]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/gimple.c
alias.c: Reorder #include statements and remove duplicates.
[thirdparty/gcc.git] / gcc / gimple.c
1 /* Gimple IR support functions.
2
3 Copyright (C) 2007-2015 Free Software Foundation, Inc.
4 Contributed by Aldy Hernandez <aldyh@redhat.com>
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
12
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
21
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "backend.h"
26 #include "target.h"
27 #include "tree.h"
28 #include "gimple.h"
29 #include "ssa.h"
30 #include "cgraph.h"
31 #include "diagnostic.h"
32 #include "alias.h"
33 #include "fold-const.h"
34 #include "calls.h"
35 #include "stmt.h"
36 #include "stor-layout.h"
37 #include "internal-fn.h"
38 #include "tree-eh.h"
39 #include "gimple-iterator.h"
40 #include "gimple-walk.h"
41 #include "gimplify.h"
42 #include "value-prof.h"
43 #include "flags.h"
44 #include "demangle.h"
45 #include "langhooks.h"
46
47
48 /* All the tuples have their operand vector (if present) at the very bottom
49 of the structure. Therefore, the offset required to find the
50 operands vector the size of the structure minus the size of the 1
51 element tree array at the end (see gimple_ops). */
52 #define DEFGSSTRUCT(SYM, STRUCT, HAS_TREE_OP) \
53 (HAS_TREE_OP ? sizeof (struct STRUCT) - sizeof (tree) : 0),
54 EXPORTED_CONST size_t gimple_ops_offset_[] = {
55 #include "gsstruct.def"
56 };
57 #undef DEFGSSTRUCT
58
59 #define DEFGSSTRUCT(SYM, STRUCT, HAS_TREE_OP) sizeof (struct STRUCT),
60 static const size_t gsstruct_code_size[] = {
61 #include "gsstruct.def"
62 };
63 #undef DEFGSSTRUCT
64
65 #define DEFGSCODE(SYM, NAME, GSSCODE) NAME,
66 const char *const gimple_code_name[] = {
67 #include "gimple.def"
68 };
69 #undef DEFGSCODE
70
71 #define DEFGSCODE(SYM, NAME, GSSCODE) GSSCODE,
72 EXPORTED_CONST enum gimple_statement_structure_enum gss_for_code_[] = {
73 #include "gimple.def"
74 };
75 #undef DEFGSCODE
76
77 /* Gimple stats. */
78
79 int gimple_alloc_counts[(int) gimple_alloc_kind_all];
80 int gimple_alloc_sizes[(int) gimple_alloc_kind_all];
81
82 /* Keep in sync with gimple.h:enum gimple_alloc_kind. */
83 static const char * const gimple_alloc_kind_names[] = {
84 "assignments",
85 "phi nodes",
86 "conditionals",
87 "everything else"
88 };
89
90 /* Static gimple tuple members. */
91 const enum gimple_code gassign::code_;
92 const enum gimple_code gcall::code_;
93 const enum gimple_code gcond::code_;
94
95
96 /* Gimple tuple constructors.
97 Note: Any constructor taking a ``gimple_seq'' as a parameter, can
98 be passed a NULL to start with an empty sequence. */
99
100 /* Set the code for statement G to CODE. */
101
102 static inline void
103 gimple_set_code (gimple *g, enum gimple_code code)
104 {
105 g->code = code;
106 }
107
108 /* Return the number of bytes needed to hold a GIMPLE statement with
109 code CODE. */
110
111 static inline size_t
112 gimple_size (enum gimple_code code)
113 {
114 return gsstruct_code_size[gss_for_code (code)];
115 }
116
117 /* Allocate memory for a GIMPLE statement with code CODE and NUM_OPS
118 operands. */
119
120 gimple *
121 gimple_alloc_stat (enum gimple_code code, unsigned num_ops MEM_STAT_DECL)
122 {
123 size_t size;
124 gimple *stmt;
125
126 size = gimple_size (code);
127 if (num_ops > 0)
128 size += sizeof (tree) * (num_ops - 1);
129
130 if (GATHER_STATISTICS)
131 {
132 enum gimple_alloc_kind kind = gimple_alloc_kind (code);
133 gimple_alloc_counts[(int) kind]++;
134 gimple_alloc_sizes[(int) kind] += size;
135 }
136
137 stmt = ggc_alloc_cleared_gimple_statement_stat (size PASS_MEM_STAT);
138 gimple_set_code (stmt, code);
139 gimple_set_num_ops (stmt, num_ops);
140
141 /* Do not call gimple_set_modified here as it has other side
142 effects and this tuple is still not completely built. */
143 stmt->modified = 1;
144 gimple_init_singleton (stmt);
145
146 return stmt;
147 }
148
149 /* Set SUBCODE to be the code of the expression computed by statement G. */
150
151 static inline void
152 gimple_set_subcode (gimple *g, unsigned subcode)
153 {
154 /* We only have 16 bits for the RHS code. Assert that we are not
155 overflowing it. */
156 gcc_assert (subcode < (1 << 16));
157 g->subcode = subcode;
158 }
159
160
161
162 /* Build a tuple with operands. CODE is the statement to build (which
163 must be one of the GIMPLE_WITH_OPS tuples). SUBCODE is the subcode
164 for the new tuple. NUM_OPS is the number of operands to allocate. */
165
166 #define gimple_build_with_ops(c, s, n) \
167 gimple_build_with_ops_stat (c, s, n MEM_STAT_INFO)
168
169 static gimple *
170 gimple_build_with_ops_stat (enum gimple_code code, unsigned subcode,
171 unsigned num_ops MEM_STAT_DECL)
172 {
173 gimple *s = gimple_alloc_stat (code, num_ops PASS_MEM_STAT);
174 gimple_set_subcode (s, subcode);
175
176 return s;
177 }
178
179
180 /* Build a GIMPLE_RETURN statement returning RETVAL. */
181
182 greturn *
183 gimple_build_return (tree retval)
184 {
185 greturn *s
186 = as_a <greturn *> (gimple_build_with_ops (GIMPLE_RETURN, ERROR_MARK,
187 2));
188 if (retval)
189 gimple_return_set_retval (s, retval);
190 return s;
191 }
192
193 /* Reset alias information on call S. */
194
195 void
196 gimple_call_reset_alias_info (gcall *s)
197 {
198 if (gimple_call_flags (s) & ECF_CONST)
199 memset (gimple_call_use_set (s), 0, sizeof (struct pt_solution));
200 else
201 pt_solution_reset (gimple_call_use_set (s));
202 if (gimple_call_flags (s) & (ECF_CONST|ECF_PURE|ECF_NOVOPS))
203 memset (gimple_call_clobber_set (s), 0, sizeof (struct pt_solution));
204 else
205 pt_solution_reset (gimple_call_clobber_set (s));
206 }
207
208 /* Helper for gimple_build_call, gimple_build_call_valist,
209 gimple_build_call_vec and gimple_build_call_from_tree. Build the basic
210 components of a GIMPLE_CALL statement to function FN with NARGS
211 arguments. */
212
213 static inline gcall *
214 gimple_build_call_1 (tree fn, unsigned nargs)
215 {
216 gcall *s
217 = as_a <gcall *> (gimple_build_with_ops (GIMPLE_CALL, ERROR_MARK,
218 nargs + 3));
219 if (TREE_CODE (fn) == FUNCTION_DECL)
220 fn = build_fold_addr_expr (fn);
221 gimple_set_op (s, 1, fn);
222 gimple_call_set_fntype (s, TREE_TYPE (TREE_TYPE (fn)));
223 gimple_call_reset_alias_info (s);
224 return s;
225 }
226
227
228 /* Build a GIMPLE_CALL statement to function FN with the arguments
229 specified in vector ARGS. */
230
231 gcall *
232 gimple_build_call_vec (tree fn, vec<tree> args)
233 {
234 unsigned i;
235 unsigned nargs = args.length ();
236 gcall *call = gimple_build_call_1 (fn, nargs);
237
238 for (i = 0; i < nargs; i++)
239 gimple_call_set_arg (call, i, args[i]);
240
241 return call;
242 }
243
244
245 /* Build a GIMPLE_CALL statement to function FN. NARGS is the number of
246 arguments. The ... are the arguments. */
247
248 gcall *
249 gimple_build_call (tree fn, unsigned nargs, ...)
250 {
251 va_list ap;
252 gcall *call;
253 unsigned i;
254
255 gcc_assert (TREE_CODE (fn) == FUNCTION_DECL || is_gimple_call_addr (fn));
256
257 call = gimple_build_call_1 (fn, nargs);
258
259 va_start (ap, nargs);
260 for (i = 0; i < nargs; i++)
261 gimple_call_set_arg (call, i, va_arg (ap, tree));
262 va_end (ap);
263
264 return call;
265 }
266
267
268 /* Build a GIMPLE_CALL statement to function FN. NARGS is the number of
269 arguments. AP contains the arguments. */
270
271 gcall *
272 gimple_build_call_valist (tree fn, unsigned nargs, va_list ap)
273 {
274 gcall *call;
275 unsigned i;
276
277 gcc_assert (TREE_CODE (fn) == FUNCTION_DECL || is_gimple_call_addr (fn));
278
279 call = gimple_build_call_1 (fn, nargs);
280
281 for (i = 0; i < nargs; i++)
282 gimple_call_set_arg (call, i, va_arg (ap, tree));
283
284 return call;
285 }
286
287
288 /* Helper for gimple_build_call_internal and gimple_build_call_internal_vec.
289 Build the basic components of a GIMPLE_CALL statement to internal
290 function FN with NARGS arguments. */
291
292 static inline gcall *
293 gimple_build_call_internal_1 (enum internal_fn fn, unsigned nargs)
294 {
295 gcall *s
296 = as_a <gcall *> (gimple_build_with_ops (GIMPLE_CALL, ERROR_MARK,
297 nargs + 3));
298 s->subcode |= GF_CALL_INTERNAL;
299 gimple_call_set_internal_fn (s, fn);
300 gimple_call_reset_alias_info (s);
301 return s;
302 }
303
304
305 /* Build a GIMPLE_CALL statement to internal function FN. NARGS is
306 the number of arguments. The ... are the arguments. */
307
308 gcall *
309 gimple_build_call_internal (enum internal_fn fn, unsigned nargs, ...)
310 {
311 va_list ap;
312 gcall *call;
313 unsigned i;
314
315 call = gimple_build_call_internal_1 (fn, nargs);
316 va_start (ap, nargs);
317 for (i = 0; i < nargs; i++)
318 gimple_call_set_arg (call, i, va_arg (ap, tree));
319 va_end (ap);
320
321 return call;
322 }
323
324
325 /* Build a GIMPLE_CALL statement to internal function FN with the arguments
326 specified in vector ARGS. */
327
328 gcall *
329 gimple_build_call_internal_vec (enum internal_fn fn, vec<tree> args)
330 {
331 unsigned i, nargs;
332 gcall *call;
333
334 nargs = args.length ();
335 call = gimple_build_call_internal_1 (fn, nargs);
336 for (i = 0; i < nargs; i++)
337 gimple_call_set_arg (call, i, args[i]);
338
339 return call;
340 }
341
342
343 /* Build a GIMPLE_CALL statement from CALL_EXPR T. Note that T is
344 assumed to be in GIMPLE form already. Minimal checking is done of
345 this fact. */
346
347 gcall *
348 gimple_build_call_from_tree (tree t)
349 {
350 unsigned i, nargs;
351 gcall *call;
352 tree fndecl = get_callee_fndecl (t);
353
354 gcc_assert (TREE_CODE (t) == CALL_EXPR);
355
356 nargs = call_expr_nargs (t);
357 call = gimple_build_call_1 (fndecl ? fndecl : CALL_EXPR_FN (t), nargs);
358
359 for (i = 0; i < nargs; i++)
360 gimple_call_set_arg (call, i, CALL_EXPR_ARG (t, i));
361
362 gimple_set_block (call, TREE_BLOCK (t));
363
364 /* Carry all the CALL_EXPR flags to the new GIMPLE_CALL. */
365 gimple_call_set_chain (call, CALL_EXPR_STATIC_CHAIN (t));
366 gimple_call_set_tail (call, CALL_EXPR_TAILCALL (t));
367 gimple_call_set_return_slot_opt (call, CALL_EXPR_RETURN_SLOT_OPT (t));
368 if (fndecl
369 && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL
370 && (DECL_FUNCTION_CODE (fndecl) == BUILT_IN_ALLOCA
371 || DECL_FUNCTION_CODE (fndecl) == BUILT_IN_ALLOCA_WITH_ALIGN))
372 gimple_call_set_alloca_for_var (call, CALL_ALLOCA_FOR_VAR_P (t));
373 else
374 gimple_call_set_from_thunk (call, CALL_FROM_THUNK_P (t));
375 gimple_call_set_va_arg_pack (call, CALL_EXPR_VA_ARG_PACK (t));
376 gimple_call_set_nothrow (call, TREE_NOTHROW (t));
377 gimple_set_no_warning (call, TREE_NO_WARNING (t));
378 gimple_call_set_with_bounds (call, CALL_WITH_BOUNDS_P (t));
379
380 return call;
381 }
382
383
384 /* Build a GIMPLE_ASSIGN statement.
