]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/gimple.c
* gimple.h (gimple_build_assign_with_ops): Add unary arg overload.
[thirdparty/gcc.git] / gcc / gimple.c
1 /* Gimple IR support functions.
2
3 Copyright (C) 2007-2014 Free Software Foundation, Inc.
4 Contributed by Aldy Hernandez <aldyh@redhat.com>
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
12
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
21
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "tm.h"
26 #include "target.h"
27 #include "tree.h"
28 #include "calls.h"
29 #include "stmt.h"
30 #include "stor-layout.h"
31 #include "hard-reg-set.h"
32 #include "predict.h"
33 #include "vec.h"
34 #include "hashtab.h"
35 #include "hash-set.h"
36 #include "machmode.h"
37 #include "input.h"
38 #include "function.h"
39 #include "dominance.h"
40 #include "cfg.h"
41 #include "basic-block.h"
42 #include "tree-ssa-alias.h"
43 #include "internal-fn.h"
44 #include "tree-eh.h"
45 #include "gimple-expr.h"
46 #include "is-a.h"
47 #include "gimple.h"
48 #include "gimple-iterator.h"
49 #include "gimple-walk.h"
50 #include "gimple.h"
51 #include "gimplify.h"
52 #include "diagnostic.h"
53 #include "value-prof.h"
54 #include "flags.h"
55 #include "alias.h"
56 #include "demangle.h"
57 #include "langhooks.h"
58 #include "bitmap.h"
59 #include "stringpool.h"
60 #include "tree-ssanames.h"
61 #include "ipa-ref.h"
62 #include "lto-streamer.h"
63 #include "cgraph.h"
64
65
66 /* All the tuples have their operand vector (if present) at the very bottom
67 of the structure. Therefore, the offset required to find the
68 operands vector the size of the structure minus the size of the 1
69 element tree array at the end (see gimple_ops). */
70 #define DEFGSSTRUCT(SYM, STRUCT, HAS_TREE_OP) \
71 (HAS_TREE_OP ? sizeof (struct STRUCT) - sizeof (tree) : 0),
72 EXPORTED_CONST size_t gimple_ops_offset_[] = {
73 #include "gsstruct.def"
74 };
75 #undef DEFGSSTRUCT
76
77 #define DEFGSSTRUCT(SYM, STRUCT, HAS_TREE_OP) sizeof (struct STRUCT),
78 static const size_t gsstruct_code_size[] = {
79 #include "gsstruct.def"
80 };
81 #undef DEFGSSTRUCT
82
83 #define DEFGSCODE(SYM, NAME, GSSCODE) NAME,
84 const char *const gimple_code_name[] = {
85 #include "gimple.def"
86 };
87 #undef DEFGSCODE
88
89 #define DEFGSCODE(SYM, NAME, GSSCODE) GSSCODE,
90 EXPORTED_CONST enum gimple_statement_structure_enum gss_for_code_[] = {
91 #include "gimple.def"
92 };
93 #undef DEFGSCODE
94
95 /* Gimple stats. */
96
97 int gimple_alloc_counts[(int) gimple_alloc_kind_all];
98 int gimple_alloc_sizes[(int) gimple_alloc_kind_all];
99
100 /* Keep in sync with gimple.h:enum gimple_alloc_kind. */
101 static const char * const gimple_alloc_kind_names[] = {
102 "assignments",
103 "phi nodes",
104 "conditionals",
105 "everything else"
106 };
107
108 /* Gimple tuple constructors.
109 Note: Any constructor taking a ``gimple_seq'' as a parameter, can
110 be passed a NULL to start with an empty sequence. */
111
112 /* Set the code for statement G to CODE. */
113
114 static inline void
115 gimple_set_code (gimple g, enum gimple_code code)
116 {
117 g->code = code;
118 }
119
120 /* Return the number of bytes needed to hold a GIMPLE statement with
121 code CODE. */
122
123 static inline size_t
124 gimple_size (enum gimple_code code)
125 {
126 return gsstruct_code_size[gss_for_code (code)];
127 }
128
129 /* Allocate memory for a GIMPLE statement with code CODE and NUM_OPS
130 operands. */
131
132 gimple
133 gimple_alloc_stat (enum gimple_code code, unsigned num_ops MEM_STAT_DECL)
134 {
135 size_t size;
136 gimple stmt;
137
138 size = gimple_size (code);
139 if (num_ops > 0)
140 size += sizeof (tree) * (num_ops - 1);
141
142 if (GATHER_STATISTICS)
143 {
144 enum gimple_alloc_kind kind = gimple_alloc_kind (code);
145 gimple_alloc_counts[(int) kind]++;
146 gimple_alloc_sizes[(int) kind] += size;
147 }
148
149 stmt = ggc_alloc_cleared_gimple_statement_stat (size PASS_MEM_STAT);
150 gimple_set_code (stmt, code);
151 gimple_set_num_ops (stmt, num_ops);
152
153 /* Do not call gimple_set_modified here as it has other side
154 effects and this tuple is still not completely built. */
155 stmt->modified = 1;
156 gimple_init_singleton (stmt);
157
158 return stmt;
159 }
160
161 /* Set SUBCODE to be the code of the expression computed by statement G. */
162
163 static inline void
164 gimple_set_subcode (gimple g, unsigned subcode)
165 {
166 /* We only have 16 bits for the RHS code. Assert that we are not
167 overflowing it. */
168 gcc_assert (subcode < (1 << 16));
169 g->subcode = subcode;
170 }
171
172
173
174 /* Build a tuple with operands. CODE is the statement to build (which
175 must be one of the GIMPLE_WITH_OPS tuples). SUBCODE is the subcode
176 for the new tuple. NUM_OPS is the number of operands to allocate. */
177
178 #define gimple_build_with_ops(c, s, n) \
179 gimple_build_with_ops_stat (c, s, n MEM_STAT_INFO)
180
181 static gimple
182 gimple_build_with_ops_stat (enum gimple_code code, unsigned subcode,
183 unsigned num_ops MEM_STAT_DECL)
184 {
185 gimple s = gimple_alloc_stat (code, num_ops PASS_MEM_STAT);
186 gimple_set_subcode (s, subcode);
187
188 return s;
189 }
190
191
192 /* Build a GIMPLE_RETURN statement returning RETVAL. */
193
194 gimple
195 gimple_build_return (tree retval)
196 {
197 gimple s = gimple_build_with_ops (GIMPLE_RETURN, ERROR_MARK, 2);
198 if (retval)
199 gimple_return_set_retval (s, retval);
200 return s;
201 }
202
203 /* Reset alias information on call S. */
204
205 void
206 gimple_call_reset_alias_info (gimple s)
207 {
208 if (gimple_call_flags (s) & ECF_CONST)
209 memset (gimple_call_use_set (s), 0, sizeof (struct pt_solution));
210 else
211 pt_solution_reset (gimple_call_use_set (s));
212 if (gimple_call_flags (s) & (ECF_CONST|ECF_PURE|ECF_NOVOPS))
213 memset (gimple_call_clobber_set (s), 0, sizeof (struct pt_solution));
214 else
215 pt_solution_reset (gimple_call_clobber_set (s));
216 }
217
218 /* Helper for gimple_build_call, gimple_build_call_valist,
219 gimple_build_call_vec and gimple_build_call_from_tree. Build the basic
220 components of a GIMPLE_CALL statement to function FN with NARGS
221 arguments. */
222
223 static inline gimple
224 gimple_build_call_1 (tree fn, unsigned nargs)
225 {
226 gimple s = gimple_build_with_ops (GIMPLE_CALL, ERROR_MARK, nargs + 3);
227 if (TREE_CODE (fn) == FUNCTION_DECL)
228 fn = build_fold_addr_expr (fn);
229 gimple_set_op (s, 1, fn);
230 gimple_call_set_fntype (s, TREE_TYPE (TREE_TYPE (fn)));
231 gimple_call_reset_alias_info (s);
232 return s;
233 }
234
235
236 /* Build a GIMPLE_CALL statement to function FN with the arguments
237 specified in vector ARGS. */
238
239 gimple
240 gimple_build_call_vec (tree fn, vec<tree> args)
241 {
242 unsigned i;
243 unsigned nargs = args.length ();
244 gimple call = gimple_build_call_1 (fn, nargs);
245
246 for (i = 0; i < nargs; i++)
247 gimple_call_set_arg (call, i, args[i]);
248
249 return call;
250 }
251
252
253 /* Build a GIMPLE_CALL statement to function FN. NARGS is the number of
254 arguments. The ... are the arguments. */
255
256 gimple
257 gimple_build_call (tree fn, unsigned nargs, ...)
258 {
259 va_list ap;
260 gimple call;
261 unsigned i;
262
263 gcc_assert (TREE_CODE (fn) == FUNCTION_DECL || is_gimple_call_addr (fn));
264
265 call = gimple_build_call_1 (fn, nargs);
266
267 va_start (ap, nargs);
268 for (i = 0; i < nargs; i++)
269 gimple_call_set_arg (call, i, va_arg (ap, tree));
270 va_end (ap);
271
272 return call;
273 }
274
275
276 /* Build a GIMPLE_CALL statement to function FN. NARGS is the number of
277 arguments. AP contains the arguments. */
278
279 gimple
280 gimple_build_call_valist (tree fn, unsigned nargs, va_list ap)
281 {
282 gimple call;
283 unsigned i;
284
285 gcc_assert (TREE_CODE (fn) == FUNCTION_DECL || is_gimple_call_addr (fn));
286
287 call = gimple_build_call_1 (fn, nargs);
288
289 for (i = 0; i < nargs; i++)
290 gimple_call_set_arg (call, i, va_arg (ap, tree));
291
292 return call;
293 }
294
295
296 /* Helper for gimple_build_call_internal and gimple_build_call_internal_vec.
297 Build the basic components of a GIMPLE_CALL statement to internal
298 function FN with NARGS arguments. */
299
300 static inline gimple
301 gimple_build_call_internal_1 (enum internal_fn fn, unsigned nargs)
302 {
303 gimple s = gimple_build_with_ops (GIMPLE_CALL, ERROR_MARK, nargs + 3);
304 s->subcode |= GF_CALL_INTERNAL;
305 gimple_call_set_internal_fn (s, fn);
306 gimple_call_reset_alias_info (s);
307 return s;
308 }
309
310
311 /* Build a GIMPLE_CALL statement to internal function FN. NARGS is
312 the number of arguments. The ... are the arguments. */
313
314 gimple
315 gimple_build_call_internal (enum internal_fn fn, unsigned nargs, ...)
316 {
317 va_list ap;
318 gimple call;
319 unsigned i;
320
321 call = gimple_build_call_internal_1 (fn, nargs);
322 va_start (ap, nargs);
323 for (i = 0; i < nargs; i++)
324 gimple_call_set_arg (call, i, va_arg (ap, tree));
325 va_end (ap);
326
327 return call;
328 }
329
330
331 /* Build a GIMPLE_CALL statement to internal function FN with the arguments
332 specified in vector ARGS. */
333
334 gimple
335 gimple_build_call_internal_vec (enum internal_fn fn, vec<tree> args)
336 {
337 unsigned i, nargs;
338 gimple call;
339
340 nargs = args.length ();
341 call = gimple_build_call_internal_1 (fn, nargs);
342 for (i = 0; i < nargs; i++)
343 gimple_call_set_arg (call, i, args[i]);
344
345 return call;
346 }
347
348
349 /* Build a GIMPLE_CALL statement from CALL_EXPR T. Note that T is
350 assumed to be in GIMPLE form already. Minimal checking is done of
351 this fact. */
352
353 gimple
354 gimple_build_call_from_tree (tree t)
355 {
356 unsigned i, nargs;
357 gimple call;
358 tree fndecl = get_callee_fndecl (t);
359
360 gcc_assert (TREE_CODE (t) == CALL_EXPR);
361
362 nargs = call_expr_nargs (t);
363 call = gimple_build_call_1 (fndecl ? fndecl : CALL_EXPR_FN (t), nargs);
364
365 for (i = 0; i < nargs; i++)
366 gimple_call_set_arg (call, i, CALL_EXPR_ARG (t, i));
367
368 gimple_set_block (call, TREE_BLOCK (t));
369
370 /* Carry all the CALL_EXPR flags to the new GIMPLE_CALL. */
371 gimple_call_set_chain (call, CALL_EXPR_STATIC_CHAIN (t));
372 gimple_call_set_tail (call, CALL_EXPR_TAILCALL (t));
373 gimple_call_set_return_slot_opt (call, CALL_EXPR_RETURN_SLOT_OPT (t));
374 if (fndecl
375 && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL
376 && (DECL_FUNCTION_CODE (fndecl) == BUILT_IN_ALLOCA
377 || DECL_FUNCTION_CODE (fndecl) == BUILT_IN_ALLOCA_WITH_ALIGN))
378 gimple_call_set_alloca_for_var (call, CALL_ALLOCA_FOR_VAR_P (t));
379 else
380 gimple_call_set_from_thunk (call, CALL_FROM_THUNK_P (t));
381 gimple_call_set_va_arg_pack (call, CALL_EXPR_VA_ARG_PACK (t));
382 gimple_call_set_nothrow (call, TREE_NOTHROW (t));
383 gimple_set_no_warning (call, TREE_NO_WARNING (t));
384 gimple_call_set_with_bounds (call, CALL_WITH_BOUNDS_P (t));
385
386 return call;
387 }
388
389
390 /* Build a GIMPLE_ASSIGN statement.
