]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/gimple.c
Add generic part for Intel CET enabling. The spec is available at
[thirdparty/gcc.git] / gcc / gimple.c
1 /* Gimple IR support functions.
2
3 Copyright (C) 2007-2017 Free Software Foundation, Inc.
4 Contributed by Aldy Hernandez <aldyh@redhat.com>
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
12
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
21
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "backend.h"
26 #include "tree.h"
27 #include "gimple.h"
28 #include "ssa.h"
29 #include "cgraph.h"
30 #include "diagnostic.h"
31 #include "alias.h"
32 #include "fold-const.h"
33 #include "calls.h"
34 #include "stor-layout.h"
35 #include "internal-fn.h"
36 #include "tree-eh.h"
37 #include "gimple-iterator.h"
38 #include "gimple-walk.h"
39 #include "gimplify.h"
40 #include "target.h"
41 #include "builtins.h"
42 #include "selftest.h"
43 #include "gimple-pretty-print.h"
44 #include "stringpool.h"
45 #include "attribs.h"
46 #include "asan.h"
47
48
49 /* All the tuples have their operand vector (if present) at the very bottom
50 of the structure. Therefore, the offset required to find the
51 operands vector the size of the structure minus the size of the 1
52 element tree array at the end (see gimple_ops). */
53 #define DEFGSSTRUCT(SYM, STRUCT, HAS_TREE_OP) \
54 (HAS_TREE_OP ? sizeof (struct STRUCT) - sizeof (tree) : 0),
55 EXPORTED_CONST size_t gimple_ops_offset_[] = {
56 #include "gsstruct.def"
57 };
58 #undef DEFGSSTRUCT
59
60 #define DEFGSSTRUCT(SYM, STRUCT, HAS_TREE_OP) sizeof (struct STRUCT),
61 static const size_t gsstruct_code_size[] = {
62 #include "gsstruct.def"
63 };
64 #undef DEFGSSTRUCT
65
66 #define DEFGSCODE(SYM, NAME, GSSCODE) NAME,
67 const char *const gimple_code_name[] = {
68 #include "gimple.def"
69 };
70 #undef DEFGSCODE
71
72 #define DEFGSCODE(SYM, NAME, GSSCODE) GSSCODE,
73 EXPORTED_CONST enum gimple_statement_structure_enum gss_for_code_[] = {
74 #include "gimple.def"
75 };
76 #undef DEFGSCODE
77
78 /* Gimple stats. */
79
80 int gimple_alloc_counts[(int) gimple_alloc_kind_all];
81 int gimple_alloc_sizes[(int) gimple_alloc_kind_all];
82
83 /* Keep in sync with gimple.h:enum gimple_alloc_kind. */
84 static const char * const gimple_alloc_kind_names[] = {
85 "assignments",
86 "phi nodes",
87 "conditionals",
88 "everything else"
89 };
90
91 /* Static gimple tuple members. */
92 const enum gimple_code gassign::code_;
93 const enum gimple_code gcall::code_;
94 const enum gimple_code gcond::code_;
95
96
97 /* Gimple tuple constructors.
98 Note: Any constructor taking a ``gimple_seq'' as a parameter, can
99 be passed a NULL to start with an empty sequence. */
100
101 /* Set the code for statement G to CODE. */
102
103 static inline void
104 gimple_set_code (gimple *g, enum gimple_code code)
105 {
106 g->code = code;
107 }
108
109 /* Return the number of bytes needed to hold a GIMPLE statement with
110 code CODE. */
111
112 static inline size_t
113 gimple_size (enum gimple_code code)
114 {
115 return gsstruct_code_size[gss_for_code (code)];
116 }
117
118 /* Allocate memory for a GIMPLE statement with code CODE and NUM_OPS
119 operands. */
120
121 gimple *
122 gimple_alloc (enum gimple_code code, unsigned num_ops MEM_STAT_DECL)
123 {
124 size_t size;
125 gimple *stmt;
126
127 size = gimple_size (code);
128 if (num_ops > 0)
129 size += sizeof (tree) * (num_ops - 1);
130
131 if (GATHER_STATISTICS)
132 {
133 enum gimple_alloc_kind kind = gimple_alloc_kind (code);
134 gimple_alloc_counts[(int) kind]++;
135 gimple_alloc_sizes[(int) kind] += size;
136 }
137
138 stmt = ggc_alloc_cleared_gimple_statement_stat (size PASS_MEM_STAT);
139 gimple_set_code (stmt, code);
140 gimple_set_num_ops (stmt, num_ops);
141
142 /* Do not call gimple_set_modified here as it has other side
143 effects and this tuple is still not completely built. */
144 stmt->modified = 1;
145 gimple_init_singleton (stmt);
146
147 return stmt;
148 }
149
150 /* Set SUBCODE to be the code of the expression computed by statement G. */
151
152 static inline void
153 gimple_set_subcode (gimple *g, unsigned subcode)
154 {
155 /* We only have 16 bits for the RHS code. Assert that we are not
156 overflowing it. */
157 gcc_assert (subcode < (1 << 16));
158 g->subcode = subcode;
159 }
160
161
162
163 /* Build a tuple with operands. CODE is the statement to build (which
164 must be one of the GIMPLE_WITH_OPS tuples). SUBCODE is the subcode
165 for the new tuple. NUM_OPS is the number of operands to allocate. */
166
167 #define gimple_build_with_ops(c, s, n) \
168 gimple_build_with_ops_stat (c, s, n MEM_STAT_INFO)
169
170 static gimple *
171 gimple_build_with_ops_stat (enum gimple_code code, unsigned subcode,
172 unsigned num_ops MEM_STAT_DECL)
173 {
174 gimple *s = gimple_alloc (code, num_ops PASS_MEM_STAT);
175 gimple_set_subcode (s, subcode);
176
177 return s;
178 }
179
180
181 /* Build a GIMPLE_RETURN statement returning RETVAL. */
182
183 greturn *
184 gimple_build_return (tree retval)
185 {
186 greturn *s
187 = as_a <greturn *> (gimple_build_with_ops (GIMPLE_RETURN, ERROR_MARK,
188 2));
189 if (retval)
190 gimple_return_set_retval (s, retval);
191 return s;
192 }
193
194 /* Reset alias information on call S. */
195
196 void
197 gimple_call_reset_alias_info (gcall *s)
198 {
199 if (gimple_call_flags (s) & ECF_CONST)
200 memset (gimple_call_use_set (s), 0, sizeof (struct pt_solution));
201 else
202 pt_solution_reset (gimple_call_use_set (s));
203 if (gimple_call_flags (s) & (ECF_CONST|ECF_PURE|ECF_NOVOPS))
204 memset (gimple_call_clobber_set (s), 0, sizeof (struct pt_solution));
205 else
206 pt_solution_reset (gimple_call_clobber_set (s));
207 }
208
209 /* Helper for gimple_build_call, gimple_build_call_valist,
210 gimple_build_call_vec and gimple_build_call_from_tree. Build the basic
211 components of a GIMPLE_CALL statement to function FN with NARGS
212 arguments. */
213
214 static inline gcall *
215 gimple_build_call_1 (tree fn, unsigned nargs)
216 {
217 gcall *s
218 = as_a <gcall *> (gimple_build_with_ops (GIMPLE_CALL, ERROR_MARK,
219 nargs + 3));
220 if (TREE_CODE (fn) == FUNCTION_DECL)
221 fn = build_fold_addr_expr (fn);
222 gimple_set_op (s, 1, fn);
223 gimple_call_set_fntype (s, TREE_TYPE (TREE_TYPE (fn)));
224 gimple_call_reset_alias_info (s);
225 return s;
226 }
227
228
229 /* Build a GIMPLE_CALL statement to function FN with the arguments
230 specified in vector ARGS. */
231
232 gcall *
233 gimple_build_call_vec (tree fn, vec<tree> args)
234 {
235 unsigned i;
236 unsigned nargs = args.length ();
237 gcall *call = gimple_build_call_1 (fn, nargs);
238
239 for (i = 0; i < nargs; i++)
240 gimple_call_set_arg (call, i, args[i]);
241
242 return call;
243 }
244
245
246 /* Build a GIMPLE_CALL statement to function FN. NARGS is the number of
247 arguments. The ... are the arguments. */
248
249 gcall *
250 gimple_build_call (tree fn, unsigned nargs, ...)
251 {
252 va_list ap;
253 gcall *call;
254 unsigned i;
255
256 gcc_assert (TREE_CODE (fn) == FUNCTION_DECL || is_gimple_call_addr (fn));
257
258 call = gimple_build_call_1 (fn, nargs);
259
260 va_start (ap, nargs);
261 for (i = 0; i < nargs; i++)
262 gimple_call_set_arg (call, i, va_arg (ap, tree));
263 va_end (ap);
264
265 return call;
266 }
267
268
269 /* Build a GIMPLE_CALL statement to function FN. NARGS is the number of
270 arguments. AP contains the arguments. */
271
272 gcall *
273 gimple_build_call_valist (tree fn, unsigned nargs, va_list ap)
274 {
275 gcall *call;
276 unsigned i;
277
278 gcc_assert (TREE_CODE (fn) == FUNCTION_DECL || is_gimple_call_addr (fn));
279
280 call = gimple_build_call_1 (fn, nargs);
281
282 for (i = 0; i < nargs; i++)
283 gimple_call_set_arg (call, i, va_arg (ap, tree));
284
285 return call;
286 }
287
288
289 /* Helper for gimple_build_call_internal and gimple_build_call_internal_vec.
290 Build the basic components of a GIMPLE_CALL statement to internal
291 function FN with NARGS arguments. */
292
293 static inline gcall *
294 gimple_build_call_internal_1 (enum internal_fn fn, unsigned nargs)
295 {
296 gcall *s
297 = as_a <gcall *> (gimple_build_with_ops (GIMPLE_CALL, ERROR_MARK,
298 nargs + 3));
299 s->subcode |= GF_CALL_INTERNAL;
300 gimple_call_set_internal_fn (s, fn);
301 gimple_call_reset_alias_info (s);
302 return s;
303 }
304
305
306 /* Build a GIMPLE_CALL statement to internal function FN. NARGS is
307 the number of arguments. The ... are the arguments. */
308
309 gcall *
310 gimple_build_call_internal (enum internal_fn fn, unsigned nargs, ...)
311 {
312 va_list ap;
313 gcall *call;
314 unsigned i;
315
316 call = gimple_build_call_internal_1 (fn, nargs);
317 va_start (ap, nargs);
318 for (i = 0; i < nargs; i++)
319 gimple_call_set_arg (call, i, va_arg (ap, tree));
320 va_end (ap);
321
322 return call;
323 }
324
325
326 /* Build a GIMPLE_CALL statement to internal function FN with the arguments
327 specified in vector ARGS. */
328
329 gcall *
330 gimple_build_call_internal_vec (enum internal_fn fn, vec<tree> args)
331 {
332 unsigned i, nargs;
333 gcall *call;
334
335 nargs = args.length ();
336 call = gimple_build_call_internal_1 (fn, nargs);
337 for (i = 0; i < nargs; i++)
338 gimple_call_set_arg (call, i, args[i]);
339
340 return call;
341 }
342
343
344 /* Build a GIMPLE_CALL statement from CALL_EXPR T. Note that T is
345 assumed to be in GIMPLE form already. Minimal checking is done of
346 this fact. */
347
348 gcall *
349 gimple_build_call_from_tree (tree t, tree fnptrtype)
350 {
351 unsigned i, nargs;
352 gcall *call;
353 tree fndecl = get_callee_fndecl (t);
354
355 gcc_assert (TREE_CODE (t) == CALL_EXPR);
356
357 nargs = call_expr_nargs (t);
358 call = gimple_build_call_1 (fndecl ? fndecl : CALL_EXPR_FN (t), nargs);
359
360 for (i = 0; i < nargs; i++)
361 gimple_call_set_arg (call, i, CALL_EXPR_ARG (t, i));
362
363 gimple_set_block (call, TREE_BLOCK (t));
364
365 /* Carry all the CALL_EXPR flags to the new GIMPLE_CALL. */
366 gimple_call_set_chain (call, CALL_EXPR_STATIC_CHAIN (t));
367 gimple_call_set_tail (call, CALL_EXPR_TAILCALL (t));
368 gimple_call_set_must_tail (call, CALL_EXPR_MUST_TAIL_CALL (t));
369 gimple_call_set_return_slot_opt (call, CALL_EXPR_RETURN_SLOT_OPT (t));
370 if (fndecl
371 && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL
372 && ALLOCA_FUNCTION_CODE_P (DECL_FUNCTION_CODE (fndecl)))
373 gimple_call_set_alloca_for_var (call, CALL_ALLOCA_FOR_VAR_P (t));
374 else
375 gimple_call_set_from_thunk (call, CALL_FROM_THUNK_P (t));
376 gimple_call_set_va_arg_pack (call, CALL_EXPR_VA_ARG_PACK (t));
377 gimple_call_set_nothrow (call, TREE_NOTHROW (t));
378 gimple_call_set_by_descriptor (call, CALL_EXPR_BY_DESCRIPTOR (t));
379 gimple_set_no_warning (call, TREE_NO_WARNING (t));
380 gimple_call_set_with_bounds (call, CALL_WITH_BOUNDS_P (t));
381
382 if (fnptrtype)
383 {
384 gimple_call_set_fntype (call, TREE_TYPE (fnptrtype));
385
386 /* Check if it's an indirect CALL and the type has the
387 nocf_check attribute. In that case propagate the information
388 to the gimple CALL insn. */
389 if (!fndecl)
390 {
391 gcc_assert (POINTER_TYPE_P (fnptrtype));
392 tree fntype = TREE_TYPE (fnptrtype);
393
394 if (lookup_attribute ("nocf_check", TYPE_ATTRIBUTES (fntype)))
395 gimple_call_set_nocf_check (call, TRUE);
396 }
397 }
398
399 return call;
400 }
401
402
403 /* Build a GIMPLE_ASSIGN statement.
404
405 LHS of the assignment.
406 RHS of the assignment which can be unary or binary. */
407
408 gassign *
409 gimple_build_assign (tree lhs, tree rhs MEM_STAT_DECL)
410 {
411 enum tree_code subcode;
412 tree op1, op2, op3;
413
414 extract_ops_from_tree (rhs, &subcode, &op1, &op2, &op3);
415 return gimple_build_assign (lhs, subcode, op1, op2, op3 PASS_MEM_STAT);
416 }
417
418
419 /* Build a GIMPLE_ASSIGN statement with subcode SUBCODE and operands
420 OP1, OP2 and OP3. */
421
422 static inline gassign *
423 gimple_build_assign_1 (tree lhs, enum tree_code subcode, tree op1,
424 tree op2, tree op3 MEM_STAT_DECL)
425 {
426 unsigned num_ops;
427 gassign *p;
428
429 /* Need 1 operand for LHS and 1 or 2 for the RHS (depending on the
430 code). */
431 num_ops = get_gimple_rhs_num_ops (subcode) + 1;
432
433 p = as_a <gassign *> (
434 gimple_build_with_ops_stat (GIMPLE_ASSIGN, (unsigned)subcode, num_ops
435 PASS_MEM_STAT));
436 gimple_assign_set_lhs (p, lhs);
437 gimple_assign_set_rhs1 (p, op1);
438 if (op2)
439 {
440 gcc_assert (num_ops > 2);
441 gimple_assign_set_rhs2 (p, op2);
442 }
443
444 if (op3)
445 {
446 gcc_assert (num_ops > 3);
447 gimple_assign_set_rhs3 (p, op3);
448 }
449
450 return p;
451 }
452
453 /* Build a GIMPLE_ASSIGN statement with subcode SUBCODE and operands
454 OP1, OP2 and OP3. */
455
456 gassign *
457 gimple_build_assign (tree lhs, enum tree_code subcode, tree op1,
458 tree op2, tree op3 MEM_STAT_DECL)
459 {
460 return gimple_build_assign_1 (lhs, subcode, op1, op2, op3 PASS_MEM_STAT);
461 }
462
463 /* Build a GIMPLE_ASSIGN statement with subcode SUBCODE and operands
464 OP1 and OP2. */
465
466 gassign *
467 gimple_build_assign (tree lhs, enum tree_code subcode, tree op1,
468 tree op2 MEM_STAT_DECL)
469 {
470 return gimple_build_assign_1 (lhs, subcode, op1, op2, NULL_TREE
471 PASS_MEM_STAT);
472 }
473
474 /* Build a GIMPLE_ASSIGN statement with subcode SUBCODE and operand OP1. */
475
476 gassign *
477 gimple_build_assign (tree lhs, enum tree_code subcode, tree op1 MEM_STAT_DECL)
478 {
479 return gimple_build_assign_1 (lhs, subcode, op1, NULL_TREE, NULL_TREE
480 PASS_MEM_STAT);
481 }
482
483
484 /* Build a GIMPLE_COND statement.