385
386 LHS of the assignment.
387 RHS of the assignment which can be unary or binary. */
388
389 gassign *
390 gimple_build_assign (tree lhs, tree rhs MEM_STAT_DECL)
391 {
392 enum tree_code subcode;
393 tree op1, op2, op3;
394
395 extract_ops_from_tree_1 (rhs, &subcode, &op1, &op2, &op3);
396 return gimple_build_assign (lhs, subcode, op1, op2, op3 PASS_MEM_STAT);
397 }
398
399
400 /* Build a GIMPLE_ASSIGN statement with subcode SUBCODE and operands
401 OP1, OP2 and OP3. */
402
403 static inline gassign *
404 gimple_build_assign_1 (tree lhs, enum tree_code subcode, tree op1,
405 tree op2, tree op3 MEM_STAT_DECL)
406 {
407 unsigned num_ops;
408 gassign *p;
409
410 /* Need 1 operand for LHS and 1 or 2 for the RHS (depending on the
411 code). */
412 num_ops = get_gimple_rhs_num_ops (subcode) + 1;
413
414 p = as_a <gassign *> (
415 gimple_build_with_ops_stat (GIMPLE_ASSIGN, (unsigned)subcode, num_ops
416 PASS_MEM_STAT));
417 gimple_assign_set_lhs (p, lhs);
418 gimple_assign_set_rhs1 (p, op1);
419 if (op2)
420 {
421 gcc_assert (num_ops > 2);
422 gimple_assign_set_rhs2 (p, op2);
423 }
424
425 if (op3)
426 {
427 gcc_assert (num_ops > 3);
428 gimple_assign_set_rhs3 (p, op3);
429 }
430
431 return p;
432 }
433
434 /* Build a GIMPLE_ASSIGN statement with subcode SUBCODE and operands
435 OP1, OP2 and OP3. */
436
437 gassign *
438 gimple_build_assign (tree lhs, enum tree_code subcode, tree op1,
439 tree op2, tree op3 MEM_STAT_DECL)
440 {
441 return gimple_build_assign_1 (lhs, subcode, op1, op2, op3 PASS_MEM_STAT);
442 }
443
444 /* Build a GIMPLE_ASSIGN statement with subcode SUBCODE and operands
445 OP1 and OP2. */
446
447 gassign *
448 gimple_build_assign (tree lhs, enum tree_code subcode, tree op1,
449 tree op2 MEM_STAT_DECL)
450 {
451 return gimple_build_assign_1 (lhs, subcode, op1, op2, NULL_TREE
452 PASS_MEM_STAT);
453 }
454
455 /* Build a GIMPLE_ASSIGN statement with subcode SUBCODE and operand OP1. */
456
457 gassign *
458 gimple_build_assign (tree lhs, enum tree_code subcode, tree op1 MEM_STAT_DECL)
459 {
460 return gimple_build_assign_1 (lhs, subcode, op1, NULL_TREE, NULL_TREE
461 PASS_MEM_STAT);
462 }
463
464
465 /* Build a GIMPLE_COND statement.
466
467 PRED is the condition used to compare LHS and the RHS.
468 T_LABEL is the label to jump to if the condition is true.
469 F_LABEL is the label to jump to otherwise. */
470
471 gcond *
472 gimple_build_cond (enum tree_code pred_code, tree lhs, tree rhs,
473 tree t_label, tree f_label)
474 {
475 gcond *p;
476
477 gcc_assert (TREE_CODE_CLASS (pred_code) == tcc_comparison);
478 p = as_a <gcond *> (gimple_build_with_ops (GIMPLE_COND, pred_code, 4));
479 gimple_cond_set_lhs (p, lhs);
480 gimple_cond_set_rhs (p, rhs);
481 gimple_cond_set_true_label (p, t_label);
482 gimple_cond_set_false_label (p, f_label);
483 return p;
484 }
485
486 /* Build a GIMPLE_COND statement from the conditional expression tree
487 COND. T_LABEL and F_LABEL are as in gimple_build_cond. */
488
489 gcond *
490 gimple_build_cond_from_tree (tree cond, tree t_label, tree f_label)
491 {
492 enum tree_code code;
493 tree lhs, rhs;
494
495 gimple_cond_get_ops_from_tree (cond, &code, &lhs, &rhs);
496 return gimple_build_cond (code, lhs, rhs, t_label, f_label);
497 }
498
499 /* Set code, lhs, and rhs of a GIMPLE_COND from a suitable
500 boolean expression tree COND. */
501
502 void
503 gimple_cond_set_condition_from_tree (gcond *stmt, tree cond)
504 {
505 enum tree_code code;
506 tree lhs, rhs;
507
508 gimple_cond_get_ops_from_tree (cond, &code, &lhs, &rhs);
509 gimple_cond_set_condition (stmt, code, lhs, rhs);
510 }
511
512 /* Build a GIMPLE_LABEL statement for LABEL. */
513
514 glabel *
515 gimple_build_label (tree label)
516 {
517 glabel *p
518 = as_a <glabel *> (gimple_build_with_ops (GIMPLE_LABEL, ERROR_MARK, 1));
519 gimple_label_set_label (p, label);
520 return p;
521 }
522
523 /* Build a GIMPLE_GOTO statement to label DEST. */
524
525 ggoto *
526 gimple_build_goto (tree dest)
527 {
528 ggoto *p
529 = as_a <ggoto *> (gimple_build_with_ops (GIMPLE_GOTO, ERROR_MARK, 1));
530 gimple_goto_set_dest (p, dest);
531 return p;
532 }
533
534
535 /* Build a GIMPLE_NOP statement. */
536
537 gimple *
538 gimple_build_nop (void)
539 {
540 return gimple_alloc (GIMPLE_NOP, 0);
541 }
542
543
544 /* Build a GIMPLE_BIND statement.
545 VARS are the variables in BODY.
546 BLOCK is the containing block. */
547
548 gbind *
549 gimple_build_bind (tree vars, gimple_seq body, tree block)
550 {
551 gbind *p = as_a <gbind *> (gimple_alloc (GIMPLE_BIND, 0));
552 gimple_bind_set_vars (p, vars);
553 if (body)
554 gimple_bind_set_body (p, body);
555 if (block)
556 gimple_bind_set_block (p, block);
557 return p;
558 }
559
560 /* Helper function to set the simple fields of a asm stmt.
561
562 STRING is a pointer to a string that is the asm blocks assembly code.
563 NINPUT is the number of register inputs.
564 NOUTPUT is the number of register outputs.
565 NCLOBBERS is the number of clobbered registers.
566 */
567
568 static inline gasm *
569 gimple_build_asm_1 (const char *string, unsigned ninputs, unsigned noutputs,
570 unsigned nclobbers, unsigned nlabels)
571 {
572 gasm *p;
573 int size = strlen (string);
574
575 /* ASMs with labels cannot have outputs. This should have been
576 enforced by the front end. */
577 gcc_assert (nlabels == 0 || noutputs == 0);
578
579 p = as_a <gasm *> (
580 gimple_build_with_ops (GIMPLE_ASM, ERROR_MARK,
581 ninputs + noutputs + nclobbers + nlabels));
582
583 p->ni = ninputs;
584 p->no = noutputs;
585 p->nc = nclobbers;
586 p->nl = nlabels;
587 p->string = ggc_alloc_string (string, size);
588
589 if (GATHER_STATISTICS)
590 gimple_alloc_sizes[(int) gimple_alloc_kind (GIMPLE_ASM)] += size;
591
592 return p;
593 }
594
595 /* Build a GIMPLE_ASM statement.
596
597 STRING is the assembly code.
598 NINPUT is the number of register inputs.
599 NOUTPUT is the number of register outputs.
600 NCLOBBERS is the number of clobbered registers.
601 INPUTS is a vector of the input register parameters.
602 OUTPUTS is a vector of the output register parameters.
603 CLOBBERS is a vector of the clobbered register parameters.
604 LABELS is a vector of destination labels. */
605
606 gasm *
607 gimple_build_asm_vec (const char *string, vec<tree, va_gc> *inputs,
608 vec<tree, va_gc> *outputs, vec<tree, va_gc> *clobbers,
609 vec<tree, va_gc> *labels)
610 {
611 gasm *p;
612 unsigned i;
613
614 p = gimple_build_asm_1 (string,
615 vec_safe_length (inputs),
616 vec_safe_length (outputs),
617 vec_safe_length (clobbers),
618 vec_safe_length (labels));
619
620 for (i = 0; i < vec_safe_length (inputs); i++)
621 gimple_asm_set_input_op (p, i, (*inputs)[i]);
622
623 for (i = 0; i < vec_safe_length (outputs); i++)
624 gimple_asm_set_output_op (p, i, (*outputs)[i]);
625
626 for (i = 0; i < vec_safe_length (clobbers); i++)
627 gimple_asm_set_clobber_op (p, i, (*clobbers)[i]);
628
629 for (i = 0; i < vec_safe_length (labels); i++)
630 gimple_asm_set_label_op (p, i, (*labels)[i]);
631
632 return p;
633 }
634
635 /* Build a GIMPLE_CATCH statement.
636
637 TYPES are the catch types.
638 HANDLER is the exception handler. */
639
640 gcatch *
641 gimple_build_catch (tree types, gimple_seq handler)
642 {
643 gcatch *p = as_a <gcatch *> (gimple_alloc (GIMPLE_CATCH, 0));
644 gimple_catch_set_types (p, types);
645 if (handler)
646 gimple_catch_set_handler (p, handler);
647
648 return p;
649 }
650
651 /* Build a GIMPLE_EH_FILTER statement.
652
653 TYPES are the filter's types.
654 FAILURE is the filter's failure action. */
655
656 geh_filter *
657 gimple_build_eh_filter (tree types, gimple_seq failure)
658 {
659 geh_filter *p = as_a <geh_filter *> (gimple_alloc (GIMPLE_EH_FILTER, 0));
660 gimple_eh_filter_set_types (p, types);
661 if (failure)
662 gimple_eh_filter_set_failure (p, failure);
663
664 return p;
665 }
666
667 /* Build a GIMPLE_EH_MUST_NOT_THROW statement. */
668
669 geh_mnt *
670 gimple_build_eh_must_not_throw (tree decl)
671 {
672 geh_mnt *p = as_a <geh_mnt *> (gimple_alloc (GIMPLE_EH_MUST_NOT_THROW, 0));
673
674 gcc_assert (TREE_CODE (decl) == FUNCTION_DECL);
675 gcc_assert (flags_from_decl_or_type (decl) & ECF_NORETURN);
676 gimple_eh_must_not_throw_set_fndecl (p, decl);
677
678 return p;
679 }
680
681 /* Build a GIMPLE_EH_ELSE statement. */
682
683 geh_else *
684 gimple_build_eh_else (gimple_seq n_body, gimple_seq e_body)
685 {
686 geh_else *p = as_a <geh_else *> (gimple_alloc (GIMPLE_EH_ELSE, 0));
687 gimple_eh_else_set_n_body (p, n_body);
688 gimple_eh_else_set_e_body (p, e_body);
689 return p;
690 }
691
692 /* Build a GIMPLE_TRY statement.
693
694 EVAL is the expression to evaluate.
695 CLEANUP is the cleanup expression.
696 KIND is either GIMPLE_TRY_CATCH or GIMPLE_TRY_FINALLY depending on
697 whether this is a try/catch or a try/finally respectively. */
698
699 gtry *
700 gimple_build_try (gimple_seq eval, gimple_seq cleanup,
701 enum gimple_try_flags kind)
702 {
703 gtry *p;
704
705 gcc_assert (kind == GIMPLE_TRY_CATCH || kind == GIMPLE_TRY_FINALLY);
706 p = as_a <gtry *> (gimple_alloc (GIMPLE_TRY, 0));
707 gimple_set_subcode (p, kind);
708 if (eval)
709 gimple_try_set_eval (p, eval);
710 if (cleanup)
711 gimple_try_set_cleanup (p, cleanup);
712
713 return p;
714 }
715
716 /* Construct a GIMPLE_WITH_CLEANUP_EXPR statement.
717
718 CLEANUP is the cleanup expression. */
719
720 gimple *
721 gimple_build_wce (gimple_seq cleanup)
722 {
723 gimple *p = gimple_alloc (GIMPLE_WITH_CLEANUP_EXPR, 0);
724 if (cleanup)
725 gimple_wce_set_cleanup (p, cleanup);
726
727 return p;
728 }
729
730
731 /* Build a GIMPLE_RESX statement. */
732
733 gresx *
734 gimple_build_resx (int region)
735 {
736 gresx *p
737 = as_a <gresx *> (gimple_build_with_ops (GIMPLE_RESX, ERROR_MARK, 0));
738 p->region = region;
739 return p;
740 }
741
742
743 /* The helper for constructing a gimple switch statement.
744 INDEX is the switch's index.
745 NLABELS is the number of labels in the switch excluding the default.
746 DEFAULT_LABEL is the default label for the switch statement. */
747
748 gswitch *
749 gimple_build_switch_nlabels (unsigned nlabels, tree index, tree default_label)
750 {
751 /* nlabels + 1 default label + 1 index. */
752 gcc_checking_assert (default_label);
753 gswitch *p = as_a <gswitch *> (gimple_build_with_ops (GIMPLE_SWITCH,
754 ERROR_MARK,
755 1 + 1 + nlabels));
756 gimple_switch_set_index (p, index);
757 gimple_switch_set_default_label (p, default_label);
758 return p;
759 }
760
761 /* Build a GIMPLE_SWITCH statement.
762
763 INDEX is the switch's index.
764 DEFAULT_LABEL is the default label
765 ARGS is a vector of labels excluding the default. */
766
767 gswitch *
768 gimple_build_switch (tree index, tree default_label, vec<tree> args)
769 {
770 unsigned i, nlabels = args.length ();
771
772 gswitch *p = gimple_build_switch_nlabels (nlabels, index, default_label);
773
774 /* Copy the labels from the vector to the switch statement. */
775 for (i = 0; i < nlabels; i++)
776 gimple_switch_set_label (p, i + 1, args[i]);
777
778 return p;
779 }
780
781 /* Build a GIMPLE_EH_DISPATCH statement. */
782
783 geh_dispatch *
784 gimple_build_eh_dispatch (int region)
785 {
786 geh_dispatch *p
787 = as_a <geh_dispatch *> (
788 gimple_build_with_ops (GIMPLE_EH_DISPATCH, ERROR_MARK, 0));
789 p->region = region;
790 return p;
791 }
792
793 /* Build a new GIMPLE_DEBUG_BIND statement.
794
795 VAR is bound to VALUE; block and location are taken from STMT. */
796
797 gdebug *
798 gimple_build_debug_bind_stat (tree var, tree value, gimple *stmt MEM_STAT_DECL)
799 {
800 gdebug *p
801 = as_a <gdebug *> (gimple_build_with_ops_stat (GIMPLE_DEBUG,
802 (unsigned)GIMPLE_DEBUG_BIND, 2
803 PASS_MEM_STAT));
804 gimple_debug_bind_set_var (p, var);
805 gimple_debug_bind_set_value (p, value);
806 if (stmt)
807 gimple_set_location (p, gimple_location (stmt));
808
809 return p;
810 }
811
812
813 /* Build a new GIMPLE_DEBUG_SOURCE_BIND statement.
814
815 VAR is bound to VALUE; block and location are taken from STMT. */
816
817 gdebug *
818 gimple_build_debug_source_bind_stat (tree var, tree value,
819 gimple *stmt MEM_STAT_DECL)
820 {
821 gdebug *p
822 = as_a <gdebug *> (
823 gimple_build_with_ops_stat (GIMPLE_DEBUG,
824 (unsigned)GIMPLE_DEBUG_SOURCE_BIND, 2
825 PASS_MEM_STAT));
826
827 gimple_debug_source_bind_set_var (p, var);
828 gimple_debug_source_bind_set_value (p, value);
829 if (stmt)
830 gimple_set_location (p, gimple_location (stmt));
831
832 return p;
833 }
834
835
836 /* Build a GIMPLE_OMP_CRITICAL statement.
