]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/gimple.c
revert: cgraph.h (varpool_node): Add need_bounds_init field.
[thirdparty/gcc.git] / gcc / gimple.c
1 /* Gimple IR support functions.
2
3 Copyright (C) 2007-2013 Free Software Foundation, Inc.
4 Contributed by Aldy Hernandez <aldyh@redhat.com>
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
12
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
21
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "tm.h"
26 #include "target.h"
27 #include "tree.h"
28 #include "calls.h"
29 #include "stmt.h"
30 #include "stor-layout.h"
31 #include "hard-reg-set.h"
32 #include "basic-block.h"
33 #include "tree-ssa-alias.h"
34 #include "internal-fn.h"
35 #include "tree-eh.h"
36 #include "gimple-expr.h"
37 #include "is-a.h"
38 #include "gimple.h"
39 #include "gimple-iterator.h"
40 #include "gimple-walk.h"
41 #include "gimple.h"
42 #include "gimplify.h"
43 #include "diagnostic.h"
44 #include "value-prof.h"
45 #include "flags.h"
46 #include "alias.h"
47 #include "demangle.h"
48 #include "langhooks.h"
49 #include "bitmap.h"
50
51
52 /* All the tuples have their operand vector (if present) at the very bottom
53 of the structure. Therefore, the offset required to find the
54 operands vector the size of the structure minus the size of the 1
55 element tree array at the end (see gimple_ops). */
56 #define DEFGSSTRUCT(SYM, STRUCT, HAS_TREE_OP) \
57 (HAS_TREE_OP ? sizeof (struct STRUCT) - sizeof (tree) : 0),
58 EXPORTED_CONST size_t gimple_ops_offset_[] = {
59 #include "gsstruct.def"
60 };
61 #undef DEFGSSTRUCT
62
63 #define DEFGSSTRUCT(SYM, STRUCT, HAS_TREE_OP) sizeof (struct STRUCT),
64 static const size_t gsstruct_code_size[] = {
65 #include "gsstruct.def"
66 };
67 #undef DEFGSSTRUCT
68
69 #define DEFGSCODE(SYM, NAME, GSSCODE) NAME,
70 const char *const gimple_code_name[] = {
71 #include "gimple.def"
72 };
73 #undef DEFGSCODE
74
75 #define DEFGSCODE(SYM, NAME, GSSCODE) GSSCODE,
76 EXPORTED_CONST enum gimple_statement_structure_enum gss_for_code_[] = {
77 #include "gimple.def"
78 };
79 #undef DEFGSCODE
80
81 /* Gimple stats. */
82
83 int gimple_alloc_counts[(int) gimple_alloc_kind_all];
84 int gimple_alloc_sizes[(int) gimple_alloc_kind_all];
85
86 /* Keep in sync with gimple.h:enum gimple_alloc_kind. */
87 static const char * const gimple_alloc_kind_names[] = {
88 "assignments",
89 "phi nodes",
90 "conditionals",
91 "everything else"
92 };
93
94 /* Gimple tuple constructors.
95 Note: Any constructor taking a ``gimple_seq'' as a parameter, can
96 be passed a NULL to start with an empty sequence. */
97
98 /* Set the code for statement G to CODE. */
99
100 static inline void
101 gimple_set_code (gimple g, enum gimple_code code)
102 {
103 g->code = code;
104 }
105
106 /* Return the number of bytes needed to hold a GIMPLE statement with
107 code CODE. */
108
109 static inline size_t
110 gimple_size (enum gimple_code code)
111 {
112 return gsstruct_code_size[gss_for_code (code)];
113 }
114
115 /* Allocate memory for a GIMPLE statement with code CODE and NUM_OPS
116 operands. */
117
118 gimple
119 gimple_alloc_stat (enum gimple_code code, unsigned num_ops MEM_STAT_DECL)
120 {
121 size_t size;
122 gimple stmt;
123
124 size = gimple_size (code);
125 if (num_ops > 0)
126 size += sizeof (tree) * (num_ops - 1);
127
128 if (GATHER_STATISTICS)
129 {
130 enum gimple_alloc_kind kind = gimple_alloc_kind (code);
131 gimple_alloc_counts[(int) kind]++;
132 gimple_alloc_sizes[(int) kind] += size;
133 }
134
135 stmt = ggc_alloc_cleared_gimple_statement_stat (size PASS_MEM_STAT);
136 gimple_set_code (stmt, code);
137 gimple_set_num_ops (stmt, num_ops);
138
139 /* Do not call gimple_set_modified here as it has other side
140 effects and this tuple is still not completely built. */
141 stmt->modified = 1;
142 gimple_init_singleton (stmt);
143
144 return stmt;
145 }
146
147 /* Set SUBCODE to be the code of the expression computed by statement G. */
148
149 static inline void
150 gimple_set_subcode (gimple g, unsigned subcode)
151 {
152 /* We only have 16 bits for the RHS code. Assert that we are not
153 overflowing it. */
154 gcc_assert (subcode < (1 << 16));
155 g->subcode = subcode;
156 }
157
158
159
160 /* Build a tuple with operands. CODE is the statement to build (which
161 must be one of the GIMPLE_WITH_OPS tuples). SUBCODE is the subcode
162 for the new tuple. NUM_OPS is the number of operands to allocate. */
163
164 #define gimple_build_with_ops(c, s, n) \
165 gimple_build_with_ops_stat (c, s, n MEM_STAT_INFO)
166
167 static gimple
168 gimple_build_with_ops_stat (enum gimple_code code, unsigned subcode,
169 unsigned num_ops MEM_STAT_DECL)
170 {
171 gimple s = gimple_alloc_stat (code, num_ops PASS_MEM_STAT);
172 gimple_set_subcode (s, subcode);
173
174 return s;
175 }
176
177
178 /* Build a GIMPLE_RETURN statement returning RETVAL. */
179
180 gimple
181 gimple_build_return (tree retval)
182 {
183 gimple s = gimple_build_with_ops (GIMPLE_RETURN, ERROR_MARK, 1);
184 if (retval)
185 gimple_return_set_retval (s, retval);
186 return s;
187 }
188
189 /* Reset alias information on call S. */
190
191 void
192 gimple_call_reset_alias_info (gimple s)
193 {
194 if (gimple_call_flags (s) & ECF_CONST)
195 memset (gimple_call_use_set (s), 0, sizeof (struct pt_solution));
196 else
197 pt_solution_reset (gimple_call_use_set (s));
198 if (gimple_call_flags (s) & (ECF_CONST|ECF_PURE|ECF_NOVOPS))
199 memset (gimple_call_clobber_set (s), 0, sizeof (struct pt_solution));
200 else
201 pt_solution_reset (gimple_call_clobber_set (s));
202 }
203
204 /* Helper for gimple_build_call, gimple_build_call_valist,
205 gimple_build_call_vec and gimple_build_call_from_tree. Build the basic
206 components of a GIMPLE_CALL statement to function FN with NARGS
207 arguments. */
208
209 static inline gimple
210 gimple_build_call_1 (tree fn, unsigned nargs)
211 {
212 gimple s = gimple_build_with_ops (GIMPLE_CALL, ERROR_MARK, nargs + 3);
213 if (TREE_CODE (fn) == FUNCTION_DECL)
214 fn = build_fold_addr_expr (fn);
215 gimple_set_op (s, 1, fn);
216 gimple_call_set_fntype (s, TREE_TYPE (TREE_TYPE (fn)));
217 gimple_call_reset_alias_info (s);
218 return s;
219 }
220
221
222 /* Build a GIMPLE_CALL statement to function FN with the arguments
223 specified in vector ARGS. */
224
225 gimple
226 gimple_build_call_vec (tree fn, vec<tree> args)
227 {
228 unsigned i;
229 unsigned nargs = args.length ();
230 gimple call = gimple_build_call_1 (fn, nargs);
231
232 for (i = 0; i < nargs; i++)
233 gimple_call_set_arg (call, i, args[i]);
234
235 return call;
236 }
237
238
239 /* Build a GIMPLE_CALL statement to function FN. NARGS is the number of
240 arguments. The ... are the arguments. */
241
242 gimple
243 gimple_build_call (tree fn, unsigned nargs, ...)
244 {
245 va_list ap;
246 gimple call;
247 unsigned i;
248
249 gcc_assert (TREE_CODE (fn) == FUNCTION_DECL || is_gimple_call_addr (fn));
250
251 call = gimple_build_call_1 (fn, nargs);
252
253 va_start (ap, nargs);
254 for (i = 0; i < nargs; i++)
255 gimple_call_set_arg (call, i, va_arg (ap, tree));
256 va_end (ap);
257
258 return call;
259 }
260
261
262 /* Build a GIMPLE_CALL statement to function FN. NARGS is the number of
263 arguments. AP contains the arguments. */
264
265 gimple
266 gimple_build_call_valist (tree fn, unsigned nargs, va_list ap)
267 {
268 gimple call;
269 unsigned i;
270
271 gcc_assert (TREE_CODE (fn) == FUNCTION_DECL || is_gimple_call_addr (fn));
272
273 call = gimple_build_call_1 (fn, nargs);
274
275 for (i = 0; i < nargs; i++)
276 gimple_call_set_arg (call, i, va_arg (ap, tree));
277
278 return call;
279 }
280
281
282 /* Helper for gimple_build_call_internal and gimple_build_call_internal_vec.
283 Build the basic components of a GIMPLE_CALL statement to internal
284 function FN with NARGS arguments. */
285
286 static inline gimple
287 gimple_build_call_internal_1 (enum internal_fn fn, unsigned nargs)
288 {
289 gimple s = gimple_build_with_ops (GIMPLE_CALL, ERROR_MARK, nargs + 3);
290 s->subcode |= GF_CALL_INTERNAL;
291 gimple_call_set_internal_fn (s, fn);
292 gimple_call_reset_alias_info (s);
293 return s;
294 }
295
296
297 /* Build a GIMPLE_CALL statement to internal function FN. NARGS is
298 the number of arguments. The ... are the arguments. */
299
300 gimple
301 gimple_build_call_internal (enum internal_fn fn, unsigned nargs, ...)
302 {
303 va_list ap;
304 gimple call;
305 unsigned i;
306
307 call = gimple_build_call_internal_1 (fn, nargs);
308 va_start (ap, nargs);
309 for (i = 0; i < nargs; i++)
310 gimple_call_set_arg (call, i, va_arg (ap, tree));
311 va_end (ap);
312
313 return call;
314 }
315
316
317 /* Build a GIMPLE_CALL statement to internal function FN with the arguments
318 specified in vector ARGS. */
319
320 gimple
321 gimple_build_call_internal_vec (enum internal_fn fn, vec<tree> args)
322 {
323 unsigned i, nargs;
324 gimple call;
325
326 nargs = args.length ();
327 call = gimple_build_call_internal_1 (fn, nargs);
328 for (i = 0; i < nargs; i++)
329 gimple_call_set_arg (call, i, args[i]);
330
331 return call;
332 }
333
334
335 /* Build a GIMPLE_CALL statement from CALL_EXPR T. Note that T is
336 assumed to be in GIMPLE form already. Minimal checking is done of
337 this fact. */
338
339 gimple
340 gimple_build_call_from_tree (tree t)
341 {
342 unsigned i, nargs;
343 gimple call;
344 tree fndecl = get_callee_fndecl (t);
345
346 gcc_assert (TREE_CODE (t) == CALL_EXPR);
347
348 nargs = call_expr_nargs (t);
349 call = gimple_build_call_1 (fndecl ? fndecl : CALL_EXPR_FN (t), nargs);
350
351 for (i = 0; i < nargs; i++)
352 gimple_call_set_arg (call, i, CALL_EXPR_ARG (t, i));
353
354 gimple_set_block (call, TREE_BLOCK (t));
355
356 /* Carry all the CALL_EXPR flags to the new GIMPLE_CALL. */
357 gimple_call_set_chain (call, CALL_EXPR_STATIC_CHAIN (t));
358 gimple_call_set_tail (call, CALL_EXPR_TAILCALL (t));
359 gimple_call_set_return_slot_opt (call, CALL_EXPR_RETURN_SLOT_OPT (t));
360 if (fndecl
361 && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL
362 && (DECL_FUNCTION_CODE (fndecl) == BUILT_IN_ALLOCA
363 || DECL_FUNCTION_CODE (fndecl) == BUILT_IN_ALLOCA_WITH_ALIGN))
364 gimple_call_set_alloca_for_var (call, CALL_ALLOCA_FOR_VAR_P (t));
365 else
366 gimple_call_set_from_thunk (call, CALL_FROM_THUNK_P (t));
367 gimple_call_set_va_arg_pack (call, CALL_EXPR_VA_ARG_PACK (t));
368 gimple_call_set_nothrow (call, TREE_NOTHROW (t));
369 gimple_set_no_warning (call, TREE_NO_WARNING (t));
370
371 return call;
372 }
373
374
375 /* Build a GIMPLE_ASSIGN statement.
