprintf (dump_file, "\nStrength reduction candidate vector:\n\n");
1908
1909 FOR_EACH_VEC_ELT (cand_vec, i, c)
1910 if (c != NULL)
1911 dump_candidate (c);
1912 }
1913
1914 /* Callback used to dump the candidate chains hash table. */
1915
1916 int
1917 ssa_base_cand_dump_callback (cand_chain **slot, void *ignored ATTRIBUTE_UNUSED)
1918 {
1919 const_cand_chain_t chain = *slot;
1920 cand_chain_t p;
1921
1922 print_generic_expr (dump_file, chain->base_expr);
1923 fprintf (dump_file, " -> %d", chain->cand->cand_num);
1924
1925 for (p = chain->next; p; p = p->next)
1926 fprintf (dump_file, " -> %d", p->cand->cand_num);
1927
1928 fputs ("\n", dump_file);
1929 return 1;
1930 }
1931
1932 /* Dump the candidate chains. */
1933
1934 static void
1935 dump_cand_chains (void)
1936 {
1937 fprintf (dump_file, "\nStrength reduction candidate chains:\n\n");
1938 base_cand_map->traverse_noresize <void *, ssa_base_cand_dump_callback>
1939 (NULL);
1940 fputs ("\n", dump_file);
1941 }
1942
1943 /* Dump the increment vector for debug. */
1944
1945 static void
1946 dump_incr_vec (void)
1947 {
1948 if (dump_file && (dump_flags & TDF_DETAILS))
1949 {
1950 unsigned i;
1951
1952 fprintf (dump_file, "\nIncrement vector:\n\n");
1953
1954 for (i = 0; i < incr_vec_len; i++)
1955 {
1956 fprintf (dump_file, "%3d increment: ", i);
1957 print_decs (incr_vec[i].incr, dump_file);
1958 fprintf (dump_file, "\n count: %d", incr_vec[i].count);
1959 fprintf (dump_file, "\n cost: %d", incr_vec[i].cost);
1960 fputs ("\n initializer: ", dump_file);
1961 print_generic_expr (dump_file, incr_vec[i].initializer);
1962 fputs ("\n\n", dump_file);
1963 }
1964 }
1965 }
1966 \f
1967 /* Replace *EXPR in candidate C with an equivalent strength-reduced
1968 data reference. */
1969
1970 static void
1971 replace_ref (tree *expr, slsr_cand_t c)
1972 {
1973 tree add_expr, mem_ref, acc_type = TREE_TYPE (*expr);
1974 unsigned HOST_WIDE_INT misalign;
1975 unsigned align;
1976
1977 /* Ensure the memory reference carries the minimum alignment
1978 requirement for the data type. See PR58041. */
1979 get_object_alignment_1 (*expr, &align, &misalign);
1980 if (misalign != 0)
1981 align = least_bit_hwi (misalign);
1982 if (align < TYPE_ALIGN (acc_type))
1983 acc_type = build_aligned_type (acc_type, align);
1984
1985 add_expr = fold_build2 (POINTER_PLUS_EXPR, c->cand_type,
1986 c->base_expr, c->stride);
1987 mem_ref = fold_build2 (MEM_REF, acc_type, add_expr,
1988 wide_int_to_tree (c->cand_type, c->index));
1989
1990 /* Gimplify the base addressing expression for the new MEM_REF tree. */
1991 gimple_stmt_iterator gsi = gsi_for_stmt (c->cand_stmt);
1992 TREE_OPERAND (mem_ref, 0)
1993 = force_gimple_operand_gsi (&gsi, TREE_OPERAND (mem_ref, 0),
1994 /*simple_p=*/true, NULL,
1995 /*before=*/true, GSI_SAME_STMT);
1996 copy_ref_info (mem_ref, *expr);
1997 *expr = mem_ref;
1998 update_stmt (c->cand_stmt);
1999 }
2000
2001 /* Return true if CAND_REF candidate C is a valid memory reference. */
2002
2003 static bool
2004 valid_mem_ref_cand_p (slsr_cand_t c)
2005 {
2006 if (TREE_CODE (TREE_OPERAND (c->stride, 1)) != INTEGER_CST)
2007 return false;
2008
2009 struct mem_address addr
2010 = { NULL_TREE, c->base_expr, TREE_OPERAND (c->stride, 0),
2011 TREE_OPERAND (c->stride, 1), wide_int_to_tree (sizetype, c->index) };
2012
2013 return
2014 valid_mem_ref_p (TYPE_MODE (c->cand_type), TYPE_ADDR_SPACE (c->cand_type),
2015 &addr);
2016 }
2017
2018 /* Replace CAND_REF candidate C, each sibling of candidate C, and each
2019 dependent of candidate C with an equivalent strength-reduced data
2020 reference. */
2021
2022 static void
2023 replace_refs (slsr_cand_t c)
2024 {
2025 /* Replacing a chain of only 2 candidates which are valid memory references
2026 is generally counter-productive because you cannot recoup the additional
2027 calculation added in front of them. */
2028 if (c->basis == 0
2029 && c->dependent
2030 && !lookup_cand (c->dependent)->dependent
2031 && valid_mem_ref_cand_p (c)
2032 && valid_mem_ref_cand_p (lookup_cand (c->dependent)))
2033 return;
2034
2035 if (dump_file && (dump_flags & TDF_DETAILS))
2036 {
2037 fputs ("Replacing reference: ", dump_file);
2038 print_gimple_stmt (dump_file, c->cand_stmt, 0);
2039 }
2040
2041 if (gimple_vdef (c->cand_stmt))
2042 {
2043 tree *lhs = gimple_assign_lhs_ptr (c->cand_stmt);
2044 replace_ref (lhs, c);
2045 }
2046 else
2047 {
2048 tree *rhs = gimple_assign_rhs1_ptr (c->cand_stmt);
2049 replace_ref (rhs, c);
2050 }
2051
2052 if (dump_file && (dump_flags & TDF_DETAILS))
2053 {
2054 fputs ("With: ", dump_file);
2055 print_gimple_stmt (dump_file, c->cand_stmt, 0);
2056 fputs ("\n", dump_file);
2057 }
2058
2059 if (c->sibling)
2060 replace_refs (lookup_cand (c->sibling));
2061
2062 if (c->dependent)
2063 replace_refs (lookup_cand (c->dependent));
2064 }
2065
2066 /* Return TRUE if candidate C is dependent upon a PHI. */
2067
2068 static bool
2069 phi_dependent_cand_p (slsr_cand_t c)
2070 {
2071 /* A candidate is not necessarily dependent upon a PHI just because
2072 it has a phi definition for its base name. It may have a basis
2073 that relies upon the same phi definition, in which case the PHI
2074 is irrelevant to this candidate. */
2075 return (c->def_phi
2076 && c->basis
2077 && lookup_cand (c->basis)->def_phi != c->def_phi);
2078 }
2079
2080 /* Calculate the increment required for candidate C relative to
2081 its basis. */
2082
2083 static widest_int
2084 cand_increment (slsr_cand_t c)
2085 {
2086 slsr_cand_t basis;
2087
2088 /* If the candidate doesn't have a basis, just return its own
2089 index. This is useful in record_increments to help us find
2090 an existing initializer. Also, if the candidate's basis is
2091 hidden by a phi, then its own index will be the increment
2092 from the newly introduced phi basis. */
2093 if (!c->basis || phi_dependent_cand_p (c))
2094 return c->index;
2095
2096 basis = lookup_cand (c->basis);
2097 gcc_assert (operand_equal_p (c->base_expr, basis->base_expr, 0));
2098 return c->index - basis->index;
2099 }
2100
2101 /* Calculate the increment required for candidate C relative to
2102 its basis. If we aren't going to generate pointer arithmetic
2103 for this candidate, return the absolute value of that increment
2104 instead. */
2105
2106 static inline widest_int
2107 cand_abs_increment (slsr_cand_t c)
2108 {
2109 widest_int increment = cand_increment (c);
2110
2111 if (!address_arithmetic_p && wi::neg_p (increment))
2112 increment = -increment;
2113
2114 return increment;
2115 }
2116
2117 /* Return TRUE iff candidate C has already been replaced under
2118 another interpretation. */
2119
2120 static inline bool
2121 cand_already_replaced (slsr_cand_t c)
2122 {
2123 return (gimple_bb (c->cand_stmt) == 0);
2124 }
2125
2126 /* Common logic used by replace_unconditional_candidate and
2127 replace_conditional_candidate. */
2128
2129 static void
2130 replace_mult_candidate (slsr_cand_t c, tree basis_name, widest_int bump)
2131 {
2132 tree target_type = TREE_TYPE (gimple_assign_lhs (c->cand_stmt));
2133 enum tree_code cand_code = gimple_assign_rhs_code (c->cand_stmt);
2134
2135 /* It is not useful to replace casts, copies, negates, or adds of
2136 an SSA name and a constant. */
2137 if (cand_code == SSA_NAME
2138 || CONVERT_EXPR_CODE_P (cand_code)
2139 || cand_code == PLUS_EXPR
2140 || cand_code == POINTER_PLUS_EXPR
2141 || cand_code == MINUS_EXPR
2142 || cand_code == NEGATE_EXPR)
2143 return;
2144
2145 enum tree_code code = PLUS_EXPR;
2146 tree bump_tree;
2147 gimple *stmt_to_print = NULL;
2148
2149 if (wi::neg_p (bump))
2150 {
2151 code = MINUS_EXPR;
2152 bump = -bump;
2153 }
2154
2155 /* It is possible that the resulting bump doesn't fit in target_type.