391
392 LHS of the assignment.
393 RHS of the assignment which can be unary or binary. */
394
395 gimple
396 gimple_build_assign_stat (tree lhs, tree rhs MEM_STAT_DECL)
397 {
398 enum tree_code subcode;
399 tree op1, op2, op3;
400
401 extract_ops_from_tree_1 (rhs, &subcode, &op1, &op2, &op3);
402 return gimple_build_assign_with_ops (subcode, lhs, op1, op2, op3
403 PASS_MEM_STAT);
404 }
405
406
407 /* Build a GIMPLE_ASSIGN statement with subcode SUBCODE and operands
408 OP1 and OP2. If OP2 is NULL then SUBCODE must be of class
409 GIMPLE_UNARY_RHS or GIMPLE_SINGLE_RHS. */
410
411 gimple
412 gimple_build_assign_with_ops (enum tree_code subcode, tree lhs, tree op1,
413 tree op2, tree op3 MEM_STAT_DECL)
414 {
415 unsigned num_ops;
416 gimple p;
417
418 /* Need 1 operand for LHS and 1 or 2 for the RHS (depending on the
419 code). */
420 num_ops = get_gimple_rhs_num_ops (subcode) + 1;
421
422 p = gimple_build_with_ops_stat (GIMPLE_ASSIGN, (unsigned)subcode, num_ops
423 PASS_MEM_STAT);
424 gimple_assign_set_lhs (p, lhs);
425 gimple_assign_set_rhs1 (p, op1);
426 if (op2)
427 {
428 gcc_assert (num_ops > 2);
429 gimple_assign_set_rhs2 (p, op2);
430 }
431
432 if (op3)
433 {
434 gcc_assert (num_ops > 3);
435 gimple_assign_set_rhs3 (p, op3);
436 }
437
438 return p;
439 }
440
441 gimple
442 gimple_build_assign_with_ops (enum tree_code subcode, tree lhs, tree op1,
443 tree op2 MEM_STAT_DECL)
444 {
445 return gimple_build_assign_with_ops (subcode, lhs, op1, op2, NULL_TREE
446 PASS_MEM_STAT);
447 }
448
449 gimple
450 gimple_build_assign_with_ops (enum tree_code subcode, tree lhs, tree op1
451 MEM_STAT_DECL)
452 {
453 return gimple_build_assign_with_ops (subcode, lhs, op1, NULL_TREE, NULL_TREE
454 PASS_MEM_STAT);
455 }
456
457
458 /* Build a GIMPLE_COND statement.
459
460 PRED is the condition used to compare LHS and the RHS.
461 T_LABEL is the label to jump to if the condition is true.
462 F_LABEL is the label to jump to otherwise. */
463
464 gimple
465 gimple_build_cond (enum tree_code pred_code, tree lhs, tree rhs,
466 tree t_label, tree f_label)
467 {
468 gimple p;
469
470 gcc_assert (TREE_CODE_CLASS (pred_code) == tcc_comparison);
471 p = gimple_build_with_ops (GIMPLE_COND, pred_code, 4);
472 gimple_cond_set_lhs (p, lhs);
473 gimple_cond_set_rhs (p, rhs);
474 gimple_cond_set_true_label (p, t_label);
475 gimple_cond_set_false_label (p, f_label);
476 return p;
477 }
478
479 /* Build a GIMPLE_COND statement from the conditional expression tree
480 COND. T_LABEL and F_LABEL are as in gimple_build_cond. */
481
482 gimple
483 gimple_build_cond_from_tree (tree cond, tree t_label, tree f_label)
484 {
485 enum tree_code code;
486 tree lhs, rhs;
487
488 gimple_cond_get_ops_from_tree (cond, &code, &lhs, &rhs);
489 return gimple_build_cond (code, lhs, rhs, t_label, f_label);
490 }
491
492 /* Set code, lhs, and rhs of a GIMPLE_COND from a suitable
493 boolean expression tree COND. */
494
495 void
496 gimple_cond_set_condition_from_tree (gimple stmt, tree cond)
497 {
498 enum tree_code code;
499 tree lhs, rhs;
500
501 gimple_cond_get_ops_from_tree (cond, &code, &lhs, &rhs);
502 gimple_cond_set_condition (stmt, code, lhs, rhs);
503 }
504
505 /* Build a GIMPLE_LABEL statement for LABEL. */
506
507 gimple
508 gimple_build_label (tree label)
509 {
510 gimple p = gimple_build_with_ops (GIMPLE_LABEL, ERROR_MARK, 1);
511 gimple_label_set_label (p, label);
512 return p;
513 }
514
515 /* Build a GIMPLE_GOTO statement to label DEST. */
516
517 gimple
518 gimple_build_goto (tree dest)
519 {
520 gimple p = gimple_build_with_ops (GIMPLE_GOTO, ERROR_MARK, 1);
521 gimple_goto_set_dest (p, dest);
522 return p;
523 }
524
525
526 /* Build a GIMPLE_NOP statement. */
527
528 gimple
529 gimple_build_nop (void)
530 {
531 return gimple_alloc (GIMPLE_NOP, 0);
532 }
533
534
535 /* Build a GIMPLE_BIND statement.
536 VARS are the variables in BODY.
537 BLOCK is the containing block. */
538
539 gimple
540 gimple_build_bind (tree vars, gimple_seq body, tree block)
541 {
542 gimple p = gimple_alloc (GIMPLE_BIND, 0);
543 gimple_bind_set_vars (p, vars);
544 if (body)
545 gimple_bind_set_body (p, body);
546 if (block)
547 gimple_bind_set_block (p, block);
548 return p;
549 }
550
551 /* Helper function to set the simple fields of a asm stmt.
552
553 STRING is a pointer to a string that is the asm blocks assembly code.
554 NINPUT is the number of register inputs.
555 NOUTPUT is the number of register outputs.
556 NCLOBBERS is the number of clobbered registers.
557 */
558
559 static inline gimple
560 gimple_build_asm_1 (const char *string, unsigned ninputs, unsigned noutputs,
561 unsigned nclobbers, unsigned nlabels)
562 {
563 gimple_statement_asm *p;
564 int size = strlen (string);
565
566 /* ASMs with labels cannot have outputs. This should have been
567 enforced by the front end. */
568 gcc_assert (nlabels == 0 || noutputs == 0);
569
570 p = as_a <gimple_statement_asm *> (
571 gimple_build_with_ops (GIMPLE_ASM, ERROR_MARK,
572 ninputs + noutputs + nclobbers + nlabels));
573
574 p->ni = ninputs;
575 p->no = noutputs;
576 p->nc = nclobbers;
577 p->nl = nlabels;
578 p->string = ggc_alloc_string (string, size);
579
580 if (GATHER_STATISTICS)
581 gimple_alloc_sizes[(int) gimple_alloc_kind (GIMPLE_ASM)] += size;
582
583 return p;
584 }
585
586 /* Build a GIMPLE_ASM statement.
587
588 STRING is the assembly code.
589 NINPUT is the number of register inputs.
590 NOUTPUT is the number of register outputs.
591 NCLOBBERS is the number of clobbered registers.
592 INPUTS is a vector of the input register parameters.
593 OUTPUTS is a vector of the output register parameters.
594 CLOBBERS is a vector of the clobbered register parameters.
595 LABELS is a vector of destination labels. */
596
597 gimple
598 gimple_build_asm_vec (const char *string, vec<tree, va_gc> *inputs,
599 vec<tree, va_gc> *outputs, vec<tree, va_gc> *clobbers,
600 vec<tree, va_gc> *labels)
601 {
602 gimple p;
603 unsigned i;
604
605 p = gimple_build_asm_1 (string,
606 vec_safe_length (inputs),
607 vec_safe_length (outputs),
608 vec_safe_length (clobbers),
609 vec_safe_length (labels));
610
611 for (i = 0; i < vec_safe_length (inputs); i++)
612 gimple_asm_set_input_op (p, i, (*inputs)[i]);
613
614 for (i = 0; i < vec_safe_length (outputs); i++)
615 gimple_asm_set_output_op (p, i, (*outputs)[i]);
616
617 for (i = 0; i < vec_safe_length (clobbers); i++)
618 gimple_asm_set_clobber_op (p, i, (*clobbers)[i]);
619
620 for (i = 0; i < vec_safe_length (labels); i++)
621 gimple_asm_set_label_op (p, i, (*labels)[i]);
622
623 return p;
624 }
625
626 /* Build a GIMPLE_CATCH statement.
627
628 TYPES are the catch types.
629 HANDLER is the exception handler. */
630
631 gimple
632 gimple_build_catch (tree types, gimple_seq handler)
633 {
634 gimple p = gimple_alloc (GIMPLE_CATCH, 0);
635 gimple_catch_set_types (p, types);
636 if (handler)
637 gimple_catch_set_handler (p, handler);
638
639 return p;
640 }
641
642 /* Build a GIMPLE_EH_FILTER statement.
643
644 TYPES are the filter's types.
645 FAILURE is the filter's failure action. */
646
647 gimple
648 gimple_build_eh_filter (tree types, gimple_seq failure)
649 {
650 gimple p = gimple_alloc (GIMPLE_EH_FILTER, 0);
651 gimple_eh_filter_set_types (p, types);
652 if (failure)
653 gimple_eh_filter_set_failure (p, failure);
654
655 return p;
656 }
657
658 /* Build a GIMPLE_EH_MUST_NOT_THROW statement. */
659
660 gimple
661 gimple_build_eh_must_not_throw (tree decl)
662 {
663 gimple p = gimple_alloc (GIMPLE_EH_MUST_NOT_THROW, 0);
664
665 gcc_assert (TREE_CODE (decl) == FUNCTION_DECL);
666 gcc_assert (flags_from_decl_or_type (decl) & ECF_NORETURN);
667 gimple_eh_must_not_throw_set_fndecl (p, decl);
668
669 return p;
670 }
671
672 /* Build a GIMPLE_EH_ELSE statement. */
673
674 gimple
675 gimple_build_eh_else (gimple_seq n_body, gimple_seq e_body)
676 {
677 gimple p = gimple_alloc (GIMPLE_EH_ELSE, 0);
678 gimple_eh_else_set_n_body (p, n_body);
679 gimple_eh_else_set_e_body (p, e_body);
680 return p;
681 }
682
683 /* Build a GIMPLE_TRY statement.
684
685 EVAL is the expression to evaluate.
686 CLEANUP is the cleanup expression.
687 KIND is either GIMPLE_TRY_CATCH or GIMPLE_TRY_FINALLY depending on
688 whether this is a try/catch or a try/finally respectively. */
689
690 gimple_statement_try *
691 gimple_build_try (gimple_seq eval, gimple_seq cleanup,
692 enum gimple_try_flags kind)
693 {
694 gimple_statement_try *p;
695
696 gcc_assert (kind == GIMPLE_TRY_CATCH || kind == GIMPLE_TRY_FINALLY);
697 p = as_a <gimple_statement_try *> (gimple_alloc (GIMPLE_TRY, 0));
698 gimple_set_subcode (p, kind);
699 if (eval)
700 gimple_try_set_eval (p, eval);
701 if (cleanup)
702 gimple_try_set_cleanup (p, cleanup);
703
704 return p;
705 }
706
707 /* Construct a GIMPLE_WITH_CLEANUP_EXPR statement.
708
709 CLEANUP is the cleanup expression. */
710
711 gimple
712 gimple_build_wce (gimple_seq cleanup)
713 {
714 gimple p = gimple_alloc (GIMPLE_WITH_CLEANUP_EXPR, 0);
715 if (cleanup)
716 gimple_wce_set_cleanup (p, cleanup);
717
718 return p;
719 }
720
721
722 /* Build a GIMPLE_RESX statement. */
723
724 gimple
725 gimple_build_resx (int region)
726 {
727 gimple_statement_resx *p =
728 as_a <gimple_statement_resx *> (
729 gimple_build_with_ops (GIMPLE_RESX, ERROR_MARK, 0));
730 p->region = region;
731 return p;
732 }
733
734
735 /* The helper for constructing a gimple switch statement.
736 INDEX is the switch's index.
737 NLABELS is the number of labels in the switch excluding the default.
738 DEFAULT_LABEL is the default label for the switch statement. */
739
740 gimple
741 gimple_build_switch_nlabels (unsigned nlabels, tree index, tree default_label)
742 {
743 /* nlabels + 1 default label + 1 index. */
744 gcc_checking_assert (default_label);
745 gimple p = gimple_build_with_ops (GIMPLE_SWITCH, ERROR_MARK,
746 1 + 1 + nlabels);
747 gimple_switch_set_index (p, index);
748 gimple_switch_set_default_label (p, default_label);
749 return p;
750 }
751
752 /* Build a GIMPLE_SWITCH statement.
753
754 INDEX is the switch's index.
755 DEFAULT_LABEL is the default label
756 ARGS is a vector of labels excluding the default. */
757
758 gimple
759 gimple_build_switch (tree index, tree default_label, vec<tree> args)
760 {
761 unsigned i, nlabels = args.length ();
762
763 gimple p = gimple_build_switch_nlabels (nlabels, index, default_label);
764
765 /* Copy the labels from the vector to the switch statement. */
766 for (i = 0; i < nlabels; i++)
767 gimple_switch_set_label (p, i + 1, args[i]);
768
769 return p;
770 }
771
772 /* Build a GIMPLE_EH_DISPATCH statement. */
773
774 gimple
775 gimple_build_eh_dispatch (int region)
776 {
777 gimple_statement_eh_dispatch *p =
778 as_a <gimple_statement_eh_dispatch *> (
779 gimple_build_with_ops (GIMPLE_EH_DISPATCH, ERROR_MARK, 0));
780 p->region = region;
781 return p;
782 }
783
784 /* Build a new GIMPLE_DEBUG_BIND statement.
785
786 VAR is bound to VALUE; block and location are taken from STMT. */
787
788 gimple
789 gimple_build_debug_bind_stat (tree var, tree value, gimple stmt MEM_STAT_DECL)
790 {
791 gimple p = gimple_build_with_ops_stat (GIMPLE_DEBUG,
792 (unsigned)GIMPLE_DEBUG_BIND, 2
793 PASS_MEM_STAT);
794
795 gimple_debug_bind_set_var (p, var);
796 gimple_debug_bind_set_value (p, value);
797 if (stmt)
798 gimple_set_location (p, gimple_location (stmt));
799
800 return p;
801 }
802
803
804 /* Build a new GIMPLE_DEBUG_SOURCE_BIND statement.