376
377 LHS of the assignment.
378 RHS of the assignment which can be unary or binary. */
379
380 gimple
381 gimple_build_assign_stat (tree lhs, tree rhs MEM_STAT_DECL)
382 {
383 enum tree_code subcode;
384 tree op1, op2, op3;
385
386 extract_ops_from_tree_1 (rhs, &subcode, &op1, &op2, &op3);
387 return gimple_build_assign_with_ops (subcode, lhs, op1, op2, op3
388 PASS_MEM_STAT);
389 }
390
391
392 /* Build a GIMPLE_ASSIGN statement with subcode SUBCODE and operands
393 OP1 and OP2. If OP2 is NULL then SUBCODE must be of class
394 GIMPLE_UNARY_RHS or GIMPLE_SINGLE_RHS. */
395
396 gimple
397 gimple_build_assign_with_ops (enum tree_code subcode, tree lhs, tree op1,
398 tree op2, tree op3 MEM_STAT_DECL)
399 {
400 unsigned num_ops;
401 gimple p;
402
403 /* Need 1 operand for LHS and 1 or 2 for the RHS (depending on the
404 code). */
405 num_ops = get_gimple_rhs_num_ops (subcode) + 1;
406
407 p = gimple_build_with_ops_stat (GIMPLE_ASSIGN, (unsigned)subcode, num_ops
408 PASS_MEM_STAT);
409 gimple_assign_set_lhs (p, lhs);
410 gimple_assign_set_rhs1 (p, op1);
411 if (op2)
412 {
413 gcc_assert (num_ops > 2);
414 gimple_assign_set_rhs2 (p, op2);
415 }
416
417 if (op3)
418 {
419 gcc_assert (num_ops > 3);
420 gimple_assign_set_rhs3 (p, op3);
421 }
422
423 return p;
424 }
425
426 gimple
427 gimple_build_assign_with_ops (enum tree_code subcode, tree lhs, tree op1,
428 tree op2 MEM_STAT_DECL)
429 {
430 return gimple_build_assign_with_ops (subcode, lhs, op1, op2, NULL_TREE
431 PASS_MEM_STAT);
432 }
433
434
435 /* Build a GIMPLE_COND statement.
436
437 PRED is the condition used to compare LHS and the RHS.
438 T_LABEL is the label to jump to if the condition is true.
439 F_LABEL is the label to jump to otherwise. */
440
441 gimple
442 gimple_build_cond (enum tree_code pred_code, tree lhs, tree rhs,
443 tree t_label, tree f_label)
444 {
445 gimple p;
446
447 gcc_assert (TREE_CODE_CLASS (pred_code) == tcc_comparison);
448 p = gimple_build_with_ops (GIMPLE_COND, pred_code, 4);
449 gimple_cond_set_lhs (p, lhs);
450 gimple_cond_set_rhs (p, rhs);
451 gimple_cond_set_true_label (p, t_label);
452 gimple_cond_set_false_label (p, f_label);
453 return p;
454 }
455
456 /* Build a GIMPLE_COND statement from the conditional expression tree
457 COND. T_LABEL and F_LABEL are as in gimple_build_cond. */
458
459 gimple
460 gimple_build_cond_from_tree (tree cond, tree t_label, tree f_label)
461 {
462 enum tree_code code;
463 tree lhs, rhs;
464
465 gimple_cond_get_ops_from_tree (cond, &code, &lhs, &rhs);
466 return gimple_build_cond (code, lhs, rhs, t_label, f_label);
467 }
468
469 /* Set code, lhs, and rhs of a GIMPLE_COND from a suitable
470 boolean expression tree COND. */
471
472 void
473 gimple_cond_set_condition_from_tree (gimple stmt, tree cond)
474 {
475 enum tree_code code;
476 tree lhs, rhs;
477
478 gimple_cond_get_ops_from_tree (cond, &code, &lhs, &rhs);
479 gimple_cond_set_condition (stmt, code, lhs, rhs);
480 }
481
482 /* Build a GIMPLE_LABEL statement for LABEL. */
483
484 gimple
485 gimple_build_label (tree label)
486 {
487 gimple p = gimple_build_with_ops (GIMPLE_LABEL, ERROR_MARK, 1);
488 gimple_label_set_label (p, label);
489 return p;
490 }
491
492 /* Build a GIMPLE_GOTO statement to label DEST. */
493
494 gimple
495 gimple_build_goto (tree dest)
496 {
497 gimple p = gimple_build_with_ops (GIMPLE_GOTO, ERROR_MARK, 1);
498 gimple_goto_set_dest (p, dest);
499 return p;
500 }
501
502
503 /* Build a GIMPLE_NOP statement. */
504
505 gimple
506 gimple_build_nop (void)
507 {
508 return gimple_alloc (GIMPLE_NOP, 0);
509 }
510
511
512 /* Build a GIMPLE_BIND statement.
513 VARS are the variables in BODY.
514 BLOCK is the containing block. */
515
516 gimple
517 gimple_build_bind (tree vars, gimple_seq body, tree block)
518 {
519 gimple p = gimple_alloc (GIMPLE_BIND, 0);
520 gimple_bind_set_vars (p, vars);
521 if (body)
522 gimple_bind_set_body (p, body);
523 if (block)
524 gimple_bind_set_block (p, block);
525 return p;
526 }
527
528 /* Helper function to set the simple fields of a asm stmt.
529
530 STRING is a pointer to a string that is the asm blocks assembly code.
531 NINPUT is the number of register inputs.
532 NOUTPUT is the number of register outputs.
533 NCLOBBERS is the number of clobbered registers.
534 */
535
536 static inline gimple
537 gimple_build_asm_1 (const char *string, unsigned ninputs, unsigned noutputs,
538 unsigned nclobbers, unsigned nlabels)
539 {
540 gimple_statement_asm *p;
541 int size = strlen (string);
542
543 /* ASMs with labels cannot have outputs. This should have been
544 enforced by the front end. */
545 gcc_assert (nlabels == 0 || noutputs == 0);
546
547 p = as_a <gimple_statement_asm> (
548 gimple_build_with_ops (GIMPLE_ASM, ERROR_MARK,
549 ninputs + noutputs + nclobbers + nlabels));
550
551 p->ni = ninputs;
552 p->no = noutputs;
553 p->nc = nclobbers;
554 p->nl = nlabels;
555 p->string = ggc_alloc_string (string, size);
556
557 if (GATHER_STATISTICS)
558 gimple_alloc_sizes[(int) gimple_alloc_kind (GIMPLE_ASM)] += size;
559
560 return p;
561 }
562
563 /* Build a GIMPLE_ASM statement.
564
565 STRING is the assembly code.
566 NINPUT is the number of register inputs.
567 NOUTPUT is the number of register outputs.
568 NCLOBBERS is the number of clobbered registers.
569 INPUTS is a vector of the input register parameters.
570 OUTPUTS is a vector of the output register parameters.
571 CLOBBERS is a vector of the clobbered register parameters.
572 LABELS is a vector of destination labels. */
573
574 gimple
575 gimple_build_asm_vec (const char *string, vec<tree, va_gc> *inputs,
576 vec<tree, va_gc> *outputs, vec<tree, va_gc> *clobbers,
577 vec<tree, va_gc> *labels)
578 {
579 gimple p;
580 unsigned i;
581
582 p = gimple_build_asm_1 (string,
583 vec_safe_length (inputs),
584 vec_safe_length (outputs),
585 vec_safe_length (clobbers),
586 vec_safe_length (labels));
587
588 for (i = 0; i < vec_safe_length (inputs); i++)
589 gimple_asm_set_input_op (p, i, (*inputs)[i]);
590
591 for (i = 0; i < vec_safe_length (outputs); i++)
592 gimple_asm_set_output_op (p, i, (*outputs)[i]);
593
594 for (i = 0; i < vec_safe_length (clobbers); i++)
595 gimple_asm_set_clobber_op (p, i, (*clobbers)[i]);
596
597 for (i = 0; i < vec_safe_length (labels); i++)
598 gimple_asm_set_label_op (p, i, (*labels)[i]);
599
600 return p;
601 }
602
603 /* Build a GIMPLE_CATCH statement.
604
605 TYPES are the catch types.
606 HANDLER is the exception handler. */
607
608 gimple
609 gimple_build_catch (tree types, gimple_seq handler)
610 {
611 gimple p = gimple_alloc (GIMPLE_CATCH, 0);
612 gimple_catch_set_types (p, types);
613 if (handler)
614 gimple_catch_set_handler (p, handler);
615
616 return p;
617 }
618
619 /* Build a GIMPLE_EH_FILTER statement.
620
621 TYPES are the filter's types.
622 FAILURE is the filter's failure action. */
623
624 gimple
625 gimple_build_eh_filter (tree types, gimple_seq failure)
626 {
627 gimple p = gimple_alloc (GIMPLE_EH_FILTER, 0);
628 gimple_eh_filter_set_types (p, types);
629 if (failure)
630 gimple_eh_filter_set_failure (p, failure);
631
632 return p;
633 }
634
635 /* Build a GIMPLE_EH_MUST_NOT_THROW statement. */
636
637 gimple
638 gimple_build_eh_must_not_throw (tree decl)
639 {
640 gimple p = gimple_alloc (GIMPLE_EH_MUST_NOT_THROW, 0);
641
642 gcc_assert (TREE_CODE (decl) == FUNCTION_DECL);
643 gcc_assert (flags_from_decl_or_type (decl) & ECF_NORETURN);
644 gimple_eh_must_not_throw_set_fndecl (p, decl);
645
646 return p;
647 }
648
649 /* Build a GIMPLE_EH_ELSE statement. */
650
651 gimple
652 gimple_build_eh_else (gimple_seq n_body, gimple_seq e_body)
653 {
654 gimple p = gimple_alloc (GIMPLE_EH_ELSE, 0);
655 gimple_eh_else_set_n_body (p, n_body);
656 gimple_eh_else_set_e_body (p, e_body);
657 return p;
658 }
659
660 /* Build a GIMPLE_TRY statement.
661
662 EVAL is the expression to evaluate.
663 CLEANUP is the cleanup expression.
664 KIND is either GIMPLE_TRY_CATCH or GIMPLE_TRY_FINALLY depending on
665 whether this is a try/catch or a try/finally respectively. */
666
667 gimple_statement_try *
668 gimple_build_try (gimple_seq eval, gimple_seq cleanup,
669 enum gimple_try_flags kind)
670 {
671 gimple_statement_try *p;
672
673 gcc_assert (kind == GIMPLE_TRY_CATCH || kind == GIMPLE_TRY_FINALLY);
674 p = as_a <gimple_statement_try> (gimple_alloc (GIMPLE_TRY, 0));
675 gimple_set_subcode (p, kind);
676 if (eval)
677 gimple_try_set_eval (p, eval);
678 if (cleanup)
679 gimple_try_set_cleanup (p, cleanup);
680
681 return p;
682 }
683
684 /* Construct a GIMPLE_WITH_CLEANUP_EXPR statement.
685
686 CLEANUP is the cleanup expression. */
687
688 gimple
689 gimple_build_wce (gimple_seq cleanup)
690 {
691 gimple p = gimple_alloc (GIMPLE_WITH_CLEANUP_EXPR, 0);
692 if (cleanup)
693 gimple_wce_set_cleanup (p, cleanup);
694
695 return p;
696 }
697
698
699 /* Build a GIMPLE_RESX statement. */
700
701 gimple
702 gimple_build_resx (int region)
703 {
704 gimple_statement_resx *p =
705 as_a <gimple_statement_resx> (
706 gimple_build_with_ops (GIMPLE_RESX, ERROR_MARK, 0));
707 p->region = region;
708 return p;
709 }
710
711
712 /* The helper for constructing a gimple switch statement.
713 INDEX is the switch's index.
714 NLABELS is the number of labels in the switch excluding the default.
715 DEFAULT_LABEL is the default label for the switch statement. */
716
717 gimple
718 gimple_build_switch_nlabels (unsigned nlabels, tree index, tree default_label)
719 {
720 /* nlabels + 1 default label + 1 index. */
721 gcc_checking_assert (default_label);
722 gimple p = gimple_build_with_ops (GIMPLE_SWITCH, ERROR_MARK,
723 1 + 1 + nlabels);
724 gimple_switch_set_index (p, index);
725 gimple_switch_set_default_label (p, default_label);
726 return p;
727 }
728
729 /* Build a GIMPLE_SWITCH statement.
730
731 INDEX is the switch's index.
732 DEFAULT_LABEL is the default label
733 ARGS is a vector of labels excluding the default. */
734
735 gimple
736 gimple_build_switch (tree index, tree default_label, vec<tree> args)
737 {
738 unsigned i, nlabels = args.length ();
739
740 gimple p = gimple_build_switch_nlabels (nlabels, index, default_label);
741
742 /* Copy the labels from the vector to the switch statement. */
743 for (i = 0; i < nlabels; i++)
744 gimple_switch_set_label (p, i + 1, args[i]);
745
746 return p;
747 }
748
749 /* Build a GIMPLE_EH_DISPATCH statement. */
750
751 gimple
752 gimple_build_eh_dispatch (int region)
753 {
754 gimple_statement_eh_dispatch *p =
755 as_a <gimple_statement_eh_dispatch> (
756 gimple_build_with_ops (GIMPLE_EH_DISPATCH, ERROR_MARK, 0));
757 p->region = region;
758 return p;
759 }
760
761 /* Build a new GIMPLE_DEBUG_BIND statement.
762
763 VAR is bound to VALUE; block and location are taken from STMT. */
764
765 gimple
766 gimple_build_debug_bind_stat (tree var, tree value, gimple stmt MEM_STAT_DECL)
767 {
768 gimple p = gimple_build_with_ops_stat (GIMPLE_DEBUG,
769 (unsigned)GIMPLE_DEBUG_BIND, 2
770 PASS_MEM_STAT);
771
772 gimple_debug_bind_set_var (p, var);
773 gimple_debug_bind_set_value (p, value);
774 if (stmt)
775 gimple_set_location (p, gimple_location (stmt));
776
777 return p;
778 }
779
780
781 /* Build a new GIMPLE_DEBUG_SOURCE_BIND statement.