485
486 PRED is the condition used to compare LHS and the RHS.
487 T_LABEL is the label to jump to if the condition is true.
488 F_LABEL is the label to jump to otherwise. */
489
490 gcond *
491 gimple_build_cond (enum tree_code pred_code, tree lhs, tree rhs,
492 tree t_label, tree f_label)
493 {
494 gcond *p;
495
496 gcc_assert (TREE_CODE_CLASS (pred_code) == tcc_comparison);
497 p = as_a <gcond *> (gimple_build_with_ops (GIMPLE_COND, pred_code, 4));
498 gimple_cond_set_lhs (p, lhs);
499 gimple_cond_set_rhs (p, rhs);
500 gimple_cond_set_true_label (p, t_label);
501 gimple_cond_set_false_label (p, f_label);
502 return p;
503 }
504
505 /* Build a GIMPLE_COND statement from the conditional expression tree
506 COND. T_LABEL and F_LABEL are as in gimple_build_cond. */
507
508 gcond *
509 gimple_build_cond_from_tree (tree cond, tree t_label, tree f_label)
510 {
511 enum tree_code code;
512 tree lhs, rhs;
513
514 gimple_cond_get_ops_from_tree (cond, &code, &lhs, &rhs);
515 return gimple_build_cond (code, lhs, rhs, t_label, f_label);
516 }
517
518 /* Set code, lhs, and rhs of a GIMPLE_COND from a suitable
519 boolean expression tree COND. */
520
521 void
522 gimple_cond_set_condition_from_tree (gcond *stmt, tree cond)
523 {
524 enum tree_code code;
525 tree lhs, rhs;
526
527 gimple_cond_get_ops_from_tree (cond, &code, &lhs, &rhs);
528 gimple_cond_set_condition (stmt, code, lhs, rhs);
529 }
530
531 /* Build a GIMPLE_LABEL statement for LABEL. */
532
533 glabel *
534 gimple_build_label (tree label)
535 {
536 glabel *p
537 = as_a <glabel *> (gimple_build_with_ops (GIMPLE_LABEL, ERROR_MARK, 1));
538 gimple_label_set_label (p, label);
539 return p;
540 }
541
542 /* Build a GIMPLE_GOTO statement to label DEST. */
543
544 ggoto *
545 gimple_build_goto (tree dest)
546 {
547 ggoto *p
548 = as_a <ggoto *> (gimple_build_with_ops (GIMPLE_GOTO, ERROR_MARK, 1));
549 gimple_goto_set_dest (p, dest);
550 return p;
551 }
552
553
554 /* Build a GIMPLE_NOP statement. */
555
556 gimple *
557 gimple_build_nop (void)
558 {
559 return gimple_alloc (GIMPLE_NOP, 0);
560 }
561
562
563 /* Build a GIMPLE_BIND statement.
564 VARS are the variables in BODY.
565 BLOCK is the containing block. */
566
567 gbind *
568 gimple_build_bind (tree vars, gimple_seq body, tree block)
569 {
570 gbind *p = as_a <gbind *> (gimple_alloc (GIMPLE_BIND, 0));
571 gimple_bind_set_vars (p, vars);
572 if (body)
573 gimple_bind_set_body (p, body);
574 if (block)
575 gimple_bind_set_block (p, block);
576 return p;
577 }
578
579 /* Helper function to set the simple fields of a asm stmt.
580
581 STRING is a pointer to a string that is the asm blocks assembly code.
582 NINPUT is the number of register inputs.
583 NOUTPUT is the number of register outputs.
584 NCLOBBERS is the number of clobbered registers.
585 */
586
587 static inline gasm *
588 gimple_build_asm_1 (const char *string, unsigned ninputs, unsigned noutputs,
589 unsigned nclobbers, unsigned nlabels)
590 {
591 gasm *p;
592 int size = strlen (string);
593
594 /* ASMs with labels cannot have outputs. This should have been
595 enforced by the front end. */
596 gcc_assert (nlabels == 0 || noutputs == 0);
597
598 p = as_a <gasm *> (
599 gimple_build_with_ops (GIMPLE_ASM, ERROR_MARK,
600 ninputs + noutputs + nclobbers + nlabels));
601
602 p->ni = ninputs;
603 p->no = noutputs;
604 p->nc = nclobbers;
605 p->nl = nlabels;
606 p->string = ggc_alloc_string (string, size);
607
608 if (GATHER_STATISTICS)
609 gimple_alloc_sizes[(int) gimple_alloc_kind (GIMPLE_ASM)] += size;
610
611 return p;
612 }
613
614 /* Build a GIMPLE_ASM statement.
615
616 STRING is the assembly code.
617 NINPUT is the number of register inputs.
618 NOUTPUT is the number of register outputs.
619 NCLOBBERS is the number of clobbered registers.
620 INPUTS is a vector of the input register parameters.
621 OUTPUTS is a vector of the output register parameters.
622 CLOBBERS is a vector of the clobbered register parameters.
623 LABELS is a vector of destination labels. */
624
625 gasm *
626 gimple_build_asm_vec (const char *string, vec<tree, va_gc> *inputs,
627 vec<tree, va_gc> *outputs, vec<tree, va_gc> *clobbers,
628 vec<tree, va_gc> *labels)
629 {
630 gasm *p;
631 unsigned i;
632
633 p = gimple_build_asm_1 (string,
634 vec_safe_length (inputs),
635 vec_safe_length (outputs),
636 vec_safe_length (clobbers),
637 vec_safe_length (labels));
638
639 for (i = 0; i < vec_safe_length (inputs); i++)
640 gimple_asm_set_input_op (p, i, (*inputs)[i]);
641
642 for (i = 0; i < vec_safe_length (outputs); i++)
643 gimple_asm_set_output_op (p, i, (*outputs)[i]);
644
645 for (i = 0; i < vec_safe_length (clobbers); i++)
646 gimple_asm_set_clobber_op (p, i, (*clobbers)[i]);
647
648 for (i = 0; i < vec_safe_length (labels); i++)
649 gimple_asm_set_label_op (p, i, (*labels)[i]);
650
651 return p;
652 }
653
654 /* Build a GIMPLE_CATCH statement.
655
656 TYPES are the catch types.
657 HANDLER is the exception handler. */
658
659 gcatch *
660 gimple_build_catch (tree types, gimple_seq handler)
661 {
662 gcatch *p = as_a <gcatch *> (gimple_alloc (GIMPLE_CATCH, 0));
663 gimple_catch_set_types (p, types);
664 if (handler)
665 gimple_catch_set_handler (p, handler);
666
667 return p;
668 }
669
670 /* Build a GIMPLE_EH_FILTER statement.
671
672 TYPES are the filter's types.
673 FAILURE is the filter's failure action. */
674
675 geh_filter *
676 gimple_build_eh_filter (tree types, gimple_seq failure)
677 {
678 geh_filter *p = as_a <geh_filter *> (gimple_alloc (GIMPLE_EH_FILTER, 0));
679 gimple_eh_filter_set_types (p, types);
680 if (failure)
681 gimple_eh_filter_set_failure (p, failure);
682
683 return p;
684 }
685
686 /* Build a GIMPLE_EH_MUST_NOT_THROW statement. */
687
688 geh_mnt *
689 gimple_build_eh_must_not_throw (tree decl)
690 {
691 geh_mnt *p = as_a <geh_mnt *> (gimple_alloc (GIMPLE_EH_MUST_NOT_THROW, 0));
692
693 gcc_assert (TREE_CODE (decl) == FUNCTION_DECL);
694 gcc_assert (flags_from_decl_or_type (decl) & ECF_NORETURN);
695 gimple_eh_must_not_throw_set_fndecl (p, decl);
696
697 return p;
698 }
699
700 /* Build a GIMPLE_EH_ELSE statement. */
701
702 geh_else *
703 gimple_build_eh_else (gimple_seq n_body, gimple_seq e_body)
704 {
705 geh_else *p = as_a <geh_else *> (gimple_alloc (GIMPLE_EH_ELSE, 0));
706 gimple_eh_else_set_n_body (p, n_body);
707 gimple_eh_else_set_e_body (p, e_body);
708 return p;
709 }
710
711 /* Build a GIMPLE_TRY statement.
712
713 EVAL is the expression to evaluate.
714 CLEANUP is the cleanup expression.
715 KIND is either GIMPLE_TRY_CATCH or GIMPLE_TRY_FINALLY depending on
716 whether this is a try/catch or a try/finally respectively. */
717
718 gtry *
719 gimple_build_try (gimple_seq eval, gimple_seq cleanup,
720 enum gimple_try_flags kind)
721 {
722 gtry *p;
723
724 gcc_assert (kind == GIMPLE_TRY_CATCH || kind == GIMPLE_TRY_FINALLY);
725 p = as_a <gtry *> (gimple_alloc (GIMPLE_TRY, 0));
726 gimple_set_subcode (p, kind);
727 if (eval)
728 gimple_try_set_eval (p, eval);
729 if (cleanup)
730 gimple_try_set_cleanup (p, cleanup);
731
732 return p;
733 }
734
735 /* Construct a GIMPLE_WITH_CLEANUP_EXPR statement.
736
737 CLEANUP is the cleanup expression. */
738
739 gimple *
740 gimple_build_wce (gimple_seq cleanup)
741 {
742 gimple *p = gimple_alloc (GIMPLE_WITH_CLEANUP_EXPR, 0);
743 if (cleanup)
744 gimple_wce_set_cleanup (p, cleanup);
745
746 return p;
747 }
748
749
750 /* Build a GIMPLE_RESX statement. */
751
752 gresx *
753 gimple_build_resx (int region)
754 {
755 gresx *p
756 = as_a <gresx *> (gimple_build_with_ops (GIMPLE_RESX, ERROR_MARK, 0));
757 p->region = region;
758 return p;
759 }
760
761
762 /* The helper for constructing a gimple switch statement.
763 INDEX is the switch's index.
764 NLABELS is the number of labels in the switch excluding the default.
765 DEFAULT_LABEL is the default label for the switch statement. */
766
767 gswitch *
768 gimple_build_switch_nlabels (unsigned nlabels, tree index, tree default_label)
769 {
770 /* nlabels + 1 default label + 1 index. */
771 gcc_checking_assert (default_label);
772 gswitch *p = as_a <gswitch *> (gimple_build_with_ops (GIMPLE_SWITCH,
773 ERROR_MARK,
774 1 + 1 + nlabels));
775 gimple_switch_set_index (p, index);
776 gimple_switch_set_default_label (p, default_label);
777 return p;
778 }
779
780 /* Build a GIMPLE_SWITCH statement.
781
782 INDEX is the switch's index.
783 DEFAULT_LABEL is the default label
784 ARGS is a vector of labels excluding the default. */
785
786 gswitch *
787 gimple_build_switch (tree index, tree default_label, vec<tree> args)
788 {
789 unsigned i, nlabels = args.length ();
790
791 gswitch *p = gimple_build_switch_nlabels (nlabels, index, default_label);
792
793 /* Copy the labels from the vector to the switch statement. */
794 for (i = 0; i < nlabels; i++)
795 gimple_switch_set_label (p, i + 1, args[i]);
796
797 return p;
798 }
799
800 /* Build a GIMPLE_EH_DISPATCH statement. */
801
802 geh_dispatch *
803 gimple_build_eh_dispatch (int region)
804 {
805 geh_dispatch *p
806 = as_a <geh_dispatch *> (
807 gimple_build_with_ops (GIMPLE_EH_DISPATCH, ERROR_MARK, 0));
808 p->region = region;
809 return p;
810 }
811
812 /* Build a new GIMPLE_DEBUG_BIND statement.
813
814 VAR is bound to VALUE; block and location are taken from STMT. */
815
816 gdebug *
817 gimple_build_debug_bind (tree var, tree value, gimple *stmt MEM_STAT_DECL)
818 {
819 gdebug *p
820 = as_a <gdebug *> (gimple_build_with_ops_stat (GIMPLE_DEBUG,
821 (unsigned)GIMPLE_DEBUG_BIND, 2
822 PASS_MEM_STAT));
823 gimple_debug_bind_set_var (p, var);
824 gimple_debug_bind_set_value (p, value);
825 if (stmt)
826 gimple_set_location (p, gimple_location (stmt));
827
828 return p;
829 }
830
831
832 /* Build a new GIMPLE_DEBUG_SOURCE_BIND statement.
833
834 VAR is bound to VALUE; block and location are taken from STMT. */
835
836 gdebug *
837 gimple_build_debug_source_bind (tree var, tree value,
838 gimple *stmt MEM_STAT_DECL)
839 {
840 gdebug *p
841 = as_a <gdebug *> (
842 gimple_build_with_ops_stat (GIMPLE_DEBUG,
843 (unsigned)GIMPLE_DEBUG_SOURCE_BIND, 2
844 PASS_MEM_STAT));
845
846 gimple_debug_source_bind_set_var (p, var);
847 gimple_debug_source_bind_set_value (p, value);
848 if (stmt)
849 gimple_set_location (p, gimple_location (stmt));
850
851 return p;
852 }
853
854
855 /* Build a GIMPLE_OMP_CRITICAL statement.
856
857 BODY is the sequence of statements for which only one thread can execute.
858 NAME is optional identifier for this critical block.
859 CLAUSES are clauses for this critical block. */
860
861 gomp_critical *
862 gimple_build_omp_critical (gimple_seq body, tree name, tree clauses)
863 {
864 gomp_critical *p
865 = as_a <gomp_critical *> (gimple_alloc (GIMPLE_OMP_CRITICAL, 0));
866 gimple_omp_critical_set_name (p, name);
867 gimple_omp_critical_set_clauses (p, clauses);
868 if (body)
869 gimple_omp_set_body (p, body);
870
871 return p;
872 }
873
874 /* Build a GIMPLE_OMP_FOR statement.
875
876 BODY is sequence of statements inside the for loop.
877 KIND is the `for' variant.
878 CLAUSES, are any of the construct's clauses.
879 COLLAPSE is the collapse count.
880 PRE_BODY is the sequence of statements that are loop invariant. */
881
882 gomp_for *
883 gimple_build_omp_for (gimple_seq body, int kind, tree clauses, size_t collapse,
884 gimple_seq pre_body)
885 {
886 gomp_for *p = as_a <gomp_for *> (gimple_alloc (GIMPLE_OMP_FOR, 0));
887 if (body)
888 gimple_omp_set_body (p, body);
889 gimple_omp_for_set_clauses (p, clauses);
890 gimple_omp_for_set_kind (p, kind);
891 p->collapse = collapse;
892 p->iter = ggc_cleared_vec_alloc<gimple_omp_for_iter> (collapse);
893
894 if (pre_body)
895 gimple_omp_for_set_pre_body (p, pre_body);
896
897 return p;
898 }
899
900
901 /* Build a GIMPLE_OMP_PARALLEL statement.
