]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/gimple.c
Merge current set of OpenACC changes from gomp-4_0-branch.
[thirdparty/gcc.git] / gcc / gimple.c
1 /* Gimple IR support functions.
2
3 Copyright (C) 2007-2015 Free Software Foundation, Inc.
4 Contributed by Aldy Hernandez <aldyh@redhat.com>
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
12
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
21
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "tm.h"
26 #include "target.h"
27 #include "hash-set.h"
28 #include "machmode.h"
29 #include "vec.h"
30 #include "double-int.h"
31 #include "input.h"
32 #include "alias.h"
33 #include "symtab.h"
34 #include "wide-int.h"
35 #include "inchash.h"
36 #include "tree.h"
37 #include "fold-const.h"
38 #include "calls.h"
39 #include "stmt.h"
40 #include "stor-layout.h"
41 #include "hard-reg-set.h"
42 #include "predict.h"
43 #include "input.h"
44 #include "function.h"
45 #include "dominance.h"
46 #include "cfg.h"
47 #include "basic-block.h"
48 #include "tree-ssa-alias.h"
49 #include "internal-fn.h"
50 #include "tree-eh.h"
51 #include "gimple-expr.h"
52 #include "is-a.h"
53 #include "gimple.h"
54 #include "gimple-iterator.h"
55 #include "gimple-walk.h"
56 #include "gimple.h"
57 #include "gimplify.h"
58 #include "diagnostic.h"
59 #include "value-prof.h"
60 #include "flags.h"
61 #include "alias.h"
62 #include "demangle.h"
63 #include "langhooks.h"
64 #include "bitmap.h"
65 #include "stringpool.h"
66 #include "tree-ssanames.h"
67 #include "ipa-ref.h"
68 #include "lto-streamer.h"
69 #include "cgraph.h"
70
71
72 /* All the tuples have their operand vector (if present) at the very bottom
73 of the structure. Therefore, the offset required to find the
74 operands vector the size of the structure minus the size of the 1
75 element tree array at the end (see gimple_ops). */
76 #define DEFGSSTRUCT(SYM, STRUCT, HAS_TREE_OP) \
77 (HAS_TREE_OP ? sizeof (struct STRUCT) - sizeof (tree) : 0),
78 EXPORTED_CONST size_t gimple_ops_offset_[] = {
79 #include "gsstruct.def"
80 };
81 #undef DEFGSSTRUCT
82
83 #define DEFGSSTRUCT(SYM, STRUCT, HAS_TREE_OP) sizeof (struct STRUCT),
84 static const size_t gsstruct_code_size[] = {
85 #include "gsstruct.def"
86 };
87 #undef DEFGSSTRUCT
88
89 #define DEFGSCODE(SYM, NAME, GSSCODE) NAME,
90 const char *const gimple_code_name[] = {
91 #include "gimple.def"
92 };
93 #undef DEFGSCODE
94
95 #define DEFGSCODE(SYM, NAME, GSSCODE) GSSCODE,
96 EXPORTED_CONST enum gimple_statement_structure_enum gss_for_code_[] = {
97 #include "gimple.def"
98 };
99 #undef DEFGSCODE
100
101 /* Gimple stats. */
102
103 int gimple_alloc_counts[(int) gimple_alloc_kind_all];
104 int gimple_alloc_sizes[(int) gimple_alloc_kind_all];
105
106 /* Keep in sync with gimple.h:enum gimple_alloc_kind. */
107 static const char * const gimple_alloc_kind_names[] = {
108 "assignments",
109 "phi nodes",
110 "conditionals",
111 "everything else"
112 };
113
114 /* Gimple tuple constructors.
115 Note: Any constructor taking a ``gimple_seq'' as a parameter, can
116 be passed a NULL to start with an empty sequence. */
117
118 /* Set the code for statement G to CODE. */
119
120 static inline void
121 gimple_set_code (gimple g, enum gimple_code code)
122 {
123 g->code = code;
124 }
125
126 /* Return the number of bytes needed to hold a GIMPLE statement with
127 code CODE. */
128
129 static inline size_t
130 gimple_size (enum gimple_code code)
131 {
132 return gsstruct_code_size[gss_for_code (code)];
133 }
134
135 /* Allocate memory for a GIMPLE statement with code CODE and NUM_OPS
136 operands. */
137
138 gimple
139 gimple_alloc_stat (enum gimple_code code, unsigned num_ops MEM_STAT_DECL)
140 {
141 size_t size;
142 gimple stmt;
143
144 size = gimple_size (code);
145 if (num_ops > 0)
146 size += sizeof (tree) * (num_ops - 1);
147
148 if (GATHER_STATISTICS)
149 {
150 enum gimple_alloc_kind kind = gimple_alloc_kind (code);
151 gimple_alloc_counts[(int) kind]++;
152 gimple_alloc_sizes[(int) kind] += size;
153 }
154
155 stmt = ggc_alloc_cleared_gimple_statement_stat (size PASS_MEM_STAT);
156 gimple_set_code (stmt, code);
157 gimple_set_num_ops (stmt, num_ops);
158
159 /* Do not call gimple_set_modified here as it has other side
160 effects and this tuple is still not completely built. */
161 stmt->modified = 1;
162 gimple_init_singleton (stmt);
163
164 return stmt;
165 }
166
167 /* Set SUBCODE to be the code of the expression computed by statement G. */
168
169 static inline void
170 gimple_set_subcode (gimple g, unsigned subcode)
171 {
172 /* We only have 16 bits for the RHS code. Assert that we are not
173 overflowing it. */
174 gcc_assert (subcode < (1 << 16));
175 g->subcode = subcode;
176 }
177
178
179
180 /* Build a tuple with operands. CODE is the statement to build (which
181 must be one of the GIMPLE_WITH_OPS tuples). SUBCODE is the subcode
182 for the new tuple. NUM_OPS is the number of operands to allocate. */
183
184 #define gimple_build_with_ops(c, s, n) \
185 gimple_build_with_ops_stat (c, s, n MEM_STAT_INFO)
186
187 static gimple
188 gimple_build_with_ops_stat (enum gimple_code code, unsigned subcode,
189 unsigned num_ops MEM_STAT_DECL)
190 {
191 gimple s = gimple_alloc_stat (code, num_ops PASS_MEM_STAT);
192 gimple_set_subcode (s, subcode);
193
194 return s;
195 }
196
197
198 /* Build a GIMPLE_RETURN statement returning RETVAL. */
199
200 greturn *
201 gimple_build_return (tree retval)
202 {
203 greturn *s
204 = as_a <greturn *> (gimple_build_with_ops (GIMPLE_RETURN, ERROR_MARK,
205 2));
206 if (retval)
207 gimple_return_set_retval (s, retval);
208 return s;
209 }
210
211 /* Reset alias information on call S. */
212
213 void
214 gimple_call_reset_alias_info (gcall *s)
215 {
216 if (gimple_call_flags (s) & ECF_CONST)
217 memset (gimple_call_use_set (s), 0, sizeof (struct pt_solution));
218 else
219 pt_solution_reset (gimple_call_use_set (s));
220 if (gimple_call_flags (s) & (ECF_CONST|ECF_PURE|ECF_NOVOPS))
221 memset (gimple_call_clobber_set (s), 0, sizeof (struct pt_solution));
222 else
223 pt_solution_reset (gimple_call_clobber_set (s));
224 }
225
226 /* Helper for gimple_build_call, gimple_build_call_valist,
227 gimple_build_call_vec and gimple_build_call_from_tree. Build the basic
228 components of a GIMPLE_CALL statement to function FN with NARGS
229 arguments. */
230
231 static inline gcall *
232 gimple_build_call_1 (tree fn, unsigned nargs)
233 {
234 gcall *s
235 = as_a <gcall *> (gimple_build_with_ops (GIMPLE_CALL, ERROR_MARK,
236 nargs + 3));
237 if (TREE_CODE (fn) == FUNCTION_DECL)
238 fn = build_fold_addr_expr (fn);
239 gimple_set_op (s, 1, fn);
240 gimple_call_set_fntype (s, TREE_TYPE (TREE_TYPE (fn)));
241 gimple_call_reset_alias_info (s);
242 return s;
243 }
244
245
246 /* Build a GIMPLE_CALL statement to function FN with the arguments
247 specified in vector ARGS. */
248
249 gcall *
250 gimple_build_call_vec (tree fn, vec<tree> args)
251 {
252 unsigned i;
253 unsigned nargs = args.length ();
254 gcall *call = gimple_build_call_1 (fn, nargs);
255
256 for (i = 0; i < nargs; i++)
257 gimple_call_set_arg (call, i, args[i]);
258
259 return call;
260 }
261
262
263 /* Build a GIMPLE_CALL statement to function FN. NARGS is the number of
264 arguments. The ... are the arguments. */
265
266 gcall *
267 gimple_build_call (tree fn, unsigned nargs, ...)
268 {
269 va_list ap;
270 gcall *call;
271 unsigned i;
272
273 gcc_assert (TREE_CODE (fn) == FUNCTION_DECL || is_gimple_call_addr (fn));
274
275 call = gimple_build_call_1 (fn, nargs);
276
277 va_start (ap, nargs);
278 for (i = 0; i < nargs; i++)
279 gimple_call_set_arg (call, i, va_arg (ap, tree));
280 va_end (ap);
281
282 return call;
283 }
284
285
286 /* Build a GIMPLE_CALL statement to function FN. NARGS is the number of
287 arguments. AP contains the arguments. */
288
289 gcall *
290 gimple_build_call_valist (tree fn, unsigned nargs, va_list ap)
291 {
292 gcall *call;
293 unsigned i;
294
295 gcc_assert (TREE_CODE (fn) == FUNCTION_DECL || is_gimple_call_addr (fn));
296
297 call = gimple_build_call_1 (fn, nargs);
298
299 for (i = 0; i < nargs; i++)
300 gimple_call_set_arg (call, i, va_arg (ap, tree));
301
302 return call;
303 }
304
305
306 /* Helper for gimple_build_call_internal and gimple_build_call_internal_vec.
307 Build the basic components of a GIMPLE_CALL statement to internal
308 function FN with NARGS arguments. */
309
310 static inline gcall *
311 gimple_build_call_internal_1 (enum internal_fn fn, unsigned nargs)
312 {
313 gcall *s
314 = as_a <gcall *> (gimple_build_with_ops (GIMPLE_CALL, ERROR_MARK,
315 nargs + 3));
316 s->subcode |= GF_CALL_INTERNAL;
317 gimple_call_set_internal_fn (s, fn);
318 gimple_call_reset_alias_info (s);
319 return s;
320 }
321
322
323 /* Build a GIMPLE_CALL statement to internal function FN. NARGS is
324 the number of arguments. The ... are the arguments. */
325
326 gcall *
327 gimple_build_call_internal (enum internal_fn fn, unsigned nargs, ...)
328 {
329 va_list ap;
330 gcall *call;
331 unsigned i;
332
333 call = gimple_build_call_internal_1 (fn, nargs);
334 va_start (ap, nargs);
335 for (i = 0; i < nargs; i++)
336 gimple_call_set_arg (call, i, va_arg (ap, tree));
337 va_end (ap);
338
339 return call;
340 }
341
342
343 /* Build a GIMPLE_CALL statement to internal function FN with the arguments
344 specified in vector ARGS. */
345
346 gcall *
347 gimple_build_call_internal_vec (enum internal_fn fn, vec<tree> args)
348 {
349 unsigned i, nargs;
350 gcall *call;
351
352 nargs = args.length ();
353 call = gimple_build_call_internal_1 (fn, nargs);
354 for (i = 0; i < nargs; i++)
355 gimple_call_set_arg (call, i, args[i]);
356
357 return call;
358 }
359
360
361 /* Build a GIMPLE_CALL statement from CALL_EXPR T. Note that T is
362 assumed to be in GIMPLE form already. Minimal checking is done of
363 this fact. */
364
365 gcall *
366 gimple_build_call_from_tree (tree t)
367 {
368 unsigned i, nargs;
369 gcall *call;
370 tree fndecl = get_callee_fndecl (t);
371
372 gcc_assert (TREE_CODE (t) == CALL_EXPR);
373
374 nargs = call_expr_nargs (t);
375 call = gimple_build_call_1 (fndecl ? fndecl : CALL_EXPR_FN (t), nargs);
376
377 for (i = 0; i < nargs; i++)
378 gimple_call_set_arg (call, i, CALL_EXPR_ARG (t, i));
379
380 gimple_set_block (call, TREE_BLOCK (t));
381
382 /* Carry all the CALL_EXPR flags to the new GIMPLE_CALL. */
383 gimple_call_set_chain (call, CALL_EXPR_STATIC_CHAIN (t));
384 gimple_call_set_tail (call, CALL_EXPR_TAILCALL (t));
385 gimple_call_set_return_slot_opt (call, CALL_EXPR_RETURN_SLOT_OPT (t));
386 if (fndecl
387 && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL
388 && (DECL_FUNCTION_CODE (fndecl) == BUILT_IN_ALLOCA
389 || DECL_FUNCTION_CODE (fndecl) == BUILT_IN_ALLOCA_WITH_ALIGN))
390 gimple_call_set_alloca_for_var (call, CALL_ALLOCA_FOR_VAR_P (t));
391 else
392 gimple_call_set_from_thunk (call, CALL_FROM_THUNK_P (t));
393 gimple_call_set_va_arg_pack (call, CALL_EXPR_VA_ARG_PACK (t));
394 gimple_call_set_nothrow (call, TREE_NOTHROW (t));
395 gimple_set_no_warning (call, TREE_NO_WARNING (t));
396 gimple_call_set_with_bounds (call, CALL_WITH_BOUNDS_P (t));
397
398 return call;
399 }
400
401
402 /* Build a GIMPLE_ASSIGN statement.