782
783 VAR is bound to VALUE; block and location are taken from STMT. */
784
785 gimple
786 gimple_build_debug_source_bind_stat (tree var, tree value,
787 gimple stmt MEM_STAT_DECL)
788 {
789 gimple p = gimple_build_with_ops_stat (GIMPLE_DEBUG,
790 (unsigned)GIMPLE_DEBUG_SOURCE_BIND, 2
791 PASS_MEM_STAT);
792
793 gimple_debug_source_bind_set_var (p, var);
794 gimple_debug_source_bind_set_value (p, value);
795 if (stmt)
796 gimple_set_location (p, gimple_location (stmt));
797
798 return p;
799 }
800
801
802 /* Build a GIMPLE_OMP_CRITICAL statement.
803
804 BODY is the sequence of statements for which only one thread can execute.
805 NAME is optional identifier for this critical block. */
806
807 gimple
808 gimple_build_omp_critical (gimple_seq body, tree name)
809 {
810 gimple p = gimple_alloc (GIMPLE_OMP_CRITICAL, 0);
811 gimple_omp_critical_set_name (p, name);
812 if (body)
813 gimple_omp_set_body (p, body);
814
815 return p;
816 }
817
818 /* Build a GIMPLE_OMP_FOR statement.
819
820 BODY is sequence of statements inside the for loop.
821 KIND is the `for' variant.
822 CLAUSES, are any of the OMP loop construct's clauses: private, firstprivate,
823 lastprivate, reductions, ordered, schedule, and nowait.
824 COLLAPSE is the collapse count.
825 PRE_BODY is the sequence of statements that are loop invariant. */
826
827 gimple
828 gimple_build_omp_for (gimple_seq body, int kind, tree clauses, size_t collapse,
829 gimple_seq pre_body)
830 {
831 gimple_statement_omp_for *p =
832 as_a <gimple_statement_omp_for> (gimple_alloc (GIMPLE_OMP_FOR, 0));
833 if (body)
834 gimple_omp_set_body (p, body);
835 gimple_omp_for_set_clauses (p, clauses);
836 gimple_omp_for_set_kind (p, kind);
837 p->collapse = collapse;
838 p->iter = static_cast <struct gimple_omp_for_iter *> (
839 ggc_internal_cleared_vec_alloc_stat (sizeof (*p->iter),
840 collapse MEM_STAT_INFO));
841
842 if (pre_body)
843 gimple_omp_for_set_pre_body (p, pre_body);
844
845 return p;
846 }
847
848
849 /* Build a GIMPLE_OMP_PARALLEL statement.
850
851 BODY is sequence of statements which are executed in parallel.
852 CLAUSES, are the OMP parallel construct's clauses.
853 CHILD_FN is the function created for the parallel threads to execute.
854 DATA_ARG are the shared data argument(s). */
855
856 gimple
857 gimple_build_omp_parallel (gimple_seq body, tree clauses, tree child_fn,
858 tree data_arg)
859 {
860 gimple p = gimple_alloc (GIMPLE_OMP_PARALLEL, 0);
861 if (body)
862 gimple_omp_set_body (p, body);
863 gimple_omp_parallel_set_clauses (p, clauses);
864 gimple_omp_parallel_set_child_fn (p, child_fn);
865 gimple_omp_parallel_set_data_arg (p, data_arg);
866
867 return p;
868 }
869
870
871 /* Build a GIMPLE_OMP_TASK statement.
872
873 BODY is sequence of statements which are executed by the explicit task.
874 CLAUSES, are the OMP parallel construct's clauses.
875 CHILD_FN is the function created for the parallel threads to execute.
876 DATA_ARG are the shared data argument(s).
877 COPY_FN is the optional function for firstprivate initialization.
878 ARG_SIZE and ARG_ALIGN are size and alignment of the data block. */
879
880 gimple
881 gimple_build_omp_task (gimple_seq body, tree clauses, tree child_fn,
882 tree data_arg, tree copy_fn, tree arg_size,
883 tree arg_align)
884 {
885 gimple p = gimple_alloc (GIMPLE_OMP_TASK, 0);
886 if (body)
887 gimple_omp_set_body (p, body);
888 gimple_omp_task_set_clauses (p, clauses);
889 gimple_omp_task_set_child_fn (p, child_fn);
890 gimple_omp_task_set_data_arg (p, data_arg);
891 gimple_omp_task_set_copy_fn (p, copy_fn);
892 gimple_omp_task_set_arg_size (p, arg_size);
893 gimple_omp_task_set_arg_align (p, arg_align);
894
895 return p;
896 }
897
898
899 /* Build a GIMPLE_OMP_SECTION statement for a sections statement.
900
901 BODY is the sequence of statements in the section. */
902
903 gimple
904 gimple_build_omp_section (gimple_seq body)
905 {
906 gimple p = gimple_alloc (GIMPLE_OMP_SECTION, 0);
907 if (body)
908 gimple_omp_set_body (p, body);
909
910 return p;
911 }
912
913
914 /* Build a GIMPLE_OMP_MASTER statement.
915
916 BODY is the sequence of statements to be executed by just the master. */
917
918 gimple
919 gimple_build_omp_master (gimple_seq body)
920 {
921 gimple p = gimple_alloc (GIMPLE_OMP_MASTER, 0);
922 if (body)
923 gimple_omp_set_body (p, body);
924
925 return p;
926 }
927
928
929 /* Build a GIMPLE_OMP_TASKGROUP statement.
930
931 BODY is the sequence of statements to be executed by the taskgroup
932 construct. */
933
934 gimple
935 gimple_build_omp_taskgroup (gimple_seq body)
936 {
937 gimple p = gimple_alloc (GIMPLE_OMP_TASKGROUP, 0);
938 if (body)
939 gimple_omp_set_body (p, body);
940
941 return p;
942 }
943
944
945 /* Build a GIMPLE_OMP_CONTINUE statement.
946
947 CONTROL_DEF is the definition of the control variable.
948 CONTROL_USE is the use of the control variable. */
949
950 gimple
951 gimple_build_omp_continue (tree control_def, tree control_use)
952 {
953 gimple p = gimple_alloc (GIMPLE_OMP_CONTINUE, 0);
954 gimple_omp_continue_set_control_def (p, control_def);
955 gimple_omp_continue_set_control_use (p, control_use);
956 return p;
957 }
958
959 /* Build a GIMPLE_OMP_ORDERED statement.
960
961 BODY is the sequence of statements inside a loop that will executed in
962 sequence. */
963
964 gimple
965 gimple_build_omp_ordered (gimple_seq body)
966 {
967 gimple p = gimple_alloc (GIMPLE_OMP_ORDERED, 0);
968 if (body)
969 gimple_omp_set_body (p, body);
970
971 return p;
972 }
973
974
975 /* Build a GIMPLE_OMP_RETURN statement.
976 WAIT_P is true if this is a non-waiting return. */
977
978 gimple
979 gimple_build_omp_return (bool wait_p)
980 {
981 gimple p = gimple_alloc (GIMPLE_OMP_RETURN, 0);
982 if (wait_p)
983 gimple_omp_return_set_nowait (p);
984
985 return p;
986 }
987
988
989 /* Build a GIMPLE_OMP_SECTIONS statement.
990
991 BODY is a sequence of section statements.
992 CLAUSES are any of the OMP sections contsruct's clauses: private,
993 firstprivate, lastprivate, reduction, and nowait. */
994
995 gimple
996 gimple_build_omp_sections (gimple_seq body, tree clauses)
997 {
998 gimple p = gimple_alloc (GIMPLE_OMP_SECTIONS, 0);
999 if (body)
1000 gimple_omp_set_body (p, body);
1001 gimple_omp_sections_set_clauses (p, clauses);
1002
1003 return p;
1004 }
1005
1006
1007 /* Build a GIMPLE_OMP_SECTIONS_SWITCH. */
1008
1009 gimple
1010 gimple_build_omp_sections_switch (void)
1011 {
1012 return gimple_alloc (GIMPLE_OMP_SECTIONS_SWITCH, 0);
1013 }
1014
1015
1016 /* Build a GIMPLE_OMP_SINGLE statement.
1017
1018 BODY is the sequence of statements that will be executed once.
1019 CLAUSES are any of the OMP single construct's clauses: private, firstprivate,
1020 copyprivate, nowait. */
1021
1022 gimple
1023 gimple_build_omp_single (gimple_seq body, tree clauses)
1024 {
1025 gimple p = gimple_alloc (GIMPLE_OMP_SINGLE, 0);
1026 if (body)
1027 gimple_omp_set_body (p, body);
1028 gimple_omp_single_set_clauses (p, clauses);
1029
1030 return p;
1031 }
1032
1033
1034 /* Build a GIMPLE_OMP_TARGET statement.
1035
1036 BODY is the sequence of statements that will be executed.
1037 CLAUSES are any of the OMP target construct's clauses. */
1038
1039 gimple
1040 gimple_build_omp_target (gimple_seq body, int kind, tree clauses)
1041 {
1042 gimple p = gimple_alloc (GIMPLE_OMP_TARGET, 0);
1043 if (body)
1044 gimple_omp_set_body (p, body);
1045 gimple_omp_target_set_clauses (p, clauses);
1046 gimple_omp_target_set_kind (p, kind);
1047
1048 return p;
1049 }
1050
1051
1052 /* Build a GIMPLE_OMP_TEAMS statement.
1053
1054 BODY is the sequence of statements that will be executed.
1055 CLAUSES are any of the OMP teams construct's clauses. */
1056
1057 gimple
1058 gimple_build_omp_teams (gimple_seq body, tree clauses)
1059 {
1060 gimple p = gimple_alloc (GIMPLE_OMP_TEAMS, 0);
1061 if (body)
1062 gimple_omp_set_body (p, body);
1063 gimple_omp_teams_set_clauses (p, clauses);
1064
1065 return p;
1066 }
1067
1068
1069 /* Build a GIMPLE_OMP_ATOMIC_LOAD statement. */
1070
1071 gimple
1072 gimple_build_omp_atomic_load (tree lhs, tree rhs)
1073 {
1074 gimple p = gimple_alloc (GIMPLE_OMP_ATOMIC_LOAD, 0);
1075 gimple_omp_atomic_load_set_lhs (p, lhs);
1076 gimple_omp_atomic_load_set_rhs (p, rhs);
1077 return p;
1078 }
1079
1080 /* Build a GIMPLE_OMP_ATOMIC_STORE statement.
1081
1082 VAL is the value we are storing. */
1083
1084 gimple
1085 gimple_build_omp_atomic_store (tree val)
1086 {
1087 gimple p = gimple_alloc (GIMPLE_OMP_ATOMIC_STORE, 0);
1088 gimple_omp_atomic_store_set_val (p, val);
1089 return p;
1090 }
1091
1092 /* Build a GIMPLE_TRANSACTION statement. */
1093
1094 gimple
1095 gimple_build_transaction (gimple_seq body, tree label)
1096 {
1097 gimple p = gimple_alloc (GIMPLE_TRANSACTION, 0);
1098 gimple_transaction_set_body (p, body);
1099 gimple_transaction_set_label (p, label);
1100 return p;
1101 }
1102
1103 /* Build a GIMPLE_PREDICT statement. PREDICT is one of the predictors from
1104 predict.def, OUTCOME is NOT_TAKEN or TAKEN. */
1105
1106 gimple
1107 gimple_build_predict (enum br_predictor predictor, enum prediction outcome)
1108 {
1109 gimple p = gimple_alloc (GIMPLE_PREDICT, 0);
1110 /* Ensure all the predictors fit into the lower bits of the subcode. */
1111 gcc_assert ((int) END_PREDICTORS <= GF_PREDICT_TAKEN);
1112 gimple_predict_set_predictor (p, predictor);
1113 gimple_predict_set_outcome (p, outcome);
1114 return p;
1115 }
1116
1117 #if defined ENABLE_GIMPLE_CHECKING
1118 /* Complain of a gimple type mismatch and die. */
1119
1120 void
1121 gimple_check_failed (const_gimple gs, const char *file, int line,
1122 const char *function, enum gimple_code code,
1123 enum tree_code subcode)
1124 {
1125 internal_error ("gimple check: expected %s(%s), have %s(%s) in %s, at %s:%d",
1126 gimple_code_name[code],
1127 get_tree_code_name (subcode),
1128 gimple_code_name[gimple_code (gs)],
1129 gs->subcode > 0
1130 ? get_tree_code_name ((enum tree_code) gs->subcode)
1131 : "",
1132 function, trim_filename (file), line);
1133 }
1134 #endif /* ENABLE_GIMPLE_CHECKING */
1135
1136
1137 /* Link gimple statement GS to the end of the sequence *SEQ_P. If
1138 *SEQ_P is NULL, a new sequence is allocated. */
1139
1140 void
1141 gimple_seq_add_stmt (gimple_seq *seq_p, gimple gs)
1142 {
1143 gimple_stmt_iterator si;
1144 if (gs == NULL)
1145 return;
1146
1147 si = gsi_last (*seq_p);
1148 gsi_insert_after (&si, gs, GSI_NEW_STMT);
1149 }
1150
1151 /* Link gimple statement GS to the end of the sequence *SEQ_P. If
1152 *SEQ_P is NULL, a new sequence is allocated. This function is
1153 similar to gimple_seq_add_stmt, but does not scan the operands.