902
903 BODY is sequence of statements which are executed in parallel.
904 CLAUSES, are the OMP parallel construct's clauses.
905 CHILD_FN is the function created for the parallel threads to execute.
906 DATA_ARG are the shared data argument(s). */
907
908 gomp_parallel *
909 gimple_build_omp_parallel (gimple_seq body, tree clauses, tree child_fn,
910 tree data_arg)
911 {
912 gomp_parallel *p
913 = as_a <gomp_parallel *> (gimple_alloc (GIMPLE_OMP_PARALLEL, 0));
914 if (body)
915 gimple_omp_set_body (p, body);
916 gimple_omp_parallel_set_clauses (p, clauses);
917 gimple_omp_parallel_set_child_fn (p, child_fn);
918 gimple_omp_parallel_set_data_arg (p, data_arg);
919
920 return p;
921 }
922
923
924 /* Build a GIMPLE_OMP_TASK statement.
925
926 BODY is sequence of statements which are executed by the explicit task.
927 CLAUSES, are the OMP parallel construct's clauses.
928 CHILD_FN is the function created for the parallel threads to execute.
929 DATA_ARG are the shared data argument(s).
930 COPY_FN is the optional function for firstprivate initialization.
931 ARG_SIZE and ARG_ALIGN are size and alignment of the data block. */
932
933 gomp_task *
934 gimple_build_omp_task (gimple_seq body, tree clauses, tree child_fn,
935 tree data_arg, tree copy_fn, tree arg_size,
936 tree arg_align)
937 {
938 gomp_task *p = as_a <gomp_task *> (gimple_alloc (GIMPLE_OMP_TASK, 0));
939 if (body)
940 gimple_omp_set_body (p, body);
941 gimple_omp_task_set_clauses (p, clauses);
942 gimple_omp_task_set_child_fn (p, child_fn);
943 gimple_omp_task_set_data_arg (p, data_arg);
944 gimple_omp_task_set_copy_fn (p, copy_fn);
945 gimple_omp_task_set_arg_size (p, arg_size);
946 gimple_omp_task_set_arg_align (p, arg_align);
947
948 return p;
949 }
950
951
952 /* Build a GIMPLE_OMP_SECTION statement for a sections statement.
953
954 BODY is the sequence of statements in the section. */
955
956 gimple *
957 gimple_build_omp_section (gimple_seq body)
958 {
959 gimple *p = gimple_alloc (GIMPLE_OMP_SECTION, 0);
960 if (body)
961 gimple_omp_set_body (p, body);
962
963 return p;
964 }
965
966
967 /* Build a GIMPLE_OMP_MASTER statement.
968
969 BODY is the sequence of statements to be executed by just the master. */
970
971 gimple *
972 gimple_build_omp_master (gimple_seq body)
973 {
974 gimple *p = gimple_alloc (GIMPLE_OMP_MASTER, 0);
975 if (body)
976 gimple_omp_set_body (p, body);
977
978 return p;
979 }
980
981 /* Build a GIMPLE_OMP_GRID_BODY statement.
982
983 BODY is the sequence of statements to be executed by the kernel. */
984
985 gimple *
986 gimple_build_omp_grid_body (gimple_seq body)
987 {
988 gimple *p = gimple_alloc (GIMPLE_OMP_GRID_BODY, 0);
989 if (body)
990 gimple_omp_set_body (p, body);
991
992 return p;
993 }
994
995 /* Build a GIMPLE_OMP_TASKGROUP statement.
996
997 BODY is the sequence of statements to be executed by the taskgroup
998 construct. */
999
1000 gimple *
1001 gimple_build_omp_taskgroup (gimple_seq body)
1002 {
1003 gimple *p = gimple_alloc (GIMPLE_OMP_TASKGROUP, 0);
1004 if (body)
1005 gimple_omp_set_body (p, body);
1006
1007 return p;
1008 }
1009
1010
1011 /* Build a GIMPLE_OMP_CONTINUE statement.
1012
1013 CONTROL_DEF is the definition of the control variable.
1014 CONTROL_USE is the use of the control variable. */
1015
1016 gomp_continue *
1017 gimple_build_omp_continue (tree control_def, tree control_use)
1018 {
1019 gomp_continue *p
1020 = as_a <gomp_continue *> (gimple_alloc (GIMPLE_OMP_CONTINUE, 0));
1021 gimple_omp_continue_set_control_def (p, control_def);
1022 gimple_omp_continue_set_control_use (p, control_use);
1023 return p;
1024 }
1025
1026 /* Build a GIMPLE_OMP_ORDERED statement.
1027
1028 BODY is the sequence of statements inside a loop that will executed in
1029 sequence.
1030 CLAUSES are clauses for this statement. */
1031
1032 gomp_ordered *
1033 gimple_build_omp_ordered (gimple_seq body, tree clauses)
1034 {
1035 gomp_ordered *p
1036 = as_a <gomp_ordered *> (gimple_alloc (GIMPLE_OMP_ORDERED, 0));
1037 gimple_omp_ordered_set_clauses (p, clauses);
1038 if (body)
1039 gimple_omp_set_body (p, body);
1040
1041 return p;
1042 }
1043
1044
1045 /* Build a GIMPLE_OMP_RETURN statement.
1046 WAIT_P is true if this is a non-waiting return. */
1047
1048 gimple *
1049 gimple_build_omp_return (bool wait_p)
1050 {
1051 gimple *p = gimple_alloc (GIMPLE_OMP_RETURN, 0);
1052 if (wait_p)
1053 gimple_omp_return_set_nowait (p);
1054
1055 return p;
1056 }
1057
1058
1059 /* Build a GIMPLE_OMP_SECTIONS statement.
1060
1061 BODY is a sequence of section statements.
1062 CLAUSES are any of the OMP sections contsruct's clauses: private,
1063 firstprivate, lastprivate, reduction, and nowait. */
1064
1065 gomp_sections *
1066 gimple_build_omp_sections (gimple_seq body, tree clauses)
1067 {
1068 gomp_sections *p
1069 = as_a <gomp_sections *> (gimple_alloc (GIMPLE_OMP_SECTIONS, 0));
1070 if (body)
1071 gimple_omp_set_body (p, body);
1072 gimple_omp_sections_set_clauses (p, clauses);
1073
1074 return p;
1075 }
1076
1077
1078 /* Build a GIMPLE_OMP_SECTIONS_SWITCH. */
1079
1080 gimple *
1081 gimple_build_omp_sections_switch (void)
1082 {
1083 return gimple_alloc (GIMPLE_OMP_SECTIONS_SWITCH, 0);
1084 }
1085
1086
1087 /* Build a GIMPLE_OMP_SINGLE statement.
1088
1089 BODY is the sequence of statements that will be executed once.
1090 CLAUSES are any of the OMP single construct's clauses: private, firstprivate,
1091 copyprivate, nowait. */
1092
1093 gomp_single *
1094 gimple_build_omp_single (gimple_seq body, tree clauses)
1095 {
1096 gomp_single *p
1097 = as_a <gomp_single *> (gimple_alloc (GIMPLE_OMP_SINGLE, 0));
1098 if (body)
1099 gimple_omp_set_body (p, body);
1100 gimple_omp_single_set_clauses (p, clauses);
1101
1102 return p;
1103 }
1104
1105
1106 /* Build a GIMPLE_OMP_TARGET statement.
1107
1108 BODY is the sequence of statements that will be executed.
1109 KIND is the kind of the region.
1110 CLAUSES are any of the construct's clauses. */
1111
1112 gomp_target *
1113 gimple_build_omp_target (gimple_seq body, int kind, tree clauses)
1114 {
1115 gomp_target *p
1116 = as_a <gomp_target *> (gimple_alloc (GIMPLE_OMP_TARGET, 0));
1117 if (body)
1118 gimple_omp_set_body (p, body);
1119 gimple_omp_target_set_clauses (p, clauses);
1120 gimple_omp_target_set_kind (p, kind);
1121
1122 return p;
1123 }
1124
1125
1126 /* Build a GIMPLE_OMP_TEAMS statement.
1127
1128 BODY is the sequence of statements that will be executed.
1129 CLAUSES are any of the OMP teams construct's clauses. */
1130
1131 gomp_teams *
1132 gimple_build_omp_teams (gimple_seq body, tree clauses)
1133 {
1134 gomp_teams *p = as_a <gomp_teams *> (gimple_alloc (GIMPLE_OMP_TEAMS, 0));
1135 if (body)
1136 gimple_omp_set_body (p, body);
1137 gimple_omp_teams_set_clauses (p, clauses);
1138
1139 return p;
1140 }
1141
1142
1143 /* Build a GIMPLE_OMP_ATOMIC_LOAD statement. */
1144
1145 gomp_atomic_load *
1146 gimple_build_omp_atomic_load (tree lhs, tree rhs)
1147 {
1148 gomp_atomic_load *p
1149 = as_a <gomp_atomic_load *> (gimple_alloc (GIMPLE_OMP_ATOMIC_LOAD, 0));
1150 gimple_omp_atomic_load_set_lhs (p, lhs);
1151 gimple_omp_atomic_load_set_rhs (p, rhs);
1152 return p;
1153 }
1154
1155 /* Build a GIMPLE_OMP_ATOMIC_STORE statement.
1156
1157 VAL is the value we are storing. */
1158
1159 gomp_atomic_store *
1160 gimple_build_omp_atomic_store (tree val)
1161 {
1162 gomp_atomic_store *p
1163 = as_a <gomp_atomic_store *> (gimple_alloc (GIMPLE_OMP_ATOMIC_STORE, 0));
1164 gimple_omp_atomic_store_set_val (p, val);
1165 return p;
1166 }
1167
1168 /* Build a GIMPLE_TRANSACTION statement. */
1169
1170 gtransaction *
1171 gimple_build_transaction (gimple_seq body)
1172 {
1173 gtransaction *p
1174 = as_a <gtransaction *> (gimple_alloc (GIMPLE_TRANSACTION, 0));
1175 gimple_transaction_set_body (p, body);
1176 gimple_transaction_set_label_norm (p, 0);
1177 gimple_transaction_set_label_uninst (p, 0);
1178 gimple_transaction_set_label_over (p, 0);
1179 return p;
1180 }
1181
1182 #if defined ENABLE_GIMPLE_CHECKING
1183 /* Complain of a gimple type mismatch and die. */
1184
1185 void
1186 gimple_check_failed (const gimple *gs, const char *file, int line,
1187 const char *function, enum gimple_code code,
1188 enum tree_code subcode)
1189 {
1190 internal_error ("gimple check: expected %s(%s), have %s(%s) in %s, at %s:%d",
1191 gimple_code_name[code],
1192 get_tree_code_name (subcode),
1193 gimple_code_name[gimple_code (gs)],
1194 gs->subcode > 0
1195 ? get_tree_code_name ((enum tree_code) gs->subcode)
1196 : "",
1197 function, trim_filename (file), line);
1198 }
1199 #endif /* ENABLE_GIMPLE_CHECKING */
1200
1201
1202 /* Link gimple statement GS to the end of the sequence *SEQ_P. If
1203 *SEQ_P is NULL, a new sequence is allocated. */
1204
1205 void
1206 gimple_seq_add_stmt (gimple_seq *seq_p, gimple *gs)
1207 {
1208 gimple_stmt_iterator si;
1209 if (gs == NULL)
1210 return;
1211
1212 si = gsi_last (*seq_p);
1213 gsi_insert_after (&si, gs, GSI_NEW_STMT);
1214 }
1215
1216 /* Link gimple statement GS to the end of the sequence *SEQ_P. If
1217 *SEQ_P is NULL, a new sequence is allocated. This function is
1218 similar to gimple_seq_add_stmt, but does not scan the operands.