837
838 BODY is the sequence of statements for which only one thread can execute.
839 NAME is optional identifier for this critical block.
840 CLAUSES are clauses for this critical block. */
841
842 gomp_critical *
843 gimple_build_omp_critical (gimple_seq body, tree name, tree clauses)
844 {
845 gomp_critical *p
846 = as_a <gomp_critical *> (gimple_alloc (GIMPLE_OMP_CRITICAL, 0));
847 gimple_omp_critical_set_name (p, name);
848 gimple_omp_critical_set_clauses (p, clauses);
849 if (body)
850 gimple_omp_set_body (p, body);
851
852 return p;
853 }
854
855 /* Build a GIMPLE_OMP_FOR statement.
856
857 BODY is sequence of statements inside the for loop.
858 KIND is the `for' variant.
859 CLAUSES, are any of the construct's clauses.
860 COLLAPSE is the collapse count.
861 PRE_BODY is the sequence of statements that are loop invariant. */
862
863 gomp_for *
864 gimple_build_omp_for (gimple_seq body, int kind, tree clauses, size_t collapse,
865 gimple_seq pre_body)
866 {
867 gomp_for *p = as_a <gomp_for *> (gimple_alloc (GIMPLE_OMP_FOR, 0));
868 if (body)
869 gimple_omp_set_body (p, body);
870 gimple_omp_for_set_clauses (p, clauses);
871 gimple_omp_for_set_kind (p, kind);
872 p->collapse = collapse;
873 p->iter = ggc_cleared_vec_alloc<gimple_omp_for_iter> (collapse);
874
875 if (pre_body)
876 gimple_omp_for_set_pre_body (p, pre_body);
877
878 return p;
879 }
880
881
882 /* Build a GIMPLE_OMP_PARALLEL statement.
883
884 BODY is sequence of statements which are executed in parallel.
885 CLAUSES, are the OMP parallel construct's clauses.
886 CHILD_FN is the function created for the parallel threads to execute.
887 DATA_ARG are the shared data argument(s). */
888
889 gomp_parallel *
890 gimple_build_omp_parallel (gimple_seq body, tree clauses, tree child_fn,
891 tree data_arg)
892 {
893 gomp_parallel *p
894 = as_a <gomp_parallel *> (gimple_alloc (GIMPLE_OMP_PARALLEL, 0));
895 if (body)
896 gimple_omp_set_body (p, body);
897 gimple_omp_parallel_set_clauses (p, clauses);
898 gimple_omp_parallel_set_child_fn (p, child_fn);
899 gimple_omp_parallel_set_data_arg (p, data_arg);
900
901 return p;
902 }
903
904
905 /* Build a GIMPLE_OMP_TASK statement.
906
907 BODY is sequence of statements which are executed by the explicit task.
908 CLAUSES, are the OMP parallel construct's clauses.
909 CHILD_FN is the function created for the parallel threads to execute.
910 DATA_ARG are the shared data argument(s).
911 COPY_FN is the optional function for firstprivate initialization.
912 ARG_SIZE and ARG_ALIGN are size and alignment of the data block. */
913
914 gomp_task *
915 gimple_build_omp_task (gimple_seq body, tree clauses, tree child_fn,
916 tree data_arg, tree copy_fn, tree arg_size,
917 tree arg_align)
918 {
919 gomp_task *p = as_a <gomp_task *> (gimple_alloc (GIMPLE_OMP_TASK, 0));
920 if (body)
921 gimple_omp_set_body (p, body);
922 gimple_omp_task_set_clauses (p, clauses);
923 gimple_omp_task_set_child_fn (p, child_fn);
924 gimple_omp_task_set_data_arg (p, data_arg);
925 gimple_omp_task_set_copy_fn (p, copy_fn);
926 gimple_omp_task_set_arg_size (p, arg_size);
927 gimple_omp_task_set_arg_align (p, arg_align);
928
929 return p;
930 }
931
932
933 /* Build a GIMPLE_OMP_SECTION statement for a sections statement.
934
935 BODY is the sequence of statements in the section. */
936
937 gimple *
938 gimple_build_omp_section (gimple_seq body)
939 {
940 gimple *p = gimple_alloc (GIMPLE_OMP_SECTION, 0);
941 if (body)
942 gimple_omp_set_body (p, body);
943
944 return p;
945 }
946
947
948 /* Build a GIMPLE_OMP_MASTER statement.
949
950 BODY is the sequence of statements to be executed by just the master. */
951
952 gimple *
953 gimple_build_omp_master (gimple_seq body)
954 {
955 gimple *p = gimple_alloc (GIMPLE_OMP_MASTER, 0);
956 if (body)
957 gimple_omp_set_body (p, body);
958
959 return p;
960 }
961
962
963 /* Build a GIMPLE_OMP_TASKGROUP statement.
964
965 BODY is the sequence of statements to be executed by the taskgroup
966 construct. */
967
968 gimple *
969 gimple_build_omp_taskgroup (gimple_seq body)
970 {
971 gimple *p = gimple_alloc (GIMPLE_OMP_TASKGROUP, 0);
972 if (body)
973 gimple_omp_set_body (p, body);
974
975 return p;
976 }
977
978
979 /* Build a GIMPLE_OMP_CONTINUE statement.
980
981 CONTROL_DEF is the definition of the control variable.
982 CONTROL_USE is the use of the control variable. */
983
984 gomp_continue *
985 gimple_build_omp_continue (tree control_def, tree control_use)
986 {
987 gomp_continue *p
988 = as_a <gomp_continue *> (gimple_alloc (GIMPLE_OMP_CONTINUE, 0));
989 gimple_omp_continue_set_control_def (p, control_def);
990 gimple_omp_continue_set_control_use (p, control_use);
991 return p;
992 }
993
994 /* Build a GIMPLE_OMP_ORDERED statement.
995
996 BODY is the sequence of statements inside a loop that will executed in
997 sequence.
998 CLAUSES are clauses for this statement. */
999
1000 gomp_ordered *
1001 gimple_build_omp_ordered (gimple_seq body, tree clauses)
1002 {
1003 gomp_ordered *p
1004 = as_a <gomp_ordered *> (gimple_alloc (GIMPLE_OMP_ORDERED, 0));
1005 gimple_omp_ordered_set_clauses (p, clauses);
1006 if (body)
1007 gimple_omp_set_body (p, body);
1008
1009 return p;
1010 }
1011
1012
1013 /* Build a GIMPLE_OMP_RETURN statement.
1014 WAIT_P is true if this is a non-waiting return. */
1015
1016 gimple *
1017 gimple_build_omp_return (bool wait_p)
1018 {
1019 gimple *p = gimple_alloc (GIMPLE_OMP_RETURN, 0);
1020 if (wait_p)
1021 gimple_omp_return_set_nowait (p);
1022
1023 return p;
1024 }
1025
1026
1027 /* Build a GIMPLE_OMP_SECTIONS statement.
1028
1029 BODY is a sequence of section statements.
1030 CLAUSES are any of the OMP sections contsruct's clauses: private,
1031 firstprivate, lastprivate, reduction, and nowait. */
1032
1033 gomp_sections *
1034 gimple_build_omp_sections (gimple_seq body, tree clauses)
1035 {
1036 gomp_sections *p
1037 = as_a <gomp_sections *> (gimple_alloc (GIMPLE_OMP_SECTIONS, 0));
1038 if (body)
1039 gimple_omp_set_body (p, body);
1040 gimple_omp_sections_set_clauses (p, clauses);
1041
1042 return p;
1043 }
1044
1045
1046 /* Build a GIMPLE_OMP_SECTIONS_SWITCH. */
1047
1048 gimple *
1049 gimple_build_omp_sections_switch (void)
1050 {
1051 return gimple_alloc (GIMPLE_OMP_SECTIONS_SWITCH, 0);
1052 }
1053
1054
1055 /* Build a GIMPLE_OMP_SINGLE statement.
1056
1057 BODY is the sequence of statements that will be executed once.
1058 CLAUSES are any of the OMP single construct's clauses: private, firstprivate,
1059 copyprivate, nowait. */
1060
1061 gomp_single *
1062 gimple_build_omp_single (gimple_seq body, tree clauses)
1063 {
1064 gomp_single *p
1065 = as_a <gomp_single *> (gimple_alloc (GIMPLE_OMP_SINGLE, 0));
1066 if (body)
1067 gimple_omp_set_body (p, body);
1068 gimple_omp_single_set_clauses (p, clauses);
1069
1070 return p;
1071 }
1072
1073
1074 /* Build a GIMPLE_OMP_TARGET statement.
1075
1076 BODY is the sequence of statements that will be executed.
1077 KIND is the kind of the region.
1078 CLAUSES are any of the construct's clauses. */
1079
1080 gomp_target *
1081 gimple_build_omp_target (gimple_seq body, int kind, tree clauses)
1082 {
1083 gomp_target *p
1084 = as_a <gomp_target *> (gimple_alloc (GIMPLE_OMP_TARGET, 0));
1085 if (body)
1086 gimple_omp_set_body (p, body);
1087 gimple_omp_target_set_clauses (p, clauses);
1088 gimple_omp_target_set_kind (p, kind);
1089
1090 return p;
1091 }
1092
1093
1094 /* Build a GIMPLE_OMP_TEAMS statement.
1095
1096 BODY is the sequence of statements that will be executed.
1097 CLAUSES are any of the OMP teams construct's clauses. */
1098
1099 gomp_teams *
1100 gimple_build_omp_teams (gimple_seq body, tree clauses)
1101 {
1102 gomp_teams *p = as_a <gomp_teams *> (gimple_alloc (GIMPLE_OMP_TEAMS, 0));
1103 if (body)
1104 gimple_omp_set_body (p, body);
1105 gimple_omp_teams_set_clauses (p, clauses);
1106
1107 return p;
1108 }
1109
1110
1111 /* Build a GIMPLE_OMP_ATOMIC_LOAD statement. */
1112
1113 gomp_atomic_load *
1114 gimple_build_omp_atomic_load (tree lhs, tree rhs)
1115 {
1116 gomp_atomic_load *p
1117 = as_a <gomp_atomic_load *> (gimple_alloc (GIMPLE_OMP_ATOMIC_LOAD, 0));
1118 gimple_omp_atomic_load_set_lhs (p, lhs);
1119 gimple_omp_atomic_load_set_rhs (p, rhs);
1120 return p;
1121 }
1122
1123 /* Build a GIMPLE_OMP_ATOMIC_STORE statement.
1124
1125 VAL is the value we are storing. */
1126
1127 gomp_atomic_store *
1128 gimple_build_omp_atomic_store (tree val)
1129 {
1130 gomp_atomic_store *p
1131 = as_a <gomp_atomic_store *> (gimple_alloc (GIMPLE_OMP_ATOMIC_STORE, 0));
1132 gimple_omp_atomic_store_set_val (p, val);
1133 return p;
1134 }
1135
1136 /* Build a GIMPLE_TRANSACTION statement. */
1137
1138 gtransaction *
1139 gimple_build_transaction (gimple_seq body, tree label)
1140 {
1141 gtransaction *p
1142 = as_a <gtransaction *> (gimple_alloc (GIMPLE_TRANSACTION, 0));
1143 gimple_transaction_set_body (p, body);
1144 gimple_transaction_set_label (p, label);
1145 return p;
1146 }
1147
1148 #if defined ENABLE_GIMPLE_CHECKING
1149 /* Complain of a gimple type mismatch and die. */
1150
1151 void
1152 gimple_check_failed (const gimple *gs, const char *file, int line,
1153 const char *function, enum gimple_code code,
1154 enum tree_code subcode)
1155 {
1156 internal_error ("gimple check: expected %s(%s), have %s(%s) in %s, at %s:%d",
1157 gimple_code_name[code],
1158 get_tree_code_name (subcode),
1159 gimple_code_name[gimple_code (gs)],
1160 gs->subcode > 0
1161 ? get_tree_code_name ((enum tree_code) gs->subcode)
1162 : "",
1163 function, trim_filename (file), line);
1164 }
1165 #endif /* ENABLE_GIMPLE_CHECKING */
1166
1167
1168 /* Link gimple statement GS to the end of the sequence *SEQ_P. If
1169 *SEQ_P is NULL, a new sequence is allocated. */
1170
1171 void
1172 gimple_seq_add_stmt (gimple_seq *seq_p, gimple *gs)
1173 {
1174 gimple_stmt_iterator si;
1175 if (gs == NULL)
1176 return;
1177
1178 si = gsi_last (*seq_p);
1179 gsi_insert_after (&si, gs, GSI_NEW_STMT);
1180 }
1181
1182 /* Link gimple statement GS to the end of the sequence *SEQ_P. If
1183 *SEQ_P is NULL, a new sequence is allocated. This function is
1184 similar to gimple_seq_add_stmt, but does not scan the operands.