805
806 VAR is bound to VALUE; block and location are taken from STMT. */
807
808 gimple
809 gimple_build_debug_source_bind_stat (tree var, tree value,
810 gimple stmt MEM_STAT_DECL)
811 {
812 gimple p = gimple_build_with_ops_stat (GIMPLE_DEBUG,
813 (unsigned)GIMPLE_DEBUG_SOURCE_BIND, 2
814 PASS_MEM_STAT);
815
816 gimple_debug_source_bind_set_var (p, var);
817 gimple_debug_source_bind_set_value (p, value);
818 if (stmt)
819 gimple_set_location (p, gimple_location (stmt));
820
821 return p;
822 }
823
824
825 /* Build a GIMPLE_OMP_CRITICAL statement.
826
827 BODY is the sequence of statements for which only one thread can execute.
828 NAME is optional identifier for this critical block. */
829
830 gimple
831 gimple_build_omp_critical (gimple_seq body, tree name)
832 {
833 gimple p = gimple_alloc (GIMPLE_OMP_CRITICAL, 0);
834 gimple_omp_critical_set_name (p, name);
835 if (body)
836 gimple_omp_set_body (p, body);
837
838 return p;
839 }
840
841 /* Build a GIMPLE_OMP_FOR statement.
842
843 BODY is sequence of statements inside the for loop.
844 KIND is the `for' variant.
845 CLAUSES, are any of the OMP loop construct's clauses: private, firstprivate,
846 lastprivate, reductions, ordered, schedule, and nowait.
847 COLLAPSE is the collapse count.
848 PRE_BODY is the sequence of statements that are loop invariant. */
849
850 gimple
851 gimple_build_omp_for (gimple_seq body, int kind, tree clauses, size_t collapse,
852 gimple_seq pre_body)
853 {
854 gimple_statement_omp_for *p =
855 as_a <gimple_statement_omp_for *> (gimple_alloc (GIMPLE_OMP_FOR, 0));
856 if (body)
857 gimple_omp_set_body (p, body);
858 gimple_omp_for_set_clauses (p, clauses);
859 gimple_omp_for_set_kind (p, kind);
860 p->collapse = collapse;
861 p->iter = ggc_cleared_vec_alloc<gimple_omp_for_iter> (collapse);
862
863 if (pre_body)
864 gimple_omp_for_set_pre_body (p, pre_body);
865
866 return p;
867 }
868
869
870 /* Build a GIMPLE_OMP_PARALLEL statement.
871
872 BODY is sequence of statements which are executed in parallel.
873 CLAUSES, are the OMP parallel construct's clauses.
874 CHILD_FN is the function created for the parallel threads to execute.
875 DATA_ARG are the shared data argument(s). */
876
877 gimple
878 gimple_build_omp_parallel (gimple_seq body, tree clauses, tree child_fn,
879 tree data_arg)
880 {
881 gimple p = gimple_alloc (GIMPLE_OMP_PARALLEL, 0);
882 if (body)
883 gimple_omp_set_body (p, body);
884 gimple_omp_parallel_set_clauses (p, clauses);
885 gimple_omp_parallel_set_child_fn (p, child_fn);
886 gimple_omp_parallel_set_data_arg (p, data_arg);
887
888 return p;
889 }
890
891
892 /* Build a GIMPLE_OMP_TASK statement.
893
894 BODY is sequence of statements which are executed by the explicit task.
895 CLAUSES, are the OMP parallel construct's clauses.
896 CHILD_FN is the function created for the parallel threads to execute.
897 DATA_ARG are the shared data argument(s).
898 COPY_FN is the optional function for firstprivate initialization.
899 ARG_SIZE and ARG_ALIGN are size and alignment of the data block. */
900
901 gimple
902 gimple_build_omp_task (gimple_seq body, tree clauses, tree child_fn,
903 tree data_arg, tree copy_fn, tree arg_size,
904 tree arg_align)
905 {
906 gimple p = gimple_alloc (GIMPLE_OMP_TASK, 0);
907 if (body)
908 gimple_omp_set_body (p, body);
909 gimple_omp_task_set_clauses (p, clauses);
910 gimple_omp_task_set_child_fn (p, child_fn);
911 gimple_omp_task_set_data_arg (p, data_arg);
912 gimple_omp_task_set_copy_fn (p, copy_fn);
913 gimple_omp_task_set_arg_size (p, arg_size);
914 gimple_omp_task_set_arg_align (p, arg_align);
915
916 return p;
917 }
918
919
920 /* Build a GIMPLE_OMP_SECTION statement for a sections statement.
921
922 BODY is the sequence of statements in the section. */
923
924 gimple
925 gimple_build_omp_section (gimple_seq body)
926 {
927 gimple p = gimple_alloc (GIMPLE_OMP_SECTION, 0);
928 if (body)
929 gimple_omp_set_body (p, body);
930
931 return p;
932 }
933
934
935 /* Build a GIMPLE_OMP_MASTER statement.
936
937 BODY is the sequence of statements to be executed by just the master. */
938
939 gimple
940 gimple_build_omp_master (gimple_seq body)
941 {
942 gimple p = gimple_alloc (GIMPLE_OMP_MASTER, 0);
943 if (body)
944 gimple_omp_set_body (p, body);
945
946 return p;
947 }
948
949
950 /* Build a GIMPLE_OMP_TASKGROUP statement.
951
952 BODY is the sequence of statements to be executed by the taskgroup
953 construct. */
954
955 gimple
956 gimple_build_omp_taskgroup (gimple_seq body)
957 {
958 gimple p = gimple_alloc (GIMPLE_OMP_TASKGROUP, 0);
959 if (body)
960 gimple_omp_set_body (p, body);
961
962 return p;
963 }
964
965
966 /* Build a GIMPLE_OMP_CONTINUE statement.
967
968 CONTROL_DEF is the definition of the control variable.
969 CONTROL_USE is the use of the control variable. */
970
971 gimple
972 gimple_build_omp_continue (tree control_def, tree control_use)
973 {
974 gimple p = gimple_alloc (GIMPLE_OMP_CONTINUE, 0);
975 gimple_omp_continue_set_control_def (p, control_def);
976 gimple_omp_continue_set_control_use (p, control_use);
977 return p;
978 }
979
980 /* Build a GIMPLE_OMP_ORDERED statement.
981
982 BODY is the sequence of statements inside a loop that will executed in
983 sequence. */
984
985 gimple
986 gimple_build_omp_ordered (gimple_seq body)
987 {
988 gimple p = gimple_alloc (GIMPLE_OMP_ORDERED, 0);
989 if (body)
990 gimple_omp_set_body (p, body);
991
992 return p;
993 }
994
995
996 /* Build a GIMPLE_OMP_RETURN statement.
997 WAIT_P is true if this is a non-waiting return. */
998
999 gimple
1000 gimple_build_omp_return (bool wait_p)
1001 {
1002 gimple p = gimple_alloc (GIMPLE_OMP_RETURN, 0);
1003 if (wait_p)
1004 gimple_omp_return_set_nowait (p);
1005
1006 return p;
1007 }
1008
1009
1010 /* Build a GIMPLE_OMP_SECTIONS statement.
1011
1012 BODY is a sequence of section statements.
1013 CLAUSES are any of the OMP sections contsruct's clauses: private,
1014 firstprivate, lastprivate, reduction, and nowait. */
1015
1016 gimple
1017 gimple_build_omp_sections (gimple_seq body, tree clauses)
1018 {
1019 gimple p = gimple_alloc (GIMPLE_OMP_SECTIONS, 0);
1020 if (body)
1021 gimple_omp_set_body (p, body);
1022 gimple_omp_sections_set_clauses (p, clauses);
1023
1024 return p;
1025 }
1026
1027
1028 /* Build a GIMPLE_OMP_SECTIONS_SWITCH. */
1029
1030 gimple
1031 gimple_build_omp_sections_switch (void)
1032 {
1033 return gimple_alloc (GIMPLE_OMP_SECTIONS_SWITCH, 0);
1034 }
1035
1036
1037 /* Build a GIMPLE_OMP_SINGLE statement.
1038
1039 BODY is the sequence of statements that will be executed once.
1040 CLAUSES are any of the OMP single construct's clauses: private, firstprivate,
1041 copyprivate, nowait. */
1042
1043 gimple
1044 gimple_build_omp_single (gimple_seq body, tree clauses)
1045 {
1046 gimple p = gimple_alloc (GIMPLE_OMP_SINGLE, 0);
1047 if (body)
1048 gimple_omp_set_body (p, body);
1049 gimple_omp_single_set_clauses (p, clauses);
1050
1051 return p;
1052 }
1053
1054
1055 /* Build a GIMPLE_OMP_TARGET statement.
1056
1057 BODY is the sequence of statements that will be executed.
1058 CLAUSES are any of the OMP target construct's clauses. */
1059
1060 gimple
1061 gimple_build_omp_target (gimple_seq body, int kind, tree clauses)
1062 {
1063 gimple p = gimple_alloc (GIMPLE_OMP_TARGET, 0);
1064 if (body)
1065 gimple_omp_set_body (p, body);
1066 gimple_omp_target_set_clauses (p, clauses);
1067 gimple_omp_target_set_kind (p, kind);
1068
1069 return p;
1070 }
1071
1072
1073 /* Build a GIMPLE_OMP_TEAMS statement.
1074
1075 BODY is the sequence of statements that will be executed.
1076 CLAUSES are any of the OMP teams construct's clauses. */
1077
1078 gimple
1079 gimple_build_omp_teams (gimple_seq body, tree clauses)
1080 {
1081 gimple p = gimple_alloc (GIMPLE_OMP_TEAMS, 0);
1082 if (body)
1083 gimple_omp_set_body (p, body);
1084 gimple_omp_teams_set_clauses (p, clauses);
1085
1086 return p;
1087 }
1088
1089
1090 /* Build a GIMPLE_OMP_ATOMIC_LOAD statement. */
1091
1092 gimple
1093 gimple_build_omp_atomic_load (tree lhs, tree rhs)
1094 {
1095 gimple p = gimple_alloc (GIMPLE_OMP_ATOMIC_LOAD, 0);
1096 gimple_omp_atomic_load_set_lhs (p, lhs);
1097 gimple_omp_atomic_load_set_rhs (p, rhs);
1098 return p;
1099 }
1100
1101 /* Build a GIMPLE_OMP_ATOMIC_STORE statement.
1102
1103 VAL is the value we are storing. */
1104
1105 gimple
1106 gimple_build_omp_atomic_store (tree val)
1107 {
1108 gimple p = gimple_alloc (GIMPLE_OMP_ATOMIC_STORE, 0);
1109 gimple_omp_atomic_store_set_val (p, val);
1110 return p;
1111 }
1112
1113 /* Build a GIMPLE_TRANSACTION statement. */
1114
1115 gimple
1116 gimple_build_transaction (gimple_seq body, tree label)
1117 {
1118 gimple p = gimple_alloc (GIMPLE_TRANSACTION, 0);
1119 gimple_transaction_set_body (p, body);
1120 gimple_transaction_set_label (p, label);
1121 return p;
1122 }
1123
1124 /* Build a GIMPLE_PREDICT statement. PREDICT is one of the predictors from
1125 predict.def, OUTCOME is NOT_TAKEN or TAKEN. */
1126
1127 gimple
1128 gimple_build_predict (enum br_predictor predictor, enum prediction outcome)
1129 {
1130 gimple p = gimple_alloc (GIMPLE_PREDICT, 0);
1131 /* Ensure all the predictors fit into the lower bits of the subcode. */
1132 gcc_assert ((int) END_PREDICTORS <= GF_PREDICT_TAKEN);
1133 gimple_predict_set_predictor (p, predictor);
1134 gimple_predict_set_outcome (p, outcome);
1135 return p;
1136 }
1137
1138 #if defined ENABLE_GIMPLE_CHECKING
1139 /* Complain of a gimple type mismatch and die. */
1140
1141 void
1142 gimple_check_failed (const_gimple gs, const char *file, int line,
1143 const char *function, enum gimple_code code,
1144 enum tree_code subcode)
1145 {
1146 internal_error ("gimple check: expected %s(%s), have %s(%s) in %s, at %s:%d",
1147 gimple_code_name[code],
1148 get_tree_code_name (subcode),
1149 gimple_code_name[gimple_code (gs)],
1150 gs->subcode > 0
1151 ? get_tree_code_name ((enum tree_code) gs->subcode)
1152 : "",
1153 function, trim_filename (file), line);
1154 }
1155 #endif /* ENABLE_GIMPLE_CHECKING */
1156
1157
1158 /* Link gimple statement GS to the end of the sequence *SEQ_P. If
1159 *SEQ_P is NULL, a new sequence is allocated. */
1160
1161 void
1162 gimple_seq_add_stmt (gimple_seq *seq_p, gimple gs)
1163 {
1164 gimple_stmt_iterator si;
1165 if (gs == NULL)
1166 return;
1167
1168 si = gsi_last (*seq_p);
1169 gsi_insert_after (&si, gs, GSI_NEW_STMT);
1170 }
1171
1172 /* Link gimple statement GS to the end of the sequence *SEQ_P. If
1173 *SEQ_P is NULL, a new sequence is allocated. This function is
1174 similar to gimple_seq_add_stmt, but does not scan the operands.