1219 During gimplification, we need to manipulate statement sequences
1220 before the def/use vectors have been constructed. */
1221
1222 void
1223 gimple_seq_add_stmt_without_update (gimple_seq *seq_p, gimple *gs)
1224 {
1225 gimple_stmt_iterator si;
1226
1227 if (gs == NULL)
1228 return;
1229
1230 si = gsi_last (*seq_p);
1231 gsi_insert_after_without_update (&si, gs, GSI_NEW_STMT);
1232 }
1233
1234 /* Append sequence SRC to the end of sequence *DST_P. If *DST_P is
1235 NULL, a new sequence is allocated. */
1236
1237 void
1238 gimple_seq_add_seq (gimple_seq *dst_p, gimple_seq src)
1239 {
1240 gimple_stmt_iterator si;
1241 if (src == NULL)
1242 return;
1243
1244 si = gsi_last (*dst_p);
1245 gsi_insert_seq_after (&si, src, GSI_NEW_STMT);
1246 }
1247
1248 /* Append sequence SRC to the end of sequence *DST_P. If *DST_P is
1249 NULL, a new sequence is allocated. This function is
1250 similar to gimple_seq_add_seq, but does not scan the operands. */
1251
1252 void
1253 gimple_seq_add_seq_without_update (gimple_seq *dst_p, gimple_seq src)
1254 {
1255 gimple_stmt_iterator si;
1256 if (src == NULL)
1257 return;
1258
1259 si = gsi_last (*dst_p);
1260 gsi_insert_seq_after_without_update (&si, src, GSI_NEW_STMT);
1261 }
1262
1263 /* Determine whether to assign a location to the statement GS. */
1264
1265 static bool
1266 should_carry_location_p (gimple *gs)
1267 {
1268 /* Don't emit a line note for a label. We particularly don't want to
1269 emit one for the break label, since it doesn't actually correspond
1270 to the beginning of the loop/switch. */
1271 if (gimple_code (gs) == GIMPLE_LABEL)
1272 return false;
1273
1274 return true;
1275 }
1276
1277 /* Set the location for gimple statement GS to LOCATION. */
1278
1279 static void
1280 annotate_one_with_location (gimple *gs, location_t location)
1281 {
1282 if (!gimple_has_location (gs)
1283 && !gimple_do_not_emit_location_p (gs)
1284 && should_carry_location_p (gs))
1285 gimple_set_location (gs, location);
1286 }
1287
1288 /* Set LOCATION for all the statements after iterator GSI in sequence
1289 SEQ. If GSI is pointing to the end of the sequence, start with the
1290 first statement in SEQ. */
1291
1292 void
1293 annotate_all_with_location_after (gimple_seq seq, gimple_stmt_iterator gsi,
1294 location_t location)
1295 {
1296 if (gsi_end_p (gsi))
1297 gsi = gsi_start (seq);
1298 else
1299 gsi_next (&gsi);
1300
1301 for (; !gsi_end_p (gsi); gsi_next (&gsi))
1302 annotate_one_with_location (gsi_stmt (gsi), location);
1303 }
1304
1305 /* Set the location for all the statements in a sequence STMT_P to LOCATION. */
1306
1307 void
1308 annotate_all_with_location (gimple_seq stmt_p, location_t location)
1309 {
1310 gimple_stmt_iterator i;
1311
1312 if (gimple_seq_empty_p (stmt_p))
1313 return;
1314
1315 for (i = gsi_start (stmt_p); !gsi_end_p (i); gsi_next (&i))
1316 {
1317 gimple *gs = gsi_stmt (i);
1318 annotate_one_with_location (gs, location);
1319 }
1320 }
1321
1322 /* Helper function of empty_body_p. Return true if STMT is an empty
1323 statement. */
1324
1325 static bool
1326 empty_stmt_p (gimple *stmt)
1327 {
1328 if (gimple_code (stmt) == GIMPLE_NOP)
1329 return true;
1330 if (gbind *bind_stmt = dyn_cast <gbind *> (stmt))
1331 return empty_body_p (gimple_bind_body (bind_stmt));
1332 return false;
1333 }
1334
1335
1336 /* Return true if BODY contains nothing but empty statements. */
1337
1338 bool
1339 empty_body_p (gimple_seq body)
1340 {
1341 gimple_stmt_iterator i;
1342
1343 if (gimple_seq_empty_p (body))
1344 return true;
1345 for (i = gsi_start (body); !gsi_end_p (i); gsi_next (&i))
1346 if (!empty_stmt_p (gsi_stmt (i))
1347 && !is_gimple_debug (gsi_stmt (i)))
1348 return false;
1349
1350 return true;
1351 }
1352
1353
1354 /* Perform a deep copy of sequence SRC and return the result. */
1355
1356 gimple_seq
1357 gimple_seq_copy (gimple_seq src)
1358 {
1359 gimple_stmt_iterator gsi;
1360 gimple_seq new_seq = NULL;
1361 gimple *stmt;
1362
1363 for (gsi = gsi_start (src); !gsi_end_p (gsi); gsi_next (&gsi))
1364 {
1365 stmt = gimple_copy (gsi_stmt (gsi));
1366 gimple_seq_add_stmt (&new_seq, stmt);
1367 }
1368
1369 return new_seq;
1370 }
1371
1372
1373
1374 /* Return true if calls C1 and C2 are known to go to the same function. */
1375
1376 bool
1377 gimple_call_same_target_p (const gimple *c1, const gimple *c2)
1378 {
1379 if (gimple_call_internal_p (c1))
1380 return (gimple_call_internal_p (c2)
1381 && gimple_call_internal_fn (c1) == gimple_call_internal_fn (c2)
1382 && (!gimple_call_internal_unique_p (as_a <const gcall *> (c1))
1383 || c1 == c2));
1384 else
1385 return (gimple_call_fn (c1) == gimple_call_fn (c2)
1386 || (gimple_call_fndecl (c1)
1387 && gimple_call_fndecl (c1) == gimple_call_fndecl (c2)));
1388 }
1389
1390 /* Detect flags from a GIMPLE_CALL. This is just like
1391 call_expr_flags, but for gimple tuples. */
1392
1393 int
1394 gimple_call_flags (const gimple *stmt)
1395 {
1396 int flags;
1397 tree decl = gimple_call_fndecl (stmt);
1398
1399 if (decl)
1400 flags = flags_from_decl_or_type (decl);
1401 else if (gimple_call_internal_p (stmt))
1402 flags = internal_fn_flags (gimple_call_internal_fn (stmt));
1403 else
1404 flags = flags_from_decl_or_type (gimple_call_fntype (stmt));
1405
1406 if (stmt->subcode & GF_CALL_NOTHROW)
1407 flags |= ECF_NOTHROW;
1408
1409 if (stmt->subcode & GF_CALL_BY_DESCRIPTOR)
1410 flags |= ECF_BY_DESCRIPTOR;
1411
1412 return flags;
1413 }
1414
1415 /* Return the "fn spec" string for call STMT. */
1416
1417 static const_tree
1418 gimple_call_fnspec (const gcall *stmt)
1419 {
1420 tree type, attr;
1421
1422 if (gimple_call_internal_p (stmt))
1423 return internal_fn_fnspec (gimple_call_internal_fn (stmt));
1424
1425 type = gimple_call_fntype (stmt);
1426 if (!type)
1427 return NULL_TREE;
1428
1429 attr = lookup_attribute ("fn spec", TYPE_ATTRIBUTES (type));
1430 if (!attr)
1431 return NULL_TREE;
1432
1433 return TREE_VALUE (TREE_VALUE (attr));
1434 }
1435
1436 /* Detects argument flags for argument number ARG on call STMT. */
1437
1438 int
1439 gimple_call_arg_flags (const gcall *stmt, unsigned arg)
1440 {
1441 const_tree attr = gimple_call_fnspec (stmt);
1442
1443 if (!attr || 1 + arg >= (unsigned) TREE_STRING_LENGTH (attr))
1444 return 0;
1445
1446 switch (TREE_STRING_POINTER (attr)[1 + arg])
1447 {
1448 case 'x':
1449 case 'X':
1450 return EAF_UNUSED;
1451
1452 case 'R':
1453 return EAF_DIRECT | EAF_NOCLOBBER | EAF_NOESCAPE;
1454
1455 case 'r':
1456 return EAF_NOCLOBBER | EAF_NOESCAPE;
1457
1458 case 'W':
1459 return EAF_DIRECT | EAF_NOESCAPE;
1460
1461 case 'w':
1462 return EAF_NOESCAPE;
1463
1464 case '.':
1465 default:
1466 return 0;
1467 }
1468 }
1469
1470 /* Detects return flags for the call STMT. */
1471
1472 int
1473 gimple_call_return_flags (const gcall *stmt)
1474 {
1475 const_tree attr;
1476
1477 if (gimple_call_flags (stmt) & ECF_MALLOC)
1478 return ERF_NOALIAS;
1479
1480 attr = gimple_call_fnspec (stmt);
1481 if (!attr || TREE_STRING_LENGTH (attr) < 1)
1482 return 0;
1483
1484 switch (TREE_STRING_POINTER (attr)[0])
1485 {
1486 case '1':
1487 case '2':
1488 case '3':
1489 case '4':
1490 return ERF_RETURNS_ARG | (TREE_STRING_POINTER (attr)[0] - '1');
1491
1492 case 'm':
1493 return ERF_NOALIAS;
1494
1495 case '.':
1496 default:
1497 return 0;
1498 }
1499 }
1500
1501
1502 /* Return true if GS is a copy assignment. */
1503
1504 bool
1505 gimple_assign_copy_p (gimple *gs)
1506 {
1507 return (gimple_assign_single_p (gs)
1508 && is_gimple_val (gimple_op (gs, 1)));
1509 }
1510
1511
1512 /* Return true if GS is a SSA_NAME copy assignment. */
1513
1514 bool
1515 gimple_assign_ssa_name_copy_p (gimple *gs)
1516 {
1517 return (gimple_assign_single_p (gs)
1518 && TREE_CODE (gimple_assign_lhs (gs)) == SSA_NAME
1519 && TREE_CODE (gimple_assign_rhs1 (gs)) == SSA_NAME);
1520 }
1521
1522
1523 /* Return true if GS is an assignment with a unary RHS, but the
1524 operator has no effect on the assigned value. The logic is adapted
1525 from STRIP_NOPS. This predicate is intended to be used in tuplifying
1526 instances in which STRIP_NOPS was previously applied to the RHS of
1527 an assignment.
1528
1529 NOTE: In the use cases that led to the creation of this function
1530 and of gimple_assign_single_p, it is typical to test for either
1531 condition and to proceed in the same manner. In each case, the
1532 assigned value is represented by the single RHS operand of the
1533 assignment. I suspect there may be cases where gimple_assign_copy_p,
1534 gimple_assign_single_p, or equivalent logic is used where a similar
1535 treatment of unary NOPs is appropriate. */
1536
1537 bool
1538 gimple_assign_unary_nop_p (gimple *gs)
1539 {
1540 return (is_gimple_assign (gs)
1541 && (CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (gs))
1542 || gimple_assign_rhs_code (gs) == NON_LVALUE_EXPR)
1543 && gimple_assign_rhs1 (gs) != error_mark_node
1544 && (TYPE_MODE (TREE_TYPE (gimple_assign_lhs (gs)))
1545 == TYPE_MODE (TREE_TYPE (gimple_assign_rhs1 (gs)))));
1546 }
1547
1548 /* Set BB to be the basic block holding G. */
1549
1550 void
1551 gimple_set_bb (gimple *stmt, basic_block bb)
1552 {
1553 stmt->bb = bb;
1554
1555 if (gimple_code (stmt) != GIMPLE_LABEL)
1556 return;
1557
1558 /* If the statement is a label, add the label to block-to-labels map
1559 so that we can speed up edge creation for GIMPLE_GOTOs. */
1560 if (cfun->cfg)
1561 {
1562 tree t;
1563 int uid;
1564
1565 t = gimple_label_label (as_a <glabel *> (stmt));
1566 uid = LABEL_DECL_UID (t);
1567 if (uid == -1)
1568 {
1569 unsigned old_len =
1570 vec_safe_length (label_to_block_map_for_fn (cfun));
1571 LABEL_DECL_UID (t) = uid = cfun->cfg->last_label_uid++;
1572 if (old_len <= (unsigned) uid)
1573 {
1574 unsigned new_len = 3 * uid / 2 + 1;
1575
1576 vec_safe_grow_cleared (label_to_block_map_for_fn (cfun),
1577 new_len);
1578 }
1579 }
1580
1581 (*label_to_block_map_for_fn (cfun))[uid] = bb;
1582 }
1583 }
1584
1585
1586 /* Modify the RHS of the assignment pointed-to by GSI using the
1587 operands in the expression tree EXPR.
1588
1589 NOTE: The statement pointed-to by GSI may be reallocated if it
1590 did not have enough operand slots.
1591
1592 This function is useful to convert an existing tree expression into
1593 the flat representation used for the RHS of a GIMPLE assignment.
1594 It will reallocate memory as needed to expand or shrink the number
1595 of operand slots needed to represent EXPR.
1596
1597 NOTE: If you find yourself building a tree and then calling this
1598 function, you are most certainly doing it the slow way. It is much
1599 better to build a new assignment or to use the function
1600 gimple_assign_set_rhs_with_ops, which does not require an
1601 expression tree to be built. */
1602
1603 void
1604 gimple_assign_set_rhs_from_tree (gimple_stmt_iterator *gsi, tree expr)
1605 {
1606 enum tree_code subcode;
1607 tree op1, op2, op3;
1608
1609 extract_ops_from_tree (expr, &subcode, &op1, &op2, &op3);
1610 gimple_assign_set_rhs_with_ops (gsi, subcode, op1, op2, op3);
1611 }
1612
1613
1614 /* Set the RHS of assignment statement pointed-to by GSI to CODE with
1615 operands OP1, OP2 and OP3.
1616
1617 NOTE: The statement pointed-to by GSI may be reallocated if it
1618 did not have enough operand slots. */
1619
1620 void
1621 gimple_assign_set_rhs_with_ops (gimple_stmt_iterator *gsi, enum tree_code code,
1622 tree op1, tree op2, tree op3)
1623 {
1624 unsigned new_rhs_ops = get_gimple_rhs_num_ops (code);
1625 gimple *stmt = gsi_stmt (*gsi);
1626
1627 /* If the new CODE needs more operands, allocate a new statement. */
1628 if (gimple_num_ops (stmt) < new_rhs_ops + 1)
1629 {
1630 tree lhs = gimple_assign_lhs (stmt);
1631 gimple *new_stmt = gimple_alloc (gimple_code (stmt), new_rhs_ops + 1);
1632 memcpy (new_stmt, stmt, gimple_size (gimple_code (stmt)));
1633 gimple_init_singleton (new_stmt);
1634 gsi_replace (gsi, new_stmt, false);
1635 stmt = new_stmt;
1636
1637 /* The LHS needs to be reset as this also changes the SSA name
1638 on the LHS. */
1639 gimple_assign_set_lhs (stmt, lhs);
1640 }
1641
1642 gimple_set_num_ops (stmt, new_rhs_ops + 1);
1643 gimple_set_subcode (stmt, code);
1644 gimple_assign_set_rhs1 (stmt, op1);
1645 if (new_rhs_ops > 1)
1646 gimple_assign_set_rhs2 (stmt, op2);
1647 if (new_rhs_ops > 2)
1648 gimple_assign_set_rhs3 (stmt, op3);
1649 }
1650
1651
1652 /* Return the LHS of a statement that performs an assignment,
1653 either a GIMPLE_ASSIGN or a GIMPLE_CALL. Returns NULL_TREE
1654 for a call to a function that returns no value, or for a
1655 statement other than an assignment or a call. */
1656
1657 tree
1658 gimple_get_lhs (const gimple *stmt)
1659 {
1660 enum gimple_code code = gimple_code (stmt);
1661
1662 if (code == GIMPLE_ASSIGN)
1663 return gimple_assign_lhs (stmt);
1664 else if (code == GIMPLE_CALL)
1665 return gimple_call_lhs (stmt);
1666 else
1667 return NULL_TREE;
1668 }
1669
1670
1671 /* Set the LHS of a statement that performs an assignment,
1672 either a GIMPLE_ASSIGN or a GIMPLE_CALL. */
1673
1674 void
1675 gimple_set_lhs (gimple *stmt, tree lhs)
1676 {
1677 enum gimple_code code = gimple_code (stmt);
1678
1679 if (code == GIMPLE_ASSIGN)
1680 gimple_assign_set_lhs (stmt, lhs);
1681 else if (code == GIMPLE_CALL)
1682 gimple_call_set_lhs (stmt, lhs);
1683 else
1684 gcc_unreachable ();
1685 }
1686
1687
1688 /* Return a deep copy of statement STMT. All the operands from STMT
1689 are reallocated and copied using unshare_expr. The DEF, USE, VDEF
1690 and VUSE operand arrays are set to empty in the new copy. The new
1691 copy isn't part of any sequence. */
1692
1693 gimple *
1694 gimple_copy (gimple *stmt)
1695 {
1696 enum gimple_code code = gimple_code (stmt);
1697 unsigned num_ops = gimple_num_ops (stmt);
1698 gimple *copy = gimple_alloc (code, num_ops);
1699 unsigned i;
1700
1701 /* Shallow copy all the fields from STMT. */
1702 memcpy (copy, stmt, gimple_size (code));
1703 gimple_init_singleton (copy);
1704
1705 /* If STMT has sub-statements, deep-copy them as well. */
1706 if (gimple_has_substatements (stmt))
1707 {
1708 gimple_seq new_seq;
1709 tree t;
1710
1711 switch (gimple_code (stmt))
1712 {
1713 case GIMPLE_BIND:
1714 {
1715 gbind *bind_stmt = as_a <gbind *> (stmt);
1716 gbind *bind_copy = as_a <gbind *> (copy);
1717 new_seq = gimple_seq_copy (gimple_bind_body (bind_stmt));
1718 gimple_bind_set_body (bind_copy, new_seq);
1719 gimple_bind_set_vars (bind_copy,
1720 unshare_expr (gimple_bind_vars (bind_stmt)));
1721 gimple_bind_set_block (bind_copy, gimple_bind_block (bind_stmt));