1185 During gimplification, we need to manipulate statement sequences
1186 before the def/use vectors have been constructed. */
1187
1188 void
1189 gimple_seq_add_stmt_without_update (gimple_seq *seq_p, gimple *gs)
1190 {
1191 gimple_stmt_iterator si;
1192
1193 if (gs == NULL)
1194 return;
1195
1196 si = gsi_last (*seq_p);
1197 gsi_insert_after_without_update (&si, gs, GSI_NEW_STMT);
1198 }
1199
1200 /* Append sequence SRC to the end of sequence *DST_P. If *DST_P is
1201 NULL, a new sequence is allocated. */
1202
1203 void
1204 gimple_seq_add_seq (gimple_seq *dst_p, gimple_seq src)
1205 {
1206 gimple_stmt_iterator si;
1207 if (src == NULL)
1208 return;
1209
1210 si = gsi_last (*dst_p);
1211 gsi_insert_seq_after (&si, src, GSI_NEW_STMT);
1212 }
1213
1214 /* Append sequence SRC to the end of sequence *DST_P. If *DST_P is
1215 NULL, a new sequence is allocated. This function is
1216 similar to gimple_seq_add_seq, but does not scan the operands. */
1217
1218 void
1219 gimple_seq_add_seq_without_update (gimple_seq *dst_p, gimple_seq src)
1220 {
1221 gimple_stmt_iterator si;
1222 if (src == NULL)
1223 return;
1224
1225 si = gsi_last (*dst_p);
1226 gsi_insert_seq_after_without_update (&si, src, GSI_NEW_STMT);
1227 }
1228
1229 /* Determine whether to assign a location to the statement GS. */
1230
1231 static bool
1232 should_carry_location_p (gimple *gs)
1233 {
1234 /* Don't emit a line note for a label. We particularly don't want to
1235 emit one for the break label, since it doesn't actually correspond
1236 to the beginning of the loop/switch. */
1237 if (gimple_code (gs) == GIMPLE_LABEL)
1238 return false;
1239
1240 return true;
1241 }
1242
1243 /* Set the location for gimple statement GS to LOCATION. */
1244
1245 static void
1246 annotate_one_with_location (gimple *gs, location_t location)
1247 {
1248 if (!gimple_has_location (gs)
1249 && !gimple_do_not_emit_location_p (gs)
1250 && should_carry_location_p (gs))
1251 gimple_set_location (gs, location);
1252 }
1253
1254 /* Set LOCATION for all the statements after iterator GSI in sequence
1255 SEQ. If GSI is pointing to the end of the sequence, start with the
1256 first statement in SEQ. */
1257
1258 void
1259 annotate_all_with_location_after (gimple_seq seq, gimple_stmt_iterator gsi,
1260 location_t location)
1261 {
1262 if (gsi_end_p (gsi))
1263 gsi = gsi_start (seq);
1264 else
1265 gsi_next (&gsi);
1266
1267 for (; !gsi_end_p (gsi); gsi_next (&gsi))
1268 annotate_one_with_location (gsi_stmt (gsi), location);
1269 }
1270
1271 /* Set the location for all the statements in a sequence STMT_P to LOCATION. */
1272
1273 void
1274 annotate_all_with_location (gimple_seq stmt_p, location_t location)
1275 {
1276 gimple_stmt_iterator i;
1277
1278 if (gimple_seq_empty_p (stmt_p))
1279 return;
1280
1281 for (i = gsi_start (stmt_p); !gsi_end_p (i); gsi_next (&i))
1282 {
1283 gimple *gs = gsi_stmt (i);
1284 annotate_one_with_location (gs, location);
1285 }
1286 }
1287
1288 /* Helper function of empty_body_p. Return true if STMT is an empty
1289 statement. */
1290
1291 static bool
1292 empty_stmt_p (gimple *stmt)
1293 {
1294 if (gimple_code (stmt) == GIMPLE_NOP)
1295 return true;
1296 if (gbind *bind_stmt = dyn_cast <gbind *> (stmt))
1297 return empty_body_p (gimple_bind_body (bind_stmt));
1298 return false;
1299 }
1300
1301
1302 /* Return true if BODY contains nothing but empty statements. */
1303
1304 bool
1305 empty_body_p (gimple_seq body)
1306 {
1307 gimple_stmt_iterator i;
1308
1309 if (gimple_seq_empty_p (body))
1310 return true;
1311 for (i = gsi_start (body); !gsi_end_p (i); gsi_next (&i))
1312 if (!empty_stmt_p (gsi_stmt (i))
1313 && !is_gimple_debug (gsi_stmt (i)))
1314 return false;
1315
1316 return true;
1317 }
1318
1319
1320 /* Perform a deep copy of sequence SRC and return the result. */
1321
1322 gimple_seq
1323 gimple_seq_copy (gimple_seq src)
1324 {
1325 gimple_stmt_iterator gsi;
1326 gimple_seq new_seq = NULL;
1327 gimple *stmt;
1328
1329 for (gsi = gsi_start (src); !gsi_end_p (gsi); gsi_next (&gsi))
1330 {
1331 stmt = gimple_copy (gsi_stmt (gsi));
1332 gimple_seq_add_stmt (&new_seq, stmt);
1333 }
1334
1335 return new_seq;
1336 }
1337
1338
1339
1340 /* Return true if calls C1 and C2 are known to go to the same function. */
1341
1342 bool
1343 gimple_call_same_target_p (const gimple *c1, const gimple *c2)
1344 {
1345 if (gimple_call_internal_p (c1))
1346 return (gimple_call_internal_p (c2)
1347 && gimple_call_internal_fn (c1) == gimple_call_internal_fn (c2)
1348 && !gimple_call_internal_unique_p (as_a <const gcall *> (c1)));
1349 else
1350 return (gimple_call_fn (c1) == gimple_call_fn (c2)
1351 || (gimple_call_fndecl (c1)
1352 && gimple_call_fndecl (c1) == gimple_call_fndecl (c2)));
1353 }
1354
1355 /* Detect flags from a GIMPLE_CALL. This is just like
1356 call_expr_flags, but for gimple tuples. */
1357
1358 int
1359 gimple_call_flags (const gimple *stmt)
1360 {
1361 int flags;
1362 tree decl = gimple_call_fndecl (stmt);
1363
1364 if (decl)
1365 flags = flags_from_decl_or_type (decl);
1366 else if (gimple_call_internal_p (stmt))
1367 flags = internal_fn_flags (gimple_call_internal_fn (stmt));
1368 else
1369 flags = flags_from_decl_or_type (gimple_call_fntype (stmt));
1370
1371 if (stmt->subcode & GF_CALL_NOTHROW)
1372 flags |= ECF_NOTHROW;
1373
1374 return flags;
1375 }
1376
1377 /* Return the "fn spec" string for call STMT. */
1378
1379 static const_tree
1380 gimple_call_fnspec (const gcall *stmt)
1381 {
1382 tree type, attr;
1383
1384 if (gimple_call_internal_p (stmt))
1385 return internal_fn_fnspec (gimple_call_internal_fn (stmt));
1386
1387 type = gimple_call_fntype (stmt);
1388 if (!type)
1389 return NULL_TREE;
1390
1391 attr = lookup_attribute ("fn spec", TYPE_ATTRIBUTES (type));
1392 if (!attr)
1393 return NULL_TREE;
1394
1395 return TREE_VALUE (TREE_VALUE (attr));
1396 }
1397
1398 /* Detects argument flags for argument number ARG on call STMT. */
1399
1400 int
1401 gimple_call_arg_flags (const gcall *stmt, unsigned arg)
1402 {
1403 const_tree attr = gimple_call_fnspec (stmt);
1404
1405 if (!attr || 1 + arg >= (unsigned) TREE_STRING_LENGTH (attr))
1406 return 0;
1407
1408 switch (TREE_STRING_POINTER (attr)[1 + arg])
1409 {
1410 case 'x':
1411 case 'X':
1412 return EAF_UNUSED;
1413
1414 case 'R':
1415 return EAF_DIRECT | EAF_NOCLOBBER | EAF_NOESCAPE;
1416
1417 case 'r':
1418 return EAF_NOCLOBBER | EAF_NOESCAPE;
1419
1420 case 'W':
1421 return EAF_DIRECT | EAF_NOESCAPE;
1422
1423 case 'w':
1424 return EAF_NOESCAPE;
1425
1426 case '.':
1427 default:
1428 return 0;
1429 }
1430 }
1431
1432 /* Detects return flags for the call STMT. */
1433
1434 int
1435 gimple_call_return_flags (const gcall *stmt)
1436 {
1437 const_tree attr;
1438
1439 if (gimple_call_flags (stmt) & ECF_MALLOC)
1440 return ERF_NOALIAS;
1441
1442 attr = gimple_call_fnspec (stmt);
1443 if (!attr || TREE_STRING_LENGTH (attr) < 1)
1444 return 0;
1445
1446 switch (TREE_STRING_POINTER (attr)[0])
1447 {
1448 case '1':
1449 case '2':
1450 case '3':
1451 case '4':
1452 return ERF_RETURNS_ARG | (TREE_STRING_POINTER (attr)[0] - '1');
1453
1454 case 'm':
1455 return ERF_NOALIAS;
1456
1457 case '.':
1458 default:
1459 return 0;
1460 }
1461 }
1462
1463
1464 /* Return true if GS is a copy assignment. */
1465
1466 bool
1467 gimple_assign_copy_p (gimple *gs)
1468 {
1469 return (gimple_assign_single_p (gs)
1470 && is_gimple_val (gimple_op (gs, 1)));
1471 }
1472
1473
1474 /* Return true if GS is a SSA_NAME copy assignment. */
1475
1476 bool
1477 gimple_assign_ssa_name_copy_p (gimple *gs)
1478 {
1479 return (gimple_assign_single_p (gs)
1480 && TREE_CODE (gimple_assign_lhs (gs)) == SSA_NAME
1481 && TREE_CODE (gimple_assign_rhs1 (gs)) == SSA_NAME);
1482 }
1483
1484
1485 /* Return true if GS is an assignment with a unary RHS, but the
1486 operator has no effect on the assigned value. The logic is adapted
1487 from STRIP_NOPS. This predicate is intended to be used in tuplifying
1488 instances in which STRIP_NOPS was previously applied to the RHS of
1489 an assignment.
1490
1491 NOTE: In the use cases that led to the creation of this function
1492 and of gimple_assign_single_p, it is typical to test for either
1493 condition and to proceed in the same manner. In each case, the
1494 assigned value is represented by the single RHS operand of the
1495 assignment. I suspect there may be cases where gimple_assign_copy_p,
1496 gimple_assign_single_p, or equivalent logic is used where a similar
1497 treatment of unary NOPs is appropriate. */
1498
1499 bool
1500 gimple_assign_unary_nop_p (gimple *gs)
1501 {
1502 return (is_gimple_assign (gs)
1503 && (CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (gs))
1504 || gimple_assign_rhs_code (gs) == NON_LVALUE_EXPR)
1505 && gimple_assign_rhs1 (gs) != error_mark_node
1506 && (TYPE_MODE (TREE_TYPE (gimple_assign_lhs (gs)))
1507 == TYPE_MODE (TREE_TYPE (gimple_assign_rhs1 (gs)))));
1508 }
1509
1510 /* Set BB to be the basic block holding G. */
1511
1512 void
1513 gimple_set_bb (gimple *stmt, basic_block bb)
1514 {
1515 stmt->bb = bb;
1516
1517 if (gimple_code (stmt) != GIMPLE_LABEL)
1518 return;
1519
1520 /* If the statement is a label, add the label to block-to-labels map
1521 so that we can speed up edge creation for GIMPLE_GOTOs. */
1522 if (cfun->cfg)
1523 {
1524 tree t;
1525 int uid;
1526
1527 t = gimple_label_label (as_a <glabel *> (stmt));
1528 uid = LABEL_DECL_UID (t);
1529 if (uid == -1)
1530 {
1531 unsigned old_len =
1532 vec_safe_length (label_to_block_map_for_fn (cfun));
1533 LABEL_DECL_UID (t) = uid = cfun->cfg->last_label_uid++;
1534 if (old_len <= (unsigned) uid)
1535 {
1536 unsigned new_len = 3 * uid / 2 + 1;
1537
1538 vec_safe_grow_cleared (label_to_block_map_for_fn (cfun),
1539 new_len);
1540 }
1541 }
1542
1543 (*label_to_block_map_for_fn (cfun))[uid] = bb;
1544 }
1545 }
1546
1547
1548 /* Modify the RHS of the assignment pointed-to by GSI using the
1549 operands in the expression tree EXPR.
1550
1551 NOTE: The statement pointed-to by GSI may be reallocated if it
1552 did not have enough operand slots.
1553
1554 This function is useful to convert an existing tree expression into
1555 the flat representation used for the RHS of a GIMPLE assignment.
1556 It will reallocate memory as needed to expand or shrink the number
1557 of operand slots needed to represent EXPR.
1558
1559 NOTE: If you find yourself building a tree and then calling this
1560 function, you are most certainly doing it the slow way. It is much
1561 better to build a new assignment or to use the function
1562 gimple_assign_set_rhs_with_ops, which does not require an
1563 expression tree to be built. */
1564
1565 void
1566 gimple_assign_set_rhs_from_tree (gimple_stmt_iterator *gsi, tree expr)
1567 {
1568 enum tree_code subcode;
1569 tree op1, op2, op3;
1570
1571 extract_ops_from_tree_1 (expr, &subcode, &op1, &op2, &op3);
1572 gimple_assign_set_rhs_with_ops (gsi, subcode, op1, op2, op3);
1573 }
1574
1575
1576 /* Set the RHS of assignment statement pointed-to by GSI to CODE with
1577 operands OP1, OP2 and OP3.
