]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/gimple.c
machmode.h (int_n_data_t): New.
[thirdparty/gcc.git] / gcc / gimple.c
1 /* Gimple IR support functions.
2
3 Copyright (C) 2007-2014 Free Software Foundation, Inc.
4 Contributed by Aldy Hernandez <aldyh@redhat.com>
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
12
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
21
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "tm.h"
26 #include "target.h"
27 #include "tree.h"
28 #include "calls.h"
29 #include "stmt.h"
30 #include "stor-layout.h"
31 #include "hard-reg-set.h"
32 #include "basic-block.h"
33 #include "tree-ssa-alias.h"
34 #include "internal-fn.h"
35 #include "tree-eh.h"
36 #include "gimple-expr.h"
37 #include "is-a.h"
38 #include "gimple.h"
39 #include "gimple-iterator.h"
40 #include "gimple-walk.h"
41 #include "gimple.h"
42 #include "gimplify.h"
43 #include "diagnostic.h"
44 #include "value-prof.h"
45 #include "flags.h"
46 #include "alias.h"
47 #include "demangle.h"
48 #include "langhooks.h"
49 #include "bitmap.h"
50
51
52 /* All the tuples have their operand vector (if present) at the very bottom
53 of the structure. Therefore, the offset required to find the
54 operands vector the size of the structure minus the size of the 1
55 element tree array at the end (see gimple_ops). */
56 #define DEFGSSTRUCT(SYM, STRUCT, HAS_TREE_OP) \
57 (HAS_TREE_OP ? sizeof (struct STRUCT) - sizeof (tree) : 0),
58 EXPORTED_CONST size_t gimple_ops_offset_[] = {
59 #include "gsstruct.def"
60 };
61 #undef DEFGSSTRUCT
62
63 #define DEFGSSTRUCT(SYM, STRUCT, HAS_TREE_OP) sizeof (struct STRUCT),
64 static const size_t gsstruct_code_size[] = {
65 #include "gsstruct.def"
66 };
67 #undef DEFGSSTRUCT
68
69 #define DEFGSCODE(SYM, NAME, GSSCODE) NAME,
70 const char *const gimple_code_name[] = {
71 #include "gimple.def"
72 };
73 #undef DEFGSCODE
74
75 #define DEFGSCODE(SYM, NAME, GSSCODE) GSSCODE,
76 EXPORTED_CONST enum gimple_statement_structure_enum gss_for_code_[] = {
77 #include "gimple.def"
78 };
79 #undef DEFGSCODE
80
81 /* Gimple stats. */
82
83 int gimple_alloc_counts[(int) gimple_alloc_kind_all];
84 int gimple_alloc_sizes[(int) gimple_alloc_kind_all];
85
86 /* Keep in sync with gimple.h:enum gimple_alloc_kind. */
87 static const char * const gimple_alloc_kind_names[] = {
88 "assignments",
89 "phi nodes",
90 "conditionals",
91 "everything else"
92 };
93
94 /* Gimple tuple constructors.
95 Note: Any constructor taking a ``gimple_seq'' as a parameter, can
96 be passed a NULL to start with an empty sequence. */
97
98 /* Set the code for statement G to CODE. */
99
100 static inline void
101 gimple_set_code (gimple g, enum gimple_code code)
102 {
103 g->code = code;
104 }
105
106 /* Return the number of bytes needed to hold a GIMPLE statement with
107 code CODE. */
108
109 static inline size_t
110 gimple_size (enum gimple_code code)
111 {
112 return gsstruct_code_size[gss_for_code (code)];
113 }
114
115 /* Allocate memory for a GIMPLE statement with code CODE and NUM_OPS
116 operands. */
117
118 gimple
119 gimple_alloc_stat (enum gimple_code code, unsigned num_ops MEM_STAT_DECL)
120 {
121 size_t size;
122 gimple stmt;
123
124 size = gimple_size (code);
125 if (num_ops > 0)
126 size += sizeof (tree) * (num_ops - 1);
127
128 if (GATHER_STATISTICS)
129 {
130 enum gimple_alloc_kind kind = gimple_alloc_kind (code);
131 gimple_alloc_counts[(int) kind]++;
132 gimple_alloc_sizes[(int) kind] += size;
133 }
134
135 stmt = ggc_alloc_cleared_gimple_statement_stat (size PASS_MEM_STAT);
136 gimple_set_code (stmt, code);
137 gimple_set_num_ops (stmt, num_ops);
138
139 /* Do not call gimple_set_modified here as it has other side
140 effects and this tuple is still not completely built. */
141 stmt->modified = 1;
142 gimple_init_singleton (stmt);
143
144 return stmt;
145 }
146
147 /* Set SUBCODE to be the code of the expression computed by statement G. */
148
149 static inline void
150 gimple_set_subcode (gimple g, unsigned subcode)
151 {
152 /* We only have 16 bits for the RHS code. Assert that we are not
153 overflowing it. */
154 gcc_assert (subcode < (1 << 16));
155 g->subcode = subcode;
156 }
157
158
159
160 /* Build a tuple with operands. CODE is the statement to build (which
161 must be one of the GIMPLE_WITH_OPS tuples). SUBCODE is the subcode
162 for the new tuple. NUM_OPS is the number of operands to allocate. */
163
164 #define gimple_build_with_ops(c, s, n) \
165 gimple_build_with_ops_stat (c, s, n MEM_STAT_INFO)
166
167 static gimple
168 gimple_build_with_ops_stat (enum gimple_code code, unsigned subcode,
169 unsigned num_ops MEM_STAT_DECL)
170 {
171 gimple s = gimple_alloc_stat (code, num_ops PASS_MEM_STAT);
172 gimple_set_subcode (s, subcode);
173
174 return s;
175 }
176
177
178 /* Build a GIMPLE_RETURN statement returning RETVAL. */
179
180 gimple
181 gimple_build_return (tree retval)
182 {
183 gimple s = gimple_build_with_ops (GIMPLE_RETURN, ERROR_MARK, 1);
184 if (retval)
185 gimple_return_set_retval (s, retval);
186 return s;
187 }
188
189 /* Reset alias information on call S. */
190
191 void
192 gimple_call_reset_alias_info (gimple s)
193 {
194 if (gimple_call_flags (s) & ECF_CONST)
195 memset (gimple_call_use_set (s), 0, sizeof (struct pt_solution));
196 else
197 pt_solution_reset (gimple_call_use_set (s));
198 if (gimple_call_flags (s) & (ECF_CONST|ECF_PURE|ECF_NOVOPS))
199 memset (gimple_call_clobber_set (s), 0, sizeof (struct pt_solution));
200 else
201 pt_solution_reset (gimple_call_clobber_set (s));
202 }
203
204 /* Helper for gimple_build_call, gimple_build_call_valist,
205 gimple_build_call_vec and gimple_build_call_from_tree. Build the basic
206 components of a GIMPLE_CALL statement to function FN with NARGS
207 arguments. */
208
209 static inline gimple
210 gimple_build_call_1 (tree fn, unsigned nargs)
211 {
212 gimple s = gimple_build_with_ops (GIMPLE_CALL, ERROR_MARK, nargs + 3);
213 if (TREE_CODE (fn) == FUNCTION_DECL)
214 fn = build_fold_addr_expr (fn);
215 gimple_set_op (s, 1, fn);
216 gimple_call_set_fntype (s, TREE_TYPE (TREE_TYPE (fn)));
217 gimple_call_reset_alias_info (s);
218 return s;
219 }
220
221
222 /* Build a GIMPLE_CALL statement to function FN with the arguments
223 specified in vector ARGS. */
224
225 gimple
226 gimple_build_call_vec (tree fn, vec<tree> args)
227 {
228 unsigned i;
229 unsigned nargs = args.length ();
230 gimple call = gimple_build_call_1 (fn, nargs);
231
232 for (i = 0; i < nargs; i++)
233 gimple_call_set_arg (call, i, args[i]);
234
235 return call;
236 }
237
238
239 /* Build a GIMPLE_CALL statement to function FN. NARGS is the number of
240 arguments. The ... are the arguments. */
241
242 gimple
243 gimple_build_call (tree fn, unsigned nargs, ...)
244 {
245 va_list ap;
246 gimple call;
247 unsigned i;
248
249 gcc_assert (TREE_CODE (fn) == FUNCTION_DECL || is_gimple_call_addr (fn));
250
251 call = gimple_build_call_1 (fn, nargs);
252
253 va_start (ap, nargs);
254 for (i = 0; i < nargs; i++)
255 gimple_call_set_arg (call, i, va_arg (ap, tree));
256 va_end (ap);
257
258 return call;
259 }
260
261
262 /* Build a GIMPLE_CALL statement to function FN. NARGS is the number of
263 arguments. AP contains the arguments. */
264
265 gimple
266 gimple_build_call_valist (tree fn, unsigned nargs, va_list ap)
267 {
268 gimple call;
269 unsigned i;
270
271 gcc_assert (TREE_CODE (fn) == FUNCTION_DECL || is_gimple_call_addr (fn));
272
273 call = gimple_build_call_1 (fn, nargs);
274
275 for (i = 0; i < nargs; i++)
276 gimple_call_set_arg (call, i, va_arg (ap, tree));
277
278 return call;
279 }
280
281
282 /* Helper for gimple_build_call_internal and gimple_build_call_internal_vec.
283 Build the basic components of a GIMPLE_CALL statement to internal
284 function FN with NARGS arguments. */
285
286 static inline gimple
287 gimple_build_call_internal_1 (enum internal_fn fn, unsigned nargs)
288 {
289 gimple s = gimple_build_with_ops (GIMPLE_CALL, ERROR_MARK, nargs + 3);
290 s->subcode |= GF_CALL_INTERNAL;
291 gimple_call_set_internal_fn (s, fn);
292 gimple_call_reset_alias_info (s);
293 return s;
294 }
295
296
297 /* Build a GIMPLE_CALL statement to internal function FN. NARGS is
298 the number of arguments. The ... are the arguments. */
299
300 gimple
301 gimple_build_call_internal (enum internal_fn fn, unsigned nargs, ...)
302 {
303 va_list ap;
304 gimple call;
305 unsigned i;
306
307 call = gimple_build_call_internal_1 (fn, nargs);
308 va_start (ap, nargs);
309 for (i = 0; i < nargs; i++)
310 gimple_call_set_arg (call, i, va_arg (ap, tree));
311 va_end (ap);
312
313 return call;
314 }
315
316
317 /* Build a GIMPLE_CALL statement to internal function FN with the arguments
318 specified in vector ARGS. */
319
320 gimple
321 gimple_build_call_internal_vec (enum internal_fn fn, vec<tree> args)
322 {
323 unsigned i, nargs;
324 gimple call;
325
326 nargs = args.length ();
327 call = gimple_build_call_internal_1 (fn, nargs);
328 for (i = 0; i < nargs; i++)
329 gimple_call_set_arg (call, i, args[i]);
330
331 return call;
332 }
333
334
335 /* Build a GIMPLE_CALL statement from CALL_EXPR T. Note that T is
336 assumed to be in GIMPLE form already. Minimal checking is done of
337 this fact. */
338
339 gimple
340 gimple_build_call_from_tree (tree t)
341 {
342 unsigned i, nargs;
343 gimple call;
344 tree fndecl = get_callee_fndecl (t);
345
346 gcc_assert (TREE_CODE (t) == CALL_EXPR);
347
348 nargs = call_expr_nargs (t);
349 call = gimple_build_call_1 (fndecl ? fndecl : CALL_EXPR_FN (t), nargs);
350
351 for (i = 0; i < nargs; i++)
352 gimple_call_set_arg (call, i, CALL_EXPR_ARG (t, i));
353
354 gimple_set_block (call, TREE_BLOCK (t));
355
356 /* Carry all the CALL_EXPR flags to the new GIMPLE_CALL. */
357 gimple_call_set_chain (call, CALL_EXPR_STATIC_CHAIN (t));
358 gimple_call_set_tail (call, CALL_EXPR_TAILCALL (t));
359 gimple_call_set_return_slot_opt (call, CALL_EXPR_RETURN_SLOT_OPT (t));
360 if (fndecl
361 && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL
362 && (DECL_FUNCTION_CODE (fndecl) == BUILT_IN_ALLOCA
363 || DECL_FUNCTION_CODE (fndecl) == BUILT_IN_ALLOCA_WITH_ALIGN))
364 gimple_call_set_alloca_for_var (call, CALL_ALLOCA_FOR_VAR_P (t));
365 else
366 gimple_call_set_from_thunk (call, CALL_FROM_THUNK_P (t));
367 gimple_call_set_va_arg_pack (call, CALL_EXPR_VA_ARG_PACK (t));
368 gimple_call_set_nothrow (call, TREE_NOTHROW (t));
369 gimple_set_no_warning (call, TREE_NO_WARNING (t));
370
371 return call;
372 }
373
374
375 /* Build a GIMPLE_ASSIGN statement.