403
404 LHS of the assignment.
405 RHS of the assignment which can be unary or binary. */
406
407 gassign *
408 gimple_build_assign (tree lhs, tree rhs MEM_STAT_DECL)
409 {
410 enum tree_code subcode;
411 tree op1, op2, op3;
412
413 extract_ops_from_tree_1 (rhs, &subcode, &op1, &op2, &op3);
414 return gimple_build_assign (lhs, subcode, op1, op2, op3 PASS_MEM_STAT);
415 }
416
417
418 /* Build a GIMPLE_ASSIGN statement with subcode SUBCODE and operands
419 OP1, OP2 and OP3. */
420
421 static inline gassign *
422 gimple_build_assign_1 (tree lhs, enum tree_code subcode, tree op1,
423 tree op2, tree op3 MEM_STAT_DECL)
424 {
425 unsigned num_ops;
426 gassign *p;
427
428 /* Need 1 operand for LHS and 1 or 2 for the RHS (depending on the
429 code). */
430 num_ops = get_gimple_rhs_num_ops (subcode) + 1;
431
432 p = as_a <gassign *> (
433 gimple_build_with_ops_stat (GIMPLE_ASSIGN, (unsigned)subcode, num_ops
434 PASS_MEM_STAT));
435 gimple_assign_set_lhs (p, lhs);
436 gimple_assign_set_rhs1 (p, op1);
437 if (op2)
438 {
439 gcc_assert (num_ops > 2);
440 gimple_assign_set_rhs2 (p, op2);
441 }
442
443 if (op3)
444 {
445 gcc_assert (num_ops > 3);
446 gimple_assign_set_rhs3 (p, op3);
447 }
448
449 return p;
450 }
451
452 /* Build a GIMPLE_ASSIGN statement with subcode SUBCODE and operands
453 OP1, OP2 and OP3. */
454
455 gassign *
456 gimple_build_assign (tree lhs, enum tree_code subcode, tree op1,
457 tree op2, tree op3 MEM_STAT_DECL)
458 {
459 return gimple_build_assign_1 (lhs, subcode, op1, op2, op3 PASS_MEM_STAT);
460 }
461
462 /* Build a GIMPLE_ASSIGN statement with subcode SUBCODE and operands
463 OP1 and OP2. */
464
465 gassign *
466 gimple_build_assign (tree lhs, enum tree_code subcode, tree op1,
467 tree op2 MEM_STAT_DECL)
468 {
469 return gimple_build_assign_1 (lhs, subcode, op1, op2, NULL_TREE
470 PASS_MEM_STAT);
471 }
472
473 /* Build a GIMPLE_ASSIGN statement with subcode SUBCODE and operand OP1. */
474
475 gassign *
476 gimple_build_assign (tree lhs, enum tree_code subcode, tree op1 MEM_STAT_DECL)
477 {
478 return gimple_build_assign_1 (lhs, subcode, op1, NULL_TREE, NULL_TREE
479 PASS_MEM_STAT);
480 }
481
482
483 /* Build a GIMPLE_COND statement.
484
485 PRED is the condition used to compare LHS and the RHS.
486 T_LABEL is the label to jump to if the condition is true.
487 F_LABEL is the label to jump to otherwise. */
488
489 gcond *
490 gimple_build_cond (enum tree_code pred_code, tree lhs, tree rhs,
491 tree t_label, tree f_label)
492 {
493 gcond *p;
494
495 gcc_assert (TREE_CODE_CLASS (pred_code) == tcc_comparison);
496 p = as_a <gcond *> (gimple_build_with_ops (GIMPLE_COND, pred_code, 4));
497 gimple_cond_set_lhs (p, lhs);
498 gimple_cond_set_rhs (p, rhs);
499 gimple_cond_set_true_label (p, t_label);
500 gimple_cond_set_false_label (p, f_label);
501 return p;
502 }
503
504 /* Build a GIMPLE_COND statement from the conditional expression tree
505 COND. T_LABEL and F_LABEL are as in gimple_build_cond. */
506
507 gcond *
508 gimple_build_cond_from_tree (tree cond, tree t_label, tree f_label)
509 {
510 enum tree_code code;
511 tree lhs, rhs;
512
513 gimple_cond_get_ops_from_tree (cond, &code, &lhs, &rhs);
514 return gimple_build_cond (code, lhs, rhs, t_label, f_label);
515 }
516
517 /* Set code, lhs, and rhs of a GIMPLE_COND from a suitable
518 boolean expression tree COND. */
519
520 void
521 gimple_cond_set_condition_from_tree (gcond *stmt, tree cond)
522 {
523 enum tree_code code;
524 tree lhs, rhs;
525
526 gimple_cond_get_ops_from_tree (cond, &code, &lhs, &rhs);
527 gimple_cond_set_condition (stmt, code, lhs, rhs);
528 }
529
530 /* Build a GIMPLE_LABEL statement for LABEL. */
531
532 glabel *
533 gimple_build_label (tree label)
534 {
535 glabel *p
536 = as_a <glabel *> (gimple_build_with_ops (GIMPLE_LABEL, ERROR_MARK, 1));
537 gimple_label_set_label (p, label);
538 return p;
539 }
540
541 /* Build a GIMPLE_GOTO statement to label DEST. */
542
543 ggoto *
544 gimple_build_goto (tree dest)
545 {
546 ggoto *p
547 = as_a <ggoto *> (gimple_build_with_ops (GIMPLE_GOTO, ERROR_MARK, 1));
548 gimple_goto_set_dest (p, dest);
549 return p;
550 }
551
552
553 /* Build a GIMPLE_NOP statement. */
554
555 gimple
556 gimple_build_nop (void)
557 {
558 return gimple_alloc (GIMPLE_NOP, 0);
559 }
560
561
562 /* Build a GIMPLE_BIND statement.
563 VARS are the variables in BODY.
564 BLOCK is the containing block. */
565
566 gbind *
567 gimple_build_bind (tree vars, gimple_seq body, tree block)
568 {
569 gbind *p = as_a <gbind *> (gimple_alloc (GIMPLE_BIND, 0));
570 gimple_bind_set_vars (p, vars);
571 if (body)
572 gimple_bind_set_body (p, body);
573 if (block)
574 gimple_bind_set_block (p, block);
575 return p;
576 }
577
578 /* Helper function to set the simple fields of a asm stmt.
579
580 STRING is a pointer to a string that is the asm blocks assembly code.
581 NINPUT is the number of register inputs.
582 NOUTPUT is the number of register outputs.
583 NCLOBBERS is the number of clobbered registers.
584 */
585
586 static inline gasm *
587 gimple_build_asm_1 (const char *string, unsigned ninputs, unsigned noutputs,
588 unsigned nclobbers, unsigned nlabels)
589 {
590 gasm *p;
591 int size = strlen (string);
592
593 /* ASMs with labels cannot have outputs. This should have been
594 enforced by the front end. */
595 gcc_assert (nlabels == 0 || noutputs == 0);
596
597 p = as_a <gasm *> (
598 gimple_build_with_ops (GIMPLE_ASM, ERROR_MARK,
599 ninputs + noutputs + nclobbers + nlabels));
600
601 p->ni = ninputs;
602 p->no = noutputs;
603 p->nc = nclobbers;
604 p->nl = nlabels;
605 p->string = ggc_alloc_string (string, size);
606
607 if (GATHER_STATISTICS)
608 gimple_alloc_sizes[(int) gimple_alloc_kind (GIMPLE_ASM)] += size;
609
610 return p;
611 }
612
613 /* Build a GIMPLE_ASM statement.
614
615 STRING is the assembly code.
616 NINPUT is the number of register inputs.
617 NOUTPUT is the number of register outputs.
618 NCLOBBERS is the number of clobbered registers.
619 INPUTS is a vector of the input register parameters.
620 OUTPUTS is a vector of the output register parameters.
621 CLOBBERS is a vector of the clobbered register parameters.
622 LABELS is a vector of destination labels. */
623
624 gasm *
625 gimple_build_asm_vec (const char *string, vec<tree, va_gc> *inputs,
626 vec<tree, va_gc> *outputs, vec<tree, va_gc> *clobbers,
627 vec<tree, va_gc> *labels)
628 {
629 gasm *p;
630 unsigned i;
631
632 p = gimple_build_asm_1 (string,
633 vec_safe_length (inputs),
634 vec_safe_length (outputs),
635 vec_safe_length (clobbers),
636 vec_safe_length (labels));
637
638 for (i = 0; i < vec_safe_length (inputs); i++)
639 gimple_asm_set_input_op (p, i, (*inputs)[i]);
640
641 for (i = 0; i < vec_safe_length (outputs); i++)
642 gimple_asm_set_output_op (p, i, (*outputs)[i]);
643
644 for (i = 0; i < vec_safe_length (clobbers); i++)
645 gimple_asm_set_clobber_op (p, i, (*clobbers)[i]);
646
647 for (i = 0; i < vec_safe_length (labels); i++)
648 gimple_asm_set_label_op (p, i, (*labels)[i]);
649
650 return p;
651 }
652
653 /* Build a GIMPLE_CATCH statement.
654
655 TYPES are the catch types.
656 HANDLER is the exception handler. */
657
658 gcatch *
659 gimple_build_catch (tree types, gimple_seq handler)
660 {
661 gcatch *p = as_a <gcatch *> (gimple_alloc (GIMPLE_CATCH, 0));
662 gimple_catch_set_types (p, types);
663 if (handler)
664 gimple_catch_set_handler (p, handler);
665
666 return p;
667 }
668
669 /* Build a GIMPLE_EH_FILTER statement.
670
671 TYPES are the filter's types.
672 FAILURE is the filter's failure action. */
673
674 geh_filter *
675 gimple_build_eh_filter (tree types, gimple_seq failure)
676 {
677 geh_filter *p = as_a <geh_filter *> (gimple_alloc (GIMPLE_EH_FILTER, 0));
678 gimple_eh_filter_set_types (p, types);
679 if (failure)
680 gimple_eh_filter_set_failure (p, failure);
681
682 return p;
683 }
684
685 /* Build a GIMPLE_EH_MUST_NOT_THROW statement. */
686
687 geh_mnt *
688 gimple_build_eh_must_not_throw (tree decl)
689 {
690 geh_mnt *p = as_a <geh_mnt *> (gimple_alloc (GIMPLE_EH_MUST_NOT_THROW, 0));
691
692 gcc_assert (TREE_CODE (decl) == FUNCTION_DECL);
693 gcc_assert (flags_from_decl_or_type (decl) & ECF_NORETURN);
694 gimple_eh_must_not_throw_set_fndecl (p, decl);
695
696 return p;
697 }
698
699 /* Build a GIMPLE_EH_ELSE statement. */
700
701 geh_else *
702 gimple_build_eh_else (gimple_seq n_body, gimple_seq e_body)
703 {
704 geh_else *p = as_a <geh_else *> (gimple_alloc (GIMPLE_EH_ELSE, 0));
705 gimple_eh_else_set_n_body (p, n_body);
706 gimple_eh_else_set_e_body (p, e_body);
707 return p;
708 }
709
710 /* Build a GIMPLE_TRY statement.
711
712 EVAL is the expression to evaluate.
713 CLEANUP is the cleanup expression.
714 KIND is either GIMPLE_TRY_CATCH or GIMPLE_TRY_FINALLY depending on
715 whether this is a try/catch or a try/finally respectively. */
716
717 gtry *
718 gimple_build_try (gimple_seq eval, gimple_seq cleanup,
719 enum gimple_try_flags kind)
720 {
721 gtry *p;
722
723 gcc_assert (kind == GIMPLE_TRY_CATCH || kind == GIMPLE_TRY_FINALLY);
724 p = as_a <gtry *> (gimple_alloc (GIMPLE_TRY, 0));
725 gimple_set_subcode (p, kind);
726 if (eval)
727 gimple_try_set_eval (p, eval);
728 if (cleanup)
729 gimple_try_set_cleanup (p, cleanup);
730
731 return p;
732 }
733
734 /* Construct a GIMPLE_WITH_CLEANUP_EXPR statement.
735
736 CLEANUP is the cleanup expression. */
737
738 gimple
739 gimple_build_wce (gimple_seq cleanup)
740 {
741 gimple p = gimple_alloc (GIMPLE_WITH_CLEANUP_EXPR, 0);
742 if (cleanup)
743 gimple_wce_set_cleanup (p, cleanup);
744
745 return p;
746 }
747
748
749 /* Build a GIMPLE_RESX statement. */
750
751 gresx *
752 gimple_build_resx (int region)
753 {
754 gresx *p
755 = as_a <gresx *> (gimple_build_with_ops (GIMPLE_RESX, ERROR_MARK, 0));
756 p->region = region;
757 return p;
758 }
759
760
761 /* The helper for constructing a gimple switch statement.
762 INDEX is the switch's index.
763 NLABELS is the number of labels in the switch excluding the default.
764 DEFAULT_LABEL is the default label for the switch statement. */
765
766 gswitch *
767 gimple_build_switch_nlabels (unsigned nlabels, tree index, tree default_label)
768 {
769 /* nlabels + 1 default label + 1 index. */
770 gcc_checking_assert (default_label);
771 gswitch *p = as_a <gswitch *> (gimple_build_with_ops (GIMPLE_SWITCH,
772 ERROR_MARK,
773 1 + 1 + nlabels));
774 gimple_switch_set_index (p, index);
775 gimple_switch_set_default_label (p, default_label);
776 return p;
777 }
778
779 /* Build a GIMPLE_SWITCH statement.
780
781 INDEX is the switch's index.
782 DEFAULT_LABEL is the default label
783 ARGS is a vector of labels excluding the default. */
784
785 gswitch *
786 gimple_build_switch (tree index, tree default_label, vec<tree> args)
787 {
788 unsigned i, nlabels = args.length ();
789
790 gswitch *p = gimple_build_switch_nlabels (nlabels, index, default_label);
791
792 /* Copy the labels from the vector to the switch statement. */
793 for (i = 0; i < nlabels; i++)
794 gimple_switch_set_label (p, i + 1, args[i]);
795
796 return p;
797 }
798
799 /* Build a GIMPLE_EH_DISPATCH statement. */
800
801 geh_dispatch *
802 gimple_build_eh_dispatch (int region)
803 {
804 geh_dispatch *p
805 = as_a <geh_dispatch *> (
806 gimple_build_with_ops (GIMPLE_EH_DISPATCH, ERROR_MARK, 0));
807 p->region = region;
808 return p;
809 }
810
811 /* Build a new GIMPLE_DEBUG_BIND statement.
812
813 VAR is bound to VALUE; block and location are taken from STMT. */
814
815 gdebug *
816 gimple_build_debug_bind_stat (tree var, tree value, gimple stmt MEM_STAT_DECL)
817 {
818 gdebug *p
819 = as_a <gdebug *> (gimple_build_with_ops_stat (GIMPLE_DEBUG,
820 (unsigned)GIMPLE_DEBUG_BIND, 2
821 PASS_MEM_STAT));
822 gimple_debug_bind_set_var (p, var);
823 gimple_debug_bind_set_value (p, value);
824 if (stmt)
825 gimple_set_location (p, gimple_location (stmt));
826
827 return p;
828 }
829
830
831 /* Build a new GIMPLE_DEBUG_SOURCE_BIND statement.
