]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/gimple.c
2015-07-09 Andrew MacLeod <amacleod@redhat.com>
[thirdparty/gcc.git] / gcc / gimple.c
1 /* Gimple IR support functions.
2
3 Copyright (C) 2007-2015 Free Software Foundation, Inc.
4 Contributed by Aldy Hernandez <aldyh@redhat.com>
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
12
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
21
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "backend.h"
26 #include "tree.h"
27 #include "gimple.h"
28 #include "hard-reg-set.h"
29 #include "ssa.h"
30 #include "target.h"
31 #include "alias.h"
32 #include "fold-const.h"
33 #include "calls.h"
34 #include "stmt.h"
35 #include "stor-layout.h"
36 #include "internal-fn.h"
37 #include "tree-eh.h"
38 #include "gimple-iterator.h"
39 #include "gimple-walk.h"
40 #include "gimplify.h"
41 #include "diagnostic.h"
42 #include "value-prof.h"
43 #include "flags.h"
44 #include "alias.h"
45 #include "demangle.h"
46 #include "langhooks.h"
47 #include "cgraph.h"
48
49
50 /* All the tuples have their operand vector (if present) at the very bottom
51 of the structure. Therefore, the offset required to find the
52 operands vector the size of the structure minus the size of the 1
53 element tree array at the end (see gimple_ops). */
54 #define DEFGSSTRUCT(SYM, STRUCT, HAS_TREE_OP) \
55 (HAS_TREE_OP ? sizeof (struct STRUCT) - sizeof (tree) : 0),
56 EXPORTED_CONST size_t gimple_ops_offset_[] = {
57 #include "gsstruct.def"
58 };
59 #undef DEFGSSTRUCT
60
61 #define DEFGSSTRUCT(SYM, STRUCT, HAS_TREE_OP) sizeof (struct STRUCT),
62 static const size_t gsstruct_code_size[] = {
63 #include "gsstruct.def"
64 };
65 #undef DEFGSSTRUCT
66
67 #define DEFGSCODE(SYM, NAME, GSSCODE) NAME,
68 const char *const gimple_code_name[] = {
69 #include "gimple.def"
70 };
71 #undef DEFGSCODE
72
73 #define DEFGSCODE(SYM, NAME, GSSCODE) GSSCODE,
74 EXPORTED_CONST enum gimple_statement_structure_enum gss_for_code_[] = {
75 #include "gimple.def"
76 };
77 #undef DEFGSCODE
78
79 /* Gimple stats. */
80
81 int gimple_alloc_counts[(int) gimple_alloc_kind_all];
82 int gimple_alloc_sizes[(int) gimple_alloc_kind_all];
83
84 /* Keep in sync with gimple.h:enum gimple_alloc_kind. */
85 static const char * const gimple_alloc_kind_names[] = {
86 "assignments",
87 "phi nodes",
88 "conditionals",
89 "everything else"
90 };
91
92 /* Gimple tuple constructors.
93 Note: Any constructor taking a ``gimple_seq'' as a parameter, can
94 be passed a NULL to start with an empty sequence. */
95
96 /* Set the code for statement G to CODE. */
97
98 static inline void
99 gimple_set_code (gimple g, enum gimple_code code)
100 {
101 g->code = code;
102 }
103
104 /* Return the number of bytes needed to hold a GIMPLE statement with
105 code CODE. */
106
107 static inline size_t
108 gimple_size (enum gimple_code code)
109 {
110 return gsstruct_code_size[gss_for_code (code)];
111 }
112
113 /* Allocate memory for a GIMPLE statement with code CODE and NUM_OPS
114 operands. */
115
116 gimple
117 gimple_alloc_stat (enum gimple_code code, unsigned num_ops MEM_STAT_DECL)
118 {
119 size_t size;
120 gimple stmt;
121
122 size = gimple_size (code);
123 if (num_ops > 0)
124 size += sizeof (tree) * (num_ops - 1);
125
126 if (GATHER_STATISTICS)
127 {
128 enum gimple_alloc_kind kind = gimple_alloc_kind (code);
129 gimple_alloc_counts[(int) kind]++;
130 gimple_alloc_sizes[(int) kind] += size;
131 }
132
133 stmt = ggc_alloc_cleared_gimple_statement_stat (size PASS_MEM_STAT);
134 gimple_set_code (stmt, code);
135 gimple_set_num_ops (stmt, num_ops);
136
137 /* Do not call gimple_set_modified here as it has other side
138 effects and this tuple is still not completely built. */
139 stmt->modified = 1;
140 gimple_init_singleton (stmt);
141
142 return stmt;
143 }
144
145 /* Set SUBCODE to be the code of the expression computed by statement G. */
146
147 static inline void
148 gimple_set_subcode (gimple g, unsigned subcode)
149 {
150 /* We only have 16 bits for the RHS code. Assert that we are not
151 overflowing it. */
152 gcc_assert (subcode < (1 << 16));
153 g->subcode = subcode;
154 }
155
156
157
158 /* Build a tuple with operands. CODE is the statement to build (which
159 must be one of the GIMPLE_WITH_OPS tuples). SUBCODE is the subcode
160 for the new tuple. NUM_OPS is the number of operands to allocate. */
161
162 #define gimple_build_with_ops(c, s, n) \
163 gimple_build_with_ops_stat (c, s, n MEM_STAT_INFO)
164
165 static gimple
166 gimple_build_with_ops_stat (enum gimple_code code, unsigned subcode,
167 unsigned num_ops MEM_STAT_DECL)
168 {
169 gimple s = gimple_alloc_stat (code, num_ops PASS_MEM_STAT);
170 gimple_set_subcode (s, subcode);
171
172 return s;
173 }
174
175
176 /* Build a GIMPLE_RETURN statement returning RETVAL. */
177
178 greturn *
179 gimple_build_return (tree retval)
180 {
181 greturn *s
182 = as_a <greturn *> (gimple_build_with_ops (GIMPLE_RETURN, ERROR_MARK,
183 2));
184 if (retval)
185 gimple_return_set_retval (s, retval);
186 return s;
187 }
188
189 /* Reset alias information on call S. */
190
191 void
192 gimple_call_reset_alias_info (gcall *s)
193 {
194 if (gimple_call_flags (s) & ECF_CONST)
195 memset (gimple_call_use_set (s), 0, sizeof (struct pt_solution));
196 else
197 pt_solution_reset (gimple_call_use_set (s));
198 if (gimple_call_flags (s) & (ECF_CONST|ECF_PURE|ECF_NOVOPS))
199 memset (gimple_call_clobber_set (s), 0, sizeof (struct pt_solution));
200 else
201 pt_solution_reset (gimple_call_clobber_set (s));
202 }
203
204 /* Helper for gimple_build_call, gimple_build_call_valist,
205 gimple_build_call_vec and gimple_build_call_from_tree. Build the basic
206 components of a GIMPLE_CALL statement to function FN with NARGS
207 arguments. */
208
209 static inline gcall *
210 gimple_build_call_1 (tree fn, unsigned nargs)
211 {
212 gcall *s
213 = as_a <gcall *> (gimple_build_with_ops (GIMPLE_CALL, ERROR_MARK,
214 nargs + 3));
215 if (TREE_CODE (fn) == FUNCTION_DECL)
216 fn = build_fold_addr_expr (fn);
217 gimple_set_op (s, 1, fn);
218 gimple_call_set_fntype (s, TREE_TYPE (TREE_TYPE (fn)));
219 gimple_call_reset_alias_info (s);
220 return s;
221 }
222
223
224 /* Build a GIMPLE_CALL statement to function FN with the arguments
225 specified in vector ARGS. */
226
227 gcall *
228 gimple_build_call_vec (tree fn, vec<tree> args)
229 {
230 unsigned i;
231 unsigned nargs = args.length ();
232 gcall *call = gimple_build_call_1 (fn, nargs);
233
234 for (i = 0; i < nargs; i++)
235 gimple_call_set_arg (call, i, args[i]);
236
237 return call;
238 }
239
240
241 /* Build a GIMPLE_CALL statement to function FN. NARGS is the number of
242 arguments. The ... are the arguments. */
243
244 gcall *
245 gimple_build_call (tree fn, unsigned nargs, ...)
246 {
247 va_list ap;
248 gcall *call;
249 unsigned i;
250
251 gcc_assert (TREE_CODE (fn) == FUNCTION_DECL || is_gimple_call_addr (fn));
252
253 call = gimple_build_call_1 (fn, nargs);
254
255 va_start (ap, nargs);
256 for (i = 0; i < nargs; i++)
257 gimple_call_set_arg (call, i, va_arg (ap, tree));
258 va_end (ap);
259
260 return call;
261 }
262
263
264 /* Build a GIMPLE_CALL statement to function FN. NARGS is the number of
265 arguments. AP contains the arguments. */
266
267 gcall *
268 gimple_build_call_valist (tree fn, unsigned nargs, va_list ap)
269 {
270 gcall *call;
271 unsigned i;
272
273 gcc_assert (TREE_CODE (fn) == FUNCTION_DECL || is_gimple_call_addr (fn));
274
275 call = gimple_build_call_1 (fn, nargs);
276
277 for (i = 0; i < nargs; i++)
278 gimple_call_set_arg (call, i, va_arg (ap, tree));
279
280 return call;
281 }
282
283
284 /* Helper for gimple_build_call_internal and gimple_build_call_internal_vec.
285 Build the basic components of a GIMPLE_CALL statement to internal
286 function FN with NARGS arguments. */
287
288 static inline gcall *
289 gimple_build_call_internal_1 (enum internal_fn fn, unsigned nargs)
290 {
291 gcall *s
292 = as_a <gcall *> (gimple_build_with_ops (GIMPLE_CALL, ERROR_MARK,
293 nargs + 3));
294 s->subcode |= GF_CALL_INTERNAL;
295 gimple_call_set_internal_fn (s, fn);
296 gimple_call_reset_alias_info (s);
297 return s;
298 }
299
300
301 /* Build a GIMPLE_CALL statement to internal function FN. NARGS is
302 the number of arguments. The ... are the arguments. */
303
304 gcall *
305 gimple_build_call_internal (enum internal_fn fn, unsigned nargs, ...)
306 {
307 va_list ap;
308 gcall *call;
309 unsigned i;
310
311 call = gimple_build_call_internal_1 (fn, nargs);
312 va_start (ap, nargs);
313 for (i = 0; i < nargs; i++)
314 gimple_call_set_arg (call, i, va_arg (ap, tree));
315 va_end (ap);
316
317 return call;
318 }
319
320
321 /* Build a GIMPLE_CALL statement to internal function FN with the arguments
322 specified in vector ARGS. */
323
324 gcall *
325 gimple_build_call_internal_vec (enum internal_fn fn, vec<tree> args)
326 {
327 unsigned i, nargs;
328 gcall *call;
329
330 nargs = args.length ();
331 call = gimple_build_call_internal_1 (fn, nargs);
332 for (i = 0; i < nargs; i++)
333 gimple_call_set_arg (call, i, args[i]);
334
335 return call;
336 }
337
338
339 /* Build a GIMPLE_CALL statement from CALL_EXPR T. Note that T is
340 assumed to be in GIMPLE form already. Minimal checking is done of
341 this fact. */
342
343 gcall *
344 gimple_build_call_from_tree (tree t)
345 {
346 unsigned i, nargs;
347 gcall *call;
348 tree fndecl = get_callee_fndecl (t);
349
350 gcc_assert (TREE_CODE (t) == CALL_EXPR);
351
352 nargs = call_expr_nargs (t);
353 call = gimple_build_call_1 (fndecl ? fndecl : CALL_EXPR_FN (t), nargs);
354
355 for (i = 0; i < nargs; i++)
356 gimple_call_set_arg (call, i, CALL_EXPR_ARG (t, i));
357
358 gimple_set_block (call, TREE_BLOCK (t));
359
360 /* Carry all the CALL_EXPR flags to the new GIMPLE_CALL. */
361 gimple_call_set_chain (call, CALL_EXPR_STATIC_CHAIN (t));
362 gimple_call_set_tail (call, CALL_EXPR_TAILCALL (t));
363 gimple_call_set_return_slot_opt (call, CALL_EXPR_RETURN_SLOT_OPT (t));
364 if (fndecl
365 && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL
366 && (DECL_FUNCTION_CODE (fndecl) == BUILT_IN_ALLOCA
367 || DECL_FUNCTION_CODE (fndecl) == BUILT_IN_ALLOCA_WITH_ALIGN))
368 gimple_call_set_alloca_for_var (call, CALL_ALLOCA_FOR_VAR_P (t));
369 else
370 gimple_call_set_from_thunk (call, CALL_FROM_THUNK_P (t));
371 gimple_call_set_va_arg_pack (call, CALL_EXPR_VA_ARG_PACK (t));
372 gimple_call_set_nothrow (call, TREE_NOTHROW (t));
373 gimple_set_no_warning (call, TREE_NO_WARNING (t));
374 gimple_call_set_with_bounds (call, CALL_WITH_BOUNDS_P (t));
375
376 return call;
377 }
378
379
380 /* Build a GIMPLE_ASSIGN statement.
