]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/gimple.c
function.h (ipa_opt_pass, [...]): Move forward declarations.
[thirdparty/gcc.git] / gcc / gimple.c
1 /* Gimple IR support functions.
2
3 Copyright (C) 2007-2015 Free Software Foundation, Inc.
4 Contributed by Aldy Hernandez <aldyh@redhat.com>
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
12
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
21
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "tm.h"
26 #include "target.h"
27 #include "alias.h"
28 #include "symtab.h"
29 #include "tree.h"
30 #include "fold-const.h"
31 #include "calls.h"
32 #include "stmt.h"
33 #include "stor-layout.h"
34 #include "hard-reg-set.h"
35 #include "predict.h"
36 #include "function.h"
37 #include "dominance.h"
38 #include "cfg.h"
39 #include "basic-block.h"
40 #include "tree-ssa-alias.h"
41 #include "internal-fn.h"
42 #include "tree-eh.h"
43 #include "gimple-expr.h"
44 #include "gimple.h"
45 #include "gimple-iterator.h"
46 #include "gimple-walk.h"
47 #include "gimple.h"
48 #include "gimplify.h"
49 #include "diagnostic.h"
50 #include "value-prof.h"
51 #include "flags.h"
52 #include "alias.h"
53 #include "demangle.h"
54 #include "langhooks.h"
55 #include "bitmap.h"
56 #include "stringpool.h"
57 #include "tree-ssanames.h"
58 #include "lto-streamer.h"
59 #include "cgraph.h"
60 #include "gimple-ssa.h"
61
62
63 /* All the tuples have their operand vector (if present) at the very bottom
64 of the structure. Therefore, the offset required to find the
65 operands vector the size of the structure minus the size of the 1
66 element tree array at the end (see gimple_ops). */
67 #define DEFGSSTRUCT(SYM, STRUCT, HAS_TREE_OP) \
68 (HAS_TREE_OP ? sizeof (struct STRUCT) - sizeof (tree) : 0),
69 EXPORTED_CONST size_t gimple_ops_offset_[] = {
70 #include "gsstruct.def"
71 };
72 #undef DEFGSSTRUCT
73
74 #define DEFGSSTRUCT(SYM, STRUCT, HAS_TREE_OP) sizeof (struct STRUCT),
75 static const size_t gsstruct_code_size[] = {
76 #include "gsstruct.def"
77 };
78 #undef DEFGSSTRUCT
79
80 #define DEFGSCODE(SYM, NAME, GSSCODE) NAME,
81 const char *const gimple_code_name[] = {
82 #include "gimple.def"
83 };
84 #undef DEFGSCODE
85
86 #define DEFGSCODE(SYM, NAME, GSSCODE) GSSCODE,
87 EXPORTED_CONST enum gimple_statement_structure_enum gss_for_code_[] = {
88 #include "gimple.def"
89 };
90 #undef DEFGSCODE
91
92 /* Gimple stats. */
93
94 int gimple_alloc_counts[(int) gimple_alloc_kind_all];
95 int gimple_alloc_sizes[(int) gimple_alloc_kind_all];
96
97 /* Keep in sync with gimple.h:enum gimple_alloc_kind. */
98 static const char * const gimple_alloc_kind_names[] = {
99 "assignments",
100 "phi nodes",
101 "conditionals",
102 "everything else"
103 };
104
105 /* Gimple tuple constructors.