832
833 VAR is bound to VALUE; block and location are taken from STMT. */
834
835 gdebug *
836 gimple_build_debug_source_bind_stat (tree var, tree value,
837 gimple stmt MEM_STAT_DECL)
838 {
839 gdebug *p
840 = as_a <gdebug *> (
841 gimple_build_with_ops_stat (GIMPLE_DEBUG,
842 (unsigned)GIMPLE_DEBUG_SOURCE_BIND, 2
843 PASS_MEM_STAT));
844
845 gimple_debug_source_bind_set_var (p, var);
846 gimple_debug_source_bind_set_value (p, value);
847 if (stmt)
848 gimple_set_location (p, gimple_location (stmt));
849
850 return p;
851 }
852
853
854 /* Build a GIMPLE_OMP_CRITICAL statement.
855
856 BODY is the sequence of statements for which only one thread can execute.
857 NAME is optional identifier for this critical block. */
858
859 gomp_critical *
860 gimple_build_omp_critical (gimple_seq body, tree name)
861 {
862 gomp_critical *p
863 = as_a <gomp_critical *> (gimple_alloc (GIMPLE_OMP_CRITICAL, 0));
864 gimple_omp_critical_set_name (p, name);
865 if (body)
866 gimple_omp_set_body (p, body);
867
868 return p;
869 }
870
871 /* Build a GIMPLE_OMP_FOR statement.
872
873 BODY is sequence of statements inside the for loop.
874 KIND is the `for' variant.
875 CLAUSES, are any of the construct's clauses.
876 COLLAPSE is the collapse count.
877 PRE_BODY is the sequence of statements that are loop invariant. */
878
879 gomp_for *
880 gimple_build_omp_for (gimple_seq body, int kind, tree clauses, size_t collapse,
881 gimple_seq pre_body)
882 {
883 gomp_for *p = as_a <gomp_for *> (gimple_alloc (GIMPLE_OMP_FOR, 0));
884 if (body)
885 gimple_omp_set_body (p, body);
886 gimple_omp_for_set_clauses (p, clauses);
887 gimple_omp_for_set_kind (p, kind);
888 p->collapse = collapse;
889 p->iter = ggc_cleared_vec_alloc<gimple_omp_for_iter> (collapse);
890
891 if (pre_body)
892 gimple_omp_for_set_pre_body (p, pre_body);
893
894 return p;
895 }
896
897
898 /* Build a GIMPLE_OMP_PARALLEL statement.
899
900 BODY is sequence of statements which are executed in parallel.
901 CLAUSES, are the OMP parallel construct's clauses.
902 CHILD_FN is the function created for the parallel threads to execute.
903 DATA_ARG are the shared data argument(s). */
904
905 gomp_parallel *
906 gimple_build_omp_parallel (gimple_seq body, tree clauses, tree child_fn,
907 tree data_arg)
908 {
909 gomp_parallel *p
910 = as_a <gomp_parallel *> (gimple_alloc (GIMPLE_OMP_PARALLEL, 0));
911 if (body)
912 gimple_omp_set_body (p, body);
913 gimple_omp_parallel_set_clauses (p, clauses);
914 gimple_omp_parallel_set_child_fn (p, child_fn);
915 gimple_omp_parallel_set_data_arg (p, data_arg);
916
917 return p;
918 }
919
920
921 /* Build a GIMPLE_OMP_TASK statement.
922
923 BODY is sequence of statements which are executed by the explicit task.
924 CLAUSES, are the OMP parallel construct's clauses.
925 CHILD_FN is the function created for the parallel threads to execute.
926 DATA_ARG are the shared data argument(s).
927 COPY_FN is the optional function for firstprivate initialization.
928 ARG_SIZE and ARG_ALIGN are size and alignment of the data block. */
929
930 gomp_task *
931 gimple_build_omp_task (gimple_seq body, tree clauses, tree child_fn,
932 tree data_arg, tree copy_fn, tree arg_size,
933 tree arg_align)
934 {
935 gomp_task *p = as_a <gomp_task *> (gimple_alloc (GIMPLE_OMP_TASK, 0));
936 if (body)
937 gimple_omp_set_body (p, body);
938 gimple_omp_task_set_clauses (p, clauses);
939 gimple_omp_task_set_child_fn (p, child_fn);
940 gimple_omp_task_set_data_arg (p, data_arg);
941 gimple_omp_task_set_copy_fn (p, copy_fn);
942 gimple_omp_task_set_arg_size (p, arg_size);
943 gimple_omp_task_set_arg_align (p, arg_align);
944
945 return p;
946 }
947
948
949 /* Build a GIMPLE_OMP_SECTION statement for a sections statement.
950
951 BODY is the sequence of statements in the section. */
952
953 gimple
954 gimple_build_omp_section (gimple_seq body)
955 {
956 gimple p = gimple_alloc (GIMPLE_OMP_SECTION, 0);
957 if (body)
958 gimple_omp_set_body (p, body);
959
960 return p;
961 }
962
963
964 /* Build a GIMPLE_OMP_MASTER statement.
965
966 BODY is the sequence of statements to be executed by just the master. */
967
968 gimple
969 gimple_build_omp_master (gimple_seq body)
970 {
971 gimple p = gimple_alloc (GIMPLE_OMP_MASTER, 0);
972 if (body)
973 gimple_omp_set_body (p, body);
974
975 return p;
976 }
977
978
979 /* Build a GIMPLE_OMP_TASKGROUP statement.
980
981 BODY is the sequence of statements to be executed by the taskgroup
982 construct. */
983
984 gimple
985 gimple_build_omp_taskgroup (gimple_seq body)
986 {
987 gimple p = gimple_alloc (GIMPLE_OMP_TASKGROUP, 0);
988 if (body)
989 gimple_omp_set_body (p, body);
990
991 return p;
992 }
993
994
995 /* Build a GIMPLE_OMP_CONTINUE statement.
996
997 CONTROL_DEF is the definition of the control variable.
998 CONTROL_USE is the use of the control variable. */
999
1000 gomp_continue *
1001 gimple_build_omp_continue (tree control_def, tree control_use)
1002 {
1003 gomp_continue *p
1004 = as_a <gomp_continue *> (gimple_alloc (GIMPLE_OMP_CONTINUE, 0));
1005 gimple_omp_continue_set_control_def (p, control_def);
1006 gimple_omp_continue_set_control_use (p, control_use);
1007 return p;
1008 }
1009
1010 /* Build a GIMPLE_OMP_ORDERED statement.
1011
1012 BODY is the sequence of statements inside a loop that will executed in
1013 sequence. */
1014
1015 gimple
1016 gimple_build_omp_ordered (gimple_seq body)
1017 {
1018 gimple p = gimple_alloc (GIMPLE_OMP_ORDERED, 0);
1019 if (body)
1020 gimple_omp_set_body (p, body);
1021
1022 return p;
1023 }
1024
1025
1026 /* Build a GIMPLE_OMP_RETURN statement.
1027 WAIT_P is true if this is a non-waiting return. */
1028
1029 gimple
1030 gimple_build_omp_return (bool wait_p)
1031 {
1032 gimple p = gimple_alloc (GIMPLE_OMP_RETURN, 0);
1033 if (wait_p)
1034 gimple_omp_return_set_nowait (p);
1035
1036 return p;
1037 }
1038
1039
1040 /* Build a GIMPLE_OMP_SECTIONS statement.
1041
1042 BODY is a sequence of section statements.
1043 CLAUSES are any of the OMP sections contsruct's clauses: private,
1044 firstprivate, lastprivate, reduction, and nowait. */
1045
1046 gomp_sections *
1047 gimple_build_omp_sections (gimple_seq body, tree clauses)
1048 {
1049 gomp_sections *p
1050 = as_a <gomp_sections *> (gimple_alloc (GIMPLE_OMP_SECTIONS, 0));
1051 if (body)
1052 gimple_omp_set_body (p, body);
1053 gimple_omp_sections_set_clauses (p, clauses);
1054
1055 return p;
1056 }
1057
1058
1059 /* Build a GIMPLE_OMP_SECTIONS_SWITCH. */
1060
1061 gimple
1062 gimple_build_omp_sections_switch (void)
1063 {
1064 return gimple_alloc (GIMPLE_OMP_SECTIONS_SWITCH, 0);
1065 }
1066
1067
1068 /* Build a GIMPLE_OMP_SINGLE statement.
1069
1070 BODY is the sequence of statements that will be executed once.
1071 CLAUSES are any of the OMP single construct's clauses: private, firstprivate,
1072 copyprivate, nowait. */
1073
1074 gomp_single *
1075 gimple_build_omp_single (gimple_seq body, tree clauses)
1076 {
1077 gomp_single *p
1078 = as_a <gomp_single *> (gimple_alloc (GIMPLE_OMP_SINGLE, 0));
1079 if (body)
1080 gimple_omp_set_body (p, body);
1081 gimple_omp_single_set_clauses (p, clauses);
1082
1083 return p;
1084 }
1085
1086
1087 /* Build a GIMPLE_OMP_TARGET statement.
1088
1089 BODY is the sequence of statements that will be executed.
1090 KIND is the kind of the region.
1091 CLAUSES are any of the construct's clauses. */
1092
1093 gomp_target *
1094 gimple_build_omp_target (gimple_seq body, int kind, tree clauses)
1095 {
1096 gomp_target *p
1097 = as_a <gomp_target *> (gimple_alloc (GIMPLE_OMP_TARGET, 0));
1098 if (body)
1099 gimple_omp_set_body (p, body);
1100 gimple_omp_target_set_clauses (p, clauses);
1101 gimple_omp_target_set_kind (p, kind);
1102
1103 return p;
1104 }
1105
1106
1107 /* Build a GIMPLE_OMP_TEAMS statement.
1108
1109 BODY is the sequence of statements that will be executed.
1110 CLAUSES are any of the OMP teams construct's clauses. */
1111
1112 gomp_teams *
1113 gimple_build_omp_teams (gimple_seq body, tree clauses)
1114 {
1115 gomp_teams *p = as_a <gomp_teams *> (gimple_alloc (GIMPLE_OMP_TEAMS, 0));
1116 if (body)
1117 gimple_omp_set_body (p, body);
1118 gimple_omp_teams_set_clauses (p, clauses);
1119
1120 return p;
1121 }
1122
1123
1124 /* Build a GIMPLE_OMP_ATOMIC_LOAD statement. */
1125
1126 gomp_atomic_load *
1127 gimple_build_omp_atomic_load (tree lhs, tree rhs)
1128 {
1129 gomp_atomic_load *p
1130 = as_a <gomp_atomic_load *> (gimple_alloc (GIMPLE_OMP_ATOMIC_LOAD, 0));
1131 gimple_omp_atomic_load_set_lhs (p, lhs);
1132 gimple_omp_atomic_load_set_rhs (p, rhs);
1133 return p;
1134 }
1135
1136 /* Build a GIMPLE_OMP_ATOMIC_STORE statement.
1137
1138 VAL is the value we are storing. */
1139
1140 gomp_atomic_store *
1141 gimple_build_omp_atomic_store (tree val)
1142 {
1143 gomp_atomic_store *p
1144 = as_a <gomp_atomic_store *> (gimple_alloc (GIMPLE_OMP_ATOMIC_STORE, 0));
1145 gimple_omp_atomic_store_set_val (p, val);
1146 return p;
1147 }
1148
1149 /* Build a GIMPLE_TRANSACTION statement. */
1150
1151 gtransaction *
1152 gimple_build_transaction (gimple_seq body, tree label)
1153 {
1154 gtransaction *p
1155 = as_a <gtransaction *> (gimple_alloc (GIMPLE_TRANSACTION, 0));
1156 gimple_transaction_set_body (p, body);
1157 gimple_transaction_set_label (p, label);
1158 return p;
1159 }
1160
1161 /* Build a GIMPLE_PREDICT statement. PREDICT is one of the predictors from
1162 predict.def, OUTCOME is NOT_TAKEN or TAKEN. */
1163
1164 gimple
1165 gimple_build_predict (enum br_predictor predictor, enum prediction outcome)
1166 {
1167 gimple p = gimple_alloc (GIMPLE_PREDICT, 0);
1168 /* Ensure all the predictors fit into the lower bits of the subcode. */
1169 gcc_assert ((int) END_PREDICTORS <= GF_PREDICT_TAKEN);
1170 gimple_predict_set_predictor (p, predictor);
1171 gimple_predict_set_outcome (p, outcome);
1172 return p;
1173 }
1174
1175 #if defined ENABLE_GIMPLE_CHECKING
1176 /* Complain of a gimple type mismatch and die. */
1177
1178 void
1179 gimple_check_failed (const_gimple gs, const char *file, int line,
1180 const char *function, enum gimple_code code,
1181 enum tree_code subcode)
1182 {
1183 internal_error ("gimple check: expected %s(%s), have %s(%s) in %s, at %s:%d",
1184 gimple_code_name[code],
1185 get_tree_code_name (subcode),
1186 gimple_code_name[gimple_code (gs)],
1187 gs->subcode > 0
1188 ? get_tree_code_name ((enum tree_code) gs->subcode)
1189 : "",
1190 function, trim_filename (file), line);
1191 }
1192 #endif /* ENABLE_GIMPLE_CHECKING */
1193
1194
1195 /* Link gimple statement GS to the end of the sequence *SEQ_P. If
1196 *SEQ_P is NULL, a new sequence is allocated. */
1197
1198 void
1199 gimple_seq_add_stmt (gimple_seq *seq_p, gimple gs)
1200 {
1201 gimple_stmt_iterator si;
1202 if (gs == NULL)
1203 return;
1204
1205 si = gsi_last (*seq_p);
1206 gsi_insert_after (&si, gs, GSI_NEW_STMT);
1207 }
1208
1209 /* Link gimple statement GS to the end of the sequence *SEQ_P. If
1210 *SEQ_P is NULL, a new sequence is allocated. This function is
1211 similar to gimple_seq_add_stmt, but does not scan the operands.