2156 Abandon the replacement in this case. This does not affect
2157 siblings or dependents of C. */
2158 if (bump != wi::ext (bump, TYPE_PRECISION (target_type),
2159 TYPE_SIGN (target_type)))
2160 return;
2161
2162 bump_tree = wide_int_to_tree (target_type, bump);
2163
2164 /* If the basis name and the candidate's LHS have incompatible types,
2165 introduce a cast. */
2166 if (!useless_type_conversion_p (target_type, TREE_TYPE (basis_name)))
2167 basis_name = introduce_cast_before_cand (c, target_type, basis_name);
2168
2169 if (dump_file && (dump_flags & TDF_DETAILS))
2170 {
2171 fputs ("Replacing: ", dump_file);
2172 print_gimple_stmt (dump_file, c->cand_stmt, 0);
2173 }
2174
2175 if (bump == 0)
2176 {
2177 tree lhs = gimple_assign_lhs (c->cand_stmt);
2178 gassign *copy_stmt = gimple_build_assign (lhs, basis_name);
2179 gimple_stmt_iterator gsi = gsi_for_stmt (c->cand_stmt);
2180 slsr_cand_t cc = lookup_cand (c->first_interp);
2181 gimple_set_location (copy_stmt, gimple_location (c->cand_stmt));
2182 gsi_replace (&gsi, copy_stmt, false);
2183 while (cc)
2184 {
2185 cc->cand_stmt = copy_stmt;
2186 cc = lookup_cand (cc->next_interp);
2187 }
2188 if (dump_file && (dump_flags & TDF_DETAILS))
2189 stmt_to_print = copy_stmt;
2190 }
2191 else
2192 {
2193 tree rhs1, rhs2;
2194 if (cand_code != NEGATE_EXPR) {
2195 rhs1 = gimple_assign_rhs1 (c->cand_stmt);
2196 rhs2 = gimple_assign_rhs2 (c->cand_stmt);
2197 }
2198 if (cand_code != NEGATE_EXPR
2199 && ((operand_equal_p (rhs1, basis_name, 0)
2200 && operand_equal_p (rhs2, bump_tree, 0))
2201 || (operand_equal_p (rhs1, bump_tree, 0)
2202 && operand_equal_p (rhs2, basis_name, 0))))
2203 {
2204 if (dump_file && (dump_flags & TDF_DETAILS))
2205 {
2206 fputs ("(duplicate, not actually replacing)", dump_file);
2207 stmt_to_print = c->cand_stmt;
2208 }
2209 }
2210 else
2211 {
2212 gimple_stmt_iterator gsi = gsi_for_stmt (c->cand_stmt);
2213 slsr_cand_t cc = lookup_cand (c->first_interp);
2214 gimple_assign_set_rhs_with_ops (&gsi, code, basis_name, bump_tree);
2215 update_stmt (gsi_stmt (gsi));
2216 while (cc)
2217 {
2218 cc->cand_stmt = gsi_stmt (gsi);
2219 cc = lookup_cand (cc->next_interp);
2220 }
2221 if (dump_file && (dump_flags & TDF_DETAILS))
2222 stmt_to_print = gsi_stmt (gsi);
2223 }
2224 }
2225
2226 if (dump_file && (dump_flags & TDF_DETAILS))
2227 {
2228 fputs ("With: ", dump_file);
2229 print_gimple_stmt (dump_file, stmt_to_print, 0);
2230 fputs ("\n", dump_file);
2231 }
2232 }
2233
2234 /* Replace candidate C with an add or subtract. Note that we only
2235 operate on CAND_MULTs with known strides, so we will never generate
2236 a POINTER_PLUS_EXPR. Each candidate X = (B + i) * S is replaced by
2237 X = Y + ((i - i') * S), as described in the module commentary. The
2238 folded value ((i - i') * S) is referred to here as the "bump." */
2239
2240 static void
2241 replace_unconditional_candidate (slsr_cand_t c)
2242 {
2243 slsr_cand_t basis;
2244
2245 if (cand_already_replaced (c))
2246 return;
2247
2248 basis = lookup_cand (c->basis);
2249 widest_int bump = cand_increment (c) * wi::to_widest (c->stride);
2250
2251 replace_mult_candidate (c, gimple_assign_lhs (basis->cand_stmt), bump);
2252 }
2253 \f
2254 /* Return the index in the increment vector of the given INCREMENT,
2255 or -1 if not found. The latter can occur if more than
2256 MAX_INCR_VEC_LEN increments have been found. */
2257
2258 static inline int
2259 incr_vec_index (const widest_int &increment)
2260 {
2261 unsigned i;
2262
2263 for (i = 0; i < incr_vec_len && increment != incr_vec[i].incr; i++)
2264 ;
2265
2266 if (i < incr_vec_len)
2267 return i;
2268 else
2269 return -1;
2270 }
2271
2272 /* Create a new statement along edge E to add BASIS_NAME to the product
2273 of INCREMENT and the stride of candidate C. Create and return a new
2274 SSA name from *VAR to be used as the LHS of the new statement.
2275 KNOWN_STRIDE is true iff C's stride is a constant. */
2276
2277 static tree
2278 create_add_on_incoming_edge (slsr_cand_t c, tree basis_name,
2279 widest_int increment, edge e, location_t loc,
2280 bool known_stride)
2281 {
2282 tree lhs, basis_type;
2283 gassign *new_stmt, *cast_stmt = NULL;
2284
2285 /* If the add candidate along this incoming edge has the same
2286 index as C's hidden basis, the hidden basis represents this
2287 edge correctly. */
2288 if (increment == 0)
2289 return basis_name;
2290
2291 basis_type = TREE_TYPE (basis_name);
2292 lhs = make_temp_ssa_name (basis_type, NULL, "slsr");
2293
2294 /* Occasionally people convert integers to pointers without a
2295 cast, leading us into trouble if we aren't careful. */
2296 enum tree_code plus_code
2297 = POINTER_TYPE_P (basis_type) ? POINTER_PLUS_EXPR : PLUS_EXPR;
2298
2299 if (known_stride)
2300 {
2301 tree bump_tree;
2302 enum tree_code code = plus_code;
2303 widest_int bump = increment * wi::to_widest (c->stride);
2304 if (wi::neg_p (bump) && !POINTER_TYPE_P (basis_type))
2305 {
2306 code = MINUS_EXPR;
2307 bump = -bump;
2308 }
2309
2310 tree stride_type = POINTER_TYPE_P (basis_type) ? sizetype : basis_type;
2311 bump_tree = wide_int_to_tree (stride_type, bump);
2312 new_stmt = gimple_build_assign (lhs, code, basis_name, bump_tree);
2313 }
2314 else
2315 {
2316 int i;
2317 bool negate_incr = !POINTER_TYPE_P (basis_type) && wi::neg_p (increment);
2318 i = incr_vec_index (negate_incr ? -increment : increment);
2319 gcc_assert (i >= 0);
2320
2321 if (incr_vec[i].initializer)
2322 {
2323 enum tree_code code = negate_incr ? MINUS_EXPR : plus_code;
2324 new_stmt = gimple_build_assign (lhs, code, basis_name,
2325 incr_vec[i].initializer);
2326 }
2327 else {
2328 tree stride;
2329
2330 if (!types_compatible_p (TREE_TYPE (c->stride), c->stride_type))
2331 {
2332 tree cast_stride = make_temp_ssa_name (c->stride_type, NULL,
2333 "slsr");
2334 cast_stmt = gimple_build_assign (cast_stride, NOP_EXPR,
2335 c->stride);
2336 stride = cast_stride;
2337 }
2338 else
2339 stride = c->stride;
2340
2341 if (increment == 1)
2342 new_stmt = gimple_build_assign (lhs, plus_code, basis_name, stride);
2343 else if (increment == -1)
2344 new_stmt = gimple_build_assign (lhs, MINUS_EXPR, basis_name, stride);
2345 else
2346 gcc_unreachable ();
2347 }
2348 }
2349
2350 if (cast_stmt)
2351 {
2352 gimple_set_location (cast_stmt, loc);
2353 gsi_insert_on_edge (e, cast_stmt);
2354 }
2355
2356 gimple_set_location (new_stmt, loc);
2357 gsi_insert_on_edge (e, new_stmt);
2358
2359 if (dump_file && (dump_flags & TDF_DETAILS))
2360 {
2361 if (cast_stmt)
2362 {
2363 fprintf (dump_file, "Inserting cast on edge %d->%d: ",
2364 e->src->index, e->dest->index);
2365 print_gimple_stmt (dump_file, cast_stmt, 0);
2366 }
2367 fprintf (dump_file, "Inserting on edge %d->%d: ", e->src->index,
2368 e->dest->index);
2369 print_gimple_stmt (dump_file, new_stmt, 0);
2370 }
2371
2372 return lhs;
2373 }
2374
2375 /* Clear the visited field for a tree of PHI candidates. */
2376
2377 static void
2378 clear_visited (gphi *phi)
2379 {
2380 unsigned i;
2381 slsr_cand_t phi_cand = *stmt_cand_map->get (phi);
2382
2383 if (phi_cand->visited)
2384 {
2385 phi_cand->visited = 0;
2386
2387 for (i = 0; i < gimple_phi_num_args (phi); i++)
2388 {
2389 tree arg = gimple_phi_arg_def (phi, i);
2390 gimple *arg_def = SSA_NAME_DEF_STMT (arg);
2391 if (gimple_code (arg_def) == GIMPLE_PHI)
2392 clear_visited (as_a <gphi *> (arg_def));
2393 }
2394 }
2395 }
2396
2397 /* Recursive helper function for create_phi_basis. */
2398
2399 static tree
2400 create_phi_basis_1 (slsr_cand_t c, gimple *from_phi, tree basis_name,
2401 location_t loc, bool known_stride)
2402 {
2403 int i;
2404 tree name, phi_arg;
2405 gphi *phi;
2406 slsr_cand_t basis = lookup_cand (c->basis);
2407 int nargs = gimple_phi_num_args (from_phi);
2408 basic_block phi_bb = gimple_bb (from_phi);
2409 slsr_cand_t phi_cand = *stmt_cand_map->get (from_phi);
2410 auto_vec<tree> phi_args (nargs);
2411
2412 if (phi_cand->visited)
2413 return phi_cand->cached_basis;
2414 phi_cand->visited = 1;
2415
2416 /* Process each argument of the existing phi that represents
2417 conditionally-executed add candidates. */
2418 for (i = 0; i < nargs; i++)
2419 {
2420 edge e = (*phi_bb->preds)[i];
2421 tree arg = gimple_phi_arg_def (from_phi, i);
2422 tree feeding_def;
2423
2424 /* If the phi argument is the base name of the CAND_PHI, then
2425 this incoming arc should use the hidden basis. */
2426 if (operand_equal_p (arg, phi_cand->base_expr, 0))
2427 if (basis->index == 0)
2428 feeding_def = gimple_assign_lhs (basis->cand_stmt);
2429 else
2430 {
2431 widest_int incr = -basis->index;
2432 feeding_def = create_add_on_incoming_edge (c, basis_name, incr,
2433 e, loc, known_stride);
2434 }
2435 else
2436 {
2437 gimple *arg_def = SSA_NAME_DEF_STMT (arg);
2438
2439 /* If there is another phi along this incoming edge, we must
2440 process it in the same fashion to ensure that all basis
2441 adjustments are made along its incoming edges. */
2442 if (gimple_code (arg_def) == GIMPLE_PHI)
2443 feeding_def = create_phi_basis_1 (c, arg_def, basis_name,
2444 loc, known_stride);
2445 else
2446 {
2447 slsr_cand_t arg_cand = base_cand_from_table (arg);
2448 widest_int diff = arg_cand->index - basis->index;
2449 feeding_def = create_add_on_incoming_edge (c, basis_name, diff,
2450 e, loc, known_stride);
2451 }
2452 }
2453
2454 /* Because of recursion, we need to save the arguments in a vector