1154 During gimplification, we need to manipulate statement sequences
1155 before the def/use vectors have been constructed. */
1156
1157 void
1158 gimple_seq_add_stmt_without_update (gimple_seq *seq_p, gimple gs)
1159 {
1160 gimple_stmt_iterator si;
1161
1162 if (gs == NULL)
1163 return;
1164
1165 si = gsi_last (*seq_p);
1166 gsi_insert_after_without_update (&si, gs, GSI_NEW_STMT);
1167 }
1168
1169 /* Append sequence SRC to the end of sequence *DST_P. If *DST_P is
1170 NULL, a new sequence is allocated. */
1171
1172 void
1173 gimple_seq_add_seq (gimple_seq *dst_p, gimple_seq src)
1174 {
1175 gimple_stmt_iterator si;
1176 if (src == NULL)
1177 return;
1178
1179 si = gsi_last (*dst_p);
1180 gsi_insert_seq_after (&si, src, GSI_NEW_STMT);
1181 }
1182
1183 /* Determine whether to assign a location to the statement GS. */
1184
1185 static bool
1186 should_carry_location_p (gimple gs)
1187 {
1188 /* Don't emit a line note for a label. We particularly don't want to
1189 emit one for the break label, since it doesn't actually correspond
1190 to the beginning of the loop/switch. */
1191 if (gimple_code (gs) == GIMPLE_LABEL)
1192 return false;
1193
1194 return true;
1195 }
1196
1197 /* Set the location for gimple statement GS to LOCATION. */
1198
1199 static void
1200 annotate_one_with_location (gimple gs, location_t location)
1201 {
1202 if (!gimple_has_location (gs)
1203 && !gimple_do_not_emit_location_p (gs)
1204 && should_carry_location_p (gs))
1205 gimple_set_location (gs, location);
1206 }
1207
1208 /* Set LOCATION for all the statements after iterator GSI in sequence
1209 SEQ. If GSI is pointing to the end of the sequence, start with the
1210 first statement in SEQ. */
1211
1212 void
1213 annotate_all_with_location_after (gimple_seq seq, gimple_stmt_iterator gsi,
1214 location_t location)
1215 {
1216 if (gsi_end_p (gsi))
1217 gsi = gsi_start (seq);
1218 else
1219 gsi_next (&gsi);
1220
1221 for (; !gsi_end_p (gsi); gsi_next (&gsi))
1222 annotate_one_with_location (gsi_stmt (gsi), location);
1223 }
1224
1225 /* Set the location for all the statements in a sequence STMT_P to LOCATION. */
1226
1227 void
1228 annotate_all_with_location (gimple_seq stmt_p, location_t location)
1229 {
1230 gimple_stmt_iterator i;
1231
1232 if (gimple_seq_empty_p (stmt_p))
1233 return;
1234
1235 for (i = gsi_start (stmt_p); !gsi_end_p (i); gsi_next (&i))
1236 {
1237 gimple gs = gsi_stmt (i);
1238 annotate_one_with_location (gs, location);
1239 }
1240 }
1241
1242 /* Helper function of empty_body_p. Return true if STMT is an empty
1243 statement. */
1244
1245 static bool
1246 empty_stmt_p (gimple stmt)
1247 {
1248 if (gimple_code (stmt) == GIMPLE_NOP)
1249 return true;
1250 if (gimple_code (stmt) == GIMPLE_BIND)
1251 return empty_body_p (gimple_bind_body (stmt));
1252 return false;
1253 }
1254
1255
1256 /* Return true if BODY contains nothing but empty statements. */
1257
1258 bool
1259 empty_body_p (gimple_seq body)
1260 {
1261 gimple_stmt_iterator i;
1262
1263 if (gimple_seq_empty_p (body))
1264 return true;
1265 for (i = gsi_start (body); !gsi_end_p (i); gsi_next (&i))
1266 if (!empty_stmt_p (gsi_stmt (i))
1267 && !is_gimple_debug (gsi_stmt (i)))
1268 return false;
1269
1270 return true;
1271 }
1272
1273
1274 /* Perform a deep copy of sequence SRC and return the result. */
1275
1276 gimple_seq
1277 gimple_seq_copy (gimple_seq src)
1278 {
1279 gimple_stmt_iterator gsi;
1280 gimple_seq new_seq = NULL;
1281 gimple stmt;
1282
1283 for (gsi = gsi_start (src); !gsi_end_p (gsi); gsi_next (&gsi))
1284 {
1285 stmt = gimple_copy (gsi_stmt (gsi));
1286 gimple_seq_add_stmt (&new_seq, stmt);
1287 }
1288
1289 return new_seq;
1290 }
1291
1292
1293
1294 /* Return true if calls C1 and C2 are known to go to the same function. */
1295
1296 bool
1297 gimple_call_same_target_p (const_gimple c1, const_gimple c2)
1298 {
1299 if (gimple_call_internal_p (c1))
1300 return (gimple_call_internal_p (c2)
1301 && gimple_call_internal_fn (c1) == gimple_call_internal_fn (c2));
1302 else
1303 return (gimple_call_fn (c1) == gimple_call_fn (c2)
1304 || (gimple_call_fndecl (c1)
1305 && gimple_call_fndecl (c1) == gimple_call_fndecl (c2)));
1306 }
1307
1308 /* Detect flags from a GIMPLE_CALL. This is just like
1309 call_expr_flags, but for gimple tuples. */
1310
1311 int
1312 gimple_call_flags (const_gimple stmt)
1313 {
1314 int flags;
1315 tree decl = gimple_call_fndecl (stmt);
1316
1317 if (decl)
1318 flags = flags_from_decl_or_type (decl);
1319 else if (gimple_call_internal_p (stmt))
1320 flags = internal_fn_flags (gimple_call_internal_fn (stmt));
1321 else
1322 flags = flags_from_decl_or_type (gimple_call_fntype (stmt));
1323
1324 if (stmt->subcode & GF_CALL_NOTHROW)
1325 flags |= ECF_NOTHROW;
1326
1327 return flags;
1328 }
1329
1330 /* Return the "fn spec" string for call STMT. */
1331
1332 static tree
1333 gimple_call_fnspec (const_gimple stmt)
1334 {
1335 tree type, attr;
1336
1337 type = gimple_call_fntype (stmt);
1338 if (!type)
1339 return NULL_TREE;
1340
1341 attr = lookup_attribute ("fn spec", TYPE_ATTRIBUTES (type));
1342 if (!attr)
1343 return NULL_TREE;
1344
1345 return TREE_VALUE (TREE_VALUE (attr));
1346 }
1347
1348 /* Detects argument flags for argument number ARG on call STMT. */
1349
1350 int
1351 gimple_call_arg_flags (const_gimple stmt, unsigned arg)
1352 {
1353 tree attr = gimple_call_fnspec (stmt);
1354
1355 if (!attr || 1 + arg >= (unsigned) TREE_STRING_LENGTH (attr))
1356 return 0;
1357
1358 switch (TREE_STRING_POINTER (attr)[1 + arg])
1359 {
1360 case 'x':
1361 case 'X':
1362 return EAF_UNUSED;
1363
1364 case 'R':
1365 return EAF_DIRECT | EAF_NOCLOBBER | EAF_NOESCAPE;
1366
1367 case 'r':
1368 return EAF_NOCLOBBER | EAF_NOESCAPE;
1369
1370 case 'W':
1371 return EAF_DIRECT | EAF_NOESCAPE;
1372
1373 case 'w':
1374 return EAF_NOESCAPE;
1375
1376 case '.':
1377 default:
1378 return 0;
1379 }
1380 }
1381
1382 /* Detects return flags for the call STMT. */
1383
1384 int
1385 gimple_call_return_flags (const_gimple stmt)
1386 {
1387 tree attr;
1388
1389 if (gimple_call_flags (stmt) & ECF_MALLOC)
1390 return ERF_NOALIAS;
1391
1392 attr = gimple_call_fnspec (stmt);
1393 if (!attr || TREE_STRING_LENGTH (attr) < 1)
1394 return 0;
1395
1396 switch (TREE_STRING_POINTER (attr)[0])
1397 {
1398 case '1':
1399 case '2':
1400 case '3':
1401 case '4':
1402 return ERF_RETURNS_ARG | (TREE_STRING_POINTER (attr)[0] - '1');
1403
1404 case 'm':
1405 return ERF_NOALIAS;
1406
1407 case '.':
1408 default:
1409 return 0;
1410 }
1411 }
1412
1413
1414 /* Return true if GS is a copy assignment. */
1415
1416 bool
1417 gimple_assign_copy_p (gimple gs)
1418 {
1419 return (gimple_assign_single_p (gs)
1420 && is_gimple_val (gimple_op (gs, 1)));
1421 }
1422
1423
1424 /* Return true if GS is a SSA_NAME copy assignment. */
1425
1426 bool
1427 gimple_assign_ssa_name_copy_p (gimple gs)
1428 {
1429 return (gimple_assign_single_p (gs)
1430 && TREE_CODE (gimple_assign_lhs (gs)) == SSA_NAME
1431 && TREE_CODE (gimple_assign_rhs1 (gs)) == SSA_NAME);
1432 }
1433
1434
1435 /* Return true if GS is an assignment with a unary RHS, but the
1436 operator has no effect on the assigned value. The logic is adapted
1437 from STRIP_NOPS. This predicate is intended to be used in tuplifying
1438 instances in which STRIP_NOPS was previously applied to the RHS of
1439 an assignment.
1440
1441 NOTE: In the use cases that led to the creation of this function
1442 and of gimple_assign_single_p, it is typical to test for either
1443 condition and to proceed in the same manner. In each case, the
1444 assigned value is represented by the single RHS operand of the
1445 assignment. I suspect there may be cases where gimple_assign_copy_p,
1446 gimple_assign_single_p, or equivalent logic is used where a similar
1447 treatment of unary NOPs is appropriate. */
1448
1449 bool
1450 gimple_assign_unary_nop_p (gimple gs)
1451 {
1452 return (is_gimple_assign (gs)
1453 && (CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (gs))
1454 || gimple_assign_rhs_code (gs) == NON_LVALUE_EXPR)
1455 && gimple_assign_rhs1 (gs) != error_mark_node
1456 && (TYPE_MODE (TREE_TYPE (gimple_assign_lhs (gs)))
1457 == TYPE_MODE (TREE_TYPE (gimple_assign_rhs1 (gs)))));
1458 }
1459
1460 /* Set BB to be the basic block holding G. */
1461
1462 void
1463 gimple_set_bb (gimple stmt, basic_block bb)
1464 {
1465 stmt->bb = bb;
1466
1467 /* If the statement is a label, add the label to block-to-labels map
1468 so that we can speed up edge creation for GIMPLE_GOTOs. */
1469 if (cfun->cfg && gimple_code (stmt) == GIMPLE_LABEL)
1470 {
1471 tree t;
1472 int uid;
1473
1474 t = gimple_label_label (stmt);
1475 uid = LABEL_DECL_UID (t);
1476 if (uid == -1)
1477 {
1478 unsigned old_len = vec_safe_length (label_to_block_map);
1479 LABEL_DECL_UID (t) = uid = cfun->cfg->last_label_uid++;
1480 if (old_len <= (unsigned) uid)
1481 {
1482 unsigned new_len = 3 * uid / 2 + 1;
1483
1484 vec_safe_grow_cleared (label_to_block_map, new_len);
1485 }
1486 }
1487
1488 (*label_to_block_map)[uid] = bb;
1489 }
1490 }
1491
1492
1493 /* Modify the RHS of the assignment pointed-to by GSI using the
1494 operands in the expression tree EXPR.
1495
1496 NOTE: The statement pointed-to by GSI may be reallocated if it
1497 did not have enough operand slots.
1498
1499 This function is useful to convert an existing tree expression into
1500 the flat representation used for the RHS of a GIMPLE assignment.
1501 It will reallocate memory as needed to expand or shrink the number
1502 of operand slots needed to represent EXPR.
1503
1504 NOTE: If you find yourself building a tree and then calling this
1505 function, you are most certainly doing it the slow way. It is much
1506 better to build a new assignment or to use the function
1507 gimple_assign_set_rhs_with_ops, which does not require an
1508 expression tree to be built. */
1509
1510 void
1511 gimple_assign_set_rhs_from_tree (gimple_stmt_iterator *gsi, tree expr)
1512 {
1513 enum tree_code subcode;
1514 tree op1, op2, op3;
1515
1516 extract_ops_from_tree_1 (expr, &subcode, &op1, &op2, &op3);
1517 gimple_assign_set_rhs_with_ops_1 (gsi, subcode, op1, op2, op3);
1518 }
1519
1520
1521 /* Set the RHS of assignment statement pointed-to by GSI to CODE with
1522 operands OP1, OP2 and OP3.