381
382 LHS of the assignment.
383 RHS of the assignment which can be unary or binary. */
384
385 gassign *
386 gimple_build_assign (tree lhs, tree rhs MEM_STAT_DECL)
387 {
388 enum tree_code subcode;
389 tree op1, op2, op3;
390
391 extract_ops_from_tree_1 (rhs, &subcode, &op1, &op2, &op3);
392 return gimple_build_assign (lhs, subcode, op1, op2, op3 PASS_MEM_STAT);
393 }
394
395
396 /* Build a GIMPLE_ASSIGN statement with subcode SUBCODE and operands
397 OP1, OP2 and OP3. */
398
399 static inline gassign *
400 gimple_build_assign_1 (tree lhs, enum tree_code subcode, tree op1,
401 tree op2, tree op3 MEM_STAT_DECL)
402 {
403 unsigned num_ops;
404 gassign *p;
405
406 /* Need 1 operand for LHS and 1 or 2 for the RHS (depending on the
407 code). */
408 num_ops = get_gimple_rhs_num_ops (subcode) + 1;
409
410 p = as_a <gassign *> (
411 gimple_build_with_ops_stat (GIMPLE_ASSIGN, (unsigned)subcode, num_ops
412 PASS_MEM_STAT));
413 gimple_assign_set_lhs (p, lhs);
414 gimple_assign_set_rhs1 (p, op1);
415 if (op2)
416 {
417 gcc_assert (num_ops > 2);
418 gimple_assign_set_rhs2 (p, op2);
419 }
420
421 if (op3)
422 {
423 gcc_assert (num_ops > 3);
424 gimple_assign_set_rhs3 (p, op3);
425 }
426
427 return p;
428 }
429
430 /* Build a GIMPLE_ASSIGN statement with subcode SUBCODE and operands
431 OP1, OP2 and OP3. */
432
433 gassign *
434 gimple_build_assign (tree lhs, enum tree_code subcode, tree op1,
435 tree op2, tree op3 MEM_STAT_DECL)
436 {
437 return gimple_build_assign_1 (lhs, subcode, op1, op2, op3 PASS_MEM_STAT);
438 }
439
440 /* Build a GIMPLE_ASSIGN statement with subcode SUBCODE and operands
441 OP1 and OP2. */
442
443 gassign *
444 gimple_build_assign (tree lhs, enum tree_code subcode, tree op1,
445 tree op2 MEM_STAT_DECL)
446 {
447 return gimple_build_assign_1 (lhs, subcode, op1, op2, NULL_TREE
448 PASS_MEM_STAT);
449 }
450
451 /* Build a GIMPLE_ASSIGN statement with subcode SUBCODE and operand OP1. */
452
453 gassign *
454 gimple_build_assign (tree lhs, enum tree_code subcode, tree op1 MEM_STAT_DECL)
455 {
456 return gimple_build_assign_1 (lhs, subcode, op1, NULL_TREE, NULL_TREE
457 PASS_MEM_STAT);
458 }
459
460
461 /* Build a GIMPLE_COND statement.
462
463 PRED is the condition used to compare LHS and the RHS.
464 T_LABEL is the label to jump to if the condition is true.
465 F_LABEL is the label to jump to otherwise. */
466
467 gcond *
468 gimple_build_cond (enum tree_code pred_code, tree lhs, tree rhs,
469 tree t_label, tree f_label)
470 {
471 gcond *p;
472
473 gcc_assert (TREE_CODE_CLASS (pred_code) == tcc_comparison);
474 p = as_a <gcond *> (gimple_build_with_ops (GIMPLE_COND, pred_code, 4));
475 gimple_cond_set_lhs (p, lhs);
476 gimple_cond_set_rhs (p, rhs);
477 gimple_cond_set_true_label (p, t_label);
478 gimple_cond_set_false_label (p, f_label);
479 return p;
480 }
481
482 /* Build a GIMPLE_COND statement from the conditional expression tree
483 COND. T_LABEL and F_LABEL are as in gimple_build_cond. */
484
485 gcond *
486 gimple_build_cond_from_tree (tree cond, tree t_label, tree f_label)
487 {
488 enum tree_code code;
489 tree lhs, rhs;
490
491 gimple_cond_get_ops_from_tree (cond, &code, &lhs, &rhs);
492 return gimple_build_cond (code, lhs, rhs, t_label, f_label);
493 }
494
495 /* Set code, lhs, and rhs of a GIMPLE_COND from a suitable
496 boolean expression tree COND. */
497
498 void
499 gimple_cond_set_condition_from_tree (gcond *stmt, tree cond)
500 {
501 enum tree_code code;
502 tree lhs, rhs;
503
504 gimple_cond_get_ops_from_tree (cond, &code, &lhs, &rhs);
505 gimple_cond_set_condition (stmt, code, lhs, rhs);
506 }
507
508 /* Build a GIMPLE_LABEL statement for LABEL. */
509
510 glabel *
511 gimple_build_label (tree label)
512 {
513 glabel *p
514 = as_a <glabel *> (gimple_build_with_ops (GIMPLE_LABEL, ERROR_MARK, 1));
515 gimple_label_set_label (p, label);
516 return p;
517 }
518
519 /* Build a GIMPLE_GOTO statement to label DEST. */
520
521 ggoto *
522 gimple_build_goto (tree dest)
523 {
524 ggoto *p
525 = as_a <ggoto *> (gimple_build_with_ops (GIMPLE_GOTO, ERROR_MARK, 1));
526 gimple_goto_set_dest (p, dest);
527 return p;
528 }
529
530
531 /* Build a GIMPLE_NOP statement. */
532
533 gimple
534 gimple_build_nop (void)
535 {
536 return gimple_alloc (GIMPLE_NOP, 0);
537 }
538
539
540 /* Build a GIMPLE_BIND statement.
541 VARS are the variables in BODY.
542 BLOCK is the containing block. */
543
544 gbind *
545 gimple_build_bind (tree vars, gimple_seq body, tree block)
546 {
547 gbind *p = as_a <gbind *> (gimple_alloc (GIMPLE_BIND, 0));
548 gimple_bind_set_vars (p, vars);
549 if (body)
550 gimple_bind_set_body (p, body);
551 if (block)
552 gimple_bind_set_block (p, block);
553 return p;
554 }
555
556 /* Helper function to set the simple fields of a asm stmt.
557
558 STRING is a pointer to a string that is the asm blocks assembly code.
559 NINPUT is the number of register inputs.
560 NOUTPUT is the number of register outputs.
561 NCLOBBERS is the number of clobbered registers.
562 */
563
564 static inline gasm *
565 gimple_build_asm_1 (const char *string, unsigned ninputs, unsigned noutputs,
566 unsigned nclobbers, unsigned nlabels)
567 {
568 gasm *p;
569 int size = strlen (string);
570
571 /* ASMs with labels cannot have outputs. This should have been
572 enforced by the front end. */
573 gcc_assert (nlabels == 0 || noutputs == 0);
574
575 p = as_a <gasm *> (
576 gimple_build_with_ops (GIMPLE_ASM, ERROR_MARK,
577 ninputs + noutputs + nclobbers + nlabels));
578
579 p->ni = ninputs;
580 p->no = noutputs;
581 p->nc = nclobbers;
582 p->nl = nlabels;
583 p->string = ggc_alloc_string (string, size);
584
585 if (GATHER_STATISTICS)
586 gimple_alloc_sizes[(int) gimple_alloc_kind (GIMPLE_ASM)] += size;
587
588 return p;
589 }
590
591 /* Build a GIMPLE_ASM statement.
592
593 STRING is the assembly code.
594 NINPUT is the number of register inputs.
595 NOUTPUT is the number of register outputs.
596 NCLOBBERS is the number of clobbered registers.
597 INPUTS is a vector of the input register parameters.
598 OUTPUTS is a vector of the output register parameters.
599 CLOBBERS is a vector of the clobbered register parameters.
600 LABELS is a vector of destination labels. */
601
602 gasm *
603 gimple_build_asm_vec (const char *string, vec<tree, va_gc> *inputs,
604 vec<tree, va_gc> *outputs, vec<tree, va_gc> *clobbers,
605 vec<tree, va_gc> *labels)
606 {
607 gasm *p;
608 unsigned i;
609
610 p = gimple_build_asm_1 (string,
611 vec_safe_length (inputs),
612 vec_safe_length (outputs),
613 vec_safe_length (clobbers),
614 vec_safe_length (labels));
615
616 for (i = 0; i < vec_safe_length (inputs); i++)
617 gimple_asm_set_input_op (p, i, (*inputs)[i]);
618
619 for (i = 0; i < vec_safe_length (outputs); i++)
620 gimple_asm_set_output_op (p, i, (*outputs)[i]);
621
622 for (i = 0; i < vec_safe_length (clobbers); i++)
623 gimple_asm_set_clobber_op (p, i, (*clobbers)[i]);
624
625 for (i = 0; i < vec_safe_length (labels); i++)
626 gimple_asm_set_label_op (p, i, (*labels)[i]);
627
628 return p;
629 }
630
631 /* Build a GIMPLE_CATCH statement.
632
633 TYPES are the catch types.
634 HANDLER is the exception handler. */
635
636 gcatch *
637 gimple_build_catch (tree types, gimple_seq handler)
638 {
639 gcatch *p = as_a <gcatch *> (gimple_alloc (GIMPLE_CATCH, 0));
640 gimple_catch_set_types (p, types);
641 if (handler)
642 gimple_catch_set_handler (p, handler);
643
644 return p;
645 }
646
647 /* Build a GIMPLE_EH_FILTER statement.
648
649 TYPES are the filter's types.
650 FAILURE is the filter's failure action. */
651
652 geh_filter *
653 gimple_build_eh_filter (tree types, gimple_seq failure)
654 {
655 geh_filter *p = as_a <geh_filter *> (gimple_alloc (GIMPLE_EH_FILTER, 0));
656 gimple_eh_filter_set_types (p, types);
657 if (failure)
658 gimple_eh_filter_set_failure (p, failure);
659
660 return p;
661 }
662
663 /* Build a GIMPLE_EH_MUST_NOT_THROW statement. */
664
665 geh_mnt *
666 gimple_build_eh_must_not_throw (tree decl)
667 {
668 geh_mnt *p = as_a <geh_mnt *> (gimple_alloc (GIMPLE_EH_MUST_NOT_THROW, 0));
669
670 gcc_assert (TREE_CODE (decl) == FUNCTION_DECL);
671 gcc_assert (flags_from_decl_or_type (decl) & ECF_NORETURN);
672 gimple_eh_must_not_throw_set_fndecl (p, decl);
673
674 return p;
675 }
676
677 /* Build a GIMPLE_EH_ELSE statement. */
678
679 geh_else *
680 gimple_build_eh_else (gimple_seq n_body, gimple_seq e_body)
681 {
682 geh_else *p = as_a <geh_else *> (gimple_alloc (GIMPLE_EH_ELSE, 0));
683 gimple_eh_else_set_n_body (p, n_body);
684 gimple_eh_else_set_e_body (p, e_body);
685 return p;
686 }
687
688 /* Build a GIMPLE_TRY statement.
689
690 EVAL is the expression to evaluate.
691 CLEANUP is the cleanup expression.
692 KIND is either GIMPLE_TRY_CATCH or GIMPLE_TRY_FINALLY depending on
693 whether this is a try/catch or a try/finally respectively. */
694
695 gtry *
696 gimple_build_try (gimple_seq eval, gimple_seq cleanup,
697 enum gimple_try_flags kind)
698 {
699 gtry *p;
700
701 gcc_assert (kind == GIMPLE_TRY_CATCH || kind == GIMPLE_TRY_FINALLY);
702 p = as_a <gtry *> (gimple_alloc (GIMPLE_TRY, 0));
703 gimple_set_subcode (p, kind);
704 if (eval)
705 gimple_try_set_eval (p, eval);
706 if (cleanup)
707 gimple_try_set_cleanup (p, cleanup);
708
709 return p;
710 }
711
712 /* Construct a GIMPLE_WITH_CLEANUP_EXPR statement.
713
714 CLEANUP is the cleanup expression. */
715
716 gimple
717 gimple_build_wce (gimple_seq cleanup)
718 {
719 gimple p = gimple_alloc (GIMPLE_WITH_CLEANUP_EXPR, 0);
720 if (cleanup)
721 gimple_wce_set_cleanup (p, cleanup);
722
723 return p;
724 }
725
726
727 /* Build a GIMPLE_RESX statement. */
728
729 gresx *
730 gimple_build_resx (int region)
731 {
732 gresx *p
733 = as_a <gresx *> (gimple_build_with_ops (GIMPLE_RESX, ERROR_MARK, 0));
734 p->region = region;
735 return p;
736 }
737
738
739 /* The helper for constructing a gimple switch statement.
740 INDEX is the switch's index.
741 NLABELS is the number of labels in the switch excluding the default.
742 DEFAULT_LABEL is the default label for the switch statement. */
743
744 gswitch *
745 gimple_build_switch_nlabels (unsigned nlabels, tree index, tree default_label)
746 {
747 /* nlabels + 1 default label + 1 index. */
748 gcc_checking_assert (default_label);
749 gswitch *p = as_a <gswitch *> (gimple_build_with_ops (GIMPLE_SWITCH,
750 ERROR_MARK,
751 1 + 1 + nlabels));
752 gimple_switch_set_index (p, index);
753 gimple_switch_set_default_label (p, default_label);
754 return p;
755 }
756
757 /* Build a GIMPLE_SWITCH statement.
758
759 INDEX is the switch's index.
760 DEFAULT_LABEL is the default label
761 ARGS is a vector of labels excluding the default. */
762
763 gswitch *
764 gimple_build_switch (tree index, tree default_label, vec<tree> args)
765 {
766 unsigned i, nlabels = args.length ();
767
768 gswitch *p = gimple_build_switch_nlabels (nlabels, index, default_label);
769
770 /* Copy the labels from the vector to the switch statement. */
771 for (i = 0; i < nlabels; i++)
772 gimple_switch_set_label (p, i + 1, args[i]);
773
774 return p;
775 }
776
777 /* Build a GIMPLE_EH_DISPATCH statement. */
778
779 geh_dispatch *
780 gimple_build_eh_dispatch (int region)
781 {
782 geh_dispatch *p
783 = as_a <geh_dispatch *> (
784 gimple_build_with_ops (GIMPLE_EH_DISPATCH, ERROR_MARK, 0));
785 p->region = region;
786 return p;
787 }
788
789 /* Build a new GIMPLE_DEBUG_BIND statement.
790
791 VAR is bound to VALUE; block and location are taken from STMT. */
792
793 gdebug *
794 gimple_build_debug_bind_stat (tree var, tree value, gimple stmt MEM_STAT_DECL)
795 {
796 gdebug *p
797 = as_a <gdebug *> (gimple_build_with_ops_stat (GIMPLE_DEBUG,
798 (unsigned)GIMPLE_DEBUG_BIND, 2
799 PASS_MEM_STAT));
800 gimple_debug_bind_set_var (p, var);
801 gimple_debug_bind_set_value (p, value);
802 if (stmt)
803 gimple_set_location (p, gimple_location (stmt));
804
805 return p;
806 }
807
808
809 /* Build a new GIMPLE_DEBUG_SOURCE_BIND statement.