106 Note: Any constructor taking a ``gimple_seq'' as a parameter, can
107 be passed a NULL to start with an empty sequence. */
108
109 /* Set the code for statement G to CODE. */
110
111 static inline void
112 gimple_set_code (gimple g, enum gimple_code code)
113 {
114 g->code = code;
115 }
116
117 /* Return the number of bytes needed to hold a GIMPLE statement with
118 code CODE. */
119
120 static inline size_t
121 gimple_size (enum gimple_code code)
122 {
123 return gsstruct_code_size[gss_for_code (code)];
124 }
125
126 /* Allocate memory for a GIMPLE statement with code CODE and NUM_OPS
127 operands. */
128
129 gimple
130 gimple_alloc_stat (enum gimple_code code, unsigned num_ops MEM_STAT_DECL)
131 {
132 size_t size;
133 gimple stmt;
134
135 size = gimple_size (code);
136 if (num_ops > 0)
137 size += sizeof (tree) * (num_ops - 1);
138
139 if (GATHER_STATISTICS)
140 {
141 enum gimple_alloc_kind kind = gimple_alloc_kind (code);
142 gimple_alloc_counts[(int) kind]++;
143 gimple_alloc_sizes[(int) kind] += size;
144 }
145
146 stmt = ggc_alloc_cleared_gimple_statement_stat (size PASS_MEM_STAT);
147 gimple_set_code (stmt, code);
148 gimple_set_num_ops (stmt, num_ops);
149
150 /* Do not call gimple_set_modified here as it has other side
151 effects and this tuple is still not completely built. */
152 stmt->modified = 1;
153 gimple_init_singleton (stmt);
154
155 return stmt;
156 }
157
158 /* Set SUBCODE to be the code of the expression computed by statement G. */
159
160 static inline void
161 gimple_set_subcode (gimple g, unsigned subcode)
162 {
163 /* We only have 16 bits for the RHS code. Assert that we are not
164 overflowing it. */
165 gcc_assert (subcode < (1 << 16));
166 g->subcode = subcode;
167 }
168
169
170
171 /* Build a tuple with operands. CODE is the statement to build (which
172 must be one of the GIMPLE_WITH_OPS tuples). SUBCODE is the subcode
173 for the new tuple. NUM_OPS is the number of operands to allocate. */
174
175 #define gimple_build_with_ops(c, s, n) \
176 gimple_build_with_ops_stat (c, s, n MEM_STAT_INFO)
177
178 static gimple
179 gimple_build_with_ops_stat (enum gimple_code code, unsigned subcode,
180 unsigned num_ops MEM_STAT_DECL)
181 {
182 gimple s = gimple_alloc_stat (code, num_ops PASS_MEM_STAT);
183 gimple_set_subcode (s, subcode);
184
185 return s;
186 }
187
188
189 /* Build a GIMPLE_RETURN statement returning RETVAL. */
190
191 greturn *
192 gimple_build_return (tree retval)
193 {
194 greturn *s
195 = as_a <greturn *> (gimple_build_with_ops (GIMPLE_RETURN, ERROR_MARK,
196 2));
197 if (retval)
198 gimple_return_set_retval (s, retval);
199 return s;
200 }
201
202 /* Reset alias information on call S. */
203
204 void
205 gimple_call_reset_alias_info (gcall *s)
206 {
207 if (gimple_call_flags (s) & ECF_CONST)
208 memset (gimple_call_use_set (s), 0, sizeof (struct pt_solution));
209 else
210 pt_solution_reset (gimple_call_use_set (s));
211 if (gimple_call_flags (s) & (ECF_CONST|ECF_PURE|ECF_NOVOPS))
212 memset (gimple_call_clobber_set (s), 0, sizeof (struct pt_solution));
213 else
214 pt_solution_reset (gimple_call_clobber_set (s));
215 }
216
217 /* Helper for gimple_build_call, gimple_build_call_valist,
218 gimple_build_call_vec and gimple_build_call_from_tree. Build the basic
219 components of a GIMPLE_CALL statement to function FN with NARGS
220 arguments. */
221
222 static inline gcall *
223 gimple_build_call_1 (tree fn, unsigned nargs)
224 {
225 gcall *s
226 = as_a <gcall *> (gimple_build_with_ops (GIMPLE_CALL, ERROR_MARK,
227 nargs + 3));
228 if (TREE_CODE (fn) == FUNCTION_DECL)
229 fn = build_fold_addr_expr (fn);
230 gimple_set_op (s, 1, fn);
231 gimple_call_set_fntype (s, TREE_TYPE (TREE_TYPE (fn)));
232 gimple_call_reset_alias_info (s);
233 return s;
234 }
235
236
237 /* Build a GIMPLE_CALL statement to function FN with the arguments
238 specified in vector ARGS. */
239
240 gcall *
241 gimple_build_call_vec (tree fn, vec<tree> args)
242 {
243 unsigned i;
244 unsigned nargs = args.length ();
245 gcall *call = gimple_build_call_1 (fn, nargs);
246
247 for (i = 0; i < nargs; i++)
248 gimple_call_set_arg (call, i, args[i]);
249
250 return call;
251 }
252
253
254 /* Build a GIMPLE_CALL statement to function FN. NARGS is the number of
255 arguments. The ... are the arguments. */
256
257 gcall *
258 gimple_build_call (tree fn, unsigned nargs, ...)