1523
1524 NOTE: The statement pointed-to by GSI may be reallocated if it
1525 did not have enough operand slots. */
1526
1527 void
1528 gimple_assign_set_rhs_with_ops_1 (gimple_stmt_iterator *gsi, enum tree_code code,
1529 tree op1, tree op2, tree op3)
1530 {
1531 unsigned new_rhs_ops = get_gimple_rhs_num_ops (code);
1532 gimple stmt = gsi_stmt (*gsi);
1533
1534 /* If the new CODE needs more operands, allocate a new statement. */
1535 if (gimple_num_ops (stmt) < new_rhs_ops + 1)
1536 {
1537 tree lhs = gimple_assign_lhs (stmt);
1538 gimple new_stmt = gimple_alloc (gimple_code (stmt), new_rhs_ops + 1);
1539 memcpy (new_stmt, stmt, gimple_size (gimple_code (stmt)));
1540 gimple_init_singleton (new_stmt);
1541 gsi_replace (gsi, new_stmt, true);
1542 stmt = new_stmt;
1543
1544 /* The LHS needs to be reset as this also changes the SSA name
1545 on the LHS. */
1546 gimple_assign_set_lhs (stmt, lhs);
1547 }
1548
1549 gimple_set_num_ops (stmt, new_rhs_ops + 1);
1550 gimple_set_subcode (stmt, code);
1551 gimple_assign_set_rhs1 (stmt, op1);
1552 if (new_rhs_ops > 1)
1553 gimple_assign_set_rhs2 (stmt, op2);
1554 if (new_rhs_ops > 2)
1555 gimple_assign_set_rhs3 (stmt, op3);
1556 }
1557
1558
1559 /* Return the LHS of a statement that performs an assignment,
1560 either a GIMPLE_ASSIGN or a GIMPLE_CALL. Returns NULL_TREE
1561 for a call to a function that returns no value, or for a
1562 statement other than an assignment or a call. */
1563
1564 tree
1565 gimple_get_lhs (const_gimple stmt)
1566 {
1567 enum gimple_code code = gimple_code (stmt);
1568
1569 if (code == GIMPLE_ASSIGN)
1570 return gimple_assign_lhs (stmt);
1571 else if (code == GIMPLE_CALL)
1572 return gimple_call_lhs (stmt);
1573 else
1574 return NULL_TREE;
1575 }
1576
1577
1578 /* Set the LHS of a statement that performs an assignment,
1579 either a GIMPLE_ASSIGN or a GIMPLE_CALL. */
1580
1581 void
1582 gimple_set_lhs (gimple stmt, tree lhs)
1583 {
1584 enum gimple_code code = gimple_code (stmt);
1585
1586 if (code == GIMPLE_ASSIGN)
1587 gimple_assign_set_lhs (stmt, lhs);
1588 else if (code == GIMPLE_CALL)
1589 gimple_call_set_lhs (stmt, lhs);
1590 else
1591 gcc_unreachable ();
1592 }
1593
1594
1595 /* Return a deep copy of statement STMT. All the operands from STMT
1596 are reallocated and copied using unshare_expr. The DEF, USE, VDEF
1597 and VUSE operand arrays are set to empty in the new copy. The new
1598 copy isn't part of any sequence. */
1599
1600 gimple
1601 gimple_copy (gimple stmt)
1602 {
1603 enum gimple_code code = gimple_code (stmt);
1604 unsigned num_ops = gimple_num_ops (stmt);
1605 gimple copy = gimple_alloc (code, num_ops);
1606 unsigned i;
1607
1608 /* Shallow copy all the fields from STMT. */
1609 memcpy (copy, stmt, gimple_size (code));
1610 gimple_init_singleton (copy);
1611
1612 /* If STMT has sub-statements, deep-copy them as well. */
1613 if (gimple_has_substatements (stmt))
1614 {
1615 gimple_seq new_seq;
1616 tree t;
1617
1618 switch (gimple_code (stmt))
1619 {
1620 case GIMPLE_BIND:
1621 new_seq = gimple_seq_copy (gimple_bind_body (stmt));
1622 gimple_bind_set_body (copy, new_seq);
1623 gimple_bind_set_vars (copy, unshare_expr (gimple_bind_vars (stmt)));
1624 gimple_bind_set_block (copy, gimple_bind_block (stmt));
1625 break;
1626
1627 case GIMPLE_CATCH:
1628 new_seq = gimple_seq_copy (gimple_catch_handler (stmt));
1629 gimple_catch_set_handler (copy, new_seq);
1630 t = unshare_expr (gimple_catch_types (stmt));
1631 gimple_catch_set_types (copy, t);
1632 break;
1633
1634 case GIMPLE_EH_FILTER:
1635 new_seq = gimple_seq_copy (gimple_eh_filter_failure (stmt));
1636 gimple_eh_filter_set_failure (copy, new_seq);
1637 t = unshare_expr (gimple_eh_filter_types (stmt));
1638 gimple_eh_filter_set_types (copy, t);
1639 break;
1640
1641 case GIMPLE_EH_ELSE:
1642 new_seq = gimple_seq_copy (gimple_eh_else_n_body (stmt));
1643 gimple_eh_else_set_n_body (copy, new_seq);
1644 new_seq = gimple_seq_copy (gimple_eh_else_e_body (stmt));
1645 gimple_eh_else_set_e_body (copy, new_seq);
1646 break;
1647
1648 case GIMPLE_TRY:
1649 new_seq = gimple_seq_copy (gimple_try_eval (stmt));
1650 gimple_try_set_eval (copy, new_seq);
1651 new_seq = gimple_seq_copy (gimple_try_cleanup (stmt));
1652 gimple_try_set_cleanup (copy, new_seq);
1653 break;
1654
1655 case GIMPLE_OMP_FOR:
1656 new_seq = gimple_seq_copy (gimple_omp_for_pre_body (stmt));
1657 gimple_omp_for_set_pre_body (copy, new_seq);
1658 t = unshare_expr (gimple_omp_for_clauses (stmt));
1659 gimple_omp_for_set_clauses (copy, t);
1660 {
1661 gimple_statement_omp_for *omp_for_copy =
1662 as_a <gimple_statement_omp_for> (copy);
1663 omp_for_copy->iter =
1664 static_cast <struct gimple_omp_for_iter *> (
1665 ggc_internal_vec_alloc_stat (sizeof (struct gimple_omp_for_iter),
1666 gimple_omp_for_collapse (stmt)
1667 MEM_STAT_INFO));
1668 }
1669 for (i = 0; i < gimple_omp_for_collapse (stmt); i++)
1670 {
1671 gimple_omp_for_set_cond (copy, i,
1672 gimple_omp_for_cond (stmt, i));
1673 gimple_omp_for_set_index (copy, i,
1674 gimple_omp_for_index (stmt, i));
1675 t = unshare_expr (gimple_omp_for_initial (stmt, i));
1676 gimple_omp_for_set_initial (copy, i, t);
1677 t = unshare_expr (gimple_omp_for_final (stmt, i));
1678 gimple_omp_for_set_final (copy, i, t);
1679 t = unshare_expr (gimple_omp_for_incr (stmt, i));
1680 gimple_omp_for_set_incr (copy, i, t);
1681 }
1682 goto copy_omp_body;
1683
1684 case GIMPLE_OMP_PARALLEL:
1685 t = unshare_expr (gimple_omp_parallel_clauses (stmt));
1686 gimple_omp_parallel_set_clauses (copy, t);
1687 t = unshare_expr (gimple_omp_parallel_child_fn (stmt));
1688 gimple_omp_parallel_set_child_fn (copy, t);
1689 t = unshare_expr (gimple_omp_parallel_data_arg (stmt));
1690 gimple_omp_parallel_set_data_arg (copy, t);
1691 goto copy_omp_body;
1692
1693 case GIMPLE_OMP_TASK:
1694 t = unshare_expr (gimple_omp_task_clauses (stmt));
1695 gimple_omp_task_set_clauses (copy, t);
1696 t = unshare_expr (gimple_omp_task_child_fn (stmt));
1697 gimple_omp_task_set_child_fn (copy, t);
1698 t = unshare_expr (gimple_omp_task_data_arg (stmt));
1699 gimple_omp_task_set_data_arg (copy, t);
1700 t = unshare_expr (gimple_omp_task_copy_fn (stmt));
1701 gimple_omp_task_set_copy_fn (copy, t);
1702 t = unshare_expr (gimple_omp_task_arg_size (stmt));
1703 gimple_omp_task_set_arg_size (copy, t);
1704 t = unshare_expr (gimple_omp_task_arg_align (stmt));
1705 gimple_omp_task_set_arg_align (copy, t);
1706 goto copy_omp_body;
1707
1708 case GIMPLE_OMP_CRITICAL:
1709 t = unshare_expr (gimple_omp_critical_name (stmt));
1710 gimple_omp_critical_set_name (copy, t);
1711 goto copy_omp_body;
1712
1713 case GIMPLE_OMP_SECTIONS:
1714 t = unshare_expr (gimple_omp_sections_clauses (stmt));
1715 gimple_omp_sections_set_clauses (copy, t);
1716 t = unshare_expr (gimple_omp_sections_control (stmt));
1717 gimple_omp_sections_set_control (copy, t);
1718 /* FALLTHRU */
1719
1720 case GIMPLE_OMP_SINGLE:
1721 case GIMPLE_OMP_TARGET:
1722 case GIMPLE_OMP_TEAMS:
1723 case GIMPLE_OMP_SECTION:
1724 case GIMPLE_OMP_MASTER:
1725 case GIMPLE_OMP_TASKGROUP:
1726 case GIMPLE_OMP_ORDERED:
1727 copy_omp_body:
1728 new_seq = gimple_seq_copy (gimple_omp_body (stmt));
1729 gimple_omp_set_body (copy, new_seq);
1730 break;
1731
1732 case GIMPLE_TRANSACTION:
1733 new_seq = gimple_seq_copy (gimple_transaction_body (stmt));
1734 gimple_transaction_set_body (copy, new_seq);
1735 break;
1736
1737 case GIMPLE_WITH_CLEANUP_EXPR:
1738 new_seq = gimple_seq_copy (gimple_wce_cleanup (stmt));
1739 gimple_wce_set_cleanup (copy, new_seq);
1740 break;
1741
1742 default:
1743 gcc_unreachable ();
1744 }
1745 }
1746
1747 /* Make copy of operands. */
1748 for (i = 0; i < num_ops; i++)
1749 gimple_set_op (copy, i, unshare_expr (gimple_op (stmt, i)));
1750
1751 if (gimple_has_mem_ops (stmt))
1752 {
1753 gimple_set_vdef (copy, gimple_vdef (stmt));
1754 gimple_set_vuse (copy, gimple_vuse (stmt));
1755 }
1756
1757 /* Clear out SSA operand vectors on COPY. */
1758 if (gimple_has_ops (stmt))
1759 {
1760 gimple_set_use_ops (copy, NULL);
1761
1762 /* SSA operands need to be updated. */
1763 gimple_set_modified (copy, true);
1764 }
1765
1766 return copy;
1767 }
1768
1769
1770 /* Return true if statement S has side-effects. We consider a
1771 statement to have side effects if:
1772
1773 - It is a GIMPLE_CALL not marked with ECF_PURE or ECF_CONST.
1774 - Any of its operands are marked TREE_THIS_VOLATILE or TREE_SIDE_EFFECTS. */
1775
1776 bool
1777 gimple_has_side_effects (const_gimple s)
1778 {
1779 if (is_gimple_debug (s))
1780 return false;
1781
1782 /* We don't have to scan the arguments to check for
1783 volatile arguments, though, at present, we still
1784 do a scan to check for TREE_SIDE_EFFECTS. */
1785 if (gimple_has_volatile_ops (s))
1786 return true;
1787
1788 if (gimple_code (s) == GIMPLE_ASM
1789 && gimple_asm_volatile_p (s))
1790 return true;
1791
1792 if (is_gimple_call (s))
1793 {
1794 int flags = gimple_call_flags (s);
1795
1796 /* An infinite loop is considered a side effect. */
1797 if (!(flags & (ECF_CONST | ECF_PURE))
1798 || (flags & ECF_LOOPING_CONST_OR_PURE))
1799 return true;
1800
1801 return false;
1802 }
1803
1804 return false;
1805 }
1806
1807 /* Helper for gimple_could_trap_p and gimple_assign_rhs_could_trap_p.