376
377 LHS of the assignment.
378 RHS of the assignment which can be unary or binary. */
379
380 gimple
381 gimple_build_assign_stat (tree lhs, tree rhs MEM_STAT_DECL)
382 {
383 enum tree_code subcode;
384 tree op1, op2, op3;
385
386 extract_ops_from_tree_1 (rhs, &subcode, &op1, &op2, &op3);
387 return gimple_build_assign_with_ops (subcode, lhs, op1, op2, op3
388 PASS_MEM_STAT);
389 }
390
391
392 /* Build a GIMPLE_ASSIGN statement with subcode SUBCODE and operands
393 OP1 and OP2. If OP2 is NULL then SUBCODE must be of class
394 GIMPLE_UNARY_RHS or GIMPLE_SINGLE_RHS. */
395
396 gimple
397 gimple_build_assign_with_ops (enum tree_code subcode, tree lhs, tree op1,
398 tree op2, tree op3 MEM_STAT_DECL)
399 {
400 unsigned num_ops;
401 gimple p;
402
403 /* Need 1 operand for LHS and 1 or 2 for the RHS (depending on the
404 code). */
405 num_ops = get_gimple_rhs_num_ops (subcode) + 1;
406
407 p = gimple_build_with_ops_stat (GIMPLE_ASSIGN, (unsigned)subcode, num_ops
408 PASS_MEM_STAT);
409 gimple_assign_set_lhs (p, lhs);
410 gimple_assign_set_rhs1 (p, op1);
411 if (op2)
412 {
413 gcc_assert (num_ops > 2);
414 gimple_assign_set_rhs2 (p, op2);
415 }
416
417 if (op3)
418 {
419 gcc_assert (num_ops > 3);
420 gimple_assign_set_rhs3 (p, op3);
421 }
422
423 return p;
424 }
425
426 gimple
427 gimple_build_assign_with_ops (enum tree_code subcode, tree lhs, tree op1,
428 tree op2 MEM_STAT_DECL)
429 {
430 return gimple_build_assign_with_ops (subcode, lhs, op1, op2, NULL_TREE
431 PASS_MEM_STAT);
432 }
433
434
435 /* Build a GIMPLE_COND statement.
436
437 PRED is the condition used to compare LHS and the RHS.
438 T_LABEL is the label to jump to if the condition is true.
439 F_LABEL is the label to jump to otherwise. */
440
441 gimple
442 gimple_build_cond (enum tree_code pred_code, tree lhs, tree rhs,
443 tree t_label, tree f_label)
444 {
445 gimple p;
446
447 gcc_assert (TREE_CODE_CLASS (pred_code) == tcc_comparison);
448 p = gimple_build_with_ops (GIMPLE_COND, pred_code, 4);
449 gimple_cond_set_lhs (p, lhs);
450 gimple_cond_set_rhs (p, rhs);
451 gimple_cond_set_true_label (p, t_label);
452 gimple_cond_set_false_label (p, f_label);
453 return p;
454 }
455
456 /* Build a GIMPLE_COND statement from the conditional expression tree
457 COND. T_LABEL and F_LABEL are as in gimple_build_cond. */
458
459 gimple
460 gimple_build_cond_from_tree (tree cond, tree t_label, tree f_label)
461 {
462 enum tree_code code;
463 tree lhs, rhs;
464
465 gimple_cond_get_ops_from_tree (cond, &code, &lhs, &rhs);
466 return gimple_build_cond (code, lhs, rhs, t_label, f_label);
467 }
468
469 /* Set code, lhs, and rhs of a GIMPLE_COND from a suitable
470 boolean expression tree COND. */
471
472 void
473 gimple_cond_set_condition_from_tree (gimple stmt, tree cond)
474 {
475 enum tree_code code;
476 tree lhs, rhs;
477
478 gimple_cond_get_ops_from_tree (cond, &code, &lhs, &rhs);
479 gimple_cond_set_condition (stmt, code, lhs, rhs);
480 }
481
482 /* Build a GIMPLE_LABEL statement for LABEL. */
483
484 gimple
485 gimple_build_label (tree label)
486 {
487 gimple p = gimple_build_with_ops (GIMPLE_LABEL, ERROR_MARK, 1);
488 gimple_label_set_label (p, label);
489 return p;
490 }
491
492 /* Build a GIMPLE_GOTO statement to label DEST. */
493
494 gimple
495 gimple_build_goto (tree dest)
496 {
497 gimple p = gimple_build_with_ops (GIMPLE_GOTO, ERROR_MARK, 1);
498 gimple_goto_set_dest (p, dest);
499 return p;
500 }
501
502
503 /* Build a GIMPLE_NOP statement. */
504
505 gimple
506 gimple_build_nop (void)
507 {
508 return gimple_alloc (GIMPLE_NOP, 0);
509 }
510
511
512 /* Build a GIMPLE_BIND statement.
513 VARS are the variables in BODY.
514 BLOCK is the containing block. */
515
516 gimple
517 gimple_build_bind (tree vars, gimple_seq body, tree block)
518 {
519 gimple p = gimple_alloc (GIMPLE_BIND, 0);
520 gimple_bind_set_vars (p, vars);
521 if (body)
522 gimple_bind_set_body (p, body);
523 if (block)
524 gimple_bind_set_block (p, block);
525 return p;
526 }
527
528 /* Helper function to set the simple fields of a asm stmt.
529
530 STRING is a pointer to a string that is the asm blocks assembly code.
531 NINPUT is the number of register inputs.
532 NOUTPUT is the number of register outputs.
533 NCLOBBERS is the number of clobbered registers.
534 */
535
536 static inline gimple
537 gimple_build_asm_1 (const char *string, unsigned ninputs, unsigned noutputs,
538 unsigned nclobbers, unsigned nlabels)
539 {
540 gimple_statement_asm *p;
541 int size = strlen (string);
542
543 /* ASMs with labels cannot have outputs. This should have been
544 enforced by the front end. */
545 gcc_assert (nlabels == 0 || noutputs == 0);
546
547 p = as_a <gimple_statement_asm *> (
548 gimple_build_with_ops (GIMPLE_ASM, ERROR_MARK,
549 ninputs + noutputs + nclobbers + nlabels));
550
551 p->ni = ninputs;
552 p->no = noutputs;
553 p->nc = nclobbers;
554 p->nl = nlabels;
555 p->string = ggc_alloc_string (string, size);
556
557 if (GATHER_STATISTICS)
558 gimple_alloc_sizes[(int) gimple_alloc_kind (GIMPLE_ASM)] += size;
559
560 return p;
561 }
562
563 /* Build a GIMPLE_ASM statement.
564
565 STRING is the assembly code.
566 NINPUT is the number of register inputs.
567 NOUTPUT is the number of register outputs.
568 NCLOBBERS is the number of clobbered registers.
569 INPUTS is a vector of the input register parameters.
570 OUTPUTS is a vector of the output register parameters.
571 CLOBBERS is a vector of the clobbered register parameters.
572 LABELS is a vector of destination labels. */
573
574 gimple
575 gimple_build_asm_vec (const char *string, vec<tree, va_gc> *inputs,
576 vec<tree, va_gc> *outputs, vec<tree, va_gc> *clobbers,
577 vec<tree, va_gc> *labels)
578 {
579 gimple p;
580 unsigned i;
581
582 p = gimple_build_asm_1 (string,
583 vec_safe_length (inputs),
584 vec_safe_length (outputs),
585 vec_safe_length (clobbers),
586 vec_safe_length (labels));
587
588 for (i = 0; i < vec_safe_length (inputs); i++)
589 gimple_asm_set_input_op (p, i, (*inputs)[i]);
590
591 for (i = 0; i < vec_safe_length (outputs); i++)
592 gimple_asm_set_output_op (p, i, (*outputs)[i]);
593
594 for (i = 0; i < vec_safe_length (clobbers); i++)
595 gimple_asm_set_clobber_op (p, i, (*clobbers)[i]);
596
597 for (i = 0; i < vec_safe_length (labels); i++)
598 gimple_asm_set_label_op (p, i, (*labels)[i]);
599
600 return p;
601 }
602
603 /* Build a GIMPLE_CATCH statement.
604
605 TYPES are the catch types.
606 HANDLER is the exception handler. */
607
608 gimple
609 gimple_build_catch (tree types, gimple_seq handler)
610 {
611 gimple p = gimple_alloc (GIMPLE_CATCH, 0);
612 gimple_catch_set_types (p, types);
613 if (handler)
614 gimple_catch_set_handler (p, handler);
615
616 return p;
617 }
618
619 /* Build a GIMPLE_EH_FILTER statement.
620
621 TYPES are the filter's types.
622 FAILURE is the filter's failure action. */
623
624 gimple
625 gimple_build_eh_filter (tree types, gimple_seq failure)
626 {
627 gimple p = gimple_alloc (GIMPLE_EH_FILTER, 0);
628 gimple_eh_filter_set_types (p, types);
629 if (failure)
630 gimple_eh_filter_set_failure (p, failure);
631
632 return p;
633 }
634
635 /* Build a GIMPLE_EH_MUST_NOT_THROW statement. */
636
637 gimple
638 gimple_build_eh_must_not_throw (tree decl)
639 {
640 gimple p = gimple_alloc (GIMPLE_EH_MUST_NOT_THROW, 0);
641
642 gcc_assert (TREE_CODE (decl) == FUNCTION_DECL);
643 gcc_assert (flags_from_decl_or_type (decl) & ECF_NORETURN);
644 gimple_eh_must_not_throw_set_fndecl (p, decl);
645
646 return p;
647 }
648
649 /* Build a GIMPLE_EH_ELSE statement. */
650
651 gimple
652 gimple_build_eh_else (gimple_seq n_body, gimple_seq e_body)
653 {
654 gimple p = gimple_alloc (GIMPLE_EH_ELSE, 0);
655 gimple_eh_else_set_n_body (p, n_body);
656 gimple_eh_else_set_e_body (p, e_body);
657 return p;
658 }
659
660 /* Build a GIMPLE_TRY statement.
661
662 EVAL is the expression to evaluate.
663 CLEANUP is the cleanup expression.
664 KIND is either GIMPLE_TRY_CATCH or GIMPLE_TRY_FINALLY depending on
665 whether this is a try/catch or a try/finally respectively. */
666
667 gimple_statement_try *
668 gimple_build_try (gimple_seq eval, gimple_seq cleanup,
669 enum gimple_try_flags kind)
670 {
671 gimple_statement_try *p;
672
673 gcc_assert (kind == GIMPLE_TRY_CATCH || kind == GIMPLE_TRY_FINALLY);
674 p = as_a <gimple_statement_try *> (gimple_alloc (GIMPLE_TRY, 0));
675 gimple_set_subcode (p, kind);
676 if (eval)
677 gimple_try_set_eval (p, eval);
678 if (cleanup)
679 gimple_try_set_cleanup (p, cleanup);
680
681 return p;
682 }
683
684 /* Construct a GIMPLE_WITH_CLEANUP_EXPR statement.
685
686 CLEANUP is the cleanup expression. */
687
688 gimple
689 gimple_build_wce (gimple_seq cleanup)
690 {
691 gimple p = gimple_alloc (GIMPLE_WITH_CLEANUP_EXPR, 0);
692 if (cleanup)
693 gimple_wce_set_cleanup (p, cleanup);
694
695 return p;
696 }
697
698
699 /* Build a GIMPLE_RESX statement. */
700
701 gimple
702 gimple_build_resx (int region)
703 {
704 gimple_statement_resx *p =
705 as_a <gimple_statement_resx *> (
706 gimple_build_with_ops (GIMPLE_RESX, ERROR_MARK, 0));
707 p->region = region;
708 return p;
709 }
710
711
712 /* The helper for constructing a gimple switch statement.
713 INDEX is the switch's index.
714 NLABELS is the number of labels in the switch excluding the default.
715 DEFAULT_LABEL is the default label for the switch statement. */
716
717 gimple
718 gimple_build_switch_nlabels (unsigned nlabels, tree index, tree default_label)
719 {
720 /* nlabels + 1 default label + 1 index. */
721 gcc_checking_assert (default_label);
722 gimple p = gimple_build_with_ops (GIMPLE_SWITCH, ERROR_MARK,
723 1 + 1 + nlabels);
724 gimple_switch_set_index (p, index);
725 gimple_switch_set_default_label (p, default_label);
726 return p;
727 }
728
729 /* Build a GIMPLE_SWITCH statement.
730
731 INDEX is the switch's index.
732 DEFAULT_LABEL is the default label
733 ARGS is a vector of labels excluding the default. */
734
735 gimple
736 gimple_build_switch (tree index, tree default_label, vec<tree> args)
737 {
738 unsigned i, nlabels = args.length ();
739
740 gimple p = gimple_build_switch_nlabels (nlabels, index, default_label);
741
742 /* Copy the labels from the vector to the switch statement. */
743 for (i = 0; i < nlabels; i++)
744 gimple_switch_set_label (p, i + 1, args[i]);
745
746 return p;
747 }
748
749 /* Build a GIMPLE_EH_DISPATCH statement. */
750
751 gimple
752 gimple_build_eh_dispatch (int region)
753 {
754 gimple_statement_eh_dispatch *p =
755 as_a <gimple_statement_eh_dispatch *> (
756 gimple_build_with_ops (GIMPLE_EH_DISPATCH, ERROR_MARK, 0));
757 p->region = region;
758 return p;
759 }
760
761 /* Build a new GIMPLE_DEBUG_BIND statement.
762
763 VAR is bound to VALUE; block and location are taken from STMT. */
764
765 gimple
766 gimple_build_debug_bind_stat (tree var, tree value, gimple stmt MEM_STAT_DECL)
767 {
768 gimple p = gimple_build_with_ops_stat (GIMPLE_DEBUG,
769 (unsigned)GIMPLE_DEBUG_BIND, 2
770 PASS_MEM_STAT);
771
772 gimple_debug_bind_set_var (p, var);
773 gimple_debug_bind_set_value (p, value);
774 if (stmt)
775 gimple_set_location (p, gimple_location (stmt));
776
777 return p;
778 }
779
780
781 /* Build a new GIMPLE_DEBUG_SOURCE_BIND statement.