2455 so we can create the PHI statement all at once. Otherwise the
2456 storage for the half-created PHI can be reclaimed. */
2457 phi_args.safe_push (feeding_def);
2458 }
2459
2460 /* Create the new phi basis. */
2461 name = make_temp_ssa_name (TREE_TYPE (basis_name), NULL, "slsr");
2462 phi = create_phi_node (name, phi_bb);
2463 SSA_NAME_DEF_STMT (name) = phi;
2464
2465 FOR_EACH_VEC_ELT (phi_args, i, phi_arg)
2466 {
2467 edge e = (*phi_bb->preds)[i];
2468 add_phi_arg (phi, phi_arg, e, loc);
2469 }
2470
2471 update_stmt (phi);
2472
2473 if (dump_file && (dump_flags & TDF_DETAILS))
2474 {
2475 fputs ("Introducing new phi basis: ", dump_file);
2476 print_gimple_stmt (dump_file, phi, 0);
2477 }
2478
2479 phi_cand->cached_basis = name;
2480 return name;
2481 }
2482
2483 /* Given a candidate C with BASIS_NAME being the LHS of C's basis which
2484 is hidden by the phi node FROM_PHI, create a new phi node in the same
2485 block as FROM_PHI. The new phi is suitable for use as a basis by C,
2486 with its phi arguments representing conditional adjustments to the
2487 hidden basis along conditional incoming paths. Those adjustments are
2488 made by creating add statements (and sometimes recursively creating
2489 phis) along those incoming paths. LOC is the location to attach to
2490 the introduced statements. KNOWN_STRIDE is true iff C's stride is a
2491 constant. */
2492
2493 static tree
2494 create_phi_basis (slsr_cand_t c, gimple *from_phi, tree basis_name,
2495 location_t loc, bool known_stride)
2496 {
2497 tree retval = create_phi_basis_1 (c, from_phi, basis_name, loc,
2498 known_stride);
2499 gcc_assert (retval);
2500 clear_visited (as_a <gphi *> (from_phi));
2501 return retval;
2502 }
2503
2504 /* Given a candidate C whose basis is hidden by at least one intervening
2505 phi, introduce a matching number of new phis to represent its basis
2506 adjusted by conditional increments along possible incoming paths. Then
2507 replace C as though it were an unconditional candidate, using the new
2508 basis. */
2509
2510 static void
2511 replace_conditional_candidate (slsr_cand_t c)
2512 {
2513 tree basis_name, name;
2514 slsr_cand_t basis;
2515 location_t loc;
2516
2517 /* Look up the LHS SSA name from C's basis. This will be the
2518 RHS1 of the adds we will introduce to create new phi arguments. */
2519 basis = lookup_cand (c->basis);
2520 basis_name = gimple_assign_lhs (basis->cand_stmt);
2521
2522 /* Create a new phi statement which will represent C's true basis
2523 after the transformation is complete. */
2524 loc = gimple_location (c->cand_stmt);
2525 name = create_phi_basis (c, lookup_cand (c->def_phi)->cand_stmt,
2526 basis_name, loc, KNOWN_STRIDE);
2527
2528 /* Replace C with an add of the new basis phi and a constant. */
2529 widest_int bump = c->index * wi::to_widest (c->stride);
2530
2531 replace_mult_candidate (c, name, bump);
2532 }
2533
2534 /* Recursive helper function for phi_add_costs. SPREAD is a measure of
2535 how many PHI nodes we have visited at this point in the tree walk. */
2536
2537 static int
2538 phi_add_costs_1 (gimple *phi, slsr_cand_t c, int one_add_cost, int *spread)
2539 {
2540 unsigned i;
2541 int cost = 0;
2542 slsr_cand_t phi_cand = *stmt_cand_map->get (phi);
2543
2544 if (phi_cand->visited)
2545 return 0;
2546
2547 phi_cand->visited = 1;
2548 (*spread)++;
2549
2550 /* If we work our way back to a phi that isn't dominated by the hidden
2551 basis, this isn't a candidate for replacement. Indicate this by
2552 returning an unreasonably high cost. It's not easy to detect
2553 these situations when determining the basis, so we defer the
2554 decision until now. */
2555 basic_block phi_bb = gimple_bb (phi);
2556 slsr_cand_t basis = lookup_cand (c->basis);
2557 basic_block basis_bb = gimple_bb (basis->cand_stmt);
2558
2559 if (phi_bb == basis_bb || !dominated_by_p (CDI_DOMINATORS, phi_bb, basis_bb))
2560 return COST_INFINITE;
2561
2562 for (i = 0; i < gimple_phi_num_args (phi); i++)
2563 {
2564 tree arg = gimple_phi_arg_def (phi, i);
2565
2566 if (arg != phi_cand->base_expr)
2567 {
2568 gimple *arg_def = SSA_NAME_DEF_STMT (arg);
2569
2570 if (gimple_code (arg_def) == GIMPLE_PHI)
2571 {
2572 cost += phi_add_costs_1 (arg_def, c, one_add_cost, spread);
2573
2574 if (cost >= COST_INFINITE || *spread > MAX_SPREAD)
2575 return COST_INFINITE;
2576 }
2577 else
2578 {
2579 slsr_cand_t arg_cand = base_cand_from_table (arg);
2580
2581 if (arg_cand->index != c->index)
2582 cost += one_add_cost;
2583 }
2584 }
2585 }
2586
2587 return cost;
2588 }
2589
2590 /* Compute the expected costs of inserting basis adjustments for
2591 candidate C with phi-definition PHI. The cost of inserting
2592 one adjustment is given by ONE_ADD_COST. If PHI has arguments
2593 which are themselves phi results, recursively calculate costs
2594 for those phis as well. */
2595
2596 static int
2597 phi_add_costs (gimple *phi, slsr_cand_t c, int one_add_cost)
2598 {
2599 int spread = 0;
2600 int retval = phi_add_costs_1 (phi, c, one_add_cost, &spread);
2601 clear_visited (as_a <gphi *> (phi));
2602 return retval;
2603 }
2604 /* For candidate C, each sibling of candidate C, and each dependent of
2605 candidate C, determine whether the candidate is dependent upon a
2606 phi that hides its basis. If not, replace the candidate unconditionally.
2607 Otherwise, determine whether the cost of introducing compensation code
2608 for the candidate is offset by the gains from strength reduction. If
2609 so, replace the candidate and introduce the compensation code. */
2610
2611 static void
2612 replace_uncond_cands_and_profitable_phis (slsr_cand_t c)
2613 {
2614 if (phi_dependent_cand_p (c))
2615 {
2616 /* A multiply candidate with a stride of 1 is just an artifice
2617 of a copy or cast; there is no value in replacing it. */
2618 if (c->kind == CAND_MULT && wi::to_widest (c->stride) != 1)
2619 {
2620 /* A candidate dependent upon a phi will replace a multiply by
2621 a constant with an add, and will insert at most one add for
2622 each phi argument. Add these costs with the potential dead-code
2623 savings to determine profitability. */
2624 bool speed = optimize_bb_for_speed_p (gimple_bb (c->cand_stmt));
2625 int mult_savings = stmt_cost (c->cand_stmt, speed);
2626 gimple *phi = lookup_cand (c->def_phi)->cand_stmt;
2627 tree phi_result = gimple_phi_result (phi);
2628 int one_add_cost = add_cost (speed,
2629 TYPE_MODE (TREE_TYPE (phi_result)));
2630 int add_costs = one_add_cost + phi_add_costs (phi, c, one_add_cost);
2631 int cost = add_costs - mult_savings - c->dead_savings;
2632
2633 if (dump_file && (dump_flags & TDF_DETAILS))
2634 {
2635 fprintf (dump_file, " Conditional candidate %d:\n", c->cand_num);
2636 fprintf (dump_file, " add_costs = %d\n", add_costs);
2637 fprintf (dump_file, " mult_savings = %d\n", mult_savings);
2638 fprintf (dump_file, " dead_savings = %d\n", c->dead_savings);
2639 fprintf (dump_file, " cost = %d\n", cost);
2640 if (cost <= COST_NEUTRAL)
2641 fputs (" Replacing...\n", dump_file);
2642 else
2643 fputs (" Not replaced.\n", dump_file);
2644 }
2645
2646 if (cost <= COST_NEUTRAL)
2647 replace_conditional_candidate (c);
2648 }
2649 }
2650 else
2651 replace_unconditional_candidate (c);
2652
2653 if (c->sibling)
2654 replace_uncond_cands_and_profitable_phis (lookup_cand (c->sibling));
2655
2656 if (c->dependent)
2657 replace_uncond_cands_and_profitable_phis (lookup_cand (c->dependent));
2658 }
2659 \f
2660 /* Count the number of candidates in the tree rooted at C that have
2661 not already been replaced under other interpretations. */
2662
2663 static int
2664 count_candidates (slsr_cand_t c)
2665 {
2666 unsigned count = cand_already_replaced (c) ? 0 : 1;
2667
2668 if (c->sibling)
2669 count += count_candidates (lookup_cand (c->sibling));
2670
2671 if (c->dependent)
2672 count += count_candidates (lookup_cand (c->dependent));
2673
2674 return count;
2675 }
2676
2677 /* Increase the count of INCREMENT by one in the increment vector.
2678 INCREMENT is associated with candidate C. If INCREMENT is to be
2679 conditionally executed as part of a conditional candidate replacement,
2680 IS_PHI_ADJUST is true, otherwise false. If an initializer
2681 T_0 = stride * I is provided by a candidate that dominates all
2682 candidates with the same increment, also record T_0 for subsequent use. */
2683
2684 static void
2685 record_increment (slsr_cand_t c, widest_int increment, bool is_phi_adjust)
2686 {
2687 bool found = false;
2688 unsigned i;
2689
2690 /* Treat increments that differ only in sign as identical so as to
2691 share initializers, unless we are generating pointer arithmetic. */
2692 if (!address_arithmetic_p && wi::neg_p (increment))
2693 increment = -increment;
2694
2695 for (i = 0; i < incr_vec_len; i++)
2696 {
2697 if (incr_vec[i].incr == increment)
2698 {
2699 incr_vec[i].count++;
2700 found = true;
2701
2702 /* If we previously recorded an initializer that doesn't
2703 dominate this candidate, it's not going to be useful to
2704 us after all. */
2705 if (incr_vec[i].initializer
2706 && !dominated_by_p (CDI_DOMINATORS,
2707 gimple_bb (c->cand_stmt),
2708 incr_vec[i].init_bb))
2709 {
2710 incr_vec[i].initializer = NULL_TREE;
2711 incr_vec[i].init_bb = NULL;
2712 }
2713
2714 break;
2715 }
2716 }
2717
2718 if (!found && incr_vec_len < MAX_INCR_VEC_LEN - 1)
2719 {
2720 /* The first time we see an increment, create the entry for it.