1722 }
1723 break;
1724
1725 case GIMPLE_CATCH:
1726 {
1727 gcatch *catch_stmt = as_a <gcatch *> (stmt);
1728 gcatch *catch_copy = as_a <gcatch *> (copy);
1729 new_seq = gimple_seq_copy (gimple_catch_handler (catch_stmt));
1730 gimple_catch_set_handler (catch_copy, new_seq);
1731 t = unshare_expr (gimple_catch_types (catch_stmt));
1732 gimple_catch_set_types (catch_copy, t);
1733 }
1734 break;
1735
1736 case GIMPLE_EH_FILTER:
1737 {
1738 geh_filter *eh_filter_stmt = as_a <geh_filter *> (stmt);
1739 geh_filter *eh_filter_copy = as_a <geh_filter *> (copy);
1740 new_seq
1741 = gimple_seq_copy (gimple_eh_filter_failure (eh_filter_stmt));
1742 gimple_eh_filter_set_failure (eh_filter_copy, new_seq);
1743 t = unshare_expr (gimple_eh_filter_types (eh_filter_stmt));
1744 gimple_eh_filter_set_types (eh_filter_copy, t);
1745 }
1746 break;
1747
1748 case GIMPLE_EH_ELSE:
1749 {
1750 geh_else *eh_else_stmt = as_a <geh_else *> (stmt);
1751 geh_else *eh_else_copy = as_a <geh_else *> (copy);
1752 new_seq = gimple_seq_copy (gimple_eh_else_n_body (eh_else_stmt));
1753 gimple_eh_else_set_n_body (eh_else_copy, new_seq);
1754 new_seq = gimple_seq_copy (gimple_eh_else_e_body (eh_else_stmt));
1755 gimple_eh_else_set_e_body (eh_else_copy, new_seq);
1756 }
1757 break;
1758
1759 case GIMPLE_TRY:
1760 {
1761 gtry *try_stmt = as_a <gtry *> (stmt);
1762 gtry *try_copy = as_a <gtry *> (copy);
1763 new_seq = gimple_seq_copy (gimple_try_eval (try_stmt));
1764 gimple_try_set_eval (try_copy, new_seq);
1765 new_seq = gimple_seq_copy (gimple_try_cleanup (try_stmt));
1766 gimple_try_set_cleanup (try_copy, new_seq);
1767 }
1768 break;
1769
1770 case GIMPLE_OMP_FOR:
1771 new_seq = gimple_seq_copy (gimple_omp_for_pre_body (stmt));
1772 gimple_omp_for_set_pre_body (copy, new_seq);
1773 t = unshare_expr (gimple_omp_for_clauses (stmt));
1774 gimple_omp_for_set_clauses (copy, t);
1775 {
1776 gomp_for *omp_for_copy = as_a <gomp_for *> (copy);
1777 omp_for_copy->iter = ggc_vec_alloc<gimple_omp_for_iter>
1778 ( gimple_omp_for_collapse (stmt));
1779 }
1780 for (i = 0; i < gimple_omp_for_collapse (stmt); i++)
1781 {
1782 gimple_omp_for_set_cond (copy, i,
1783 gimple_omp_for_cond (stmt, i));
1784 gimple_omp_for_set_index (copy, i,
1785 gimple_omp_for_index (stmt, i));
1786 t = unshare_expr (gimple_omp_for_initial (stmt, i));
1787 gimple_omp_for_set_initial (copy, i, t);
1788 t = unshare_expr (gimple_omp_for_final (stmt, i));
1789 gimple_omp_for_set_final (copy, i, t);
1790 t = unshare_expr (gimple_omp_for_incr (stmt, i));
1791 gimple_omp_for_set_incr (copy, i, t);
1792 }
1793 goto copy_omp_body;
1794
1795 case GIMPLE_OMP_PARALLEL:
1796 {
1797 gomp_parallel *omp_par_stmt = as_a <gomp_parallel *> (stmt);
1798 gomp_parallel *omp_par_copy = as_a <gomp_parallel *> (copy);
1799 t = unshare_expr (gimple_omp_parallel_clauses (omp_par_stmt));
1800 gimple_omp_parallel_set_clauses (omp_par_copy, t);
1801 t = unshare_expr (gimple_omp_parallel_child_fn (omp_par_stmt));
1802 gimple_omp_parallel_set_child_fn (omp_par_copy, t);
1803 t = unshare_expr (gimple_omp_parallel_data_arg (omp_par_stmt));
1804 gimple_omp_parallel_set_data_arg (omp_par_copy, t);
1805 }
1806 goto copy_omp_body;
1807
1808 case GIMPLE_OMP_TASK:
1809 t = unshare_expr (gimple_omp_task_clauses (stmt));
1810 gimple_omp_task_set_clauses (copy, t);
1811 t = unshare_expr (gimple_omp_task_child_fn (stmt));
1812 gimple_omp_task_set_child_fn (copy, t);
1813 t = unshare_expr (gimple_omp_task_data_arg (stmt));
1814 gimple_omp_task_set_data_arg (copy, t);
1815 t = unshare_expr (gimple_omp_task_copy_fn (stmt));
1816 gimple_omp_task_set_copy_fn (copy, t);
1817 t = unshare_expr (gimple_omp_task_arg_size (stmt));
1818 gimple_omp_task_set_arg_size (copy, t);
1819 t = unshare_expr (gimple_omp_task_arg_align (stmt));
1820 gimple_omp_task_set_arg_align (copy, t);
1821 goto copy_omp_body;
1822
1823 case GIMPLE_OMP_CRITICAL:
1824 t = unshare_expr (gimple_omp_critical_name
1825 (as_a <gomp_critical *> (stmt)));
1826 gimple_omp_critical_set_name (as_a <gomp_critical *> (copy), t);
1827 t = unshare_expr (gimple_omp_critical_clauses
1828 (as_a <gomp_critical *> (stmt)));
1829 gimple_omp_critical_set_clauses (as_a <gomp_critical *> (copy), t);
1830 goto copy_omp_body;
1831
1832 case GIMPLE_OMP_ORDERED:
1833 t = unshare_expr (gimple_omp_ordered_clauses
1834 (as_a <gomp_ordered *> (stmt)));
1835 gimple_omp_ordered_set_clauses (as_a <gomp_ordered *> (copy), t);
1836 goto copy_omp_body;
1837
1838 case GIMPLE_OMP_SECTIONS:
1839 t = unshare_expr (gimple_omp_sections_clauses (stmt));
1840 gimple_omp_sections_set_clauses (copy, t);
1841 t = unshare_expr (gimple_omp_sections_control (stmt));
1842 gimple_omp_sections_set_control (copy, t);
1843 /* FALLTHRU */
1844
1845 case GIMPLE_OMP_SINGLE:
1846 case GIMPLE_OMP_TARGET:
1847 case GIMPLE_OMP_TEAMS:
1848 case GIMPLE_OMP_SECTION:
1849 case GIMPLE_OMP_MASTER:
1850 case GIMPLE_OMP_TASKGROUP:
1851 case GIMPLE_OMP_GRID_BODY:
1852 copy_omp_body:
1853 new_seq = gimple_seq_copy (gimple_omp_body (stmt));
1854 gimple_omp_set_body (copy, new_seq);
1855 break;
1856
1857 case GIMPLE_TRANSACTION:
1858 new_seq = gimple_seq_copy (gimple_transaction_body (
1859 as_a <gtransaction *> (stmt)));
1860 gimple_transaction_set_body (as_a <gtransaction *> (copy),
1861 new_seq);
1862 break;
1863
1864 case GIMPLE_WITH_CLEANUP_EXPR:
1865 new_seq = gimple_seq_copy (gimple_wce_cleanup (stmt));
1866 gimple_wce_set_cleanup (copy, new_seq);
1867 break;
1868
1869 default:
1870 gcc_unreachable ();
1871 }
1872 }
1873
1874 /* Make copy of operands. */
1875 for (i = 0; i < num_ops; i++)
1876 gimple_set_op (copy, i, unshare_expr (gimple_op (stmt, i)));
1877
1878 if (gimple_has_mem_ops (stmt))
1879 {
1880 gimple_set_vdef (copy, gimple_vdef (stmt));
1881 gimple_set_vuse (copy, gimple_vuse (stmt));
1882 }
1883
1884 /* Clear out SSA operand vectors on COPY. */
1885 if (gimple_has_ops (stmt))
1886 {
1887 gimple_set_use_ops (copy, NULL);
1888
1889 /* SSA operands need to be updated. */
1890 gimple_set_modified (copy, true);
1891 }
1892
1893 return copy;
1894 }
1895
1896
1897 /* Return true if statement S has side-effects. We consider a
1898 statement to have side effects if:
1899
1900 - It is a GIMPLE_CALL not marked with ECF_PURE or ECF_CONST.
1901 - Any of its operands are marked TREE_THIS_VOLATILE or TREE_SIDE_EFFECTS. */
1902
1903 bool
1904 gimple_has_side_effects (const gimple *s)
1905 {
1906 if (is_gimple_debug (s))
1907 return false;
1908
1909 /* We don't have to scan the arguments to check for
1910 volatile arguments, though, at present, we still
1911 do a scan to check for TREE_SIDE_EFFECTS. */
1912 if (gimple_has_volatile_ops (s))
1913 return true;
1914
1915 if (gimple_code (s) == GIMPLE_ASM
1916 && gimple_asm_volatile_p (as_a <const gasm *> (s)))
1917 return true;
1918
1919 if (is_gimple_call (s))
1920 {
1921 int flags = gimple_call_flags (s);
1922
1923 /* An infinite loop is considered a side effect. */
1924 if (!(flags & (ECF_CONST | ECF_PURE))
1925 || (flags & ECF_LOOPING_CONST_OR_PURE))
1926 return true;
1927
1928 return false;
1929 }
1930
1931 return false;
1932 }
1933
1934 /* Helper for gimple_could_trap_p and gimple_assign_rhs_could_trap_p.
1935 Return true if S can trap. When INCLUDE_MEM is true, check whether
1936 the memory operations could trap. When INCLUDE_STORES is true and
1937 S is a GIMPLE_ASSIGN, the LHS of the assignment is also checked. */
1938
1939 bool
1940 gimple_could_trap_p_1 (gimple *s, bool include_mem, bool include_stores)
1941 {
1942 tree t, div = NULL_TREE;
1943 enum tree_code op;
1944
1945 if (include_mem)
1946 {
1947 unsigned i, start = (is_gimple_assign (s) && !include_stores) ? 1 : 0;
1948
1949 for (i = start; i < gimple_num_ops (s); i++)
1950 if (tree_could_trap_p (gimple_op (s, i)))
1951 return true;
1952 }
1953
1954 switch (gimple_code (s))
1955 {
1956 case GIMPLE_ASM:
1957 return gimple_asm_volatile_p (as_a <gasm *> (s));
1958
1959 case GIMPLE_CALL:
1960 t = gimple_call_fndecl (s);
1961 /* Assume that calls to weak functions may trap. */
1962 if (!t || !DECL_P (t) || DECL_WEAK (t))
1963 return true;
1964 return false;
1965
1966 case GIMPLE_ASSIGN:
1967 t = gimple_expr_type (s);
1968 op = gimple_assign_rhs_code (s);
1969 if (get_gimple_rhs_class (op) == GIMPLE_BINARY_RHS)
1970 div = gimple_assign_rhs2 (s);
1971 return (operation_could_trap_p (op, FLOAT_TYPE_P (t),
1972 (INTEGRAL_TYPE_P (t)
1973 && TYPE_OVERFLOW_TRAPS (t)),
1974 div));
1975
1976 case GIMPLE_COND:
1977 t = TREE_TYPE (gimple_cond_lhs (s));
1978 return operation_could_trap_p (gimple_cond_code (s),
1979 FLOAT_TYPE_P (t), false, NULL_TREE);
1980
1981 default:
1982 break;
1983 }
1984
1985 return false;
1986 }
1987
1988 /* Return true if statement S can trap. */
1989
1990 bool
1991 gimple_could_trap_p (gimple *s)
1992 {
1993 return gimple_could_trap_p_1 (s, true, true);
1994 }
1995
1996 /* Return true if RHS of a GIMPLE_ASSIGN S can trap. */
1997
1998 bool
1999 gimple_assign_rhs_could_trap_p (gimple *s)
2000 {
2001 gcc_assert (is_gimple_assign (s));
2002 return gimple_could_trap_p_1 (s, true, false);
2003 }
2004
2005
2006 /* Print debugging information for gimple stmts generated. */
2007
2008 void
2009 dump_gimple_statistics (void)
2010 {
2011 int i, total_tuples = 0, total_bytes = 0;
2012
2013 if (! GATHER_STATISTICS)
2014 {
2015 fprintf (stderr, "No gimple statistics\n");
2016 return;
2017 }
2018
2019 fprintf (stderr, "\nGIMPLE statements\n");
2020 fprintf (stderr, "Kind Stmts Bytes\n");
2021 fprintf (stderr, "---------------------------------------\n");
2022 for (i = 0; i < (int) gimple_alloc_kind_all; ++i)
2023 {
2024 fprintf (stderr, "%-20s %7d %10d\n", gimple_alloc_kind_names[i],
2025 gimple_alloc_counts[i], gimple_alloc_sizes[i]);
2026 total_tuples += gimple_alloc_counts[i];
2027 total_bytes += gimple_alloc_sizes[i];
2028 }
2029 fprintf (stderr, "---------------------------------------\n");
2030 fprintf (stderr, "%-20s %7d %10d\n", "Total", total_tuples, total_bytes);
2031 fprintf (stderr, "---------------------------------------\n");
2032 }
2033
2034
2035 /* Return the number of operands needed on the RHS of a GIMPLE
2036 assignment for an expression with tree code CODE. */
2037
2038 unsigned
2039 get_gimple_rhs_num_ops (enum tree_code code)
2040 {
2041 enum gimple_rhs_class rhs_class = get_gimple_rhs_class (code);
2042
2043 if (rhs_class == GIMPLE_UNARY_RHS || rhs_class == GIMPLE_SINGLE_RHS)
2044 return 1;
2045 else if (rhs_class == GIMPLE_BINARY_RHS)
2046 return 2;
2047 else if (rhs_class == GIMPLE_TERNARY_RHS)
2048 return 3;
2049 else
2050 gcc_unreachable ();
2051 }
2052
2053 #define DEFTREECODE(SYM, STRING, TYPE, NARGS) \
2054 (unsigned char) \
2055 ((TYPE) == tcc_unary ? GIMPLE_UNARY_RHS \
2056 : ((TYPE) == tcc_binary \
2057 || (TYPE) == tcc_comparison) ? GIMPLE_BINARY_RHS \
2058 : ((TYPE) == tcc_constant \
2059 || (TYPE) == tcc_declaration \
2060 || (TYPE) == tcc_reference) ? GIMPLE_SINGLE_RHS \
2061 : ((SYM) == TRUTH_AND_EXPR \
2062 || (SYM) == TRUTH_OR_EXPR \
2063 || (SYM) == TRUTH_XOR_EXPR) ? GIMPLE_BINARY_RHS \
2064 : (SYM) == TRUTH_NOT_EXPR ? GIMPLE_UNARY_RHS \
2065 : ((SYM) == COND_EXPR \
2066 || (SYM) == WIDEN_MULT_PLUS_EXPR \
2067 || (SYM) == WIDEN_MULT_MINUS_EXPR \
2068 || (SYM) == DOT_PROD_EXPR \
2069 || (SYM) == SAD_EXPR \
2070 || (SYM) == REALIGN_LOAD_EXPR \
2071 || (SYM) == VEC_COND_EXPR \
2072 || (SYM) == VEC_PERM_EXPR \
2073 || (SYM) == BIT_INSERT_EXPR \
2074 || (SYM) == FMA_EXPR) ? GIMPLE_TERNARY_RHS \
2075 : ((SYM) == CONSTRUCTOR \
2076 || (SYM) == OBJ_TYPE_REF \
2077 || (SYM) == ASSERT_EXPR \
2078 || (SYM) == ADDR_EXPR \
2079 || (SYM) == WITH_SIZE_EXPR \
2080 || (SYM) == SSA_NAME) ? GIMPLE_SINGLE_RHS \
2081 : GIMPLE_INVALID_RHS),
2082 #define END_OF_BASE_TREE_CODES (unsigned char) GIMPLE_INVALID_RHS,
2083
2084 const unsigned char gimple_rhs_class_table[] = {
2085 #include "all-tree.def"
2086 };
2087
2088 #undef DEFTREECODE
2089 #undef END_OF_BASE_TREE_CODES
2090
2091 /* Canonicalize a tree T for use in a COND_EXPR as conditional. Returns
2092 a canonicalized tree that is valid for a COND_EXPR or NULL_TREE, if
2093 we failed to create one. */
2094
2095 tree
2096 canonicalize_cond_expr_cond (tree t)
2097 {
2098 /* Strip conversions around boolean operations. */
2099 if (CONVERT_EXPR_P (t)
2100 && (truth_value_p (TREE_CODE (TREE_OPERAND (t, 0)))
2101 || TREE_CODE (TREE_TYPE (TREE_OPERAND (t, 0)))
2102 == BOOLEAN_TYPE))
2103 t = TREE_OPERAND (t, 0);
2104
2105 /* For !x use x == 0. */
2106 if (TREE_CODE (t) == TRUTH_NOT_EXPR)
2107 {
2108 tree top0 = TREE_OPERAND (t, 0);
2109 t = build2 (EQ_EXPR, TREE_TYPE (t),
2110 top0, build_int_cst (TREE_TYPE (top0), 0));
2111 }
2112 /* For cmp ? 1 : 0 use cmp. */
2113 else if (TREE_CODE (t) == COND_EXPR
2114 && COMPARISON_CLASS_P (TREE_OPERAND (t, 0))
2115 && integer_onep (TREE_OPERAND (t, 1))
2116 && integer_zerop (TREE_OPERAND (t, 2)))
2117 {
2118 tree top0 = TREE_OPERAND (t, 0);
2119 t = build2 (TREE_CODE (top0), TREE_TYPE (t),
2120 TREE_OPERAND (top0, 0), TREE_OPERAND (top0, 1));
2121 }
2122 /* For x ^ y use x != y. */
2123 else if (TREE_CODE (t) == BIT_XOR_EXPR)
2124 t = build2 (NE_EXPR, TREE_TYPE (t),
2125 TREE_OPERAND (t, 0), TREE_OPERAND (t, 1));
2126
2127 if (is_gimple_condexpr (t))
2128 return t;
2129
2130 return NULL_TREE;
2131 }
2132
2133 /* Build a GIMPLE_CALL identical to STMT but skipping the arguments in
2134 the positions marked by the set ARGS_TO_SKIP. */
2135
2136 gcall *
2137 gimple_call_copy_skip_args (gcall *stmt, bitmap args_to_skip)
2138 {
2139 int i;
2140 int nargs = gimple_call_num_args (stmt);
2141 auto_vec<tree> vargs (nargs);
2142 gcall *new_stmt;
2143
2144 for (i = 0; i < nargs; i++)
2145 if (!bitmap_bit_p (args_to_skip, i))
2146 vargs.quick_push (gimple_call_arg (stmt, i));
2147
2148 if (gimple_call_internal_p (stmt))
2149 new_stmt = gimple_build_call_internal_vec (gimple_call_internal_fn (stmt),
2150 vargs);
2151 else
2152 new_stmt = gimple_build_call_vec (gimple_call_fn (stmt), vargs);
2153
2154 if (gimple_call_lhs (stmt))
2155 gimple_call_set_lhs (new_stmt, gimple_call_lhs (stmt));
2156
2157 gimple_set_vuse (new_stmt, gimple_vuse (stmt));
2158 gimple_set_vdef (new_stmt, gimple_vdef (stmt));
2159
2160 if (gimple_has_location (stmt))
2161 gimple_set_location (new_stmt, gimple_location (stmt));
2162 gimple_call_copy_flags (new_stmt, stmt);
2163 gimple_call_set_chain (new_stmt, gimple_call_chain (stmt));
2164
2165 gimple_set_modified (new_stmt, true);
2166
2167 return new_stmt;
2168 }
2169
2170
2171
2172 /* Return true if the field decls F1 and F2 are at the same offset.