810
811 VAR is bound to VALUE; block and location are taken from STMT. */
812
813 gdebug *
814 gimple_build_debug_source_bind_stat (tree var, tree value,
815 gimple stmt MEM_STAT_DECL)
816 {
817 gdebug *p
818 = as_a <gdebug *> (
819 gimple_build_with_ops_stat (GIMPLE_DEBUG,
820 (unsigned)GIMPLE_DEBUG_SOURCE_BIND, 2
821 PASS_MEM_STAT));
822
823 gimple_debug_source_bind_set_var (p, var);
824 gimple_debug_source_bind_set_value (p, value);
825 if (stmt)
826 gimple_set_location (p, gimple_location (stmt));
827
828 return p;
829 }
830
831
832 /* Build a GIMPLE_OMP_CRITICAL statement.
833
834 BODY is the sequence of statements for which only one thread can execute.
835 NAME is optional identifier for this critical block. */
836
837 gomp_critical *
838 gimple_build_omp_critical (gimple_seq body, tree name)
839 {
840 gomp_critical *p
841 = as_a <gomp_critical *> (gimple_alloc (GIMPLE_OMP_CRITICAL, 0));
842 gimple_omp_critical_set_name (p, name);
843 if (body)
844 gimple_omp_set_body (p, body);
845
846 return p;
847 }
848
849 /* Build a GIMPLE_OMP_FOR statement.
850
851 BODY is sequence of statements inside the for loop.
852 KIND is the `for' variant.
853 CLAUSES, are any of the construct's clauses.
854 COLLAPSE is the collapse count.
855 PRE_BODY is the sequence of statements that are loop invariant. */
856
857 gomp_for *
858 gimple_build_omp_for (gimple_seq body, int kind, tree clauses, size_t collapse,
859 gimple_seq pre_body)
860 {
861 gomp_for *p = as_a <gomp_for *> (gimple_alloc (GIMPLE_OMP_FOR, 0));
862 if (body)
863 gimple_omp_set_body (p, body);
864 gimple_omp_for_set_clauses (p, clauses);
865 gimple_omp_for_set_kind (p, kind);
866 p->collapse = collapse;
867 p->iter = ggc_cleared_vec_alloc<gimple_omp_for_iter> (collapse);
868
869 if (pre_body)
870 gimple_omp_for_set_pre_body (p, pre_body);
871
872 return p;
873 }
874
875
876 /* Build a GIMPLE_OMP_PARALLEL statement.
877
878 BODY is sequence of statements which are executed in parallel.
879 CLAUSES, are the OMP parallel construct's clauses.
880 CHILD_FN is the function created for the parallel threads to execute.
881 DATA_ARG are the shared data argument(s). */
882
883 gomp_parallel *
884 gimple_build_omp_parallel (gimple_seq body, tree clauses, tree child_fn,
885 tree data_arg)
886 {
887 gomp_parallel *p
888 = as_a <gomp_parallel *> (gimple_alloc (GIMPLE_OMP_PARALLEL, 0));
889 if (body)
890 gimple_omp_set_body (p, body);
891 gimple_omp_parallel_set_clauses (p, clauses);
892 gimple_omp_parallel_set_child_fn (p, child_fn);
893 gimple_omp_parallel_set_data_arg (p, data_arg);
894
895 return p;
896 }
897
898
899 /* Build a GIMPLE_OMP_TASK statement.
900
901 BODY is sequence of statements which are executed by the explicit task.
902 CLAUSES, are the OMP parallel construct's clauses.
903 CHILD_FN is the function created for the parallel threads to execute.
904 DATA_ARG are the shared data argument(s).
905 COPY_FN is the optional function for firstprivate initialization.
906 ARG_SIZE and ARG_ALIGN are size and alignment of the data block. */
907
908 gomp_task *
909 gimple_build_omp_task (gimple_seq body, tree clauses, tree child_fn,
910 tree data_arg, tree copy_fn, tree arg_size,
911 tree arg_align)
912 {
913 gomp_task *p = as_a <gomp_task *> (gimple_alloc (GIMPLE_OMP_TASK, 0));
914 if (body)
915 gimple_omp_set_body (p, body);
916 gimple_omp_task_set_clauses (p, clauses);
917 gimple_omp_task_set_child_fn (p, child_fn);
918 gimple_omp_task_set_data_arg (p, data_arg);
919 gimple_omp_task_set_copy_fn (p, copy_fn);
920 gimple_omp_task_set_arg_size (p, arg_size);
921 gimple_omp_task_set_arg_align (p, arg_align);
922
923 return p;
924 }
925
926
927 /* Build a GIMPLE_OMP_SECTION statement for a sections statement.
928
929 BODY is the sequence of statements in the section. */
930
931 gimple
932 gimple_build_omp_section (gimple_seq body)
933 {
934 gimple p = gimple_alloc (GIMPLE_OMP_SECTION, 0);
935 if (body)
936 gimple_omp_set_body (p, body);
937
938 return p;
939 }
940
941
942 /* Build a GIMPLE_OMP_MASTER statement.
943
944 BODY is the sequence of statements to be executed by just the master. */
945
946 gimple
947 gimple_build_omp_master (gimple_seq body)
948 {
949 gimple p = gimple_alloc (GIMPLE_OMP_MASTER, 0);
950 if (body)
951 gimple_omp_set_body (p, body);
952
953 return p;
954 }
955
956
957 /* Build a GIMPLE_OMP_TASKGROUP statement.
958
959 BODY is the sequence of statements to be executed by the taskgroup
960 construct. */
961
962 gimple
963 gimple_build_omp_taskgroup (gimple_seq body)
964 {
965 gimple p = gimple_alloc (GIMPLE_OMP_TASKGROUP, 0);
966 if (body)
967 gimple_omp_set_body (p, body);
968
969 return p;
970 }
971
972
973 /* Build a GIMPLE_OMP_CONTINUE statement.
974
975 CONTROL_DEF is the definition of the control variable.
976 CONTROL_USE is the use of the control variable. */
977
978 gomp_continue *
979 gimple_build_omp_continue (tree control_def, tree control_use)
980 {
981 gomp_continue *p
982 = as_a <gomp_continue *> (gimple_alloc (GIMPLE_OMP_CONTINUE, 0));
983 gimple_omp_continue_set_control_def (p, control_def);
984 gimple_omp_continue_set_control_use (p, control_use);
985 return p;
986 }
987
988 /* Build a GIMPLE_OMP_ORDERED statement.
989
990 BODY is the sequence of statements inside a loop that will executed in
991 sequence. */
992
993 gimple
994 gimple_build_omp_ordered (gimple_seq body)
995 {
996 gimple p = gimple_alloc (GIMPLE_OMP_ORDERED, 0);
997 if (body)
998 gimple_omp_set_body (p, body);
999
1000 return p;
1001 }
1002
1003
1004 /* Build a GIMPLE_OMP_RETURN statement.
1005 WAIT_P is true if this is a non-waiting return. */
1006
1007 gimple
1008 gimple_build_omp_return (bool wait_p)
1009 {
1010 gimple p = gimple_alloc (GIMPLE_OMP_RETURN, 0);
1011 if (wait_p)
1012 gimple_omp_return_set_nowait (p);
1013
1014 return p;
1015 }
1016
1017
1018 /* Build a GIMPLE_OMP_SECTIONS statement.
1019
1020 BODY is a sequence of section statements.
1021 CLAUSES are any of the OMP sections contsruct's clauses: private,
1022 firstprivate, lastprivate, reduction, and nowait. */
1023
1024 gomp_sections *
1025 gimple_build_omp_sections (gimple_seq body, tree clauses)
1026 {
1027 gomp_sections *p
1028 = as_a <gomp_sections *> (gimple_alloc (GIMPLE_OMP_SECTIONS, 0));
1029 if (body)
1030 gimple_omp_set_body (p, body);
1031 gimple_omp_sections_set_clauses (p, clauses);
1032
1033 return p;
1034 }
1035
1036
1037 /* Build a GIMPLE_OMP_SECTIONS_SWITCH. */
1038
1039 gimple
1040 gimple_build_omp_sections_switch (void)
1041 {
1042 return gimple_alloc (GIMPLE_OMP_SECTIONS_SWITCH, 0);
1043 }
1044
1045
1046 /* Build a GIMPLE_OMP_SINGLE statement.
1047
1048 BODY is the sequence of statements that will be executed once.
1049 CLAUSES are any of the OMP single construct's clauses: private, firstprivate,
1050 copyprivate, nowait. */
1051
1052 gomp_single *
1053 gimple_build_omp_single (gimple_seq body, tree clauses)
1054 {
1055 gomp_single *p
1056 = as_a <gomp_single *> (gimple_alloc (GIMPLE_OMP_SINGLE, 0));
1057 if (body)
1058 gimple_omp_set_body (p, body);
1059 gimple_omp_single_set_clauses (p, clauses);
1060
1061 return p;
1062 }
1063
1064
1065 /* Build a GIMPLE_OMP_TARGET statement.
1066
1067 BODY is the sequence of statements that will be executed.
1068 KIND is the kind of the region.
1069 CLAUSES are any of the construct's clauses. */
1070
1071 gomp_target *
1072 gimple_build_omp_target (gimple_seq body, int kind, tree clauses)
1073 {
1074 gomp_target *p
1075 = as_a <gomp_target *> (gimple_alloc (GIMPLE_OMP_TARGET, 0));
1076 if (body)
1077 gimple_omp_set_body (p, body);
1078 gimple_omp_target_set_clauses (p, clauses);
1079 gimple_omp_target_set_kind (p, kind);
1080
1081 return p;
1082 }
1083
1084
1085 /* Build a GIMPLE_OMP_TEAMS statement.
1086
1087 BODY is the sequence of statements that will be executed.
1088 CLAUSES are any of the OMP teams construct's clauses. */
1089
1090 gomp_teams *
1091 gimple_build_omp_teams (gimple_seq body, tree clauses)
1092 {
1093 gomp_teams *p = as_a <gomp_teams *> (gimple_alloc (GIMPLE_OMP_TEAMS, 0));
1094 if (body)
1095 gimple_omp_set_body (p, body);
1096 gimple_omp_teams_set_clauses (p, clauses);
1097
1098 return p;
1099 }
1100
1101
1102 /* Build a GIMPLE_OMP_ATOMIC_LOAD statement. */
1103
1104 gomp_atomic_load *
1105 gimple_build_omp_atomic_load (tree lhs, tree rhs)
1106 {
1107 gomp_atomic_load *p
1108 = as_a <gomp_atomic_load *> (gimple_alloc (GIMPLE_OMP_ATOMIC_LOAD, 0));
1109 gimple_omp_atomic_load_set_lhs (p, lhs);
1110 gimple_omp_atomic_load_set_rhs (p, rhs);
1111 return p;
1112 }
1113
1114 /* Build a GIMPLE_OMP_ATOMIC_STORE statement.
1115
1116 VAL is the value we are storing. */
1117
1118 gomp_atomic_store *
1119 gimple_build_omp_atomic_store (tree val)
1120 {
1121 gomp_atomic_store *p
1122 = as_a <gomp_atomic_store *> (gimple_alloc (GIMPLE_OMP_ATOMIC_STORE, 0));
1123 gimple_omp_atomic_store_set_val (p, val);
1124 return p;
1125 }
1126
1127 /* Build a GIMPLE_TRANSACTION statement. */
1128
1129 gtransaction *
1130 gimple_build_transaction (gimple_seq body, tree label)
1131 {
1132 gtransaction *p
1133 = as_a <gtransaction *> (gimple_alloc (GIMPLE_TRANSACTION, 0));
1134 gimple_transaction_set_body (p, body);
1135 gimple_transaction_set_label (p, label);
1136 return p;
1137 }
1138
1139 /* Build a GIMPLE_PREDICT statement. PREDICT is one of the predictors from
1140 predict.def, OUTCOME is NOT_TAKEN or TAKEN. */
1141
1142 gimple
1143 gimple_build_predict (enum br_predictor predictor, enum prediction outcome)
1144 {
1145 gimple p = gimple_alloc (GIMPLE_PREDICT, 0);
1146 /* Ensure all the predictors fit into the lower bits of the subcode. */
1147 gcc_assert ((int) END_PREDICTORS <= GF_PREDICT_TAKEN);
1148 gimple_predict_set_predictor (p, predictor);
1149 gimple_predict_set_outcome (p, outcome);
1150 return p;
1151 }
1152
1153 #if defined ENABLE_GIMPLE_CHECKING
1154 /* Complain of a gimple type mismatch and die. */
1155
1156 void
1157 gimple_check_failed (const_gimple gs, const char *file, int line,
1158 const char *function, enum gimple_code code,
1159 enum tree_code subcode)
1160 {
1161 internal_error ("gimple check: expected %s(%s), have %s(%s) in %s, at %s:%d",
1162 gimple_code_name[code],
1163 get_tree_code_name (subcode),
1164 gimple_code_name[gimple_code (gs)],
1165 gs->subcode > 0
1166 ? get_tree_code_name ((enum tree_code) gs->subcode)
1167 : "",
1168 function, trim_filename (file), line);
1169 }
1170 #endif /* ENABLE_GIMPLE_CHECKING */
1171
1172
1173 /* Link gimple statement GS to the end of the sequence *SEQ_P. If
1174 *SEQ_P is NULL, a new sequence is allocated. */
1175
1176 void
1177 gimple_seq_add_stmt (gimple_seq *seq_p, gimple gs)
1178 {
1179 gimple_stmt_iterator si;
1180 if (gs == NULL)
1181 return;
1182
1183 si = gsi_last (*seq_p);
1184 gsi_insert_after (&si, gs, GSI_NEW_STMT);
1185 }
1186
1187 /* Link gimple statement GS to the end of the sequence *SEQ_P. If
1188 *SEQ_P is NULL, a new sequence is allocated. This function is
1189 similar to gimple_seq_add_stmt, but does not scan the operands.