2721 If this is the root candidate which doesn't have a basis, set
2722 the count to zero. We're only processing it so it can possibly
2723 provide an initializer for other candidates. */
2724 incr_vec[incr_vec_len].incr = increment;
2725 incr_vec[incr_vec_len].count = c->basis || is_phi_adjust ? 1 : 0;
2726 incr_vec[incr_vec_len].cost = COST_INFINITE;
2727
2728 /* Optimistically record the first occurrence of this increment
2729 as providing an initializer (if it does); we will revise this
2730 opinion later if it doesn't dominate all other occurrences.
2731 Exception: increments of 0, 1 never need initializers;
2732 and phi adjustments don't ever provide initializers. */
2733 if (c->kind == CAND_ADD
2734 && !is_phi_adjust
2735 && c->index == increment
2736 && (increment > 1 || increment < 0)
2737 && (gimple_assign_rhs_code (c->cand_stmt) == PLUS_EXPR
2738 || gimple_assign_rhs_code (c->cand_stmt) == POINTER_PLUS_EXPR))
2739 {
2740 tree t0 = NULL_TREE;
2741 tree rhs1 = gimple_assign_rhs1 (c->cand_stmt);
2742 tree rhs2 = gimple_assign_rhs2 (c->cand_stmt);
2743 if (operand_equal_p (rhs1, c->base_expr, 0))
2744 t0 = rhs2;
2745 else if (operand_equal_p (rhs2, c->base_expr, 0))
2746 t0 = rhs1;
2747 if (t0
2748 && SSA_NAME_DEF_STMT (t0)
2749 && gimple_bb (SSA_NAME_DEF_STMT (t0)))
2750 {
2751 incr_vec[incr_vec_len].initializer = t0;
2752 incr_vec[incr_vec_len++].init_bb
2753 = gimple_bb (SSA_NAME_DEF_STMT (t0));
2754 }
2755 else
2756 {
2757 incr_vec[incr_vec_len].initializer = NULL_TREE;
2758 incr_vec[incr_vec_len++].init_bb = NULL;
2759 }
2760 }
2761 else
2762 {
2763 incr_vec[incr_vec_len].initializer = NULL_TREE;
2764 incr_vec[incr_vec_len++].init_bb = NULL;
2765 }
2766 }
2767 }
2768
2769 /* Recursive helper function for record_phi_increments. */
2770
2771 static void
2772 record_phi_increments_1 (slsr_cand_t basis, gimple *phi)
2773 {
2774 unsigned i;
2775 slsr_cand_t phi_cand = *stmt_cand_map->get (phi);
2776
2777 if (phi_cand->visited)
2778 return;
2779 phi_cand->visited = 1;
2780
2781 for (i = 0; i < gimple_phi_num_args (phi); i++)
2782 {
2783 tree arg = gimple_phi_arg_def (phi, i);
2784 gimple *arg_def = SSA_NAME_DEF_STMT (arg);
2785
2786 if (gimple_code (arg_def) == GIMPLE_PHI)
2787 record_phi_increments_1 (basis, arg_def);
2788 else
2789 {
2790 widest_int diff;
2791
2792 if (operand_equal_p (arg, phi_cand->base_expr, 0))
2793 {
2794 diff = -basis->index;
2795 record_increment (phi_cand, diff, PHI_ADJUST);
2796 }
2797 else
2798 {
2799 slsr_cand_t arg_cand = base_cand_from_table (arg);
2800 diff = arg_cand->index - basis->index;
2801 record_increment (arg_cand, diff, PHI_ADJUST);
2802 }
2803 }
2804 }
2805 }
2806
2807 /* Given phi statement PHI that hides a candidate from its BASIS, find
2808 the increments along each incoming arc (recursively handling additional
2809 phis that may be present) and record them. These increments are the
2810 difference in index between the index-adjusting statements and the
2811 index of the basis. */
2812
2813 static void
2814 record_phi_increments (slsr_cand_t basis, gimple *phi)
2815 {
2816 record_phi_increments_1 (basis, phi);
2817 clear_visited (as_a <gphi *> (phi));
2818 }
2819
2820 /* Determine how many times each unique increment occurs in the set
2821 of candidates rooted at C's parent, recording the data in the
2822 increment vector. For each unique increment I, if an initializer
2823 T_0 = stride * I is provided by a candidate that dominates all
2824 candidates with the same increment, also record T_0 for subsequent
2825 use. */
2826
2827 static void
2828 record_increments (slsr_cand_t c)
2829 {
2830 if (!cand_already_replaced (c))
2831 {
2832 if (!phi_dependent_cand_p (c))
2833 record_increment (c, cand_increment (c), NOT_PHI_ADJUST);
2834 else
2835 {
2836 /* A candidate with a basis hidden by a phi will have one
2837 increment for its relationship to the index represented by
2838 the phi, and potentially additional increments along each
2839 incoming edge. For the root of the dependency tree (which
2840 has no basis), process just the initial index in case it has
2841 an initializer that can be used by subsequent candidates. */
2842 record_increment (c, c->index, NOT_PHI_ADJUST);
2843
2844 if (c->basis)
2845 record_phi_increments (lookup_cand (c->basis),
2846 lookup_cand (c->def_phi)->cand_stmt);
2847 }
2848 }
2849
2850 if (c->sibling)
2851 record_increments (lookup_cand (c->sibling));
2852
2853 if (c->dependent)
2854 record_increments (lookup_cand (c->dependent));
2855 }
2856
2857 /* Recursive helper function for phi_incr_cost. */
2858
2859 static int
2860 phi_incr_cost_1 (slsr_cand_t c, const widest_int &incr, gimple *phi,
2861 int *savings)
2862 {
2863 unsigned i;
2864 int cost = 0;
2865 slsr_cand_t basis = lookup_cand (c->basis);
2866 slsr_cand_t phi_cand = *stmt_cand_map->get (phi);
2867
2868 if (phi_cand->visited)
2869 return 0;
2870 phi_cand->visited = 1;
2871
2872 for (i = 0; i < gimple_phi_num_args (phi); i++)
2873 {
2874 tree arg = gimple_phi_arg_def (phi, i);
2875 gimple *arg_def = SSA_NAME_DEF_STMT (arg);
2876
2877 if (gimple_code (arg_def) == GIMPLE_PHI)
2878 {
2879 int feeding_savings = 0;
2880 tree feeding_var = gimple_phi_result (arg_def);
2881 cost += phi_incr_cost_1 (c, incr, arg_def, &feeding_savings);
2882 if (uses_consumed_by_stmt (feeding_var, phi))
2883 *savings += feeding_savings;
2884 }
2885 else
2886 {
2887 widest_int diff;
2888 slsr_cand_t arg_cand;
2889
2890 /* When the PHI argument is just a pass-through to the base
2891 expression of the hidden basis, the difference is zero minus
2892 the index of the basis. There is no potential savings by
2893 eliminating a statement in this case. */
2894 if (operand_equal_p (arg, phi_cand->base_expr, 0))
2895 {
2896 arg_cand = (slsr_cand_t)NULL;
2897 diff = -basis->index;
2898 }
2899 else
2900 {
2901 arg_cand = base_cand_from_table (arg);
2902 diff = arg_cand->index - basis->index;
2903 }
2904
2905 if (incr == diff)
2906 {
2907 tree basis_lhs = gimple_assign_lhs (basis->cand_stmt);
2908 cost += add_cost (true, TYPE_MODE (TREE_TYPE (basis_lhs)));
2909 if (arg_cand)
2910 {
2911 tree lhs = gimple_assign_lhs (arg_cand->cand_stmt);
2912 if (uses_consumed_by_stmt (lhs, phi))
2913 *savings += stmt_cost (arg_cand->cand_stmt, true);
2914 }
2915 }
2916 }
2917 }
2918
2919 return cost;
2920 }
2921
2922 /* Add up and return the costs of introducing add statements that
2923 require the increment INCR on behalf of candidate C and phi
2924 statement PHI. Accumulate into *SAVINGS the potential savings
2925 from removing existing statements that feed PHI and have no other
2926 uses. */
2927
2928 static int
2929 phi_incr_cost (slsr_cand_t c, const widest_int &incr, gimple *phi,
2930 int *savings)
2931 {
2932 int retval = phi_incr_cost_1 (c, incr, phi, savings);
2933 clear_visited (as_a <gphi *> (phi));
2934 return retval;
2935 }
2936
2937 /* Return the first candidate in the tree rooted at C that has not
2938 already been replaced, favoring siblings over dependents. */
2939
2940 static slsr_cand_t
2941 unreplaced_cand_in_tree (slsr_cand_t c)
2942 {
2943 if (!cand_already_replaced (c))
2944 return c;
2945
2946 if (c->sibling)
2947 {
2948 slsr_cand_t sib = unreplaced_cand_in_tree (lookup_cand (c->sibling));
2949 if (sib)
2950 return sib;
2951 }
2952
2953 if (c->dependent)
2954 {
2955 slsr_cand_t dep = unreplaced_cand_in_tree (lookup_cand (c->dependent));
2956 if (dep)
2957 return dep;
2958 }
2959
2960 return NULL;
2961 }
2962
2963 /* Return TRUE if the candidates in the tree rooted at C should be
2964 optimized for speed, else FALSE. We estimate this based on the block
2965 containing the most dominant candidate in the tree that has not yet
2966 been replaced. */
2967
2968 static bool
2969 optimize_cands_for_speed_p (slsr_cand_t c)
2970 {
2971 slsr_cand_t c2 = unreplaced_cand_in_tree (c);
2972 gcc_assert (c2);
2973 return optimize_bb_for_speed_p (gimple_bb (c2->cand_stmt));
2974 }
2975
2976 /* Add COST_IN to the lowest cost of any dependent path starting at
2977 candidate C or any of its siblings, counting only candidates along
2978 such paths with increment INCR. Assume that replacing a candidate
2979 reduces cost by REPL_SAVINGS. Also account for savings from any
2980 statements that would go dead. If COUNT_PHIS is true, include
2981 costs of introducing feeding statements for conditional candidates. */
2982
2983 static int
2984 lowest_cost_path (int cost_in, int repl_savings, slsr_cand_t c,
2985 const widest_int &incr, bool count_phis)
2986 {
2987 int local_cost, sib_cost, savings = 0;
2988 widest_int cand_incr = cand_abs_increment (c);
2989
2990 if (cand_already_replaced (c))
2991 local_cost = cost_in;
2992 else if (incr == cand_incr)
2993 local_cost = cost_in - repl_savings - c->dead_savings;
2994 else
2995 local_cost = cost_in - c->dead_savings;
2996
2997 if (count_phis
2998 && phi_dependent_cand_p (c)
2999 && !cand_already_replaced (c))
3000 {
3001 gimple *phi = lookup_cand (c->def_phi)->cand_stmt;
3002 local_cost += phi_incr_cost (c, incr, phi, &savings);
3003
3004 if (uses_consumed_by_stmt (gimple_phi_result (phi), c->cand_stmt))
3005 local_cost -= savings;
3006 }
3007
3008 if (c->dependent)
3009 local_cost = lowest_cost_path (local_cost, repl_savings,
3010 lookup_cand (c->dependent), incr,
3011 count_phis);
3012
3013 if (c->sibling)
3014 {
3015 sib_cost = lowest_cost_path (cost_in, repl_savings,
3016 lookup_cand (c->sibling), incr,
3017 count_phis);
3018 local_cost = MIN (local_cost, sib_cost);
3019 }
3020
3021 return local_cost;
3022 }
3023
3024 /* Compute the total savings that would accrue from all replacements
3025 in the candidate tree rooted at C, counting only candidates with
3026 increment INCR. Assume that replacing a candidate reduces cost
3027 by REPL_SAVINGS. Also account for savings from statements that
3028 would go dead. */
3029
3030 static int
3031 total_savings (int repl_savings, slsr_cand_t c, const widest_int &incr,
3032 bool count_phis)
3033 {
3034 int savings = 0;
3035 widest_int cand_incr = cand_abs_increment (c);
3036
3037 if (incr == cand_incr && !cand_already_replaced (c))
3038 savings += repl_savings + c->dead_savings;
3039
3040 if (count_phis
3041 && phi_dependent_cand_p (c)
3042 && !cand_already_replaced (c))
3043 {
3044 int phi_savings = 0;
3045 gimple *phi = lookup_cand (c->def_phi)->cand_stmt;
3046 savings -= phi_incr_cost (c, incr, phi, &phi_savings);
3047
3048 if (uses_consumed_by_stmt (gimple_phi_result (phi), c->cand_stmt))
3049 savings += phi_savings;
3050 }
3051
3052 if (c->dependent)
3053 savings += total_savings (repl_savings, lookup_cand (c->dependent), incr,
3054 count_phis);
3055
3056 if (c->sibling)
3057 savings += total_savings (repl_savings, lookup_cand (c->sibling), incr,
3058 count_phis);
3059
3060 return savings;
3061 }
3062
3063 /* Use target-specific costs to determine and record which increments
3064 in the current candidate tree are profitable to replace, assuming
3065 MODE and SPEED. FIRST_DEP is the first dependent of the root of
3066 the candidate tree.