2173
2174 This is intended to be used on GIMPLE types only. */
2175
2176 bool
2177 gimple_compare_field_offset (tree f1, tree f2)
2178 {
2179 if (DECL_OFFSET_ALIGN (f1) == DECL_OFFSET_ALIGN (f2))
2180 {
2181 tree offset1 = DECL_FIELD_OFFSET (f1);
2182 tree offset2 = DECL_FIELD_OFFSET (f2);
2183 return ((offset1 == offset2
2184 /* Once gimplification is done, self-referential offsets are
2185 instantiated as operand #2 of the COMPONENT_REF built for
2186 each access and reset. Therefore, they are not relevant
2187 anymore and fields are interchangeable provided that they
2188 represent the same access. */
2189 || (TREE_CODE (offset1) == PLACEHOLDER_EXPR
2190 && TREE_CODE (offset2) == PLACEHOLDER_EXPR
2191 && (DECL_SIZE (f1) == DECL_SIZE (f2)
2192 || (TREE_CODE (DECL_SIZE (f1)) == PLACEHOLDER_EXPR
2193 && TREE_CODE (DECL_SIZE (f2)) == PLACEHOLDER_EXPR)
2194 || operand_equal_p (DECL_SIZE (f1), DECL_SIZE (f2), 0))
2195 && DECL_ALIGN (f1) == DECL_ALIGN (f2))
2196 || operand_equal_p (offset1, offset2, 0))
2197 && tree_int_cst_equal (DECL_FIELD_BIT_OFFSET (f1),
2198 DECL_FIELD_BIT_OFFSET (f2)));
2199 }
2200
2201 /* Fortran and C do not always agree on what DECL_OFFSET_ALIGN
2202 should be, so handle differing ones specially by decomposing
2203 the offset into a byte and bit offset manually. */
2204 if (tree_fits_shwi_p (DECL_FIELD_OFFSET (f1))
2205 && tree_fits_shwi_p (DECL_FIELD_OFFSET (f2)))
2206 {
2207 unsigned HOST_WIDE_INT byte_offset1, byte_offset2;
2208 unsigned HOST_WIDE_INT bit_offset1, bit_offset2;
2209 bit_offset1 = TREE_INT_CST_LOW (DECL_FIELD_BIT_OFFSET (f1));
2210 byte_offset1 = (TREE_INT_CST_LOW (DECL_FIELD_OFFSET (f1))
2211 + bit_offset1 / BITS_PER_UNIT);
2212 bit_offset2 = TREE_INT_CST_LOW (DECL_FIELD_BIT_OFFSET (f2));
2213 byte_offset2 = (TREE_INT_CST_LOW (DECL_FIELD_OFFSET (f2))
2214 + bit_offset2 / BITS_PER_UNIT);
2215 if (byte_offset1 != byte_offset2)
2216 return false;
2217 return bit_offset1 % BITS_PER_UNIT == bit_offset2 % BITS_PER_UNIT;
2218 }
2219
2220 return false;
2221 }
2222
2223
2224 /* Return a type the same as TYPE except unsigned or
2225 signed according to UNSIGNEDP. */
2226
2227 static tree
2228 gimple_signed_or_unsigned_type (bool unsignedp, tree type)
2229 {
2230 tree type1;
2231 int i;
2232
2233 type1 = TYPE_MAIN_VARIANT (type);
2234 if (type1 == signed_char_type_node
2235 || type1 == char_type_node
2236 || type1 == unsigned_char_type_node)
2237 return unsignedp ? unsigned_char_type_node : signed_char_type_node;
2238 if (type1 == integer_type_node || type1 == unsigned_type_node)
2239 return unsignedp ? unsigned_type_node : integer_type_node;
2240 if (type1 == short_integer_type_node || type1 == short_unsigned_type_node)
2241 return unsignedp ? short_unsigned_type_node : short_integer_type_node;
2242 if (type1 == long_integer_type_node || type1 == long_unsigned_type_node)
2243 return unsignedp ? long_unsigned_type_node : long_integer_type_node;
2244 if (type1 == long_long_integer_type_node
2245 || type1 == long_long_unsigned_type_node)
2246 return unsignedp
2247 ? long_long_unsigned_type_node
2248 : long_long_integer_type_node;
2249
2250 for (i = 0; i < NUM_INT_N_ENTS; i ++)
2251 if (int_n_enabled_p[i]
2252 && (type1 == int_n_trees[i].unsigned_type
2253 || type1 == int_n_trees[i].signed_type))
2254 return unsignedp
2255 ? int_n_trees[i].unsigned_type
2256 : int_n_trees[i].signed_type;
2257
2258 #if HOST_BITS_PER_WIDE_INT >= 64
2259 if (type1 == intTI_type_node || type1 == unsigned_intTI_type_node)
2260 return unsignedp ? unsigned_intTI_type_node : intTI_type_node;
2261 #endif
2262 if (type1 == intDI_type_node || type1 == unsigned_intDI_type_node)
2263 return unsignedp ? unsigned_intDI_type_node : intDI_type_node;
2264 if (type1 == intSI_type_node || type1 == unsigned_intSI_type_node)
2265 return unsignedp ? unsigned_intSI_type_node : intSI_type_node;
2266 if (type1 == intHI_type_node || type1 == unsigned_intHI_type_node)
2267 return unsignedp ? unsigned_intHI_type_node : intHI_type_node;
2268 if (type1 == intQI_type_node || type1 == unsigned_intQI_type_node)
2269 return unsignedp ? unsigned_intQI_type_node : intQI_type_node;
2270
2271 #define GIMPLE_FIXED_TYPES(NAME) \
2272 if (type1 == short_ ## NAME ## _type_node \
2273 || type1 == unsigned_short_ ## NAME ## _type_node) \
2274 return unsignedp ? unsigned_short_ ## NAME ## _type_node \
2275 : short_ ## NAME ## _type_node; \
2276 if (type1 == NAME ## _type_node \
2277 || type1 == unsigned_ ## NAME ## _type_node) \
2278 return unsignedp ? unsigned_ ## NAME ## _type_node \
2279 : NAME ## _type_node; \
2280 if (type1 == long_ ## NAME ## _type_node \
2281 || type1 == unsigned_long_ ## NAME ## _type_node) \
2282 return unsignedp ? unsigned_long_ ## NAME ## _type_node \
2283 : long_ ## NAME ## _type_node; \
2284 if (type1 == long_long_ ## NAME ## _type_node \
2285 || type1 == unsigned_long_long_ ## NAME ## _type_node) \
2286 return unsignedp ? unsigned_long_long_ ## NAME ## _type_node \
2287 : long_long_ ## NAME ## _type_node;
2288
2289 #define GIMPLE_FIXED_MODE_TYPES(NAME) \
2290 if (type1 == NAME ## _type_node \
2291 || type1 == u ## NAME ## _type_node) \
2292 return unsignedp ? u ## NAME ## _type_node \
2293 : NAME ## _type_node;
2294
2295 #define GIMPLE_FIXED_TYPES_SAT(NAME) \
2296 if (type1 == sat_ ## short_ ## NAME ## _type_node \
2297 || type1 == sat_ ## unsigned_short_ ## NAME ## _type_node) \
2298 return unsignedp ? sat_ ## unsigned_short_ ## NAME ## _type_node \
2299 : sat_ ## short_ ## NAME ## _type_node; \
2300 if (type1 == sat_ ## NAME ## _type_node \
2301 || type1 == sat_ ## unsigned_ ## NAME ## _type_node) \
2302 return unsignedp ? sat_ ## unsigned_ ## NAME ## _type_node \
2303 : sat_ ## NAME ## _type_node; \
2304 if (type1 == sat_ ## long_ ## NAME ## _type_node \
2305 || type1 == sat_ ## unsigned_long_ ## NAME ## _type_node) \
2306 return unsignedp ? sat_ ## unsigned_long_ ## NAME ## _type_node \
2307 : sat_ ## long_ ## NAME ## _type_node; \
2308 if (type1 == sat_ ## long_long_ ## NAME ## _type_node \
2309 || type1 == sat_ ## unsigned_long_long_ ## NAME ## _type_node) \
2310 return unsignedp ? sat_ ## unsigned_long_long_ ## NAME ## _type_node \
2311 : sat_ ## long_long_ ## NAME ## _type_node;
2312
2313 #define GIMPLE_FIXED_MODE_TYPES_SAT(NAME) \
2314 if (type1 == sat_ ## NAME ## _type_node \
2315 || type1 == sat_ ## u ## NAME ## _type_node) \
2316 return unsignedp ? sat_ ## u ## NAME ## _type_node \
2317 : sat_ ## NAME ## _type_node;
2318
2319 GIMPLE_FIXED_TYPES (fract);
2320 GIMPLE_FIXED_TYPES_SAT (fract);
2321 GIMPLE_FIXED_TYPES (accum);
2322 GIMPLE_FIXED_TYPES_SAT (accum);
2323
2324 GIMPLE_FIXED_MODE_TYPES (qq);
2325 GIMPLE_FIXED_MODE_TYPES (hq);
2326 GIMPLE_FIXED_MODE_TYPES (sq);
2327 GIMPLE_FIXED_MODE_TYPES (dq);
2328 GIMPLE_FIXED_MODE_TYPES (tq);
2329 GIMPLE_FIXED_MODE_TYPES_SAT (qq);
2330 GIMPLE_FIXED_MODE_TYPES_SAT (hq);
2331 GIMPLE_FIXED_MODE_TYPES_SAT (sq);
2332 GIMPLE_FIXED_MODE_TYPES_SAT (dq);
2333 GIMPLE_FIXED_MODE_TYPES_SAT (tq);
2334 GIMPLE_FIXED_MODE_TYPES (ha);
2335 GIMPLE_FIXED_MODE_TYPES (sa);
2336 GIMPLE_FIXED_MODE_TYPES (da);
2337 GIMPLE_FIXED_MODE_TYPES (ta);
2338 GIMPLE_FIXED_MODE_TYPES_SAT (ha);
2339 GIMPLE_FIXED_MODE_TYPES_SAT (sa);
2340 GIMPLE_FIXED_MODE_TYPES_SAT (da);
2341 GIMPLE_FIXED_MODE_TYPES_SAT (ta);
2342
2343 /* For ENUMERAL_TYPEs in C++, must check the mode of the types, not
2344 the precision; they have precision set to match their range, but
2345 may use a wider mode to match an ABI. If we change modes, we may
2346 wind up with bad conversions. For INTEGER_TYPEs in C, must check
2347 the precision as well, so as to yield correct results for
2348 bit-field types. C++ does not have these separate bit-field
2349 types, and producing a signed or unsigned variant of an
2350 ENUMERAL_TYPE may cause other problems as well. */
2351 if (!INTEGRAL_TYPE_P (type)
2352 || TYPE_UNSIGNED (type) == unsignedp)
2353 return type;
2354
2355 #define TYPE_OK(node) \
2356 (TYPE_MODE (type) == TYPE_MODE (node) \
2357 && TYPE_PRECISION (type) == TYPE_PRECISION (node))
2358 if (TYPE_OK (signed_char_type_node))
2359 return unsignedp ? unsigned_char_type_node : signed_char_type_node;
2360 if (TYPE_OK (integer_type_node))
2361 return unsignedp ? unsigned_type_node : integer_type_node;
2362 if (TYPE_OK (short_integer_type_node))
2363 return unsignedp ? short_unsigned_type_node : short_integer_type_node;
2364 if (TYPE_OK (long_integer_type_node))
2365 return unsignedp ? long_unsigned_type_node : long_integer_type_node;
2366 if (TYPE_OK (long_long_integer_type_node))
2367 return (unsignedp
2368 ? long_long_unsigned_type_node
2369 : long_long_integer_type_node);
2370
2371 for (i = 0; i < NUM_INT_N_ENTS; i ++)
2372 if (int_n_enabled_p[i]
2373 && TYPE_MODE (type) == int_n_data[i].m
2374 && TYPE_PRECISION (type) == int_n_data[i].bitsize)
2375 return unsignedp
2376 ? int_n_trees[i].unsigned_type
2377 : int_n_trees[i].signed_type;
2378
2379 #if HOST_BITS_PER_WIDE_INT >= 64
2380 if (TYPE_OK (intTI_type_node))
2381 return unsignedp ? unsigned_intTI_type_node : intTI_type_node;
2382 #endif
2383 if (TYPE_OK (intDI_type_node))
2384 return unsignedp ? unsigned_intDI_type_node : intDI_type_node;
2385 if (TYPE_OK (intSI_type_node))
2386 return unsignedp ? unsigned_intSI_type_node : intSI_type_node;
2387 if (TYPE_OK (intHI_type_node))
2388 return unsignedp ? unsigned_intHI_type_node : intHI_type_node;
2389 if (TYPE_OK (intQI_type_node))
2390 return unsignedp ? unsigned_intQI_type_node : intQI_type_node;
2391
2392 #undef GIMPLE_FIXED_TYPES
2393 #undef GIMPLE_FIXED_MODE_TYPES
2394 #undef GIMPLE_FIXED_TYPES_SAT
2395 #undef GIMPLE_FIXED_MODE_TYPES_SAT
2396 #undef TYPE_OK
2397
2398 return build_nonstandard_integer_type (TYPE_PRECISION (type), unsignedp);
2399 }
2400
2401
2402 /* Return an unsigned type the same as TYPE in other respects. */
2403
2404 tree
2405 gimple_unsigned_type (tree type)
2406 {
2407 return gimple_signed_or_unsigned_type (true, type);
2408 }
2409
2410
2411 /* Return a signed type the same as TYPE in other respects. */
2412
2413 tree
2414 gimple_signed_type (tree type)
2415 {
2416 return gimple_signed_or_unsigned_type (false, type);
2417 }
2418
2419
2420 /* Return the typed-based alias set for T, which may be an expression
2421 or a type. Return -1 if we don't do anything special. */
2422
2423 alias_set_type
2424 gimple_get_alias_set (tree t)
2425 {
2426 /* That's all the expressions we handle specially. */
2427 if (!TYPE_P (t))
2428 return -1;
2429
2430 /* For convenience, follow the C standard when dealing with
2431 character types. Any object may be accessed via an lvalue that
2432 has character type. */
2433 if (t == char_type_node
2434 || t == signed_char_type_node
2435 || t == unsigned_char_type_node)
2436 return 0;
2437
2438 /* Allow aliasing between signed and unsigned variants of the same
2439 type. We treat the signed variant as canonical. */
2440 if (TREE_CODE (t) == INTEGER_TYPE && TYPE_UNSIGNED (t))
2441 {
2442 tree t1 = gimple_signed_type (t);
2443
2444 /* t1 == t can happen for boolean nodes which are always unsigned. */
2445 if (t1 != t)
2446 return get_alias_set (t1);
2447 }
2448
2449 return -1;
2450 }
2451
2452
2453 /* Helper for gimple_ior_addresses_taken_1. */
2454
2455 static bool
2456 gimple_ior_addresses_taken_1 (gimple *, tree addr, tree, void *data)
2457 {
2458 bitmap addresses_taken = (bitmap)data;
2459 addr = get_base_address (addr);