1190 During gimplification, we need to manipulate statement sequences
1191 before the def/use vectors have been constructed. */
1192
1193 void
1194 gimple_seq_add_stmt_without_update (gimple_seq *seq_p, gimple gs)
1195 {
1196 gimple_stmt_iterator si;
1197
1198 if (gs == NULL)
1199 return;
1200
1201 si = gsi_last (*seq_p);
1202 gsi_insert_after_without_update (&si, gs, GSI_NEW_STMT);
1203 }
1204
1205 /* Append sequence SRC to the end of sequence *DST_P. If *DST_P is
1206 NULL, a new sequence is allocated. */
1207
1208 void
1209 gimple_seq_add_seq (gimple_seq *dst_p, gimple_seq src)
1210 {
1211 gimple_stmt_iterator si;
1212 if (src == NULL)
1213 return;
1214
1215 si = gsi_last (*dst_p);
1216 gsi_insert_seq_after (&si, src, GSI_NEW_STMT);
1217 }
1218
1219 /* Append sequence SRC to the end of sequence *DST_P. If *DST_P is
1220 NULL, a new sequence is allocated. This function is
1221 similar to gimple_seq_add_seq, but does not scan the operands. */
1222
1223 void
1224 gimple_seq_add_seq_without_update (gimple_seq *dst_p, gimple_seq src)
1225 {
1226 gimple_stmt_iterator si;
1227 if (src == NULL)
1228 return;
1229
1230 si = gsi_last (*dst_p);
1231 gsi_insert_seq_after_without_update (&si, src, GSI_NEW_STMT);
1232 }
1233
1234 /* Determine whether to assign a location to the statement GS. */
1235
1236 static bool
1237 should_carry_location_p (gimple gs)
1238 {
1239 /* Don't emit a line note for a label. We particularly don't want to
1240 emit one for the break label, since it doesn't actually correspond
1241 to the beginning of the loop/switch. */
1242 if (gimple_code (gs) == GIMPLE_LABEL)
1243 return false;
1244
1245 return true;
1246 }
1247
1248 /* Set the location for gimple statement GS to LOCATION. */
1249
1250 static void
1251 annotate_one_with_location (gimple gs, location_t location)
1252 {
1253 if (!gimple_has_location (gs)
1254 && !gimple_do_not_emit_location_p (gs)
1255 && should_carry_location_p (gs))
1256 gimple_set_location (gs, location);
1257 }
1258
1259 /* Set LOCATION for all the statements after iterator GSI in sequence
1260 SEQ. If GSI is pointing to the end of the sequence, start with the
1261 first statement in SEQ. */
1262
1263 void
1264 annotate_all_with_location_after (gimple_seq seq, gimple_stmt_iterator gsi,
1265 location_t location)
1266 {
1267 if (gsi_end_p (gsi))
1268 gsi = gsi_start (seq);
1269 else
1270 gsi_next (&gsi);
1271
1272 for (; !gsi_end_p (gsi); gsi_next (&gsi))
1273 annotate_one_with_location (gsi_stmt (gsi), location);
1274 }
1275
1276 /* Set the location for all the statements in a sequence STMT_P to LOCATION. */
1277
1278 void
1279 annotate_all_with_location (gimple_seq stmt_p, location_t location)
1280 {
1281 gimple_stmt_iterator i;
1282
1283 if (gimple_seq_empty_p (stmt_p))
1284 return;
1285
1286 for (i = gsi_start (stmt_p); !gsi_end_p (i); gsi_next (&i))
1287 {
1288 gimple gs = gsi_stmt (i);
1289 annotate_one_with_location (gs, location);
1290 }
1291 }
1292
1293 /* Helper function of empty_body_p. Return true if STMT is an empty
1294 statement. */
1295
1296 static bool
1297 empty_stmt_p (gimple stmt)
1298 {
1299 if (gimple_code (stmt) == GIMPLE_NOP)
1300 return true;
1301 if (gbind *bind_stmt = dyn_cast <gbind *> (stmt))
1302 return empty_body_p (gimple_bind_body (bind_stmt));
1303 return false;
1304 }
1305
1306
1307 /* Return true if BODY contains nothing but empty statements. */
1308
1309 bool
1310 empty_body_p (gimple_seq body)
1311 {
1312 gimple_stmt_iterator i;
1313
1314 if (gimple_seq_empty_p (body))
1315 return true;
1316 for (i = gsi_start (body); !gsi_end_p (i); gsi_next (&i))
1317 if (!empty_stmt_p (gsi_stmt (i))
1318 && !is_gimple_debug (gsi_stmt (i)))
1319 return false;
1320
1321 return true;
1322 }
1323
1324
1325 /* Perform a deep copy of sequence SRC and return the result. */
1326
1327 gimple_seq
1328 gimple_seq_copy (gimple_seq src)
1329 {
1330 gimple_stmt_iterator gsi;
1331 gimple_seq new_seq = NULL;
1332 gimple stmt;
1333
1334 for (gsi = gsi_start (src); !gsi_end_p (gsi); gsi_next (&gsi))
1335 {
1336 stmt = gimple_copy (gsi_stmt (gsi));
1337 gimple_seq_add_stmt (&new_seq, stmt);
1338 }
1339
1340 return new_seq;
1341 }
1342
1343
1344
1345 /* Return true if calls C1 and C2 are known to go to the same function. */
1346
1347 bool
1348 gimple_call_same_target_p (const_gimple c1, const_gimple c2)
1349 {
1350 if (gimple_call_internal_p (c1))
1351 return (gimple_call_internal_p (c2)
1352 && gimple_call_internal_fn (c1) == gimple_call_internal_fn (c2));
1353 else
1354 return (gimple_call_fn (c1) == gimple_call_fn (c2)
1355 || (gimple_call_fndecl (c1)
1356 && gimple_call_fndecl (c1) == gimple_call_fndecl (c2)));
1357 }
1358
1359 /* Detect flags from a GIMPLE_CALL. This is just like
1360 call_expr_flags, but for gimple tuples. */
1361
1362 int
1363 gimple_call_flags (const_gimple stmt)
1364 {
1365 int flags;
1366 tree decl = gimple_call_fndecl (stmt);
1367
1368 if (decl)
1369 flags = flags_from_decl_or_type (decl);
1370 else if (gimple_call_internal_p (stmt))
1371 flags = internal_fn_flags (gimple_call_internal_fn (stmt));
1372 else
1373 flags = flags_from_decl_or_type (gimple_call_fntype (stmt));
1374
1375 if (stmt->subcode & GF_CALL_NOTHROW)
1376 flags |= ECF_NOTHROW;
1377
1378 return flags;
1379 }
1380
1381 /* Return the "fn spec" string for call STMT. */
1382
1383 static const_tree
1384 gimple_call_fnspec (const gcall *stmt)
1385 {
1386 tree type, attr;
1387
1388 if (gimple_call_internal_p (stmt))
1389 return internal_fn_fnspec (gimple_call_internal_fn (stmt));
1390
1391 type = gimple_call_fntype (stmt);
1392 if (!type)
1393 return NULL_TREE;
1394
1395 attr = lookup_attribute ("fn spec", TYPE_ATTRIBUTES (type));
1396 if (!attr)
1397 return NULL_TREE;
1398
1399 return TREE_VALUE (TREE_VALUE (attr));
1400 }
1401
1402 /* Detects argument flags for argument number ARG on call STMT. */
1403
1404 int
1405 gimple_call_arg_flags (const gcall *stmt, unsigned arg)
1406 {
1407 const_tree attr = gimple_call_fnspec (stmt);
1408
1409 if (!attr || 1 + arg >= (unsigned) TREE_STRING_LENGTH (attr))
1410 return 0;
1411
1412 switch (TREE_STRING_POINTER (attr)[1 + arg])
1413 {
1414 case 'x':
1415 case 'X':
1416 return EAF_UNUSED;
1417
1418 case 'R':
1419 return EAF_DIRECT | EAF_NOCLOBBER | EAF_NOESCAPE;
1420
1421 case 'r':
1422 return EAF_NOCLOBBER | EAF_NOESCAPE;
1423
1424 case 'W':
1425 return EAF_DIRECT | EAF_NOESCAPE;
1426
1427 case 'w':
1428 return EAF_NOESCAPE;
1429
1430 case '.':
1431 default:
1432 return 0;
1433 }
1434 }
1435
1436 /* Detects return flags for the call STMT. */
1437
1438 int
1439 gimple_call_return_flags (const gcall *stmt)
1440 {
1441 const_tree attr;
1442
1443 if (gimple_call_flags (stmt) & ECF_MALLOC)
1444 return ERF_NOALIAS;
1445
1446 attr = gimple_call_fnspec (stmt);
1447 if (!attr || TREE_STRING_LENGTH (attr) < 1)
1448 return 0;
1449
1450 switch (TREE_STRING_POINTER (attr)[0])
1451 {
1452 case '1':
1453 case '2':
1454 case '3':
1455 case '4':
1456 return ERF_RETURNS_ARG | (TREE_STRING_POINTER (attr)[0] - '1');
1457
1458 case 'm':
1459 return ERF_NOALIAS;
1460
1461 case '.':
1462 default:
1463 return 0;
1464 }
1465 }
1466
1467
1468 /* Return true if GS is a copy assignment. */
1469
1470 bool
1471 gimple_assign_copy_p (gimple gs)
1472 {
1473 return (gimple_assign_single_p (gs)
1474 && is_gimple_val (gimple_op (gs, 1)));
1475 }
1476
1477
1478 /* Return true if GS is a SSA_NAME copy assignment. */
1479
1480 bool
1481 gimple_assign_ssa_name_copy_p (gimple gs)
1482 {
1483 return (gimple_assign_single_p (gs)
1484 && TREE_CODE (gimple_assign_lhs (gs)) == SSA_NAME
1485 && TREE_CODE (gimple_assign_rhs1 (gs)) == SSA_NAME);
1486 }
1487
1488
1489 /* Return true if GS is an assignment with a unary RHS, but the
1490 operator has no effect on the assigned value. The logic is adapted
1491 from STRIP_NOPS. This predicate is intended to be used in tuplifying
1492 instances in which STRIP_NOPS was previously applied to the RHS of
1493 an assignment.
1494
1495 NOTE: In the use cases that led to the creation of this function
1496 and of gimple_assign_single_p, it is typical to test for either
1497 condition and to proceed in the same manner. In each case, the
1498 assigned value is represented by the single RHS operand of the
1499 assignment. I suspect there may be cases where gimple_assign_copy_p,
1500 gimple_assign_single_p, or equivalent logic is used where a similar
1501 treatment of unary NOPs is appropriate. */
1502
1503 bool
1504 gimple_assign_unary_nop_p (gimple gs)
1505 {
1506 return (is_gimple_assign (gs)
1507 && (CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (gs))
1508 || gimple_assign_rhs_code (gs) == NON_LVALUE_EXPR)
1509 && gimple_assign_rhs1 (gs) != error_mark_node
1510 && (TYPE_MODE (TREE_TYPE (gimple_assign_lhs (gs)))
1511 == TYPE_MODE (TREE_TYPE (gimple_assign_rhs1 (gs)))));
1512 }
1513
1514 /* Set BB to be the basic block holding G. */
1515
1516 void
1517 gimple_set_bb (gimple stmt, basic_block bb)
1518 {
1519 stmt->bb = bb;
1520
1521 if (gimple_code (stmt) != GIMPLE_LABEL)
1522 return;
1523
1524 /* If the statement is a label, add the label to block-to-labels map
1525 so that we can speed up edge creation for GIMPLE_GOTOs. */
1526 if (cfun->cfg)
1527 {
1528 tree t;
1529 int uid;
1530
1531 t = gimple_label_label (as_a <glabel *> (stmt));
1532 uid = LABEL_DECL_UID (t);
1533 if (uid == -1)
1534 {
1535 unsigned old_len =
1536 vec_safe_length (label_to_block_map_for_fn (cfun));
1537 LABEL_DECL_UID (t) = uid = cfun->cfg->last_label_uid++;
1538 if (old_len <= (unsigned) uid)
1539 {
1540 unsigned new_len = 3 * uid / 2 + 1;
1541
1542 vec_safe_grow_cleared (label_to_block_map_for_fn (cfun),
1543 new_len);
1544 }
1545 }
1546
1547 (*label_to_block_map_for_fn (cfun))[uid] = bb;
1548 }
1549 }
1550
1551
1552 /* Modify the RHS of the assignment pointed-to by GSI using the
1553 operands in the expression tree EXPR.
1554
1555 NOTE: The statement pointed-to by GSI may be reallocated if it
1556 did not have enough operand slots.
1557
1558 This function is useful to convert an existing tree expression into
1559 the flat representation used for the RHS of a GIMPLE assignment.
1560 It will reallocate memory as needed to expand or shrink the number
1561 of operand slots needed to represent EXPR.
1562
1563 NOTE: If you find yourself building a tree and then calling this
1564 function, you are most certainly doing it the slow way. It is much
1565 better to build a new assignment or to use the function
1566 gimple_assign_set_rhs_with_ops, which does not require an
1567 expression tree to be built. */
1568
1569 void
1570 gimple_assign_set_rhs_from_tree (gimple_stmt_iterator *gsi, tree expr)
1571 {
1572 enum tree_code subcode;
1573 tree op1, op2, op3;
1574
1575 extract_ops_from_tree_1 (expr, &subcode, &op1, &op2, &op3);
1576 gimple_assign_set_rhs_with_ops (gsi, subcode, op1, op2, op3);
1577 }
1578
1579
1580 /* Set the RHS of assignment statement pointed-to by GSI to CODE with
1581 operands OP1, OP2 and OP3.