3067
3068 One slight limitation here is that we don't account for the possible
3069 introduction of casts in some cases. See replace_one_candidate for
3070 the cases where these are introduced. This should probably be cleaned
3071 up sometime. */
3072
3073 static void
3074 analyze_increments (slsr_cand_t first_dep, machine_mode mode, bool speed)
3075 {
3076 unsigned i;
3077
3078 for (i = 0; i < incr_vec_len; i++)
3079 {
3080 HOST_WIDE_INT incr = incr_vec[i].incr.to_shwi ();
3081
3082 /* If somehow this increment is bigger than a HWI, we won't
3083 be optimizing candidates that use it. And if the increment
3084 has a count of zero, nothing will be done with it. */
3085 if (!wi::fits_shwi_p (incr_vec[i].incr) || !incr_vec[i].count)
3086 incr_vec[i].cost = COST_INFINITE;
3087
3088 /* Increments of 0, 1, and -1 are always profitable to replace,
3089 because they always replace a multiply or add with an add or
3090 copy, and may cause one or more existing instructions to go
3091 dead. Exception: -1 can't be assumed to be profitable for
3092 pointer addition. */
3093 else if (incr == 0
3094 || incr == 1
3095 || (incr == -1
3096 && !POINTER_TYPE_P (first_dep->cand_type)))
3097 incr_vec[i].cost = COST_NEUTRAL;
3098
3099 /* If we need to add an initializer, give up if a cast from the
3100 candidate's type to its stride's type can lose precision.
3101 Note that this already takes into account that the stride may
3102 have been cast to a wider type, in which case this test won't
3103 fire. Example:
3104
3105 short int _1;
3106 _2 = (int) _1;
3107 _3 = _2 * 10;
3108 _4 = x + _3; ADD: x + (10 * (int)_1) : int
3109 _5 = _2 * 15;
3110 _6 = x + _5; ADD: x + (15 * (int)_1) : int
3111
3112 Although the stride was a short int initially, the stride
3113 used in the analysis has been widened to an int, and such
3114 widening will be done in the initializer as well. */
3115 else if (!incr_vec[i].initializer
3116 && TREE_CODE (first_dep->stride) != INTEGER_CST
3117 && !legal_cast_p_1 (first_dep->stride_type,
3118 TREE_TYPE (gimple_assign_lhs
3119 (first_dep->cand_stmt))))
3120 incr_vec[i].cost = COST_INFINITE;
3121
3122 /* If we need to add an initializer, make sure we don't introduce
3123 a multiply by a pointer type, which can happen in certain cast
3124 scenarios. */
3125 else if (!incr_vec[i].initializer
3126 && TREE_CODE (first_dep->stride) != INTEGER_CST
3127 && POINTER_TYPE_P (first_dep->stride_type))
3128 incr_vec[i].cost = COST_INFINITE;
3129
3130 /* For any other increment, if this is a multiply candidate, we
3131 must introduce a temporary T and initialize it with
3132 T_0 = stride * increment. When optimizing for speed, walk the
3133 candidate tree to calculate the best cost reduction along any
3134 path; if it offsets the fixed cost of inserting the initializer,
3135 replacing the increment is profitable. When optimizing for
3136 size, instead calculate the total cost reduction from replacing
3137 all candidates with this increment. */
3138 else if (first_dep->kind == CAND_MULT)
3139 {
3140 int cost = mult_by_coeff_cost (incr, mode, speed);
3141 int repl_savings;
3142
3143 if (tree_fits_shwi_p (first_dep->stride))
3144 {
3145 HOST_WIDE_INT hwi_stride = tree_to_shwi (first_dep->stride);
3146 repl_savings = mult_by_coeff_cost (hwi_stride, mode, speed);
3147 }
3148 else
3149 repl_savings = mul_cost (speed, mode);
3150 repl_savings -= add_cost (speed, mode);
3151
3152 if (speed)
3153 cost = lowest_cost_path (cost, repl_savings, first_dep,
3154 incr_vec[i].incr, COUNT_PHIS);
3155 else
3156 cost -= total_savings (repl_savings, first_dep, incr_vec[i].incr,
3157 COUNT_PHIS);
3158
3159 incr_vec[i].cost = cost;
3160 }
3161
3162 /* If this is an add candidate, the initializer may already
3163 exist, so only calculate the cost of the initializer if it
3164 doesn't. We are replacing one add with another here, so the
3165 known replacement savings is zero. We will account for removal
3166 of dead instructions in lowest_cost_path or total_savings. */
3167 else
3168 {
3169 int cost = 0;
3170 if (!incr_vec[i].initializer)
3171 cost = mult_by_coeff_cost (incr, mode, speed);
3172
3173 if (speed)
3174 cost = lowest_cost_path (cost, 0, first_dep, incr_vec[i].incr,
3175 DONT_COUNT_PHIS);
3176 else
3177 cost -= total_savings (0, first_dep, incr_vec[i].incr,
3178 DONT_COUNT_PHIS);
3179
3180 incr_vec[i].cost = cost;
3181 }
3182 }
3183 }
3184
3185 /* Return the nearest common dominator of BB1 and BB2. If the blocks
3186 are identical, return the earlier of C1 and C2 in *WHERE. Otherwise,
3187 if the NCD matches BB1, return C1 in *WHERE; if the NCD matches BB2,
3188 return C2 in *WHERE; and if the NCD matches neither, return NULL in
3189 *WHERE. Note: It is possible for one of C1 and C2 to be NULL. */
3190
3191 static basic_block
3192 ncd_for_two_cands (basic_block bb1, basic_block bb2,
3193 slsr_cand_t c1, slsr_cand_t c2, slsr_cand_t *where)
3194 {
3195 basic_block ncd;
3196
3197 if (!bb1)
3198 {
3199 *where = c2;
3200 return bb2;
3201 }
3202
3203 if (!bb2)
3204 {
3205 *where = c1;
3206 return bb1;
3207 }
3208
3209 ncd = nearest_common_dominator (CDI_DOMINATORS, bb1, bb2);
3210
3211 /* If both candidates are in the same block, the earlier
3212 candidate wins. */
3213 if (bb1 == ncd && bb2 == ncd)
3214 {
3215 if (!c1 || (c2 && c2->cand_num < c1->cand_num))
3216 *where = c2;
3217 else
3218 *where = c1;
3219 }
3220
3221 /* Otherwise, if one of them produced a candidate in the
3222 dominator, that one wins. */
3223 else if (bb1 == ncd)
3224 *where = c1;
3225
3226 else if (bb2 == ncd)
3227 *where = c2;
3228
3229 /* If neither matches the dominator, neither wins. */
3230 else
3231 *where = NULL;
3232
3233 return ncd;
3234 }
3235
3236 /* Consider all candidates that feed PHI. Find the nearest common
3237 dominator of those candidates requiring the given increment INCR.
3238 Further find and return the nearest common dominator of this result
3239 with block NCD. If the returned block contains one or more of the
3240 candidates, return the earliest candidate in the block in *WHERE. */
3241
3242 static basic_block
3243 ncd_with_phi (slsr_cand_t c, const widest_int &incr, gphi *phi,
3244 basic_block ncd, slsr_cand_t *where)
3245 {
3246 unsigned i;
3247 slsr_cand_t basis = lookup_cand (c->basis);
3248 slsr_cand_t phi_cand = *stmt_cand_map->get (phi);
3249
3250 for (i = 0; i < gimple_phi_num_args (phi); i++)
3251 {
3252 tree arg = gimple_phi_arg_def (phi, i);
3253 gimple *arg_def = SSA_NAME_DEF_STMT (arg);
3254
3255 if (gimple_code (arg_def) == GIMPLE_PHI)
3256 ncd = ncd_with_phi (c, incr, as_a <gphi *> (arg_def), ncd, where);
3257 else
3258 {
3259 widest_int diff;
3260
3261 if (operand_equal_p (arg, phi_cand->base_expr, 0))
3262 diff = -basis->index;
3263 else
3264 {
3265 slsr_cand_t arg_cand = base_cand_from_table (arg);
3266 diff = arg_cand->index - basis->index;
3267 }
3268
3269 basic_block pred = gimple_phi_arg_edge (phi, i)->src;
3270
3271 if ((incr == diff) || (!address_arithmetic_p && incr == -diff))
3272 ncd = ncd_for_two_cands (ncd, pred, *where, NULL, where);
3273 }
3274 }
3275
3276 return ncd;
3277 }
3278
3279 /* Consider the candidate C together with any candidates that feed
3280 C's phi dependence (if any). Find and return the nearest common
3281 dominator of those candidates requiring the given increment INCR.