1175 During gimplification, we need to manipulate statement sequences
1176 before the def/use vectors have been constructed. */
1177
1178 void
1179 gimple_seq_add_stmt_without_update (gimple_seq *seq_p, gimple gs)
1180 {
1181 gimple_stmt_iterator si;
1182
1183 if (gs == NULL)
1184 return;
1185
1186 si = gsi_last (*seq_p);
1187 gsi_insert_after_without_update (&si, gs, GSI_NEW_STMT);
1188 }
1189
1190 /* Append sequence SRC to the end of sequence *DST_P. If *DST_P is
1191 NULL, a new sequence is allocated. */
1192
1193 void
1194 gimple_seq_add_seq (gimple_seq *dst_p, gimple_seq src)
1195 {
1196 gimple_stmt_iterator si;
1197 if (src == NULL)
1198 return;
1199
1200 si = gsi_last (*dst_p);
1201 gsi_insert_seq_after (&si, src, GSI_NEW_STMT);
1202 }
1203
1204 /* Append sequence SRC to the end of sequence *DST_P. If *DST_P is
1205 NULL, a new sequence is allocated. This function is
1206 similar to gimple_seq_add_seq, but does not scan the operands. */
1207
1208 void
1209 gimple_seq_add_seq_without_update (gimple_seq *dst_p, gimple_seq src)
1210 {
1211 gimple_stmt_iterator si;
1212 if (src == NULL)
1213 return;
1214
1215 si = gsi_last (*dst_p);
1216 gsi_insert_seq_after_without_update (&si, src, GSI_NEW_STMT);
1217 }
1218
1219 /* Determine whether to assign a location to the statement GS. */
1220
1221 static bool
1222 should_carry_location_p (gimple gs)
1223 {
1224 /* Don't emit a line note for a label. We particularly don't want to
1225 emit one for the break label, since it doesn't actually correspond
1226 to the beginning of the loop/switch. */
1227 if (gimple_code (gs) == GIMPLE_LABEL)
1228 return false;
1229
1230 return true;
1231 }
1232
1233 /* Set the location for gimple statement GS to LOCATION. */
1234
1235 static void
1236 annotate_one_with_location (gimple gs, location_t location)
1237 {
1238 if (!gimple_has_location (gs)
1239 && !gimple_do_not_emit_location_p (gs)
1240 && should_carry_location_p (gs))
1241 gimple_set_location (gs, location);
1242 }
1243
1244 /* Set LOCATION for all the statements after iterator GSI in sequence
1245 SEQ. If GSI is pointing to the end of the sequence, start with the
1246 first statement in SEQ. */
1247
1248 void
1249 annotate_all_with_location_after (gimple_seq seq, gimple_stmt_iterator gsi,
1250 location_t location)
1251 {
1252 if (gsi_end_p (gsi))
1253 gsi = gsi_start (seq);
1254 else
1255 gsi_next (&gsi);
1256
1257 for (; !gsi_end_p (gsi); gsi_next (&gsi))
1258 annotate_one_with_location (gsi_stmt (gsi), location);
1259 }
1260
1261 /* Set the location for all the statements in a sequence STMT_P to LOCATION. */
1262
1263 void
1264 annotate_all_with_location (gimple_seq stmt_p, location_t location)
1265 {
1266 gimple_stmt_iterator i;
1267
1268 if (gimple_seq_empty_p (stmt_p))
1269 return;
1270
1271 for (i = gsi_start (stmt_p); !gsi_end_p (i); gsi_next (&i))
1272 {
1273 gimple gs = gsi_stmt (i);
1274 annotate_one_with_location (gs, location);
1275 }
1276 }
1277
1278 /* Helper function of empty_body_p. Return true if STMT is an empty
1279 statement. */
1280
1281 static bool
1282 empty_stmt_p (gimple stmt)
1283 {
1284 if (gimple_code (stmt) == GIMPLE_NOP)
1285 return true;
1286 if (gimple_code (stmt) == GIMPLE_BIND)
1287 return empty_body_p (gimple_bind_body (stmt));
1288 return false;
1289 }
1290
1291
1292 /* Return true if BODY contains nothing but empty statements. */
1293
1294 bool
1295 empty_body_p (gimple_seq body)
1296 {
1297 gimple_stmt_iterator i;
1298
1299 if (gimple_seq_empty_p (body))
1300 return true;
1301 for (i = gsi_start (body); !gsi_end_p (i); gsi_next (&i))
1302 if (!empty_stmt_p (gsi_stmt (i))
1303 && !is_gimple_debug (gsi_stmt (i)))
1304 return false;
1305
1306 return true;
1307 }
1308
1309
1310 /* Perform a deep copy of sequence SRC and return the result. */
1311
1312 gimple_seq
1313 gimple_seq_copy (gimple_seq src)
1314 {
1315 gimple_stmt_iterator gsi;
1316 gimple_seq new_seq = NULL;
1317 gimple stmt;
1318
1319 for (gsi = gsi_start (src); !gsi_end_p (gsi); gsi_next (&gsi))
1320 {
1321 stmt = gimple_copy (gsi_stmt (gsi));
1322 gimple_seq_add_stmt (&new_seq, stmt);
1323 }
1324
1325 return new_seq;
1326 }
1327
1328
1329
1330 /* Return true if calls C1 and C2 are known to go to the same function. */
1331
1332 bool
1333 gimple_call_same_target_p (const_gimple c1, const_gimple c2)
1334 {
1335 if (gimple_call_internal_p (c1))
1336 return (gimple_call_internal_p (c2)
1337 && gimple_call_internal_fn (c1) == gimple_call_internal_fn (c2));
1338 else
1339 return (gimple_call_fn (c1) == gimple_call_fn (c2)
1340 || (gimple_call_fndecl (c1)
1341 && gimple_call_fndecl (c1) == gimple_call_fndecl (c2)));
1342 }
1343
1344 /* Detect flags from a GIMPLE_CALL. This is just like
1345 call_expr_flags, but for gimple tuples. */
1346
1347 int
1348 gimple_call_flags (const_gimple stmt)
1349 {
1350 int flags;
1351 tree decl = gimple_call_fndecl (stmt);
1352
1353 if (decl)
1354 flags = flags_from_decl_or_type (decl);
1355 else if (gimple_call_internal_p (stmt))
1356 flags = internal_fn_flags (gimple_call_internal_fn (stmt));
1357 else
1358 flags = flags_from_decl_or_type (gimple_call_fntype (stmt));
1359
1360 if (stmt->subcode & GF_CALL_NOTHROW)
1361 flags |= ECF_NOTHROW;
1362
1363 return flags;
1364 }
1365
1366 /* Return the "fn spec" string for call STMT. */
1367
1368 static const_tree
1369 gimple_call_fnspec (const_gimple stmt)
1370 {
1371 tree type, attr;
1372
1373 if (gimple_call_internal_p (stmt))
1374 return internal_fn_fnspec (gimple_call_internal_fn (stmt));
1375
1376 type = gimple_call_fntype (stmt);
1377 if (!type)
1378 return NULL_TREE;
1379
1380 attr = lookup_attribute ("fn spec", TYPE_ATTRIBUTES (type));
1381 if (!attr)
1382 return NULL_TREE;
1383
1384 return TREE_VALUE (TREE_VALUE (attr));
1385 }
1386
1387 /* Detects argument flags for argument number ARG on call STMT. */
1388
1389 int
1390 gimple_call_arg_flags (const_gimple stmt, unsigned arg)
1391 {
1392 const_tree attr = gimple_call_fnspec (stmt);
1393
1394 if (!attr || 1 + arg >= (unsigned) TREE_STRING_LENGTH (attr))
1395 return 0;
1396
1397 switch (TREE_STRING_POINTER (attr)[1 + arg])
1398 {
1399 case 'x':
1400 case 'X':
1401 return EAF_UNUSED;
1402
1403 case 'R':
1404 return EAF_DIRECT | EAF_NOCLOBBER | EAF_NOESCAPE;
1405
1406 case 'r':
1407 return EAF_NOCLOBBER | EAF_NOESCAPE;
1408
1409 case 'W':
1410 return EAF_DIRECT | EAF_NOESCAPE;
1411
1412 case 'w':
1413 return EAF_NOESCAPE;
1414
1415 case '.':
1416 default:
1417 return 0;
1418 }
1419 }
1420
1421 /* Detects return flags for the call STMT. */
1422
1423 int
1424 gimple_call_return_flags (const_gimple stmt)
1425 {
1426 const_tree attr;
1427
1428 if (gimple_call_flags (stmt) & ECF_MALLOC)
1429 return ERF_NOALIAS;
1430
1431 attr = gimple_call_fnspec (stmt);
1432 if (!attr || TREE_STRING_LENGTH (attr) < 1)
1433 return 0;
1434
1435 switch (TREE_STRING_POINTER (attr)[0])
1436 {
1437 case '1':
1438 case '2':
1439 case '3':
1440 case '4':
1441 return ERF_RETURNS_ARG | (TREE_STRING_POINTER (attr)[0] - '1');
1442
1443 case 'm':
1444 return ERF_NOALIAS;
1445
1446 case '.':
1447 default:
1448 return 0;
1449 }
1450 }
1451
1452
1453 /* Return true if GS is a copy assignment. */
1454
1455 bool
1456 gimple_assign_copy_p (gimple gs)
1457 {
1458 return (gimple_assign_single_p (gs)
1459 && is_gimple_val (gimple_op (gs, 1)));
1460 }
1461
1462
1463 /* Return true if GS is a SSA_NAME copy assignment. */
1464
1465 bool
1466 gimple_assign_ssa_name_copy_p (gimple gs)
1467 {
1468 return (gimple_assign_single_p (gs)
1469 && TREE_CODE (gimple_assign_lhs (gs)) == SSA_NAME
1470 && TREE_CODE (gimple_assign_rhs1 (gs)) == SSA_NAME);
1471 }
1472
1473
1474 /* Return true if GS is an assignment with a unary RHS, but the
1475 operator has no effect on the assigned value. The logic is adapted
1476 from STRIP_NOPS. This predicate is intended to be used in tuplifying
1477 instances in which STRIP_NOPS was previously applied to the RHS of
1478 an assignment.
1479
1480 NOTE: In the use cases that led to the creation of this function
1481 and of gimple_assign_single_p, it is typical to test for either
1482 condition and to proceed in the same manner. In each case, the
1483 assigned value is represented by the single RHS operand of the
1484 assignment. I suspect there may be cases where gimple_assign_copy_p,
1485 gimple_assign_single_p, or equivalent logic is used where a similar
1486 treatment of unary NOPs is appropriate. */
1487
1488 bool
1489 gimple_assign_unary_nop_p (gimple gs)
1490 {
1491 return (is_gimple_assign (gs)
1492 && (CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (gs))
1493 || gimple_assign_rhs_code (gs) == NON_LVALUE_EXPR)
1494 && gimple_assign_rhs1 (gs) != error_mark_node
1495 && (TYPE_MODE (TREE_TYPE (gimple_assign_lhs (gs)))
1496 == TYPE_MODE (TREE_TYPE (gimple_assign_rhs1 (gs)))));
1497 }
1498
1499 /* Set BB to be the basic block holding G. */
1500
1501 void
1502 gimple_set_bb (gimple stmt, basic_block bb)
1503 {
1504 stmt->bb = bb;
1505
1506 if (gimple_code (stmt) != GIMPLE_LABEL)
1507 return;
1508
1509 /* If the statement is a label, add the label to block-to-labels map
1510 so that we can speed up edge creation for GIMPLE_GOTOs. */
1511 if (cfun->cfg)
1512 {
1513 tree t;
1514 int uid;
1515
1516 t = gimple_label_label (stmt);
1517 uid = LABEL_DECL_UID (t);
1518 if (uid == -1)
1519 {
1520 unsigned old_len =
1521 vec_safe_length (label_to_block_map_for_fn (cfun));
1522 LABEL_DECL_UID (t) = uid = cfun->cfg->last_label_uid++;
1523 if (old_len <= (unsigned) uid)
1524 {
1525 unsigned new_len = 3 * uid / 2 + 1;
1526
1527 vec_safe_grow_cleared (label_to_block_map_for_fn (cfun),
1528 new_len);
1529 }
1530 }
1531
1532 (*label_to_block_map_for_fn (cfun))[uid] = bb;
1533 }
1534 }
1535
1536
1537 /* Modify the RHS of the assignment pointed-to by GSI using the
1538 operands in the expression tree EXPR.
1539
1540 NOTE: The statement pointed-to by GSI may be reallocated if it
1541 did not have enough operand slots.
1542
1543 This function is useful to convert an existing tree expression into
1544 the flat representation used for the RHS of a GIMPLE assignment.
1545 It will reallocate memory as needed to expand or shrink the number
1546 of operand slots needed to represent EXPR.
1547
1548 NOTE: If you find yourself building a tree and then calling this
1549 function, you are most certainly doing it the slow way. It is much
1550 better to build a new assignment or to use the function
1551 gimple_assign_set_rhs_with_ops, which does not require an
1552 expression tree to be built. */
1553
1554 void
1555 gimple_assign_set_rhs_from_tree (gimple_stmt_iterator *gsi, tree expr)
1556 {
1557 enum tree_code subcode;
1558 tree op1, op2, op3;
1559
1560 extract_ops_from_tree_1 (expr, &subcode, &op1, &op2, &op3);
1561 gimple_assign_set_rhs_with_ops (gsi, subcode, op1, op2, op3);
1562 }
1563
1564
1565 /* Set the RHS of assignment statement pointed-to by GSI to CODE with
1566 operands OP1, OP2 and OP3.