1808 Return true if S can trap. When INCLUDE_MEM is true, check whether
1809 the memory operations could trap. When INCLUDE_STORES is true and
1810 S is a GIMPLE_ASSIGN, the LHS of the assignment is also checked. */
1811
1812 bool
1813 gimple_could_trap_p_1 (gimple s, bool include_mem, bool include_stores)
1814 {
1815 tree t, div = NULL_TREE;
1816 enum tree_code op;
1817
1818 if (include_mem)
1819 {
1820 unsigned i, start = (is_gimple_assign (s) && !include_stores) ? 1 : 0;
1821
1822 for (i = start; i < gimple_num_ops (s); i++)
1823 if (tree_could_trap_p (gimple_op (s, i)))
1824 return true;
1825 }
1826
1827 switch (gimple_code (s))
1828 {
1829 case GIMPLE_ASM:
1830 return gimple_asm_volatile_p (s);
1831
1832 case GIMPLE_CALL:
1833 t = gimple_call_fndecl (s);
1834 /* Assume that calls to weak functions may trap. */
1835 if (!t || !DECL_P (t) || DECL_WEAK (t))
1836 return true;
1837 return false;
1838
1839 case GIMPLE_ASSIGN:
1840 t = gimple_expr_type (s);
1841 op = gimple_assign_rhs_code (s);
1842 if (get_gimple_rhs_class (op) == GIMPLE_BINARY_RHS)
1843 div = gimple_assign_rhs2 (s);
1844 return (operation_could_trap_p (op, FLOAT_TYPE_P (t),
1845 (INTEGRAL_TYPE_P (t)
1846 && TYPE_OVERFLOW_TRAPS (t)),
1847 div));
1848
1849 default:
1850 break;
1851 }
1852
1853 return false;
1854 }
1855
1856 /* Return true if statement S can trap. */
1857
1858 bool
1859 gimple_could_trap_p (gimple s)
1860 {
1861 return gimple_could_trap_p_1 (s, true, true);
1862 }
1863
1864 /* Return true if RHS of a GIMPLE_ASSIGN S can trap. */
1865
1866 bool
1867 gimple_assign_rhs_could_trap_p (gimple s)
1868 {
1869 gcc_assert (is_gimple_assign (s));
1870 return gimple_could_trap_p_1 (s, true, false);
1871 }
1872
1873
1874 /* Print debugging information for gimple stmts generated. */
1875
1876 void
1877 dump_gimple_statistics (void)
1878 {
1879 int i, total_tuples = 0, total_bytes = 0;
1880
1881 if (! GATHER_STATISTICS)
1882 {
1883 fprintf (stderr, "No gimple statistics\n");
1884 return;
1885 }
1886
1887 fprintf (stderr, "\nGIMPLE statements\n");
1888 fprintf (stderr, "Kind Stmts Bytes\n");
1889 fprintf (stderr, "---------------------------------------\n");
1890 for (i = 0; i < (int) gimple_alloc_kind_all; ++i)
1891 {
1892 fprintf (stderr, "%-20s %7d %10d\n", gimple_alloc_kind_names[i],
1893 gimple_alloc_counts[i], gimple_alloc_sizes[i]);
1894 total_tuples += gimple_alloc_counts[i];
1895 total_bytes += gimple_alloc_sizes[i];
1896 }
1897 fprintf (stderr, "---------------------------------------\n");
1898 fprintf (stderr, "%-20s %7d %10d\n", "Total", total_tuples, total_bytes);
1899 fprintf (stderr, "---------------------------------------\n");
1900 }
1901
1902
1903 /* Return the number of operands needed on the RHS of a GIMPLE
1904 assignment for an expression with tree code CODE. */
1905
1906 unsigned
1907 get_gimple_rhs_num_ops (enum tree_code code)
1908 {
1909 enum gimple_rhs_class rhs_class = get_gimple_rhs_class (code);
1910
1911 if (rhs_class == GIMPLE_UNARY_RHS || rhs_class == GIMPLE_SINGLE_RHS)
1912 return 1;
1913 else if (rhs_class == GIMPLE_BINARY_RHS)
1914 return 2;
1915 else if (rhs_class == GIMPLE_TERNARY_RHS)
1916 return 3;
1917 else
1918 gcc_unreachable ();
1919 }
1920
1921 #define DEFTREECODE(SYM, STRING, TYPE, NARGS) \
1922 (unsigned char) \
1923 ((TYPE) == tcc_unary ? GIMPLE_UNARY_RHS \
1924 : ((TYPE) == tcc_binary \
1925 || (TYPE) == tcc_comparison) ? GIMPLE_BINARY_RHS \
1926 : ((TYPE) == tcc_constant \
1927 || (TYPE) == tcc_declaration \
1928 || (TYPE) == tcc_reference) ? GIMPLE_SINGLE_RHS \
1929 : ((SYM) == TRUTH_AND_EXPR \
1930 || (SYM) == TRUTH_OR_EXPR \
1931 || (SYM) == TRUTH_XOR_EXPR) ? GIMPLE_BINARY_RHS \
1932 : (SYM) == TRUTH_NOT_EXPR ? GIMPLE_UNARY_RHS \
1933 : ((SYM) == COND_EXPR \
1934 || (SYM) == WIDEN_MULT_PLUS_EXPR \
1935 || (SYM) == WIDEN_MULT_MINUS_EXPR \
1936 || (SYM) == DOT_PROD_EXPR \
1937 || (SYM) == REALIGN_LOAD_EXPR \
1938 || (SYM) == VEC_COND_EXPR \
1939 || (SYM) == VEC_PERM_EXPR \
1940 || (SYM) == FMA_EXPR) ? GIMPLE_TERNARY_RHS \
1941 : ((SYM) == CONSTRUCTOR \
1942 || (SYM) == OBJ_TYPE_REF \
1943 || (SYM) == ASSERT_EXPR \
1944 || (SYM) == ADDR_EXPR \
1945 || (SYM) == WITH_SIZE_EXPR \
1946 || (SYM) == SSA_NAME) ? GIMPLE_SINGLE_RHS \
1947 : GIMPLE_INVALID_RHS),
1948 #define END_OF_BASE_TREE_CODES (unsigned char) GIMPLE_INVALID_RHS,
1949
1950 const unsigned char gimple_rhs_class_table[] = {
1951 #include "all-tree.def"
1952 };
1953
1954 #undef DEFTREECODE
1955 #undef END_OF_BASE_TREE_CODES
1956
1957 /* Canonicalize a tree T for use in a COND_EXPR as conditional. Returns
1958 a canonicalized tree that is valid for a COND_EXPR or NULL_TREE, if
1959 we failed to create one. */
1960
1961 tree
1962 canonicalize_cond_expr_cond (tree t)
1963 {
1964 /* Strip conversions around boolean operations. */
1965 if (CONVERT_EXPR_P (t)
1966 && (truth_value_p (TREE_CODE (TREE_OPERAND (t, 0)))
1967 || TREE_CODE (TREE_TYPE (TREE_OPERAND (t, 0)))
1968 == BOOLEAN_TYPE))
1969 t = TREE_OPERAND (t, 0);
1970
1971 /* For !x use x == 0. */
1972 if (TREE_CODE (t) == TRUTH_NOT_EXPR)
1973 {
1974 tree top0 = TREE_OPERAND (t, 0);
1975 t = build2 (EQ_EXPR, TREE_TYPE (t),
1976 top0, build_int_cst (TREE_TYPE (top0), 0));
1977 }
1978 /* For cmp ? 1 : 0 use cmp. */
1979 else if (TREE_CODE (t) == COND_EXPR
1980 && COMPARISON_CLASS_P (TREE_OPERAND (t, 0))
1981 && integer_onep (TREE_OPERAND (t, 1))
1982 && integer_zerop (TREE_OPERAND (t, 2)))
1983 {
1984 tree top0 = TREE_OPERAND (t, 0);
1985 t = build2 (TREE_CODE (top0), TREE_TYPE (t),
1986 TREE_OPERAND (top0, 0), TREE_OPERAND (top0, 1));
1987 }
1988 /* For x ^ y use x != y. */
1989 else if (TREE_CODE (t) == BIT_XOR_EXPR)
1990 t = build2 (NE_EXPR, TREE_TYPE (t),
1991 TREE_OPERAND (t, 0), TREE_OPERAND (t, 1));
1992
1993 if (is_gimple_condexpr (t))
1994 return t;
1995
1996 return NULL_TREE;
1997 }
1998
1999 /* Build a GIMPLE_CALL identical to STMT but skipping the arguments in
2000 the positions marked by the set ARGS_TO_SKIP. */
2001
2002 gimple
2003 gimple_call_copy_skip_args (gimple stmt, bitmap args_to_skip)
2004 {
2005 int i;
2006 int nargs = gimple_call_num_args (stmt);
2007 auto_vec<tree> vargs (nargs);
2008 gimple new_stmt;
2009
2010 for (i = 0; i < nargs; i++)
2011 if (!bitmap_bit_p (args_to_skip, i))
2012 vargs.quick_push (gimple_call_arg (stmt, i));
2013
2014 if (gimple_call_internal_p (stmt))
2015 new_stmt = gimple_build_call_internal_vec (gimple_call_internal_fn (stmt),
2016 vargs);
2017 else
2018 new_stmt = gimple_build_call_vec (gimple_call_fn (stmt), vargs);
2019
2020 if (gimple_call_lhs (stmt))
2021 gimple_call_set_lhs (new_stmt, gimple_call_lhs (stmt));
2022
2023 gimple_set_vuse (new_stmt, gimple_vuse (stmt));
2024 gimple_set_vdef (new_stmt, gimple_vdef (stmt));
2025
2026 if (gimple_has_location (stmt))
2027 gimple_set_location (new_stmt, gimple_location (stmt));
2028 gimple_call_copy_flags (new_stmt, stmt);
2029 gimple_call_set_chain (new_stmt, gimple_call_chain (stmt));
2030
2031 gimple_set_modified (new_stmt, true);
2032
2033 return new_stmt;
2034 }
2035
2036
2037
2038 /* Return true if the field decls F1 and F2 are at the same offset.
2039
2040 This is intended to be used on GIMPLE types only. */
2041
2042 bool
2043 gimple_compare_field_offset (tree f1, tree f2)
2044 {
2045 if (DECL_OFFSET_ALIGN (f1) == DECL_OFFSET_ALIGN (f2))
2046 {
2047 tree offset1 = DECL_FIELD_OFFSET (f1);
2048 tree offset2 = DECL_FIELD_OFFSET (f2);
2049 return ((offset1 == offset2
2050 /* Once gimplification is done, self-referential offsets are
2051 instantiated as operand #2 of the COMPONENT_REF built for
2052 each access and reset. Therefore, they are not relevant
2053 anymore and fields are interchangeable provided that they
2054 represent the same access. */
2055 || (TREE_CODE (offset1) == PLACEHOLDER_EXPR
2056 && TREE_CODE (offset2) == PLACEHOLDER_EXPR
2057 && (DECL_SIZE (f1) == DECL_SIZE (f2)
2058 || (TREE_CODE (DECL_SIZE (f1)) == PLACEHOLDER_EXPR
2059 && TREE_CODE (DECL_SIZE (f2)) == PLACEHOLDER_EXPR)
2060 || operand_equal_p (DECL_SIZE (f1), DECL_SIZE (f2), 0))
2061 && DECL_ALIGN (f1) == DECL_ALIGN (f2))
2062 || operand_equal_p (offset1, offset2, 0))
2063 && tree_int_cst_equal (DECL_FIELD_BIT_OFFSET (f1),
2064 DECL_FIELD_BIT_OFFSET (f2)));
2065 }
2066
2067 /* Fortran and C do not always agree on what DECL_OFFSET_ALIGN
2068 should be, so handle differing ones specially by decomposing
2069 the offset into a byte and bit offset manually. */
2070 if (tree_fits_shwi_p (DECL_FIELD_OFFSET (f1))
2071 && tree_fits_shwi_p (DECL_FIELD_OFFSET (f2)))
2072 {
2073 unsigned HOST_WIDE_INT byte_offset1, byte_offset2;
2074 unsigned HOST_WIDE_INT bit_offset1, bit_offset2;
2075 bit_offset1 = TREE_INT_CST_LOW (DECL_FIELD_BIT_OFFSET (f1));
2076 byte_offset1 = (TREE_INT_CST_LOW (DECL_FIELD_OFFSET (f1))
2077 + bit_offset1 / BITS_PER_UNIT);
2078 bit_offset2 = TREE_INT_CST_LOW (DECL_FIELD_BIT_OFFSET (f2));
2079 byte_offset2 = (TREE_INT_CST_LOW (DECL_FIELD_OFFSET (f2))
2080 + bit_offset2 / BITS_PER_UNIT);
2081 if (byte_offset1 != byte_offset2)
2082 return false;
2083 return bit_offset1 % BITS_PER_UNIT == bit_offset2 % BITS_PER_UNIT;
2084 }
2085
2086 return false;
2087 }
2088
2089
2090 /* Return a type the same as TYPE except unsigned or
2091 signed according to UNSIGNEDP. */
2092
2093 static tree
2094 gimple_signed_or_unsigned_type (bool unsignedp, tree type)
2095 {
2096 tree type1;
2097
2098 type1 = TYPE_MAIN_VARIANT (type);
2099 if (type1 == signed_char_type_node
2100 || type1 == char_type_node
2101 || type1 == unsigned_char_type_node)
2102 return unsignedp ? unsigned_char_type_node : signed_char_type_node;
2103 if (type1 == integer_type_node || type1 == unsigned_type_node)
2104 return unsignedp ? unsigned_type_node : integer_type_node;
2105 if (type1 == short_integer_type_node || type1 == short_unsigned_type_node)
2106 return unsignedp ? short_unsigned_type_node : short_integer_type_node;
2107 if (type1 == long_integer_type_node || type1 == long_unsigned_type_node)
2108 return unsignedp ? long_unsigned_type_node : long_integer_type_node;
2109 if (type1 == long_long_integer_type_node
2110 || type1 == long_long_unsigned_type_node)
2111 return unsignedp
2112 ? long_long_unsigned_type_node
2113 : long_long_integer_type_node;
2114 if (int128_integer_type_node && (type1 == int128_integer_type_node || type1 == int128_unsigned_type_node))
2115 return unsignedp
2116 ? int128_unsigned_type_node
2117 : int128_integer_type_node;
2118 #if HOST_BITS_PER_WIDE_INT >= 64
2119 if (type1 == intTI_type_node || type1 == unsigned_intTI_type_node)
2120 return unsignedp ? unsigned_intTI_type_node : intTI_type_node;
2121 #endif
2122 if (type1 == intDI_type_node || type1 == unsigned_intDI_type_node)
2123 return unsignedp ? unsigned_intDI_type_node : intDI_type_node;
2124 if (type1 == intSI_type_node || type1 == unsigned_intSI_type_node)
2125 return unsignedp ? unsigned_intSI_type_node : intSI_type_node;
2126 if (type1 == intHI_type_node || type1 == unsigned_intHI_type_node)
2127 return unsignedp ? unsigned_intHI_type_node : intHI_type_node;
2128 if (type1 == intQI_type_node || type1 == unsigned_intQI_type_node)
2129 return unsignedp ? unsigned_intQI_type_node : intQI_type_node;
2130
2131 #define GIMPLE_FIXED_TYPES(NAME) \
2132 if (type1 == short_ ## NAME ## _type_node \
2133 || type1 == unsigned_short_ ## NAME ## _type_node) \
2134 return unsignedp ? unsigned_short_ ## NAME ## _type_node \
2135 : short_ ## NAME ## _type_node; \
2136 if (type1 == NAME ## _type_node \
2137 || type1 == unsigned_ ## NAME ## _type_node) \
2138 return unsignedp ? unsigned_ ## NAME ## _type_node \