782
783 VAR is bound to VALUE; block and location are taken from STMT. */
784
785 gimple
786 gimple_build_debug_source_bind_stat (tree var, tree value,
787 gimple stmt MEM_STAT_DECL)
788 {
789 gimple p = gimple_build_with_ops_stat (GIMPLE_DEBUG,
790 (unsigned)GIMPLE_DEBUG_SOURCE_BIND, 2
791 PASS_MEM_STAT);
792
793 gimple_debug_source_bind_set_var (p, var);
794 gimple_debug_source_bind_set_value (p, value);
795 if (stmt)
796 gimple_set_location (p, gimple_location (stmt));
797
798 return p;
799 }
800
801
802 /* Build a GIMPLE_OMP_CRITICAL statement.
803
804 BODY is the sequence of statements for which only one thread can execute.
805 NAME is optional identifier for this critical block. */
806
807 gimple
808 gimple_build_omp_critical (gimple_seq body, tree name)
809 {
810 gimple p = gimple_alloc (GIMPLE_OMP_CRITICAL, 0);
811 gimple_omp_critical_set_name (p, name);
812 if (body)
813 gimple_omp_set_body (p, body);
814
815 return p;
816 }
817
818 /* Build a GIMPLE_OMP_FOR statement.
819
820 BODY is sequence of statements inside the for loop.
821 KIND is the `for' variant.
822 CLAUSES, are any of the OMP loop construct's clauses: private, firstprivate,
823 lastprivate, reductions, ordered, schedule, and nowait.
824 COLLAPSE is the collapse count.
825 PRE_BODY is the sequence of statements that are loop invariant. */
826
827 gimple
828 gimple_build_omp_for (gimple_seq body, int kind, tree clauses, size_t collapse,
829 gimple_seq pre_body)
830 {
831 gimple_statement_omp_for *p =
832 as_a <gimple_statement_omp_for *> (gimple_alloc (GIMPLE_OMP_FOR, 0));
833 if (body)
834 gimple_omp_set_body (p, body);
835 gimple_omp_for_set_clauses (p, clauses);
836 gimple_omp_for_set_kind (p, kind);
837 p->collapse = collapse;
838 p->iter = ggc_cleared_vec_alloc<gimple_omp_for_iter> (collapse);
839
840 if (pre_body)
841 gimple_omp_for_set_pre_body (p, pre_body);
842
843 return p;
844 }
845
846
847 /* Build a GIMPLE_OMP_PARALLEL statement.
848
849 BODY is sequence of statements which are executed in parallel.
850 CLAUSES, are the OMP parallel construct's clauses.
851 CHILD_FN is the function created for the parallel threads to execute.
852 DATA_ARG are the shared data argument(s). */
853
854 gimple
855 gimple_build_omp_parallel (gimple_seq body, tree clauses, tree child_fn,
856 tree data_arg)
857 {
858 gimple p = gimple_alloc (GIMPLE_OMP_PARALLEL, 0);
859 if (body)
860 gimple_omp_set_body (p, body);
861 gimple_omp_parallel_set_clauses (p, clauses);
862 gimple_omp_parallel_set_child_fn (p, child_fn);
863 gimple_omp_parallel_set_data_arg (p, data_arg);
864
865 return p;
866 }
867
868
869 /* Build a GIMPLE_OMP_TASK statement.
870
871 BODY is sequence of statements which are executed by the explicit task.
872 CLAUSES, are the OMP parallel construct's clauses.
873 CHILD_FN is the function created for the parallel threads to execute.
874 DATA_ARG are the shared data argument(s).
875 COPY_FN is the optional function for firstprivate initialization.
876 ARG_SIZE and ARG_ALIGN are size and alignment of the data block. */
877
878 gimple
879 gimple_build_omp_task (gimple_seq body, tree clauses, tree child_fn,
880 tree data_arg, tree copy_fn, tree arg_size,
881 tree arg_align)
882 {
883 gimple p = gimple_alloc (GIMPLE_OMP_TASK, 0);
884 if (body)
885 gimple_omp_set_body (p, body);
886 gimple_omp_task_set_clauses (p, clauses);
887 gimple_omp_task_set_child_fn (p, child_fn);
888 gimple_omp_task_set_data_arg (p, data_arg);
889 gimple_omp_task_set_copy_fn (p, copy_fn);
890 gimple_omp_task_set_arg_size (p, arg_size);
891 gimple_omp_task_set_arg_align (p, arg_align);
892
893 return p;
894 }
895
896
897 /* Build a GIMPLE_OMP_SECTION statement for a sections statement.
898
899 BODY is the sequence of statements in the section. */
900
901 gimple
902 gimple_build_omp_section (gimple_seq body)
903 {
904 gimple p = gimple_alloc (GIMPLE_OMP_SECTION, 0);
905 if (body)
906 gimple_omp_set_body (p, body);
907
908 return p;
909 }
910
911
912 /* Build a GIMPLE_OMP_MASTER statement.
913
914 BODY is the sequence of statements to be executed by just the master. */
915
916 gimple
917 gimple_build_omp_master (gimple_seq body)
918 {
919 gimple p = gimple_alloc (GIMPLE_OMP_MASTER, 0);
920 if (body)
921 gimple_omp_set_body (p, body);
922
923 return p;
924 }
925
926
927 /* Build a GIMPLE_OMP_TASKGROUP statement.
928
929 BODY is the sequence of statements to be executed by the taskgroup
930 construct. */
931
932 gimple
933 gimple_build_omp_taskgroup (gimple_seq body)
934 {
935 gimple p = gimple_alloc (GIMPLE_OMP_TASKGROUP, 0);
936 if (body)
937 gimple_omp_set_body (p, body);
938
939 return p;
940 }
941
942
943 /* Build a GIMPLE_OMP_CONTINUE statement.
944
945 CONTROL_DEF is the definition of the control variable.
946 CONTROL_USE is the use of the control variable. */
947
948 gimple
949 gimple_build_omp_continue (tree control_def, tree control_use)
950 {
951 gimple p = gimple_alloc (GIMPLE_OMP_CONTINUE, 0);
952 gimple_omp_continue_set_control_def (p, control_def);
953 gimple_omp_continue_set_control_use (p, control_use);
954 return p;
955 }
956
957 /* Build a GIMPLE_OMP_ORDERED statement.
958
959 BODY is the sequence of statements inside a loop that will executed in
960 sequence. */
961
962 gimple
963 gimple_build_omp_ordered (gimple_seq body)
964 {
965 gimple p = gimple_alloc (GIMPLE_OMP_ORDERED, 0);
966 if (body)
967 gimple_omp_set_body (p, body);
968
969 return p;
970 }
971
972
973 /* Build a GIMPLE_OMP_RETURN statement.
974 WAIT_P is true if this is a non-waiting return. */
975
976 gimple
977 gimple_build_omp_return (bool wait_p)
978 {
979 gimple p = gimple_alloc (GIMPLE_OMP_RETURN, 0);
980 if (wait_p)
981 gimple_omp_return_set_nowait (p);
982
983 return p;
984 }
985
986
987 /* Build a GIMPLE_OMP_SECTIONS statement.
988
989 BODY is a sequence of section statements.
990 CLAUSES are any of the OMP sections contsruct's clauses: private,
991 firstprivate, lastprivate, reduction, and nowait. */
992
993 gimple
994 gimple_build_omp_sections (gimple_seq body, tree clauses)
995 {
996 gimple p = gimple_alloc (GIMPLE_OMP_SECTIONS, 0);
997 if (body)
998 gimple_omp_set_body (p, body);
999 gimple_omp_sections_set_clauses (p, clauses);
1000
1001 return p;
1002 }
1003
1004
1005 /* Build a GIMPLE_OMP_SECTIONS_SWITCH. */
1006
1007 gimple
1008 gimple_build_omp_sections_switch (void)
1009 {
1010 return gimple_alloc (GIMPLE_OMP_SECTIONS_SWITCH, 0);
1011 }
1012
1013
1014 /* Build a GIMPLE_OMP_SINGLE statement.
1015
1016 BODY is the sequence of statements that will be executed once.
1017 CLAUSES are any of the OMP single construct's clauses: private, firstprivate,
1018 copyprivate, nowait. */
1019
1020 gimple
1021 gimple_build_omp_single (gimple_seq body, tree clauses)
1022 {
1023 gimple p = gimple_alloc (GIMPLE_OMP_SINGLE, 0);
1024 if (body)
1025 gimple_omp_set_body (p, body);
1026 gimple_omp_single_set_clauses (p, clauses);
1027
1028 return p;
1029 }
1030
1031
1032 /* Build a GIMPLE_OMP_TARGET statement.
1033
1034 BODY is the sequence of statements that will be executed.
1035 CLAUSES are any of the OMP target construct's clauses. */
1036
1037 gimple
1038 gimple_build_omp_target (gimple_seq body, int kind, tree clauses)
1039 {
1040 gimple p = gimple_alloc (GIMPLE_OMP_TARGET, 0);
1041 if (body)
1042 gimple_omp_set_body (p, body);
1043 gimple_omp_target_set_clauses (p, clauses);
1044 gimple_omp_target_set_kind (p, kind);
1045
1046 return p;
1047 }
1048
1049
1050 /* Build a GIMPLE_OMP_TEAMS statement.
1051
1052 BODY is the sequence of statements that will be executed.
1053 CLAUSES are any of the OMP teams construct's clauses. */
1054
1055 gimple
1056 gimple_build_omp_teams (gimple_seq body, tree clauses)
1057 {
1058 gimple p = gimple_alloc (GIMPLE_OMP_TEAMS, 0);
1059 if (body)
1060 gimple_omp_set_body (p, body);
1061 gimple_omp_teams_set_clauses (p, clauses);
1062
1063 return p;
1064 }
1065
1066
1067 /* Build a GIMPLE_OMP_ATOMIC_LOAD statement. */
1068
1069 gimple
1070 gimple_build_omp_atomic_load (tree lhs, tree rhs)
1071 {
1072 gimple p = gimple_alloc (GIMPLE_OMP_ATOMIC_LOAD, 0);
1073 gimple_omp_atomic_load_set_lhs (p, lhs);
1074 gimple_omp_atomic_load_set_rhs (p, rhs);
1075 return p;
1076 }
1077
1078 /* Build a GIMPLE_OMP_ATOMIC_STORE statement.
1079
1080 VAL is the value we are storing. */
1081
1082 gimple
1083 gimple_build_omp_atomic_store (tree val)
1084 {
1085 gimple p = gimple_alloc (GIMPLE_OMP_ATOMIC_STORE, 0);
1086 gimple_omp_atomic_store_set_val (p, val);
1087 return p;
1088 }
1089
1090 /* Build a GIMPLE_TRANSACTION statement. */
1091
1092 gimple
1093 gimple_build_transaction (gimple_seq body, tree label)
1094 {
1095 gimple p = gimple_alloc (GIMPLE_TRANSACTION, 0);
1096 gimple_transaction_set_body (p, body);
1097 gimple_transaction_set_label (p, label);
1098 return p;
1099 }
1100
1101 /* Build a GIMPLE_PREDICT statement. PREDICT is one of the predictors from
1102 predict.def, OUTCOME is NOT_TAKEN or TAKEN. */
1103
1104 gimple
1105 gimple_build_predict (enum br_predictor predictor, enum prediction outcome)
1106 {
1107 gimple p = gimple_alloc (GIMPLE_PREDICT, 0);
1108 /* Ensure all the predictors fit into the lower bits of the subcode. */
1109 gcc_assert ((int) END_PREDICTORS <= GF_PREDICT_TAKEN);
1110 gimple_predict_set_predictor (p, predictor);
1111 gimple_predict_set_outcome (p, outcome);
1112 return p;
1113 }
1114
1115 #if defined ENABLE_GIMPLE_CHECKING
1116 /* Complain of a gimple type mismatch and die. */
1117
1118 void
1119 gimple_check_failed (const_gimple gs, const char *file, int line,
1120 const char *function, enum gimple_code code,
1121 enum tree_code subcode)
1122 {
1123 internal_error ("gimple check: expected %s(%s), have %s(%s) in %s, at %s:%d",
1124 gimple_code_name[code],
1125 get_tree_code_name (subcode),
1126 gimple_code_name[gimple_code (gs)],
1127 gs->subcode > 0
1128 ? get_tree_code_name ((enum tree_code) gs->subcode)
1129 : "",
1130 function, trim_filename (file), line);
1131 }
1132 #endif /* ENABLE_GIMPLE_CHECKING */
1133
1134
1135 /* Link gimple statement GS to the end of the sequence *SEQ_P. If
1136 *SEQ_P is NULL, a new sequence is allocated. */
1137
1138 void
1139 gimple_seq_add_stmt (gimple_seq *seq_p, gimple gs)
1140 {
1141 gimple_stmt_iterator si;
1142 if (gs == NULL)
1143 return;
1144
1145 si = gsi_last (*seq_p);
1146 gsi_insert_after (&si, gs, GSI_NEW_STMT);
1147 }
1148
1149 /* Link gimple statement GS to the end of the sequence *SEQ_P. If
1150 *SEQ_P is NULL, a new sequence is allocated. This function is
1151 similar to gimple_seq_add_stmt, but does not scan the operands.