259 {
260 va_list ap;
261 gcall *call;
262 unsigned i;
263
264 gcc_assert (TREE_CODE (fn) == FUNCTION_DECL || is_gimple_call_addr (fn));
265
266 call = gimple_build_call_1 (fn, nargs);
267
268 va_start (ap, nargs);
269 for (i = 0; i < nargs; i++)
270 gimple_call_set_arg (call, i, va_arg (ap, tree));
271 va_end (ap);
272
273 return call;
274 }
275
276
277 /* Build a GIMPLE_CALL statement to function FN. NARGS is the number of
278 arguments. AP contains the arguments. */
279
280 gcall *
281 gimple_build_call_valist (tree fn, unsigned nargs, va_list ap)
282 {
283 gcall *call;
284 unsigned i;
285
286 gcc_assert (TREE_CODE (fn) == FUNCTION_DECL || is_gimple_call_addr (fn));
287
288 call = gimple_build_call_1 (fn, nargs);
289
290 for (i = 0; i < nargs; i++)
291 gimple_call_set_arg (call, i, va_arg (ap, tree));
292
293 return call;
294 }
295
296
297 /* Helper for gimple_build_call_internal and gimple_build_call_internal_vec.
298 Build the basic components of a GIMPLE_CALL statement to internal
299 function FN with NARGS arguments. */
300
301 static inline gcall *
302 gimple_build_call_internal_1 (enum internal_fn fn, unsigned nargs)
303 {
304 gcall *s
305 = as_a <gcall *> (gimple_build_with_ops (GIMPLE_CALL, ERROR_MARK,
306 nargs + 3));
307 s->subcode |= GF_CALL_INTERNAL;
308 gimple_call_set_internal_fn (s, fn);
309 gimple_call_reset_alias_info (s);
310 return s;
311 }
312
313
314 /* Build a GIMPLE_CALL statement to internal function FN. NARGS is
315 the number of arguments. The ... are the arguments. */
316
317 gcall *
318 gimple_build_call_internal (enum internal_fn fn, unsigned nargs, ...)
319 {
320 va_list ap;
321 gcall *call;
322 unsigned i;
323
324 call = gimple_build_call_internal_1 (fn, nargs);
325 va_start (ap, nargs);
326 for (i = 0; i < nargs; i++)
327 gimple_call_set_arg (call, i, va_arg (ap, tree));
328 va_end (ap);
329
330 return call;
331 }
332
333
334 /* Build a GIMPLE_CALL statement to internal function FN with the arguments
335 specified in vector ARGS. */
336
337 gcall *
338 gimple_build_call_internal_vec (enum internal_fn fn, vec<tree> args)
339 {
340 unsigned i, nargs;
341 gcall *call;
342
343 nargs = args.length ();
344 call = gimple_build_call_internal_1 (fn, nargs);
345 for (i = 0; i < nargs; i++)
346 gimple_call_set_arg (call, i, args[i]);
347
348 return call;
349 }
350
351
352 /* Build a GIMPLE_CALL statement from CALL_EXPR T. Note that T is
353 assumed to be in GIMPLE form already. Minimal checking is done of
354 this fact. */
355
356 gcall *
357 gimple_build_call_from_tree (tree t)
358 {
359 unsigned i, nargs;
360 gcall *call;
361 tree fndecl = get_callee_fndecl (t);
362
363 gcc_assert (TREE_CODE (t) == CALL_EXPR);
364
365 nargs = call_expr_nargs (t);
366 call = gimple_build_call_1 (fndecl ? fndecl : CALL_EXPR_FN (t), nargs);
367
368 for (i = 0; i < nargs; i++)
369 gimple_call_set_arg (call, i, CALL_EXPR_ARG (t, i));
370
371 gimple_set_block (call, TREE_BLOCK (t));
372
373 /* Carry all the CALL_EXPR flags to the new GIMPLE_CALL. */