1578
1579 NOTE: The statement pointed-to by GSI may be reallocated if it
1580 did not have enough operand slots. */
1581
1582 void
1583 gimple_assign_set_rhs_with_ops (gimple_stmt_iterator *gsi, enum tree_code code,
1584 tree op1, tree op2, tree op3)
1585 {
1586 unsigned new_rhs_ops = get_gimple_rhs_num_ops (code);
1587 gimple *stmt = gsi_stmt (*gsi);
1588
1589 /* If the new CODE needs more operands, allocate a new statement. */
1590 if (gimple_num_ops (stmt) < new_rhs_ops + 1)
1591 {
1592 tree lhs = gimple_assign_lhs (stmt);
1593 gimple *new_stmt = gimple_alloc (gimple_code (stmt), new_rhs_ops + 1);
1594 memcpy (new_stmt, stmt, gimple_size (gimple_code (stmt)));
1595 gimple_init_singleton (new_stmt);
1596 gsi_replace (gsi, new_stmt, true);
1597 stmt = new_stmt;
1598
1599 /* The LHS needs to be reset as this also changes the SSA name
1600 on the LHS. */
1601 gimple_assign_set_lhs (stmt, lhs);
1602 }
1603
1604 gimple_set_num_ops (stmt, new_rhs_ops + 1);
1605 gimple_set_subcode (stmt, code);
1606 gimple_assign_set_rhs1 (stmt, op1);
1607 if (new_rhs_ops > 1)
1608 gimple_assign_set_rhs2 (stmt, op2);
1609 if (new_rhs_ops > 2)
1610 gimple_assign_set_rhs3 (stmt, op3);
1611 }
1612
1613
1614 /* Return the LHS of a statement that performs an assignment,
1615 either a GIMPLE_ASSIGN or a GIMPLE_CALL. Returns NULL_TREE
1616 for a call to a function that returns no value, or for a
1617 statement other than an assignment or a call. */
1618
1619 tree
1620 gimple_get_lhs (const gimple *stmt)
1621 {
1622 enum gimple_code code = gimple_code (stmt);
1623
1624 if (code == GIMPLE_ASSIGN)
1625 return gimple_assign_lhs (stmt);
1626 else if (code == GIMPLE_CALL)
1627 return gimple_call_lhs (stmt);
1628 else
1629 return NULL_TREE;
1630 }
1631
1632
1633 /* Set the LHS of a statement that performs an assignment,
1634 either a GIMPLE_ASSIGN or a GIMPLE_CALL. */
1635
1636 void
1637 gimple_set_lhs (gimple *stmt, tree lhs)
1638 {
1639 enum gimple_code code = gimple_code (stmt);
1640
1641 if (code == GIMPLE_ASSIGN)
1642 gimple_assign_set_lhs (stmt, lhs);
1643 else if (code == GIMPLE_CALL)
1644 gimple_call_set_lhs (stmt, lhs);
1645 else
1646 gcc_unreachable ();
1647 }
1648
1649
1650 /* Return a deep copy of statement STMT. All the operands from STMT
1651 are reallocated and copied using unshare_expr. The DEF, USE, VDEF
1652 and VUSE operand arrays are set to empty in the new copy. The new
1653 copy isn't part of any sequence. */
1654
1655 gimple *
1656 gimple_copy (gimple *stmt)
1657 {
1658 enum gimple_code code = gimple_code (stmt);
1659 unsigned num_ops = gimple_num_ops (stmt);
1660 gimple *copy = gimple_alloc (code, num_ops);
1661 unsigned i;
1662
1663 /* Shallow copy all the fields from STMT. */
1664 memcpy (copy, stmt, gimple_size (code));
1665 gimple_init_singleton (copy);
1666
1667 /* If STMT has sub-statements, deep-copy them as well. */
1668 if (gimple_has_substatements (stmt))
1669 {
1670 gimple_seq new_seq;
1671 tree t;
1672
1673 switch (gimple_code (stmt))
1674 {
1675 case GIMPLE_BIND:
1676 {
1677 gbind *bind_stmt = as_a <gbind *> (stmt);
1678 gbind *bind_copy = as_a <gbind *> (copy);
1679 new_seq = gimple_seq_copy (gimple_bind_body (bind_stmt));
1680 gimple_bind_set_body (bind_copy, new_seq);
1681 gimple_bind_set_vars (bind_copy,
1682 unshare_expr (gimple_bind_vars (bind_stmt)));
1683 gimple_bind_set_block (bind_copy, gimple_bind_block (bind_stmt));
1684 }
1685 break;
1686
1687 case GIMPLE_CATCH:
1688 {
1689 gcatch *catch_stmt = as_a <gcatch *> (stmt);
1690 gcatch *catch_copy = as_a <gcatch *> (copy);
1691 new_seq = gimple_seq_copy (gimple_catch_handler (catch_stmt));
1692 gimple_catch_set_handler (catch_copy, new_seq);
1693 t = unshare_expr (gimple_catch_types (catch_stmt));
1694 gimple_catch_set_types (catch_copy, t);
1695 }
1696 break;
1697
1698 case GIMPLE_EH_FILTER:
1699 {
1700 geh_filter *eh_filter_stmt = as_a <geh_filter *> (stmt);
1701 geh_filter *eh_filter_copy = as_a <geh_filter *> (copy);
1702 new_seq
1703 = gimple_seq_copy (gimple_eh_filter_failure (eh_filter_stmt));
1704 gimple_eh_filter_set_failure (eh_filter_copy, new_seq);
1705 t = unshare_expr (gimple_eh_filter_types (eh_filter_stmt));
1706 gimple_eh_filter_set_types (eh_filter_copy, t);
1707 }
1708 break;
1709
1710 case GIMPLE_EH_ELSE:
1711 {
1712 geh_else *eh_else_stmt = as_a <geh_else *> (stmt);
1713 geh_else *eh_else_copy = as_a <geh_else *> (copy);
1714 new_seq = gimple_seq_copy (gimple_eh_else_n_body (eh_else_stmt));
1715 gimple_eh_else_set_n_body (eh_else_copy, new_seq);
1716 new_seq = gimple_seq_copy (gimple_eh_else_e_body (eh_else_stmt));
1717 gimple_eh_else_set_e_body (eh_else_copy, new_seq);
1718 }
1719 break;
1720
1721 case GIMPLE_TRY:
1722 {
1723 gtry *try_stmt = as_a <gtry *> (stmt);
1724 gtry *try_copy = as_a <gtry *> (copy);
1725 new_seq = gimple_seq_copy (gimple_try_eval (try_stmt));
1726 gimple_try_set_eval (try_copy, new_seq);
1727 new_seq = gimple_seq_copy (gimple_try_cleanup (try_stmt));
1728 gimple_try_set_cleanup (try_copy, new_seq);
1729 }
1730 break;
1731
1732 case GIMPLE_OMP_FOR:
1733 new_seq = gimple_seq_copy (gimple_omp_for_pre_body (stmt));
1734 gimple_omp_for_set_pre_body (copy, new_seq);
1735 t = unshare_expr (gimple_omp_for_clauses (stmt));
1736 gimple_omp_for_set_clauses (copy, t);
1737 {
1738 gomp_for *omp_for_copy = as_a <gomp_for *> (copy);
1739 omp_for_copy->iter = ggc_vec_alloc<gimple_omp_for_iter>
1740 ( gimple_omp_for_collapse (stmt));
1741 }
1742 for (i = 0; i < gimple_omp_for_collapse (stmt); i++)
1743 {
1744 gimple_omp_for_set_cond (copy, i,
1745 gimple_omp_for_cond (stmt, i));
1746 gimple_omp_for_set_index (copy, i,
1747 gimple_omp_for_index (stmt, i));
1748 t = unshare_expr (gimple_omp_for_initial (stmt, i));
1749 gimple_omp_for_set_initial (copy, i, t);
1750 t = unshare_expr (gimple_omp_for_final (stmt, i));
1751 gimple_omp_for_set_final (copy, i, t);
1752 t = unshare_expr (gimple_omp_for_incr (stmt, i));
1753 gimple_omp_for_set_incr (copy, i, t);
1754 }
1755 goto copy_omp_body;
1756
1757 case GIMPLE_OMP_PARALLEL:
1758 {
1759 gomp_parallel *omp_par_stmt = as_a <gomp_parallel *> (stmt);
1760 gomp_parallel *omp_par_copy = as_a <gomp_parallel *> (copy);
1761 t = unshare_expr (gimple_omp_parallel_clauses (omp_par_stmt));
1762 gimple_omp_parallel_set_clauses (omp_par_copy, t);
1763 t = unshare_expr (gimple_omp_parallel_child_fn (omp_par_stmt));
1764 gimple_omp_parallel_set_child_fn (omp_par_copy, t);
1765 t = unshare_expr (gimple_omp_parallel_data_arg (omp_par_stmt));
1766 gimple_omp_parallel_set_data_arg (omp_par_copy, t);
1767 }
1768 goto copy_omp_body;
1769
1770 case GIMPLE_OMP_TASK:
1771 t = unshare_expr (gimple_omp_task_clauses (stmt));
1772 gimple_omp_task_set_clauses (copy, t);
1773 t = unshare_expr (gimple_omp_task_child_fn (stmt));
1774 gimple_omp_task_set_child_fn (copy, t);
1775 t = unshare_expr (gimple_omp_task_data_arg (stmt));
1776 gimple_omp_task_set_data_arg (copy, t);
1777 t = unshare_expr (gimple_omp_task_copy_fn (stmt));
1778 gimple_omp_task_set_copy_fn (copy, t);
1779 t = unshare_expr (gimple_omp_task_arg_size (stmt));
1780 gimple_omp_task_set_arg_size (copy, t);
1781 t = unshare_expr (gimple_omp_task_arg_align (stmt));
1782 gimple_omp_task_set_arg_align (copy, t);
1783 goto copy_omp_body;
1784
1785 case GIMPLE_OMP_CRITICAL:
1786 t = unshare_expr (gimple_omp_critical_name
1787 (as_a <gomp_critical *> (stmt)));
1788 gimple_omp_critical_set_name (as_a <gomp_critical *> (copy), t);
1789 t = unshare_expr (gimple_omp_critical_clauses
1790 (as_a <gomp_critical *> (stmt)));
1791 gimple_omp_critical_set_clauses (as_a <gomp_critical *> (copy), t);
1792 goto copy_omp_body;
1793
1794 case GIMPLE_OMP_ORDERED:
1795 t = unshare_expr (gimple_omp_ordered_clauses
1796 (as_a <gomp_ordered *> (stmt)));
1797 gimple_omp_ordered_set_clauses (as_a <gomp_ordered *> (copy), t);
1798 goto copy_omp_body;
1799
1800 case GIMPLE_OMP_SECTIONS:
1801 t = unshare_expr (gimple_omp_sections_clauses (stmt));
1802 gimple_omp_sections_set_clauses (copy, t);
1803 t = unshare_expr (gimple_omp_sections_control (stmt));
1804 gimple_omp_sections_set_control (copy, t);
1805 /* FALLTHRU */
1806
1807 case GIMPLE_OMP_SINGLE:
1808 case GIMPLE_OMP_TARGET:
1809 case GIMPLE_OMP_TEAMS:
1810 case GIMPLE_OMP_SECTION:
1811 case GIMPLE_OMP_MASTER:
1812 case GIMPLE_OMP_TASKGROUP:
1813 copy_omp_body:
1814 new_seq = gimple_seq_copy (gimple_omp_body (stmt));
1815 gimple_omp_set_body (copy, new_seq);
1816 break;
1817
1818 case GIMPLE_TRANSACTION:
1819 new_seq = gimple_seq_copy (gimple_transaction_body (
1820 as_a <gtransaction *> (stmt)));
1821 gimple_transaction_set_body (as_a <gtransaction *> (copy),
1822 new_seq);
1823 break;
1824
1825 case GIMPLE_WITH_CLEANUP_EXPR:
1826 new_seq = gimple_seq_copy (gimple_wce_cleanup (stmt));
1827 gimple_wce_set_cleanup (copy, new_seq);
1828 break;
1829
1830 default:
1831 gcc_unreachable ();
1832 }
1833 }
1834
1835 /* Make copy of operands. */
1836 for (i = 0; i < num_ops; i++)
1837 gimple_set_op (copy, i, unshare_expr (gimple_op (stmt, i)));
1838
1839 if (gimple_has_mem_ops (stmt))
1840 {
1841 gimple_set_vdef (copy, gimple_vdef (stmt));
1842 gimple_set_vuse (copy, gimple_vuse (stmt));
1843 }
1844
1845 /* Clear out SSA operand vectors on COPY. */
1846 if (gimple_has_ops (stmt))
1847 {
1848 gimple_set_use_ops (copy, NULL);
1849
1850 /* SSA operands need to be updated. */
1851 gimple_set_modified (copy, true);
1852 }
1853
1854 return copy;
1855 }
1856
1857
1858 /* Return true if statement S has side-effects. We consider a
1859 statement to have side effects if:
1860
1861 - It is a GIMPLE_CALL not marked with ECF_PURE or ECF_CONST.
1862 - Any of its operands are marked TREE_THIS_VOLATILE or TREE_SIDE_EFFECTS. */
1863
1864 bool
1865 gimple_has_side_effects (const gimple *s)
1866 {
1867 if (is_gimple_debug (s))
1868 return false;
1869
1870 /* We don't have to scan the arguments to check for
1871 volatile arguments, though, at present, we still
1872 do a scan to check for TREE_SIDE_EFFECTS. */
1873 if (gimple_has_volatile_ops (s))
1874 return true;
1875
1876 if (gimple_code (s) == GIMPLE_ASM
1877 && gimple_asm_volatile_p (as_a <const gasm *> (s)))
1878 return true;
1879
1880 if (is_gimple_call (s))
1881 {
1882 int flags = gimple_call_flags (s);
1883
1884 /* An infinite loop is considered a side effect. */
1885 if (!(flags & (ECF_CONST | ECF_PURE))
1886 || (flags & ECF_LOOPING_CONST_OR_PURE))
1887 return true;
1888
1889 return false;
1890 }
1891
1892 return false;
1893 }
1894
1895 /* Helper for gimple_could_trap_p and gimple_assign_rhs_could_trap_p.