1152 During gimplification, we need to manipulate statement sequences
1153 before the def/use vectors have been constructed. */
1154
1155 void
1156 gimple_seq_add_stmt_without_update (gimple_seq *seq_p, gimple gs)
1157 {
1158 gimple_stmt_iterator si;
1159
1160 if (gs == NULL)
1161 return;
1162
1163 si = gsi_last (*seq_p);
1164 gsi_insert_after_without_update (&si, gs, GSI_NEW_STMT);
1165 }
1166
1167 /* Append sequence SRC to the end of sequence *DST_P. If *DST_P is
1168 NULL, a new sequence is allocated. */
1169
1170 void
1171 gimple_seq_add_seq (gimple_seq *dst_p, gimple_seq src)
1172 {
1173 gimple_stmt_iterator si;
1174 if (src == NULL)
1175 return;
1176
1177 si = gsi_last (*dst_p);
1178 gsi_insert_seq_after (&si, src, GSI_NEW_STMT);
1179 }
1180
1181 /* Append sequence SRC to the end of sequence *DST_P. If *DST_P is
1182 NULL, a new sequence is allocated. This function is
1183 similar to gimple_seq_add_seq, but does not scan the operands. */
1184
1185 void
1186 gimple_seq_add_seq_without_update (gimple_seq *dst_p, gimple_seq src)
1187 {
1188 gimple_stmt_iterator si;
1189 if (src == NULL)
1190 return;
1191
1192 si = gsi_last (*dst_p);
1193 gsi_insert_seq_after_without_update (&si, src, GSI_NEW_STMT);
1194 }
1195
1196 /* Determine whether to assign a location to the statement GS. */
1197
1198 static bool
1199 should_carry_location_p (gimple gs)
1200 {
1201 /* Don't emit a line note for a label. We particularly don't want to
1202 emit one for the break label, since it doesn't actually correspond
1203 to the beginning of the loop/switch. */
1204 if (gimple_code (gs) == GIMPLE_LABEL)
1205 return false;
1206
1207 return true;
1208 }
1209
1210 /* Set the location for gimple statement GS to LOCATION. */
1211
1212 static void
1213 annotate_one_with_location (gimple gs, location_t location)
1214 {
1215 if (!gimple_has_location (gs)
1216 && !gimple_do_not_emit_location_p (gs)
1217 && should_carry_location_p (gs))
1218 gimple_set_location (gs, location);
1219 }
1220
1221 /* Set LOCATION for all the statements after iterator GSI in sequence
1222 SEQ. If GSI is pointing to the end of the sequence, start with the
1223 first statement in SEQ. */
1224
1225 void
1226 annotate_all_with_location_after (gimple_seq seq, gimple_stmt_iterator gsi,
1227 location_t location)
1228 {
1229 if (gsi_end_p (gsi))
1230 gsi = gsi_start (seq);
1231 else
1232 gsi_next (&gsi);
1233
1234 for (; !gsi_end_p (gsi); gsi_next (&gsi))
1235 annotate_one_with_location (gsi_stmt (gsi), location);
1236 }
1237
1238 /* Set the location for all the statements in a sequence STMT_P to LOCATION. */
1239
1240 void
1241 annotate_all_with_location (gimple_seq stmt_p, location_t location)
1242 {
1243 gimple_stmt_iterator i;
1244
1245 if (gimple_seq_empty_p (stmt_p))
1246 return;
1247
1248 for (i = gsi_start (stmt_p); !gsi_end_p (i); gsi_next (&i))
1249 {
1250 gimple gs = gsi_stmt (i);
1251 annotate_one_with_location (gs, location);
1252 }
1253 }
1254
1255 /* Helper function of empty_body_p. Return true if STMT is an empty
1256 statement. */
1257
1258 static bool
1259 empty_stmt_p (gimple stmt)
1260 {
1261 if (gimple_code (stmt) == GIMPLE_NOP)
1262 return true;
1263 if (gimple_code (stmt) == GIMPLE_BIND)
1264 return empty_body_p (gimple_bind_body (stmt));
1265 return false;
1266 }
1267
1268
1269 /* Return true if BODY contains nothing but empty statements. */
1270
1271 bool
1272 empty_body_p (gimple_seq body)
1273 {
1274 gimple_stmt_iterator i;
1275
1276 if (gimple_seq_empty_p (body))
1277 return true;
1278 for (i = gsi_start (body); !gsi_end_p (i); gsi_next (&i))
1279 if (!empty_stmt_p (gsi_stmt (i))
1280 && !is_gimple_debug (gsi_stmt (i)))
1281 return false;
1282
1283 return true;
1284 }
1285
1286
1287 /* Perform a deep copy of sequence SRC and return the result. */
1288
1289 gimple_seq
1290 gimple_seq_copy (gimple_seq src)
1291 {
1292 gimple_stmt_iterator gsi;
1293 gimple_seq new_seq = NULL;
1294 gimple stmt;
1295
1296 for (gsi = gsi_start (src); !gsi_end_p (gsi); gsi_next (&gsi))
1297 {
1298 stmt = gimple_copy (gsi_stmt (gsi));
1299 gimple_seq_add_stmt (&new_seq, stmt);
1300 }
1301
1302 return new_seq;
1303 }
1304
1305
1306
1307 /* Return true if calls C1 and C2 are known to go to the same function. */
1308
1309 bool
1310 gimple_call_same_target_p (const_gimple c1, const_gimple c2)
1311 {
1312 if (gimple_call_internal_p (c1))
1313 return (gimple_call_internal_p (c2)
1314 && gimple_call_internal_fn (c1) == gimple_call_internal_fn (c2));
1315 else
1316 return (gimple_call_fn (c1) == gimple_call_fn (c2)
1317 || (gimple_call_fndecl (c1)
1318 && gimple_call_fndecl (c1) == gimple_call_fndecl (c2)));
1319 }
1320
1321 /* Detect flags from a GIMPLE_CALL. This is just like
1322 call_expr_flags, but for gimple tuples. */
1323
1324 int
1325 gimple_call_flags (const_gimple stmt)
1326 {
1327 int flags;
1328 tree decl = gimple_call_fndecl (stmt);
1329
1330 if (decl)
1331 flags = flags_from_decl_or_type (decl);
1332 else if (gimple_call_internal_p (stmt))
1333 flags = internal_fn_flags (gimple_call_internal_fn (stmt));
1334 else
1335 flags = flags_from_decl_or_type (gimple_call_fntype (stmt));
1336
1337 if (stmt->subcode & GF_CALL_NOTHROW)
1338 flags |= ECF_NOTHROW;
1339
1340 return flags;
1341 }
1342
1343 /* Return the "fn spec" string for call STMT. */
1344
1345 static const_tree
1346 gimple_call_fnspec (const_gimple stmt)
1347 {
1348 tree type, attr;
1349
1350 if (gimple_call_internal_p (stmt))
1351 return internal_fn_fnspec (gimple_call_internal_fn (stmt));
1352
1353 type = gimple_call_fntype (stmt);
1354 if (!type)
1355 return NULL_TREE;
1356
1357 attr = lookup_attribute ("fn spec", TYPE_ATTRIBUTES (type));
1358 if (!attr)
1359 return NULL_TREE;
1360
1361 return TREE_VALUE (TREE_VALUE (attr));
1362 }
1363
1364 /* Detects argument flags for argument number ARG on call STMT. */
1365
1366 int
1367 gimple_call_arg_flags (const_gimple stmt, unsigned arg)
1368 {
1369 const_tree attr = gimple_call_fnspec (stmt);
1370
1371 if (!attr || 1 + arg >= (unsigned) TREE_STRING_LENGTH (attr))
1372 return 0;
1373
1374 switch (TREE_STRING_POINTER (attr)[1 + arg])
1375 {
1376 case 'x':
1377 case 'X':
1378 return EAF_UNUSED;
1379
1380 case 'R':
1381 return EAF_DIRECT | EAF_NOCLOBBER | EAF_NOESCAPE;
1382
1383 case 'r':
1384 return EAF_NOCLOBBER | EAF_NOESCAPE;
1385
1386 case 'W':
1387 return EAF_DIRECT | EAF_NOESCAPE;
1388
1389 case 'w':
1390 return EAF_NOESCAPE;
1391
1392 case '.':
1393 default:
1394 return 0;
1395 }
1396 }
1397
1398 /* Detects return flags for the call STMT. */
1399
1400 int
1401 gimple_call_return_flags (const_gimple stmt)
1402 {
1403 const_tree attr;
1404
1405 if (gimple_call_flags (stmt) & ECF_MALLOC)
1406 return ERF_NOALIAS;
1407
1408 attr = gimple_call_fnspec (stmt);
1409 if (!attr || TREE_STRING_LENGTH (attr) < 1)
1410 return 0;
1411
1412 switch (TREE_STRING_POINTER (attr)[0])
1413 {
1414 case '1':
1415 case '2':
1416 case '3':
1417 case '4':
1418 return ERF_RETURNS_ARG | (TREE_STRING_POINTER (attr)[0] - '1');
1419
1420 case 'm':
1421 return ERF_NOALIAS;
1422
1423 case '.':
1424 default:
1425 return 0;
1426 }
1427 }
1428
1429
1430 /* Return true if GS is a copy assignment. */
1431
1432 bool
1433 gimple_assign_copy_p (gimple gs)
1434 {
1435 return (gimple_assign_single_p (gs)
1436 && is_gimple_val (gimple_op (gs, 1)));
1437 }
1438
1439
1440 /* Return true if GS is a SSA_NAME copy assignment. */
1441
1442 bool
1443 gimple_assign_ssa_name_copy_p (gimple gs)
1444 {
1445 return (gimple_assign_single_p (gs)
1446 && TREE_CODE (gimple_assign_lhs (gs)) == SSA_NAME
1447 && TREE_CODE (gimple_assign_rhs1 (gs)) == SSA_NAME);
1448 }
1449
1450
1451 /* Return true if GS is an assignment with a unary RHS, but the
1452 operator has no effect on the assigned value. The logic is adapted
1453 from STRIP_NOPS. This predicate is intended to be used in tuplifying
1454 instances in which STRIP_NOPS was previously applied to the RHS of
1455 an assignment.
1456
1457 NOTE: In the use cases that led to the creation of this function
1458 and of gimple_assign_single_p, it is typical to test for either
1459 condition and to proceed in the same manner. In each case, the
1460 assigned value is represented by the single RHS operand of the
1461 assignment. I suspect there may be cases where gimple_assign_copy_p,
1462 gimple_assign_single_p, or equivalent logic is used where a similar
1463 treatment of unary NOPs is appropriate. */
1464
1465 bool
1466 gimple_assign_unary_nop_p (gimple gs)
1467 {
1468 return (is_gimple_assign (gs)
1469 && (CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (gs))
1470 || gimple_assign_rhs_code (gs) == NON_LVALUE_EXPR)
1471 && gimple_assign_rhs1 (gs) != error_mark_node
1472 && (TYPE_MODE (TREE_TYPE (gimple_assign_lhs (gs)))
1473 == TYPE_MODE (TREE_TYPE (gimple_assign_rhs1 (gs)))));
1474 }
1475
1476 /* Set BB to be the basic block holding G. */
1477
1478 void
1479 gimple_set_bb (gimple stmt, basic_block bb)
1480 {
1481 stmt->bb = bb;
1482
1483 if (gimple_code (stmt) != GIMPLE_LABEL)
1484 return;
1485
1486 /* If the statement is a label, add the label to block-to-labels map
1487 so that we can speed up edge creation for GIMPLE_GOTOs. */
1488 if (cfun->cfg)
1489 {
1490 tree t;
1491 int uid;
1492
1493 t = gimple_label_label (stmt);
1494 uid = LABEL_DECL_UID (t);
1495 if (uid == -1)
1496 {
1497 unsigned old_len =
1498 vec_safe_length (label_to_block_map_for_fn (cfun));
1499 LABEL_DECL_UID (t) = uid = cfun->cfg->last_label_uid++;
1500 if (old_len <= (unsigned) uid)
1501 {
1502 unsigned new_len = 3 * uid / 2 + 1;
1503
1504 vec_safe_grow_cleared (label_to_block_map_for_fn (cfun),
1505 new_len);
1506 }
1507 }
1508
1509 (*label_to_block_map_for_fn (cfun))[uid] = bb;
1510 }
1511 }
1512
1513
1514 /* Modify the RHS of the assignment pointed-to by GSI using the
1515 operands in the expression tree EXPR.
1516
1517 NOTE: The statement pointed-to by GSI may be reallocated if it
1518 did not have enough operand slots.
1519
1520 This function is useful to convert an existing tree expression into
1521 the flat representation used for the RHS of a GIMPLE assignment.
1522 It will reallocate memory as needed to expand or shrink the number
1523 of operand slots needed to represent EXPR.
1524
1525 NOTE: If you find yourself building a tree and then calling this
1526 function, you are most certainly doing it the slow way. It is much
1527 better to build a new assignment or to use the function
1528 gimple_assign_set_rhs_with_ops, which does not require an
1529 expression tree to be built. */
1530
1531 void
1532 gimple_assign_set_rhs_from_tree (gimple_stmt_iterator *gsi, tree expr)
1533 {
1534 enum tree_code subcode;
1535 tree op1, op2, op3;
1536
1537 extract_ops_from_tree_1 (expr, &subcode, &op1, &op2, &op3);
1538 gimple_assign_set_rhs_with_ops_1 (gsi, subcode, op1, op2, op3);
1539 }
1540
1541
1542 /* Set the RHS of assignment statement pointed-to by GSI to CODE with
1543 operands OP1, OP2 and OP3.