1212 During gimplification, we need to manipulate statement sequences
1213 before the def/use vectors have been constructed. */
1214
1215 void
1216 gimple_seq_add_stmt_without_update (gimple_seq *seq_p, gimple gs)
1217 {
1218 gimple_stmt_iterator si;
1219
1220 if (gs == NULL)
1221 return;
1222
1223 si = gsi_last (*seq_p);
1224 gsi_insert_after_without_update (&si, gs, GSI_NEW_STMT);
1225 }
1226
1227 /* Append sequence SRC to the end of sequence *DST_P. If *DST_P is
1228 NULL, a new sequence is allocated. */
1229
1230 void
1231 gimple_seq_add_seq (gimple_seq *dst_p, gimple_seq src)
1232 {
1233 gimple_stmt_iterator si;
1234 if (src == NULL)
1235 return;
1236
1237 si = gsi_last (*dst_p);
1238 gsi_insert_seq_after (&si, src, GSI_NEW_STMT);
1239 }
1240
1241 /* Append sequence SRC to the end of sequence *DST_P. If *DST_P is
1242 NULL, a new sequence is allocated. This function is
1243 similar to gimple_seq_add_seq, but does not scan the operands. */
1244
1245 void
1246 gimple_seq_add_seq_without_update (gimple_seq *dst_p, gimple_seq src)
1247 {
1248 gimple_stmt_iterator si;
1249 if (src == NULL)
1250 return;
1251
1252 si = gsi_last (*dst_p);
1253 gsi_insert_seq_after_without_update (&si, src, GSI_NEW_STMT);
1254 }
1255
1256 /* Determine whether to assign a location to the statement GS. */
1257
1258 static bool
1259 should_carry_location_p (gimple gs)
1260 {
1261 /* Don't emit a line note for a label. We particularly don't want to
1262 emit one for the break label, since it doesn't actually correspond
1263 to the beginning of the loop/switch. */
1264 if (gimple_code (gs) == GIMPLE_LABEL)
1265 return false;
1266
1267 return true;
1268 }
1269
1270 /* Set the location for gimple statement GS to LOCATION. */
1271
1272 static void
1273 annotate_one_with_location (gimple gs, location_t location)
1274 {
1275 if (!gimple_has_location (gs)
1276 && !gimple_do_not_emit_location_p (gs)
1277 && should_carry_location_p (gs))
1278 gimple_set_location (gs, location);
1279 }
1280
1281 /* Set LOCATION for all the statements after iterator GSI in sequence
1282 SEQ. If GSI is pointing to the end of the sequence, start with the
1283 first statement in SEQ. */
1284
1285 void
1286 annotate_all_with_location_after (gimple_seq seq, gimple_stmt_iterator gsi,
1287 location_t location)
1288 {
1289 if (gsi_end_p (gsi))
1290 gsi = gsi_start (seq);
1291 else
1292 gsi_next (&gsi);
1293
1294 for (; !gsi_end_p (gsi); gsi_next (&gsi))
1295 annotate_one_with_location (gsi_stmt (gsi), location);
1296 }
1297
1298 /* Set the location for all the statements in a sequence STMT_P to LOCATION. */
1299
1300 void
1301 annotate_all_with_location (gimple_seq stmt_p, location_t location)
1302 {
1303 gimple_stmt_iterator i;
1304
1305 if (gimple_seq_empty_p (stmt_p))
1306 return;
1307
1308 for (i = gsi_start (stmt_p); !gsi_end_p (i); gsi_next (&i))
1309 {
1310 gimple gs = gsi_stmt (i);
1311 annotate_one_with_location (gs, location);
1312 }
1313 }
1314
1315 /* Helper function of empty_body_p. Return true if STMT is an empty
1316 statement. */
1317
1318 static bool
1319 empty_stmt_p (gimple stmt)
1320 {
1321 if (gimple_code (stmt) == GIMPLE_NOP)
1322 return true;
1323 if (gbind *bind_stmt = dyn_cast <gbind *> (stmt))
1324 return empty_body_p (gimple_bind_body (bind_stmt));
1325 return false;
1326 }
1327
1328
1329 /* Return true if BODY contains nothing but empty statements. */
1330
1331 bool
1332 empty_body_p (gimple_seq body)
1333 {
1334 gimple_stmt_iterator i;
1335
1336 if (gimple_seq_empty_p (body))
1337 return true;
1338 for (i = gsi_start (body); !gsi_end_p (i); gsi_next (&i))
1339 if (!empty_stmt_p (gsi_stmt (i))
1340 && !is_gimple_debug (gsi_stmt (i)))
1341 return false;
1342
1343 return true;
1344 }
1345
1346
1347 /* Perform a deep copy of sequence SRC and return the result. */
1348
1349 gimple_seq
1350 gimple_seq_copy (gimple_seq src)
1351 {
1352 gimple_stmt_iterator gsi;
1353 gimple_seq new_seq = NULL;
1354 gimple stmt;
1355
1356 for (gsi = gsi_start (src); !gsi_end_p (gsi); gsi_next (&gsi))
1357 {
1358 stmt = gimple_copy (gsi_stmt (gsi));
1359 gimple_seq_add_stmt (&new_seq, stmt);
1360 }
1361
1362 return new_seq;
1363 }
1364
1365
1366
1367 /* Return true if calls C1 and C2 are known to go to the same function. */
1368
1369 bool
1370 gimple_call_same_target_p (const_gimple c1, const_gimple c2)
1371 {
1372 if (gimple_call_internal_p (c1))
1373 return (gimple_call_internal_p (c2)
1374 && gimple_call_internal_fn (c1) == gimple_call_internal_fn (c2));
1375 else
1376 return (gimple_call_fn (c1) == gimple_call_fn (c2)
1377 || (gimple_call_fndecl (c1)
1378 && gimple_call_fndecl (c1) == gimple_call_fndecl (c2)));
1379 }
1380
1381 /* Detect flags from a GIMPLE_CALL. This is just like
1382 call_expr_flags, but for gimple tuples. */
1383
1384 int
1385 gimple_call_flags (const_gimple stmt)
1386 {
1387 int flags;
1388 tree decl = gimple_call_fndecl (stmt);
1389
1390 if (decl)
1391 flags = flags_from_decl_or_type (decl);
1392 else if (gimple_call_internal_p (stmt))
1393 flags = internal_fn_flags (gimple_call_internal_fn (stmt));
1394 else
1395 flags = flags_from_decl_or_type (gimple_call_fntype (stmt));
1396
1397 if (stmt->subcode & GF_CALL_NOTHROW)
1398 flags |= ECF_NOTHROW;
1399
1400 return flags;
1401 }
1402
1403 /* Return the "fn spec" string for call STMT. */
1404
1405 static const_tree
1406 gimple_call_fnspec (const gcall *stmt)
1407 {
1408 tree type, attr;
1409
1410 if (gimple_call_internal_p (stmt))
1411 return internal_fn_fnspec (gimple_call_internal_fn (stmt));
1412
1413 type = gimple_call_fntype (stmt);
1414 if (!type)
1415 return NULL_TREE;
1416
1417 attr = lookup_attribute ("fn spec", TYPE_ATTRIBUTES (type));
1418 if (!attr)
1419 return NULL_TREE;
1420
1421 return TREE_VALUE (TREE_VALUE (attr));
1422 }
1423
1424 /* Detects argument flags for argument number ARG on call STMT. */
1425
1426 int
1427 gimple_call_arg_flags (const gcall *stmt, unsigned arg)
1428 {
1429 const_tree attr = gimple_call_fnspec (stmt);
1430
1431 if (!attr || 1 + arg >= (unsigned) TREE_STRING_LENGTH (attr))
1432 return 0;
1433
1434 switch (TREE_STRING_POINTER (attr)[1 + arg])
1435 {
1436 case 'x':
1437 case 'X':
1438 return EAF_UNUSED;
1439
1440 case 'R':
1441 return EAF_DIRECT | EAF_NOCLOBBER | EAF_NOESCAPE;
1442
1443 case 'r':
1444 return EAF_NOCLOBBER | EAF_NOESCAPE;
1445
1446 case 'W':
1447 return EAF_DIRECT | EAF_NOESCAPE;
1448
1449 case 'w':
1450 return EAF_NOESCAPE;
1451
1452 case '.':
1453 default:
1454 return 0;
1455 }
1456 }
1457
1458 /* Detects return flags for the call STMT. */
1459
1460 int
1461 gimple_call_return_flags (const gcall *stmt)
1462 {
1463 const_tree attr;
1464
1465 if (gimple_call_flags (stmt) & ECF_MALLOC)
1466 return ERF_NOALIAS;
1467
1468 attr = gimple_call_fnspec (stmt);
1469 if (!attr || TREE_STRING_LENGTH (attr) < 1)
1470 return 0;
1471
1472 switch (TREE_STRING_POINTER (attr)[0])
1473 {
1474 case '1':
1475 case '2':
1476 case '3':
1477 case '4':
1478 return ERF_RETURNS_ARG | (TREE_STRING_POINTER (attr)[0] - '1');
1479
1480 case 'm':
1481 return ERF_NOALIAS;
1482
1483 case '.':
1484 default:
1485 return 0;
1486 }
1487 }
1488
1489
1490 /* Return true if GS is a copy assignment. */
1491
1492 bool
1493 gimple_assign_copy_p (gimple gs)
1494 {
1495 return (gimple_assign_single_p (gs)
1496 && is_gimple_val (gimple_op (gs, 1)));
1497 }
1498
1499
1500 /* Return true if GS is a SSA_NAME copy assignment. */
1501
1502 bool
1503 gimple_assign_ssa_name_copy_p (gimple gs)
1504 {
1505 return (gimple_assign_single_p (gs)
1506 && TREE_CODE (gimple_assign_lhs (gs)) == SSA_NAME
1507 && TREE_CODE (gimple_assign_rhs1 (gs)) == SSA_NAME);
1508 }
1509
1510
1511 /* Return true if GS is an assignment with a unary RHS, but the
1512 operator has no effect on the assigned value. The logic is adapted
1513 from STRIP_NOPS. This predicate is intended to be used in tuplifying
1514 instances in which STRIP_NOPS was previously applied to the RHS of
1515 an assignment.
1516
1517 NOTE: In the use cases that led to the creation of this function
1518 and of gimple_assign_single_p, it is typical to test for either
1519 condition and to proceed in the same manner. In each case, the
1520 assigned value is represented by the single RHS operand of the
1521 assignment. I suspect there may be cases where gimple_assign_copy_p,
1522 gimple_assign_single_p, or equivalent logic is used where a similar
1523 treatment of unary NOPs is appropriate. */
1524
1525 bool
1526 gimple_assign_unary_nop_p (gimple gs)
1527 {
1528 return (is_gimple_assign (gs)
1529 && (CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (gs))
1530 || gimple_assign_rhs_code (gs) == NON_LVALUE_EXPR)
1531 && gimple_assign_rhs1 (gs) != error_mark_node
1532 && (TYPE_MODE (TREE_TYPE (gimple_assign_lhs (gs)))
1533 == TYPE_MODE (TREE_TYPE (gimple_assign_rhs1 (gs)))));
1534 }
1535
1536 /* Set BB to be the basic block holding G. */
1537
1538 void
1539 gimple_set_bb (gimple stmt, basic_block bb)
1540 {
1541 stmt->bb = bb;
1542
1543 if (gimple_code (stmt) != GIMPLE_LABEL)
1544 return;
1545
1546 /* If the statement is a label, add the label to block-to-labels map
1547 so that we can speed up edge creation for GIMPLE_GOTOs. */
1548 if (cfun->cfg)
1549 {
1550 tree t;
1551 int uid;
1552
1553 t = gimple_label_label (as_a <glabel *> (stmt));
1554 uid = LABEL_DECL_UID (t);
1555 if (uid == -1)
1556 {
1557 unsigned old_len =
1558 vec_safe_length (label_to_block_map_for_fn (cfun));
1559 LABEL_DECL_UID (t) = uid = cfun->cfg->last_label_uid++;
1560 if (old_len <= (unsigned) uid)
1561 {
1562 unsigned new_len = 3 * uid / 2 + 1;
1563
1564 vec_safe_grow_cleared (label_to_block_map_for_fn (cfun),
1565 new_len);
1566 }
1567 }
1568
1569 (*label_to_block_map_for_fn (cfun))[uid] = bb;
1570 }
1571 }
1572
1573
1574 /* Modify the RHS of the assignment pointed-to by GSI using the
1575 operands in the expression tree EXPR.
1576
1577 NOTE: The statement pointed-to by GSI may be reallocated if it
1578 did not have enough operand slots.
1579
1580 This function is useful to convert an existing tree expression into
1581 the flat representation used for the RHS of a GIMPLE assignment.
1582 It will reallocate memory as needed to expand or shrink the number
1583 of operand slots needed to represent EXPR.
1584
1585 NOTE: If you find yourself building a tree and then calling this
1586 function, you are most certainly doing it the slow way. It is much
1587 better to build a new assignment or to use the function
1588 gimple_assign_set_rhs_with_ops, which does not require an
1589 expression tree to be built. */
1590
1591 void
1592 gimple_assign_set_rhs_from_tree (gimple_stmt_iterator *gsi, tree expr)
1593 {
1594 enum tree_code subcode;
1595 tree op1, op2, op3;
1596
1597 extract_ops_from_tree_1 (expr, &subcode, &op1, &op2, &op3);
1598 gimple_assign_set_rhs_with_ops (gsi, subcode, op1, op2, op3);
1599 }
1600
1601
1602 /* Set the RHS of assignment statement pointed-to by GSI to CODE with
1603 operands OP1, OP2 and OP3.