1567
1568 NOTE: The statement pointed-to by GSI may be reallocated if it
1569 did not have enough operand slots. */
1570
1571 void
1572 gimple_assign_set_rhs_with_ops (gimple_stmt_iterator *gsi, enum tree_code code,
1573 tree op1, tree op2, tree op3)
1574 {
1575 unsigned new_rhs_ops = get_gimple_rhs_num_ops (code);
1576 gimple stmt = gsi_stmt (*gsi);
1577
1578 /* If the new CODE needs more operands, allocate a new statement. */
1579 if (gimple_num_ops (stmt) < new_rhs_ops + 1)
1580 {
1581 tree lhs = gimple_assign_lhs (stmt);
1582 gimple new_stmt = gimple_alloc (gimple_code (stmt), new_rhs_ops + 1);
1583 memcpy (new_stmt, stmt, gimple_size (gimple_code (stmt)));
1584 gimple_init_singleton (new_stmt);
1585 gsi_replace (gsi, new_stmt, true);
1586 stmt = new_stmt;
1587
1588 /* The LHS needs to be reset as this also changes the SSA name
1589 on the LHS. */
1590 gimple_assign_set_lhs (stmt, lhs);
1591 }
1592
1593 gimple_set_num_ops (stmt, new_rhs_ops + 1);
1594 gimple_set_subcode (stmt, code);
1595 gimple_assign_set_rhs1 (stmt, op1);
1596 if (new_rhs_ops > 1)
1597 gimple_assign_set_rhs2 (stmt, op2);
1598 if (new_rhs_ops > 2)
1599 gimple_assign_set_rhs3 (stmt, op3);
1600 }
1601
1602
1603 /* Return the LHS of a statement that performs an assignment,
1604 either a GIMPLE_ASSIGN or a GIMPLE_CALL. Returns NULL_TREE
1605 for a call to a function that returns no value, or for a
1606 statement other than an assignment or a call. */
1607
1608 tree
1609 gimple_get_lhs (const_gimple stmt)
1610 {
1611 enum gimple_code code = gimple_code (stmt);
1612
1613 if (code == GIMPLE_ASSIGN)
1614 return gimple_assign_lhs (stmt);
1615 else if (code == GIMPLE_CALL)
1616 return gimple_call_lhs (stmt);
1617 else
1618 return NULL_TREE;
1619 }
1620
1621
1622 /* Set the LHS of a statement that performs an assignment,
1623 either a GIMPLE_ASSIGN or a GIMPLE_CALL. */
1624
1625 void
1626 gimple_set_lhs (gimple stmt, tree lhs)
1627 {
1628 enum gimple_code code = gimple_code (stmt);
1629
1630 if (code == GIMPLE_ASSIGN)
1631 gimple_assign_set_lhs (stmt, lhs);
1632 else if (code == GIMPLE_CALL)
1633 gimple_call_set_lhs (stmt, lhs);
1634 else
1635 gcc_unreachable ();
1636 }
1637
1638
1639 /* Return a deep copy of statement STMT. All the operands from STMT
1640 are reallocated and copied using unshare_expr. The DEF, USE, VDEF
1641 and VUSE operand arrays are set to empty in the new copy. The new
1642 copy isn't part of any sequence. */
1643
1644 gimple
1645 gimple_copy (gimple stmt)
1646 {
1647 enum gimple_code code = gimple_code (stmt);
1648 unsigned num_ops = gimple_num_ops (stmt);
1649 gimple copy = gimple_alloc (code, num_ops);
1650 unsigned i;
1651
1652 /* Shallow copy all the fields from STMT. */
1653 memcpy (copy, stmt, gimple_size (code));
1654 gimple_init_singleton (copy);
1655
1656 /* If STMT has sub-statements, deep-copy them as well. */
1657 if (gimple_has_substatements (stmt))
1658 {
1659 gimple_seq new_seq;
1660 tree t;
1661
1662 switch (gimple_code (stmt))
1663 {
1664 case GIMPLE_BIND:
1665 new_seq = gimple_seq_copy (gimple_bind_body (stmt));
1666 gimple_bind_set_body (copy, new_seq);
1667 gimple_bind_set_vars (copy, unshare_expr (gimple_bind_vars (stmt)));
1668 gimple_bind_set_block (copy, gimple_bind_block (stmt));
1669 break;
1670
1671 case GIMPLE_CATCH:
1672 new_seq = gimple_seq_copy (gimple_catch_handler (stmt));
1673 gimple_catch_set_handler (copy, new_seq);
1674 t = unshare_expr (gimple_catch_types (stmt));
1675 gimple_catch_set_types (copy, t);
1676 break;
1677
1678 case GIMPLE_EH_FILTER:
1679 new_seq = gimple_seq_copy (gimple_eh_filter_failure (stmt));
1680 gimple_eh_filter_set_failure (copy, new_seq);
1681 t = unshare_expr (gimple_eh_filter_types (stmt));
1682 gimple_eh_filter_set_types (copy, t);
1683 break;
1684
1685 case GIMPLE_EH_ELSE:
1686 new_seq = gimple_seq_copy (gimple_eh_else_n_body (stmt));
1687 gimple_eh_else_set_n_body (copy, new_seq);
1688 new_seq = gimple_seq_copy (gimple_eh_else_e_body (stmt));
1689 gimple_eh_else_set_e_body (copy, new_seq);
1690 break;
1691
1692 case GIMPLE_TRY:
1693 new_seq = gimple_seq_copy (gimple_try_eval (stmt));
1694 gimple_try_set_eval (copy, new_seq);
1695 new_seq = gimple_seq_copy (gimple_try_cleanup (stmt));
1696 gimple_try_set_cleanup (copy, new_seq);
1697 break;
1698
1699 case GIMPLE_OMP_FOR:
1700 new_seq = gimple_seq_copy (gimple_omp_for_pre_body (stmt));
1701 gimple_omp_for_set_pre_body (copy, new_seq);
1702 t = unshare_expr (gimple_omp_for_clauses (stmt));
1703 gimple_omp_for_set_clauses (copy, t);
1704 {
1705 gimple_statement_omp_for *omp_for_copy =
1706 as_a <gimple_statement_omp_for *> (copy);
1707 omp_for_copy->iter = ggc_vec_alloc<gimple_omp_for_iter>
1708 ( gimple_omp_for_collapse (stmt));
1709 }
1710 for (i = 0; i < gimple_omp_for_collapse (stmt); i++)
1711 {
1712 gimple_omp_for_set_cond (copy, i,
1713 gimple_omp_for_cond (stmt, i));
1714 gimple_omp_for_set_index (copy, i,
1715 gimple_omp_for_index (stmt, i));
1716 t = unshare_expr (gimple_omp_for_initial (stmt, i));
1717 gimple_omp_for_set_initial (copy, i, t);
1718 t = unshare_expr (gimple_omp_for_final (stmt, i));
1719 gimple_omp_for_set_final (copy, i, t);
1720 t = unshare_expr (gimple_omp_for_incr (stmt, i));
1721 gimple_omp_for_set_incr (copy, i, t);
1722 }
1723 goto copy_omp_body;
1724
1725 case GIMPLE_OMP_PARALLEL:
1726 t = unshare_expr (gimple_omp_parallel_clauses (stmt));
1727 gimple_omp_parallel_set_clauses (copy, t);
1728 t = unshare_expr (gimple_omp_parallel_child_fn (stmt));
1729 gimple_omp_parallel_set_child_fn (copy, t);
1730 t = unshare_expr (gimple_omp_parallel_data_arg (stmt));
1731 gimple_omp_parallel_set_data_arg (copy, t);
1732 goto copy_omp_body;
1733
1734 case GIMPLE_OMP_TASK:
1735 t = unshare_expr (gimple_omp_task_clauses (stmt));
1736 gimple_omp_task_set_clauses (copy, t);
1737 t = unshare_expr (gimple_omp_task_child_fn (stmt));
1738 gimple_omp_task_set_child_fn (copy, t);
1739 t = unshare_expr (gimple_omp_task_data_arg (stmt));
1740 gimple_omp_task_set_data_arg (copy, t);
1741 t = unshare_expr (gimple_omp_task_copy_fn (stmt));
1742 gimple_omp_task_set_copy_fn (copy, t);
1743 t = unshare_expr (gimple_omp_task_arg_size (stmt));
1744 gimple_omp_task_set_arg_size (copy, t);
1745 t = unshare_expr (gimple_omp_task_arg_align (stmt));
1746 gimple_omp_task_set_arg_align (copy, t);
1747 goto copy_omp_body;
1748
1749 case GIMPLE_OMP_CRITICAL:
1750 t = unshare_expr (gimple_omp_critical_name (stmt));
1751 gimple_omp_critical_set_name (copy, t);
1752 goto copy_omp_body;
1753
1754 case GIMPLE_OMP_SECTIONS:
1755 t = unshare_expr (gimple_omp_sections_clauses (stmt));
1756 gimple_omp_sections_set_clauses (copy, t);
1757 t = unshare_expr (gimple_omp_sections_control (stmt));
1758 gimple_omp_sections_set_control (copy, t);
1759 /* FALLTHRU */
1760
1761 case GIMPLE_OMP_SINGLE:
1762 case GIMPLE_OMP_TARGET:
1763 case GIMPLE_OMP_TEAMS:
1764 case GIMPLE_OMP_SECTION:
1765 case GIMPLE_OMP_MASTER:
1766 case GIMPLE_OMP_TASKGROUP:
1767 case GIMPLE_OMP_ORDERED:
1768 copy_omp_body:
1769 new_seq = gimple_seq_copy (gimple_omp_body (stmt));
1770 gimple_omp_set_body (copy, new_seq);
1771 break;
1772
1773 case GIMPLE_TRANSACTION:
1774 new_seq = gimple_seq_copy (gimple_transaction_body (stmt));
1775 gimple_transaction_set_body (copy, new_seq);
1776 break;
1777
1778 case GIMPLE_WITH_CLEANUP_EXPR:
1779 new_seq = gimple_seq_copy (gimple_wce_cleanup (stmt));
1780 gimple_wce_set_cleanup (copy, new_seq);
1781 break;
1782
1783 default:
1784 gcc_unreachable ();
1785 }
1786 }
1787
1788 /* Make copy of operands. */
1789 for (i = 0; i < num_ops; i++)
1790 gimple_set_op (copy, i, unshare_expr (gimple_op (stmt, i)));
1791
1792 if (gimple_has_mem_ops (stmt))
1793 {
1794 gimple_set_vdef (copy, gimple_vdef (stmt));
1795 gimple_set_vuse (copy, gimple_vuse (stmt));
1796 }
1797
1798 /* Clear out SSA operand vectors on COPY. */
1799 if (gimple_has_ops (stmt))
1800 {
1801 gimple_set_use_ops (copy, NULL);
1802
1803 /* SSA operands need to be updated. */
1804 gimple_set_modified (copy, true);
1805 }
1806
1807 return copy;
1808 }
1809
1810
1811 /* Return true if statement S has side-effects. We consider a
1812 statement to have side effects if:
1813
1814 - It is a GIMPLE_CALL not marked with ECF_PURE or ECF_CONST.
1815 - Any of its operands are marked TREE_THIS_VOLATILE or TREE_SIDE_EFFECTS. */
1816
1817 bool
1818 gimple_has_side_effects (const_gimple s)
1819 {
1820 if (is_gimple_debug (s))
1821 return false;
1822
1823 /* We don't have to scan the arguments to check for
1824 volatile arguments, though, at present, we still
1825 do a scan to check for TREE_SIDE_EFFECTS. */
1826 if (gimple_has_volatile_ops (s))
1827 return true;
1828
1829 if (gimple_code (s) == GIMPLE_ASM
1830 && gimple_asm_volatile_p (s))
1831 return true;
1832
1833 if (is_gimple_call (s))
1834 {
1835 int flags = gimple_call_flags (s);
1836
1837 /* An infinite loop is considered a side effect. */
1838 if (!(flags & (ECF_CONST | ECF_PURE))
1839 || (flags & ECF_LOOPING_CONST_OR_PURE))
1840 return true;
1841
1842 return false;
1843 }
1844
1845 return false;
1846 }
1847
1848 /* Helper for gimple_could_trap_p and gimple_assign_rhs_could_trap_p.