1544
1545 NOTE: The statement pointed-to by GSI may be reallocated if it
1546 did not have enough operand slots. */
1547
1548 void
1549 gimple_assign_set_rhs_with_ops_1 (gimple_stmt_iterator *gsi, enum tree_code code,
1550 tree op1, tree op2, tree op3)
1551 {
1552 unsigned new_rhs_ops = get_gimple_rhs_num_ops (code);
1553 gimple stmt = gsi_stmt (*gsi);
1554
1555 /* If the new CODE needs more operands, allocate a new statement. */
1556 if (gimple_num_ops (stmt) < new_rhs_ops + 1)
1557 {
1558 tree lhs = gimple_assign_lhs (stmt);
1559 gimple new_stmt = gimple_alloc (gimple_code (stmt), new_rhs_ops + 1);
1560 memcpy (new_stmt, stmt, gimple_size (gimple_code (stmt)));
1561 gimple_init_singleton (new_stmt);
1562 gsi_replace (gsi, new_stmt, true);
1563 stmt = new_stmt;
1564
1565 /* The LHS needs to be reset as this also changes the SSA name
1566 on the LHS. */
1567 gimple_assign_set_lhs (stmt, lhs);
1568 }
1569
1570 gimple_set_num_ops (stmt, new_rhs_ops + 1);
1571 gimple_set_subcode (stmt, code);
1572 gimple_assign_set_rhs1 (stmt, op1);
1573 if (new_rhs_ops > 1)
1574 gimple_assign_set_rhs2 (stmt, op2);
1575 if (new_rhs_ops > 2)
1576 gimple_assign_set_rhs3 (stmt, op3);
1577 }
1578
1579
1580 /* Return the LHS of a statement that performs an assignment,
1581 either a GIMPLE_ASSIGN or a GIMPLE_CALL. Returns NULL_TREE
1582 for a call to a function that returns no value, or for a
1583 statement other than an assignment or a call. */
1584
1585 tree
1586 gimple_get_lhs (const_gimple stmt)
1587 {
1588 enum gimple_code code = gimple_code (stmt);
1589
1590 if (code == GIMPLE_ASSIGN)
1591 return gimple_assign_lhs (stmt);
1592 else if (code == GIMPLE_CALL)
1593 return gimple_call_lhs (stmt);
1594 else
1595 return NULL_TREE;
1596 }
1597
1598
1599 /* Set the LHS of a statement that performs an assignment,
1600 either a GIMPLE_ASSIGN or a GIMPLE_CALL. */
1601
1602 void
1603 gimple_set_lhs (gimple stmt, tree lhs)
1604 {
1605 enum gimple_code code = gimple_code (stmt);
1606
1607 if (code == GIMPLE_ASSIGN)
1608 gimple_assign_set_lhs (stmt, lhs);
1609 else if (code == GIMPLE_CALL)
1610 gimple_call_set_lhs (stmt, lhs);
1611 else
1612 gcc_unreachable ();
1613 }
1614
1615
1616 /* Return a deep copy of statement STMT. All the operands from STMT
1617 are reallocated and copied using unshare_expr. The DEF, USE, VDEF
1618 and VUSE operand arrays are set to empty in the new copy. The new
1619 copy isn't part of any sequence. */
1620
1621 gimple
1622 gimple_copy (gimple stmt)
1623 {
1624 enum gimple_code code = gimple_code (stmt);
1625 unsigned num_ops = gimple_num_ops (stmt);
1626 gimple copy = gimple_alloc (code, num_ops);
1627 unsigned i;
1628
1629 /* Shallow copy all the fields from STMT. */
1630 memcpy (copy, stmt, gimple_size (code));
1631 gimple_init_singleton (copy);
1632
1633 /* If STMT has sub-statements, deep-copy them as well. */
1634 if (gimple_has_substatements (stmt))
1635 {
1636 gimple_seq new_seq;
1637 tree t;
1638
1639 switch (gimple_code (stmt))
1640 {
1641 case GIMPLE_BIND:
1642 new_seq = gimple_seq_copy (gimple_bind_body (stmt));
1643 gimple_bind_set_body (copy, new_seq);
1644 gimple_bind_set_vars (copy, unshare_expr (gimple_bind_vars (stmt)));
1645 gimple_bind_set_block (copy, gimple_bind_block (stmt));
1646 break;
1647
1648 case GIMPLE_CATCH:
1649 new_seq = gimple_seq_copy (gimple_catch_handler (stmt));
1650 gimple_catch_set_handler (copy, new_seq);
1651 t = unshare_expr (gimple_catch_types (stmt));
1652 gimple_catch_set_types (copy, t);
1653 break;
1654
1655 case GIMPLE_EH_FILTER:
1656 new_seq = gimple_seq_copy (gimple_eh_filter_failure (stmt));
1657 gimple_eh_filter_set_failure (copy, new_seq);
1658 t = unshare_expr (gimple_eh_filter_types (stmt));
1659 gimple_eh_filter_set_types (copy, t);
1660 break;
1661
1662 case GIMPLE_EH_ELSE:
1663 new_seq = gimple_seq_copy (gimple_eh_else_n_body (stmt));
1664 gimple_eh_else_set_n_body (copy, new_seq);
1665 new_seq = gimple_seq_copy (gimple_eh_else_e_body (stmt));
1666 gimple_eh_else_set_e_body (copy, new_seq);
1667 break;
1668
1669 case GIMPLE_TRY:
1670 new_seq = gimple_seq_copy (gimple_try_eval (stmt));
1671 gimple_try_set_eval (copy, new_seq);
1672 new_seq = gimple_seq_copy (gimple_try_cleanup (stmt));
1673 gimple_try_set_cleanup (copy, new_seq);
1674 break;
1675
1676 case GIMPLE_OMP_FOR:
1677 new_seq = gimple_seq_copy (gimple_omp_for_pre_body (stmt));
1678 gimple_omp_for_set_pre_body (copy, new_seq);
1679 t = unshare_expr (gimple_omp_for_clauses (stmt));
1680 gimple_omp_for_set_clauses (copy, t);
1681 {
1682 gimple_statement_omp_for *omp_for_copy =
1683 as_a <gimple_statement_omp_for *> (copy);
1684 omp_for_copy->iter = ggc_vec_alloc<gimple_omp_for_iter>
1685 ( gimple_omp_for_collapse (stmt));
1686 }
1687 for (i = 0; i < gimple_omp_for_collapse (stmt); i++)
1688 {
1689 gimple_omp_for_set_cond (copy, i,
1690 gimple_omp_for_cond (stmt, i));
1691 gimple_omp_for_set_index (copy, i,
1692 gimple_omp_for_index (stmt, i));
1693 t = unshare_expr (gimple_omp_for_initial (stmt, i));
1694 gimple_omp_for_set_initial (copy, i, t);
1695 t = unshare_expr (gimple_omp_for_final (stmt, i));
1696 gimple_omp_for_set_final (copy, i, t);
1697 t = unshare_expr (gimple_omp_for_incr (stmt, i));
1698 gimple_omp_for_set_incr (copy, i, t);
1699 }
1700 goto copy_omp_body;
1701
1702 case GIMPLE_OMP_PARALLEL:
1703 t = unshare_expr (gimple_omp_parallel_clauses (stmt));
1704 gimple_omp_parallel_set_clauses (copy, t);
1705 t = unshare_expr (gimple_omp_parallel_child_fn (stmt));
1706 gimple_omp_parallel_set_child_fn (copy, t);
1707 t = unshare_expr (gimple_omp_parallel_data_arg (stmt));
1708 gimple_omp_parallel_set_data_arg (copy, t);
1709 goto copy_omp_body;
1710
1711 case GIMPLE_OMP_TASK:
1712 t = unshare_expr (gimple_omp_task_clauses (stmt));
1713 gimple_omp_task_set_clauses (copy, t);
1714 t = unshare_expr (gimple_omp_task_child_fn (stmt));
1715 gimple_omp_task_set_child_fn (copy, t);
1716 t = unshare_expr (gimple_omp_task_data_arg (stmt));
1717 gimple_omp_task_set_data_arg (copy, t);
1718 t = unshare_expr (gimple_omp_task_copy_fn (stmt));
1719 gimple_omp_task_set_copy_fn (copy, t);
1720 t = unshare_expr (gimple_omp_task_arg_size (stmt));
1721 gimple_omp_task_set_arg_size (copy, t);
1722 t = unshare_expr (gimple_omp_task_arg_align (stmt));
1723 gimple_omp_task_set_arg_align (copy, t);
1724 goto copy_omp_body;
1725
1726 case GIMPLE_OMP_CRITICAL:
1727 t = unshare_expr (gimple_omp_critical_name (stmt));
1728 gimple_omp_critical_set_name (copy, t);
1729 goto copy_omp_body;
1730
1731 case GIMPLE_OMP_SECTIONS:
1732 t = unshare_expr (gimple_omp_sections_clauses (stmt));
1733 gimple_omp_sections_set_clauses (copy, t);
1734 t = unshare_expr (gimple_omp_sections_control (stmt));
1735 gimple_omp_sections_set_control (copy, t);
1736 /* FALLTHRU */
1737
1738 case GIMPLE_OMP_SINGLE:
1739 case GIMPLE_OMP_TARGET:
1740 case GIMPLE_OMP_TEAMS:
1741 case GIMPLE_OMP_SECTION:
1742 case GIMPLE_OMP_MASTER:
1743 case GIMPLE_OMP_TASKGROUP:
1744 case GIMPLE_OMP_ORDERED:
1745 copy_omp_body:
1746 new_seq = gimple_seq_copy (gimple_omp_body (stmt));
1747 gimple_omp_set_body (copy, new_seq);
1748 break;
1749
1750 case GIMPLE_TRANSACTION:
1751 new_seq = gimple_seq_copy (gimple_transaction_body (stmt));
1752 gimple_transaction_set_body (copy, new_seq);
1753 break;
1754
1755 case GIMPLE_WITH_CLEANUP_EXPR:
1756 new_seq = gimple_seq_copy (gimple_wce_cleanup (stmt));
1757 gimple_wce_set_cleanup (copy, new_seq);
1758 break;
1759
1760 default:
1761 gcc_unreachable ();
1762 }
1763 }
1764
1765 /* Make copy of operands. */
1766 for (i = 0; i < num_ops; i++)
1767 gimple_set_op (copy, i, unshare_expr (gimple_op (stmt, i)));
1768
1769 if (gimple_has_mem_ops (stmt))
1770 {
1771 gimple_set_vdef (copy, gimple_vdef (stmt));
1772 gimple_set_vuse (copy, gimple_vuse (stmt));
1773 }
1774
1775 /* Clear out SSA operand vectors on COPY. */
1776 if (gimple_has_ops (stmt))
1777 {
1778 gimple_set_use_ops (copy, NULL);
1779
1780 /* SSA operands need to be updated. */
1781 gimple_set_modified (copy, true);
1782 }
1783
1784 return copy;
1785 }
1786
1787
1788 /* Return true if statement S has side-effects. We consider a
1789 statement to have side effects if:
1790
1791 - It is a GIMPLE_CALL not marked with ECF_PURE or ECF_CONST.
1792 - Any of its operands are marked TREE_THIS_VOLATILE or TREE_SIDE_EFFECTS. */
1793
1794 bool
1795 gimple_has_side_effects (const_gimple s)
1796 {
1797 if (is_gimple_debug (s))
1798 return false;
1799
1800 /* We don't have to scan the arguments to check for
1801 volatile arguments, though, at present, we still
1802 do a scan to check for TREE_SIDE_EFFECTS. */
1803 if (gimple_has_volatile_ops (s))
1804 return true;
1805
1806 if (gimple_code (s) == GIMPLE_ASM
1807 && gimple_asm_volatile_p (s))
1808 return true;
1809
1810 if (is_gimple_call (s))
1811 {
1812 int flags = gimple_call_flags (s);
1813
1814 /* An infinite loop is considered a side effect. */
1815 if (!(flags & (ECF_CONST | ECF_PURE))
1816 || (flags & ECF_LOOPING_CONST_OR_PURE))
1817 return true;
1818
1819 return false;
1820 }
1821
1822 return false;
1823 }
1824
1825 /* Helper for gimple_could_trap_p and gimple_assign_rhs_could_trap_p.