2460 if (addr
2461 && DECL_P (addr))
2462 {
2463 bitmap_set_bit (addresses_taken, DECL_UID (addr));
2464 return true;
2465 }
2466 return false;
2467 }
2468
2469 /* Set the bit for the uid of all decls that have their address taken
2470 in STMT in the ADDRESSES_TAKEN bitmap. Returns true if there
2471 were any in this stmt. */
2472
2473 bool
2474 gimple_ior_addresses_taken (bitmap addresses_taken, gimple *stmt)
2475 {
2476 return walk_stmt_load_store_addr_ops (stmt, addresses_taken, NULL, NULL,
2477 gimple_ior_addresses_taken_1);
2478 }
2479
2480
2481 /* Return true when STMTs arguments and return value match those of FNDECL,
2482 a decl of a builtin function. */
2483
2484 bool
2485 gimple_builtin_call_types_compatible_p (const gimple *stmt, tree fndecl)
2486 {
2487 gcc_checking_assert (DECL_BUILT_IN_CLASS (fndecl) != NOT_BUILT_IN);
2488
2489 tree ret = gimple_call_lhs (stmt);
2490 if (ret
2491 && !useless_type_conversion_p (TREE_TYPE (ret),
2492 TREE_TYPE (TREE_TYPE (fndecl))))
2493 return false;
2494
2495 tree targs = TYPE_ARG_TYPES (TREE_TYPE (fndecl));
2496 unsigned nargs = gimple_call_num_args (stmt);
2497 for (unsigned i = 0; i < nargs; ++i)
2498 {
2499 /* Variadic args follow. */
2500 if (!targs)
2501 return true;
2502 tree arg = gimple_call_arg (stmt, i);
2503 tree type = TREE_VALUE (targs);
2504 if (!useless_type_conversion_p (type, TREE_TYPE (arg))
2505 /* char/short integral arguments are promoted to int
2506 by several frontends if targetm.calls.promote_prototypes
2507 is true. Allow such promotion too. */
2508 && !(INTEGRAL_TYPE_P (type)
2509 && TYPE_PRECISION (type) < TYPE_PRECISION (integer_type_node)
2510 && targetm.calls.promote_prototypes (TREE_TYPE (fndecl))
2511 && useless_type_conversion_p (integer_type_node,
2512 TREE_TYPE (arg))))
2513 return false;
2514 targs = TREE_CHAIN (targs);
2515 }
2516 if (targs && !VOID_TYPE_P (TREE_VALUE (targs)))
2517 return false;
2518 return true;
2519 }
2520
2521 /* Return true when STMT is builtins call. */
2522
2523 bool
2524 gimple_call_builtin_p (const gimple *stmt)
2525 {
2526 tree fndecl;
2527 if (is_gimple_call (stmt)
2528 && (fndecl = gimple_call_fndecl (stmt)) != NULL_TREE
2529 && DECL_BUILT_IN_CLASS (fndecl) != NOT_BUILT_IN)
2530 return gimple_builtin_call_types_compatible_p (stmt, fndecl);
2531 return false;
2532 }
2533
2534 /* Return true when STMT is builtins call to CLASS. */
2535
2536 bool
2537 gimple_call_builtin_p (const gimple *stmt, enum built_in_class klass)
2538 {
2539 tree fndecl;
2540 if (is_gimple_call (stmt)
2541 && (fndecl = gimple_call_fndecl (stmt)) != NULL_TREE
2542 && DECL_BUILT_IN_CLASS (fndecl) == klass)
2543 return gimple_builtin_call_types_compatible_p (stmt, fndecl);
2544 return false;
2545 }
2546
2547 /* Return true when STMT is builtins call to CODE of CLASS. */
2548
2549 bool
2550 gimple_call_builtin_p (const gimple *stmt, enum built_in_function code)
2551 {
2552 tree fndecl;
2553 if (is_gimple_call (stmt)
2554 && (fndecl = gimple_call_fndecl (stmt)) != NULL_TREE
2555 && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL
2556 && DECL_FUNCTION_CODE (fndecl) == code)
2557 return gimple_builtin_call_types_compatible_p (stmt, fndecl);
2558 return false;
2559 }
2560
2561 /* If CALL is a call to a combined_fn (i.e. an internal function or
2562 a normal built-in function), return its code, otherwise return
2563 CFN_LAST. */
2564
2565 combined_fn
2566 gimple_call_combined_fn (const gimple *stmt)
2567 {
2568 if (const gcall *call = dyn_cast <const gcall *> (stmt))
2569 {
2570 if (gimple_call_internal_p (call))
2571 return as_combined_fn (gimple_call_internal_fn (call));
2572
2573 tree fndecl = gimple_call_fndecl (stmt);
2574 if (fndecl
2575 && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL
2576 && gimple_builtin_call_types_compatible_p (stmt, fndecl))
2577 return as_combined_fn (DECL_FUNCTION_CODE (fndecl));
2578 }
2579 return CFN_LAST;
2580 }
2581
2582 /* Return true if STMT clobbers memory. STMT is required to be a
2583 GIMPLE_ASM. */
2584
2585 bool
2586 gimple_asm_clobbers_memory_p (const gasm *stmt)
2587 {
2588 unsigned i;
2589
2590 for (i = 0; i < gimple_asm_nclobbers (stmt); i++)
2591 {
2592 tree op = gimple_asm_clobber_op (stmt, i);
2593 if (strcmp (TREE_STRING_POINTER (TREE_VALUE (op)), "memory") == 0)
2594 return true;
2595 }
2596
2597 /* Non-empty basic ASM implicitly clobbers memory. */
2598 if (gimple_asm_input_p (stmt) && strlen (gimple_asm_string (stmt)) != 0)
2599 return true;
2600
2601 return false;
2602 }
2603
2604 /* Dump bitmap SET (assumed to contain VAR_DECLs) to FILE. */
2605
2606 void
2607 dump_decl_set (FILE *file, bitmap set)
2608 {
2609 if (set)
2610 {
2611 bitmap_iterator bi;
2612 unsigned i;
2613
2614 fprintf (file, "{ ");
2615
2616 EXECUTE_IF_SET_IN_BITMAP (set, 0, i, bi)
2617 {
2618 fprintf (file, "D.%u", i);
2619 fprintf (file, " ");
2620 }
2621
2622 fprintf (file, "}");
2623 }
2624 else
2625 fprintf (file, "NIL");
2626 }
2627
2628 /* Return true when CALL is a call stmt that definitely doesn't
2629 free any memory or makes it unavailable otherwise. */
2630 bool
2631 nonfreeing_call_p (gimple *call)
2632 {
2633 if (gimple_call_builtin_p (call, BUILT_IN_NORMAL)
2634 && gimple_call_flags (call) & ECF_LEAF)
2635 switch (DECL_FUNCTION_CODE (gimple_call_fndecl (call)))
2636 {
2637 /* Just in case these become ECF_LEAF in the future. */
2638 case BUILT_IN_FREE:
2639 case BUILT_IN_TM_FREE:
2640 case BUILT_IN_REALLOC:
2641 case BUILT_IN_STACK_RESTORE:
2642 return false;
2643 default:
2644 return true;
2645 }
2646 else if (gimple_call_internal_p (call))
2647 switch (gimple_call_internal_fn (call))
2648 {
2649 case IFN_ABNORMAL_DISPATCHER:
2650 return true;
2651 case IFN_ASAN_MARK:
2652 return tree_to_uhwi (gimple_call_arg (call, 0)) == ASAN_MARK_UNPOISON;
2653 default:
2654 if (gimple_call_flags (call) & ECF_LEAF)
2655 return true;
2656 return false;
2657 }
2658
2659 tree fndecl = gimple_call_fndecl (call);
2660 if (!fndecl)
2661 return false;
2662 struct cgraph_node *n = cgraph_node::get (fndecl);
2663 if (!n)
2664 return false;
2665 enum availability availability;
2666 n = n->function_symbol (&availability);
2667 if (!n || availability <= AVAIL_INTERPOSABLE)
2668 return false;
2669 return n->nonfreeing_fn;
2670 }
2671
2672 /* Return true when CALL is a call stmt that definitely need not
2673 be considered to be a memory barrier. */
2674 bool
2675 nonbarrier_call_p (gimple *call)
2676 {
2677 if (gimple_call_flags (call) & (ECF_PURE | ECF_CONST))
2678 return true;
2679 /* Should extend this to have a nonbarrier_fn flag, just as above in
2680 the nonfreeing case. */
2681 return false;
2682 }
2683
2684 /* Callback for walk_stmt_load_store_ops.
2685
2686 Return TRUE if OP will dereference the tree stored in DATA, FALSE
2687 otherwise.
2688
2689 This routine only makes a superficial check for a dereference. Thus
2690 it must only be used if it is safe to return a false negative. */
2691 static bool
2692 check_loadstore (gimple *, tree op, tree, void *data)
2693 {
2694 if (TREE_CODE (op) == MEM_REF || TREE_CODE (op) == TARGET_MEM_REF)
2695 {
2696 /* Some address spaces may legitimately dereference zero. */
2697 addr_space_t as = TYPE_ADDR_SPACE (TREE_TYPE (op));
2698 if (targetm.addr_space.zero_address_valid (as))
2699 return false;
2700
2701 return operand_equal_p (TREE_OPERAND (op, 0), (tree)data, 0);
2702 }
2703 return false;
2704 }
2705
2706
2707 /* Return true if OP can be inferred to be non-NULL after STMT executes,
2708 either by using a pointer dereference or attributes. */
2709 bool
2710 infer_nonnull_range (gimple *stmt, tree op)
2711 {
2712 return infer_nonnull_range_by_dereference (stmt, op)
2713 || infer_nonnull_range_by_attribute (stmt, op);
2714 }
2715
2716 /* Return true if OP can be inferred to be non-NULL after STMT
2717 executes by using a pointer dereference. */
2718 bool
2719 infer_nonnull_range_by_dereference (gimple *stmt, tree op)
2720 {
2721 /* We can only assume that a pointer dereference will yield
2722 non-NULL if -fdelete-null-pointer-checks is enabled. */
2723 if (!flag_delete_null_pointer_checks
2724 || !POINTER_TYPE_P (TREE_TYPE (op))
2725 || gimple_code (stmt) == GIMPLE_ASM)
2726 return false;
2727
2728 if (walk_stmt_load_store_ops (stmt, (void *)op,
2729 check_loadstore, check_loadstore))
2730 return true;
2731
2732 return false;
2733 }
2734
2735 /* Return true if OP can be inferred to be a non-NULL after STMT
2736 executes by using attributes. */
2737 bool
2738 infer_nonnull_range_by_attribute (gimple *stmt, tree op)
2739 {
2740 /* We can only assume that a pointer dereference will yield
2741 non-NULL if -fdelete-null-pointer-checks is enabled. */
2742 if (!flag_delete_null_pointer_checks
2743 || !POINTER_TYPE_P (TREE_TYPE (op))
2744 || gimple_code (stmt) == GIMPLE_ASM)
2745 return false;
2746
2747 if (is_gimple_call (stmt) && !gimple_call_internal_p (stmt))
2748 {
2749 tree fntype = gimple_call_fntype (stmt);
2750 tree attrs = TYPE_ATTRIBUTES (fntype);
2751 for (; attrs; attrs = TREE_CHAIN (attrs))
2752 {
2753 attrs = lookup_attribute ("nonnull", attrs);
2754
2755 /* If "nonnull" wasn't specified, we know nothing about
2756 the argument. */
2757 if (attrs == NULL_TREE)
2758 return false;
2759
2760 /* If "nonnull" applies to all the arguments, then ARG
2761 is non-null if it's in the argument list. */
2762 if (TREE_VALUE (attrs) == NULL_TREE)
2763 {
2764 for (unsigned int i = 0; i < gimple_call_num_args (stmt); i++)
2765 {
2766 if (POINTER_TYPE_P (TREE_TYPE (gimple_call_arg (stmt, i)))
2767 && operand_equal_p (op, gimple_call_arg (stmt, i), 0))
2768 return true;
2769 }
2770 return false;
2771 }
2772
2773 /* Now see if op appears in the nonnull list. */
2774 for (tree t = TREE_VALUE (attrs); t; t = TREE_CHAIN (t))
2775 {
2776 unsigned int idx = TREE_INT_CST_LOW (TREE_VALUE (t)) - 1;
2777 if (idx < gimple_call_num_args (stmt))
2778 {
2779 tree arg = gimple_call_arg (stmt, idx);
2780 if (operand_equal_p (op, arg, 0))
2781 return true;
2782 }
2783 }
2784 }
2785 }
2786
2787 /* If this function is marked as returning non-null, then we can
2788 infer OP is non-null if it is used in the return statement. */
2789 if (greturn *return_stmt = dyn_cast <greturn *> (stmt))
2790 if (gimple_return_retval (return_stmt)
2791 && operand_equal_p (gimple_return_retval (return_stmt), op, 0)
2792 && lookup_attribute ("returns_nonnull",
2793 TYPE_ATTRIBUTES (TREE_TYPE (current_function_decl))))
2794 return true;
2795
2796 return false;
2797 }
2798
2799 /* Compare two case labels. Because the front end should already have
2800 made sure that case ranges do not overlap, it is enough to only compare
2801 the CASE_LOW values of each case label. */
2802
2803 static int
2804 compare_case_labels (const void *p1, const void *p2)
2805 {
2806 const_tree const case1 = *(const_tree const*)p1;
2807 const_tree const case2 = *(const_tree const*)p2;
2808
2809 /* The 'default' case label always goes first. */
2810 if (!CASE_LOW (case1))
2811 return -1;
2812 else if (!CASE_LOW (case2))
2813 return 1;
2814 else
2815 return tree_int_cst_compare (CASE_LOW (case1), CASE_LOW (case2));
2816 }
2817
2818 /* Sort the case labels in LABEL_VEC in place in ascending order. */
2819
2820 void
2821 sort_case_labels (vec<tree> label_vec)
2822 {
2823 label_vec.qsort (compare_case_labels);
2824 }
2825 \f
2826 /* Prepare a vector of case labels to be used in a GIMPLE_SWITCH statement.