1582
1583 NOTE: The statement pointed-to by GSI may be reallocated if it
1584 did not have enough operand slots. */
1585
1586 void
1587 gimple_assign_set_rhs_with_ops (gimple_stmt_iterator *gsi, enum tree_code code,
1588 tree op1, tree op2, tree op3)
1589 {
1590 unsigned new_rhs_ops = get_gimple_rhs_num_ops (code);
1591 gimple stmt = gsi_stmt (*gsi);
1592
1593 /* If the new CODE needs more operands, allocate a new statement. */
1594 if (gimple_num_ops (stmt) < new_rhs_ops + 1)
1595 {
1596 tree lhs = gimple_assign_lhs (stmt);
1597 gimple new_stmt = gimple_alloc (gimple_code (stmt), new_rhs_ops + 1);
1598 memcpy (new_stmt, stmt, gimple_size (gimple_code (stmt)));
1599 gimple_init_singleton (new_stmt);
1600 gsi_replace (gsi, new_stmt, true);
1601 stmt = new_stmt;
1602
1603 /* The LHS needs to be reset as this also changes the SSA name
1604 on the LHS. */
1605 gimple_assign_set_lhs (stmt, lhs);
1606 }
1607
1608 gimple_set_num_ops (stmt, new_rhs_ops + 1);
1609 gimple_set_subcode (stmt, code);
1610 gimple_assign_set_rhs1 (stmt, op1);
1611 if (new_rhs_ops > 1)
1612 gimple_assign_set_rhs2 (stmt, op2);
1613 if (new_rhs_ops > 2)
1614 gimple_assign_set_rhs3 (stmt, op3);
1615 }
1616
1617
1618 /* Return the LHS of a statement that performs an assignment,
1619 either a GIMPLE_ASSIGN or a GIMPLE_CALL. Returns NULL_TREE
1620 for a call to a function that returns no value, or for a
1621 statement other than an assignment or a call. */
1622
1623 tree
1624 gimple_get_lhs (const_gimple stmt)
1625 {
1626 enum gimple_code code = gimple_code (stmt);
1627
1628 if (code == GIMPLE_ASSIGN)
1629 return gimple_assign_lhs (stmt);
1630 else if (code == GIMPLE_CALL)
1631 return gimple_call_lhs (stmt);
1632 else
1633 return NULL_TREE;
1634 }
1635
1636
1637 /* Set the LHS of a statement that performs an assignment,
1638 either a GIMPLE_ASSIGN or a GIMPLE_CALL. */
1639
1640 void
1641 gimple_set_lhs (gimple stmt, tree lhs)
1642 {
1643 enum gimple_code code = gimple_code (stmt);
1644
1645 if (code == GIMPLE_ASSIGN)
1646 gimple_assign_set_lhs (stmt, lhs);
1647 else if (code == GIMPLE_CALL)
1648 gimple_call_set_lhs (stmt, lhs);
1649 else
1650 gcc_unreachable ();
1651 }
1652
1653
1654 /* Return a deep copy of statement STMT. All the operands from STMT
1655 are reallocated and copied using unshare_expr. The DEF, USE, VDEF
1656 and VUSE operand arrays are set to empty in the new copy. The new
1657 copy isn't part of any sequence. */
1658
1659 gimple
1660 gimple_copy (gimple stmt)
1661 {
1662 enum gimple_code code = gimple_code (stmt);
1663 unsigned num_ops = gimple_num_ops (stmt);
1664 gimple copy = gimple_alloc (code, num_ops);
1665 unsigned i;
1666
1667 /* Shallow copy all the fields from STMT. */
1668 memcpy (copy, stmt, gimple_size (code));
1669 gimple_init_singleton (copy);
1670
1671 /* If STMT has sub-statements, deep-copy them as well. */
1672 if (gimple_has_substatements (stmt))
1673 {
1674 gimple_seq new_seq;
1675 tree t;
1676
1677 switch (gimple_code (stmt))
1678 {
1679 case GIMPLE_BIND:
1680 {
1681 gbind *bind_stmt = as_a <gbind *> (stmt);
1682 gbind *bind_copy = as_a <gbind *> (copy);
1683 new_seq = gimple_seq_copy (gimple_bind_body (bind_stmt));
1684 gimple_bind_set_body (bind_copy, new_seq);
1685 gimple_bind_set_vars (bind_copy,
1686 unshare_expr (gimple_bind_vars (bind_stmt)));
1687 gimple_bind_set_block (bind_copy, gimple_bind_block (bind_stmt));
1688 }
1689 break;
1690
1691 case GIMPLE_CATCH:
1692 {
1693 gcatch *catch_stmt = as_a <gcatch *> (stmt);
1694 gcatch *catch_copy = as_a <gcatch *> (copy);
1695 new_seq = gimple_seq_copy (gimple_catch_handler (catch_stmt));
1696 gimple_catch_set_handler (catch_copy, new_seq);
1697 t = unshare_expr (gimple_catch_types (catch_stmt));
1698 gimple_catch_set_types (catch_copy, t);
1699 }
1700 break;
1701
1702 case GIMPLE_EH_FILTER:
1703 {
1704 geh_filter *eh_filter_stmt = as_a <geh_filter *> (stmt);
1705 geh_filter *eh_filter_copy = as_a <geh_filter *> (copy);
1706 new_seq
1707 = gimple_seq_copy (gimple_eh_filter_failure (eh_filter_stmt));
1708 gimple_eh_filter_set_failure (eh_filter_copy, new_seq);
1709 t = unshare_expr (gimple_eh_filter_types (eh_filter_stmt));
1710 gimple_eh_filter_set_types (eh_filter_copy, t);
1711 }
1712 break;
1713
1714 case GIMPLE_EH_ELSE:
1715 {
1716 geh_else *eh_else_stmt = as_a <geh_else *> (stmt);
1717 geh_else *eh_else_copy = as_a <geh_else *> (copy);
1718 new_seq = gimple_seq_copy (gimple_eh_else_n_body (eh_else_stmt));
1719 gimple_eh_else_set_n_body (eh_else_copy, new_seq);
1720 new_seq = gimple_seq_copy (gimple_eh_else_e_body (eh_else_stmt));
1721 gimple_eh_else_set_e_body (eh_else_copy, new_seq);
1722 }
1723 break;
1724
1725 case GIMPLE_TRY:
1726 {
1727 gtry *try_stmt = as_a <gtry *> (stmt);
1728 gtry *try_copy = as_a <gtry *> (copy);
1729 new_seq = gimple_seq_copy (gimple_try_eval (try_stmt));
1730 gimple_try_set_eval (try_copy, new_seq);
1731 new_seq = gimple_seq_copy (gimple_try_cleanup (try_stmt));
1732 gimple_try_set_cleanup (try_copy, new_seq);
1733 }
1734 break;
1735
1736 case GIMPLE_OMP_FOR:
1737 new_seq = gimple_seq_copy (gimple_omp_for_pre_body (stmt));
1738 gimple_omp_for_set_pre_body (copy, new_seq);
1739 t = unshare_expr (gimple_omp_for_clauses (stmt));
1740 gimple_omp_for_set_clauses (copy, t);
1741 {
1742 gomp_for *omp_for_copy = as_a <gomp_for *> (copy);
1743 omp_for_copy->iter = ggc_vec_alloc<gimple_omp_for_iter>
1744 ( gimple_omp_for_collapse (stmt));
1745 }
1746 for (i = 0; i < gimple_omp_for_collapse (stmt); i++)
1747 {
1748 gimple_omp_for_set_cond (copy, i,
1749 gimple_omp_for_cond (stmt, i));
1750 gimple_omp_for_set_index (copy, i,
1751 gimple_omp_for_index (stmt, i));
1752 t = unshare_expr (gimple_omp_for_initial (stmt, i));
1753 gimple_omp_for_set_initial (copy, i, t);
1754 t = unshare_expr (gimple_omp_for_final (stmt, i));
1755 gimple_omp_for_set_final (copy, i, t);
1756 t = unshare_expr (gimple_omp_for_incr (stmt, i));
1757 gimple_omp_for_set_incr (copy, i, t);
1758 }
1759 goto copy_omp_body;
1760
1761 case GIMPLE_OMP_PARALLEL:
1762 {
1763 gomp_parallel *omp_par_stmt = as_a <gomp_parallel *> (stmt);
1764 gomp_parallel *omp_par_copy = as_a <gomp_parallel *> (copy);
1765 t = unshare_expr (gimple_omp_parallel_clauses (omp_par_stmt));
1766 gimple_omp_parallel_set_clauses (omp_par_copy, t);
1767 t = unshare_expr (gimple_omp_parallel_child_fn (omp_par_stmt));
1768 gimple_omp_parallel_set_child_fn (omp_par_copy, t);
1769 t = unshare_expr (gimple_omp_parallel_data_arg (omp_par_stmt));
1770 gimple_omp_parallel_set_data_arg (omp_par_copy, t);
1771 }
1772 goto copy_omp_body;
1773
1774 case GIMPLE_OMP_TASK:
1775 t = unshare_expr (gimple_omp_task_clauses (stmt));
1776 gimple_omp_task_set_clauses (copy, t);
1777 t = unshare_expr (gimple_omp_task_child_fn (stmt));
1778 gimple_omp_task_set_child_fn (copy, t);
1779 t = unshare_expr (gimple_omp_task_data_arg (stmt));
1780 gimple_omp_task_set_data_arg (copy, t);
1781 t = unshare_expr (gimple_omp_task_copy_fn (stmt));
1782 gimple_omp_task_set_copy_fn (copy, t);
1783 t = unshare_expr (gimple_omp_task_arg_size (stmt));
1784 gimple_omp_task_set_arg_size (copy, t);
1785 t = unshare_expr (gimple_omp_task_arg_align (stmt));
1786 gimple_omp_task_set_arg_align (copy, t);
1787 goto copy_omp_body;
1788
1789 case GIMPLE_OMP_CRITICAL:
1790 t = unshare_expr (gimple_omp_critical_name (
1791 as_a <gomp_critical *> (stmt)));
1792 gimple_omp_critical_set_name (as_a <gomp_critical *> (copy), t);
1793 goto copy_omp_body;
1794
1795 case GIMPLE_OMP_SECTIONS:
1796 t = unshare_expr (gimple_omp_sections_clauses (stmt));
1797 gimple_omp_sections_set_clauses (copy, t);
1798 t = unshare_expr (gimple_omp_sections_control (stmt));
1799 gimple_omp_sections_set_control (copy, t);
1800 /* FALLTHRU */
1801
1802 case GIMPLE_OMP_SINGLE:
1803 case GIMPLE_OMP_TARGET:
1804 case GIMPLE_OMP_TEAMS:
1805 case GIMPLE_OMP_SECTION:
1806 case GIMPLE_OMP_MASTER:
1807 case GIMPLE_OMP_TASKGROUP:
1808 case GIMPLE_OMP_ORDERED:
1809 copy_omp_body:
1810 new_seq = gimple_seq_copy (gimple_omp_body (stmt));
1811 gimple_omp_set_body (copy, new_seq);
1812 break;
1813
1814 case GIMPLE_TRANSACTION:
1815 new_seq = gimple_seq_copy (gimple_transaction_body (
1816 as_a <gtransaction *> (stmt)));
1817 gimple_transaction_set_body (as_a <gtransaction *> (copy),
1818 new_seq);
1819 break;
1820
1821 case GIMPLE_WITH_CLEANUP_EXPR:
1822 new_seq = gimple_seq_copy (gimple_wce_cleanup (stmt));
1823 gimple_wce_set_cleanup (copy, new_seq);
1824 break;
1825
1826 default:
1827 gcc_unreachable ();
1828 }
1829 }
1830
1831 /* Make copy of operands. */
1832 for (i = 0; i < num_ops; i++)
1833 gimple_set_op (copy, i, unshare_expr (gimple_op (stmt, i)));
1834
1835 if (gimple_has_mem_ops (stmt))
1836 {
1837 gimple_set_vdef (copy, gimple_vdef (stmt));
1838 gimple_set_vuse (copy, gimple_vuse (stmt));
1839 }
1840
1841 /* Clear out SSA operand vectors on COPY. */
1842 if (gimple_has_ops (stmt))
1843 {
1844 gimple_set_use_ops (copy, NULL);
1845
1846 /* SSA operands need to be updated. */
1847 gimple_set_modified (copy, true);
1848 }
1849
1850 return copy;
1851 }
1852
1853
1854 /* Return true if statement S has side-effects. We consider a
1855 statement to have side effects if:
1856
1857 - It is a GIMPLE_CALL not marked with ECF_PURE or ECF_CONST.
1858 - Any of its operands are marked TREE_THIS_VOLATILE or TREE_SIDE_EFFECTS. */
1859
1860 bool
1861 gimple_has_side_effects (const_gimple s)
1862 {
1863 if (is_gimple_debug (s))
1864 return false;
1865
1866 /* We don't have to scan the arguments to check for
1867 volatile arguments, though, at present, we still
1868 do a scan to check for TREE_SIDE_EFFECTS. */
1869 if (gimple_has_volatile_ops (s))
1870 return true;
1871
1872 if (gimple_code (s) == GIMPLE_ASM
1873 && gimple_asm_volatile_p (as_a <const gasm *> (s)))
1874 return true;
1875
1876 if (is_gimple_call (s))
1877 {
1878 int flags = gimple_call_flags (s);
1879
1880 /* An infinite loop is considered a side effect. */
1881 if (!(flags & (ECF_CONST | ECF_PURE))
1882 || (flags & ECF_LOOPING_CONST_OR_PURE))
1883 return true;
1884
1885 return false;
1886 }
1887
1888 return false;
1889 }
1890
1891 /* Helper for gimple_could_trap_p and gimple_assign_rhs_could_trap_p.