374 gimple_call_set_chain (call, CALL_EXPR_STATIC_CHAIN (t));
375 gimple_call_set_tail (call, CALL_EXPR_TAILCALL (t));
376 gimple_call_set_return_slot_opt (call, CALL_EXPR_RETURN_SLOT_OPT (t));
377 if (fndecl
378 && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL
379 && (DECL_FUNCTION_CODE (fndecl) == BUILT_IN_ALLOCA
380 || DECL_FUNCTION_CODE (fndecl) == BUILT_IN_ALLOCA_WITH_ALIGN))
381 gimple_call_set_alloca_for_var (call, CALL_ALLOCA_FOR_VAR_P (t));
382 else
383 gimple_call_set_from_thunk (call, CALL_FROM_THUNK_P (t));
384 gimple_call_set_va_arg_pack (call, CALL_EXPR_VA_ARG_PACK (t));
385 gimple_call_set_nothrow (call, TREE_NOTHROW (t));
386 gimple_set_no_warning (call, TREE_NO_WARNING (t));
387 gimple_call_set_with_bounds (call, CALL_WITH_BOUNDS_P (t));
388
389 return call;
390 }
391
392
393 /* Build a GIMPLE_ASSIGN statement.
394
395 LHS of the assignment.
396 RHS of the assignment which can be unary or binary. */
397
398 gassign *
399 gimple_build_assign (tree lhs, tree rhs MEM_STAT_DECL)
400 {
401 enum tree_code subcode;
402 tree op1, op2, op3;
403
404 extract_ops_from_tree_1 (rhs, &subcode, &op1, &op2, &op3);
405 return gimple_build_assign (lhs, subcode, op1, op2, op3 PASS_MEM_STAT);
406 }
407
408
409 /* Build a GIMPLE_ASSIGN statement with subcode SUBCODE and operands
410 OP1, OP2 and OP3. */
411
412 static inline gassign *
413 gimple_build_assign_1 (tree lhs, enum tree_code subcode, tree op1,
414 tree op2, tree op3 MEM_STAT_DECL)
415 {
416 unsigned num_ops;
417 gassign *p;
418
419 /* Need 1 operand for LHS and 1 or 2 for the RHS (depending on the
420 code). */
421 num_ops = get_gimple_rhs_num_ops (subcode) + 1;
422
423 p = as_a <gassign *> (
424 gimple_build_with_ops_stat (GIMPLE_ASSIGN, (unsigned)subcode, num_ops
425 PASS_MEM_STAT));
426 gimple_assign_set_lhs (p, lhs);
427 gimple_assign_set_rhs1 (p, op1);
428 if (op2)
429 {
430 gcc_assert (num_ops > 2);
431 gimple_assign_set_rhs2 (p, op2);
432 }
433
434 if (op3)
435 {
436 gcc_assert (num_ops > 3);
437 gimple_assign_set_rhs3 (p, op3);
438 }
439
440 return p;
441 }
442
443 /* Build a GIMPLE_ASSIGN statement with subcode SUBCODE and operands
444 OP1, OP2 and OP3. */
445
446 gassign *
447 gimple_build_assign (tree lhs, enum tree_code subcode, tree op1,
448 tree op2, tree op3 MEM_STAT_DECL)
449 {
450 return gimple_build_assign_1 (lhs, subcode, op1, op2, op3 PASS_MEM_STAT);
451 }
452
453 /* Build a GIMPLE_ASSIGN statement with subcode SUBCODE and operands
454 OP1 and OP2. */
455
456 gassign *
457 gimple_build_assign (tree lhs, enum tree_code subcode, tree op1,
458 tree op2 MEM_STAT_DECL)
459 {
460 return gimple_build_assign_1 (lhs, subcode, op1, op2, NULL_TREE
461 PASS_MEM_STAT);
462 }
463
464 /* Build a GIMPLE_ASSIGN statement with subcode SUBCODE and operand OP1. */
465
466 gassign *
467 gimple_build_assign (tree lhs, enum tree_code subcode, tree op1 MEM_STAT_DECL)
468 {
469 return gimple_build_assign_1 (lhs, subcode, op1, NULL_TREE, NULL_TREE
470 PASS_MEM_STAT);
471 }
472
473
474 /* Build a GIMPLE_COND statement.