1849 Return true if S can trap. When INCLUDE_MEM is true, check whether
1850 the memory operations could trap. When INCLUDE_STORES is true and
1851 S is a GIMPLE_ASSIGN, the LHS of the assignment is also checked. */
1852
1853 bool
1854 gimple_could_trap_p_1 (gimple s, bool include_mem, bool include_stores)
1855 {
1856 tree t, div = NULL_TREE;
1857 enum tree_code op;
1858
1859 if (include_mem)
1860 {
1861 unsigned i, start = (is_gimple_assign (s) && !include_stores) ? 1 : 0;
1862
1863 for (i = start; i < gimple_num_ops (s); i++)
1864 if (tree_could_trap_p (gimple_op (s, i)))
1865 return true;
1866 }
1867
1868 switch (gimple_code (s))
1869 {
1870 case GIMPLE_ASM:
1871 return gimple_asm_volatile_p (s);
1872
1873 case GIMPLE_CALL:
1874 t = gimple_call_fndecl (s);
1875 /* Assume that calls to weak functions may trap. */
1876 if (!t || !DECL_P (t) || DECL_WEAK (t))
1877 return true;
1878 return false;
1879
1880 case GIMPLE_ASSIGN:
1881 t = gimple_expr_type (s);
1882 op = gimple_assign_rhs_code (s);
1883 if (get_gimple_rhs_class (op) == GIMPLE_BINARY_RHS)
1884 div = gimple_assign_rhs2 (s);
1885 return (operation_could_trap_p (op, FLOAT_TYPE_P (t),
1886 (INTEGRAL_TYPE_P (t)
1887 && TYPE_OVERFLOW_TRAPS (t)),
1888 div));
1889
1890 default:
1891 break;
1892 }
1893
1894 return false;
1895 }
1896
1897 /* Return true if statement S can trap. */
1898
1899 bool
1900 gimple_could_trap_p (gimple s)
1901 {
1902 return gimple_could_trap_p_1 (s, true, true);
1903 }
1904
1905 /* Return true if RHS of a GIMPLE_ASSIGN S can trap. */
1906
1907 bool
1908 gimple_assign_rhs_could_trap_p (gimple s)
1909 {
1910 gcc_assert (is_gimple_assign (s));
1911 return gimple_could_trap_p_1 (s, true, false);
1912 }
1913
1914
1915 /* Print debugging information for gimple stmts generated. */
1916
1917 void
1918 dump_gimple_statistics (void)
1919 {
1920 int i, total_tuples = 0, total_bytes = 0;
1921
1922 if (! GATHER_STATISTICS)
1923 {
1924 fprintf (stderr, "No gimple statistics\n");
1925 return;
1926 }
1927
1928 fprintf (stderr, "\nGIMPLE statements\n");
1929 fprintf (stderr, "Kind Stmts Bytes\n");
1930 fprintf (stderr, "---------------------------------------\n");
1931 for (i = 0; i < (int) gimple_alloc_kind_all; ++i)
1932 {
1933 fprintf (stderr, "%-20s %7d %10d\n", gimple_alloc_kind_names[i],
1934 gimple_alloc_counts[i], gimple_alloc_sizes[i]);
1935 total_tuples += gimple_alloc_counts[i];
1936 total_bytes += gimple_alloc_sizes[i];
1937 }
1938 fprintf (stderr, "---------------------------------------\n");
1939 fprintf (stderr, "%-20s %7d %10d\n", "Total", total_tuples, total_bytes);
1940 fprintf (stderr, "---------------------------------------\n");
1941 }
1942
1943
1944 /* Return the number of operands needed on the RHS of a GIMPLE
1945 assignment for an expression with tree code CODE. */
1946
1947 unsigned
1948 get_gimple_rhs_num_ops (enum tree_code code)
1949 {
1950 enum gimple_rhs_class rhs_class = get_gimple_rhs_class (code);
1951
1952 if (rhs_class == GIMPLE_UNARY_RHS || rhs_class == GIMPLE_SINGLE_RHS)
1953 return 1;
1954 else if (rhs_class == GIMPLE_BINARY_RHS)
1955 return 2;
1956 else if (rhs_class == GIMPLE_TERNARY_RHS)
1957 return 3;
1958 else
1959 gcc_unreachable ();
1960 }
1961
1962 #define DEFTREECODE(SYM, STRING, TYPE, NARGS) \
1963 (unsigned char) \
1964 ((TYPE) == tcc_unary ? GIMPLE_UNARY_RHS \
1965 : ((TYPE) == tcc_binary \
1966 || (TYPE) == tcc_comparison) ? GIMPLE_BINARY_RHS \
1967 : ((TYPE) == tcc_constant \
1968 || (TYPE) == tcc_declaration \
1969 || (TYPE) == tcc_reference) ? GIMPLE_SINGLE_RHS \
1970 : ((SYM) == TRUTH_AND_EXPR \
1971 || (SYM) == TRUTH_OR_EXPR \
1972 || (SYM) == TRUTH_XOR_EXPR) ? GIMPLE_BINARY_RHS \
1973 : (SYM) == TRUTH_NOT_EXPR ? GIMPLE_UNARY_RHS \
1974 : ((SYM) == COND_EXPR \
1975 || (SYM) == WIDEN_MULT_PLUS_EXPR \
1976 || (SYM) == WIDEN_MULT_MINUS_EXPR \
1977 || (SYM) == DOT_PROD_EXPR \
1978 || (SYM) == SAD_EXPR \
1979 || (SYM) == REALIGN_LOAD_EXPR \
1980 || (SYM) == VEC_COND_EXPR \
1981 || (SYM) == VEC_PERM_EXPR \
1982 || (SYM) == FMA_EXPR) ? GIMPLE_TERNARY_RHS \
1983 : ((SYM) == CONSTRUCTOR \
1984 || (SYM) == OBJ_TYPE_REF \
1985 || (SYM) == ASSERT_EXPR \
1986 || (SYM) == ADDR_EXPR \
1987 || (SYM) == WITH_SIZE_EXPR \
1988 || (SYM) == SSA_NAME) ? GIMPLE_SINGLE_RHS \
1989 : GIMPLE_INVALID_RHS),
1990 #define END_OF_BASE_TREE_CODES (unsigned char) GIMPLE_INVALID_RHS,
1991
1992 const unsigned char gimple_rhs_class_table[] = {
1993 #include "all-tree.def"
1994 };
1995
1996 #undef DEFTREECODE
1997 #undef END_OF_BASE_TREE_CODES
1998
1999 /* Canonicalize a tree T for use in a COND_EXPR as conditional. Returns
2000 a canonicalized tree that is valid for a COND_EXPR or NULL_TREE, if
2001 we failed to create one. */
2002
2003 tree
2004 canonicalize_cond_expr_cond (tree t)
2005 {
2006 /* Strip conversions around boolean operations. */
2007 if (CONVERT_EXPR_P (t)
2008 && (truth_value_p (TREE_CODE (TREE_OPERAND (t, 0)))
2009 || TREE_CODE (TREE_TYPE (TREE_OPERAND (t, 0)))
2010 == BOOLEAN_TYPE))
2011 t = TREE_OPERAND (t, 0);
2012
2013 /* For !x use x == 0. */
2014 if (TREE_CODE (t) == TRUTH_NOT_EXPR)
2015 {
2016 tree top0 = TREE_OPERAND (t, 0);
2017 t = build2 (EQ_EXPR, TREE_TYPE (t),
2018 top0, build_int_cst (TREE_TYPE (top0), 0));
2019 }
2020 /* For cmp ? 1 : 0 use cmp. */
2021 else if (TREE_CODE (t) == COND_EXPR
2022 && COMPARISON_CLASS_P (TREE_OPERAND (t, 0))
2023 && integer_onep (TREE_OPERAND (t, 1))
2024 && integer_zerop (TREE_OPERAND (t, 2)))
2025 {
2026 tree top0 = TREE_OPERAND (t, 0);
2027 t = build2 (TREE_CODE (top0), TREE_TYPE (t),
2028 TREE_OPERAND (top0, 0), TREE_OPERAND (top0, 1));
2029 }
2030 /* For x ^ y use x != y. */
2031 else if (TREE_CODE (t) == BIT_XOR_EXPR)
2032 t = build2 (NE_EXPR, TREE_TYPE (t),
2033 TREE_OPERAND (t, 0), TREE_OPERAND (t, 1));
2034
2035 if (is_gimple_condexpr (t))
2036 return t;
2037
2038 return NULL_TREE;
2039 }
2040
2041 /* Build a GIMPLE_CALL identical to STMT but skipping the arguments in
2042 the positions marked by the set ARGS_TO_SKIP. */
2043
2044 gimple
2045 gimple_call_copy_skip_args (gimple stmt, bitmap args_to_skip)
2046 {
2047 int i;
2048 int nargs = gimple_call_num_args (stmt);
2049 auto_vec<tree> vargs (nargs);
2050 gimple new_stmt;
2051
2052 for (i = 0; i < nargs; i++)
2053 if (!bitmap_bit_p (args_to_skip, i))
2054 vargs.quick_push (gimple_call_arg (stmt, i));
2055
2056 if (gimple_call_internal_p (stmt))
2057 new_stmt = gimple_build_call_internal_vec (gimple_call_internal_fn (stmt),
2058 vargs);
2059 else
2060 new_stmt = gimple_build_call_vec (gimple_call_fn (stmt), vargs);
2061
2062 if (gimple_call_lhs (stmt))
2063 gimple_call_set_lhs (new_stmt, gimple_call_lhs (stmt));
2064
2065 gimple_set_vuse (new_stmt, gimple_vuse (stmt));
2066 gimple_set_vdef (new_stmt, gimple_vdef (stmt));
2067
2068 if (gimple_has_location (stmt))
2069 gimple_set_location (new_stmt, gimple_location (stmt));
2070 gimple_call_copy_flags (new_stmt, stmt);
2071 gimple_call_set_chain (new_stmt, gimple_call_chain (stmt));
2072
2073 gimple_set_modified (new_stmt, true);
2074
2075 return new_stmt;
2076 }
2077
2078
2079
2080 /* Return true if the field decls F1 and F2 are at the same offset.
2081
2082 This is intended to be used on GIMPLE types only. */
2083
2084 bool
2085 gimple_compare_field_offset (tree f1, tree f2)
2086 {
2087 if (DECL_OFFSET_ALIGN (f1) == DECL_OFFSET_ALIGN (f2))
2088 {
2089 tree offset1 = DECL_FIELD_OFFSET (f1);
2090 tree offset2 = DECL_FIELD_OFFSET (f2);
2091 return ((offset1 == offset2
2092 /* Once gimplification is done, self-referential offsets are
2093 instantiated as operand #2 of the COMPONENT_REF built for
2094 each access and reset. Therefore, they are not relevant
2095 anymore and fields are interchangeable provided that they
2096 represent the same access. */
2097 || (TREE_CODE (offset1) == PLACEHOLDER_EXPR
2098 && TREE_CODE (offset2) == PLACEHOLDER_EXPR
2099 && (DECL_SIZE (f1) == DECL_SIZE (f2)
2100 || (TREE_CODE (DECL_SIZE (f1)) == PLACEHOLDER_EXPR
2101 && TREE_CODE (DECL_SIZE (f2)) == PLACEHOLDER_EXPR)
2102 || operand_equal_p (DECL_SIZE (f1), DECL_SIZE (f2), 0))
2103 && DECL_ALIGN (f1) == DECL_ALIGN (f2))
2104 || operand_equal_p (offset1, offset2, 0))
2105 && tree_int_cst_equal (DECL_FIELD_BIT_OFFSET (f1),
2106 DECL_FIELD_BIT_OFFSET (f2)));
2107 }
2108
2109 /* Fortran and C do not always agree on what DECL_OFFSET_ALIGN
2110 should be, so handle differing ones specially by decomposing
2111 the offset into a byte and bit offset manually. */
2112 if (tree_fits_shwi_p (DECL_FIELD_OFFSET (f1))
2113 && tree_fits_shwi_p (DECL_FIELD_OFFSET (f2)))
2114 {
2115 unsigned HOST_WIDE_INT byte_offset1, byte_offset2;
2116 unsigned HOST_WIDE_INT bit_offset1, bit_offset2;
2117 bit_offset1 = TREE_INT_CST_LOW (DECL_FIELD_BIT_OFFSET (f1));
2118 byte_offset1 = (TREE_INT_CST_LOW (DECL_FIELD_OFFSET (f1))
2119 + bit_offset1 / BITS_PER_UNIT);
2120 bit_offset2 = TREE_INT_CST_LOW (DECL_FIELD_BIT_OFFSET (f2));
2121 byte_offset2 = (TREE_INT_CST_LOW (DECL_FIELD_OFFSET (f2))
2122 + bit_offset2 / BITS_PER_UNIT);
2123 if (byte_offset1 != byte_offset2)
2124 return false;
2125 return bit_offset1 % BITS_PER_UNIT == bit_offset2 % BITS_PER_UNIT;
2126 }
2127
2128 return false;
2129 }
2130
2131
2132 /* Return a type the same as TYPE except unsigned or
2133 signed according to UNSIGNEDP. */
2134
2135 static tree
2136 gimple_signed_or_unsigned_type (bool unsignedp, tree type)
2137 {
2138 tree type1;
2139 int i;
2140
2141 type1 = TYPE_MAIN_VARIANT (type);
2142 if (type1 == signed_char_type_node
2143 || type1 == char_type_node
2144 || type1 == unsigned_char_type_node)
2145 return unsignedp ? unsigned_char_type_node : signed_char_type_node;
2146 if (type1 == integer_type_node || type1 == unsigned_type_node)
2147 return unsignedp ? unsigned_type_node : integer_type_node;
2148 if (type1 == short_integer_type_node || type1 == short_unsigned_type_node)
2149 return unsignedp ? short_unsigned_type_node : short_integer_type_node;
2150 if (type1 == long_integer_type_node || type1 == long_unsigned_type_node)
2151 return unsignedp ? long_unsigned_type_node : long_integer_type_node;
2152 if (type1 == long_long_integer_type_node
2153 || type1 == long_long_unsigned_type_node)
2154 return unsignedp
2155 ? long_long_unsigned_type_node
2156 : long_long_integer_type_node;
2157
2158 for (i = 0; i < NUM_INT_N_ENTS; i ++)
2159 if (int_n_enabled_p[i]
2160 && (type1 == int_n_trees[i].unsigned_type
2161 || type1 == int_n_trees[i].signed_type))
2162 return unsignedp
2163 ? int_n_trees[i].unsigned_type
2164 : int_n_trees[i].signed_type;
2165
2166 #if HOST_BITS_PER_WIDE_INT >= 64
2167 if (type1 == intTI_type_node || type1 == unsigned_intTI_type_node)
2168 return unsignedp ? unsigned_intTI_type_node : intTI_type_node;
2169 #endif
2170 if (type1 == intDI_type_node || type1 == unsigned_intDI_type_node)
2171 return unsignedp ? unsigned_intDI_type_node : intDI_type_node;
2172 if (type1 == intSI_type_node || type1 == unsigned_intSI_type_node)
2173 return unsignedp ? unsigned_intSI_type_node : intSI_type_node;
2174 if (type1 == intHI_type_node || type1 == unsigned_intHI_type_node)
2175 return unsignedp ? unsigned_intHI_type_node : intHI_type_node;
2176 if (type1 == intQI_type_node || type1 == unsigned_intQI_type_node)
2177 return unsignedp ? unsigned_intQI_type_node : intQI_type_node;
2178
2179 #define GIMPLE_FIXED_TYPES(NAME) \
2180 if (type1 == short_ ## NAME ## _type_node \
2181 || type1 == unsigned_short_ ## NAME ## _type_node) \
2182 return unsignedp ? unsigned_short_ ## NAME ## _type_node \
2183 : short_ ## NAME ## _type_node; \
2184 if (type1 == NAME ## _type_node \
2185 || type1 == unsigned_ ## NAME ## _type_node) \
2186 return unsignedp ? unsigned_ ## NAME ## _type_node \
2187 : NAME ## _type_node; \
2188 if (type1 == long_ ## NAME ## _type_node \
2189 || type1 == unsigned_long_ ## NAME ## _type_node) \
2190 return unsignedp ? unsigned_long_ ## NAME ## _type_node \
2191 : long_ ## NAME ## _type_node; \
2192 if (type1 == long_long_ ## NAME ## _type_node \
2193 || type1 == unsigned_long_long_ ## NAME ## _type_node) \
2194 return unsignedp ? unsigned_long_long_ ## NAME ## _type_node \
2195 : long_long_ ## NAME ## _type_node;
2196
2197 #define GIMPLE_FIXED_MODE_TYPES(NAME) \
2198 if (type1 == NAME ## _type_node \