1892 Return true if S can trap. When INCLUDE_MEM is true, check whether
1893 the memory operations could trap. When INCLUDE_STORES is true and
1894 S is a GIMPLE_ASSIGN, the LHS of the assignment is also checked. */
1895
1896 bool
1897 gimple_could_trap_p_1 (gimple s, bool include_mem, bool include_stores)
1898 {
1899 tree t, div = NULL_TREE;
1900 enum tree_code op;
1901
1902 if (include_mem)
1903 {
1904 unsigned i, start = (is_gimple_assign (s) && !include_stores) ? 1 : 0;
1905
1906 for (i = start; i < gimple_num_ops (s); i++)
1907 if (tree_could_trap_p (gimple_op (s, i)))
1908 return true;
1909 }
1910
1911 switch (gimple_code (s))
1912 {
1913 case GIMPLE_ASM:
1914 return gimple_asm_volatile_p (as_a <gasm *> (s));
1915
1916 case GIMPLE_CALL:
1917 t = gimple_call_fndecl (s);
1918 /* Assume that calls to weak functions may trap. */
1919 if (!t || !DECL_P (t) || DECL_WEAK (t))
1920 return true;
1921 return false;
1922
1923 case GIMPLE_ASSIGN:
1924 t = gimple_expr_type (s);
1925 op = gimple_assign_rhs_code (s);
1926 if (get_gimple_rhs_class (op) == GIMPLE_BINARY_RHS)
1927 div = gimple_assign_rhs2 (s);
1928 return (operation_could_trap_p (op, FLOAT_TYPE_P (t),
1929 (INTEGRAL_TYPE_P (t)
1930 && TYPE_OVERFLOW_TRAPS (t)),
1931 div));
1932
1933 default:
1934 break;
1935 }
1936
1937 return false;
1938 }
1939
1940 /* Return true if statement S can trap. */
1941
1942 bool
1943 gimple_could_trap_p (gimple s)
1944 {
1945 return gimple_could_trap_p_1 (s, true, true);
1946 }
1947
1948 /* Return true if RHS of a GIMPLE_ASSIGN S can trap. */
1949
1950 bool
1951 gimple_assign_rhs_could_trap_p (gimple s)
1952 {
1953 gcc_assert (is_gimple_assign (s));
1954 return gimple_could_trap_p_1 (s, true, false);
1955 }
1956
1957
1958 /* Print debugging information for gimple stmts generated. */
1959
1960 void
1961 dump_gimple_statistics (void)
1962 {
1963 int i, total_tuples = 0, total_bytes = 0;
1964
1965 if (! GATHER_STATISTICS)
1966 {
1967 fprintf (stderr, "No gimple statistics\n");
1968 return;
1969 }
1970
1971 fprintf (stderr, "\nGIMPLE statements\n");
1972 fprintf (stderr, "Kind Stmts Bytes\n");
1973 fprintf (stderr, "---------------------------------------\n");
1974 for (i = 0; i < (int) gimple_alloc_kind_all; ++i)
1975 {
1976 fprintf (stderr, "%-20s %7d %10d\n", gimple_alloc_kind_names[i],
1977 gimple_alloc_counts[i], gimple_alloc_sizes[i]);
1978 total_tuples += gimple_alloc_counts[i];
1979 total_bytes += gimple_alloc_sizes[i];
1980 }
1981 fprintf (stderr, "---------------------------------------\n");
1982 fprintf (stderr, "%-20s %7d %10d\n", "Total", total_tuples, total_bytes);
1983 fprintf (stderr, "---------------------------------------\n");
1984 }
1985
1986
1987 /* Return the number of operands needed on the RHS of a GIMPLE
1988 assignment for an expression with tree code CODE. */
1989
1990 unsigned
1991 get_gimple_rhs_num_ops (enum tree_code code)
1992 {
1993 enum gimple_rhs_class rhs_class = get_gimple_rhs_class (code);
1994
1995 if (rhs_class == GIMPLE_UNARY_RHS || rhs_class == GIMPLE_SINGLE_RHS)
1996 return 1;
1997 else if (rhs_class == GIMPLE_BINARY_RHS)
1998 return 2;
1999 else if (rhs_class == GIMPLE_TERNARY_RHS)
2000 return 3;
2001 else
2002 gcc_unreachable ();
2003 }
2004
2005 #define DEFTREECODE(SYM, STRING, TYPE, NARGS) \
2006 (unsigned char) \
2007 ((TYPE) == tcc_unary ? GIMPLE_UNARY_RHS \
2008 : ((TYPE) == tcc_binary \
2009 || (TYPE) == tcc_comparison) ? GIMPLE_BINARY_RHS \
2010 : ((TYPE) == tcc_constant \
2011 || (TYPE) == tcc_declaration \
2012 || (TYPE) == tcc_reference) ? GIMPLE_SINGLE_RHS \
2013 : ((SYM) == TRUTH_AND_EXPR \
2014 || (SYM) == TRUTH_OR_EXPR \
2015 || (SYM) == TRUTH_XOR_EXPR) ? GIMPLE_BINARY_RHS \
2016 : (SYM) == TRUTH_NOT_EXPR ? GIMPLE_UNARY_RHS \
2017 : ((SYM) == COND_EXPR \
2018 || (SYM) == WIDEN_MULT_PLUS_EXPR \
2019 || (SYM) == WIDEN_MULT_MINUS_EXPR \
2020 || (SYM) == DOT_PROD_EXPR \
2021 || (SYM) == SAD_EXPR \
2022 || (SYM) == REALIGN_LOAD_EXPR \
2023 || (SYM) == VEC_COND_EXPR \
2024 || (SYM) == VEC_PERM_EXPR \
2025 || (SYM) == FMA_EXPR) ? GIMPLE_TERNARY_RHS \
2026 : ((SYM) == CONSTRUCTOR \
2027 || (SYM) == OBJ_TYPE_REF \
2028 || (SYM) == ASSERT_EXPR \
2029 || (SYM) == ADDR_EXPR \
2030 || (SYM) == WITH_SIZE_EXPR \
2031 || (SYM) == SSA_NAME) ? GIMPLE_SINGLE_RHS \
2032 : GIMPLE_INVALID_RHS),
2033 #define END_OF_BASE_TREE_CODES (unsigned char) GIMPLE_INVALID_RHS,
2034
2035 const unsigned char gimple_rhs_class_table[] = {
2036 #include "all-tree.def"
2037 };
2038
2039 #undef DEFTREECODE
2040 #undef END_OF_BASE_TREE_CODES
2041
2042 /* Canonicalize a tree T for use in a COND_EXPR as conditional. Returns
2043 a canonicalized tree that is valid for a COND_EXPR or NULL_TREE, if
2044 we failed to create one. */
2045
2046 tree
2047 canonicalize_cond_expr_cond (tree t)
2048 {
2049 /* Strip conversions around boolean operations. */
2050 if (CONVERT_EXPR_P (t)
2051 && (truth_value_p (TREE_CODE (TREE_OPERAND (t, 0)))
2052 || TREE_CODE (TREE_TYPE (TREE_OPERAND (t, 0)))
2053 == BOOLEAN_TYPE))
2054 t = TREE_OPERAND (t, 0);
2055
2056 /* For !x use x == 0. */
2057 if (TREE_CODE (t) == TRUTH_NOT_EXPR)
2058 {
2059 tree top0 = TREE_OPERAND (t, 0);
2060 t = build2 (EQ_EXPR, TREE_TYPE (t),
2061 top0, build_int_cst (TREE_TYPE (top0), 0));
2062 }
2063 /* For cmp ? 1 : 0 use cmp. */
2064 else if (TREE_CODE (t) == COND_EXPR
2065 && COMPARISON_CLASS_P (TREE_OPERAND (t, 0))
2066 && integer_onep (TREE_OPERAND (t, 1))
2067 && integer_zerop (TREE_OPERAND (t, 2)))
2068 {
2069 tree top0 = TREE_OPERAND (t, 0);
2070 t = build2 (TREE_CODE (top0), TREE_TYPE (t),
2071 TREE_OPERAND (top0, 0), TREE_OPERAND (top0, 1));
2072 }
2073 /* For x ^ y use x != y. */
2074 else if (TREE_CODE (t) == BIT_XOR_EXPR)
2075 t = build2 (NE_EXPR, TREE_TYPE (t),
2076 TREE_OPERAND (t, 0), TREE_OPERAND (t, 1));
2077
2078 if (is_gimple_condexpr (t))
2079 return t;
2080
2081 return NULL_TREE;
2082 }
2083
2084 /* Build a GIMPLE_CALL identical to STMT but skipping the arguments in
2085 the positions marked by the set ARGS_TO_SKIP. */
2086
2087 gcall *
2088 gimple_call_copy_skip_args (gcall *stmt, bitmap args_to_skip)
2089 {
2090 int i;
2091 int nargs = gimple_call_num_args (stmt);
2092 auto_vec<tree> vargs (nargs);
2093 gcall *new_stmt;
2094
2095 for (i = 0; i < nargs; i++)
2096 if (!bitmap_bit_p (args_to_skip, i))
2097 vargs.quick_push (gimple_call_arg (stmt, i));
2098
2099 if (gimple_call_internal_p (stmt))
2100 new_stmt = gimple_build_call_internal_vec (gimple_call_internal_fn (stmt),
2101 vargs);
2102 else
2103 new_stmt = gimple_build_call_vec (gimple_call_fn (stmt), vargs);
2104
2105 if (gimple_call_lhs (stmt))
2106 gimple_call_set_lhs (new_stmt, gimple_call_lhs (stmt));
2107
2108 gimple_set_vuse (new_stmt, gimple_vuse (stmt));
2109 gimple_set_vdef (new_stmt, gimple_vdef (stmt));
2110
2111 if (gimple_has_location (stmt))
2112 gimple_set_location (new_stmt, gimple_location (stmt));
2113 gimple_call_copy_flags (new_stmt, stmt);
2114 gimple_call_set_chain (new_stmt, gimple_call_chain (stmt));
2115
2116 gimple_set_modified (new_stmt, true);
2117
2118 return new_stmt;
2119 }
2120
2121
2122
2123 /* Return true if the field decls F1 and F2 are at the same offset.
2124
2125 This is intended to be used on GIMPLE types only. */
2126
2127 bool
2128 gimple_compare_field_offset (tree f1, tree f2)
2129 {
2130 if (DECL_OFFSET_ALIGN (f1) == DECL_OFFSET_ALIGN (f2))
2131 {
2132 tree offset1 = DECL_FIELD_OFFSET (f1);
2133 tree offset2 = DECL_FIELD_OFFSET (f2);
2134 return ((offset1 == offset2
2135 /* Once gimplification is done, self-referential offsets are
2136 instantiated as operand #2 of the COMPONENT_REF built for
2137 each access and reset. Therefore, they are not relevant
2138 anymore and fields are interchangeable provided that they
2139 represent the same access. */
2140 || (TREE_CODE (offset1) == PLACEHOLDER_EXPR
2141 && TREE_CODE (offset2) == PLACEHOLDER_EXPR
2142 && (DECL_SIZE (f1) == DECL_SIZE (f2)
2143 || (TREE_CODE (DECL_SIZE (f1)) == PLACEHOLDER_EXPR
2144 && TREE_CODE (DECL_SIZE (f2)) == PLACEHOLDER_EXPR)
2145 || operand_equal_p (DECL_SIZE (f1), DECL_SIZE (f2), 0))
2146 && DECL_ALIGN (f1) == DECL_ALIGN (f2))
2147 || operand_equal_p (offset1, offset2, 0))
2148 && tree_int_cst_equal (DECL_FIELD_BIT_OFFSET (f1),
2149 DECL_FIELD_BIT_OFFSET (f2)));
2150 }
2151
2152 /* Fortran and C do not always agree on what DECL_OFFSET_ALIGN
2153 should be, so handle differing ones specially by decomposing
2154 the offset into a byte and bit offset manually. */
2155 if (tree_fits_shwi_p (DECL_FIELD_OFFSET (f1))
2156 && tree_fits_shwi_p (DECL_FIELD_OFFSET (f2)))
2157 {
2158 unsigned HOST_WIDE_INT byte_offset1, byte_offset2;
2159 unsigned HOST_WIDE_INT bit_offset1, bit_offset2;
2160 bit_offset1 = TREE_INT_CST_LOW (DECL_FIELD_BIT_OFFSET (f1));
2161 byte_offset1 = (TREE_INT_CST_LOW (DECL_FIELD_OFFSET (f1))
2162 + bit_offset1 / BITS_PER_UNIT);
2163 bit_offset2 = TREE_INT_CST_LOW (DECL_FIELD_BIT_OFFSET (f2));
2164 byte_offset2 = (TREE_INT_CST_LOW (DECL_FIELD_OFFSET (f2))
2165 + bit_offset2 / BITS_PER_UNIT);
2166 if (byte_offset1 != byte_offset2)
2167 return false;
2168 return bit_offset1 % BITS_PER_UNIT == bit_offset2 % BITS_PER_UNIT;
2169 }
2170
2171 return false;
2172 }
2173
2174
2175 /* Return a type the same as TYPE except unsigned or
2176 signed according to UNSIGNEDP. */
2177
2178 static tree
2179 gimple_signed_or_unsigned_type (bool unsignedp, tree type)
2180 {
2181 tree type1;
2182 int i;
2183
2184 type1 = TYPE_MAIN_VARIANT (type);
2185 if (type1 == signed_char_type_node
2186 || type1 == char_type_node
2187 || type1 == unsigned_char_type_node)
2188 return unsignedp ? unsigned_char_type_node : signed_char_type_node;
2189 if (type1 == integer_type_node || type1 == unsigned_type_node)
2190 return unsignedp ? unsigned_type_node : integer_type_node;
2191 if (type1 == short_integer_type_node || type1 == short_unsigned_type_node)
2192 return unsignedp ? short_unsigned_type_node : short_integer_type_node;
2193 if (type1 == long_integer_type_node || type1 == long_unsigned_type_node)
2194 return unsignedp ? long_unsigned_type_node : long_integer_type_node;
2195 if (type1 == long_long_integer_type_node
2196 || type1 == long_long_unsigned_type_node)
2197 return unsignedp
2198 ? long_long_unsigned_type_node
2199 : long_long_integer_type_node;
2200
2201 for (i = 0; i < NUM_INT_N_ENTS; i ++)
2202 if (int_n_enabled_p[i]
2203 && (type1 == int_n_trees[i].unsigned_type
2204 || type1 == int_n_trees[i].signed_type))
2205 return unsignedp
2206 ? int_n_trees[i].unsigned_type
2207 : int_n_trees[i].signed_type;
2208
2209 #if HOST_BITS_PER_WIDE_INT >= 64
2210 if (type1 == intTI_type_node || type1 == unsigned_intTI_type_node)
2211 return unsignedp ? unsigned_intTI_type_node : intTI_type_node;
2212 #endif
2213 if (type1 == intDI_type_node || type1 == unsigned_intDI_type_node)
2214 return unsignedp ? unsigned_intDI_type_node : intDI_type_node;
2215 if (type1 == intSI_type_node || type1 == unsigned_intSI_type_node)
2216 return unsignedp ? unsigned_intSI_type_node : intSI_type_node;
2217 if (type1 == intHI_type_node || type1 == unsigned_intHI_type_node)
2218 return unsignedp ? unsigned_intHI_type_node : intHI_type_node;
2219 if (type1 == intQI_type_node || type1 == unsigned_intQI_type_node)
2220 return unsignedp ? unsigned_intQI_type_node : intQI_type_node;
2221
2222 #define GIMPLE_FIXED_TYPES(NAME) \
2223 if (type1 == short_ ## NAME ## _type_node \
2224 || type1 == unsigned_short_ ## NAME ## _type_node) \
2225 return unsignedp ? unsigned_short_ ## NAME ## _type_node \
2226 : short_ ## NAME ## _type_node; \
2227 if (type1 == NAME ## _type_node \
2228 || type1 == unsigned_ ## NAME ## _type_node) \
2229 return unsignedp ? unsigned_ ## NAME ## _type_node \
2230 : NAME ## _type_node; \
2231 if (type1 == long_ ## NAME ## _type_node \
2232 || type1 == unsigned_long_ ## NAME ## _type_node) \
2233 return unsignedp ? unsigned_long_ ## NAME ## _type_node \
2234 : long_ ## NAME ## _type_node; \
2235 if (type1 == long_long_ ## NAME ## _type_node \
2236 || type1 == unsigned_long_long_ ## NAME ## _type_node) \
2237 return unsignedp ? unsigned_long_long_ ## NAME ## _type_node \
2238 : long_long_ ## NAME ## _type_node;
2239
2240 #define GIMPLE_FIXED_MODE_TYPES(NAME) \
2241 if (type1 == NAME ## _type_node \