3282 If the returned block contains one or more of the candidates,
3283 return the earliest candidate in the block in *WHERE. */
3284
3285 static basic_block
3286 ncd_of_cand_and_phis (slsr_cand_t c, const widest_int &incr, slsr_cand_t *where)
3287 {
3288 basic_block ncd = NULL;
3289
3290 if (cand_abs_increment (c) == incr)
3291 {
3292 ncd = gimple_bb (c->cand_stmt);
3293 *where = c;
3294 }
3295
3296 if (phi_dependent_cand_p (c))
3297 ncd = ncd_with_phi (c, incr,
3298 as_a <gphi *> (lookup_cand (c->def_phi)->cand_stmt),
3299 ncd, where);
3300
3301 return ncd;
3302 }
3303
3304 /* Consider all candidates in the tree rooted at C for which INCR
3305 represents the required increment of C relative to its basis.
3306 Find and return the basic block that most nearly dominates all
3307 such candidates. If the returned block contains one or more of
3308 the candidates, return the earliest candidate in the block in
3309 *WHERE. */
3310
3311 static basic_block
3312 nearest_common_dominator_for_cands (slsr_cand_t c, const widest_int &incr,
3313 slsr_cand_t *where)
3314 {
3315 basic_block sib_ncd = NULL, dep_ncd = NULL, this_ncd = NULL, ncd;
3316 slsr_cand_t sib_where = NULL, dep_where = NULL, this_where = NULL, new_where;
3317
3318 /* First find the NCD of all siblings and dependents. */
3319 if (c->sibling)
3320 sib_ncd = nearest_common_dominator_for_cands (lookup_cand (c->sibling),
3321 incr, &sib_where);
3322 if (c->dependent)
3323 dep_ncd = nearest_common_dominator_for_cands (lookup_cand (c->dependent),
3324 incr, &dep_where);
3325 if (!sib_ncd && !dep_ncd)
3326 {
3327 new_where = NULL;
3328 ncd = NULL;
3329 }
3330 else if (sib_ncd && !dep_ncd)
3331 {
3332 new_where = sib_where;
3333 ncd = sib_ncd;
3334 }
3335 else if (dep_ncd && !sib_ncd)
3336 {
3337 new_where = dep_where;
3338 ncd = dep_ncd;
3339 }
3340 else
3341 ncd = ncd_for_two_cands (sib_ncd, dep_ncd, sib_where,
3342 dep_where, &new_where);
3343
3344 /* If the candidate's increment doesn't match the one we're interested
3345 in (and nor do any increments for feeding defs of a phi-dependence),
3346 then the result depends only on siblings and dependents. */
3347 this_ncd = ncd_of_cand_and_phis (c, incr, &this_where);
3348
3349 if (!this_ncd || cand_already_replaced (c))
3350 {
3351 *where = new_where;
3352 return ncd;
3353 }
3354
3355 /* Otherwise, compare this candidate with the result from all siblings
3356 and dependents. */
3357 ncd = ncd_for_two_cands (ncd, this_ncd, new_where, this_where, where);
3358
3359 return ncd;
3360 }
3361
3362 /* Return TRUE if the increment indexed by INDEX is profitable to replace. */
3363
3364 static inline bool
3365 profitable_increment_p (unsigned index)
3366 {
3367 return (incr_vec[index].cost <= COST_NEUTRAL);
3368 }
3369
3370 /* For each profitable increment in the increment vector not equal to
3371 0 or 1 (or -1, for non-pointer arithmetic), find the nearest common
3372 dominator of all statements in the candidate chain rooted at C
3373 that require that increment, and insert an initializer
3374 T_0 = stride * increment at that location. Record T_0 with the
3375 increment record. */
3376
3377 static void
3378 insert_initializers (slsr_cand_t c)
3379 {
3380 unsigned i;
3381
3382 for (i = 0; i < incr_vec_len; i++)
3383 {
3384 basic_block bb;
3385 slsr_cand_t where = NULL;
3386 gassign *init_stmt;
3387 gassign *cast_stmt = NULL;
3388 tree new_name, incr_tree, init_stride;
3389 widest_int incr = incr_vec[i].incr;
3390
3391 if (!profitable_increment_p (i)
3392 || incr == 1
3393 || (incr == -1
3394 && (!POINTER_TYPE_P (lookup_cand (c->basis)->cand_type)))
3395 || incr == 0)
3396 continue;
3397
3398 /* We may have already identified an existing initializer that
3399 will suffice. */
3400 if (incr_vec[i].initializer)
3401 {
3402 if (dump_file && (dump_flags & TDF_DETAILS))
3403 {
3404 fputs ("Using existing initializer: ", dump_file);
3405 print_gimple_stmt (dump_file,
3406 SSA_NAME_DEF_STMT (incr_vec[i].initializer),
3407 0, TDF_NONE);
3408 }
3409 continue;
3410 }
3411
3412 /* Find the block that most closely dominates all candidates
3413 with this increment. If there is at least one candidate in
3414 that block, the earliest one will be returned in WHERE. */
3415 bb = nearest_common_dominator_for_cands (c, incr, &where);
3416
3417 /* If the NCD is not dominated by the block containing the
3418 definition of the stride, we can't legally insert a
3419 single initializer. Mark the increment as unprofitable
3420 so we don't make any replacements. FIXME: Multiple
3421 initializers could be placed with more analysis. */
3422 gimple *stride_def = SSA_NAME_DEF_STMT (c->stride);
3423 basic_block stride_bb = gimple_bb (stride_def);
3424
3425 if (stride_bb && !dominated_by_p (CDI_DOMINATORS, bb, stride_bb))
3426 {
3427 if (dump_file && (dump_flags & TDF_DETAILS))
3428 fprintf (dump_file,
3429 "Initializer #%d cannot be legally placed\n", i);
3430 incr_vec[i].cost = COST_INFINITE;
3431 continue;
3432 }
3433
3434 /* If the nominal stride has a different type than the recorded
3435 stride type, build a cast from the nominal stride to that type. */
3436 if (!types_compatible_p (TREE_TYPE (c->stride), c->stride_type))
3437 {
3438 init_stride = make_temp_ssa_name (c->stride_type, NULL, "slsr");
3439 cast_stmt = gimple_build_assign (init_stride, NOP_EXPR, c->stride);
3440 }
3441 else
3442 init_stride = c->stride;
3443
3444 /* Create a new SSA name to hold the initializer's value. */
3445 new_name = make_temp_ssa_name (c->stride_type, NULL, "slsr");
3446 incr_vec[i].initializer = new_name;
3447
3448 /* Create the initializer and insert it in the latest possible
3449 dominating position. */
3450 incr_tree = wide_int_to_tree (c->stride_type, incr);
3451 init_stmt = gimple_build_assign (new_name, MULT_EXPR,
3452 init_stride, incr_tree);
3453 if (where)
3454 {
3455 gimple_stmt_iterator gsi = gsi_for_stmt (where->cand_stmt);
3456 location_t loc = gimple_location (where->cand_stmt);
3457
3458 if (cast_stmt)
3459 {
3460 gsi_insert_before (&gsi, cast_stmt, GSI_SAME_STMT);
3461 gimple_set_location (cast_stmt, loc);
3462 }
3463
3464 gsi_insert_before (&gsi, init_stmt, GSI_SAME_STMT);
3465 gimple_set_location (init_stmt, loc);
3466 }
3467 else
3468 {
3469 gimple_stmt_iterator gsi = gsi_last_bb (bb);
3470 gimple *basis_stmt = lookup_cand (c->basis)->cand_stmt;
3471 location_t loc = gimple_location (basis_stmt);
3472
3473 if (!gsi_end_p (gsi) && stmt_ends_bb_p (gsi_stmt (gsi)))
3474 {
3475 if (cast_stmt)
3476 {
3477 gsi_insert_before (&gsi, cast_stmt, GSI_SAME_STMT);
3478 gimple_set_location (cast_stmt, loc);
3479 }
3480 gsi_insert_before (&gsi, init_stmt, GSI_SAME_STMT);
3481 }
3482 else
3483 {
3484 if (cast_stmt)
3485 {
3486 gsi_insert_after (&gsi, cast_stmt, GSI_NEW_STMT);
3487 gimple_set_location (cast_stmt, loc);
3488 }
3489 gsi_insert_after (&gsi, init_stmt, GSI_NEW_STMT);
3490 }
3491
3492 gimple_set_location (init_stmt, gimple_location (basis_stmt));
3493 }
3494
3495 if (dump_file && (dump_flags & TDF_DETAILS))
3496 {
3497 if (cast_stmt)
3498 {
3499 fputs ("Inserting stride cast: ", dump_file);
3500 print_gimple_stmt (dump_file, cast_stmt, 0);
3501 }
3502 fputs ("Inserting initializer: ", dump_file);
3503 print_gimple_stmt (dump_file, init_stmt, 0);
3504 }
3505 }
3506 }
3507
3508 /* Recursive helper function for all_phi_incrs_profitable. */
3509
3510 static bool
3511 all_phi_incrs_profitable_1 (slsr_cand_t c, gphi *phi, int *spread)
3512 {
3513 unsigned i;
3514 slsr_cand_t basis = lookup_cand (c->basis);
3515 slsr_cand_t phi_cand = *stmt_cand_map->get (phi);
3516
3517 if (phi_cand->visited)
3518 return true;
3519
3520 phi_cand->visited = 1;
3521 (*spread)++;
3522
3523 /* If the basis doesn't dominate the PHI (including when the PHI is
3524 in the same block as the basis), we won't be able to create a PHI
3525 using the basis here. */
3526 basic_block basis_bb = gimple_bb (basis->cand_stmt);
3527 basic_block phi_bb = gimple_bb (phi);
3528
3529 if (phi_bb == basis_bb
3530 || !dominated_by_p (CDI_DOMINATORS, phi_bb, basis_bb))
3531 return false;
3532
3533 for (i = 0; i < gimple_phi_num_args (phi); i++)
3534 {
3535 /* If the PHI arg resides in a block not dominated by the basis,
3536 we won't be able to create a PHI using the basis here. */
3537 basic_block pred_bb = gimple_phi_arg_edge (phi, i)->src;
3538
3539 if (!dominated_by_p (CDI_DOMINATORS, pred_bb, basis_bb))
3540 return false;
3541
3542 tree arg = gimple_phi_arg_def (phi, i);
3543 gimple *arg_def = SSA_NAME_DEF_STMT (arg);
3544