2139 : NAME ## _type_node; \
2140 if (type1 == long_ ## NAME ## _type_node \
2141 || type1 == unsigned_long_ ## NAME ## _type_node) \
2142 return unsignedp ? unsigned_long_ ## NAME ## _type_node \
2143 : long_ ## NAME ## _type_node; \
2144 if (type1 == long_long_ ## NAME ## _type_node \
2145 || type1 == unsigned_long_long_ ## NAME ## _type_node) \
2146 return unsignedp ? unsigned_long_long_ ## NAME ## _type_node \
2147 : long_long_ ## NAME ## _type_node;
2148
2149 #define GIMPLE_FIXED_MODE_TYPES(NAME) \
2150 if (type1 == NAME ## _type_node \
2151 || type1 == u ## NAME ## _type_node) \
2152 return unsignedp ? u ## NAME ## _type_node \
2153 : NAME ## _type_node;
2154
2155 #define GIMPLE_FIXED_TYPES_SAT(NAME) \
2156 if (type1 == sat_ ## short_ ## NAME ## _type_node \
2157 || type1 == sat_ ## unsigned_short_ ## NAME ## _type_node) \
2158 return unsignedp ? sat_ ## unsigned_short_ ## NAME ## _type_node \
2159 : sat_ ## short_ ## NAME ## _type_node; \
2160 if (type1 == sat_ ## NAME ## _type_node \
2161 || type1 == sat_ ## unsigned_ ## NAME ## _type_node) \
2162 return unsignedp ? sat_ ## unsigned_ ## NAME ## _type_node \
2163 : sat_ ## NAME ## _type_node; \
2164 if (type1 == sat_ ## long_ ## NAME ## _type_node \
2165 || type1 == sat_ ## unsigned_long_ ## NAME ## _type_node) \
2166 return unsignedp ? sat_ ## unsigned_long_ ## NAME ## _type_node \
2167 : sat_ ## long_ ## NAME ## _type_node; \
2168 if (type1 == sat_ ## long_long_ ## NAME ## _type_node \
2169 || type1 == sat_ ## unsigned_long_long_ ## NAME ## _type_node) \
2170 return unsignedp ? sat_ ## unsigned_long_long_ ## NAME ## _type_node \
2171 : sat_ ## long_long_ ## NAME ## _type_node;
2172
2173 #define GIMPLE_FIXED_MODE_TYPES_SAT(NAME) \
2174 if (type1 == sat_ ## NAME ## _type_node \
2175 || type1 == sat_ ## u ## NAME ## _type_node) \
2176 return unsignedp ? sat_ ## u ## NAME ## _type_node \
2177 : sat_ ## NAME ## _type_node;
2178
2179 GIMPLE_FIXED_TYPES (fract);
2180 GIMPLE_FIXED_TYPES_SAT (fract);
2181 GIMPLE_FIXED_TYPES (accum);
2182 GIMPLE_FIXED_TYPES_SAT (accum);
2183
2184 GIMPLE_FIXED_MODE_TYPES (qq);
2185 GIMPLE_FIXED_MODE_TYPES (hq);
2186 GIMPLE_FIXED_MODE_TYPES (sq);
2187 GIMPLE_FIXED_MODE_TYPES (dq);
2188 GIMPLE_FIXED_MODE_TYPES (tq);
2189 GIMPLE_FIXED_MODE_TYPES_SAT (qq);
2190 GIMPLE_FIXED_MODE_TYPES_SAT (hq);
2191 GIMPLE_FIXED_MODE_TYPES_SAT (sq);
2192 GIMPLE_FIXED_MODE_TYPES_SAT (dq);
2193 GIMPLE_FIXED_MODE_TYPES_SAT (tq);
2194 GIMPLE_FIXED_MODE_TYPES (ha);
2195 GIMPLE_FIXED_MODE_TYPES (sa);
2196 GIMPLE_FIXED_MODE_TYPES (da);
2197 GIMPLE_FIXED_MODE_TYPES (ta);
2198 GIMPLE_FIXED_MODE_TYPES_SAT (ha);
2199 GIMPLE_FIXED_MODE_TYPES_SAT (sa);
2200 GIMPLE_FIXED_MODE_TYPES_SAT (da);
2201 GIMPLE_FIXED_MODE_TYPES_SAT (ta);
2202
2203 /* For ENUMERAL_TYPEs in C++, must check the mode of the types, not
2204 the precision; they have precision set to match their range, but
2205 may use a wider mode to match an ABI. If we change modes, we may
2206 wind up with bad conversions. For INTEGER_TYPEs in C, must check
2207 the precision as well, so as to yield correct results for
2208 bit-field types. C++ does not have these separate bit-field
2209 types, and producing a signed or unsigned variant of an
2210 ENUMERAL_TYPE may cause other problems as well. */
2211 if (!INTEGRAL_TYPE_P (type)
2212 || TYPE_UNSIGNED (type) == unsignedp)
2213 return type;
2214
2215 #define TYPE_OK(node) \
2216 (TYPE_MODE (type) == TYPE_MODE (node) \
2217 && TYPE_PRECISION (type) == TYPE_PRECISION (node))
2218 if (TYPE_OK (signed_char_type_node))
2219 return unsignedp ? unsigned_char_type_node : signed_char_type_node;
2220 if (TYPE_OK (integer_type_node))
2221 return unsignedp ? unsigned_type_node : integer_type_node;
2222 if (TYPE_OK (short_integer_type_node))
2223 return unsignedp ? short_unsigned_type_node : short_integer_type_node;
2224 if (TYPE_OK (long_integer_type_node))
2225 return unsignedp ? long_unsigned_type_node : long_integer_type_node;
2226 if (TYPE_OK (long_long_integer_type_node))
2227 return (unsignedp
2228 ? long_long_unsigned_type_node
2229 : long_long_integer_type_node);
2230 if (int128_integer_type_node && TYPE_OK (int128_integer_type_node))
2231 return (unsignedp
2232 ? int128_unsigned_type_node
2233 : int128_integer_type_node);
2234
2235 #if HOST_BITS_PER_WIDE_INT >= 64
2236 if (TYPE_OK (intTI_type_node))
2237 return unsignedp ? unsigned_intTI_type_node : intTI_type_node;
2238 #endif
2239 if (TYPE_OK (intDI_type_node))
2240 return unsignedp ? unsigned_intDI_type_node : intDI_type_node;
2241 if (TYPE_OK (intSI_type_node))
2242 return unsignedp ? unsigned_intSI_type_node : intSI_type_node;
2243 if (TYPE_OK (intHI_type_node))
2244 return unsignedp ? unsigned_intHI_type_node : intHI_type_node;
2245 if (TYPE_OK (intQI_type_node))
2246 return unsignedp ? unsigned_intQI_type_node : intQI_type_node;
2247
2248 #undef GIMPLE_FIXED_TYPES
2249 #undef GIMPLE_FIXED_MODE_TYPES
2250 #undef GIMPLE_FIXED_TYPES_SAT
2251 #undef GIMPLE_FIXED_MODE_TYPES_SAT
2252 #undef TYPE_OK
2253
2254 return build_nonstandard_integer_type (TYPE_PRECISION (type), unsignedp);
2255 }
2256
2257
2258 /* Return an unsigned type the same as TYPE in other respects. */
2259
2260 tree
2261 gimple_unsigned_type (tree type)
2262 {
2263 return gimple_signed_or_unsigned_type (true, type);
2264 }
2265
2266
2267 /* Return a signed type the same as TYPE in other respects. */
2268
2269 tree
2270 gimple_signed_type (tree type)
2271 {
2272 return gimple_signed_or_unsigned_type (false, type);
2273 }
2274
2275
2276 /* Return the typed-based alias set for T, which may be an expression
2277 or a type. Return -1 if we don't do anything special. */
2278
2279 alias_set_type
2280 gimple_get_alias_set (tree t)
2281 {
2282 tree u;
2283
2284 /* Permit type-punning when accessing a union, provided the access
2285 is directly through the union. For example, this code does not
2286 permit taking the address of a union member and then storing
2287 through it. Even the type-punning allowed here is a GCC
2288 extension, albeit a common and useful one; the C standard says
2289 that such accesses have implementation-defined behavior. */
2290 for (u = t;
2291 TREE_CODE (u) == COMPONENT_REF || TREE_CODE (u) == ARRAY_REF;
2292 u = TREE_OPERAND (u, 0))
2293 if (TREE_CODE (u) == COMPONENT_REF
2294 && TREE_CODE (TREE_TYPE (TREE_OPERAND (u, 0))) == UNION_TYPE)
2295 return 0;
2296
2297 /* That's all the expressions we handle specially. */
2298 if (!TYPE_P (t))
2299 return -1;
2300
2301 /* For convenience, follow the C standard when dealing with
2302 character types. Any object may be accessed via an lvalue that
2303 has character type. */
2304 if (t == char_type_node
2305 || t == signed_char_type_node
2306 || t == unsigned_char_type_node)
2307 return 0;
2308
2309 /* Allow aliasing between signed and unsigned variants of the same
2310 type. We treat the signed variant as canonical. */
2311 if (TREE_CODE (t) == INTEGER_TYPE && TYPE_UNSIGNED (t))
2312 {
2313 tree t1 = gimple_signed_type (t);
2314
2315 /* t1 == t can happen for boolean nodes which are always unsigned. */
2316 if (t1 != t)
2317 return get_alias_set (t1);
2318 }
2319
2320 return -1;
2321 }
2322
2323
2324 /* Helper for gimple_ior_addresses_taken_1. */
2325
2326 static bool
2327 gimple_ior_addresses_taken_1 (gimple stmt ATTRIBUTE_UNUSED,
2328 tree addr, void *data)
2329 {
2330 bitmap addresses_taken = (bitmap)data;
2331 addr = get_base_address (addr);
2332 if (addr
2333 && DECL_P (addr))
2334 {
2335 bitmap_set_bit (addresses_taken, DECL_UID (addr));
2336 return true;
2337 }
2338 return false;
2339 }
2340
2341 /* Set the bit for the uid of all decls that have their address taken
2342 in STMT in the ADDRESSES_TAKEN bitmap. Returns true if there
2343 were any in this stmt. */
2344
2345 bool
2346 gimple_ior_addresses_taken (bitmap addresses_taken, gimple stmt)
2347 {
2348 return walk_stmt_load_store_addr_ops (stmt, addresses_taken, NULL, NULL,
2349 gimple_ior_addresses_taken_1);
2350 }
2351
2352
2353 /* Return TRUE iff stmt is a call to a built-in function. */
2354
2355 bool
2356 is_gimple_builtin_call (gimple stmt)
2357 {
2358 tree callee;
2359
2360 if (is_gimple_call (stmt)
2361 && (callee = gimple_call_fndecl (stmt))
2362 && is_builtin_fn (callee)
2363 && DECL_BUILT_IN_CLASS (callee) == BUILT_IN_NORMAL)
2364 return true;
2365
2366 return false;
2367 }
2368
2369 /* Return true when STMTs arguments match those of FNDECL. */
2370
2371 static bool
2372 validate_call (gimple stmt, tree fndecl)
2373 {
2374 tree targs = TYPE_ARG_TYPES (TREE_TYPE (fndecl));
2375 unsigned nargs = gimple_call_num_args (stmt);
2376 for (unsigned i = 0; i < nargs; ++i)
2377 {
2378 /* Variadic args follow. */
2379 if (!targs)
2380 return true;
2381 tree arg = gimple_call_arg (stmt, i);
2382 if (INTEGRAL_TYPE_P (TREE_TYPE (arg))
2383 && INTEGRAL_TYPE_P (TREE_VALUE (targs)))
2384 ;
2385 else if (POINTER_TYPE_P (TREE_TYPE (arg))
2386 && POINTER_TYPE_P (TREE_VALUE (targs)))
2387 ;
2388 else if (TREE_CODE (TREE_TYPE (arg))
2389 != TREE_CODE (TREE_VALUE (targs)))
2390 return false;
2391 targs = TREE_CHAIN (targs);
2392 }
2393 if (targs && !VOID_TYPE_P (TREE_VALUE (targs)))
2394 return false;
2395 return true;
2396 }
2397
2398 /* Return true when STMT is builtins call to CLASS. */
2399
2400 bool
2401 gimple_call_builtin_p (gimple stmt, enum built_in_class klass)
2402 {
2403 tree fndecl;
2404 if (is_gimple_call (stmt)
2405 && (fndecl = gimple_call_fndecl (stmt)) != NULL_TREE
2406 && DECL_BUILT_IN_CLASS (fndecl) == klass)
2407 return validate_call (stmt, fndecl);
2408 return false;
2409 }
2410
2411 /* Return true when STMT is builtins call to CODE of CLASS. */
2412
2413 bool
2414 gimple_call_builtin_p (gimple stmt, enum built_in_function code)
2415 {
2416 tree fndecl;
2417 if (is_gimple_call (stmt)
2418 && (fndecl = gimple_call_fndecl (stmt)) != NULL_TREE
2419 && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL
2420 && DECL_FUNCTION_CODE (fndecl) == code)
2421 return validate_call (stmt, fndecl);
2422 return false;
2423 }
2424
2425 /* Return true if STMT clobbers memory. STMT is required to be a
2426 GIMPLE_ASM. */
2427
2428 bool
2429 gimple_asm_clobbers_memory_p (const_gimple stmt)
2430 {
2431 unsigned i;
2432
2433 for (i = 0; i < gimple_asm_nclobbers (stmt); i++)
2434 {
2435 tree op = gimple_asm_clobber_op (stmt, i);
2436 if (strcmp (TREE_STRING_POINTER (TREE_VALUE (op)), "memory") == 0)
2437 return true;
2438 }
2439
2440 return false;
2441 }
2442
2443 /* Dump bitmap SET (assumed to contain VAR_DECLs) to FILE. */
2444
2445 void
2446 dump_decl_set (FILE *file, bitmap set)
2447 {
2448 if (set)
2449 {
2450 bitmap_iterator bi;
2451 unsigned i;
2452
2453 fprintf (file, "{ ");
2454
2455 EXECUTE_IF_SET_IN_BITMAP (set, 0, i, bi)
2456 {
2457 fprintf (file, "D.%u", i);
2458 fprintf (file, " ");
2459 }
2460
2461 fprintf (file, "}");
2462 }
2463 else
2464 fprintf (file, "NIL");
2465 }
2466
2467 /* Return true when CALL is a call stmt that definitely doesn't
2468 free any memory or makes it unavailable otherwise. */
2469 bool
2470 nonfreeing_call_p (gimple call)
2471 {
2472 if (gimple_call_builtin_p (call, BUILT_IN_NORMAL)
2473 && gimple_call_flags (call) & ECF_LEAF)
2474 switch (DECL_FUNCTION_CODE (gimple_call_fndecl (call)))
2475 {
2476 /* Just in case these become ECF_LEAF in the future. */
2477 case BUILT_IN_FREE:
2478 case BUILT_IN_TM_FREE:
2479 case BUILT_IN_REALLOC:
2480 case BUILT_IN_STACK_RESTORE:
2481 return false;
2482 default:
2483 return true;
2484 }
2485
2486 return false;
2487 }
2488
2489 /* Callback for walk_stmt_load_store_ops.