2242 || type1 == u ## NAME ## _type_node) \
2243 return unsignedp ? u ## NAME ## _type_node \
2244 : NAME ## _type_node;
2245
2246 #define GIMPLE_FIXED_TYPES_SAT(NAME) \
2247 if (type1 == sat_ ## short_ ## NAME ## _type_node \
2248 || type1 == sat_ ## unsigned_short_ ## NAME ## _type_node) \
2249 return unsignedp ? sat_ ## unsigned_short_ ## NAME ## _type_node \
2250 : sat_ ## short_ ## NAME ## _type_node; \
2251 if (type1 == sat_ ## NAME ## _type_node \
2252 || type1 == sat_ ## unsigned_ ## NAME ## _type_node) \
2253 return unsignedp ? sat_ ## unsigned_ ## NAME ## _type_node \
2254 : sat_ ## NAME ## _type_node; \
2255 if (type1 == sat_ ## long_ ## NAME ## _type_node \
2256 || type1 == sat_ ## unsigned_long_ ## NAME ## _type_node) \
2257 return unsignedp ? sat_ ## unsigned_long_ ## NAME ## _type_node \
2258 : sat_ ## long_ ## NAME ## _type_node; \
2259 if (type1 == sat_ ## long_long_ ## NAME ## _type_node \
2260 || type1 == sat_ ## unsigned_long_long_ ## NAME ## _type_node) \
2261 return unsignedp ? sat_ ## unsigned_long_long_ ## NAME ## _type_node \
2262 : sat_ ## long_long_ ## NAME ## _type_node;
2263
2264 #define GIMPLE_FIXED_MODE_TYPES_SAT(NAME) \
2265 if (type1 == sat_ ## NAME ## _type_node \
2266 || type1 == sat_ ## u ## NAME ## _type_node) \
2267 return unsignedp ? sat_ ## u ## NAME ## _type_node \
2268 : sat_ ## NAME ## _type_node;
2269
2270 GIMPLE_FIXED_TYPES (fract);
2271 GIMPLE_FIXED_TYPES_SAT (fract);
2272 GIMPLE_FIXED_TYPES (accum);
2273 GIMPLE_FIXED_TYPES_SAT (accum);
2274
2275 GIMPLE_FIXED_MODE_TYPES (qq);
2276 GIMPLE_FIXED_MODE_TYPES (hq);
2277 GIMPLE_FIXED_MODE_TYPES (sq);
2278 GIMPLE_FIXED_MODE_TYPES (dq);
2279 GIMPLE_FIXED_MODE_TYPES (tq);
2280 GIMPLE_FIXED_MODE_TYPES_SAT (qq);
2281 GIMPLE_FIXED_MODE_TYPES_SAT (hq);
2282 GIMPLE_FIXED_MODE_TYPES_SAT (sq);
2283 GIMPLE_FIXED_MODE_TYPES_SAT (dq);
2284 GIMPLE_FIXED_MODE_TYPES_SAT (tq);
2285 GIMPLE_FIXED_MODE_TYPES (ha);
2286 GIMPLE_FIXED_MODE_TYPES (sa);
2287 GIMPLE_FIXED_MODE_TYPES (da);
2288 GIMPLE_FIXED_MODE_TYPES (ta);
2289 GIMPLE_FIXED_MODE_TYPES_SAT (ha);
2290 GIMPLE_FIXED_MODE_TYPES_SAT (sa);
2291 GIMPLE_FIXED_MODE_TYPES_SAT (da);
2292 GIMPLE_FIXED_MODE_TYPES_SAT (ta);
2293
2294 /* For ENUMERAL_TYPEs in C++, must check the mode of the types, not
2295 the precision; they have precision set to match their range, but
2296 may use a wider mode to match an ABI. If we change modes, we may
2297 wind up with bad conversions. For INTEGER_TYPEs in C, must check
2298 the precision as well, so as to yield correct results for
2299 bit-field types. C++ does not have these separate bit-field
2300 types, and producing a signed or unsigned variant of an
2301 ENUMERAL_TYPE may cause other problems as well. */
2302 if (!INTEGRAL_TYPE_P (type)
2303 || TYPE_UNSIGNED (type) == unsignedp)
2304 return type;
2305
2306 #define TYPE_OK(node) \
2307 (TYPE_MODE (type) == TYPE_MODE (node) \
2308 && TYPE_PRECISION (type) == TYPE_PRECISION (node))
2309 if (TYPE_OK (signed_char_type_node))
2310 return unsignedp ? unsigned_char_type_node : signed_char_type_node;
2311 if (TYPE_OK (integer_type_node))
2312 return unsignedp ? unsigned_type_node : integer_type_node;
2313 if (TYPE_OK (short_integer_type_node))
2314 return unsignedp ? short_unsigned_type_node : short_integer_type_node;
2315 if (TYPE_OK (long_integer_type_node))
2316 return unsignedp ? long_unsigned_type_node : long_integer_type_node;
2317 if (TYPE_OK (long_long_integer_type_node))
2318 return (unsignedp
2319 ? long_long_unsigned_type_node
2320 : long_long_integer_type_node);
2321
2322 for (i = 0; i < NUM_INT_N_ENTS; i ++)
2323 if (int_n_enabled_p[i]
2324 && TYPE_MODE (type) == int_n_data[i].m
2325 && TYPE_PRECISION (type) == int_n_data[i].bitsize)
2326 return unsignedp
2327 ? int_n_trees[i].unsigned_type
2328 : int_n_trees[i].signed_type;
2329
2330 #if HOST_BITS_PER_WIDE_INT >= 64
2331 if (TYPE_OK (intTI_type_node))
2332 return unsignedp ? unsigned_intTI_type_node : intTI_type_node;
2333 #endif
2334 if (TYPE_OK (intDI_type_node))
2335 return unsignedp ? unsigned_intDI_type_node : intDI_type_node;
2336 if (TYPE_OK (intSI_type_node))
2337 return unsignedp ? unsigned_intSI_type_node : intSI_type_node;
2338 if (TYPE_OK (intHI_type_node))
2339 return unsignedp ? unsigned_intHI_type_node : intHI_type_node;
2340 if (TYPE_OK (intQI_type_node))
2341 return unsignedp ? unsigned_intQI_type_node : intQI_type_node;
2342
2343 #undef GIMPLE_FIXED_TYPES
2344 #undef GIMPLE_FIXED_MODE_TYPES
2345 #undef GIMPLE_FIXED_TYPES_SAT
2346 #undef GIMPLE_FIXED_MODE_TYPES_SAT
2347 #undef TYPE_OK
2348
2349 return build_nonstandard_integer_type (TYPE_PRECISION (type), unsignedp);
2350 }
2351
2352
2353 /* Return an unsigned type the same as TYPE in other respects. */
2354
2355 tree
2356 gimple_unsigned_type (tree type)
2357 {
2358 return gimple_signed_or_unsigned_type (true, type);
2359 }
2360
2361
2362 /* Return a signed type the same as TYPE in other respects. */
2363
2364 tree
2365 gimple_signed_type (tree type)
2366 {
2367 return gimple_signed_or_unsigned_type (false, type);
2368 }
2369
2370
2371 /* Return the typed-based alias set for T, which may be an expression
2372 or a type. Return -1 if we don't do anything special. */
2373
2374 alias_set_type
2375 gimple_get_alias_set (tree t)
2376 {
2377 tree u;
2378
2379 /* Permit type-punning when accessing a union, provided the access
2380 is directly through the union. For example, this code does not
2381 permit taking the address of a union member and then storing
2382 through it. Even the type-punning allowed here is a GCC
2383 extension, albeit a common and useful one; the C standard says
2384 that such accesses have implementation-defined behavior. */
2385 for (u = t;
2386 TREE_CODE (u) == COMPONENT_REF || TREE_CODE (u) == ARRAY_REF;
2387 u = TREE_OPERAND (u, 0))
2388 if (TREE_CODE (u) == COMPONENT_REF
2389 && TREE_CODE (TREE_TYPE (TREE_OPERAND (u, 0))) == UNION_TYPE)
2390 return 0;
2391
2392 /* That's all the expressions we handle specially. */
2393 if (!TYPE_P (t))
2394 return -1;
2395
2396 /* For convenience, follow the C standard when dealing with
2397 character types. Any object may be accessed via an lvalue that
2398 has character type. */
2399 if (t == char_type_node
2400 || t == signed_char_type_node
2401 || t == unsigned_char_type_node)
2402 return 0;
2403
2404 /* Allow aliasing between signed and unsigned variants of the same
2405 type. We treat the signed variant as canonical. */
2406 if (TREE_CODE (t) == INTEGER_TYPE && TYPE_UNSIGNED (t))
2407 {
2408 tree t1 = gimple_signed_type (t);
2409
2410 /* t1 == t can happen for boolean nodes which are always unsigned. */
2411 if (t1 != t)
2412 return get_alias_set (t1);
2413 }
2414
2415 return -1;
2416 }
2417
2418
2419 /* Helper for gimple_ior_addresses_taken_1. */
2420
2421 static bool
2422 gimple_ior_addresses_taken_1 (gimple, tree addr, tree, void *data)
2423 {
2424 bitmap addresses_taken = (bitmap)data;
2425 addr = get_base_address (addr);
2426 if (addr
2427 && DECL_P (addr))
2428 {
2429 bitmap_set_bit (addresses_taken, DECL_UID (addr));
2430 return true;
2431 }
2432 return false;
2433 }
2434
2435 /* Set the bit for the uid of all decls that have their address taken
2436 in STMT in the ADDRESSES_TAKEN bitmap. Returns true if there
2437 were any in this stmt. */
2438
2439 bool
2440 gimple_ior_addresses_taken (bitmap addresses_taken, gimple stmt)
2441 {
2442 return walk_stmt_load_store_addr_ops (stmt, addresses_taken, NULL, NULL,
2443 gimple_ior_addresses_taken_1);
2444 }
2445
2446
2447 /* Return true if TYPE1 and TYPE2 are compatible enough for builtin
2448 processing. */
2449
2450 static bool
2451 validate_type (tree type1, tree type2)
2452 {
2453 if (INTEGRAL_TYPE_P (type1)
2454 && INTEGRAL_TYPE_P (type2))
2455 ;
2456 else if (POINTER_TYPE_P (type1)
2457 && POINTER_TYPE_P (type2))
2458 ;
2459 else if (TREE_CODE (type1)
2460 != TREE_CODE (type2))
2461 return false;
2462 return true;
2463 }
2464
2465 /* Return true when STMTs arguments and return value match those of FNDECL,
2466 a decl of a builtin function. */
2467
2468 bool
2469 gimple_builtin_call_types_compatible_p (const_gimple stmt, tree fndecl)
2470 {
2471 gcc_checking_assert (DECL_BUILT_IN_CLASS (fndecl) != NOT_BUILT_IN);
2472
2473 tree ret = gimple_call_lhs (stmt);
2474 if (ret
2475 && !validate_type (TREE_TYPE (ret), TREE_TYPE (TREE_TYPE (fndecl))))
2476 return false;
2477
2478 tree targs = TYPE_ARG_TYPES (TREE_TYPE (fndecl));
2479 unsigned nargs = gimple_call_num_args (stmt);
2480 for (unsigned i = 0; i < nargs; ++i)
2481 {
2482 /* Variadic args follow. */
2483 if (!targs)
2484 return true;
2485 tree arg = gimple_call_arg (stmt, i);
2486 if (!validate_type (TREE_TYPE (arg), TREE_VALUE (targs)))
2487 return false;
2488 targs = TREE_CHAIN (targs);
2489 }
2490 if (targs && !VOID_TYPE_P (TREE_VALUE (targs)))
2491 return false;
2492 return true;
2493 }
2494
2495 /* Return true when STMT is builtins call. */
2496
2497 bool
2498 gimple_call_builtin_p (const_gimple stmt)
2499 {
2500 tree fndecl;
2501 if (is_gimple_call (stmt)
2502 && (fndecl = gimple_call_fndecl (stmt)) != NULL_TREE
2503 && DECL_BUILT_IN_CLASS (fndecl) != NOT_BUILT_IN)
2504 return gimple_builtin_call_types_compatible_p (stmt, fndecl);
2505 return false;
2506 }
2507
2508 /* Return true when STMT is builtins call to CLASS. */
2509
2510 bool
2511 gimple_call_builtin_p (const_gimple stmt, enum built_in_class klass)
2512 {
2513 tree fndecl;
2514 if (is_gimple_call (stmt)
2515 && (fndecl = gimple_call_fndecl (stmt)) != NULL_TREE
2516 && DECL_BUILT_IN_CLASS (fndecl) == klass)
2517 return gimple_builtin_call_types_compatible_p (stmt, fndecl);
2518 return false;
2519 }
2520
2521 /* Return true when STMT is builtins call to CODE of CLASS. */
2522
2523 bool
2524 gimple_call_builtin_p (const_gimple stmt, enum built_in_function code)
2525 {
2526 tree fndecl;
2527 if (is_gimple_call (stmt)
2528 && (fndecl = gimple_call_fndecl (stmt)) != NULL_TREE
2529 && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL
2530 && DECL_FUNCTION_CODE (fndecl) == code)
2531 return gimple_builtin_call_types_compatible_p (stmt, fndecl);
2532 return false;
2533 }
2534
2535 /* Return true if STMT clobbers memory. STMT is required to be a
2536 GIMPLE_ASM. */
2537
2538 bool
2539 gimple_asm_clobbers_memory_p (const gasm *stmt)
2540 {
2541 unsigned i;
2542
2543 for (i = 0; i < gimple_asm_nclobbers (stmt); i++)
2544 {
2545 tree op = gimple_asm_clobber_op (stmt, i);
2546 if (strcmp (TREE_STRING_POINTER (TREE_VALUE (op)), "memory") == 0)
2547 return true;
2548 }
2549
2550 return false;
2551 }
2552
2553 /* Dump bitmap SET (assumed to contain VAR_DECLs) to FILE. */
2554
2555 void
2556 dump_decl_set (FILE *file, bitmap set)
2557 {
2558 if (set)
2559 {
2560 bitmap_iterator bi;
2561 unsigned i;
2562
2563 fprintf (file, "{ ");
2564
2565 EXECUTE_IF_SET_IN_BITMAP (set, 0, i, bi)
2566 {
2567 fprintf (file, "D.%u", i);
2568 fprintf (file, " ");
2569 }
2570
2571 fprintf (file, "}");
2572 }
2573 else
2574 fprintf (file, "NIL");
2575 }
2576
2577 /* Return true when CALL is a call stmt that definitely doesn't
2578 free any memory or makes it unavailable otherwise. */
2579 bool
2580 nonfreeing_call_p (gimple call)
2581 {
2582 if (gimple_call_builtin_p (call, BUILT_IN_NORMAL)
2583 && gimple_call_flags (call) & ECF_LEAF)
2584 switch (DECL_FUNCTION_CODE (gimple_call_fndecl (call)))
2585 {
2586 /* Just in case these become ECF_LEAF in the future. */
2587 case BUILT_IN_FREE:
2588 case BUILT_IN_TM_FREE:
2589 case BUILT_IN_REALLOC:
2590 case BUILT_IN_STACK_RESTORE:
2591 return false;
2592 default:
2593 return true;
2594 }
2595 else if (gimple_call_internal_p (call))
2596 switch (gimple_call_internal_fn (call))
2597 {
2598 case IFN_ABNORMAL_DISPATCHER:
2599 return true;
2600 default:
2601 if (gimple_call_flags (call) & ECF_LEAF)
2602 return true;
2603 return false;
2604 }
2605
2606 tree fndecl = gimple_call_fndecl (call);
2607 if (!fndecl)
2608 return false;
2609 struct cgraph_node *n = cgraph_node::get (fndecl);
2610 if (!n)
2611 return false;
2612 enum availability availability;
2613 n = n->function_symbol (&availability);
2614 if (!n || availability <= AVAIL_INTERPOSABLE)
2615 return false;
2616 return n->nonfreeing_fn;
2617 }
2618
2619 /* Callback for walk_stmt_load_store_ops.