2199 || type1 == u ## NAME ## _type_node) \
2200 return unsignedp ? u ## NAME ## _type_node \
2201 : NAME ## _type_node;
2202
2203 #define GIMPLE_FIXED_TYPES_SAT(NAME) \
2204 if (type1 == sat_ ## short_ ## NAME ## _type_node \
2205 || type1 == sat_ ## unsigned_short_ ## NAME ## _type_node) \
2206 return unsignedp ? sat_ ## unsigned_short_ ## NAME ## _type_node \
2207 : sat_ ## short_ ## NAME ## _type_node; \
2208 if (type1 == sat_ ## NAME ## _type_node \
2209 || type1 == sat_ ## unsigned_ ## NAME ## _type_node) \
2210 return unsignedp ? sat_ ## unsigned_ ## NAME ## _type_node \
2211 : sat_ ## NAME ## _type_node; \
2212 if (type1 == sat_ ## long_ ## NAME ## _type_node \
2213 || type1 == sat_ ## unsigned_long_ ## NAME ## _type_node) \
2214 return unsignedp ? sat_ ## unsigned_long_ ## NAME ## _type_node \
2215 : sat_ ## long_ ## NAME ## _type_node; \
2216 if (type1 == sat_ ## long_long_ ## NAME ## _type_node \
2217 || type1 == sat_ ## unsigned_long_long_ ## NAME ## _type_node) \
2218 return unsignedp ? sat_ ## unsigned_long_long_ ## NAME ## _type_node \
2219 : sat_ ## long_long_ ## NAME ## _type_node;
2220
2221 #define GIMPLE_FIXED_MODE_TYPES_SAT(NAME) \
2222 if (type1 == sat_ ## NAME ## _type_node \
2223 || type1 == sat_ ## u ## NAME ## _type_node) \
2224 return unsignedp ? sat_ ## u ## NAME ## _type_node \
2225 : sat_ ## NAME ## _type_node;
2226
2227 GIMPLE_FIXED_TYPES (fract);
2228 GIMPLE_FIXED_TYPES_SAT (fract);
2229 GIMPLE_FIXED_TYPES (accum);
2230 GIMPLE_FIXED_TYPES_SAT (accum);
2231
2232 GIMPLE_FIXED_MODE_TYPES (qq);
2233 GIMPLE_FIXED_MODE_TYPES (hq);
2234 GIMPLE_FIXED_MODE_TYPES (sq);
2235 GIMPLE_FIXED_MODE_TYPES (dq);
2236 GIMPLE_FIXED_MODE_TYPES (tq);
2237 GIMPLE_FIXED_MODE_TYPES_SAT (qq);
2238 GIMPLE_FIXED_MODE_TYPES_SAT (hq);
2239 GIMPLE_FIXED_MODE_TYPES_SAT (sq);
2240 GIMPLE_FIXED_MODE_TYPES_SAT (dq);
2241 GIMPLE_FIXED_MODE_TYPES_SAT (tq);
2242 GIMPLE_FIXED_MODE_TYPES (ha);
2243 GIMPLE_FIXED_MODE_TYPES (sa);
2244 GIMPLE_FIXED_MODE_TYPES (da);
2245 GIMPLE_FIXED_MODE_TYPES (ta);
2246 GIMPLE_FIXED_MODE_TYPES_SAT (ha);
2247 GIMPLE_FIXED_MODE_TYPES_SAT (sa);
2248 GIMPLE_FIXED_MODE_TYPES_SAT (da);
2249 GIMPLE_FIXED_MODE_TYPES_SAT (ta);
2250
2251 /* For ENUMERAL_TYPEs in C++, must check the mode of the types, not
2252 the precision; they have precision set to match their range, but
2253 may use a wider mode to match an ABI. If we change modes, we may
2254 wind up with bad conversions. For INTEGER_TYPEs in C, must check
2255 the precision as well, so as to yield correct results for
2256 bit-field types. C++ does not have these separate bit-field
2257 types, and producing a signed or unsigned variant of an
2258 ENUMERAL_TYPE may cause other problems as well. */
2259 if (!INTEGRAL_TYPE_P (type)
2260 || TYPE_UNSIGNED (type) == unsignedp)
2261 return type;
2262
2263 #define TYPE_OK(node) \
2264 (TYPE_MODE (type) == TYPE_MODE (node) \
2265 && TYPE_PRECISION (type) == TYPE_PRECISION (node))
2266 if (TYPE_OK (signed_char_type_node))
2267 return unsignedp ? unsigned_char_type_node : signed_char_type_node;
2268 if (TYPE_OK (integer_type_node))
2269 return unsignedp ? unsigned_type_node : integer_type_node;
2270 if (TYPE_OK (short_integer_type_node))
2271 return unsignedp ? short_unsigned_type_node : short_integer_type_node;
2272 if (TYPE_OK (long_integer_type_node))
2273 return unsignedp ? long_unsigned_type_node : long_integer_type_node;
2274 if (TYPE_OK (long_long_integer_type_node))
2275 return (unsignedp
2276 ? long_long_unsigned_type_node
2277 : long_long_integer_type_node);
2278
2279 for (i = 0; i < NUM_INT_N_ENTS; i ++)
2280 if (int_n_enabled_p[i]
2281 && TYPE_MODE (type) == int_n_data[i].m
2282 && TYPE_PRECISION (type) == int_n_data[i].bitsize)
2283 return unsignedp
2284 ? int_n_trees[i].unsigned_type
2285 : int_n_trees[i].signed_type;
2286
2287 #if HOST_BITS_PER_WIDE_INT >= 64
2288 if (TYPE_OK (intTI_type_node))
2289 return unsignedp ? unsigned_intTI_type_node : intTI_type_node;
2290 #endif
2291 if (TYPE_OK (intDI_type_node))
2292 return unsignedp ? unsigned_intDI_type_node : intDI_type_node;
2293 if (TYPE_OK (intSI_type_node))
2294 return unsignedp ? unsigned_intSI_type_node : intSI_type_node;
2295 if (TYPE_OK (intHI_type_node))
2296 return unsignedp ? unsigned_intHI_type_node : intHI_type_node;
2297 if (TYPE_OK (intQI_type_node))
2298 return unsignedp ? unsigned_intQI_type_node : intQI_type_node;
2299
2300 #undef GIMPLE_FIXED_TYPES
2301 #undef GIMPLE_FIXED_MODE_TYPES
2302 #undef GIMPLE_FIXED_TYPES_SAT
2303 #undef GIMPLE_FIXED_MODE_TYPES_SAT
2304 #undef TYPE_OK
2305
2306 return build_nonstandard_integer_type (TYPE_PRECISION (type), unsignedp);
2307 }
2308
2309
2310 /* Return an unsigned type the same as TYPE in other respects. */
2311
2312 tree
2313 gimple_unsigned_type (tree type)
2314 {
2315 return gimple_signed_or_unsigned_type (true, type);
2316 }
2317
2318
2319 /* Return a signed type the same as TYPE in other respects. */
2320
2321 tree
2322 gimple_signed_type (tree type)
2323 {
2324 return gimple_signed_or_unsigned_type (false, type);
2325 }
2326
2327
2328 /* Return the typed-based alias set for T, which may be an expression
2329 or a type. Return -1 if we don't do anything special. */
2330
2331 alias_set_type
2332 gimple_get_alias_set (tree t)
2333 {
2334 tree u;
2335
2336 /* Permit type-punning when accessing a union, provided the access
2337 is directly through the union. For example, this code does not
2338 permit taking the address of a union member and then storing
2339 through it. Even the type-punning allowed here is a GCC
2340 extension, albeit a common and useful one; the C standard says
2341 that such accesses have implementation-defined behavior. */
2342 for (u = t;
2343 TREE_CODE (u) == COMPONENT_REF || TREE_CODE (u) == ARRAY_REF;
2344 u = TREE_OPERAND (u, 0))
2345 if (TREE_CODE (u) == COMPONENT_REF
2346 && TREE_CODE (TREE_TYPE (TREE_OPERAND (u, 0))) == UNION_TYPE)
2347 return 0;
2348
2349 /* That's all the expressions we handle specially. */
2350 if (!TYPE_P (t))
2351 return -1;
2352
2353 /* For convenience, follow the C standard when dealing with
2354 character types. Any object may be accessed via an lvalue that
2355 has character type. */
2356 if (t == char_type_node
2357 || t == signed_char_type_node
2358 || t == unsigned_char_type_node)
2359 return 0;
2360
2361 /* Allow aliasing between signed and unsigned variants of the same
2362 type. We treat the signed variant as canonical. */
2363 if (TREE_CODE (t) == INTEGER_TYPE && TYPE_UNSIGNED (t))
2364 {
2365 tree t1 = gimple_signed_type (t);
2366
2367 /* t1 == t can happen for boolean nodes which are always unsigned. */
2368 if (t1 != t)
2369 return get_alias_set (t1);
2370 }
2371
2372 return -1;
2373 }
2374
2375
2376 /* Helper for gimple_ior_addresses_taken_1. */
2377
2378 static bool
2379 gimple_ior_addresses_taken_1 (gimple, tree addr, tree, void *data)
2380 {
2381 bitmap addresses_taken = (bitmap)data;
2382 addr = get_base_address (addr);
2383 if (addr
2384 && DECL_P (addr))
2385 {
2386 bitmap_set_bit (addresses_taken, DECL_UID (addr));
2387 return true;
2388 }
2389 return false;
2390 }
2391
2392 /* Set the bit for the uid of all decls that have their address taken
2393 in STMT in the ADDRESSES_TAKEN bitmap. Returns true if there
2394 were any in this stmt. */
2395
2396 bool
2397 gimple_ior_addresses_taken (bitmap addresses_taken, gimple stmt)
2398 {
2399 return walk_stmt_load_store_addr_ops (stmt, addresses_taken, NULL, NULL,
2400 gimple_ior_addresses_taken_1);
2401 }
2402
2403
2404 /* Return true if TYPE1 and TYPE2 are compatible enough for builtin
2405 processing. */
2406
2407 static bool
2408 validate_type (tree type1, tree type2)
2409 {
2410 if (INTEGRAL_TYPE_P (type1)
2411 && INTEGRAL_TYPE_P (type2))
2412 ;
2413 else if (POINTER_TYPE_P (type1)
2414 && POINTER_TYPE_P (type2))
2415 ;
2416 else if (TREE_CODE (type1)
2417 != TREE_CODE (type2))
2418 return false;
2419 return true;
2420 }
2421
2422 /* Return true when STMTs arguments and return value match those of FNDECL,
2423 a decl of a builtin function. */
2424
2425 bool
2426 gimple_builtin_call_types_compatible_p (const_gimple stmt, tree fndecl)
2427 {
2428 gcc_checking_assert (DECL_BUILT_IN_CLASS (fndecl) != NOT_BUILT_IN);
2429
2430 tree ret = gimple_call_lhs (stmt);
2431 if (ret
2432 && !validate_type (TREE_TYPE (ret), TREE_TYPE (TREE_TYPE (fndecl))))
2433 return false;
2434
2435 tree targs = TYPE_ARG_TYPES (TREE_TYPE (fndecl));
2436 unsigned nargs = gimple_call_num_args (stmt);
2437 for (unsigned i = 0; i < nargs; ++i)
2438 {
2439 /* Variadic args follow. */
2440 if (!targs)
2441 return true;
2442 tree arg = gimple_call_arg (stmt, i);
2443 if (!validate_type (TREE_TYPE (arg), TREE_VALUE (targs)))
2444 return false;
2445 targs = TREE_CHAIN (targs);
2446 }
2447 if (targs && !VOID_TYPE_P (TREE_VALUE (targs)))
2448 return false;
2449 return true;
2450 }
2451
2452 /* Return true when STMT is builtins call. */
2453
2454 bool
2455 gimple_call_builtin_p (const_gimple stmt)
2456 {
2457 tree fndecl;
2458 if (is_gimple_call (stmt)
2459 && (fndecl = gimple_call_fndecl (stmt)) != NULL_TREE
2460 && DECL_BUILT_IN_CLASS (fndecl) != NOT_BUILT_IN)
2461 return gimple_builtin_call_types_compatible_p (stmt, fndecl);
2462 return false;
2463 }
2464
2465 /* Return true when STMT is builtins call to CLASS. */
2466
2467 bool
2468 gimple_call_builtin_p (const_gimple stmt, enum built_in_class klass)
2469 {
2470 tree fndecl;
2471 if (is_gimple_call (stmt)
2472 && (fndecl = gimple_call_fndecl (stmt)) != NULL_TREE
2473 && DECL_BUILT_IN_CLASS (fndecl) == klass)
2474 return gimple_builtin_call_types_compatible_p (stmt, fndecl);
2475 return false;
2476 }
2477
2478 /* Return true when STMT is builtins call to CODE of CLASS. */
2479
2480 bool
2481 gimple_call_builtin_p (const_gimple stmt, enum built_in_function code)
2482 {
2483 tree fndecl;
2484 if (is_gimple_call (stmt)
2485 && (fndecl = gimple_call_fndecl (stmt)) != NULL_TREE
2486 && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL
2487 && DECL_FUNCTION_CODE (fndecl) == code)
2488 return gimple_builtin_call_types_compatible_p (stmt, fndecl);
2489 return false;
2490 }
2491
2492 /* Return true if STMT clobbers memory. STMT is required to be a
2493 GIMPLE_ASM. */
2494
2495 bool
2496 gimple_asm_clobbers_memory_p (const_gimple stmt)
2497 {
2498 unsigned i;
2499
2500 for (i = 0; i < gimple_asm_nclobbers (stmt); i++)
2501 {
2502 tree op = gimple_asm_clobber_op (stmt, i);
2503 if (strcmp (TREE_STRING_POINTER (TREE_VALUE (op)), "memory") == 0)
2504 return true;
2505 }
2506
2507 return false;
2508 }
2509
2510 /* Dump bitmap SET (assumed to contain VAR_DECLs) to FILE. */
2511
2512 void
2513 dump_decl_set (FILE *file, bitmap set)
2514 {
2515 if (set)
2516 {
2517 bitmap_iterator bi;
2518 unsigned i;
2519
2520 fprintf (file, "{ ");
2521
2522 EXECUTE_IF_SET_IN_BITMAP (set, 0, i, bi)
2523 {
2524 fprintf (file, "D.%u", i);
2525 fprintf (file, " ");
2526 }
2527
2528 fprintf (file, "}");
2529 }
2530 else
2531 fprintf (file, "NIL");
2532 }
2533
2534 /* Return true when CALL is a call stmt that definitely doesn't
2535 free any memory or makes it unavailable otherwise. */
2536 bool
2537 nonfreeing_call_p (gimple call)
2538 {
2539 if (gimple_call_builtin_p (call, BUILT_IN_NORMAL)
2540 && gimple_call_flags (call) & ECF_LEAF)
2541 switch (DECL_FUNCTION_CODE (gimple_call_fndecl (call)))
2542 {
2543 /* Just in case these become ECF_LEAF in the future. */
2544 case BUILT_IN_FREE:
2545 case BUILT_IN_TM_FREE:
2546 case BUILT_IN_REALLOC:
2547 case BUILT_IN_STACK_RESTORE:
2548 return false;
2549 default:
2550 return true;
2551 }
2552 else if (gimple_call_internal_p (call))
2553 switch (gimple_call_internal_fn (call))
2554 {
2555 case IFN_ABNORMAL_DISPATCHER:
2556 return true;
2557 default:
2558 if (gimple_call_flags (call) & ECF_LEAF)
2559 return true;
2560 return false;
2561 }
2562
2563 tree fndecl = gimple_call_fndecl (call);
2564 if (!fndecl)
2565 return false;
2566 struct cgraph_node *n = cgraph_node::get (fndecl);
2567 if (!n)
2568 return false;
2569 enum availability availability;
2570 n = n->function_symbol (&availability);
2571 if (!n || availability <= AVAIL_INTERPOSABLE)
2572 return false;
2573 return n->nonfreeing_fn;
2574 }
2575
2576 /* Callback for walk_stmt_load_store_ops.