2490
2491 Return TRUE if OP will dereference the tree stored in DATA, FALSE
2492 otherwise.
2493
2494 This routine only makes a superficial check for a dereference. Thus
2495 it must only be used if it is safe to return a false negative. */
2496 static bool
2497 check_loadstore (gimple stmt ATTRIBUTE_UNUSED, tree op, void *data)
2498 {
2499 if ((TREE_CODE (op) == MEM_REF || TREE_CODE (op) == TARGET_MEM_REF)
2500 && operand_equal_p (TREE_OPERAND (op, 0), (tree)data, 0))
2501 return true;
2502 return false;
2503 }
2504
2505 /* If OP can be inferred to be non-zero after STMT executes, return true. */
2506
2507 bool
2508 infer_nonnull_range (gimple stmt, tree op)
2509 {
2510 /* We can only assume that a pointer dereference will yield
2511 non-NULL if -fdelete-null-pointer-checks is enabled. */
2512 if (!flag_delete_null_pointer_checks
2513 || !POINTER_TYPE_P (TREE_TYPE (op))
2514 || gimple_code (stmt) == GIMPLE_ASM)
2515 return false;
2516
2517 if (walk_stmt_load_store_ops (stmt, (void *)op,
2518 check_loadstore, check_loadstore))
2519 return true;
2520
2521 if (is_gimple_call (stmt) && !gimple_call_internal_p (stmt))
2522 {
2523 tree fntype = gimple_call_fntype (stmt);
2524 tree attrs = TYPE_ATTRIBUTES (fntype);
2525 for (; attrs; attrs = TREE_CHAIN (attrs))
2526 {
2527 attrs = lookup_attribute ("nonnull", attrs);
2528
2529 /* If "nonnull" wasn't specified, we know nothing about
2530 the argument. */
2531 if (attrs == NULL_TREE)
2532 return false;
2533
2534 /* If "nonnull" applies to all the arguments, then ARG
2535 is non-null if it's in the argument list. */
2536 if (TREE_VALUE (attrs) == NULL_TREE)
2537 {
2538 for (unsigned int i = 0; i < gimple_call_num_args (stmt); i++)
2539 {
2540 if (operand_equal_p (op, gimple_call_arg (stmt, i), 0)
2541 && POINTER_TYPE_P (TREE_TYPE (gimple_call_arg (stmt, i))))
2542 return true;
2543 }
2544 return false;
2545 }
2546
2547 /* Now see if op appears in the nonnull list. */
2548 for (tree t = TREE_VALUE (attrs); t; t = TREE_CHAIN (t))
2549 {
2550 int idx = TREE_INT_CST_LOW (TREE_VALUE (t)) - 1;
2551 tree arg = gimple_call_arg (stmt, idx);
2552 if (operand_equal_p (op, arg, 0))
2553 return true;
2554 }
2555 }
2556 }
2557
2558 /* If this function is marked as returning non-null, then we can
2559 infer OP is non-null if it is used in the return statement. */
2560 if (gimple_code (stmt) == GIMPLE_RETURN
2561 && gimple_return_retval (stmt)
2562 && operand_equal_p (gimple_return_retval (stmt), op, 0)
2563 && lookup_attribute ("returns_nonnull",
2564 TYPE_ATTRIBUTES (TREE_TYPE (current_function_decl))))
2565 return true;
2566
2567 return false;
2568 }
2569
2570 /* Compare two case labels. Because the front end should already have
2571 made sure that case ranges do not overlap, it is enough to only compare
2572 the CASE_LOW values of each case label. */
2573
2574 static int
2575 compare_case_labels (const void *p1, const void *p2)
2576 {
2577 const_tree const case1 = *(const_tree const*)p1;
2578 const_tree const case2 = *(const_tree const*)p2;
2579
2580 /* The 'default' case label always goes first. */
2581 if (!CASE_LOW (case1))
2582 return -1;
2583 else if (!CASE_LOW (case2))
2584 return 1;
2585 else
2586 return tree_int_cst_compare (CASE_LOW (case1), CASE_LOW (case2));
2587 }
2588
2589 /* Sort the case labels in LABEL_VEC in place in ascending order. */
2590
2591 void
2592 sort_case_labels (vec<tree> label_vec)
2593 {
2594 label_vec.qsort (compare_case_labels);
2595 }
2596 \f
2597 /* Prepare a vector of case labels to be used in a GIMPLE_SWITCH statement.
2598
2599 LABELS is a vector that contains all case labels to look at.
2600
2601 INDEX_TYPE is the type of the switch index expression. Case labels
2602 in LABELS are discarded if their values are not in the value range
2603 covered by INDEX_TYPE. The remaining case label values are folded
2604 to INDEX_TYPE.
2605
2606 If a default case exists in LABELS, it is removed from LABELS and
2607 returned in DEFAULT_CASEP. If no default case exists, but the
2608 case labels already cover the whole range of INDEX_TYPE, a default
2609 case is returned pointing to one of the existing case labels.
2610 Otherwise DEFAULT_CASEP is set to NULL_TREE.
2611
2612 DEFAULT_CASEP may be NULL, in which case the above comment doesn't
2613 apply and no action is taken regardless of whether a default case is
2614 found or not. */
2615
2616 void
2617 preprocess_case_label_vec_for_gimple (vec<tree> labels,
2618 tree index_type,
2619 tree *default_casep)
2620 {
2621 tree min_value, max_value;
2622 tree default_case = NULL_TREE;
2623 size_t i, len;
2624
2625 i = 0;
2626 min_value = TYPE_MIN_VALUE (index_type);
2627 max_value = TYPE_MAX_VALUE (index_type);
2628 while (i < labels.length ())
2629 {
2630 tree elt = labels[i];
2631 tree low = CASE_LOW (elt);
2632 tree high = CASE_HIGH (elt);
2633 bool remove_element = FALSE;
2634
2635 if (low)
2636 {
2637 gcc_checking_assert (TREE_CODE (low) == INTEGER_CST);
2638 gcc_checking_assert (!high || TREE_CODE (high) == INTEGER_CST);
2639
2640 /* This is a non-default case label, i.e. it has a value.
2641
2642 See if the case label is reachable within the range of
2643 the index type. Remove out-of-range case values. Turn
2644 case ranges into a canonical form (high > low strictly)
2645 and convert the case label values to the index type.
2646
2647 NB: The type of gimple_switch_index() may be the promoted
2648 type, but the case labels retain the original type. */
2649
2650 if (high)
2651 {
2652 /* This is a case range. Discard empty ranges.
2653 If the bounds or the range are equal, turn this
2654 into a simple (one-value) case. */
2655 int cmp = tree_int_cst_compare (high, low);
2656 if (cmp < 0)
2657 remove_element = TRUE;
2658 else if (cmp == 0)
2659 high = NULL_TREE;
2660 }
2661
2662 if (! high)
2663 {
2664 /* If the simple case value is unreachable, ignore it. */
2665 if ((TREE_CODE (min_value) == INTEGER_CST
2666 && tree_int_cst_compare (low, min_value) < 0)
2667 || (TREE_CODE (max_value) == INTEGER_CST
2668 && tree_int_cst_compare (low, max_value) > 0))
2669 remove_element = TRUE;
2670 else
2671 low = fold_convert (index_type, low);
2672 }
2673 else
2674 {
2675 /* If the entire case range is unreachable, ignore it. */
2676 if ((TREE_CODE (min_value) == INTEGER_CST
2677 && tree_int_cst_compare (high, min_value) < 0)
2678 || (TREE_CODE (max_value) == INTEGER_CST
2679 && tree_int_cst_compare (low, max_value) > 0))
2680 remove_element = TRUE;
2681 else
2682 {
2683 /* If the lower bound is less than the index type's
2684 minimum value, truncate the range bounds. */
2685 if (TREE_CODE (min_value) == INTEGER_CST
2686 && tree_int_cst_compare (low, min_value) < 0)
2687 low = min_value;
2688 low = fold_convert (index_type, low);
2689
2690 /* If the upper bound is greater than the index type's
2691 maximum value, truncate the range bounds. */
2692 if (TREE_CODE (max_value) == INTEGER_CST
2693 && tree_int_cst_compare (high, max_value) > 0)
2694 high = max_value;
2695 high = fold_convert (index_type, high);
2696
2697 /* We may have folded a case range to a one-value case. */
2698 if (tree_int_cst_equal (low, high))
2699 high = NULL_TREE;
2700 }
2701 }
2702
2703 CASE_LOW (elt) = low;
2704 CASE_HIGH (elt) = high;
2705 }
2706 else
2707 {
2708 gcc_assert (!default_case);
2709 default_case = elt;
2710 /* The default case must be passed separately to the
2711 gimple_build_switch routine. But if DEFAULT_CASEP
2712 is NULL, we do not remove the default case (it would
2713 be completely lost). */
2714 if (default_casep)
2715 remove_element = TRUE;
2716 }
2717
2718 if (remove_element)
2719 labels.ordered_remove (i);
2720 else
2721 i++;
2722 }
2723 len = i;
2724
2725 if (!labels.is_empty ())
2726 sort_case_labels (labels);
2727
2728 if (default_casep && !default_case)
2729 {
2730 /* If the switch has no default label, add one, so that we jump
2731 around the switch body. If the labels already cover the whole
2732 range of the switch index_type, add the default label pointing
2733 to one of the existing labels. */
2734 if (len
2735 && TYPE_MIN_VALUE (index_type)
2736 && TYPE_MAX_VALUE (index_type)
2737 && tree_int_cst_equal (CASE_LOW (labels[0]),
2738 TYPE_MIN_VALUE (index_type)))
2739 {
2740 tree low, high = CASE_HIGH (labels[len - 1]);
2741 if (!high)
2742 high = CASE_LOW (labels[len - 1]);
2743 if (tree_int_cst_equal (high, TYPE_MAX_VALUE (index_type)))
2744 {
2745 for (i = 1; i < len; i++)
2746 {
2747 high = CASE_LOW (labels[i]);
2748 low = CASE_HIGH (labels[i - 1]);
2749 if (!low)
2750 low = CASE_LOW (labels[i - 1]);
2751 if ((TREE_INT_CST_LOW (low) + 1
2752 != TREE_INT_CST_LOW (high))
2753 || (TREE_INT_CST_HIGH (low)
2754 + (TREE_INT_CST_LOW (high) == 0)
2755 != TREE_INT_CST_HIGH (high)))
2756 break;
2757 }
2758 if (i == len)
2759 {
2760 tree label = CASE_LABEL (labels[0]);
2761 default_case = build_case_label (NULL_TREE, NULL_TREE,
2762 label);
2763 }
2764 }
2765 }
2766 }
2767
2768 if (default_casep)
2769 *default_casep = default_case;
2770 }
2771
2772 /* Set the location of all statements in SEQ to LOC. */
2773
2774 void
2775 gimple_seq_set_location (gimple_seq seq, location_t loc)
2776 {
2777 for (gimple_stmt_iterator i = gsi_start (seq); !gsi_end_p (i); gsi_next (&i))
2778 gimple_set_location (gsi_stmt (i), loc);
2779 }