2620
2621 Return TRUE if OP will dereference the tree stored in DATA, FALSE
2622 otherwise.
2623
2624 This routine only makes a superficial check for a dereference. Thus
2625 it must only be used if it is safe to return a false negative. */
2626 static bool
2627 check_loadstore (gimple, tree op, tree, void *data)
2628 {
2629 if ((TREE_CODE (op) == MEM_REF || TREE_CODE (op) == TARGET_MEM_REF)
2630 && operand_equal_p (TREE_OPERAND (op, 0), (tree)data, 0))
2631 return true;
2632 return false;
2633 }
2634
2635 /* If OP can be inferred to be non-NULL after STMT executes, return true.
2636
2637 DEREFERENCE is TRUE if we can use a pointer dereference to infer a
2638 non-NULL range, FALSE otherwise.
2639
2640 ATTRIBUTE is TRUE if we can use attributes to infer a non-NULL range
2641 for function arguments and return values. FALSE otherwise. */
2642
2643 bool
2644 infer_nonnull_range (gimple stmt, tree op, bool dereference, bool attribute)
2645 {
2646 /* We can only assume that a pointer dereference will yield
2647 non-NULL if -fdelete-null-pointer-checks is enabled. */
2648 if (!flag_delete_null_pointer_checks
2649 || !POINTER_TYPE_P (TREE_TYPE (op))
2650 || gimple_code (stmt) == GIMPLE_ASM)
2651 return false;
2652
2653 if (dereference
2654 && walk_stmt_load_store_ops (stmt, (void *)op,
2655 check_loadstore, check_loadstore))
2656 return true;
2657
2658 if (attribute
2659 && is_gimple_call (stmt) && !gimple_call_internal_p (stmt))
2660 {
2661 tree fntype = gimple_call_fntype (stmt);
2662 tree attrs = TYPE_ATTRIBUTES (fntype);
2663 for (; attrs; attrs = TREE_CHAIN (attrs))
2664 {
2665 attrs = lookup_attribute ("nonnull", attrs);
2666
2667 /* If "nonnull" wasn't specified, we know nothing about
2668 the argument. */
2669 if (attrs == NULL_TREE)
2670 return false;
2671
2672 /* If "nonnull" applies to all the arguments, then ARG
2673 is non-null if it's in the argument list. */
2674 if (TREE_VALUE (attrs) == NULL_TREE)
2675 {
2676 for (unsigned int i = 0; i < gimple_call_num_args (stmt); i++)
2677 {
2678 if (POINTER_TYPE_P (TREE_TYPE (gimple_call_arg (stmt, i)))
2679 && operand_equal_p (op, gimple_call_arg (stmt, i), 0))
2680 return true;
2681 }
2682 return false;
2683 }
2684
2685 /* Now see if op appears in the nonnull list. */
2686 for (tree t = TREE_VALUE (attrs); t; t = TREE_CHAIN (t))
2687 {
2688 int idx = TREE_INT_CST_LOW (TREE_VALUE (t)) - 1;
2689 tree arg = gimple_call_arg (stmt, idx);
2690 if (operand_equal_p (op, arg, 0))
2691 return true;
2692 }
2693 }
2694 }
2695
2696 /* If this function is marked as returning non-null, then we can
2697 infer OP is non-null if it is used in the return statement. */
2698 if (attribute)
2699 if (greturn *return_stmt = dyn_cast <greturn *> (stmt))
2700 if (gimple_return_retval (return_stmt)
2701 && operand_equal_p (gimple_return_retval (return_stmt), op, 0)
2702 && lookup_attribute ("returns_nonnull",
2703 TYPE_ATTRIBUTES (TREE_TYPE (current_function_decl))))
2704 return true;
2705
2706 return false;
2707 }
2708
2709 /* Compare two case labels. Because the front end should already have
2710 made sure that case ranges do not overlap, it is enough to only compare
2711 the CASE_LOW values of each case label. */
2712
2713 static int
2714 compare_case_labels (const void *p1, const void *p2)
2715 {
2716 const_tree const case1 = *(const_tree const*)p1;
2717 const_tree const case2 = *(const_tree const*)p2;
2718
2719 /* The 'default' case label always goes first. */
2720 if (!CASE_LOW (case1))
2721 return -1;
2722 else if (!CASE_LOW (case2))
2723 return 1;
2724 else
2725 return tree_int_cst_compare (CASE_LOW (case1), CASE_LOW (case2));
2726 }
2727
2728 /* Sort the case labels in LABEL_VEC in place in ascending order. */
2729
2730 void
2731 sort_case_labels (vec<tree> label_vec)
2732 {
2733 label_vec.qsort (compare_case_labels);
2734 }
2735 \f
2736 /* Prepare a vector of case labels to be used in a GIMPLE_SWITCH statement.
2737
2738 LABELS is a vector that contains all case labels to look at.
2739
2740 INDEX_TYPE is the type of the switch index expression. Case labels
2741 in LABELS are discarded if their values are not in the value range
2742 covered by INDEX_TYPE. The remaining case label values are folded
2743 to INDEX_TYPE.
2744
2745 If a default case exists in LABELS, it is removed from LABELS and
2746 returned in DEFAULT_CASEP. If no default case exists, but the
2747 case labels already cover the whole range of INDEX_TYPE, a default
2748 case is returned pointing to one of the existing case labels.
2749 Otherwise DEFAULT_CASEP is set to NULL_TREE.
2750
2751 DEFAULT_CASEP may be NULL, in which case the above comment doesn't
2752 apply and no action is taken regardless of whether a default case is
2753 found or not. */
2754
2755 void
2756 preprocess_case_label_vec_for_gimple (vec<tree> labels,
2757 tree index_type,
2758 tree *default_casep)
2759 {
2760 tree min_value, max_value;
2761 tree default_case = NULL_TREE;
2762 size_t i, len;
2763
2764 i = 0;
2765 min_value = TYPE_MIN_VALUE (index_type);
2766 max_value = TYPE_MAX_VALUE (index_type);
2767 while (i < labels.length ())
2768 {
2769 tree elt = labels[i];
2770 tree low = CASE_LOW (elt);
2771 tree high = CASE_HIGH (elt);
2772 bool remove_element = FALSE;
2773
2774 if (low)
2775 {
2776 gcc_checking_assert (TREE_CODE (low) == INTEGER_CST);
2777 gcc_checking_assert (!high || TREE_CODE (high) == INTEGER_CST);
2778
2779 /* This is a non-default case label, i.e. it has a value.
2780
2781 See if the case label is reachable within the range of
2782 the index type. Remove out-of-range case values. Turn
2783 case ranges into a canonical form (high > low strictly)
2784 and convert the case label values to the index type.
2785
2786 NB: The type of gimple_switch_index() may be the promoted
2787 type, but the case labels retain the original type. */
2788
2789 if (high)
2790 {
2791 /* This is a case range. Discard empty ranges.
2792 If the bounds or the range are equal, turn this
2793 into a simple (one-value) case. */
2794 int cmp = tree_int_cst_compare (high, low);
2795 if (cmp < 0)
2796 remove_element = TRUE;
2797 else if (cmp == 0)
2798 high = NULL_TREE;
2799 }
2800
2801 if (! high)
2802 {
2803 /* If the simple case value is unreachable, ignore it. */
2804 if ((TREE_CODE (min_value) == INTEGER_CST
2805 && tree_int_cst_compare (low, min_value) < 0)
2806 || (TREE_CODE (max_value) == INTEGER_CST
2807 && tree_int_cst_compare (low, max_value) > 0))
2808 remove_element = TRUE;
2809 else
2810 low = fold_convert (index_type, low);
2811 }
2812 else
2813 {
2814 /* If the entire case range is unreachable, ignore it. */
2815 if ((TREE_CODE (min_value) == INTEGER_CST
2816 && tree_int_cst_compare (high, min_value) < 0)
2817 || (TREE_CODE (max_value) == INTEGER_CST
2818 && tree_int_cst_compare (low, max_value) > 0))
2819 remove_element = TRUE;
2820 else
2821 {
2822 /* If the lower bound is less than the index type's
2823 minimum value, truncate the range bounds. */
2824 if (TREE_CODE (min_value) == INTEGER_CST
2825 && tree_int_cst_compare (low, min_value) < 0)
2826 low = min_value;
2827 low = fold_convert (index_type, low);
2828
2829 /* If the upper bound is greater than the index type's
2830 maximum value, truncate the range bounds. */
2831 if (TREE_CODE (max_value) == INTEGER_CST
2832 && tree_int_cst_compare (high, max_value) > 0)
2833 high = max_value;
2834 high = fold_convert (index_type, high);
2835
2836 /* We may have folded a case range to a one-value case. */
2837 if (tree_int_cst_equal (low, high))
2838 high = NULL_TREE;
2839 }
2840 }
2841
2842 CASE_LOW (elt) = low;
2843 CASE_HIGH (elt) = high;
2844 }
2845 else
2846 {
2847 gcc_assert (!default_case);
2848 default_case = elt;
2849 /* The default case must be passed separately to the
2850 gimple_build_switch routine. But if DEFAULT_CASEP
2851 is NULL, we do not remove the default case (it would
2852 be completely lost). */
2853 if (default_casep)
2854 remove_element = TRUE;
2855 }
2856
2857 if (remove_element)
2858 labels.ordered_remove (i);
2859 else
2860 i++;
2861 }
2862 len = i;
2863
2864 if (!labels.is_empty ())
2865 sort_case_labels (labels);
2866
2867 if (default_casep && !default_case)
2868 {
2869 /* If the switch has no default label, add one, so that we jump
2870 around the switch body. If the labels already cover the whole
2871 range of the switch index_type, add the default label pointing
2872 to one of the existing labels. */
2873 if (len
2874 && TYPE_MIN_VALUE (index_type)
2875 && TYPE_MAX_VALUE (index_type)
2876 && tree_int_cst_equal (CASE_LOW (labels[0]),
2877 TYPE_MIN_VALUE (index_type)))
2878 {
2879 tree low, high = CASE_HIGH (labels[len - 1]);
2880 if (!high)
2881 high = CASE_LOW (labels[len - 1]);
2882 if (tree_int_cst_equal (high, TYPE_MAX_VALUE (index_type)))
2883 {
2884 for (i = 1; i < len; i++)
2885 {
2886 high = CASE_LOW (labels[i]);
2887 low = CASE_HIGH (labels[i - 1]);
2888 if (!low)
2889 low = CASE_LOW (labels[i - 1]);
2890 if (wi::add (low, 1) != high)
2891 break;
2892 }
2893 if (i == len)
2894 {
2895 tree label = CASE_LABEL (labels[0]);
2896 default_case = build_case_label (NULL_TREE, NULL_TREE,
2897 label);
2898 }
2899 }
2900 }
2901 }
2902
2903 if (default_casep)
2904 *default_casep = default_case;
2905 }
2906
2907 /* Set the location of all statements in SEQ to LOC. */
2908
2909 void
2910 gimple_seq_set_location (gimple_seq seq, location_t loc)
2911 {
2912 for (gimple_stmt_iterator i = gsi_start (seq); !gsi_end_p (i); gsi_next (&i))
2913 gimple_set_location (gsi_stmt (i), loc);
2914 }
2915
2916 /* Release SSA_NAMEs in SEQ as well as the GIMPLE statements. */
2917
2918 void
2919 gimple_seq_discard (gimple_seq seq)
2920 {
2921 gimple_stmt_iterator gsi;
2922
2923 for (gsi = gsi_start (seq); !gsi_end_p (gsi); )
2924 {
2925 gimple stmt = gsi_stmt (gsi);
2926 gsi_remove (&gsi, true);
2927 release_defs (stmt);
2928 ggc_free (stmt);
2929 }
2930 }
2931
2932 /* See if STMT now calls function that takes no parameters and if so, drop
2933 call arguments. This is used when devirtualization machinery redirects
2934 to __builtiln_unreacahble or __cxa_pure_virutal. */
2935
2936 void
2937 maybe_remove_unused_call_args (struct function *fn, gimple stmt)
2938 {
2939 tree decl = gimple_call_fndecl (stmt);
2940 if (TYPE_ARG_TYPES (TREE_TYPE (decl))
2941 && TREE_VALUE (TYPE_ARG_TYPES (TREE_TYPE (decl))) == void_type_node
2942 && gimple_call_num_args (stmt))
2943 {
2944 gimple_set_num_ops (stmt, 3);
2945 update_stmt_fn (fn, stmt);
2946 }
2947 }