1604
1605 NOTE: The statement pointed-to by GSI may be reallocated if it
1606 did not have enough operand slots. */
1607
1608 void
1609 gimple_assign_set_rhs_with_ops (gimple_stmt_iterator *gsi, enum tree_code code,
1610 tree op1, tree op2, tree op3)
1611 {
1612 unsigned new_rhs_ops = get_gimple_rhs_num_ops (code);
1613 gimple stmt = gsi_stmt (*gsi);
1614
1615 /* If the new CODE needs more operands, allocate a new statement. */
1616 if (gimple_num_ops (stmt) < new_rhs_ops + 1)
1617 {
1618 tree lhs = gimple_assign_lhs (stmt);
1619 gimple new_stmt = gimple_alloc (gimple_code (stmt), new_rhs_ops + 1);
1620 memcpy (new_stmt, stmt, gimple_size (gimple_code (stmt)));
1621 gimple_init_singleton (new_stmt);
1622 gsi_replace (gsi, new_stmt, true);
1623 stmt = new_stmt;
1624
1625 /* The LHS needs to be reset as this also changes the SSA name
1626 on the LHS. */
1627 gimple_assign_set_lhs (stmt, lhs);
1628 }
1629
1630 gimple_set_num_ops (stmt, new_rhs_ops + 1);
1631 gimple_set_subcode (stmt, code);
1632 gimple_assign_set_rhs1 (stmt, op1);
1633 if (new_rhs_ops > 1)
1634 gimple_assign_set_rhs2 (stmt, op2);
1635 if (new_rhs_ops > 2)
1636 gimple_assign_set_rhs3 (stmt, op3);
1637 }
1638
1639
1640 /* Return the LHS of a statement that performs an assignment,
1641 either a GIMPLE_ASSIGN or a GIMPLE_CALL. Returns NULL_TREE
1642 for a call to a function that returns no value, or for a
1643 statement other than an assignment or a call. */
1644
1645 tree
1646 gimple_get_lhs (const_gimple stmt)
1647 {
1648 enum gimple_code code = gimple_code (stmt);
1649
1650 if (code == GIMPLE_ASSIGN)
1651 return gimple_assign_lhs (stmt);
1652 else if (code == GIMPLE_CALL)
1653 return gimple_call_lhs (stmt);
1654 else
1655 return NULL_TREE;
1656 }
1657
1658
1659 /* Set the LHS of a statement that performs an assignment,
1660 either a GIMPLE_ASSIGN or a GIMPLE_CALL. */
1661
1662 void
1663 gimple_set_lhs (gimple stmt, tree lhs)
1664 {
1665 enum gimple_code code = gimple_code (stmt);
1666
1667 if (code == GIMPLE_ASSIGN)
1668 gimple_assign_set_lhs (stmt, lhs);
1669 else if (code == GIMPLE_CALL)
1670 gimple_call_set_lhs (stmt, lhs);
1671 else
1672 gcc_unreachable ();
1673 }
1674
1675
1676 /* Return a deep copy of statement STMT. All the operands from STMT
1677 are reallocated and copied using unshare_expr. The DEF, USE, VDEF
1678 and VUSE operand arrays are set to empty in the new copy. The new
1679 copy isn't part of any sequence. */
1680
1681 gimple
1682 gimple_copy (gimple stmt)
1683 {
1684 enum gimple_code code = gimple_code (stmt);
1685 unsigned num_ops = gimple_num_ops (stmt);
1686 gimple copy = gimple_alloc (code, num_ops);
1687 unsigned i;
1688
1689 /* Shallow copy all the fields from STMT. */
1690 memcpy (copy, stmt, gimple_size (code));
1691 gimple_init_singleton (copy);
1692
1693 /* If STMT has sub-statements, deep-copy them as well. */
1694 if (gimple_has_substatements (stmt))
1695 {
1696 gimple_seq new_seq;
1697 tree t;
1698
1699 switch (gimple_code (stmt))
1700 {
1701 case GIMPLE_BIND:
1702 {
1703 gbind *bind_stmt = as_a <gbind *> (stmt);
1704 gbind *bind_copy = as_a <gbind *> (copy);
1705 new_seq = gimple_seq_copy (gimple_bind_body (bind_stmt));
1706 gimple_bind_set_body (bind_copy, new_seq);
1707 gimple_bind_set_vars (bind_copy,
1708 unshare_expr (gimple_bind_vars (bind_stmt)));
1709 gimple_bind_set_block (bind_copy, gimple_bind_block (bind_stmt));
1710 }
1711 break;
1712
1713 case GIMPLE_CATCH:
1714 {
1715 gcatch *catch_stmt = as_a <gcatch *> (stmt);
1716 gcatch *catch_copy = as_a <gcatch *> (copy);
1717 new_seq = gimple_seq_copy (gimple_catch_handler (catch_stmt));
1718 gimple_catch_set_handler (catch_copy, new_seq);
1719 t = unshare_expr (gimple_catch_types (catch_stmt));
1720 gimple_catch_set_types (catch_copy, t);
1721 }
1722 break;
1723
1724 case GIMPLE_EH_FILTER:
1725 {
1726 geh_filter *eh_filter_stmt = as_a <geh_filter *> (stmt);
1727 geh_filter *eh_filter_copy = as_a <geh_filter *> (copy);
1728 new_seq
1729 = gimple_seq_copy (gimple_eh_filter_failure (eh_filter_stmt));
1730 gimple_eh_filter_set_failure (eh_filter_copy, new_seq);
1731 t = unshare_expr (gimple_eh_filter_types (eh_filter_stmt));
1732 gimple_eh_filter_set_types (eh_filter_copy, t);
1733 }
1734 break;
1735
1736 case GIMPLE_EH_ELSE:
1737 {
1738 geh_else *eh_else_stmt = as_a <geh_else *> (stmt);
1739 geh_else *eh_else_copy = as_a <geh_else *> (copy);
1740 new_seq = gimple_seq_copy (gimple_eh_else_n_body (eh_else_stmt));
1741 gimple_eh_else_set_n_body (eh_else_copy, new_seq);
1742 new_seq = gimple_seq_copy (gimple_eh_else_e_body (eh_else_stmt));
1743 gimple_eh_else_set_e_body (eh_else_copy, new_seq);
1744 }
1745 break;
1746
1747 case GIMPLE_TRY:
1748 {
1749 gtry *try_stmt = as_a <gtry *> (stmt);
1750 gtry *try_copy = as_a <gtry *> (copy);
1751 new_seq = gimple_seq_copy (gimple_try_eval (try_stmt));
1752 gimple_try_set_eval (try_copy, new_seq);
1753 new_seq = gimple_seq_copy (gimple_try_cleanup (try_stmt));
1754 gimple_try_set_cleanup (try_copy, new_seq);
1755 }
1756 break;
1757
1758 case GIMPLE_OMP_FOR:
1759 new_seq = gimple_seq_copy (gimple_omp_for_pre_body (stmt));
1760 gimple_omp_for_set_pre_body (copy, new_seq);
1761 t = unshare_expr (gimple_omp_for_clauses (stmt));
1762 gimple_omp_for_set_clauses (copy, t);
1763 {
1764 gomp_for *omp_for_copy = as_a <gomp_for *> (copy);
1765 omp_for_copy->iter = ggc_vec_alloc<gimple_omp_for_iter>
1766 ( gimple_omp_for_collapse (stmt));
1767 }
1768 for (i = 0; i < gimple_omp_for_collapse (stmt); i++)
1769 {
1770 gimple_omp_for_set_cond (copy, i,
1771 gimple_omp_for_cond (stmt, i));
1772 gimple_omp_for_set_index (copy, i,
1773 gimple_omp_for_index (stmt, i));
1774 t = unshare_expr (gimple_omp_for_initial (stmt, i));
1775 gimple_omp_for_set_initial (copy, i, t);
1776 t = unshare_expr (gimple_omp_for_final (stmt, i));
1777 gimple_omp_for_set_final (copy, i, t);
1778 t = unshare_expr (gimple_omp_for_incr (stmt, i));
1779 gimple_omp_for_set_incr (copy, i, t);
1780 }
1781 goto copy_omp_body;
1782
1783 case GIMPLE_OMP_PARALLEL:
1784 {
1785 gomp_parallel *omp_par_stmt = as_a <gomp_parallel *> (stmt);
1786 gomp_parallel *omp_par_copy = as_a <gomp_parallel *> (copy);
1787 t = unshare_expr (gimple_omp_parallel_clauses (omp_par_stmt));
1788 gimple_omp_parallel_set_clauses (omp_par_copy, t);
1789 t = unshare_expr (gimple_omp_parallel_child_fn (omp_par_stmt));
1790 gimple_omp_parallel_set_child_fn (omp_par_copy, t);
1791 t = unshare_expr (gimple_omp_parallel_data_arg (omp_par_stmt));
1792 gimple_omp_parallel_set_data_arg (omp_par_copy, t);
1793 }
1794 goto copy_omp_body;
1795
1796 case GIMPLE_OMP_TASK:
1797 t = unshare_expr (gimple_omp_task_clauses (stmt));
1798 gimple_omp_task_set_clauses (copy, t);
1799 t = unshare_expr (gimple_omp_task_child_fn (stmt));
1800 gimple_omp_task_set_child_fn (copy, t);
1801 t = unshare_expr (gimple_omp_task_data_arg (stmt));
1802 gimple_omp_task_set_data_arg (copy, t);
1803 t = unshare_expr (gimple_omp_task_copy_fn (stmt));
1804 gimple_omp_task_set_copy_fn (copy, t);
1805 t = unshare_expr (gimple_omp_task_arg_size (stmt));
1806 gimple_omp_task_set_arg_size (copy, t);
1807 t = unshare_expr (gimple_omp_task_arg_align (stmt));
1808 gimple_omp_task_set_arg_align (copy, t);
1809 goto copy_omp_body;
1810
1811 case GIMPLE_OMP_CRITICAL:
1812 t = unshare_expr (gimple_omp_critical_name (
1813 as_a <gomp_critical *> (stmt)));
1814 gimple_omp_critical_set_name (as_a <gomp_critical *> (copy), t);
1815 goto copy_omp_body;
1816
1817 case GIMPLE_OMP_SECTIONS:
1818 t = unshare_expr (gimple_omp_sections_clauses (stmt));
1819 gimple_omp_sections_set_clauses (copy, t);
1820 t = unshare_expr (gimple_omp_sections_control (stmt));
1821 gimple_omp_sections_set_control (copy, t);
1822 /* FALLTHRU */
1823
1824 case GIMPLE_OMP_SINGLE:
1825 case GIMPLE_OMP_TARGET:
1826 case GIMPLE_OMP_TEAMS:
1827 case GIMPLE_OMP_SECTION:
1828 case GIMPLE_OMP_MASTER:
1829 case GIMPLE_OMP_TASKGROUP:
1830 case GIMPLE_OMP_ORDERED:
1831 copy_omp_body:
1832 new_seq = gimple_seq_copy (gimple_omp_body (stmt));
1833 gimple_omp_set_body (copy, new_seq);
1834 break;
1835
1836 case GIMPLE_TRANSACTION:
1837 new_seq = gimple_seq_copy (gimple_transaction_body (
1838 as_a <gtransaction *> (stmt)));
1839 gimple_transaction_set_body (as_a <gtransaction *> (copy),
1840 new_seq);
1841 break;
1842
1843 case GIMPLE_WITH_CLEANUP_EXPR:
1844 new_seq = gimple_seq_copy (gimple_wce_cleanup (stmt));
1845 gimple_wce_set_cleanup (copy, new_seq);
1846 break;
1847
1848 default:
1849 gcc_unreachable ();
1850 }
1851 }
1852
1853 /* Make copy of operands. */
1854 for (i = 0; i < num_ops; i++)
1855 gimple_set_op (copy, i, unshare_expr (gimple_op (stmt, i)));
1856
1857 if (gimple_has_mem_ops (stmt))
1858 {
1859 gimple_set_vdef (copy, gimple_vdef (stmt));
1860 gimple_set_vuse (copy, gimple_vuse (stmt));
1861 }
1862
1863 /* Clear out SSA operand vectors on COPY. */
1864 if (gimple_has_ops (stmt))
1865 {
1866 gimple_set_use_ops (copy, NULL);
1867
1868 /* SSA operands need to be updated. */
1869 gimple_set_modified (copy, true);
1870 }
1871
1872 return copy;
1873 }
1874
1875
1876 /* Return true if statement S has side-effects. We consider a
1877 statement to have side effects if:
1878
1879 - It is a GIMPLE_CALL not marked with ECF_PURE or ECF_CONST.
1880 - Any of its operands are marked TREE_THIS_VOLATILE or TREE_SIDE_EFFECTS. */
1881
1882 bool
1883 gimple_has_side_effects (const_gimple s)
1884 {
1885 if (is_gimple_debug (s))
1886 return false;
1887
1888 /* We don't have to scan the arguments to check for
1889 volatile arguments, though, at present, we still
1890 do a scan to check for TREE_SIDE_EFFECTS. */
1891 if (gimple_has_volatile_ops (s))
1892 return true;
1893
1894 if (gimple_code (s) == GIMPLE_ASM
1895 && gimple_asm_volatile_p (as_a <const gasm *> (s)))
1896 return true;
1897
1898 if (is_gimple_call (s))
1899 {
1900 int flags = gimple_call_flags (s);
1901
1902 /* An infinite loop is considered a side effect. */
1903 if (!(flags & (ECF_CONST | ECF_PURE))
1904 || (flags & ECF_LOOPING_CONST_OR_PURE))
1905 return true;
1906
1907 return false;
1908 }
1909
1910 return false;
1911 }
1912
1913 /* Helper for gimple_could_trap_p and gimple_assign_rhs_could_trap_p.