475
476 PRED is the condition used to compare LHS and the RHS.
477 T_LABEL is the label to jump to if the condition is true.
478 F_LABEL is the label to jump to otherwise. */
479
480 gcond *
481 gimple_build_cond (enum tree_code pred_code, tree lhs, tree rhs,
482 tree t_label, tree f_label)
483 {
484 gcond *p;
485
486 gcc_assert (TREE_CODE_CLASS (pred_code) == tcc_comparison);
487 p = as_a <gcond *> (gimple_build_with_ops (GIMPLE_COND, pred_code, 4));
488 gimple_cond_set_lhs (p, lhs);
489 gimple_cond_set_rhs (p, rhs);
490 gimple_cond_set_true_label (p, t_label);
491 gimple_cond_set_false_label (p, f_label);
492 return p;
493 }
494
495 /* Build a GIMPLE_COND statement from the conditional expression tree
496 COND. T_LABEL and F_LABEL are as in gimple_build_cond. */
497
498 gcond *
499 gimple_build_cond_from_tree (tree cond, tree t_label, tree f_label)
500 {
501 enum tree_code code;
502 tree lhs, rhs;
503
504 gimple_cond_get_ops_from_tree (cond, &code, &lhs, &rhs);
505 return gimple_build_cond (code, lhs, rhs, t_label, f_label);
506 }
507
508 /* Set code, lhs, and rhs of a GIMPLE_COND from a suitable
509 boolean expression tree COND. */
510
511 void
512 gimple_cond_set_condition_from_tree (gcond *stmt, tree cond)
513 {
514 enum tree_code code;
515 tree lhs, rhs;
516
517 gimple_cond_get_ops_from_tree (cond, &code, &lhs, &rhs);
518 gimple_cond_set_condition (stmt, code, lhs, rhs);
519 }
520
521 /* Build a GIMPLE_LABEL statement for LABEL. */
522
523 glabel *
524 gimple_build_label (tree label)
525 {
526 glabel *p
527 = as_a <glabel *> (gimple_build_with_ops (GIMPLE_LABEL, ERROR_MARK, 1));
528 gimple_label_set_label (p, label);
529 return p;
530 }
531
532 /* Build a GIMPLE_GOTO statement to label DEST. */
533
534 ggoto *
535 gimple_build_goto (tree dest)
536 {
537 ggoto *p
538 = as_a <ggoto *> (gimple_build_with_ops (GIMPLE_GOTO, ERROR_MARK, 1));
539 gimple_goto_set_dest (p, dest);
540 return p;
541 }
542
543
544 /* Build a GIMPLE_NOP statement. */
545
546 gimple
547 gimple_build_nop (void)
548 {
549 return gimple_alloc (GIMPLE_NOP, 0);
550 }
551
552
553 /* Build a GIMPLE_BIND statement.
554 VARS are the variables in BODY.
555 BLOCK is the containing block. */
556
557 gbind *
558 gimple_build_bind (tree vars, gimple_seq body, tree block)
559 {
560 gbind *p = as_a <gbind *> (gimple_alloc (GIMPLE_BIND, 0));
561 gimple_bind_set_vars (p, vars);
562 if (body)
563 gimple_bind_set_body (p, body);
564 if (block)
565 gimple_bind_set_block (p, block);
566 return p;
567 }
568
569 /* Helper function to set the simple fields of a asm stmt.
570
571 STRING is a pointer to a string that is the asm blocks assembly code.
572 NINPUT is the number of register inputs.
573 NOUTPUT is the number of register outputs.
574 NCLOBBERS is the number of clobbered registers.
575 */
576
577 static inline gasm *
578 gimple_build_asm_1 (const char *string, unsigned ninputs, unsigned noutputs,
579 unsigned nclobbers, unsigned nlabels)
580 {
581 gasm *p;
582 int size = strlen (string);
583
584 /* ASMs with labels cannot have outputs. This should have been
585 enforced by the front end. */
586 gcc_assert (nlabels == 0 || noutputs == 0);
587
588 p = as_a <gasm *> (
589 gimple_build_with_ops (GIMPLE_ASM, ERROR_MARK,
590 ninputs + noutputs + nclobbers + nlabels));
591
592 p->ni = ninputs;
593 p->no = noutputs;
594 p->nc = nclobbers;
595 p->nl = nlabels;
596 p->string = ggc_alloc_string (string, size);
597
598 if (GATHER_STATISTICS)
599 gimple_alloc_sizes[(int) gimple_alloc_kind (GIMPLE_ASM)] += size;
600
601 return p;
602 }
603
604 /* Build a GIMPLE_ASM statement.