1896 Return true if S can trap. When INCLUDE_MEM is true, check whether
1897 the memory operations could trap. When INCLUDE_STORES is true and
1898 S is a GIMPLE_ASSIGN, the LHS of the assignment is also checked. */
1899
1900 bool
1901 gimple_could_trap_p_1 (gimple *s, bool include_mem, bool include_stores)
1902 {
1903 tree t, div = NULL_TREE;
1904 enum tree_code op;
1905
1906 if (include_mem)
1907 {
1908 unsigned i, start = (is_gimple_assign (s) && !include_stores) ? 1 : 0;
1909
1910 for (i = start; i < gimple_num_ops (s); i++)
1911 if (tree_could_trap_p (gimple_op (s, i)))
1912 return true;
1913 }
1914
1915 switch (gimple_code (s))
1916 {
1917 case GIMPLE_ASM:
1918 return gimple_asm_volatile_p (as_a <gasm *> (s));
1919
1920 case GIMPLE_CALL:
1921 t = gimple_call_fndecl (s);
1922 /* Assume that calls to weak functions may trap. */
1923 if (!t || !DECL_P (t) || DECL_WEAK (t))
1924 return true;
1925 return false;
1926
1927 case GIMPLE_ASSIGN:
1928 t = gimple_expr_type (s);
1929 op = gimple_assign_rhs_code (s);
1930 if (get_gimple_rhs_class (op) == GIMPLE_BINARY_RHS)
1931 div = gimple_assign_rhs2 (s);
1932 return (operation_could_trap_p (op, FLOAT_TYPE_P (t),
1933 (INTEGRAL_TYPE_P (t)
1934 && TYPE_OVERFLOW_TRAPS (t)),
1935 div));
1936
1937 default:
1938 break;
1939 }
1940
1941 return false;
1942 }
1943
1944 /* Return true if statement S can trap. */
1945
1946 bool
1947 gimple_could_trap_p (gimple *s)
1948 {
1949 return gimple_could_trap_p_1 (s, true, true);
1950 }
1951
1952 /* Return true if RHS of a GIMPLE_ASSIGN S can trap. */
1953
1954 bool
1955 gimple_assign_rhs_could_trap_p (gimple *s)
1956 {
1957 gcc_assert (is_gimple_assign (s));
1958 return gimple_could_trap_p_1 (s, true, false);
1959 }
1960
1961
1962 /* Print debugging information for gimple stmts generated. */
1963
1964 void
1965 dump_gimple_statistics (void)
1966 {
1967 int i, total_tuples = 0, total_bytes = 0;
1968
1969 if (! GATHER_STATISTICS)
1970 {
1971 fprintf (stderr, "No gimple statistics\n");
1972 return;
1973 }
1974
1975 fprintf (stderr, "\nGIMPLE statements\n");
1976 fprintf (stderr, "Kind Stmts Bytes\n");
1977 fprintf (stderr, "---------------------------------------\n");
1978 for (i = 0; i < (int) gimple_alloc_kind_all; ++i)
1979 {
1980 fprintf (stderr, "%-20s %7d %10d\n", gimple_alloc_kind_names[i],
1981 gimple_alloc_counts[i], gimple_alloc_sizes[i]);
1982 total_tuples += gimple_alloc_counts[i];
1983 total_bytes += gimple_alloc_sizes[i];
1984 }
1985 fprintf (stderr, "---------------------------------------\n");
1986 fprintf (stderr, "%-20s %7d %10d\n", "Total", total_tuples, total_bytes);
1987 fprintf (stderr, "---------------------------------------\n");
1988 }
1989
1990
1991 /* Return the number of operands needed on the RHS of a GIMPLE
1992 assignment for an expression with tree code CODE. */
1993
1994 unsigned
1995 get_gimple_rhs_num_ops (enum tree_code code)
1996 {
1997 enum gimple_rhs_class rhs_class = get_gimple_rhs_class (code);
1998
1999 if (rhs_class == GIMPLE_UNARY_RHS || rhs_class == GIMPLE_SINGLE_RHS)
2000 return 1;
2001 else if (rhs_class == GIMPLE_BINARY_RHS)
2002 return 2;
2003 else if (rhs_class == GIMPLE_TERNARY_RHS)
2004 return 3;
2005 else
2006 gcc_unreachable ();
2007 }
2008
2009 #define DEFTREECODE(SYM, STRING, TYPE, NARGS) \
2010 (unsigned char) \
2011 ((TYPE) == tcc_unary ? GIMPLE_UNARY_RHS \
2012 : ((TYPE) == tcc_binary \
2013 || (TYPE) == tcc_comparison) ? GIMPLE_BINARY_RHS \
2014 : ((TYPE) == tcc_constant \
2015 || (TYPE) == tcc_declaration \
2016 || (TYPE) == tcc_reference) ? GIMPLE_SINGLE_RHS \
2017 : ((SYM) == TRUTH_AND_EXPR \
2018 || (SYM) == TRUTH_OR_EXPR \
2019 || (SYM) == TRUTH_XOR_EXPR) ? GIMPLE_BINARY_RHS \
2020 : (SYM) == TRUTH_NOT_EXPR ? GIMPLE_UNARY_RHS \
2021 : ((SYM) == COND_EXPR \
2022 || (SYM) == WIDEN_MULT_PLUS_EXPR \
2023 || (SYM) == WIDEN_MULT_MINUS_EXPR \
2024 || (SYM) == DOT_PROD_EXPR \
2025 || (SYM) == SAD_EXPR \
2026 || (SYM) == REALIGN_LOAD_EXPR \
2027 || (SYM) == VEC_COND_EXPR \
2028 || (SYM) == VEC_PERM_EXPR \
2029 || (SYM) == FMA_EXPR) ? GIMPLE_TERNARY_RHS \
2030 : ((SYM) == CONSTRUCTOR \
2031 || (SYM) == OBJ_TYPE_REF \
2032 || (SYM) == ASSERT_EXPR \
2033 || (SYM) == ADDR_EXPR \
2034 || (SYM) == WITH_SIZE_EXPR \
2035 || (SYM) == SSA_NAME) ? GIMPLE_SINGLE_RHS \
2036 : GIMPLE_INVALID_RHS),
2037 #define END_OF_BASE_TREE_CODES (unsigned char) GIMPLE_INVALID_RHS,
2038
2039 const unsigned char gimple_rhs_class_table[] = {
2040 #include "all-tree.def"
2041 };
2042
2043 #undef DEFTREECODE
2044 #undef END_OF_BASE_TREE_CODES
2045
2046 /* Canonicalize a tree T for use in a COND_EXPR as conditional. Returns
2047 a canonicalized tree that is valid for a COND_EXPR or NULL_TREE, if
2048 we failed to create one. */
2049
2050 tree
2051 canonicalize_cond_expr_cond (tree t)
2052 {
2053 /* Strip conversions around boolean operations. */
2054 if (CONVERT_EXPR_P (t)
2055 && (truth_value_p (TREE_CODE (TREE_OPERAND (t, 0)))
2056 || TREE_CODE (TREE_TYPE (TREE_OPERAND (t, 0)))
2057 == BOOLEAN_TYPE))
2058 t = TREE_OPERAND (t, 0);
2059
2060 /* For !x use x == 0. */
2061 if (TREE_CODE (t) == TRUTH_NOT_EXPR)
2062 {
2063 tree top0 = TREE_OPERAND (t, 0);
2064 t = build2 (EQ_EXPR, TREE_TYPE (t),
2065 top0, build_int_cst (TREE_TYPE (top0), 0));
2066 }
2067 /* For cmp ? 1 : 0 use cmp. */
2068 else if (TREE_CODE (t) == COND_EXPR
2069 && COMPARISON_CLASS_P (TREE_OPERAND (t, 0))
2070 && integer_onep (TREE_OPERAND (t, 1))
2071 && integer_zerop (TREE_OPERAND (t, 2)))
2072 {
2073 tree top0 = TREE_OPERAND (t, 0);
2074 t = build2 (TREE_CODE (top0), TREE_TYPE (t),
2075 TREE_OPERAND (top0, 0), TREE_OPERAND (top0, 1));
2076 }
2077 /* For x ^ y use x != y. */
2078 else if (TREE_CODE (t) == BIT_XOR_EXPR)
2079 t = build2 (NE_EXPR, TREE_TYPE (t),
2080 TREE_OPERAND (t, 0), TREE_OPERAND (t, 1));
2081
2082 if (is_gimple_condexpr (t))
2083 return t;
2084
2085 return NULL_TREE;
2086 }
2087
2088 /* Build a GIMPLE_CALL identical to STMT but skipping the arguments in
2089 the positions marked by the set ARGS_TO_SKIP. */
2090
2091 gcall *
2092 gimple_call_copy_skip_args (gcall *stmt, bitmap args_to_skip)
2093 {
2094 int i;
2095 int nargs = gimple_call_num_args (stmt);
2096 auto_vec<tree> vargs (nargs);
2097 gcall *new_stmt;
2098
2099 for (i = 0; i < nargs; i++)
2100 if (!bitmap_bit_p (args_to_skip, i))
2101 vargs.quick_push (gimple_call_arg (stmt, i));
2102
2103 if (gimple_call_internal_p (stmt))
2104 new_stmt = gimple_build_call_internal_vec (gimple_call_internal_fn (stmt),
2105 vargs);
2106 else
2107 new_stmt = gimple_build_call_vec (gimple_call_fn (stmt), vargs);
2108
2109 if (gimple_call_lhs (stmt))
2110 gimple_call_set_lhs (new_stmt, gimple_call_lhs (stmt));
2111
2112 gimple_set_vuse (new_stmt, gimple_vuse (stmt));
2113 gimple_set_vdef (new_stmt, gimple_vdef (stmt));
2114
2115 if (gimple_has_location (stmt))
2116 gimple_set_location (new_stmt, gimple_location (stmt));
2117 gimple_call_copy_flags (new_stmt, stmt);
2118 gimple_call_set_chain (new_stmt, gimple_call_chain (stmt));
2119
2120 gimple_set_modified (new_stmt, true);
2121
2122 return new_stmt;
2123 }
2124
2125
2126
2127 /* Return true if the field decls F1 and F2 are at the same offset.
2128
2129 This is intended to be used on GIMPLE types only. */
2130
2131 bool
2132 gimple_compare_field_offset (tree f1, tree f2)
2133 {
2134 if (DECL_OFFSET_ALIGN (f1) == DECL_OFFSET_ALIGN (f2))
2135 {
2136 tree offset1 = DECL_FIELD_OFFSET (f1);
2137 tree offset2 = DECL_FIELD_OFFSET (f2);
2138 return ((offset1 == offset2
2139 /* Once gimplification is done, self-referential offsets are
2140 instantiated as operand #2 of the COMPONENT_REF built for
2141 each access and reset. Therefore, they are not relevant
2142 anymore and fields are interchangeable provided that they
2143 represent the same access. */
2144 || (TREE_CODE (offset1) == PLACEHOLDER_EXPR
2145 && TREE_CODE (offset2) == PLACEHOLDER_EXPR
2146 && (DECL_SIZE (f1) == DECL_SIZE (f2)
2147 || (TREE_CODE (DECL_SIZE (f1)) == PLACEHOLDER_EXPR
2148 && TREE_CODE (DECL_SIZE (f2)) == PLACEHOLDER_EXPR)
2149 || operand_equal_p (DECL_SIZE (f1), DECL_SIZE (f2), 0))
2150 && DECL_ALIGN (f1) == DECL_ALIGN (f2))
2151 || operand_equal_p (offset1, offset2, 0))
2152 && tree_int_cst_equal (DECL_FIELD_BIT_OFFSET (f1),
2153 DECL_FIELD_BIT_OFFSET (f2)));
2154 }
2155
2156 /* Fortran and C do not always agree on what DECL_OFFSET_ALIGN
2157 should be, so handle differing ones specially by decomposing
2158 the offset into a byte and bit offset manually. */
2159 if (tree_fits_shwi_p (DECL_FIELD_OFFSET (f1))
2160 && tree_fits_shwi_p (DECL_FIELD_OFFSET (f2)))
2161 {
2162 unsigned HOST_WIDE_INT byte_offset1, byte_offset2;
2163 unsigned HOST_WIDE_INT bit_offset1, bit_offset2;
2164 bit_offset1 = TREE_INT_CST_LOW (DECL_FIELD_BIT_OFFSET (f1));
2165 byte_offset1 = (TREE_INT_CST_LOW (DECL_FIELD_OFFSET (f1))
2166 + bit_offset1 / BITS_PER_UNIT);
2167 bit_offset2 = TREE_INT_CST_LOW (DECL_FIELD_BIT_OFFSET (f2));
2168 byte_offset2 = (TREE_INT_CST_LOW (DECL_FIELD_OFFSET (f2))
2169 + bit_offset2 / BITS_PER_UNIT);
2170 if (byte_offset1 != byte_offset2)
2171 return false;
2172 return bit_offset1 % BITS_PER_UNIT == bit_offset2 % BITS_PER_UNIT;
2173 }
2174
2175 return false;
2176 }
2177
2178
2179 /* Return a type the same as TYPE except unsigned or
2180 signed according to UNSIGNEDP. */
2181
2182 static tree
2183 gimple_signed_or_unsigned_type (bool unsignedp, tree type)
2184 {
2185 tree type1;
2186 int i;
2187
2188 type1 = TYPE_MAIN_VARIANT (type);
2189 if (type1 == signed_char_type_node
2190 || type1 == char_type_node
2191 || type1 == unsigned_char_type_node)
2192 return unsignedp ? unsigned_char_type_node : signed_char_type_node;
2193 if (type1 == integer_type_node || type1 == unsigned_type_node)
2194 return unsignedp ? unsigned_type_node : integer_type_node;
2195 if (type1 == short_integer_type_node || type1 == short_unsigned_type_node)
2196 return unsignedp ? short_unsigned_type_node : short_integer_type_node;
2197 if (type1 == long_integer_type_node || type1 == long_unsigned_type_node)
2198 return unsignedp ? long_unsigned_type_node : long_integer_type_node;
2199 if (type1 == long_long_integer_type_node
2200 || type1 == long_long_unsigned_type_node)
2201 return unsignedp
2202 ? long_long_unsigned_type_node
2203 : long_long_integer_type_node;
2204
2205 for (i = 0; i < NUM_INT_N_ENTS; i ++)
2206 if (int_n_enabled_p[i]
2207 && (type1 == int_n_trees[i].unsigned_type
2208 || type1 == int_n_trees[i].signed_type))
2209 return unsignedp
2210 ? int_n_trees[i].unsigned_type
2211 : int_n_trees[i].signed_type;
2212
2213 #if HOST_BITS_PER_WIDE_INT >= 64
2214 if (type1 == intTI_type_node || type1 == unsigned_intTI_type_node)
2215 return unsignedp ? unsigned_intTI_type_node : intTI_type_node;
2216 #endif
2217 if (type1 == intDI_type_node || type1 == unsigned_intDI_type_node)
2218 return unsignedp ? unsigned_intDI_type_node : intDI_type_node;
2219 if (type1 == intSI_type_node || type1 == unsigned_intSI_type_node)
2220 return unsignedp ? unsigned_intSI_type_node : intSI_type_node;
2221 if (type1 == intHI_type_node || type1 == unsigned_intHI_type_node)
2222 return unsignedp ? unsigned_intHI_type_node : intHI_type_node;
2223 if (type1 == intQI_type_node || type1 == unsigned_intQI_type_node)
2224 return unsignedp ? unsigned_intQI_type_node : intQI_type_node;
2225
2226 #define GIMPLE_FIXED_TYPES(NAME) \
2227 if (type1 == short_ ## NAME ## _type_node \
2228 || type1 == unsigned_short_ ## NAME ## _type_node) \
2229 return unsignedp ? unsigned_short_ ## NAME ## _type_node \
2230 : short_ ## NAME ## _type_node; \
2231 if (type1 == NAME ## _type_node \
2232 || type1 == unsigned_ ## NAME ## _type_node) \
2233 return unsignedp ? unsigned_ ## NAME ## _type_node \
2234 : NAME ## _type_node; \
2235 if (type1 == long_ ## NAME ## _type_node \
2236 || type1 == unsigned_long_ ## NAME ## _type_node) \
2237 return unsignedp ? unsigned_long_ ## NAME ## _type_node \
2238 : long_ ## NAME ## _type_node; \
2239 if (type1 == long_long_ ## NAME ## _type_node \
2240 || type1 == unsigned_long_long_ ## NAME ## _type_node) \
2241 return unsignedp ? unsigned_long_long_ ## NAME ## _type_node \
2242 : long_long_ ## NAME ## _type_node;
2243
2244 #define GIMPLE_FIXED_MODE_TYPES(NAME) \
2245 if (type1 == NAME ## _type_node \