1914 Return true if S can trap. When INCLUDE_MEM is true, check whether
1915 the memory operations could trap. When INCLUDE_STORES is true and
1916 S is a GIMPLE_ASSIGN, the LHS of the assignment is also checked. */
1917
1918 bool
1919 gimple_could_trap_p_1 (gimple s, bool include_mem, bool include_stores)
1920 {
1921 tree t, div = NULL_TREE;
1922 enum tree_code op;
1923
1924 if (include_mem)
1925 {
1926 unsigned i, start = (is_gimple_assign (s) && !include_stores) ? 1 : 0;
1927
1928 for (i = start; i < gimple_num_ops (s); i++)
1929 if (tree_could_trap_p (gimple_op (s, i)))
1930 return true;
1931 }
1932
1933 switch (gimple_code (s))
1934 {
1935 case GIMPLE_ASM:
1936 return gimple_asm_volatile_p (as_a <gasm *> (s));
1937
1938 case GIMPLE_CALL:
1939 t = gimple_call_fndecl (s);
1940 /* Assume that calls to weak functions may trap. */
1941 if (!t || !DECL_P (t) || DECL_WEAK (t))
1942 return true;
1943 return false;
1944
1945 case GIMPLE_ASSIGN:
1946 t = gimple_expr_type (s);
1947 op = gimple_assign_rhs_code (s);
1948 if (get_gimple_rhs_class (op) == GIMPLE_BINARY_RHS)
1949 div = gimple_assign_rhs2 (s);
1950 return (operation_could_trap_p (op, FLOAT_TYPE_P (t),
1951 (INTEGRAL_TYPE_P (t)
1952 && TYPE_OVERFLOW_TRAPS (t)),
1953 div));
1954
1955 default:
1956 break;
1957 }
1958
1959 return false;
1960 }
1961
1962 /* Return true if statement S can trap. */
1963
1964 bool
1965 gimple_could_trap_p (gimple s)
1966 {
1967 return gimple_could_trap_p_1 (s, true, true);
1968 }
1969
1970 /* Return true if RHS of a GIMPLE_ASSIGN S can trap. */
1971
1972 bool
1973 gimple_assign_rhs_could_trap_p (gimple s)
1974 {
1975 gcc_assert (is_gimple_assign (s));
1976 return gimple_could_trap_p_1 (s, true, false);
1977 }
1978
1979
1980 /* Print debugging information for gimple stmts generated. */
1981
1982 void
1983 dump_gimple_statistics (void)
1984 {
1985 int i, total_tuples = 0, total_bytes = 0;
1986
1987 if (! GATHER_STATISTICS)
1988 {
1989 fprintf (stderr, "No gimple statistics\n");
1990 return;
1991 }
1992
1993 fprintf (stderr, "\nGIMPLE statements\n");
1994 fprintf (stderr, "Kind Stmts Bytes\n");
1995 fprintf (stderr, "---------------------------------------\n");
1996 for (i = 0; i < (int) gimple_alloc_kind_all; ++i)
1997 {
1998 fprintf (stderr, "%-20s %7d %10d\n", gimple_alloc_kind_names[i],
1999 gimple_alloc_counts[i], gimple_alloc_sizes[i]);
2000 total_tuples += gimple_alloc_counts[i];
2001 total_bytes += gimple_alloc_sizes[i];
2002 }
2003 fprintf (stderr, "---------------------------------------\n");
2004 fprintf (stderr, "%-20s %7d %10d\n", "Total", total_tuples, total_bytes);
2005 fprintf (stderr, "---------------------------------------\n");
2006 }
2007
2008
2009 /* Return the number of operands needed on the RHS of a GIMPLE
2010 assignment for an expression with tree code CODE. */
2011
2012 unsigned
2013 get_gimple_rhs_num_ops (enum tree_code code)
2014 {
2015 enum gimple_rhs_class rhs_class = get_gimple_rhs_class (code);
2016
2017 if (rhs_class == GIMPLE_UNARY_RHS || rhs_class == GIMPLE_SINGLE_RHS)
2018 return 1;
2019 else if (rhs_class == GIMPLE_BINARY_RHS)
2020 return 2;
2021 else if (rhs_class == GIMPLE_TERNARY_RHS)
2022 return 3;
2023 else
2024 gcc_unreachable ();
2025 }
2026
2027 #define DEFTREECODE(SYM, STRING, TYPE, NARGS) \
2028 (unsigned char) \
2029 ((TYPE) == tcc_unary ? GIMPLE_UNARY_RHS \
2030 : ((TYPE) == tcc_binary \
2031 || (TYPE) == tcc_comparison) ? GIMPLE_BINARY_RHS \
2032 : ((TYPE) == tcc_constant \
2033 || (TYPE) == tcc_declaration \
2034 || (TYPE) == tcc_reference) ? GIMPLE_SINGLE_RHS \
2035 : ((SYM) == TRUTH_AND_EXPR \
2036 || (SYM) == TRUTH_OR_EXPR \
2037 || (SYM) == TRUTH_XOR_EXPR) ? GIMPLE_BINARY_RHS \
2038 : (SYM) == TRUTH_NOT_EXPR ? GIMPLE_UNARY_RHS \
2039 : ((SYM) == COND_EXPR \
2040 || (SYM) == WIDEN_MULT_PLUS_EXPR \
2041 || (SYM) == WIDEN_MULT_MINUS_EXPR \
2042 || (SYM) == DOT_PROD_EXPR \
2043 || (SYM) == SAD_EXPR \
2044 || (SYM) == REALIGN_LOAD_EXPR \
2045 || (SYM) == VEC_COND_EXPR \
2046 || (SYM) == VEC_PERM_EXPR \
2047 || (SYM) == FMA_EXPR) ? GIMPLE_TERNARY_RHS \
2048 : ((SYM) == CONSTRUCTOR \
2049 || (SYM) == OBJ_TYPE_REF \
2050 || (SYM) == ASSERT_EXPR \
2051 || (SYM) == ADDR_EXPR \
2052 || (SYM) == WITH_SIZE_EXPR \
2053 || (SYM) == SSA_NAME) ? GIMPLE_SINGLE_RHS \
2054 : GIMPLE_INVALID_RHS),
2055 #define END_OF_BASE_TREE_CODES (unsigned char) GIMPLE_INVALID_RHS,
2056
2057 const unsigned char gimple_rhs_class_table[] = {
2058 #include "all-tree.def"
2059 };
2060
2061 #undef DEFTREECODE
2062 #undef END_OF_BASE_TREE_CODES
2063
2064 /* Canonicalize a tree T for use in a COND_EXPR as conditional. Returns
2065 a canonicalized tree that is valid for a COND_EXPR or NULL_TREE, if
2066 we failed to create one. */
2067
2068 tree
2069 canonicalize_cond_expr_cond (tree t)
2070 {
2071 /* Strip conversions around boolean operations. */
2072 if (CONVERT_EXPR_P (t)
2073 && (truth_value_p (TREE_CODE (TREE_OPERAND (t, 0)))
2074 || TREE_CODE (TREE_TYPE (TREE_OPERAND (t, 0)))
2075 == BOOLEAN_TYPE))
2076 t = TREE_OPERAND (t, 0);
2077
2078 /* For !x use x == 0. */
2079 if (TREE_CODE (t) == TRUTH_NOT_EXPR)
2080 {
2081 tree top0 = TREE_OPERAND (t, 0);
2082 t = build2 (EQ_EXPR, TREE_TYPE (t),
2083 top0, build_int_cst (TREE_TYPE (top0), 0));
2084 }
2085 /* For cmp ? 1 : 0 use cmp. */
2086 else if (TREE_CODE (t) == COND_EXPR
2087 && COMPARISON_CLASS_P (TREE_OPERAND (t, 0))
2088 && integer_onep (TREE_OPERAND (t, 1))
2089 && integer_zerop (TREE_OPERAND (t, 2)))
2090 {
2091 tree top0 = TREE_OPERAND (t, 0);
2092 t = build2 (TREE_CODE (top0), TREE_TYPE (t),
2093 TREE_OPERAND (top0, 0), TREE_OPERAND (top0, 1));
2094 }
2095 /* For x ^ y use x != y. */
2096 else if (TREE_CODE (t) == BIT_XOR_EXPR)
2097 t = build2 (NE_EXPR, TREE_TYPE (t),
2098 TREE_OPERAND (t, 0), TREE_OPERAND (t, 1));
2099
2100 if (is_gimple_condexpr (t))
2101 return t;
2102
2103 return NULL_TREE;
2104 }
2105
2106 /* Build a GIMPLE_CALL identical to STMT but skipping the arguments in
2107 the positions marked by the set ARGS_TO_SKIP. */
2108
2109 gcall *
2110 gimple_call_copy_skip_args (gcall *stmt, bitmap args_to_skip)
2111 {
2112 int i;
2113 int nargs = gimple_call_num_args (stmt);
2114 auto_vec<tree> vargs (nargs);
2115 gcall *new_stmt;
2116
2117 for (i = 0; i < nargs; i++)
2118 if (!bitmap_bit_p (args_to_skip, i))
2119 vargs.quick_push (gimple_call_arg (stmt, i));
2120
2121 if (gimple_call_internal_p (stmt))
2122 new_stmt = gimple_build_call_internal_vec (gimple_call_internal_fn (stmt),
2123 vargs);
2124 else
2125 new_stmt = gimple_build_call_vec (gimple_call_fn (stmt), vargs);
2126
2127 if (gimple_call_lhs (stmt))
2128 gimple_call_set_lhs (new_stmt, gimple_call_lhs (stmt));
2129
2130 gimple_set_vuse (new_stmt, gimple_vuse (stmt));
2131 gimple_set_vdef (new_stmt, gimple_vdef (stmt));
2132
2133 if (gimple_has_location (stmt))
2134 gimple_set_location (new_stmt, gimple_location (stmt));
2135 gimple_call_copy_flags (new_stmt, stmt);
2136 gimple_call_set_chain (new_stmt, gimple_call_chain (stmt));
2137
2138 gimple_set_modified (new_stmt, true);
2139
2140 return new_stmt;
2141 }
2142
2143
2144
2145 /* Return true if the field decls F1 and F2 are at the same offset.
2146
2147 This is intended to be used on GIMPLE types only. */
2148
2149 bool
2150 gimple_compare_field_offset (tree f1, tree f2)
2151 {
2152 if (DECL_OFFSET_ALIGN (f1) == DECL_OFFSET_ALIGN (f2))
2153 {
2154 tree offset1 = DECL_FIELD_OFFSET (f1);
2155 tree offset2 = DECL_FIELD_OFFSET (f2);
2156 return ((offset1 == offset2
2157 /* Once gimplification is done, self-referential offsets are
2158 instantiated as operand #2 of the COMPONENT_REF built for
2159 each access and reset. Therefore, they are not relevant
2160 anymore and fields are interchangeable provided that they
2161 represent the same access. */
2162 || (TREE_CODE (offset1) == PLACEHOLDER_EXPR
2163 && TREE_CODE (offset2) == PLACEHOLDER_EXPR
2164 && (DECL_SIZE (f1) == DECL_SIZE (f2)
2165 || (TREE_CODE (DECL_SIZE (f1)) == PLACEHOLDER_EXPR
2166 && TREE_CODE (DECL_SIZE (f2)) == PLACEHOLDER_EXPR)
2167 || operand_equal_p (DECL_SIZE (f1), DECL_SIZE (f2), 0))
2168 && DECL_ALIGN (f1) == DECL_ALIGN (f2))
2169 || operand_equal_p (offset1, offset2, 0))
2170 && tree_int_cst_equal (DECL_FIELD_BIT_OFFSET (f1),
2171 DECL_FIELD_BIT_OFFSET (f2)));
2172 }
2173
2174 /* Fortran and C do not always agree on what DECL_OFFSET_ALIGN
2175 should be, so handle differing ones specially by decomposing
2176 the offset into a byte and bit offset manually. */
2177 if (tree_fits_shwi_p (DECL_FIELD_OFFSET (f1))
2178 && tree_fits_shwi_p (DECL_FIELD_OFFSET (f2)))
2179 {
2180 unsigned HOST_WIDE_INT byte_offset1, byte_offset2;
2181 unsigned HOST_WIDE_INT bit_offset1, bit_offset2;
2182 bit_offset1 = TREE_INT_CST_LOW (DECL_FIELD_BIT_OFFSET (f1));
2183 byte_offset1 = (TREE_INT_CST_LOW (DECL_FIELD_OFFSET (f1))
2184 + bit_offset1 / BITS_PER_UNIT);
2185 bit_offset2 = TREE_INT_CST_LOW (DECL_FIELD_BIT_OFFSET (f2));
2186 byte_offset2 = (TREE_INT_CST_LOW (DECL_FIELD_OFFSET (f2))
2187 + bit_offset2 / BITS_PER_UNIT);
2188 if (byte_offset1 != byte_offset2)
2189 return false;
2190 return bit_offset1 % BITS_PER_UNIT == bit_offset2 % BITS_PER_UNIT;
2191 }
2192
2193 return false;
2194 }
2195
2196
2197 /* Return a type the same as TYPE except unsigned or
2198 signed according to UNSIGNEDP. */
2199
2200 static tree
2201 gimple_signed_or_unsigned_type (bool unsignedp, tree type)
2202 {
2203 tree type1;
2204 int i;
2205
2206 type1 = TYPE_MAIN_VARIANT (type);
2207 if (type1 == signed_char_type_node
2208 || type1 == char_type_node
2209 || type1 == unsigned_char_type_node)
2210 return unsignedp ? unsigned_char_type_node : signed_char_type_node;
2211 if (type1 == integer_type_node || type1 == unsigned_type_node)
2212 return unsignedp ? unsigned_type_node : integer_type_node;
2213 if (type1 == short_integer_type_node || type1 == short_unsigned_type_node)
2214 return unsignedp ? short_unsigned_type_node : short_integer_type_node;
2215 if (type1 == long_integer_type_node || type1 == long_unsigned_type_node)
2216 return unsignedp ? long_unsigned_type_node : long_integer_type_node;
2217 if (type1 == long_long_integer_type_node
2218 || type1 == long_long_unsigned_type_node)
2219 return unsignedp
2220 ? long_long_unsigned_type_node
2221 : long_long_integer_type_node;
2222
2223 for (i = 0; i < NUM_INT_N_ENTS; i ++)
2224 if (int_n_enabled_p[i]
2225 && (type1 == int_n_trees[i].unsigned_type
2226 || type1 == int_n_trees[i].signed_type))
2227 return unsignedp
2228 ? int_n_trees[i].unsigned_type
2229 : int_n_trees[i].signed_type;
2230
2231 #if HOST_BITS_PER_WIDE_INT >= 64
2232 if (type1 == intTI_type_node || type1 == unsigned_intTI_type_node)
2233 return unsignedp ? unsigned_intTI_type_node : intTI_type_node;
2234 #endif
2235 if (type1 == intDI_type_node || type1 == unsigned_intDI_type_node)
2236 return unsignedp ? unsigned_intDI_type_node : intDI_type_node;
2237 if (type1 == intSI_type_node || type1 == unsigned_intSI_type_node)
2238 return unsignedp ? unsigned_intSI_type_node : intSI_type_node;
2239 if (type1 == intHI_type_node || type1 == unsigned_intHI_type_node)
2240 return unsignedp ? unsigned_intHI_type_node : intHI_type_node;
2241 if (type1 == intQI_type_node || type1 == unsigned_intQI_type_node)
2242 return unsignedp ? unsigned_intQI_type_node : intQI_type_node;
2243
2244 #define GIMPLE_FIXED_TYPES(NAME) \
2245 if (type1 == short_ ## NAME ## _type_node \
2246 || type1 == unsigned_short_ ## NAME ## _type_node) \
2247 return unsignedp ? unsigned_short_ ## NAME ## _type_node \
2248 : short_ ## NAME ## _type_node; \
2249 if (type1 == NAME ## _type_node \
2250 || type1 == unsigned_ ## NAME ## _type_node) \
2251 return unsignedp ? unsigned_ ## NAME ## _type_node \
2252 : NAME ## _type_node; \
2253 if (type1 == long_ ## NAME ## _type_node \
2254 || type1 == unsigned_long_ ## NAME ## _type_node) \
2255 return unsignedp ? unsigned_long_ ## NAME ## _type_node \
2256 : long_ ## NAME ## _type_node; \
2257 if (type1 == long_long_ ## NAME ## _type_node \
2258 || type1 == unsigned_long_long_ ## NAME ## _type_node) \
2259 return unsignedp ? unsigned_long_long_ ## NAME ## _type_node \
2260 : long_long_ ## NAME ## _type_node;
2261
2262 #define GIMPLE_FIXED_MODE_TYPES(NAME) \
2263 if (type1 == NAME ## _type_node \