605
606 STRING is the assembly code.
607 NINPUT is the number of register inputs.
608 NOUTPUT is the number of register outputs.
609 NCLOBBERS is the number of clobbered registers.
610 INPUTS is a vector of the input register parameters.
611 OUTPUTS is a vector of the output register parameters.
612 CLOBBERS is a vector of the clobbered register parameters.
613 LABELS is a vector of destination labels. */
614
615 gasm *
616 gimple_build_asm_vec (const char *string, vec<tree, va_gc> *inputs,
617 vec<tree, va_gc> *outputs, vec<tree, va_gc> *clobbers,
618 vec<tree, va_gc> *labels)
619 {
620 gasm *p;
621 unsigned i;
622
623 p = gimple_build_asm_1 (string,
624 vec_safe_length (inputs),
625 vec_safe_length (outputs),
626 vec_safe_length (clobbers),
627 vec_safe_length (labels));
628
629 for (i = 0; i < vec_safe_length (inputs); i++)
630 gimple_asm_set_input_op (p, i, (*inputs)[i]);
631
632 for (i = 0; i < vec_safe_length (outputs); i++)
633 gimple_asm_set_output_op (p, i, (*outputs)[i]);
634
635 for (i = 0; i < vec_safe_length (clobbers); i++)
636 gimple_asm_set_clobber_op (p, i, (*clobbers)[i]);
637
638 for (i = 0; i < vec_safe_length (labels); i++)
639 gimple_asm_set_label_op (p, i, (*labels)[i]);
640
641 return p;
642 }
643
644 /* Build a GIMPLE_CATCH statement.
645
646 TYPES are the catch types.
647 HANDLER is the exception handler. */
648
649 gcatch *
650 gimple_build_catch (tree types, gimple_seq handler)
651 {
652 gcatch *p = as_a <gcatch *> (gimple_alloc (GIMPLE_CATCH, 0));
653 gimple_catch_set_types (p, types);
654 if (handler)
655 gimple_catch_set_handler (p, handler);
656
657 return p;
658 }
659
660 /* Build a GIMPLE_EH_FILTER statement.
661
662 TYPES are the filter's types.
663 FAILURE is the filter's failure action. */
664
665 geh_filter *
666 gimple_build_eh_filter (tree types, gimple_seq failure)
667 {
668 geh_filter *p = as_a <geh_filter *> (gimple_alloc (GIMPLE_EH_FILTER, 0));
669 gimple_eh_filter_set_types (p, types);
670 if (failure)
671 gimple_eh_filter_set_failure (p, failure);
672
673 return p;
674 }
675
676 /* Build a GIMPLE_EH_MUST_NOT_THROW statement. */
677
678 geh_mnt *
679 gimple_build_eh_must_not_throw (tree decl)
680 {
681 geh_mnt *p = as_a <geh_mnt *> (gimple_alloc (GIMPLE_EH_MUST_NOT_THROW, 0));
682
683 gcc_assert (TREE_CODE (decl) == FUNCTION_DECL);
684 gcc_assert (flags_from_decl_or_type (decl) & ECF_NORETURN);
685 gimple_eh_must_not_throw_set_fndecl (p, decl);
686
687 return p;
688 }
689
690 /* Build a GIMPLE_EH_ELSE statement. */
691
692 geh_else *
693 gimple_build_eh_else (gimple_seq n_body, gimple_seq e_body)
694 {
695 geh_else *p = as_a <geh_else *> (gimple_alloc (GIMPLE_EH_ELSE, 0));
696 gimple_eh_else_set_n_body (p, n_body);
697 gimple_eh_else_set_e_body (p, e_body);
698 return p;
699 }
700
701 /* Build a GIMPLE_TRY statement.