2827
2828 LABELS is a vector that contains all case labels to look at.
2829
2830 INDEX_TYPE is the type of the switch index expression. Case labels
2831 in LABELS are discarded if their values are not in the value range
2832 covered by INDEX_TYPE. The remaining case label values are folded
2833 to INDEX_TYPE.
2834
2835 If a default case exists in LABELS, it is removed from LABELS and
2836 returned in DEFAULT_CASEP. If no default case exists, but the
2837 case labels already cover the whole range of INDEX_TYPE, a default
2838 case is returned pointing to one of the existing case labels.
2839 Otherwise DEFAULT_CASEP is set to NULL_TREE.
2840
2841 DEFAULT_CASEP may be NULL, in which case the above comment doesn't
2842 apply and no action is taken regardless of whether a default case is
2843 found or not. */
2844
2845 void
2846 preprocess_case_label_vec_for_gimple (vec<tree> labels,
2847 tree index_type,
2848 tree *default_casep)
2849 {
2850 tree min_value, max_value;
2851 tree default_case = NULL_TREE;
2852 size_t i, len;
2853
2854 i = 0;
2855 min_value = TYPE_MIN_VALUE (index_type);
2856 max_value = TYPE_MAX_VALUE (index_type);
2857 while (i < labels.length ())
2858 {
2859 tree elt = labels[i];
2860 tree low = CASE_LOW (elt);
2861 tree high = CASE_HIGH (elt);
2862 bool remove_element = FALSE;
2863
2864 if (low)
2865 {
2866 gcc_checking_assert (TREE_CODE (low) == INTEGER_CST);
2867 gcc_checking_assert (!high || TREE_CODE (high) == INTEGER_CST);
2868
2869 /* This is a non-default case label, i.e. it has a value.
2870
2871 See if the case label is reachable within the range of
2872 the index type. Remove out-of-range case values. Turn
2873 case ranges into a canonical form (high > low strictly)
2874 and convert the case label values to the index type.
2875
2876 NB: The type of gimple_switch_index() may be the promoted
2877 type, but the case labels retain the original type. */
2878
2879 if (high)
2880 {
2881 /* This is a case range. Discard empty ranges.
2882 If the bounds or the range are equal, turn this
2883 into a simple (one-value) case. */
2884 int cmp = tree_int_cst_compare (high, low);
2885 if (cmp < 0)
2886 remove_element = TRUE;
2887 else if (cmp == 0)
2888 high = NULL_TREE;
2889 }
2890
2891 if (! high)
2892 {
2893 /* If the simple case value is unreachable, ignore it. */
2894 if ((TREE_CODE (min_value) == INTEGER_CST
2895 && tree_int_cst_compare (low, min_value) < 0)
2896 || (TREE_CODE (max_value) == INTEGER_CST
2897 && tree_int_cst_compare (low, max_value) > 0))
2898 remove_element = TRUE;
2899 else
2900 low = fold_convert (index_type, low);
2901 }
2902 else
2903 {
2904 /* If the entire case range is unreachable, ignore it. */
2905 if ((TREE_CODE (min_value) == INTEGER_CST
2906 && tree_int_cst_compare (high, min_value) < 0)
2907 || (TREE_CODE (max_value) == INTEGER_CST
2908 && tree_int_cst_compare (low, max_value) > 0))
2909 remove_element = TRUE;
2910 else
2911 {
2912 /* If the lower bound is less than the index type's
2913 minimum value, truncate the range bounds. */
2914 if (TREE_CODE (min_value) == INTEGER_CST
2915 && tree_int_cst_compare (low, min_value) < 0)
2916 low = min_value;
2917 low = fold_convert (index_type, low);
2918
2919 /* If the upper bound is greater than the index type's
2920 maximum value, truncate the range bounds. */
2921 if (TREE_CODE (max_value) == INTEGER_CST
2922 && tree_int_cst_compare (high, max_value) > 0)
2923 high = max_value;
2924 high = fold_convert (index_type, high);
2925
2926 /* We may have folded a case range to a one-value case. */
2927 if (tree_int_cst_equal (low, high))
2928 high = NULL_TREE;
2929 }
2930 }
2931
2932 CASE_LOW (elt) = low;
2933 CASE_HIGH (elt) = high;
2934 }
2935 else
2936 {
2937 gcc_assert (!default_case);
2938 default_case = elt;
2939 /* The default case must be passed separately to the
2940 gimple_build_switch routine. But if DEFAULT_CASEP
2941 is NULL, we do not remove the default case (it would
2942 be completely lost). */
2943 if (default_casep)
2944 remove_element = TRUE;
2945 }
2946
2947 if (remove_element)
2948 labels.ordered_remove (i);
2949 else
2950 i++;
2951 }
2952 len = i;
2953
2954 if (!labels.is_empty ())
2955 sort_case_labels (labels);
2956
2957 if (default_casep && !default_case)
2958 {
2959 /* If the switch has no default label, add one, so that we jump
2960 around the switch body. If the labels already cover the whole
2961 range of the switch index_type, add the default label pointing
2962 to one of the existing labels. */
2963 if (len
2964 && TYPE_MIN_VALUE (index_type)
2965 && TYPE_MAX_VALUE (index_type)
2966 && tree_int_cst_equal (CASE_LOW (labels[0]),
2967 TYPE_MIN_VALUE (index_type)))
2968 {
2969 tree low, high = CASE_HIGH (labels[len - 1]);
2970 if (!high)
2971 high = CASE_LOW (labels[len - 1]);
2972 if (tree_int_cst_equal (high, TYPE_MAX_VALUE (index_type)))
2973 {
2974 tree widest_label = labels[0];
2975 for (i = 1; i < len; i++)
2976 {
2977 high = CASE_LOW (labels[i]);
2978 low = CASE_HIGH (labels[i - 1]);
2979 if (!low)
2980 low = CASE_LOW (labels[i - 1]);
2981
2982 if (CASE_HIGH (labels[i]) != NULL_TREE
2983 && (CASE_HIGH (widest_label) == NULL_TREE
2984 || (wi::gtu_p
2985 (wi::to_wide (CASE_HIGH (labels[i]))
2986 - wi::to_wide (CASE_LOW (labels[i])),
2987 wi::to_wide (CASE_HIGH (widest_label))
2988 - wi::to_wide (CASE_LOW (widest_label))))))
2989 widest_label = labels[i];
2990
2991 if (wi::to_wide (low) + 1 != wi::to_wide (high))
2992 break;
2993 }
2994 if (i == len)
2995 {
2996 /* Designate the label with the widest range to be the
2997 default label. */
2998 tree label = CASE_LABEL (widest_label);
2999 default_case = build_case_label (NULL_TREE, NULL_TREE,
3000 label);
3001 }
3002 }
3003 }
3004 }
3005
3006 if (default_casep)
3007 *default_casep = default_case;
3008 }
3009
3010 /* Set the location of all statements in SEQ to LOC. */
3011
3012 void
3013 gimple_seq_set_location (gimple_seq seq, location_t loc)
3014 {
3015 for (gimple_stmt_iterator i = gsi_start (seq); !gsi_end_p (i); gsi_next (&i))
3016 gimple_set_location (gsi_stmt (i), loc);
3017 }
3018
3019 /* Release SSA_NAMEs in SEQ as well as the GIMPLE statements. */
3020
3021 void
3022 gimple_seq_discard (gimple_seq seq)
3023 {
3024 gimple_stmt_iterator gsi;
3025
3026 for (gsi = gsi_start (seq); !gsi_end_p (gsi); )
3027 {
3028 gimple *stmt = gsi_stmt (gsi);
3029 gsi_remove (&gsi, true);
3030 release_defs (stmt);
3031 ggc_free (stmt);
3032 }
3033 }
3034
3035 /* See if STMT now calls function that takes no parameters and if so, drop
3036 call arguments. This is used when devirtualization machinery redirects
3037 to __builtin_unreachable or __cxa_pure_virtual. */
3038
3039 void
3040 maybe_remove_unused_call_args (struct function *fn, gimple *stmt)
3041 {
3042 tree decl = gimple_call_fndecl (stmt);
3043 if (TYPE_ARG_TYPES (TREE_TYPE (decl))
3044 && TREE_VALUE (TYPE_ARG_TYPES (TREE_TYPE (decl))) == void_type_node
3045 && gimple_call_num_args (stmt))
3046 {
3047 gimple_set_num_ops (stmt, 3);
3048 update_stmt_fn (fn, stmt);
3049 }
3050 }
3051
3052 /* Return false if STMT will likely expand to real function call. */
3053
3054 bool
3055 gimple_inexpensive_call_p (gcall *stmt)
3056 {
3057 if (gimple_call_internal_p (stmt))
3058 return true;
3059 tree decl = gimple_call_fndecl (stmt);
3060 if (decl && is_inexpensive_builtin (decl))
3061 return true;
3062 return false;
3063 }
3064
3065 #if CHECKING_P
3066
3067 namespace selftest {
3068
3069 /* Selftests for core gimple structures. */
3070
3071 /* Verify that STMT is pretty-printed as EXPECTED.
3072 Helper function for selftests. */
3073
3074 static void
3075 verify_gimple_pp (const char *expected, gimple *stmt)
3076 {
3077 pretty_printer pp;
3078 pp_gimple_stmt_1 (&pp, stmt, 0 /* spc */, 0 /* flags */);
3079 ASSERT_STREQ (expected, pp_formatted_text (&pp));
3080 }
3081
3082 /* Build a GIMPLE_ASSIGN equivalent to
3083 tmp = 5;
3084 and verify various properties of it. */
3085
3086 static void
3087 test_assign_single ()
3088 {
3089 tree type = integer_type_node;
3090 tree lhs = build_decl (UNKNOWN_LOCATION, VAR_DECL,
3091 get_identifier ("tmp"),
3092 type);
3093 tree rhs = build_int_cst (type, 5);
3094 gassign *stmt = gimple_build_assign (lhs, rhs);
3095 verify_gimple_pp ("tmp = 5;", stmt);
3096
3097 ASSERT_TRUE (is_gimple_assign (stmt));
3098 ASSERT_EQ (lhs, gimple_assign_lhs (stmt));
3099 ASSERT_EQ (lhs, gimple_get_lhs (stmt));
3100 ASSERT_EQ (rhs, gimple_assign_rhs1 (stmt));
3101 ASSERT_EQ (NULL, gimple_assign_rhs2 (stmt));
3102 ASSERT_EQ (NULL, gimple_assign_rhs3 (stmt));
3103 ASSERT_TRUE (gimple_assign_single_p (stmt));
3104 ASSERT_EQ (INTEGER_CST, gimple_assign_rhs_code (stmt));
3105 }
3106
3107 /* Build a GIMPLE_ASSIGN equivalent to
3108 tmp = a * b;
3109 and verify various properties of it. */
3110
3111 static void
3112 test_assign_binop ()
3113 {
3114 tree type = integer_type_node;
3115 tree lhs = build_decl (UNKNOWN_LOCATION, VAR_DECL,
3116 get_identifier ("tmp"),
3117 type);
3118 tree a = build_decl (UNKNOWN_LOCATION, VAR_DECL,
3119 get_identifier ("a"),
3120 type);
3121 tree b = build_decl (UNKNOWN_LOCATION, VAR_DECL,
3122 get_identifier ("b"),
3123 type);
3124 gassign *stmt = gimple_build_assign (lhs, MULT_EXPR, a, b);
3125 verify_gimple_pp ("tmp = a * b;", stmt);
3126
3127 ASSERT_TRUE (is_gimple_assign (stmt));
3128 ASSERT_EQ (lhs, gimple_assign_lhs (stmt));
3129 ASSERT_EQ (lhs, gimple_get_lhs (stmt));
3130 ASSERT_EQ (a, gimple_assign_rhs1 (stmt));
3131 ASSERT_EQ (b, gimple_assign_rhs2 (stmt));
3132 ASSERT_EQ (NULL, gimple_assign_rhs3 (stmt));
3133 ASSERT_FALSE (gimple_assign_single_p (stmt));
3134 ASSERT_EQ (MULT_EXPR, gimple_assign_rhs_code (stmt));
3135 }
3136
3137 /* Build a GIMPLE_NOP and verify various properties of it. */
3138
3139 static void
3140 test_nop_stmt ()
3141 {
3142 gimple *stmt = gimple_build_nop ();
3143 verify_gimple_pp ("GIMPLE_NOP", stmt);
3144 ASSERT_EQ (GIMPLE_NOP, gimple_code (stmt));
3145 ASSERT_EQ (NULL, gimple_get_lhs (stmt));
3146 ASSERT_FALSE (gimple_assign_single_p (stmt));
3147 }
3148
3149 /* Build a GIMPLE_RETURN equivalent to
3150 return 7;
3151 and verify various properties of it. */
3152
3153 static void
3154 test_return_stmt ()
3155 {
3156 tree type = integer_type_node;
3157 tree val = build_int_cst (type, 7);
3158 greturn *stmt = gimple_build_return (val);
3159 verify_gimple_pp ("return 7;", stmt);
3160
3161 ASSERT_EQ (GIMPLE_RETURN, gimple_code (stmt));
3162 ASSERT_EQ (NULL, gimple_get_lhs (stmt));
3163 ASSERT_EQ (val, gimple_return_retval (stmt));
3164 ASSERT_FALSE (gimple_assign_single_p (stmt));
3165 }
3166
3167 /* Build a GIMPLE_RETURN equivalent to
3168 return;
3169 and verify various properties of it. */
3170
3171 static void
3172 test_return_without_value ()
3173 {
3174 greturn *stmt = gimple_build_return (NULL);
3175 verify_gimple_pp ("return;", stmt);
3176
3177 ASSERT_EQ (GIMPLE_RETURN, gimple_code (stmt));
3178 ASSERT_EQ (NULL, gimple_get_lhs (stmt));
3179 ASSERT_EQ (NULL, gimple_return_retval (stmt));
3180 ASSERT_FALSE (gimple_assign_single_p (stmt));
3181 }
3182
3183 /* Run all of the selftests within this file. */
3184
3185 void
3186 gimple_c_tests ()
3187 {
3188 test_assign_single ();
3189 test_assign_binop ();
3190 test_nop_stmt ();
3191 test_return_stmt ();
3192 test_return_without_value ();
3193 }
3194
3195 } // namespace selftest
3196
3197
3198 #endif /* CHECKING_P */