2577
2578 Return TRUE if OP will dereference the tree stored in DATA, FALSE
2579 otherwise.
2580
2581 This routine only makes a superficial check for a dereference. Thus
2582 it must only be used if it is safe to return a false negative. */
2583 static bool
2584 check_loadstore (gimple, tree op, tree, void *data)
2585 {
2586 if ((TREE_CODE (op) == MEM_REF || TREE_CODE (op) == TARGET_MEM_REF)
2587 && operand_equal_p (TREE_OPERAND (op, 0), (tree)data, 0))
2588 return true;
2589 return false;
2590 }
2591
2592 /* If OP can be inferred to be non-NULL after STMT executes, return true.
2593
2594 DEREFERENCE is TRUE if we can use a pointer dereference to infer a
2595 non-NULL range, FALSE otherwise.
2596
2597 ATTRIBUTE is TRUE if we can use attributes to infer a non-NULL range
2598 for function arguments and return values. FALSE otherwise. */
2599
2600 bool
2601 infer_nonnull_range (gimple stmt, tree op, bool dereference, bool attribute)
2602 {
2603 /* We can only assume that a pointer dereference will yield
2604 non-NULL if -fdelete-null-pointer-checks is enabled. */
2605 if (!flag_delete_null_pointer_checks
2606 || !POINTER_TYPE_P (TREE_TYPE (op))
2607 || gimple_code (stmt) == GIMPLE_ASM)
2608 return false;
2609
2610 if (dereference
2611 && walk_stmt_load_store_ops (stmt, (void *)op,
2612 check_loadstore, check_loadstore))
2613 return true;
2614
2615 if (attribute
2616 && is_gimple_call (stmt) && !gimple_call_internal_p (stmt))
2617 {
2618 tree fntype = gimple_call_fntype (stmt);
2619 tree attrs = TYPE_ATTRIBUTES (fntype);
2620 for (; attrs; attrs = TREE_CHAIN (attrs))
2621 {
2622 attrs = lookup_attribute ("nonnull", attrs);
2623
2624 /* If "nonnull" wasn't specified, we know nothing about
2625 the argument. */
2626 if (attrs == NULL_TREE)
2627 return false;
2628
2629 /* If "nonnull" applies to all the arguments, then ARG
2630 is non-null if it's in the argument list. */
2631 if (TREE_VALUE (attrs) == NULL_TREE)
2632 {
2633 for (unsigned int i = 0; i < gimple_call_num_args (stmt); i++)
2634 {
2635 if (POINTER_TYPE_P (TREE_TYPE (gimple_call_arg (stmt, i)))
2636 && operand_equal_p (op, gimple_call_arg (stmt, i), 0))
2637 return true;
2638 }
2639 return false;
2640 }
2641
2642 /* Now see if op appears in the nonnull list. */
2643 for (tree t = TREE_VALUE (attrs); t; t = TREE_CHAIN (t))
2644 {
2645 int idx = TREE_INT_CST_LOW (TREE_VALUE (t)) - 1;
2646 tree arg = gimple_call_arg (stmt, idx);
2647 if (operand_equal_p (op, arg, 0))
2648 return true;
2649 }
2650 }
2651 }
2652
2653 /* If this function is marked as returning non-null, then we can
2654 infer OP is non-null if it is used in the return statement. */
2655 if (attribute
2656 && gimple_code (stmt) == GIMPLE_RETURN
2657 && gimple_return_retval (stmt)
2658 && operand_equal_p (gimple_return_retval (stmt), op, 0)
2659 && lookup_attribute ("returns_nonnull",
2660 TYPE_ATTRIBUTES (TREE_TYPE (current_function_decl))))
2661 return true;
2662
2663 return false;
2664 }
2665
2666 /* Compare two case labels. Because the front end should already have
2667 made sure that case ranges do not overlap, it is enough to only compare
2668 the CASE_LOW values of each case label. */
2669
2670 static int
2671 compare_case_labels (const void *p1, const void *p2)
2672 {
2673 const_tree const case1 = *(const_tree const*)p1;
2674 const_tree const case2 = *(const_tree const*)p2;
2675
2676 /* The 'default' case label always goes first. */
2677 if (!CASE_LOW (case1))
2678 return -1;
2679 else if (!CASE_LOW (case2))
2680 return 1;
2681 else
2682 return tree_int_cst_compare (CASE_LOW (case1), CASE_LOW (case2));
2683 }
2684
2685 /* Sort the case labels in LABEL_VEC in place in ascending order. */
2686
2687 void
2688 sort_case_labels (vec<tree> label_vec)
2689 {
2690 label_vec.qsort (compare_case_labels);
2691 }
2692 \f
2693 /* Prepare a vector of case labels to be used in a GIMPLE_SWITCH statement.
2694
2695 LABELS is a vector that contains all case labels to look at.
2696
2697 INDEX_TYPE is the type of the switch index expression. Case labels
2698 in LABELS are discarded if their values are not in the value range
2699 covered by INDEX_TYPE. The remaining case label values are folded
2700 to INDEX_TYPE.
2701
2702 If a default case exists in LABELS, it is removed from LABELS and
2703 returned in DEFAULT_CASEP. If no default case exists, but the
2704 case labels already cover the whole range of INDEX_TYPE, a default
2705 case is returned pointing to one of the existing case labels.
2706 Otherwise DEFAULT_CASEP is set to NULL_TREE.
2707
2708 DEFAULT_CASEP may be NULL, in which case the above comment doesn't
2709 apply and no action is taken regardless of whether a default case is
2710 found or not. */
2711
2712 void
2713 preprocess_case_label_vec_for_gimple (vec<tree> labels,
2714 tree index_type,
2715 tree *default_casep)
2716 {
2717 tree min_value, max_value;
2718 tree default_case = NULL_TREE;
2719 size_t i, len;
2720
2721 i = 0;
2722 min_value = TYPE_MIN_VALUE (index_type);
2723 max_value = TYPE_MAX_VALUE (index_type);
2724 while (i < labels.length ())
2725 {
2726 tree elt = labels[i];
2727 tree low = CASE_LOW (elt);
2728 tree high = CASE_HIGH (elt);
2729 bool remove_element = FALSE;
2730
2731 if (low)
2732 {
2733 gcc_checking_assert (TREE_CODE (low) == INTEGER_CST);
2734 gcc_checking_assert (!high || TREE_CODE (high) == INTEGER_CST);
2735
2736 /* This is a non-default case label, i.e. it has a value.
2737
2738 See if the case label is reachable within the range of
2739 the index type. Remove out-of-range case values. Turn
2740 case ranges into a canonical form (high > low strictly)
2741 and convert the case label values to the index type.
2742
2743 NB: The type of gimple_switch_index() may be the promoted
2744 type, but the case labels retain the original type. */
2745
2746 if (high)
2747 {
2748 /* This is a case range. Discard empty ranges.
2749 If the bounds or the range are equal, turn this
2750 into a simple (one-value) case. */
2751 int cmp = tree_int_cst_compare (high, low);
2752 if (cmp < 0)
2753 remove_element = TRUE;
2754 else if (cmp == 0)
2755 high = NULL_TREE;
2756 }
2757
2758 if (! high)
2759 {
2760 /* If the simple case value is unreachable, ignore it. */
2761 if ((TREE_CODE (min_value) == INTEGER_CST
2762 && tree_int_cst_compare (low, min_value) < 0)
2763 || (TREE_CODE (max_value) == INTEGER_CST
2764 && tree_int_cst_compare (low, max_value) > 0))
2765 remove_element = TRUE;
2766 else
2767 low = fold_convert (index_type, low);
2768 }
2769 else
2770 {
2771 /* If the entire case range is unreachable, ignore it. */
2772 if ((TREE_CODE (min_value) == INTEGER_CST
2773 && tree_int_cst_compare (high, min_value) < 0)
2774 || (TREE_CODE (max_value) == INTEGER_CST
2775 && tree_int_cst_compare (low, max_value) > 0))
2776 remove_element = TRUE;
2777 else
2778 {
2779 /* If the lower bound is less than the index type's
2780 minimum value, truncate the range bounds. */
2781 if (TREE_CODE (min_value) == INTEGER_CST
2782 && tree_int_cst_compare (low, min_value) < 0)
2783 low = min_value;
2784 low = fold_convert (index_type, low);
2785
2786 /* If the upper bound is greater than the index type's
2787 maximum value, truncate the range bounds. */
2788 if (TREE_CODE (max_value) == INTEGER_CST
2789 && tree_int_cst_compare (high, max_value) > 0)
2790 high = max_value;
2791 high = fold_convert (index_type, high);
2792
2793 /* We may have folded a case range to a one-value case. */
2794 if (tree_int_cst_equal (low, high))
2795 high = NULL_TREE;
2796 }
2797 }
2798
2799 CASE_LOW (elt) = low;
2800 CASE_HIGH (elt) = high;
2801 }
2802 else
2803 {
2804 gcc_assert (!default_case);
2805 default_case = elt;
2806 /* The default case must be passed separately to the
2807 gimple_build_switch routine. But if DEFAULT_CASEP
2808 is NULL, we do not remove the default case (it would
2809 be completely lost). */
2810 if (default_casep)
2811 remove_element = TRUE;
2812 }
2813
2814 if (remove_element)
2815 labels.ordered_remove (i);
2816 else
2817 i++;
2818 }
2819 len = i;
2820
2821 if (!labels.is_empty ())
2822 sort_case_labels (labels);
2823
2824 if (default_casep && !default_case)
2825 {
2826 /* If the switch has no default label, add one, so that we jump
2827 around the switch body. If the labels already cover the whole
2828 range of the switch index_type, add the default label pointing
2829 to one of the existing labels. */
2830 if (len
2831 && TYPE_MIN_VALUE (index_type)
2832 && TYPE_MAX_VALUE (index_type)
2833 && tree_int_cst_equal (CASE_LOW (labels[0]),
2834 TYPE_MIN_VALUE (index_type)))
2835 {
2836 tree low, high = CASE_HIGH (labels[len - 1]);
2837 if (!high)
2838 high = CASE_LOW (labels[len - 1]);
2839 if (tree_int_cst_equal (high, TYPE_MAX_VALUE (index_type)))
2840 {
2841 for (i = 1; i < len; i++)
2842 {
2843 high = CASE_LOW (labels[i]);
2844 low = CASE_HIGH (labels[i - 1]);
2845 if (!low)
2846 low = CASE_LOW (labels[i - 1]);
2847 if (wi::add (low, 1) != high)
2848 break;
2849 }
2850 if (i == len)
2851 {
2852 tree label = CASE_LABEL (labels[0]);
2853 default_case = build_case_label (NULL_TREE, NULL_TREE,
2854 label);
2855 }
2856 }
2857 }
2858 }
2859
2860 if (default_casep)
2861 *default_casep = default_case;
2862 }
2863
2864 /* Set the location of all statements in SEQ to LOC. */
2865
2866 void
2867 gimple_seq_set_location (gimple_seq seq, location_t loc)
2868 {
2869 for (gimple_stmt_iterator i = gsi_start (seq); !gsi_end_p (i); gsi_next (&i))
2870 gimple_set_location (gsi_stmt (i), loc);
2871 }
2872
2873 /* Release SSA_NAMEs in SEQ as well as the GIMPLE statements. */
2874
2875 void
2876 gimple_seq_discard (gimple_seq seq)
2877 {
2878 gimple_stmt_iterator gsi;
2879
2880 for (gsi = gsi_start (seq); !gsi_end_p (gsi); )
2881 {
2882 gimple stmt = gsi_stmt (gsi);
2883 gsi_remove (&gsi, true);
2884 release_defs (stmt);
2885 ggc_free (stmt);
2886 }
2887 }