2246 || type1 == u ## NAME ## _type_node) \
2247 return unsignedp ? u ## NAME ## _type_node \
2248 : NAME ## _type_node;
2249
2250 #define GIMPLE_FIXED_TYPES_SAT(NAME) \
2251 if (type1 == sat_ ## short_ ## NAME ## _type_node \
2252 || type1 == sat_ ## unsigned_short_ ## NAME ## _type_node) \
2253 return unsignedp ? sat_ ## unsigned_short_ ## NAME ## _type_node \
2254 : sat_ ## short_ ## NAME ## _type_node; \
2255 if (type1 == sat_ ## NAME ## _type_node \
2256 || type1 == sat_ ## unsigned_ ## NAME ## _type_node) \
2257 return unsignedp ? sat_ ## unsigned_ ## NAME ## _type_node \
2258 : sat_ ## NAME ## _type_node; \
2259 if (type1 == sat_ ## long_ ## NAME ## _type_node \
2260 || type1 == sat_ ## unsigned_long_ ## NAME ## _type_node) \
2261 return unsignedp ? sat_ ## unsigned_long_ ## NAME ## _type_node \
2262 : sat_ ## long_ ## NAME ## _type_node; \
2263 if (type1 == sat_ ## long_long_ ## NAME ## _type_node \
2264 || type1 == sat_ ## unsigned_long_long_ ## NAME ## _type_node) \
2265 return unsignedp ? sat_ ## unsigned_long_long_ ## NAME ## _type_node \
2266 : sat_ ## long_long_ ## NAME ## _type_node;
2267
2268 #define GIMPLE_FIXED_MODE_TYPES_SAT(NAME) \
2269 if (type1 == sat_ ## NAME ## _type_node \
2270 || type1 == sat_ ## u ## NAME ## _type_node) \
2271 return unsignedp ? sat_ ## u ## NAME ## _type_node \
2272 : sat_ ## NAME ## _type_node;
2273
2274 GIMPLE_FIXED_TYPES (fract);
2275 GIMPLE_FIXED_TYPES_SAT (fract);
2276 GIMPLE_FIXED_TYPES (accum);
2277 GIMPLE_FIXED_TYPES_SAT (accum);
2278
2279 GIMPLE_FIXED_MODE_TYPES (qq);
2280 GIMPLE_FIXED_MODE_TYPES (hq);
2281 GIMPLE_FIXED_MODE_TYPES (sq);
2282 GIMPLE_FIXED_MODE_TYPES (dq);
2283 GIMPLE_FIXED_MODE_TYPES (tq);
2284 GIMPLE_FIXED_MODE_TYPES_SAT (qq);
2285 GIMPLE_FIXED_MODE_TYPES_SAT (hq);
2286 GIMPLE_FIXED_MODE_TYPES_SAT (sq);
2287 GIMPLE_FIXED_MODE_TYPES_SAT (dq);
2288 GIMPLE_FIXED_MODE_TYPES_SAT (tq);
2289 GIMPLE_FIXED_MODE_TYPES (ha);
2290 GIMPLE_FIXED_MODE_TYPES (sa);
2291 GIMPLE_FIXED_MODE_TYPES (da);
2292 GIMPLE_FIXED_MODE_TYPES (ta);
2293 GIMPLE_FIXED_MODE_TYPES_SAT (ha);
2294 GIMPLE_FIXED_MODE_TYPES_SAT (sa);
2295 GIMPLE_FIXED_MODE_TYPES_SAT (da);
2296 GIMPLE_FIXED_MODE_TYPES_SAT (ta);
2297
2298 /* For ENUMERAL_TYPEs in C++, must check the mode of the types, not
2299 the precision; they have precision set to match their range, but
2300 may use a wider mode to match an ABI. If we change modes, we may
2301 wind up with bad conversions. For INTEGER_TYPEs in C, must check
2302 the precision as well, so as to yield correct results for
2303 bit-field types. C++ does not have these separate bit-field
2304 types, and producing a signed or unsigned variant of an
2305 ENUMERAL_TYPE may cause other problems as well. */
2306 if (!INTEGRAL_TYPE_P (type)
2307 || TYPE_UNSIGNED (type) == unsignedp)
2308 return type;
2309
2310 #define TYPE_OK(node) \
2311 (TYPE_MODE (type) == TYPE_MODE (node) \
2312 && TYPE_PRECISION (type) == TYPE_PRECISION (node))
2313 if (TYPE_OK (signed_char_type_node))
2314 return unsignedp ? unsigned_char_type_node : signed_char_type_node;
2315 if (TYPE_OK (integer_type_node))
2316 return unsignedp ? unsigned_type_node : integer_type_node;
2317 if (TYPE_OK (short_integer_type_node))
2318 return unsignedp ? short_unsigned_type_node : short_integer_type_node;
2319 if (TYPE_OK (long_integer_type_node))
2320 return unsignedp ? long_unsigned_type_node : long_integer_type_node;
2321 if (TYPE_OK (long_long_integer_type_node))
2322 return (unsignedp
2323 ? long_long_unsigned_type_node
2324 : long_long_integer_type_node);
2325
2326 for (i = 0; i < NUM_INT_N_ENTS; i ++)
2327 if (int_n_enabled_p[i]
2328 && TYPE_MODE (type) == int_n_data[i].m
2329 && TYPE_PRECISION (type) == int_n_data[i].bitsize)
2330 return unsignedp
2331 ? int_n_trees[i].unsigned_type
2332 : int_n_trees[i].signed_type;
2333
2334 #if HOST_BITS_PER_WIDE_INT >= 64
2335 if (TYPE_OK (intTI_type_node))
2336 return unsignedp ? unsigned_intTI_type_node : intTI_type_node;
2337 #endif
2338 if (TYPE_OK (intDI_type_node))
2339 return unsignedp ? unsigned_intDI_type_node : intDI_type_node;
2340 if (TYPE_OK (intSI_type_node))
2341 return unsignedp ? unsigned_intSI_type_node : intSI_type_node;
2342 if (TYPE_OK (intHI_type_node))
2343 return unsignedp ? unsigned_intHI_type_node : intHI_type_node;
2344 if (TYPE_OK (intQI_type_node))
2345 return unsignedp ? unsigned_intQI_type_node : intQI_type_node;
2346
2347 #undef GIMPLE_FIXED_TYPES
2348 #undef GIMPLE_FIXED_MODE_TYPES
2349 #undef GIMPLE_FIXED_TYPES_SAT
2350 #undef GIMPLE_FIXED_MODE_TYPES_SAT
2351 #undef TYPE_OK
2352
2353 return build_nonstandard_integer_type (TYPE_PRECISION (type), unsignedp);
2354 }
2355
2356
2357 /* Return an unsigned type the same as TYPE in other respects. */
2358
2359 tree
2360 gimple_unsigned_type (tree type)
2361 {
2362 return gimple_signed_or_unsigned_type (true, type);
2363 }
2364
2365
2366 /* Return a signed type the same as TYPE in other respects. */
2367
2368 tree
2369 gimple_signed_type (tree type)
2370 {
2371 return gimple_signed_or_unsigned_type (false, type);
2372 }
2373
2374
2375 /* Return the typed-based alias set for T, which may be an expression
2376 or a type. Return -1 if we don't do anything special. */
2377
2378 alias_set_type
2379 gimple_get_alias_set (tree t)
2380 {
2381 tree u;
2382
2383 /* Permit type-punning when accessing a union, provided the access
2384 is directly through the union. For example, this code does not
2385 permit taking the address of a union member and then storing
2386 through it. Even the type-punning allowed here is a GCC
2387 extension, albeit a common and useful one; the C standard says
2388 that such accesses have implementation-defined behavior. */
2389 for (u = t;
2390 TREE_CODE (u) == COMPONENT_REF || TREE_CODE (u) == ARRAY_REF;
2391 u = TREE_OPERAND (u, 0))
2392 if (TREE_CODE (u) == COMPONENT_REF
2393 && TREE_CODE (TREE_TYPE (TREE_OPERAND (u, 0))) == UNION_TYPE)
2394 return 0;
2395
2396 /* That's all the expressions we handle specially. */
2397 if (!TYPE_P (t))
2398 return -1;
2399
2400 /* For convenience, follow the C standard when dealing with
2401 character types. Any object may be accessed via an lvalue that
2402 has character type. */
2403 if (t == char_type_node
2404 || t == signed_char_type_node
2405 || t == unsigned_char_type_node)
2406 return 0;
2407
2408 /* Allow aliasing between signed and unsigned variants of the same
2409 type. We treat the signed variant as canonical. */
2410 if (TREE_CODE (t) == INTEGER_TYPE && TYPE_UNSIGNED (t))
2411 {
2412 tree t1 = gimple_signed_type (t);
2413
2414 /* t1 == t can happen for boolean nodes which are always unsigned. */
2415 if (t1 != t)
2416 return get_alias_set (t1);
2417 }
2418
2419 return -1;
2420 }
2421
2422
2423 /* Helper for gimple_ior_addresses_taken_1. */
2424
2425 static bool
2426 gimple_ior_addresses_taken_1 (gimple *, tree addr, tree, void *data)
2427 {
2428 bitmap addresses_taken = (bitmap)data;
2429 addr = get_base_address (addr);
2430 if (addr
2431 && DECL_P (addr))
2432 {
2433 bitmap_set_bit (addresses_taken, DECL_UID (addr));
2434 return true;
2435 }
2436 return false;
2437 }
2438
2439 /* Set the bit for the uid of all decls that have their address taken
2440 in STMT in the ADDRESSES_TAKEN bitmap. Returns true if there
2441 were any in this stmt. */
2442
2443 bool
2444 gimple_ior_addresses_taken (bitmap addresses_taken, gimple *stmt)
2445 {
2446 return walk_stmt_load_store_addr_ops (stmt, addresses_taken, NULL, NULL,
2447 gimple_ior_addresses_taken_1);
2448 }
2449
2450
2451 /* Return true if TYPE1 and TYPE2 are compatible enough for builtin
2452 processing. */
2453
2454 static bool
2455 validate_type (tree type1, tree type2)
2456 {
2457 if (INTEGRAL_TYPE_P (type1)
2458 && INTEGRAL_TYPE_P (type2))
2459 ;
2460 else if (POINTER_TYPE_P (type1)
2461 && POINTER_TYPE_P (type2))
2462 ;
2463 else if (TREE_CODE (type1)
2464 != TREE_CODE (type2))
2465 return false;
2466 return true;
2467 }
2468
2469 /* Return true when STMTs arguments and return value match those of FNDECL,
2470 a decl of a builtin function. */
2471
2472 bool
2473 gimple_builtin_call_types_compatible_p (const gimple *stmt, tree fndecl)
2474 {
2475 gcc_checking_assert (DECL_BUILT_IN_CLASS (fndecl) != NOT_BUILT_IN);
2476
2477 tree ret = gimple_call_lhs (stmt);
2478 if (ret
2479 && !validate_type (TREE_TYPE (ret), TREE_TYPE (TREE_TYPE (fndecl))))
2480 return false;
2481
2482 tree targs = TYPE_ARG_TYPES (TREE_TYPE (fndecl));
2483 unsigned nargs = gimple_call_num_args (stmt);
2484 for (unsigned i = 0; i < nargs; ++i)
2485 {
2486 /* Variadic args follow. */
2487 if (!targs)
2488 return true;
2489 tree arg = gimple_call_arg (stmt, i);
2490 if (!validate_type (TREE_TYPE (arg), TREE_VALUE (targs)))
2491 return false;
2492 targs = TREE_CHAIN (targs);
2493 }
2494 if (targs && !VOID_TYPE_P (TREE_VALUE (targs)))
2495 return false;
2496 return true;
2497 }
2498
2499 /* Return true when STMT is builtins call. */
2500
2501 bool
2502 gimple_call_builtin_p (const gimple *stmt)
2503 {
2504 tree fndecl;
2505 if (is_gimple_call (stmt)
2506 && (fndecl = gimple_call_fndecl (stmt)) != NULL_TREE
2507 && DECL_BUILT_IN_CLASS (fndecl) != NOT_BUILT_IN)
2508 return gimple_builtin_call_types_compatible_p (stmt, fndecl);
2509 return false;
2510 }
2511
2512 /* Return true when STMT is builtins call to CLASS. */
2513
2514 bool
2515 gimple_call_builtin_p (const gimple *stmt, enum built_in_class klass)
2516 {
2517 tree fndecl;
2518 if (is_gimple_call (stmt)
2519 && (fndecl = gimple_call_fndecl (stmt)) != NULL_TREE
2520 && DECL_BUILT_IN_CLASS (fndecl) == klass)
2521 return gimple_builtin_call_types_compatible_p (stmt, fndecl);
2522 return false;
2523 }
2524
2525 /* Return true when STMT is builtins call to CODE of CLASS. */
2526
2527 bool
2528 gimple_call_builtin_p (const gimple *stmt, enum built_in_function code)
2529 {
2530 tree fndecl;
2531 if (is_gimple_call (stmt)
2532 && (fndecl = gimple_call_fndecl (stmt)) != NULL_TREE
2533 && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL
2534 && DECL_FUNCTION_CODE (fndecl) == code)
2535 return gimple_builtin_call_types_compatible_p (stmt, fndecl);
2536 return false;
2537 }
2538
2539 /* Return true if STMT clobbers memory. STMT is required to be a
2540 GIMPLE_ASM. */
2541
2542 bool
2543 gimple_asm_clobbers_memory_p (const gasm *stmt)
2544 {
2545 unsigned i;
2546
2547 for (i = 0; i < gimple_asm_nclobbers (stmt); i++)
2548 {
2549 tree op = gimple_asm_clobber_op (stmt, i);
2550 if (strcmp (TREE_STRING_POINTER (TREE_VALUE (op)), "memory") == 0)
2551 return true;
2552 }
2553
2554 return false;
2555 }
2556
2557 /* Dump bitmap SET (assumed to contain VAR_DECLs) to FILE. */
2558
2559 void
2560 dump_decl_set (FILE *file, bitmap set)
2561 {
2562 if (set)
2563 {
2564 bitmap_iterator bi;
2565 unsigned i;
2566
2567 fprintf (file, "{ ");
2568
2569 EXECUTE_IF_SET_IN_BITMAP (set, 0, i, bi)
2570 {
2571 fprintf (file, "D.%u", i);
2572 fprintf (file, " ");
2573 }
2574
2575 fprintf (file, "}");
2576 }
2577 else
2578 fprintf (file, "NIL");
2579 }
2580
2581 /* Return true when CALL is a call stmt that definitely doesn't
2582 free any memory or makes it unavailable otherwise. */
2583 bool
2584 nonfreeing_call_p (gimple *call)
2585 {
2586 if (gimple_call_builtin_p (call, BUILT_IN_NORMAL)
2587 && gimple_call_flags (call) & ECF_LEAF)
2588 switch (DECL_FUNCTION_CODE (gimple_call_fndecl (call)))
2589 {
2590 /* Just in case these become ECF_LEAF in the future. */
2591 case BUILT_IN_FREE:
2592 case BUILT_IN_TM_FREE:
2593 case BUILT_IN_REALLOC:
2594 case BUILT_IN_STACK_RESTORE:
2595 return false;
2596 default:
2597 return true;
2598 }
2599 else if (gimple_call_internal_p (call))
2600 switch (gimple_call_internal_fn (call))
2601 {
2602 case IFN_ABNORMAL_DISPATCHER:
2603 return true;
2604 default:
2605 if (gimple_call_flags (call) & ECF_LEAF)
2606 return true;
2607 return false;
2608 }
2609
2610 tree fndecl = gimple_call_fndecl (call);
2611 if (!fndecl)
2612 return false;
2613 struct cgraph_node *n = cgraph_node::get (fndecl);
2614 if (!n)
2615 return false;
2616 enum availability availability;
2617 n = n->function_symbol (&availability);
2618 if (!n || availability <= AVAIL_INTERPOSABLE)
2619 return false;
2620 return n->nonfreeing_fn;
2621 }
2622
2623 /* Callback for walk_stmt_load_store_ops.