702
703 EVAL is the expression to evaluate.
704 CLEANUP is the cleanup expression.
705 KIND is either GIMPLE_TRY_CATCH or GIMPLE_TRY_FINALLY depending on
706 whether this is a try/catch or a try/finally respectively. */
707
708 gtry *
709 gimple_build_try (gimple_seq eval, gimple_seq cleanup,
710 enum gimple_try_flags kind)
711 {
712 gtry *p;
713
714 gcc_assert (kind == GIMPLE_TRY_CATCH || kind == GIMPLE_TRY_FINALLY);
715 p = as_a <gtry *> (gimple_alloc (GIMPLE_TRY, 0));
716 gimple_set_subcode (p, kind);
717 if (eval)
718 gimple_try_set_eval (p, eval);
719 if (cleanup)
720 gimple_try_set_cleanup (p, cleanup);
721
722 return p;
723 }
724
725 /* Construct a GIMPLE_WITH_CLEANUP_EXPR statement.
726
727 CLEANUP is the cleanup expression. */
728
729 gimple
730 gimple_build_wce (gimple_seq cleanup)
731 {
732 gimple p = gimple_alloc (GIMPLE_WITH_CLEANUP_EXPR, 0);
733 if (cleanup)
734 gimple_wce_set_cleanup (p, cleanup);
735
736 return p;
737 }
738
739
740 /* Build a GIMPLE_RESX statement. */
741
742 gresx *
743 gimple_build_resx (int region)
744 {
745 gresx *p
746 = as_a <gresx *> (gimple_build_with_ops (GIMPLE_RESX, ERROR_MARK, 0));
747 p->region = region;
748 return p;
749 }
750
751
752 /* The helper for constructing a gimple switch statement.
753 INDEX is the switch's index.
754 NLABELS is the number of labels in the switch excluding the default.
755 DEFAULT_LABEL is the default label for the switch statement. */
756
757 gswitch *
758 gimple_build_switch_nlabels (unsigned nlabels, tree index, tree default_label)
759 {
760 /* nlabels + 1 default label + 1 index. */
761 gcc_checking_assert (default_label);
762 gswitch *p = as_a <gswitch *> (gimple_build_with_ops (GIMPLE_SWITCH,
763 ERROR_MARK,
764 1 + 1 + nlabels));
765 gimple_switch_set_index (p, index);
766 gimple_switch_set_default_label (p, default_label);
767 return p;
768 }
769
770 /* Build a GIMPLE_SWITCH statement.
771
772 INDEX is the switch's index.
773 DEFAULT_LABEL is the default label
774 ARGS is a vector of labels excluding the default. */
775
776 gswitch *
777 gimple_build_switch (tree index, tree default_label, vec<tree> args)
778 {
779 unsigned i, nlabels = args.length ();
780
781 gswitch *p = gimple_build_switch_nlabels (nlabels, index, default_label);
782
783 /* Copy the labels from the vector to the switch statement. */
784 for (i = 0; i < nlabels; i++)
785 gimple_switch_set_label (p, i + 1, args[i]);
786
787 return p;
788 }
789
790 /* Build a GIMPLE_EH_DISPATCH statement. */
791
792 geh_dispatch *
793 gimple_build_eh_dispatch (int region)
794 {
795 geh_dispatch *p
796 = as_a <geh_dispatch *> (
797 gimple_build_with_ops (GIMPLE_EH_DISPATCH, ERROR_MARK, 0));
798 p->region = region;
799 return p;
800 }
801
802 /* Build a new GIMPLE_DEBUG_BIND statement.
803
804 VAR is bound to VALUE; block and location are taken from STMT. */
805
806 gdebug *
807 gimple_build_debug_bind_stat (tree var, tree value, gimple stmt MEM_STAT_DECL)
808 {
809 gdebug *p
810 = as_a <gdebug *> (gimple_build_with_ops_stat (GIMPLE_DEBUG,
811 (unsigned)GIMPLE_DEBUG_BIND, 2
812 PASS_MEM_STAT));
813 gimple_debug_bind_set_var (p, var);
814 gimple_debug_bind_set_value (p, value);
815 if (stmt)
816 gimple_set_location (p, gimple_location (stmt));
817
818 return p;
819 }
820
821
822 /* Build a new GIMPLE_DEBUG_SOURCE_BIND statement.