3545 if (gimple_code (arg_def) == GIMPLE_PHI)
3546 {
3547 if (!all_phi_incrs_profitable_1 (c, as_a <gphi *> (arg_def), spread)
3548 || *spread > MAX_SPREAD)
3549 return false;
3550 }
3551 else
3552 {
3553 int j;
3554 widest_int increment;
3555
3556 if (operand_equal_p (arg, phi_cand->base_expr, 0))
3557 increment = -basis->index;
3558 else
3559 {
3560 slsr_cand_t arg_cand = base_cand_from_table (arg);
3561 increment = arg_cand->index - basis->index;
3562 }
3563
3564 if (!address_arithmetic_p && wi::neg_p (increment))
3565 increment = -increment;
3566
3567 j = incr_vec_index (increment);
3568
3569 if (dump_file && (dump_flags & TDF_DETAILS))
3570 {
3571 fprintf (dump_file, " Conditional candidate %d, phi: ",
3572 c->cand_num);
3573 print_gimple_stmt (dump_file, phi, 0);
3574 fputs (" increment: ", dump_file);
3575 print_decs (increment, dump_file);
3576 if (j < 0)
3577 fprintf (dump_file,
3578 "\n Not replaced; incr_vec overflow.\n");
3579 else {
3580 fprintf (dump_file, "\n cost: %d\n", incr_vec[j].cost);
3581 if (profitable_increment_p (j))
3582 fputs (" Replacing...\n", dump_file);
3583 else
3584 fputs (" Not replaced.\n", dump_file);
3585 }
3586 }
3587
3588 if (j < 0 || !profitable_increment_p (j))
3589 return false;
3590 }
3591 }
3592
3593 return true;
3594 }
3595
3596 /* Return TRUE iff all required increments for candidates feeding PHI
3597 are profitable (and legal!) to replace on behalf of candidate C. */
3598
3599 static bool
3600 all_phi_incrs_profitable (slsr_cand_t c, gphi *phi)
3601 {
3602 int spread = 0;
3603 bool retval = all_phi_incrs_profitable_1 (c, phi, &spread);
3604 clear_visited (phi);
3605 return retval;
3606 }
3607
3608 /* Create a NOP_EXPR that copies FROM_EXPR into a new SSA name of
3609 type TO_TYPE, and insert it in front of the statement represented
3610 by candidate C. Use *NEW_VAR to create the new SSA name. Return
3611 the new SSA name. */
3612
3613 static tree
3614 introduce_cast_before_cand (slsr_cand_t c, tree to_type, tree from_expr)
3615 {
3616 tree cast_lhs;
3617 gassign *cast_stmt;
3618 gimple_stmt_iterator gsi = gsi_for_stmt (c->cand_stmt);
3619
3620 cast_lhs = make_temp_ssa_name (to_type, NULL, "slsr");
3621 cast_stmt = gimple_build_assign (cast_lhs, NOP_EXPR, from_expr);
3622 gimple_set_location (cast_stmt, gimple_location (c->cand_stmt));
3623 gsi_insert_before (&gsi, cast_stmt, GSI_SAME_STMT);
3624
3625 if (dump_file && (dump_flags & TDF_DETAILS))
3626 {
3627 fputs (" Inserting: ", dump_file);
3628 print_gimple_stmt (dump_file, cast_stmt, 0);
3629 }
3630
3631 return cast_lhs;
3632 }
3633
3634 /* Replace the RHS of the statement represented by candidate C with
3635 NEW_CODE, NEW_RHS1, and NEW_RHS2, provided that to do so doesn't
3636 leave C unchanged or just interchange its operands. The original
3637 operation and operands are in OLD_CODE, OLD_RHS1, and OLD_RHS2.
3638 If the replacement was made and we are doing a details dump,
3639 return the revised statement, else NULL. */
3640
3641 static gimple *
3642 replace_rhs_if_not_dup (enum tree_code new_code, tree new_rhs1, tree new_rhs2,
3643 enum tree_code old_code, tree old_rhs1, tree old_rhs2,
3644 slsr_cand_t c)
3645 {
3646 if (new_code != old_code
3647 || ((!operand_equal_p (new_rhs1, old_rhs1, 0)
3648 || !operand_equal_p (new_rhs2, old_rhs2, 0))
3649 && (!operand_equal_p (new_rhs1, old_rhs2, 0)
3650 || !operand_equal_p (new_rhs2, old_rhs1, 0))))
3651 {
3652 gimple_stmt_iterator gsi = gsi_for_stmt (c->cand_stmt);
3653 slsr_cand_t cc = lookup_cand (c->first_interp);
3654 gimple_assign_set_rhs_with_ops (&gsi, new_code, new_rhs1, new_rhs2);
3655 update_stmt (gsi_stmt (gsi));
3656 while (cc)
3657 {
3658 cc->cand_stmt = gsi_stmt (gsi);
3659 cc = lookup_cand (cc->next_interp);
3660 }
3661
3662 if (dump_file && (dump_flags & TDF_DETAILS))
3663 return gsi_stmt (gsi);
3664 }
3665
3666 else if (dump_file && (dump_flags & TDF_DETAILS))
3667 fputs (" (duplicate, not actually replacing)\n", dump_file);
3668
3669 return NULL;
3670 }
3671
3672 /* Strength-reduce the statement represented by candidate C by replacing
3673 it with an equivalent addition or subtraction. I is the index into
3674 the increment vector identifying C's increment. NEW_VAR is used to
3675 create a new SSA name if a cast needs to be introduced. BASIS_NAME
3676 is the rhs1 to use in creating the add/subtract. */
3677
3678 static void
3679 replace_one_candidate (slsr_cand_t c, unsigned i, tree basis_name)
3680 {
3681 gimple *stmt_to_print = NULL;
3682 tree orig_rhs1, orig_rhs2;
3683 tree rhs2;
3684 enum tree_code orig_code, repl_code;
3685 widest_int cand_incr;
3686
3687 orig_code = gimple_assign_rhs_code (c->cand_stmt);
3688 orig_rhs1 = gimple_assign_rhs1 (c->cand_stmt);
3689 orig_rhs2 = gimple_assign_rhs2 (c->cand_stmt);
3690 cand_incr = cand_increment (c);
3691
3692 /* If orig_rhs2 is NULL, we have already replaced this in situ with
3693 a copy statement under another interpretation. */
3694 if (!orig_rhs2)
3695 return;
3696
3697 if (dump_file && (dump_flags & TDF_DETAILS))
3698 {
3699 fputs ("Replacing: ", dump_file);
3700 print_gimple_stmt (dump_file, c->cand_stmt, 0);
3701 stmt_to_print = c->cand_stmt;
3702 }
3703
3704 if (address_arithmetic_p)
3705 repl_code = POINTER_PLUS_EXPR;
3706 else
3707 repl_code = PLUS_EXPR;
3708
3709 /* If the increment has an initializer T_0, replace the candidate
3710 statement with an add of the basis name and the initializer. */
3711 if (incr_vec[i].initializer)
3712 {
3713 tree init_type = TREE_TYPE (incr_vec[i].initializer);
3714 tree orig_type = TREE_TYPE (orig_rhs2);
3715
3716 if (types_compatible_p (orig_type, init_type))
3717 rhs2 = incr_vec[i].initializer;
3718 else
3719 rhs2 = introduce_cast_before_cand (c, orig_type,
3720 incr_vec[i].initializer);
3721
3722 if (incr_vec[i].incr != cand_incr)
3723 {
3724 gcc_assert (repl_code == PLUS_EXPR);
3725 repl_code = MINUS_EXPR;
3726 }
3727
3728 stmt_to_print = replace_rhs_if_not_dup (repl_code, basis_name, rhs2,
3729 orig_code, orig_rhs1, orig_rhs2,
3730 c);
3731 }
3732
3733 /* Otherwise, the increment is one of -1, 0, and 1. Replace
3734 with a subtract of the stride from the basis name, a copy
3735 from the basis name, or an add of the stride to the basis
3736 name, respectively. It may be necessary to introduce a
3737 cast (or reuse an existing cast). */
3738 else if (cand_incr == 1)
3739 {
3740 tree stride_type = TREE_TYPE (c->stride);
3741 tree orig_type = TREE_TYPE (orig_rhs2);
3742
3743 if (types_compatible_p (orig_type, stride_type))
3744 rhs2 = c->stride;
3745 else
3746 rhs2 = introduce_cast_before_cand (c, orig_type, c->stride);
3747
3748 stmt_to_print = replace_rhs_if_not_dup (repl_code, basis_name, rhs2,
3749 orig_code, orig_rhs1, orig_rhs2,
3750 c);
3751 }
3752
3753 else if (cand_incr == -1)
3754 {
3755 tree stride_type = TREE_TYPE (c->stride);
3756 tree orig_type = TREE_TYPE (orig_rhs2);
3757 gcc_assert (repl_code != POINTER_PLUS_EXPR);
3758
3759 if (types_compatible_p (orig_type, stride_type))
3760 rhs2 = c->stride;
3761 else
3762 rhs2 = introduce_cast_before_cand (c, orig_type, c->stride);
3763
3764 if (orig_code != MINUS_EXPR
3765 || !operand_equal_p (basis_name, orig_rhs1, 0)
3766 || !operand_equal_p (rhs2, orig_rhs2, 0))
3767 {
3768 gimple_stmt_iterator gsi = gsi_for_stmt (c->cand_stmt);
3769 slsr_cand_t cc = lookup_cand (c->first_interp);
3770 gimple_assign_set_rhs_with_ops (&gsi, MINUS_EXPR, basis_name, rhs2);
3771 update_stmt (gsi_stmt (gsi));
3772 while (cc)
3773 {
3774 cc->cand_stmt = gsi_stmt (gsi);
3775 cc = lookup_cand (cc->next_interp);
3776 }
3777
3778 if (dump_file && (dump_flags & TDF_DETAILS))
3779 stmt_to_print = gsi_stmt (gsi);
3780 }
3781 else if (dump_file && (dump_flags & TDF_DETAILS))
3782 fputs (" (duplicate, not actually replacing)\n", dump_file);
3783 }
3784
3785 else if (cand_incr == 0)
3786 {
3787 tree lhs = gimple_assign_lhs (c->cand_stmt);
3788 tree lhs_type = TREE_TYPE (lhs);
3789 tree basis_type = TREE_TYPE (basis_name);
3790
3791 if (types_compatible_p (lhs_type, basis_type))
3792 {
3793 gassign *copy_stmt = gimple_build_assign (lhs, basis_name);
3794 gimple_stmt_iterator gsi = gsi_for_stmt (c->cand_stmt);
3795 slsr_cand_t cc = lookup_cand (c->first_interp);
3796 gimple_set_location (copy_stmt, gimple_location (c->cand_stmt));
3797 gsi_replace (&gsi, copy_stmt, false);
3798 while (cc)
3799 {
3800 cc->cand_stmt = copy_stmt;
3801 cc = lookup_cand (cc->next_interp);
3802 }
3803
3804 if (dump_file && (dump_flags & TDF_DETAILS))
3805 stmt_to_print = copy_stmt;
3806 }