1826 Return true if S can trap. When INCLUDE_MEM is true, check whether
1827 the memory operations could trap. When INCLUDE_STORES is true and
1828 S is a GIMPLE_ASSIGN, the LHS of the assignment is also checked. */
1829
1830 bool
1831 gimple_could_trap_p_1 (gimple s, bool include_mem, bool include_stores)
1832 {
1833 tree t, div = NULL_TREE;
1834 enum tree_code op;
1835
1836 if (include_mem)
1837 {
1838 unsigned i, start = (is_gimple_assign (s) && !include_stores) ? 1 : 0;
1839
1840 for (i = start; i < gimple_num_ops (s); i++)
1841 if (tree_could_trap_p (gimple_op (s, i)))
1842 return true;
1843 }
1844
1845 switch (gimple_code (s))
1846 {
1847 case GIMPLE_ASM:
1848 return gimple_asm_volatile_p (s);
1849
1850 case GIMPLE_CALL:
1851 t = gimple_call_fndecl (s);
1852 /* Assume that calls to weak functions may trap. */
1853 if (!t || !DECL_P (t) || DECL_WEAK (t))
1854 return true;
1855 return false;
1856
1857 case GIMPLE_ASSIGN:
1858 t = gimple_expr_type (s);
1859 op = gimple_assign_rhs_code (s);
1860 if (get_gimple_rhs_class (op) == GIMPLE_BINARY_RHS)
1861 div = gimple_assign_rhs2 (s);
1862 return (operation_could_trap_p (op, FLOAT_TYPE_P (t),
1863 (INTEGRAL_TYPE_P (t)
1864 && TYPE_OVERFLOW_TRAPS (t)),
1865 div));
1866
1867 default:
1868 break;
1869 }
1870
1871 return false;
1872 }
1873
1874 /* Return true if statement S can trap. */
1875
1876 bool
1877 gimple_could_trap_p (gimple s)
1878 {
1879 return gimple_could_trap_p_1 (s, true, true);
1880 }
1881
1882 /* Return true if RHS of a GIMPLE_ASSIGN S can trap. */
1883
1884 bool
1885 gimple_assign_rhs_could_trap_p (gimple s)
1886 {
1887 gcc_assert (is_gimple_assign (s));
1888 return gimple_could_trap_p_1 (s, true, false);
1889 }
1890
1891
1892 /* Print debugging information for gimple stmts generated. */
1893
1894 void
1895 dump_gimple_statistics (void)
1896 {
1897 int i, total_tuples = 0, total_bytes = 0;
1898
1899 if (! GATHER_STATISTICS)
1900 {
1901 fprintf (stderr, "No gimple statistics\n");
1902 return;
1903 }
1904
1905 fprintf (stderr, "\nGIMPLE statements\n");
1906 fprintf (stderr, "Kind Stmts Bytes\n");
1907 fprintf (stderr, "---------------------------------------\n");
1908 for (i = 0; i < (int) gimple_alloc_kind_all; ++i)
1909 {
1910 fprintf (stderr, "%-20s %7d %10d\n", gimple_alloc_kind_names[i],
1911 gimple_alloc_counts[i], gimple_alloc_sizes[i]);
1912 total_tuples += gimple_alloc_counts[i];
1913 total_bytes += gimple_alloc_sizes[i];
1914 }
1915 fprintf (stderr, "---------------------------------------\n");
1916 fprintf (stderr, "%-20s %7d %10d\n", "Total", total_tuples, total_bytes);
1917 fprintf (stderr, "---------------------------------------\n");
1918 }
1919
1920
1921 /* Return the number of operands needed on the RHS of a GIMPLE
1922 assignment for an expression with tree code CODE. */
1923
1924 unsigned
1925 get_gimple_rhs_num_ops (enum tree_code code)
1926 {
1927 enum gimple_rhs_class rhs_class = get_gimple_rhs_class (code);
1928
1929 if (rhs_class == GIMPLE_UNARY_RHS || rhs_class == GIMPLE_SINGLE_RHS)
1930 return 1;
1931 else if (rhs_class == GIMPLE_BINARY_RHS)
1932 return 2;
1933 else if (rhs_class == GIMPLE_TERNARY_RHS)
1934 return 3;
1935 else
1936 gcc_unreachable ();
1937 }
1938
1939 #define DEFTREECODE(SYM, STRING, TYPE, NARGS) \
1940 (unsigned char) \
1941 ((TYPE) == tcc_unary ? GIMPLE_UNARY_RHS \
1942 : ((TYPE) == tcc_binary \
1943 || (TYPE) == tcc_comparison) ? GIMPLE_BINARY_RHS \
1944 : ((TYPE) == tcc_constant \
1945 || (TYPE) == tcc_declaration \
1946 || (TYPE) == tcc_reference) ? GIMPLE_SINGLE_RHS \
1947 : ((SYM) == TRUTH_AND_EXPR \
1948 || (SYM) == TRUTH_OR_EXPR \
1949 || (SYM) == TRUTH_XOR_EXPR) ? GIMPLE_BINARY_RHS \
1950 : (SYM) == TRUTH_NOT_EXPR ? GIMPLE_UNARY_RHS \
1951 : ((SYM) == COND_EXPR \
1952 || (SYM) == WIDEN_MULT_PLUS_EXPR \
1953 || (SYM) == WIDEN_MULT_MINUS_EXPR \
1954 || (SYM) == DOT_PROD_EXPR \
1955 || (SYM) == SAD_EXPR \
1956 || (SYM) == REALIGN_LOAD_EXPR \
1957 || (SYM) == VEC_COND_EXPR \
1958 || (SYM) == VEC_PERM_EXPR \
1959 || (SYM) == FMA_EXPR) ? GIMPLE_TERNARY_RHS \
1960 : ((SYM) == CONSTRUCTOR \
1961 || (SYM) == OBJ_TYPE_REF \
1962 || (SYM) == ASSERT_EXPR \
1963 || (SYM) == ADDR_EXPR \
1964 || (SYM) == WITH_SIZE_EXPR \
1965 || (SYM) == SSA_NAME) ? GIMPLE_SINGLE_RHS \
1966 : GIMPLE_INVALID_RHS),
1967 #define END_OF_BASE_TREE_CODES (unsigned char) GIMPLE_INVALID_RHS,
1968
1969 const unsigned char gimple_rhs_class_table[] = {
1970 #include "all-tree.def"
1971 };
1972
1973 #undef DEFTREECODE
1974 #undef END_OF_BASE_TREE_CODES
1975
1976 /* Canonicalize a tree T for use in a COND_EXPR as conditional. Returns
1977 a canonicalized tree that is valid for a COND_EXPR or NULL_TREE, if
1978 we failed to create one. */
1979
1980 tree
1981 canonicalize_cond_expr_cond (tree t)
1982 {
1983 /* Strip conversions around boolean operations. */
1984 if (CONVERT_EXPR_P (t)
1985 && (truth_value_p (TREE_CODE (TREE_OPERAND (t, 0)))
1986 || TREE_CODE (TREE_TYPE (TREE_OPERAND (t, 0)))
1987 == BOOLEAN_TYPE))
1988 t = TREE_OPERAND (t, 0);
1989
1990 /* For !x use x == 0. */
1991 if (TREE_CODE (t) == TRUTH_NOT_EXPR)
1992 {
1993 tree top0 = TREE_OPERAND (t, 0);
1994 t = build2 (EQ_EXPR, TREE_TYPE (t),
1995 top0, build_int_cst (TREE_TYPE (top0), 0));
1996 }
1997 /* For cmp ? 1 : 0 use cmp. */
1998 else if (TREE_CODE (t) == COND_EXPR
1999 && COMPARISON_CLASS_P (TREE_OPERAND (t, 0))
2000 && integer_onep (TREE_OPERAND (t, 1))
2001 && integer_zerop (TREE_OPERAND (t, 2)))
2002 {
2003 tree top0 = TREE_OPERAND (t, 0);
2004 t = build2 (TREE_CODE (top0), TREE_TYPE (t),
2005 TREE_OPERAND (top0, 0), TREE_OPERAND (top0, 1));
2006 }
2007 /* For x ^ y use x != y. */
2008 else if (TREE_CODE (t) == BIT_XOR_EXPR)
2009 t = build2 (NE_EXPR, TREE_TYPE (t),
2010 TREE_OPERAND (t, 0), TREE_OPERAND (t, 1));
2011
2012 if (is_gimple_condexpr (t))
2013 return t;
2014
2015 return NULL_TREE;
2016 }
2017
2018 /* Build a GIMPLE_CALL identical to STMT but skipping the arguments in
2019 the positions marked by the set ARGS_TO_SKIP. */
2020
2021 gimple
2022 gimple_call_copy_skip_args (gimple stmt, bitmap args_to_skip)
2023 {
2024 int i;
2025 int nargs = gimple_call_num_args (stmt);
2026 auto_vec<tree> vargs (nargs);
2027 gimple new_stmt;
2028
2029 for (i = 0; i < nargs; i++)
2030 if (!bitmap_bit_p (args_to_skip, i))
2031 vargs.quick_push (gimple_call_arg (stmt, i));
2032
2033 if (gimple_call_internal_p (stmt))
2034 new_stmt = gimple_build_call_internal_vec (gimple_call_internal_fn (stmt),
2035 vargs);
2036 else
2037 new_stmt = gimple_build_call_vec (gimple_call_fn (stmt), vargs);
2038
2039 if (gimple_call_lhs (stmt))
2040 gimple_call_set_lhs (new_stmt, gimple_call_lhs (stmt));
2041
2042 gimple_set_vuse (new_stmt, gimple_vuse (stmt));
2043 gimple_set_vdef (new_stmt, gimple_vdef (stmt));
2044
2045 if (gimple_has_location (stmt))
2046 gimple_set_location (new_stmt, gimple_location (stmt));
2047 gimple_call_copy_flags (new_stmt, stmt);
2048 gimple_call_set_chain (new_stmt, gimple_call_chain (stmt));
2049
2050 gimple_set_modified (new_stmt, true);
2051
2052 return new_stmt;
2053 }
2054
2055
2056
2057 /* Return true if the field decls F1 and F2 are at the same offset.
2058
2059 This is intended to be used on GIMPLE types only. */
2060
2061 bool
2062 gimple_compare_field_offset (tree f1, tree f2)
2063 {
2064 if (DECL_OFFSET_ALIGN (f1) == DECL_OFFSET_ALIGN (f2))
2065 {
2066 tree offset1 = DECL_FIELD_OFFSET (f1);
2067 tree offset2 = DECL_FIELD_OFFSET (f2);
2068 return ((offset1 == offset2
2069 /* Once gimplification is done, self-referential offsets are
2070 instantiated as operand #2 of the COMPONENT_REF built for
2071 each access and reset. Therefore, they are not relevant
2072 anymore and fields are interchangeable provided that they
2073 represent the same access. */
2074 || (TREE_CODE (offset1) == PLACEHOLDER_EXPR
2075 && TREE_CODE (offset2) == PLACEHOLDER_EXPR
2076 && (DECL_SIZE (f1) == DECL_SIZE (f2)
2077 || (TREE_CODE (DECL_SIZE (f1)) == PLACEHOLDER_EXPR
2078 && TREE_CODE (DECL_SIZE (f2)) == PLACEHOLDER_EXPR)
2079 || operand_equal_p (DECL_SIZE (f1), DECL_SIZE (f2), 0))
2080 && DECL_ALIGN (f1) == DECL_ALIGN (f2))
2081 || operand_equal_p (offset1, offset2, 0))
2082 && tree_int_cst_equal (DECL_FIELD_BIT_OFFSET (f1),
2083 DECL_FIELD_BIT_OFFSET (f2)));
2084 }
2085
2086 /* Fortran and C do not always agree on what DECL_OFFSET_ALIGN
2087 should be, so handle differing ones specially by decomposing
2088 the offset into a byte and bit offset manually. */
2089 if (tree_fits_shwi_p (DECL_FIELD_OFFSET (f1))
2090 && tree_fits_shwi_p (DECL_FIELD_OFFSET (f2)))
2091 {
2092 unsigned HOST_WIDE_INT byte_offset1, byte_offset2;
2093 unsigned HOST_WIDE_INT bit_offset1, bit_offset2;
2094 bit_offset1 = TREE_INT_CST_LOW (DECL_FIELD_BIT_OFFSET (f1));
2095 byte_offset1 = (TREE_INT_CST_LOW (DECL_FIELD_OFFSET (f1))
2096 + bit_offset1 / BITS_PER_UNIT);
2097 bit_offset2 = TREE_INT_CST_LOW (DECL_FIELD_BIT_OFFSET (f2));
2098 byte_offset2 = (TREE_INT_CST_LOW (DECL_FIELD_OFFSET (f2))
2099 + bit_offset2 / BITS_PER_UNIT);
2100 if (byte_offset1 != byte_offset2)
2101 return false;
2102 return bit_offset1 % BITS_PER_UNIT == bit_offset2 % BITS_PER_UNIT;
2103 }
2104
2105 return false;
2106 }
2107
2108
2109 /* Return a type the same as TYPE except unsigned or
2110 signed according to UNSIGNEDP. */
2111
2112 static tree
2113 gimple_signed_or_unsigned_type (bool unsignedp, tree type)
2114 {
2115 tree type1;
2116 int i;
2117
2118 type1 = TYPE_MAIN_VARIANT (type);
2119 if (type1 == signed_char_type_node
2120 || type1 == char_type_node
2121 || type1 == unsigned_char_type_node)
2122 return unsignedp ? unsigned_char_type_node : signed_char_type_node;
2123 if (type1 == integer_type_node || type1 == unsigned_type_node)
2124 return unsignedp ? unsigned_type_node : integer_type_node;
2125 if (type1 == short_integer_type_node || type1 == short_unsigned_type_node)
2126 return unsignedp ? short_unsigned_type_node : short_integer_type_node;
2127 if (type1 == long_integer_type_node || type1 == long_unsigned_type_node)
2128 return unsignedp ? long_unsigned_type_node : long_integer_type_node;
2129 if (type1 == long_long_integer_type_node
2130 || type1 == long_long_unsigned_type_node)
2131 return unsignedp
2132 ? long_long_unsigned_type_node
2133 : long_long_integer_type_node;
2134
2135 for (i = 0; i < NUM_INT_N_ENTS; i ++)
2136 if (int_n_enabled_p[i]
2137 && (type1 == int_n_trees[i].unsigned_type
2138 || type1 == int_n_trees[i].signed_type))
2139 return unsignedp
2140 ? int_n_trees[i].unsigned_type
2141 : int_n_trees[i].signed_type;
2142
2143 #if HOST_BITS_PER_WIDE_INT >= 64
2144 if (type1 == intTI_type_node || type1 == unsigned_intTI_type_node)
2145 return unsignedp ? unsigned_intTI_type_node : intTI_type_node;
2146 #endif
2147 if (type1 == intDI_type_node || type1 == unsigned_intDI_type_node)
2148 return unsignedp ? unsigned_intDI_type_node : intDI_type_node;
2149 if (type1 == intSI_type_node || type1 == unsigned_intSI_type_node)
2150 return unsignedp ? unsigned_intSI_type_node : intSI_type_node;
2151 if (type1 == intHI_type_node || type1 == unsigned_intHI_type_node)
2152 return unsignedp ? unsigned_intHI_type_node : intHI_type_node;
2153 if (type1 == intQI_type_node || type1 == unsigned_intQI_type_node)
2154 return unsignedp ? unsigned_intQI_type_node : intQI_type_node;
2155
2156 #define GIMPLE_FIXED_TYPES(NAME) \
2157 if (type1 == short_ ## NAME ## _type_node \
2158 || type1 == unsigned_short_ ## NAME ## _type_node) \
2159 return unsignedp ? unsigned_short_ ## NAME ## _type_node \
2160 : short_ ## NAME ## _type_node; \
2161 if (type1 == NAME ## _type_node \
2162 || type1 == unsigned_ ## NAME ## _type_node) \
2163 return unsignedp ? unsigned_ ## NAME ## _type_node \
2164 : NAME ## _type_node; \
2165 if (type1 == long_ ## NAME ## _type_node \
2166 || type1 == unsigned_long_ ## NAME ## _type_node) \
2167 return unsignedp ? unsigned_long_ ## NAME ## _type_node \
2168 : long_ ## NAME ## _type_node; \
2169 if (type1 == long_long_ ## NAME ## _type_node \