2264 || type1 == u ## NAME ## _type_node) \
2265 return unsignedp ? u ## NAME ## _type_node \
2266 : NAME ## _type_node;
2267
2268 #define GIMPLE_FIXED_TYPES_SAT(NAME) \
2269 if (type1 == sat_ ## short_ ## NAME ## _type_node \
2270 || type1 == sat_ ## unsigned_short_ ## NAME ## _type_node) \
2271 return unsignedp ? sat_ ## unsigned_short_ ## NAME ## _type_node \
2272 : sat_ ## short_ ## NAME ## _type_node; \
2273 if (type1 == sat_ ## NAME ## _type_node \
2274 || type1 == sat_ ## unsigned_ ## NAME ## _type_node) \
2275 return unsignedp ? sat_ ## unsigned_ ## NAME ## _type_node \
2276 : sat_ ## NAME ## _type_node; \
2277 if (type1 == sat_ ## long_ ## NAME ## _type_node \
2278 || type1 == sat_ ## unsigned_long_ ## NAME ## _type_node) \
2279 return unsignedp ? sat_ ## unsigned_long_ ## NAME ## _type_node \
2280 : sat_ ## long_ ## NAME ## _type_node; \
2281 if (type1 == sat_ ## long_long_ ## NAME ## _type_node \
2282 || type1 == sat_ ## unsigned_long_long_ ## NAME ## _type_node) \
2283 return unsignedp ? sat_ ## unsigned_long_long_ ## NAME ## _type_node \
2284 : sat_ ## long_long_ ## NAME ## _type_node;
2285
2286 #define GIMPLE_FIXED_MODE_TYPES_SAT(NAME) \
2287 if (type1 == sat_ ## NAME ## _type_node \
2288 || type1 == sat_ ## u ## NAME ## _type_node) \
2289 return unsignedp ? sat_ ## u ## NAME ## _type_node \
2290 : sat_ ## NAME ## _type_node;
2291
2292 GIMPLE_FIXED_TYPES (fract);
2293 GIMPLE_FIXED_TYPES_SAT (fract);
2294 GIMPLE_FIXED_TYPES (accum);
2295 GIMPLE_FIXED_TYPES_SAT (accum);
2296
2297 GIMPLE_FIXED_MODE_TYPES (qq);
2298 GIMPLE_FIXED_MODE_TYPES (hq);
2299 GIMPLE_FIXED_MODE_TYPES (sq);
2300 GIMPLE_FIXED_MODE_TYPES (dq);
2301 GIMPLE_FIXED_MODE_TYPES (tq);
2302 GIMPLE_FIXED_MODE_TYPES_SAT (qq);
2303 GIMPLE_FIXED_MODE_TYPES_SAT (hq);
2304 GIMPLE_FIXED_MODE_TYPES_SAT (sq);
2305 GIMPLE_FIXED_MODE_TYPES_SAT (dq);
2306 GIMPLE_FIXED_MODE_TYPES_SAT (tq);
2307 GIMPLE_FIXED_MODE_TYPES (ha);
2308 GIMPLE_FIXED_MODE_TYPES (sa);
2309 GIMPLE_FIXED_MODE_TYPES (da);
2310 GIMPLE_FIXED_MODE_TYPES (ta);
2311 GIMPLE_FIXED_MODE_TYPES_SAT (ha);
2312 GIMPLE_FIXED_MODE_TYPES_SAT (sa);
2313 GIMPLE_FIXED_MODE_TYPES_SAT (da);
2314 GIMPLE_FIXED_MODE_TYPES_SAT (ta);
2315
2316 /* For ENUMERAL_TYPEs in C++, must check the mode of the types, not
2317 the precision; they have precision set to match their range, but
2318 may use a wider mode to match an ABI. If we change modes, we may
2319 wind up with bad conversions. For INTEGER_TYPEs in C, must check
2320 the precision as well, so as to yield correct results for
2321 bit-field types. C++ does not have these separate bit-field
2322 types, and producing a signed or unsigned variant of an
2323 ENUMERAL_TYPE may cause other problems as well. */
2324 if (!INTEGRAL_TYPE_P (type)
2325 || TYPE_UNSIGNED (type) == unsignedp)
2326 return type;
2327
2328 #define TYPE_OK(node) \
2329 (TYPE_MODE (type) == TYPE_MODE (node) \
2330 && TYPE_PRECISION (type) == TYPE_PRECISION (node))
2331 if (TYPE_OK (signed_char_type_node))
2332 return unsignedp ? unsigned_char_type_node : signed_char_type_node;
2333 if (TYPE_OK (integer_type_node))
2334 return unsignedp ? unsigned_type_node : integer_type_node;
2335 if (TYPE_OK (short_integer_type_node))
2336 return unsignedp ? short_unsigned_type_node : short_integer_type_node;
2337 if (TYPE_OK (long_integer_type_node))
2338 return unsignedp ? long_unsigned_type_node : long_integer_type_node;
2339 if (TYPE_OK (long_long_integer_type_node))
2340 return (unsignedp
2341 ? long_long_unsigned_type_node
2342 : long_long_integer_type_node);
2343
2344 for (i = 0; i < NUM_INT_N_ENTS; i ++)
2345 if (int_n_enabled_p[i]
2346 && TYPE_MODE (type) == int_n_data[i].m
2347 && TYPE_PRECISION (type) == int_n_data[i].bitsize)
2348 return unsignedp
2349 ? int_n_trees[i].unsigned_type
2350 : int_n_trees[i].signed_type;
2351
2352 #if HOST_BITS_PER_WIDE_INT >= 64
2353 if (TYPE_OK (intTI_type_node))
2354 return unsignedp ? unsigned_intTI_type_node : intTI_type_node;
2355 #endif
2356 if (TYPE_OK (intDI_type_node))
2357 return unsignedp ? unsigned_intDI_type_node : intDI_type_node;
2358 if (TYPE_OK (intSI_type_node))
2359 return unsignedp ? unsigned_intSI_type_node : intSI_type_node;
2360 if (TYPE_OK (intHI_type_node))
2361 return unsignedp ? unsigned_intHI_type_node : intHI_type_node;
2362 if (TYPE_OK (intQI_type_node))
2363 return unsignedp ? unsigned_intQI_type_node : intQI_type_node;
2364
2365 #undef GIMPLE_FIXED_TYPES
2366 #undef GIMPLE_FIXED_MODE_TYPES
2367 #undef GIMPLE_FIXED_TYPES_SAT
2368 #undef GIMPLE_FIXED_MODE_TYPES_SAT
2369 #undef TYPE_OK
2370
2371 return build_nonstandard_integer_type (TYPE_PRECISION (type), unsignedp);
2372 }
2373
2374
2375 /* Return an unsigned type the same as TYPE in other respects. */
2376
2377 tree
2378 gimple_unsigned_type (tree type)
2379 {
2380 return gimple_signed_or_unsigned_type (true, type);
2381 }
2382
2383
2384 /* Return a signed type the same as TYPE in other respects. */
2385
2386 tree
2387 gimple_signed_type (tree type)
2388 {
2389 return gimple_signed_or_unsigned_type (false, type);
2390 }
2391
2392
2393 /* Return the typed-based alias set for T, which may be an expression
2394 or a type. Return -1 if we don't do anything special. */
2395
2396 alias_set_type
2397 gimple_get_alias_set (tree t)
2398 {
2399 tree u;
2400
2401 /* Permit type-punning when accessing a union, provided the access
2402 is directly through the union. For example, this code does not
2403 permit taking the address of a union member and then storing
2404 through it. Even the type-punning allowed here is a GCC
2405 extension, albeit a common and useful one; the C standard says
2406 that such accesses have implementation-defined behavior. */
2407 for (u = t;
2408 TREE_CODE (u) == COMPONENT_REF || TREE_CODE (u) == ARRAY_REF;
2409 u = TREE_OPERAND (u, 0))
2410 if (TREE_CODE (u) == COMPONENT_REF
2411 && TREE_CODE (TREE_TYPE (TREE_OPERAND (u, 0))) == UNION_TYPE)
2412 return 0;
2413
2414 /* That's all the expressions we handle specially. */
2415 if (!TYPE_P (t))
2416 return -1;
2417
2418 /* For convenience, follow the C standard when dealing with
2419 character types. Any object may be accessed via an lvalue that
2420 has character type. */
2421 if (t == char_type_node
2422 || t == signed_char_type_node
2423 || t == unsigned_char_type_node)
2424 return 0;
2425
2426 /* Allow aliasing between signed and unsigned variants of the same
2427 type. We treat the signed variant as canonical. */
2428 if (TREE_CODE (t) == INTEGER_TYPE && TYPE_UNSIGNED (t))
2429 {
2430 tree t1 = gimple_signed_type (t);
2431
2432 /* t1 == t can happen for boolean nodes which are always unsigned. */
2433 if (t1 != t)
2434 return get_alias_set (t1);
2435 }
2436
2437 return -1;
2438 }
2439
2440
2441 /* Helper for gimple_ior_addresses_taken_1. */
2442
2443 static bool
2444 gimple_ior_addresses_taken_1 (gimple, tree addr, tree, void *data)
2445 {
2446 bitmap addresses_taken = (bitmap)data;
2447 addr = get_base_address (addr);
2448 if (addr
2449 && DECL_P (addr))
2450 {
2451 bitmap_set_bit (addresses_taken, DECL_UID (addr));
2452 return true;
2453 }
2454 return false;
2455 }
2456
2457 /* Set the bit for the uid of all decls that have their address taken
2458 in STMT in the ADDRESSES_TAKEN bitmap. Returns true if there
2459 were any in this stmt. */
2460
2461 bool
2462 gimple_ior_addresses_taken (bitmap addresses_taken, gimple stmt)
2463 {
2464 return walk_stmt_load_store_addr_ops (stmt, addresses_taken, NULL, NULL,
2465 gimple_ior_addresses_taken_1);
2466 }
2467
2468
2469 /* Return true if TYPE1 and TYPE2 are compatible enough for builtin
2470 processing. */
2471
2472 static bool
2473 validate_type (tree type1, tree type2)
2474 {
2475 if (INTEGRAL_TYPE_P (type1)
2476 && INTEGRAL_TYPE_P (type2))
2477 ;
2478 else if (POINTER_TYPE_P (type1)
2479 && POINTER_TYPE_P (type2))
2480 ;
2481 else if (TREE_CODE (type1)
2482 != TREE_CODE (type2))
2483 return false;
2484 return true;
2485 }
2486
2487 /* Return true when STMTs arguments and return value match those of FNDECL,
2488 a decl of a builtin function. */
2489
2490 bool
2491 gimple_builtin_call_types_compatible_p (const_gimple stmt, tree fndecl)
2492 {
2493 gcc_checking_assert (DECL_BUILT_IN_CLASS (fndecl) != NOT_BUILT_IN);
2494
2495 tree ret = gimple_call_lhs (stmt);
2496 if (ret
2497 && !validate_type (TREE_TYPE (ret), TREE_TYPE (TREE_TYPE (fndecl))))
2498 return false;
2499
2500 tree targs = TYPE_ARG_TYPES (TREE_TYPE (fndecl));
2501 unsigned nargs = gimple_call_num_args (stmt);
2502 for (unsigned i = 0; i < nargs; ++i)
2503 {
2504 /* Variadic args follow. */
2505 if (!targs)
2506 return true;
2507 tree arg = gimple_call_arg (stmt, i);
2508 if (!validate_type (TREE_TYPE (arg), TREE_VALUE (targs)))
2509 return false;
2510 targs = TREE_CHAIN (targs);
2511 }
2512 if (targs && !VOID_TYPE_P (TREE_VALUE (targs)))
2513 return false;
2514 return true;
2515 }
2516
2517 /* Return true when STMT is builtins call. */
2518
2519 bool
2520 gimple_call_builtin_p (const_gimple stmt)
2521 {
2522 tree fndecl;
2523 if (is_gimple_call (stmt)
2524 && (fndecl = gimple_call_fndecl (stmt)) != NULL_TREE
2525 && DECL_BUILT_IN_CLASS (fndecl) != NOT_BUILT_IN)
2526 return gimple_builtin_call_types_compatible_p (stmt, fndecl);
2527 return false;
2528 }
2529
2530 /* Return true when STMT is builtins call to CLASS. */
2531
2532 bool
2533 gimple_call_builtin_p (const_gimple stmt, enum built_in_class klass)
2534 {
2535 tree fndecl;
2536 if (is_gimple_call (stmt)
2537 && (fndecl = gimple_call_fndecl (stmt)) != NULL_TREE
2538 && DECL_BUILT_IN_CLASS (fndecl) == klass)
2539 return gimple_builtin_call_types_compatible_p (stmt, fndecl);
2540 return false;
2541 }
2542
2543 /* Return true when STMT is builtins call to CODE of CLASS. */
2544
2545 bool
2546 gimple_call_builtin_p (const_gimple stmt, enum built_in_function code)
2547 {
2548 tree fndecl;
2549 if (is_gimple_call (stmt)
2550 && (fndecl = gimple_call_fndecl (stmt)) != NULL_TREE
2551 && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL
2552 && DECL_FUNCTION_CODE (fndecl) == code)
2553 return gimple_builtin_call_types_compatible_p (stmt, fndecl);
2554 return false;
2555 }
2556
2557 /* Return true if STMT clobbers memory. STMT is required to be a
2558 GIMPLE_ASM. */
2559
2560 bool
2561 gimple_asm_clobbers_memory_p (const gasm *stmt)
2562 {
2563 unsigned i;
2564
2565 for (i = 0; i < gimple_asm_nclobbers (stmt); i++)
2566 {
2567 tree op = gimple_asm_clobber_op (stmt, i);
2568 if (strcmp (TREE_STRING_POINTER (TREE_VALUE (op)), "memory") == 0)
2569 return true;
2570 }
2571
2572 return false;
2573 }
2574
2575 /* Dump bitmap SET (assumed to contain VAR_DECLs) to FILE. */
2576
2577 void
2578 dump_decl_set (FILE *file, bitmap set)
2579 {
2580 if (set)
2581 {
2582 bitmap_iterator bi;
2583 unsigned i;
2584
2585 fprintf (file, "{ ");
2586
2587 EXECUTE_IF_SET_IN_BITMAP (set, 0, i, bi)
2588 {
2589 fprintf (file, "D.%u", i);
2590 fprintf (file, " ");
2591 }
2592
2593 fprintf (file, "}");
2594 }
2595 else
2596 fprintf (file, "NIL");
2597 }
2598
2599 /* Return true when CALL is a call stmt that definitely doesn't
2600 free any memory or makes it unavailable otherwise. */
2601 bool
2602 nonfreeing_call_p (gimple call)
2603 {
2604 if (gimple_call_builtin_p (call, BUILT_IN_NORMAL)
2605 && gimple_call_flags (call) & ECF_LEAF)
2606 switch (DECL_FUNCTION_CODE (gimple_call_fndecl (call)))
2607 {
2608 /* Just in case these become ECF_LEAF in the future. */
2609 case BUILT_IN_FREE:
2610 case BUILT_IN_TM_FREE:
2611 case BUILT_IN_REALLOC:
2612 case BUILT_IN_STACK_RESTORE:
2613 return false;
2614 default:
2615 return true;
2616 }
2617 else if (gimple_call_internal_p (call))
2618 switch (gimple_call_internal_fn (call))
2619 {
2620 case IFN_ABNORMAL_DISPATCHER:
2621 return true;
2622 default:
2623 if (gimple_call_flags (call) & ECF_LEAF)
2624 return true;
2625 return false;
2626 }
2627
2628 tree fndecl = gimple_call_fndecl (call);
2629 if (!fndecl)
2630 return false;
2631 struct cgraph_node *n = cgraph_node::get (fndecl);
2632 if (!n)
2633 return false;
2634 enum availability availability;
2635 n = n->function_symbol (&availability);
2636 if (!n || availability <= AVAIL_INTERPOSABLE)
2637 return false;
2638 return n->nonfreeing_fn;
2639 }
2640
2641 /* Callback for walk_stmt_load_store_ops.