2624
2625 Return TRUE if OP will dereference the tree stored in DATA, FALSE
2626 otherwise.
2627
2628 This routine only makes a superficial check for a dereference. Thus
2629 it must only be used if it is safe to return a false negative. */
2630 static bool
2631 check_loadstore (gimple *, tree op, tree, void *data)
2632 {
2633 if ((TREE_CODE (op) == MEM_REF || TREE_CODE (op) == TARGET_MEM_REF)
2634 && operand_equal_p (TREE_OPERAND (op, 0), (tree)data, 0))
2635 return true;
2636 return false;
2637 }
2638
2639
2640 /* Return true if OP can be inferred to be non-NULL after STMT executes,
2641 either by using a pointer dereference or attributes. */
2642 bool
2643 infer_nonnull_range (gimple *stmt, tree op)
2644 {
2645 return infer_nonnull_range_by_dereference (stmt, op)
2646 || infer_nonnull_range_by_attribute (stmt, op);
2647 }
2648
2649 /* Return true if OP can be inferred to be non-NULL after STMT
2650 executes by using a pointer dereference. */
2651 bool
2652 infer_nonnull_range_by_dereference (gimple *stmt, tree op)
2653 {
2654 /* We can only assume that a pointer dereference will yield
2655 non-NULL if -fdelete-null-pointer-checks is enabled. */
2656 if (!flag_delete_null_pointer_checks
2657 || !POINTER_TYPE_P (TREE_TYPE (op))
2658 || gimple_code (stmt) == GIMPLE_ASM)
2659 return false;
2660
2661 if (walk_stmt_load_store_ops (stmt, (void *)op,
2662 check_loadstore, check_loadstore))
2663 return true;
2664
2665 return false;
2666 }
2667
2668 /* Return true if OP can be inferred to be a non-NULL after STMT
2669 executes by using attributes. */
2670 bool
2671 infer_nonnull_range_by_attribute (gimple *stmt, tree op)
2672 {
2673 /* We can only assume that a pointer dereference will yield
2674 non-NULL if -fdelete-null-pointer-checks is enabled. */
2675 if (!flag_delete_null_pointer_checks
2676 || !POINTER_TYPE_P (TREE_TYPE (op))
2677 || gimple_code (stmt) == GIMPLE_ASM)
2678 return false;
2679
2680 if (is_gimple_call (stmt) && !gimple_call_internal_p (stmt))
2681 {
2682 tree fntype = gimple_call_fntype (stmt);
2683 tree attrs = TYPE_ATTRIBUTES (fntype);
2684 for (; attrs; attrs = TREE_CHAIN (attrs))
2685 {
2686 attrs = lookup_attribute ("nonnull", attrs);
2687
2688 /* If "nonnull" wasn't specified, we know nothing about
2689 the argument. */
2690 if (attrs == NULL_TREE)
2691 return false;
2692
2693 /* If "nonnull" applies to all the arguments, then ARG
2694 is non-null if it's in the argument list. */
2695 if (TREE_VALUE (attrs) == NULL_TREE)
2696 {
2697 for (unsigned int i = 0; i < gimple_call_num_args (stmt); i++)
2698 {
2699 if (POINTER_TYPE_P (TREE_TYPE (gimple_call_arg (stmt, i)))
2700 && operand_equal_p (op, gimple_call_arg (stmt, i), 0))
2701 return true;
2702 }
2703 return false;
2704 }
2705
2706 /* Now see if op appears in the nonnull list. */
2707 for (tree t = TREE_VALUE (attrs); t; t = TREE_CHAIN (t))
2708 {
2709 unsigned int idx = TREE_INT_CST_LOW (TREE_VALUE (t)) - 1;
2710 if (idx < gimple_call_num_args (stmt))
2711 {
2712 tree arg = gimple_call_arg (stmt, idx);
2713 if (operand_equal_p (op, arg, 0))
2714 return true;
2715 }
2716 }
2717 }
2718 }
2719
2720 /* If this function is marked as returning non-null, then we can
2721 infer OP is non-null if it is used in the return statement. */
2722 if (greturn *return_stmt = dyn_cast <greturn *> (stmt))
2723 if (gimple_return_retval (return_stmt)
2724 && operand_equal_p (gimple_return_retval (return_stmt), op, 0)
2725 && lookup_attribute ("returns_nonnull",
2726 TYPE_ATTRIBUTES (TREE_TYPE (current_function_decl))))
2727 return true;
2728
2729 return false;
2730 }
2731
2732 /* Compare two case labels. Because the front end should already have
2733 made sure that case ranges do not overlap, it is enough to only compare
2734 the CASE_LOW values of each case label. */
2735
2736 static int
2737 compare_case_labels (const void *p1, const void *p2)
2738 {
2739 const_tree const case1 = *(const_tree const*)p1;
2740 const_tree const case2 = *(const_tree const*)p2;
2741
2742 /* The 'default' case label always goes first. */
2743 if (!CASE_LOW (case1))
2744 return -1;
2745 else if (!CASE_LOW (case2))
2746 return 1;
2747 else
2748 return tree_int_cst_compare (CASE_LOW (case1), CASE_LOW (case2));
2749 }
2750
2751 /* Sort the case labels in LABEL_VEC in place in ascending order. */
2752
2753 void
2754 sort_case_labels (vec<tree> label_vec)
2755 {
2756 label_vec.qsort (compare_case_labels);
2757 }
2758 \f
2759 /* Prepare a vector of case labels to be used in a GIMPLE_SWITCH statement.
2760
2761 LABELS is a vector that contains all case labels to look at.
2762
2763 INDEX_TYPE is the type of the switch index expression. Case labels
2764 in LABELS are discarded if their values are not in the value range
2765 covered by INDEX_TYPE. The remaining case label values are folded
2766 to INDEX_TYPE.
2767
2768 If a default case exists in LABELS, it is removed from LABELS and
2769 returned in DEFAULT_CASEP. If no default case exists, but the
2770 case labels already cover the whole range of INDEX_TYPE, a default
2771 case is returned pointing to one of the existing case labels.
2772 Otherwise DEFAULT_CASEP is set to NULL_TREE.
2773
2774 DEFAULT_CASEP may be NULL, in which case the above comment doesn't
2775 apply and no action is taken regardless of whether a default case is
2776 found or not. */
2777
2778 void
2779 preprocess_case_label_vec_for_gimple (vec<tree> labels,
2780 tree index_type,
2781 tree *default_casep)
2782 {
2783 tree min_value, max_value;
2784 tree default_case = NULL_TREE;
2785 size_t i, len;
2786
2787 i = 0;
2788 min_value = TYPE_MIN_VALUE (index_type);
2789 max_value = TYPE_MAX_VALUE (index_type);
2790 while (i < labels.length ())
2791 {
2792 tree elt = labels[i];
2793 tree low = CASE_LOW (elt);
2794 tree high = CASE_HIGH (elt);
2795 bool remove_element = FALSE;
2796
2797 if (low)
2798 {
2799 gcc_checking_assert (TREE_CODE (low) == INTEGER_CST);
2800 gcc_checking_assert (!high || TREE_CODE (high) == INTEGER_CST);
2801
2802 /* This is a non-default case label, i.e. it has a value.
2803
2804 See if the case label is reachable within the range of
2805 the index type. Remove out-of-range case values. Turn
2806 case ranges into a canonical form (high > low strictly)
2807 and convert the case label values to the index type.
2808
2809 NB: The type of gimple_switch_index() may be the promoted
2810 type, but the case labels retain the original type. */
2811
2812 if (high)
2813 {
2814 /* This is a case range. Discard empty ranges.
2815 If the bounds or the range are equal, turn this
2816 into a simple (one-value) case. */
2817 int cmp = tree_int_cst_compare (high, low);
2818 if (cmp < 0)
2819 remove_element = TRUE;
2820 else if (cmp == 0)
2821 high = NULL_TREE;
2822 }
2823
2824 if (! high)
2825 {
2826 /* If the simple case value is unreachable, ignore it. */
2827 if ((TREE_CODE (min_value) == INTEGER_CST
2828 && tree_int_cst_compare (low, min_value) < 0)
2829 || (TREE_CODE (max_value) == INTEGER_CST
2830 && tree_int_cst_compare (low, max_value) > 0))
2831 remove_element = TRUE;
2832 else
2833 low = fold_convert (index_type, low);
2834 }
2835 else
2836 {
2837 /* If the entire case range is unreachable, ignore it. */
2838 if ((TREE_CODE (min_value) == INTEGER_CST
2839 && tree_int_cst_compare (high, min_value) < 0)
2840 || (TREE_CODE (max_value) == INTEGER_CST
2841 && tree_int_cst_compare (low, max_value) > 0))
2842 remove_element = TRUE;
2843 else
2844 {
2845 /* If the lower bound is less than the index type's
2846 minimum value, truncate the range bounds. */
2847 if (TREE_CODE (min_value) == INTEGER_CST
2848 && tree_int_cst_compare (low, min_value) < 0)
2849 low = min_value;
2850 low = fold_convert (index_type, low);
2851
2852 /* If the upper bound is greater than the index type's
2853 maximum value, truncate the range bounds. */
2854 if (TREE_CODE (max_value) == INTEGER_CST
2855 && tree_int_cst_compare (high, max_value) > 0)
2856 high = max_value;
2857 high = fold_convert (index_type, high);
2858
2859 /* We may have folded a case range to a one-value case. */
2860 if (tree_int_cst_equal (low, high))
2861 high = NULL_TREE;
2862 }
2863 }
2864
2865 CASE_LOW (elt) = low;
2866 CASE_HIGH (elt) = high;
2867 }
2868 else
2869 {
2870 gcc_assert (!default_case);
2871 default_case = elt;
2872 /* The default case must be passed separately to the
2873 gimple_build_switch routine. But if DEFAULT_CASEP
2874 is NULL, we do not remove the default case (it would
2875 be completely lost). */
2876 if (default_casep)
2877 remove_element = TRUE;
2878 }
2879
2880 if (remove_element)
2881 labels.ordered_remove (i);
2882 else
2883 i++;
2884 }
2885 len = i;
2886
2887 if (!labels.is_empty ())
2888 sort_case_labels (labels);
2889
2890 if (default_casep && !default_case)
2891 {
2892 /* If the switch has no default label, add one, so that we jump
2893 around the switch body. If the labels already cover the whole
2894 range of the switch index_type, add the default label pointing
2895 to one of the existing labels. */
2896 if (len
2897 && TYPE_MIN_VALUE (index_type)
2898 && TYPE_MAX_VALUE (index_type)
2899 && tree_int_cst_equal (CASE_LOW (labels[0]),
2900 TYPE_MIN_VALUE (index_type)))
2901 {
2902 tree low, high = CASE_HIGH (labels[len - 1]);
2903 if (!high)
2904 high = CASE_LOW (labels[len - 1]);
2905 if (tree_int_cst_equal (high, TYPE_MAX_VALUE (index_type)))
2906 {
2907 for (i = 1; i < len; i++)
2908 {
2909 high = CASE_LOW (labels[i]);
2910 low = CASE_HIGH (labels[i - 1]);
2911 if (!low)
2912 low = CASE_LOW (labels[i - 1]);
2913 if (wi::add (low, 1) != high)
2914 break;
2915 }
2916 if (i == len)
2917 {
2918 tree label = CASE_LABEL (labels[0]);
2919 default_case = build_case_label (NULL_TREE, NULL_TREE,
2920 label);
2921 }
2922 }
2923 }
2924 }
2925
2926 if (default_casep)
2927 *default_casep = default_case;
2928 }
2929
2930 /* Set the location of all statements in SEQ to LOC. */
2931
2932 void
2933 gimple_seq_set_location (gimple_seq seq, location_t loc)
2934 {
2935 for (gimple_stmt_iterator i = gsi_start (seq); !gsi_end_p (i); gsi_next (&i))
2936 gimple_set_location (gsi_stmt (i), loc);
2937 }
2938
2939 /* Release SSA_NAMEs in SEQ as well as the GIMPLE statements. */
2940
2941 void
2942 gimple_seq_discard (gimple_seq seq)
2943 {
2944 gimple_stmt_iterator gsi;
2945
2946 for (gsi = gsi_start (seq); !gsi_end_p (gsi); )
2947 {
2948 gimple *stmt = gsi_stmt (gsi);
2949 gsi_remove (&gsi, true);
2950 release_defs (stmt);
2951 ggc_free (stmt);
2952 }
2953 }
2954
2955 /* See if STMT now calls function that takes no parameters and if so, drop
2956 call arguments. This is used when devirtualization machinery redirects
2957 to __builtiln_unreacahble or __cxa_pure_virutal. */
2958
2959 void
2960 maybe_remove_unused_call_args (struct function *fn, gimple *stmt)
2961 {
2962 tree decl = gimple_call_fndecl (stmt);
2963 if (TYPE_ARG_TYPES (TREE_TYPE (decl))
2964 && TREE_VALUE (TYPE_ARG_TYPES (TREE_TYPE (decl))) == void_type_node
2965 && gimple_call_num_args (stmt))
2966 {
2967 gimple_set_num_ops (stmt, 3);
2968 update_stmt_fn (fn, stmt);
2969 }
2970 }