2170 || type1 == unsigned_long_long_ ## NAME ## _type_node) \
2171 return unsignedp ? unsigned_long_long_ ## NAME ## _type_node \
2172 : long_long_ ## NAME ## _type_node;
2173
2174 #define GIMPLE_FIXED_MODE_TYPES(NAME) \
2175 if (type1 == NAME ## _type_node \
2176 || type1 == u ## NAME ## _type_node) \
2177 return unsignedp ? u ## NAME ## _type_node \
2178 : NAME ## _type_node;
2179
2180 #define GIMPLE_FIXED_TYPES_SAT(NAME) \
2181 if (type1 == sat_ ## short_ ## NAME ## _type_node \
2182 || type1 == sat_ ## unsigned_short_ ## NAME ## _type_node) \
2183 return unsignedp ? sat_ ## unsigned_short_ ## NAME ## _type_node \
2184 : sat_ ## short_ ## NAME ## _type_node; \
2185 if (type1 == sat_ ## NAME ## _type_node \
2186 || type1 == sat_ ## unsigned_ ## NAME ## _type_node) \
2187 return unsignedp ? sat_ ## unsigned_ ## NAME ## _type_node \
2188 : sat_ ## NAME ## _type_node; \
2189 if (type1 == sat_ ## long_ ## NAME ## _type_node \
2190 || type1 == sat_ ## unsigned_long_ ## NAME ## _type_node) \
2191 return unsignedp ? sat_ ## unsigned_long_ ## NAME ## _type_node \
2192 : sat_ ## long_ ## NAME ## _type_node; \
2193 if (type1 == sat_ ## long_long_ ## NAME ## _type_node \
2194 || type1 == sat_ ## unsigned_long_long_ ## NAME ## _type_node) \
2195 return unsignedp ? sat_ ## unsigned_long_long_ ## NAME ## _type_node \
2196 : sat_ ## long_long_ ## NAME ## _type_node;
2197
2198 #define GIMPLE_FIXED_MODE_TYPES_SAT(NAME) \
2199 if (type1 == sat_ ## NAME ## _type_node \
2200 || type1 == sat_ ## u ## NAME ## _type_node) \
2201 return unsignedp ? sat_ ## u ## NAME ## _type_node \
2202 : sat_ ## NAME ## _type_node;
2203
2204 GIMPLE_FIXED_TYPES (fract);
2205 GIMPLE_FIXED_TYPES_SAT (fract);
2206 GIMPLE_FIXED_TYPES (accum);
2207 GIMPLE_FIXED_TYPES_SAT (accum);
2208
2209 GIMPLE_FIXED_MODE_TYPES (qq);
2210 GIMPLE_FIXED_MODE_TYPES (hq);
2211 GIMPLE_FIXED_MODE_TYPES (sq);
2212 GIMPLE_FIXED_MODE_TYPES (dq);
2213 GIMPLE_FIXED_MODE_TYPES (tq);
2214 GIMPLE_FIXED_MODE_TYPES_SAT (qq);
2215 GIMPLE_FIXED_MODE_TYPES_SAT (hq);
2216 GIMPLE_FIXED_MODE_TYPES_SAT (sq);
2217 GIMPLE_FIXED_MODE_TYPES_SAT (dq);
2218 GIMPLE_FIXED_MODE_TYPES_SAT (tq);
2219 GIMPLE_FIXED_MODE_TYPES (ha);
2220 GIMPLE_FIXED_MODE_TYPES (sa);
2221 GIMPLE_FIXED_MODE_TYPES (da);
2222 GIMPLE_FIXED_MODE_TYPES (ta);
2223 GIMPLE_FIXED_MODE_TYPES_SAT (ha);
2224 GIMPLE_FIXED_MODE_TYPES_SAT (sa);
2225 GIMPLE_FIXED_MODE_TYPES_SAT (da);
2226 GIMPLE_FIXED_MODE_TYPES_SAT (ta);
2227
2228 /* For ENUMERAL_TYPEs in C++, must check the mode of the types, not
2229 the precision; they have precision set to match their range, but
2230 may use a wider mode to match an ABI. If we change modes, we may
2231 wind up with bad conversions. For INTEGER_TYPEs in C, must check
2232 the precision as well, so as to yield correct results for
2233 bit-field types. C++ does not have these separate bit-field
2234 types, and producing a signed or unsigned variant of an
2235 ENUMERAL_TYPE may cause other problems as well. */
2236 if (!INTEGRAL_TYPE_P (type)
2237 || TYPE_UNSIGNED (type) == unsignedp)
2238 return type;
2239
2240 #define TYPE_OK(node) \
2241 (TYPE_MODE (type) == TYPE_MODE (node) \
2242 && TYPE_PRECISION (type) == TYPE_PRECISION (node))
2243 if (TYPE_OK (signed_char_type_node))
2244 return unsignedp ? unsigned_char_type_node : signed_char_type_node;
2245 if (TYPE_OK (integer_type_node))
2246 return unsignedp ? unsigned_type_node : integer_type_node;
2247 if (TYPE_OK (short_integer_type_node))
2248 return unsignedp ? short_unsigned_type_node : short_integer_type_node;
2249 if (TYPE_OK (long_integer_type_node))
2250 return unsignedp ? long_unsigned_type_node : long_integer_type_node;
2251 if (TYPE_OK (long_long_integer_type_node))
2252 return (unsignedp
2253 ? long_long_unsigned_type_node
2254 : long_long_integer_type_node);
2255
2256 for (i = 0; i < NUM_INT_N_ENTS; i ++)
2257 if (int_n_enabled_p[i]
2258 && TYPE_MODE (type) == int_n_data[i].m
2259 && TYPE_PRECISION (type) == int_n_data[i].bitsize)
2260 return unsignedp
2261 ? int_n_trees[i].unsigned_type
2262 : int_n_trees[i].signed_type;
2263
2264 #if HOST_BITS_PER_WIDE_INT >= 64
2265 if (TYPE_OK (intTI_type_node))
2266 return unsignedp ? unsigned_intTI_type_node : intTI_type_node;
2267 #endif
2268 if (TYPE_OK (intDI_type_node))
2269 return unsignedp ? unsigned_intDI_type_node : intDI_type_node;
2270 if (TYPE_OK (intSI_type_node))
2271 return unsignedp ? unsigned_intSI_type_node : intSI_type_node;
2272 if (TYPE_OK (intHI_type_node))
2273 return unsignedp ? unsigned_intHI_type_node : intHI_type_node;
2274 if (TYPE_OK (intQI_type_node))
2275 return unsignedp ? unsigned_intQI_type_node : intQI_type_node;
2276
2277 #undef GIMPLE_FIXED_TYPES
2278 #undef GIMPLE_FIXED_MODE_TYPES
2279 #undef GIMPLE_FIXED_TYPES_SAT
2280 #undef GIMPLE_FIXED_MODE_TYPES_SAT
2281 #undef TYPE_OK
2282
2283 return build_nonstandard_integer_type (TYPE_PRECISION (type), unsignedp);
2284 }
2285
2286
2287 /* Return an unsigned type the same as TYPE in other respects. */
2288
2289 tree
2290 gimple_unsigned_type (tree type)
2291 {
2292 return gimple_signed_or_unsigned_type (true, type);
2293 }
2294
2295
2296 /* Return a signed type the same as TYPE in other respects. */
2297
2298 tree
2299 gimple_signed_type (tree type)
2300 {
2301 return gimple_signed_or_unsigned_type (false, type);
2302 }
2303
2304
2305 /* Return the typed-based alias set for T, which may be an expression
2306 or a type. Return -1 if we don't do anything special. */
2307
2308 alias_set_type
2309 gimple_get_alias_set (tree t)
2310 {
2311 tree u;
2312
2313 /* Permit type-punning when accessing a union, provided the access
2314 is directly through the union. For example, this code does not
2315 permit taking the address of a union member and then storing
2316 through it. Even the type-punning allowed here is a GCC
2317 extension, albeit a common and useful one; the C standard says
2318 that such accesses have implementation-defined behavior. */
2319 for (u = t;
2320 TREE_CODE (u) == COMPONENT_REF || TREE_CODE (u) == ARRAY_REF;
2321 u = TREE_OPERAND (u, 0))
2322 if (TREE_CODE (u) == COMPONENT_REF
2323 && TREE_CODE (TREE_TYPE (TREE_OPERAND (u, 0))) == UNION_TYPE)
2324 return 0;
2325
2326 /* That's all the expressions we handle specially. */
2327 if (!TYPE_P (t))
2328 return -1;
2329
2330 /* For convenience, follow the C standard when dealing with
2331 character types. Any object may be accessed via an lvalue that
2332 has character type. */
2333 if (t == char_type_node
2334 || t == signed_char_type_node
2335 || t == unsigned_char_type_node)
2336 return 0;
2337
2338 /* Allow aliasing between signed and unsigned variants of the same
2339 type. We treat the signed variant as canonical. */
2340 if (TREE_CODE (t) == INTEGER_TYPE && TYPE_UNSIGNED (t))
2341 {
2342 tree t1 = gimple_signed_type (t);
2343
2344 /* t1 == t can happen for boolean nodes which are always unsigned. */
2345 if (t1 != t)
2346 return get_alias_set (t1);
2347 }
2348
2349 return -1;
2350 }
2351
2352
2353 /* Helper for gimple_ior_addresses_taken_1. */
2354
2355 static bool
2356 gimple_ior_addresses_taken_1 (gimple, tree addr, tree, void *data)
2357 {
2358 bitmap addresses_taken = (bitmap)data;
2359 addr = get_base_address (addr);
2360 if (addr
2361 && DECL_P (addr))
2362 {
2363 bitmap_set_bit (addresses_taken, DECL_UID (addr));
2364 return true;
2365 }
2366 return false;
2367 }
2368
2369 /* Set the bit for the uid of all decls that have their address taken
2370 in STMT in the ADDRESSES_TAKEN bitmap. Returns true if there
2371 were any in this stmt. */
2372
2373 bool
2374 gimple_ior_addresses_taken (bitmap addresses_taken, gimple stmt)
2375 {
2376 return walk_stmt_load_store_addr_ops (stmt, addresses_taken, NULL, NULL,
2377 gimple_ior_addresses_taken_1);
2378 }
2379
2380
2381 /* Return true if TYPE1 and TYPE2 are compatible enough for builtin
2382 processing. */
2383
2384 static bool
2385 validate_type (tree type1, tree type2)
2386 {
2387 if (INTEGRAL_TYPE_P (type1)
2388 && INTEGRAL_TYPE_P (type2))
2389 ;
2390 else if (POINTER_TYPE_P (type1)
2391 && POINTER_TYPE_P (type2))
2392 ;
2393 else if (TREE_CODE (type1)
2394 != TREE_CODE (type2))
2395 return false;
2396 return true;
2397 }
2398
2399 /* Return true when STMTs arguments and return value match those of FNDECL,
2400 a decl of a builtin function. */
2401
2402 bool
2403 gimple_builtin_call_types_compatible_p (const_gimple stmt, tree fndecl)
2404 {
2405 gcc_checking_assert (DECL_BUILT_IN_CLASS (fndecl) != NOT_BUILT_IN);
2406
2407 tree ret = gimple_call_lhs (stmt);
2408 if (ret
2409 && !validate_type (TREE_TYPE (ret), TREE_TYPE (TREE_TYPE (fndecl))))
2410 return false;
2411
2412 tree targs = TYPE_ARG_TYPES (TREE_TYPE (fndecl));
2413 unsigned nargs = gimple_call_num_args (stmt);
2414 for (unsigned i = 0; i < nargs; ++i)
2415 {
2416 /* Variadic args follow. */
2417 if (!targs)
2418 return true;
2419 tree arg = gimple_call_arg (stmt, i);
2420 if (!validate_type (TREE_TYPE (arg), TREE_VALUE (targs)))
2421 return false;
2422 targs = TREE_CHAIN (targs);
2423 }
2424 if (targs && !VOID_TYPE_P (TREE_VALUE (targs)))
2425 return false;
2426 return true;
2427 }
2428
2429 /* Return true when STMT is builtins call. */
2430
2431 bool
2432 gimple_call_builtin_p (const_gimple stmt)
2433 {
2434 tree fndecl;
2435 if (is_gimple_call (stmt)
2436 && (fndecl = gimple_call_fndecl (stmt)) != NULL_TREE
2437 && DECL_BUILT_IN_CLASS (fndecl) != NOT_BUILT_IN)
2438 return gimple_builtin_call_types_compatible_p (stmt, fndecl);
2439 return false;
2440 }
2441
2442 /* Return true when STMT is builtins call to CLASS. */
2443
2444 bool
2445 gimple_call_builtin_p (const_gimple stmt, enum built_in_class klass)
2446 {
2447 tree fndecl;
2448 if (is_gimple_call (stmt)
2449 && (fndecl = gimple_call_fndecl (stmt)) != NULL_TREE
2450 && DECL_BUILT_IN_CLASS (fndecl) == klass)
2451 return gimple_builtin_call_types_compatible_p (stmt, fndecl);
2452 return false;
2453 }
2454
2455 /* Return true when STMT is builtins call to CODE of CLASS. */
2456
2457 bool
2458 gimple_call_builtin_p (const_gimple stmt, enum built_in_function code)
2459 {
2460 tree fndecl;
2461 if (is_gimple_call (stmt)
2462 && (fndecl = gimple_call_fndecl (stmt)) != NULL_TREE
2463 && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL
2464 && DECL_FUNCTION_CODE (fndecl) == code)
2465 return gimple_builtin_call_types_compatible_p (stmt, fndecl);
2466 return false;
2467 }
2468
2469 /* Return true if STMT clobbers memory. STMT is required to be a
2470 GIMPLE_ASM. */
2471
2472 bool
2473 gimple_asm_clobbers_memory_p (const_gimple stmt)
2474 {
2475 unsigned i;
2476
2477 for (i = 0; i < gimple_asm_nclobbers (stmt); i++)
2478 {
2479 tree op = gimple_asm_clobber_op (stmt, i);
2480 if (strcmp (TREE_STRING_POINTER (TREE_VALUE (op)), "memory") == 0)
2481 return true;
2482 }
2483
2484 return false;
2485 }
2486
2487 /* Dump bitmap SET (assumed to contain VAR_DECLs) to FILE. */
2488
2489 void
2490 dump_decl_set (FILE *file, bitmap set)
2491 {
2492 if (set)
2493 {
2494 bitmap_iterator bi;
2495 unsigned i;
2496
2497 fprintf (file, "{ ");
2498
2499 EXECUTE_IF_SET_IN_BITMAP (set, 0, i, bi)
2500 {
2501 fprintf (file, "D.%u", i);
2502 fprintf (file, " ");
2503 }
2504
2505 fprintf (file, "}");
2506 }
2507 else
2508 fprintf (file, "NIL");
2509 }
2510
2511 /* Return true when CALL is a call stmt that definitely doesn't
2512 free any memory or makes it unavailable otherwise. */
2513 bool
2514 nonfreeing_call_p (gimple call)
2515 {
2516 if (gimple_call_builtin_p (call, BUILT_IN_NORMAL)
2517 && gimple_call_flags (call) & ECF_LEAF)
2518 switch (DECL_FUNCTION_CODE (gimple_call_fndecl (call)))
2519 {
2520 /* Just in case these become ECF_LEAF in the future. */
2521 case BUILT_IN_FREE:
2522 case BUILT_IN_TM_FREE:
2523 case BUILT_IN_REALLOC:
2524 case BUILT_IN_STACK_RESTORE:
2525 return false;
2526 default:
2527 return true;
2528 }
2529
2530 return false;
2531 }
2532
2533 /* Callback for walk_stmt_load_store_ops.