2642
2643 Return TRUE if OP will dereference the tree stored in DATA, FALSE
2644 otherwise.
2645
2646 This routine only makes a superficial check for a dereference. Thus
2647 it must only be used if it is safe to return a false negative. */
2648 static bool
2649 check_loadstore (gimple, tree op, tree, void *data)
2650 {
2651 if ((TREE_CODE (op) == MEM_REF || TREE_CODE (op) == TARGET_MEM_REF)
2652 && operand_equal_p (TREE_OPERAND (op, 0), (tree)data, 0))
2653 return true;
2654 return false;
2655 }
2656
2657 /* If OP can be inferred to be non-NULL after STMT executes, return true.
2658
2659 DEREFERENCE is TRUE if we can use a pointer dereference to infer a
2660 non-NULL range, FALSE otherwise.
2661
2662 ATTRIBUTE is TRUE if we can use attributes to infer a non-NULL range
2663 for function arguments and return values. FALSE otherwise. */
2664
2665 bool
2666 infer_nonnull_range (gimple stmt, tree op, bool dereference, bool attribute)
2667 {
2668 /* We can only assume that a pointer dereference will yield
2669 non-NULL if -fdelete-null-pointer-checks is enabled. */
2670 if (!flag_delete_null_pointer_checks
2671 || !POINTER_TYPE_P (TREE_TYPE (op))
2672 || gimple_code (stmt) == GIMPLE_ASM)
2673 return false;
2674
2675 if (dereference
2676 && walk_stmt_load_store_ops (stmt, (void *)op,
2677 check_loadstore, check_loadstore))
2678 return true;
2679
2680 if (attribute
2681 && is_gimple_call (stmt) && !gimple_call_internal_p (stmt))
2682 {
2683 tree fntype = gimple_call_fntype (stmt);
2684 tree attrs = TYPE_ATTRIBUTES (fntype);
2685 for (; attrs; attrs = TREE_CHAIN (attrs))
2686 {
2687 attrs = lookup_attribute ("nonnull", attrs);
2688
2689 /* If "nonnull" wasn't specified, we know nothing about
2690 the argument. */
2691 if (attrs == NULL_TREE)
2692 return false;
2693
2694 /* If "nonnull" applies to all the arguments, then ARG
2695 is non-null if it's in the argument list. */
2696 if (TREE_VALUE (attrs) == NULL_TREE)
2697 {
2698 for (unsigned int i = 0; i < gimple_call_num_args (stmt); i++)
2699 {
2700 if (POINTER_TYPE_P (TREE_TYPE (gimple_call_arg (stmt, i)))
2701 && operand_equal_p (op, gimple_call_arg (stmt, i), 0))
2702 return true;
2703 }
2704 return false;
2705 }
2706
2707 /* Now see if op appears in the nonnull list. */
2708 for (tree t = TREE_VALUE (attrs); t; t = TREE_CHAIN (t))
2709 {
2710 int idx = TREE_INT_CST_LOW (TREE_VALUE (t)) - 1;
2711 tree arg = gimple_call_arg (stmt, idx);
2712 if (operand_equal_p (op, arg, 0))
2713 return true;
2714 }
2715 }
2716 }
2717
2718 /* If this function is marked as returning non-null, then we can
2719 infer OP is non-null if it is used in the return statement. */
2720 if (attribute)
2721 if (greturn *return_stmt = dyn_cast <greturn *> (stmt))
2722 if (gimple_return_retval (return_stmt)
2723 && operand_equal_p (gimple_return_retval (return_stmt), op, 0)
2724 && lookup_attribute ("returns_nonnull",
2725 TYPE_ATTRIBUTES (TREE_TYPE (current_function_decl))))
2726 return true;
2727
2728 return false;
2729 }
2730
2731 /* Compare two case labels. Because the front end should already have
2732 made sure that case ranges do not overlap, it is enough to only compare
2733 the CASE_LOW values of each case label. */
2734
2735 static int
2736 compare_case_labels (const void *p1, const void *p2)
2737 {
2738 const_tree const case1 = *(const_tree const*)p1;
2739 const_tree const case2 = *(const_tree const*)p2;
2740
2741 /* The 'default' case label always goes first. */
2742 if (!CASE_LOW (case1))
2743 return -1;
2744 else if (!CASE_LOW (case2))
2745 return 1;
2746 else
2747 return tree_int_cst_compare (CASE_LOW (case1), CASE_LOW (case2));
2748 }
2749
2750 /* Sort the case labels in LABEL_VEC in place in ascending order. */
2751
2752 void
2753 sort_case_labels (vec<tree> label_vec)
2754 {
2755 label_vec.qsort (compare_case_labels);
2756 }
2757 \f
2758 /* Prepare a vector of case labels to be used in a GIMPLE_SWITCH statement.
2759
2760 LABELS is a vector that contains all case labels to look at.
2761
2762 INDEX_TYPE is the type of the switch index expression. Case labels
2763 in LABELS are discarded if their values are not in the value range
2764 covered by INDEX_TYPE. The remaining case label values are folded
2765 to INDEX_TYPE.
2766
2767 If a default case exists in LABELS, it is removed from LABELS and
2768 returned in DEFAULT_CASEP. If no default case exists, but the
2769 case labels already cover the whole range of INDEX_TYPE, a default
2770 case is returned pointing to one of the existing case labels.
2771 Otherwise DEFAULT_CASEP is set to NULL_TREE.
2772
2773 DEFAULT_CASEP may be NULL, in which case the above comment doesn't
2774 apply and no action is taken regardless of whether a default case is
2775 found or not. */
2776
2777 void
2778 preprocess_case_label_vec_for_gimple (vec<tree> labels,
2779 tree index_type,
2780 tree *default_casep)
2781 {
2782 tree min_value, max_value;
2783 tree default_case = NULL_TREE;
2784 size_t i, len;
2785
2786 i = 0;
2787 min_value = TYPE_MIN_VALUE (index_type);
2788 max_value = TYPE_MAX_VALUE (index_type);
2789 while (i < labels.length ())
2790 {
2791 tree elt = labels[i];
2792 tree low = CASE_LOW (elt);
2793 tree high = CASE_HIGH (elt);
2794 bool remove_element = FALSE;
2795
2796 if (low)
2797 {
2798 gcc_checking_assert (TREE_CODE (low) == INTEGER_CST);
2799 gcc_checking_assert (!high || TREE_CODE (high) == INTEGER_CST);
2800
2801 /* This is a non-default case label, i.e. it has a value.
2802
2803 See if the case label is reachable within the range of
2804 the index type. Remove out-of-range case values. Turn
2805 case ranges into a canonical form (high > low strictly)
2806 and convert the case label values to the index type.
2807
2808 NB: The type of gimple_switch_index() may be the promoted
2809 type, but the case labels retain the original type. */
2810
2811 if (high)
2812 {
2813 /* This is a case range. Discard empty ranges.
2814 If the bounds or the range are equal, turn this
2815 into a simple (one-value) case. */
2816 int cmp = tree_int_cst_compare (high, low);
2817 if (cmp < 0)
2818 remove_element = TRUE;
2819 else if (cmp == 0)
2820 high = NULL_TREE;
2821 }
2822
2823 if (! high)
2824 {
2825 /* If the simple case value is unreachable, ignore it. */
2826 if ((TREE_CODE (min_value) == INTEGER_CST
2827 && tree_int_cst_compare (low, min_value) < 0)
2828 || (TREE_CODE (max_value) == INTEGER_CST
2829 && tree_int_cst_compare (low, max_value) > 0))
2830 remove_element = TRUE;
2831 else
2832 low = fold_convert (index_type, low);
2833 }
2834 else
2835 {
2836 /* If the entire case range is unreachable, ignore it. */
2837 if ((TREE_CODE (min_value) == INTEGER_CST
2838 && tree_int_cst_compare (high, min_value) < 0)
2839 || (TREE_CODE (max_value) == INTEGER_CST
2840 && tree_int_cst_compare (low, max_value) > 0))
2841 remove_element = TRUE;
2842 else
2843 {
2844 /* If the lower bound is less than the index type's
2845 minimum value, truncate the range bounds. */
2846 if (TREE_CODE (min_value) == INTEGER_CST
2847 && tree_int_cst_compare (low, min_value) < 0)
2848 low = min_value;
2849 low = fold_convert (index_type, low);
2850
2851 /* If the upper bound is greater than the index type's
2852 maximum value, truncate the range bounds. */
2853 if (TREE_CODE (max_value) == INTEGER_CST
2854 && tree_int_cst_compare (high, max_value) > 0)
2855 high = max_value;
2856 high = fold_convert (index_type, high);
2857
2858 /* We may have folded a case range to a one-value case. */
2859 if (tree_int_cst_equal (low, high))
2860 high = NULL_TREE;
2861 }
2862 }
2863
2864 CASE_LOW (elt) = low;
2865 CASE_HIGH (elt) = high;
2866 }
2867 else
2868 {
2869 gcc_assert (!default_case);
2870 default_case = elt;
2871 /* The default case must be passed separately to the
2872 gimple_build_switch routine. But if DEFAULT_CASEP
2873 is NULL, we do not remove the default case (it would
2874 be completely lost). */
2875 if (default_casep)
2876 remove_element = TRUE;
2877 }
2878
2879 if (remove_element)
2880 labels.ordered_remove (i);
2881 else
2882 i++;
2883 }
2884 len = i;
2885
2886 if (!labels.is_empty ())
2887 sort_case_labels (labels);
2888
2889 if (default_casep && !default_case)
2890 {
2891 /* If the switch has no default label, add one, so that we jump
2892 around the switch body. If the labels already cover the whole
2893 range of the switch index_type, add the default label pointing
2894 to one of the existing labels. */
2895 if (len
2896 && TYPE_MIN_VALUE (index_type)
2897 && TYPE_MAX_VALUE (index_type)
2898 && tree_int_cst_equal (CASE_LOW (labels[0]),
2899 TYPE_MIN_VALUE (index_type)))
2900 {
2901 tree low, high = CASE_HIGH (labels[len - 1]);
2902 if (!high)
2903 high = CASE_LOW (labels[len - 1]);
2904 if (tree_int_cst_equal (high, TYPE_MAX_VALUE (index_type)))
2905 {
2906 for (i = 1; i < len; i++)
2907 {
2908 high = CASE_LOW (labels[i]);
2909 low = CASE_HIGH (labels[i - 1]);
2910 if (!low)
2911 low = CASE_LOW (labels[i - 1]);
2912 if (wi::add (low, 1) != high)
2913 break;
2914 }
2915 if (i == len)
2916 {
2917 tree label = CASE_LABEL (labels[0]);
2918 default_case = build_case_label (NULL_TREE, NULL_TREE,
2919 label);
2920 }
2921 }
2922 }
2923 }
2924
2925 if (default_casep)
2926 *default_casep = default_case;
2927 }
2928
2929 /* Set the location of all statements in SEQ to LOC. */
2930
2931 void
2932 gimple_seq_set_location (gimple_seq seq, location_t loc)
2933 {
2934 for (gimple_stmt_iterator i = gsi_start (seq); !gsi_end_p (i); gsi_next (&i))
2935 gimple_set_location (gsi_stmt (i), loc);
2936 }
2937
2938 /* Release SSA_NAMEs in SEQ as well as the GIMPLE statements. */
2939
2940 void
2941 gimple_seq_discard (gimple_seq seq)
2942 {
2943 gimple_stmt_iterator gsi;
2944
2945 for (gsi = gsi_start (seq); !gsi_end_p (gsi); )
2946 {
2947 gimple stmt = gsi_stmt (gsi);
2948 gsi_remove (&gsi, true);
2949 release_defs (stmt);
2950 ggc_free (stmt);
2951 }
2952 }