3807 else
3808 {
3809 gimple_stmt_iterator gsi = gsi_for_stmt (c->cand_stmt);
3810 gassign *cast_stmt = gimple_build_assign (lhs, NOP_EXPR, basis_name);
3811 slsr_cand_t cc = lookup_cand (c->first_interp);
3812 gimple_set_location (cast_stmt, gimple_location (c->cand_stmt));
3813 gsi_replace (&gsi, cast_stmt, false);
3814 while (cc)
3815 {
3816 cc->cand_stmt = cast_stmt;
3817 cc = lookup_cand (cc->next_interp);
3818 }
3819
3820 if (dump_file && (dump_flags & TDF_DETAILS))
3821 stmt_to_print = cast_stmt;
3822 }
3823 }
3824 else
3825 gcc_unreachable ();
3826
3827 if (dump_file && (dump_flags & TDF_DETAILS) && stmt_to_print)
3828 {
3829 fputs ("With: ", dump_file);
3830 print_gimple_stmt (dump_file, stmt_to_print, 0);
3831 fputs ("\n", dump_file);
3832 }
3833 }
3834
3835 /* For each candidate in the tree rooted at C, replace it with
3836 an increment if such has been shown to be profitable. */
3837
3838 static void
3839 replace_profitable_candidates (slsr_cand_t c)
3840 {
3841 if (!cand_already_replaced (c))
3842 {
3843 widest_int increment = cand_abs_increment (c);
3844 enum tree_code orig_code = gimple_assign_rhs_code (c->cand_stmt);
3845 int i;
3846
3847 i = incr_vec_index (increment);
3848
3849 /* Only process profitable increments. Nothing useful can be done
3850 to a cast or copy. */
3851 if (i >= 0
3852 && profitable_increment_p (i)
3853 && orig_code != SSA_NAME
3854 && !CONVERT_EXPR_CODE_P (orig_code))
3855 {
3856 if (phi_dependent_cand_p (c))
3857 {
3858 gphi *phi = as_a <gphi *> (lookup_cand (c->def_phi)->cand_stmt);
3859
3860 if (all_phi_incrs_profitable (c, phi))
3861 {
3862 /* Look up the LHS SSA name from C's basis. This will be
3863 the RHS1 of the adds we will introduce to create new
3864 phi arguments. */
3865 slsr_cand_t basis = lookup_cand (c->basis);
3866 tree basis_name = gimple_assign_lhs (basis->cand_stmt);
3867
3868 /* Create a new phi statement that will represent C's true
3869 basis after the transformation is complete. */
3870 location_t loc = gimple_location (c->cand_stmt);
3871 tree name = create_phi_basis (c, phi, basis_name,
3872 loc, UNKNOWN_STRIDE);
3873
3874 /* Replace C with an add of the new basis phi and the
3875 increment. */
3876 replace_one_candidate (c, i, name);
3877 }
3878 }
3879 else
3880 {
3881 slsr_cand_t basis = lookup_cand (c->basis);
3882 tree basis_name = gimple_assign_lhs (basis->cand_stmt);
3883 replace_one_candidate (c, i, basis_name);
3884 }
3885 }
3886 }
3887
3888 if (c->sibling)
3889 replace_profitable_candidates (lookup_cand (c->sibling));
3890
3891 if (c->dependent)
3892 replace_profitable_candidates (lookup_cand (c->dependent));
3893 }
3894 \f
3895 /* Analyze costs of related candidates in the candidate vector,
3896 and make beneficial replacements. */
3897
3898 static void
3899 analyze_candidates_and_replace (void)
3900 {
3901 unsigned i;
3902 slsr_cand_t c;
3903
3904 /* Each candidate that has a null basis and a non-null
3905 dependent is the root of a tree of related statements.
3906 Analyze each tree to determine a subset of those
3907 statements that can be replaced with maximum benefit.
3908
3909 Note the first NULL element is skipped. */
3910 FOR_EACH_VEC_ELT_FROM (cand_vec, i, c, 1)
3911 {
3912 slsr_cand_t first_dep;
3913
3914 if (c->basis != 0 || c->dependent == 0)
3915 continue;
3916
3917 if (dump_file && (dump_flags & TDF_DETAILS))
3918 fprintf (dump_file, "\nProcessing dependency tree rooted at %d.\n",
3919 c->cand_num);
3920
3921 first_dep = lookup_cand (c->dependent);
3922
3923 /* If this is a chain of CAND_REFs, unconditionally replace
3924 each of them with a strength-reduced data reference. */
3925 if (c->kind == CAND_REF)
3926 replace_refs (c);
3927
3928 /* If the common stride of all related candidates is a known
3929 constant, each candidate without a phi-dependence can be
3930 profitably replaced. Each replaces a multiply by a single
3931 add, with the possibility that a feeding add also goes dead.
3932 A candidate with a phi-dependence is replaced only if the
3933 compensation code it requires is offset by the strength
3934 reduction savings. */
3935 else if (TREE_CODE (c->stride) == INTEGER_CST)
3936 replace_uncond_cands_and_profitable_phis (first_dep);
3937
3938 /* When the stride is an SSA name, it may still be profitable
3939 to replace some or all of the dependent candidates, depending
3940 on whether the introduced increments can be reused, or are
3941 less expensive to calculate than the replaced statements. */
3942 else
3943 {
3944 machine_mode mode;
3945 bool speed;
3946
3947 /* Determine whether we'll be generating pointer arithmetic
3948 when replacing candidates. */
3949 address_arithmetic_p = (c->kind == CAND_ADD
3950 && POINTER_TYPE_P (c->cand_type));
3951
3952 /* If all candidates have already been replaced under other
3953 interpretations, nothing remains to be done. */
3954 if (!count_candidates (c))
3955 continue;
3956
3957 /* Construct an array of increments for this candidate chain. */
3958 incr_vec = XNEWVEC (incr_info, MAX_INCR_VEC_LEN);
3959 incr_vec_len = 0;
3960 record_increments (c);
3961
3962 /* Determine which increments are profitable to replace. */
3963 mode = TYPE_MODE (TREE_TYPE (gimple_assign_lhs (c->cand_stmt)));
3964 speed = optimize_cands_for_speed_p (c);
3965 analyze_increments (first_dep, mode, speed);
3966
3967 /* Insert initializers of the form T_0 = stride * increment
3968 for use in profitable replacements. */
3969 insert_initializers (first_dep);
3970 dump_incr_vec ();
3971
3972 /* Perform the replacements. */
3973 replace_profitable_candidates (first_dep);
3974 free (incr_vec);
3975 }
3976 }
3977
3978 /* For conditional candidates, we may have uncommitted insertions
3979 on edges to clean up. */
3980 gsi_commit_edge_inserts ();
3981 }
3982
3983 namespace {
3984
3985 const pass_data pass_data_strength_reduction =
3986 {
3987 GIMPLE_PASS, /* type */
3988 "slsr", /* name */
3989 OPTGROUP_NONE, /* optinfo_flags */
3990 TV_GIMPLE_SLSR, /* tv_id */
3991 ( PROP_cfg | PROP_ssa ), /* properties_required */
3992 0, /* properties_provided */
3993 0, /* properties_destroyed */
3994 0, /* todo_flags_start */
3995 0, /* todo_flags_finish */
3996 };
3997
3998 class pass_strength_reduction : public gimple_opt_pass
3999 {
4000 public:
4001 pass_strength_reduction (gcc::context *ctxt)
4002 : gimple_opt_pass (pass_data_strength_reduction, ctxt)
4003 {}
4004
4005 /* opt_pass methods: */
4006 virtual bool gate (function *) { return flag_tree_slsr; }
4007 virtual unsigned int execute (function *);
4008
4009 }; // class pass_strength_reduction
4010
4011 unsigned
4012 pass_strength_reduction::execute (function *fun)
4013 {
4014 /* Create the obstack where candidates will reside. */
4015 gcc_obstack_init (&cand_obstack);
4016
4017 /* Allocate the candidate vector and initialize the first NULL element. */
4018 cand_vec.create (128);
4019 cand_vec.safe_push (NULL);
4020
4021 /* Allocate the mapping from statements to candidate indices. */
4022 stmt_cand_map = new hash_map<gimple *, slsr_cand_t>;
4023
4024 /* Create the obstack where candidate chains will reside. */
4025 gcc_obstack_init (&chain_obstack);
4026
4027 /* Allocate the mapping from base expressions to candidate chains. */
4028 base_cand_map = new hash_table<cand_chain_hasher> (500);
4029
4030 /* Allocate the mapping from bases to alternative bases. */
4031 alt_base_map = new hash_map<tree, tree>;
4032
4033 /* Initialize the loop optimizer. We need to detect flow across
4034 back edges, and this gives us dominator information as well. */
4035 loop_optimizer_init (AVOID_CFG_MODIFICATIONS);
4036
4037 /* Walk the CFG in predominator order looking for strength reduction
4038 candidates. */
4039 find_candidates_dom_walker (CDI_DOMINATORS)
4040 .walk (fun->cfg->x_entry_block_ptr);
4041
4042 if (dump_file && (dump_flags & TDF_DETAILS))
4043 {
4044 dump_cand_vec ();
4045 dump_cand_chains ();
4046 }
4047
4048 delete alt_base_map;
4049 free_affine_expand_cache (&name_expansions);
4050
4051 /* Analyze costs and make appropriate replacements. */
4052 analyze_candidates_and_replace ();
4053
4054 loop_optimizer_finalize ();
4055 delete base_cand_map;
4056 base_cand_map = NULL;
4057 obstack_free (&chain_obstack, NULL);
4058 delete stmt_cand_map;
4059 cand_vec.release ();
4060 obstack_free (&cand_obstack, NULL);
4061
4062 return 0;
4063 }
4064
4065 } // anon namespace
4066
4067 gimple_opt_pass *
4068 make_pass_strength_reduction (gcc::context *ctxt)
4069 {
4070 return new pass_strength_reduction (ctxt);
4071 }