2534
2535 Return TRUE if OP will dereference the tree stored in DATA, FALSE
2536 otherwise.
2537
2538 This routine only makes a superficial check for a dereference. Thus
2539 it must only be used if it is safe to return a false negative. */
2540 static bool
2541 check_loadstore (gimple, tree op, tree, void *data)
2542 {
2543 if ((TREE_CODE (op) == MEM_REF || TREE_CODE (op) == TARGET_MEM_REF)
2544 && operand_equal_p (TREE_OPERAND (op, 0), (tree)data, 0))
2545 return true;
2546 return false;
2547 }
2548
2549 /* If OP can be inferred to be non-NULL after STMT executes, return true.
2550
2551 DEREFERENCE is TRUE if we can use a pointer dereference to infer a
2552 non-NULL range, FALSE otherwise.
2553
2554 ATTRIBUTE is TRUE if we can use attributes to infer a non-NULL range
2555 for function arguments and return values. FALSE otherwise. */
2556
2557 bool
2558 infer_nonnull_range (gimple stmt, tree op, bool dereference, bool attribute)
2559 {
2560 /* We can only assume that a pointer dereference will yield
2561 non-NULL if -fdelete-null-pointer-checks is enabled. */
2562 if (!flag_delete_null_pointer_checks
2563 || !POINTER_TYPE_P (TREE_TYPE (op))
2564 || gimple_code (stmt) == GIMPLE_ASM)
2565 return false;
2566
2567 if (dereference
2568 && walk_stmt_load_store_ops (stmt, (void *)op,
2569 check_loadstore, check_loadstore))
2570 return true;
2571
2572 if (attribute
2573 && is_gimple_call (stmt) && !gimple_call_internal_p (stmt))
2574 {
2575 tree fntype = gimple_call_fntype (stmt);
2576 tree attrs = TYPE_ATTRIBUTES (fntype);
2577 for (; attrs; attrs = TREE_CHAIN (attrs))
2578 {
2579 attrs = lookup_attribute ("nonnull", attrs);
2580
2581 /* If "nonnull" wasn't specified, we know nothing about
2582 the argument. */
2583 if (attrs == NULL_TREE)
2584 return false;
2585
2586 /* If "nonnull" applies to all the arguments, then ARG
2587 is non-null if it's in the argument list. */
2588 if (TREE_VALUE (attrs) == NULL_TREE)
2589 {
2590 for (unsigned int i = 0; i < gimple_call_num_args (stmt); i++)
2591 {
2592 if (POINTER_TYPE_P (TREE_TYPE (gimple_call_arg (stmt, i)))
2593 && operand_equal_p (op, gimple_call_arg (stmt, i), 0))
2594 return true;
2595 }
2596 return false;
2597 }
2598
2599 /* Now see if op appears in the nonnull list. */
2600 for (tree t = TREE_VALUE (attrs); t; t = TREE_CHAIN (t))
2601 {
2602 int idx = TREE_INT_CST_LOW (TREE_VALUE (t)) - 1;
2603 tree arg = gimple_call_arg (stmt, idx);
2604 if (operand_equal_p (op, arg, 0))
2605 return true;
2606 }
2607 }
2608 }
2609
2610 /* If this function is marked as returning non-null, then we can
2611 infer OP is non-null if it is used in the return statement. */
2612 if (attribute
2613 && gimple_code (stmt) == GIMPLE_RETURN
2614 && gimple_return_retval (stmt)
2615 && operand_equal_p (gimple_return_retval (stmt), op, 0)
2616 && lookup_attribute ("returns_nonnull",
2617 TYPE_ATTRIBUTES (TREE_TYPE (current_function_decl))))
2618 return true;
2619
2620 return false;
2621 }
2622
2623 /* Compare two case labels. Because the front end should already have
2624 made sure that case ranges do not overlap, it is enough to only compare
2625 the CASE_LOW values of each case label. */
2626
2627 static int
2628 compare_case_labels (const void *p1, const void *p2)
2629 {
2630 const_tree const case1 = *(const_tree const*)p1;
2631 const_tree const case2 = *(const_tree const*)p2;
2632
2633 /* The 'default' case label always goes first. */
2634 if (!CASE_LOW (case1))
2635 return -1;
2636 else if (!CASE_LOW (case2))
2637 return 1;
2638 else
2639 return tree_int_cst_compare (CASE_LOW (case1), CASE_LOW (case2));
2640 }
2641
2642 /* Sort the case labels in LABEL_VEC in place in ascending order. */
2643
2644 void
2645 sort_case_labels (vec<tree> label_vec)
2646 {
2647 label_vec.qsort (compare_case_labels);
2648 }
2649 \f
2650 /* Prepare a vector of case labels to be used in a GIMPLE_SWITCH statement.
2651
2652 LABELS is a vector that contains all case labels to look at.
2653
2654 INDEX_TYPE is the type of the switch index expression. Case labels
2655 in LABELS are discarded if their values are not in the value range
2656 covered by INDEX_TYPE. The remaining case label values are folded
2657 to INDEX_TYPE.
2658
2659 If a default case exists in LABELS, it is removed from LABELS and
2660 returned in DEFAULT_CASEP. If no default case exists, but the
2661 case labels already cover the whole range of INDEX_TYPE, a default
2662 case is returned pointing to one of the existing case labels.
2663 Otherwise DEFAULT_CASEP is set to NULL_TREE.
2664
2665 DEFAULT_CASEP may be NULL, in which case the above comment doesn't
2666 apply and no action is taken regardless of whether a default case is
2667 found or not. */
2668
2669 void
2670 preprocess_case_label_vec_for_gimple (vec<tree> labels,
2671 tree index_type,
2672 tree *default_casep)
2673 {
2674 tree min_value, max_value;
2675 tree default_case = NULL_TREE;
2676 size_t i, len;
2677
2678 i = 0;
2679 min_value = TYPE_MIN_VALUE (index_type);
2680 max_value = TYPE_MAX_VALUE (index_type);
2681 while (i < labels.length ())
2682 {
2683 tree elt = labels[i];
2684 tree low = CASE_LOW (elt);
2685 tree high = CASE_HIGH (elt);
2686 bool remove_element = FALSE;
2687
2688 if (low)
2689 {
2690 gcc_checking_assert (TREE_CODE (low) == INTEGER_CST);
2691 gcc_checking_assert (!high || TREE_CODE (high) == INTEGER_CST);
2692
2693 /* This is a non-default case label, i.e. it has a value.
2694
2695 See if the case label is reachable within the range of
2696 the index type. Remove out-of-range case values. Turn
2697 case ranges into a canonical form (high > low strictly)
2698 and convert the case label values to the index type.
2699
2700 NB: The type of gimple_switch_index() may be the promoted
2701 type, but the case labels retain the original type. */
2702
2703 if (high)
2704 {
2705 /* This is a case range. Discard empty ranges.
2706 If the bounds or the range are equal, turn this
2707 into a simple (one-value) case. */
2708 int cmp = tree_int_cst_compare (high, low);
2709 if (cmp < 0)
2710 remove_element = TRUE;
2711 else if (cmp == 0)
2712 high = NULL_TREE;
2713 }
2714
2715 if (! high)
2716 {
2717 /* If the simple case value is unreachable, ignore it. */
2718 if ((TREE_CODE (min_value) == INTEGER_CST
2719 && tree_int_cst_compare (low, min_value) < 0)
2720 || (TREE_CODE (max_value) == INTEGER_CST
2721 && tree_int_cst_compare (low, max_value) > 0))
2722 remove_element = TRUE;
2723 else
2724 low = fold_convert (index_type, low);
2725 }
2726 else
2727 {
2728 /* If the entire case range is unreachable, ignore it. */
2729 if ((TREE_CODE (min_value) == INTEGER_CST
2730 && tree_int_cst_compare (high, min_value) < 0)
2731 || (TREE_CODE (max_value) == INTEGER_CST
2732 && tree_int_cst_compare (low, max_value) > 0))
2733 remove_element = TRUE;
2734 else
2735 {
2736 /* If the lower bound is less than the index type's
2737 minimum value, truncate the range bounds. */
2738 if (TREE_CODE (min_value) == INTEGER_CST
2739 && tree_int_cst_compare (low, min_value) < 0)
2740 low = min_value;
2741 low = fold_convert (index_type, low);
2742
2743 /* If the upper bound is greater than the index type's
2744 maximum value, truncate the range bounds. */
2745 if (TREE_CODE (max_value) == INTEGER_CST
2746 && tree_int_cst_compare (high, max_value) > 0)
2747 high = max_value;
2748 high = fold_convert (index_type, high);
2749
2750 /* We may have folded a case range to a one-value case. */
2751 if (tree_int_cst_equal (low, high))
2752 high = NULL_TREE;
2753 }
2754 }
2755
2756 CASE_LOW (elt) = low;
2757 CASE_HIGH (elt) = high;
2758 }
2759 else
2760 {
2761 gcc_assert (!default_case);
2762 default_case = elt;
2763 /* The default case must be passed separately to the
2764 gimple_build_switch routine. But if DEFAULT_CASEP
2765 is NULL, we do not remove the default case (it would
2766 be completely lost). */
2767 if (default_casep)
2768 remove_element = TRUE;
2769 }
2770
2771 if (remove_element)
2772 labels.ordered_remove (i);
2773 else
2774 i++;
2775 }
2776 len = i;
2777
2778 if (!labels.is_empty ())
2779 sort_case_labels (labels);
2780
2781 if (default_casep && !default_case)
2782 {
2783 /* If the switch has no default label, add one, so that we jump
2784 around the switch body. If the labels already cover the whole
2785 range of the switch index_type, add the default label pointing
2786 to one of the existing labels. */
2787 if (len
2788 && TYPE_MIN_VALUE (index_type)
2789 && TYPE_MAX_VALUE (index_type)
2790 && tree_int_cst_equal (CASE_LOW (labels[0]),
2791 TYPE_MIN_VALUE (index_type)))
2792 {
2793 tree low, high = CASE_HIGH (labels[len - 1]);
2794 if (!high)
2795 high = CASE_LOW (labels[len - 1]);
2796 if (tree_int_cst_equal (high, TYPE_MAX_VALUE (index_type)))
2797 {
2798 for (i = 1; i < len; i++)
2799 {
2800 high = CASE_LOW (labels[i]);
2801 low = CASE_HIGH (labels[i - 1]);
2802 if (!low)
2803 low = CASE_LOW (labels[i - 1]);
2804 if (wi::add (low, 1) != high)
2805 break;
2806 }
2807 if (i == len)
2808 {
2809 tree label = CASE_LABEL (labels[0]);
2810 default_case = build_case_label (NULL_TREE, NULL_TREE,
2811 label);
2812 }
2813 }
2814 }
2815 }
2816
2817 if (default_casep)
2818 *default_casep = default_case;
2819 }
2820
2821 /* Set the location of all statements in SEQ to LOC. */
2822
2823 void
2824 gimple_seq_set_location (gimple_seq seq, location_t loc)
2825 {
2826 for (gimple_stmt_iterator i = gsi_start (seq); !gsi_end_p (i); gsi_next (&i))
2827 gimple_set_location (gsi_stmt (i), loc);
2828 }