823
824 VAR is bound to VALUE; block and location are taken from STMT. */
825
826 gdebug *
827 gimple_build_debug_source_bind_stat (tree var, tree value,
828 gimple stmt MEM_STAT_DECL)
829 {
830 gdebug *p
831 = as_a <gdebug *> (
832 gimple_build_with_ops_stat (GIMPLE_DEBUG,
833 (unsigned)GIMPLE_DEBUG_SOURCE_BIND, 2
834 PASS_MEM_STAT));
835
836 gimple_debug_source_bind_set_var (p, var);
837 gimple_debug_source_bind_set_value (p, value);
838 if (stmt)
839 gimple_set_location (p, gimple_location (stmt));
840
841 return p;
842 }
843
844
845 /* Build a GIMPLE_OMP_CRITICAL statement.
846
847 BODY is the sequence of statements for which only one thread can execute.
848 NAME is optional identifier for this critical block. */
849
850 gomp_critical *
851 gimple_build_omp_critical (gimple_seq body, tree name)
852 {
853 gomp_critical *p
854 = as_a <gomp_critical *> (gimple_alloc (GIMPLE_OMP_CRITICAL, 0));
855 gimple_omp_critical_set_name (p, name);
856 if (body)
857 gimple_omp_set_body (p, body);
858
859 return p;
860 }
861
862 /* Build a GIMPLE_OMP_FOR statement.
863
864 BODY is sequence of statements inside the for loop.
865 KIND is the `for' variant.
866 CLAUSES, are any of the construct's clauses.
867 COLLAPSE is the collapse count.
868 PRE_BODY is the sequence of statements that are loop invariant. */
869
870 gomp_for *
871 gimple_build_omp_for (gimple_seq body, int kind, tree clauses, size_t collapse,
872 gimple_seq pre_body)
873 {
874 gomp_for *p = as_a <gomp_for *> (gimple_alloc (GIMPLE_OMP_FOR, 0));
875 if (body)
876 gimple_omp_set_body (p, body);
877 gimple_omp_for_set_clauses (p, clauses);
878 gimple_omp_for_set_kind (p, kind);
879 p->collapse = collapse;
880 p->iter = ggc_cleared_vec_alloc<gimple_omp_for_iter> (collapse);
881
882 if (pre_body)
883 gimple_omp_for_set_pre_body (p, pre_body);
884
885 return p;
886 }
887
888
889 /* Build a GIMPLE_OMP_PARALLEL statement.
890
891 BODY is sequence of statements which are executed in parallel.
892 CLAUSES, are the OMP parallel construct's clauses.
893 CHILD_FN is the function created for the parallel threads to execute.
894 DATA_ARG are the shared data argument(s). */
895
896 gomp_parallel *
897 gimple_build_omp_parallel (gimple_seq body, tree clauses, tree child_fn,
898 tree data_arg)
899 {
900 gomp_parallel *p
901 = as_a <gomp_parallel *> (gimple_alloc (GIMPLE_OMP_PARALLEL, 0));
902 if (body)
903 gimple_omp_set_body (p, body);
904 gimple_omp_parallel_set_clauses (p, clauses);
905 gimple_omp_parallel_set_child_fn (p, child_fn);
906 gimple_omp_parallel_set_data_arg (p, data_arg);
907
908 return p;
909 }
910
911
912 /* Build a GIMPLE_OMP_TASK statement.
913
914 BODY is sequence of statements which are executed by the explicit task.
915 CLAUSES, are the OMP parallel construct's clauses.
916 CHILD_FN is the function created for the parallel threads to execute.
917 DATA_ARG are the shared data argument(s).
918 COPY_FN is the optional function for firstprivate initialization.
919 ARG_SIZE and ARG_ALIGN are size and alignment of the data block. */
920
921 gomp_task *
922 gimple_build_omp_task (gimple_seq body, tree clauses, tree child_fn,
923 tree data_arg, tree copy_fn, tree arg_size,
924 tree arg_align)
925 {
926 gomp_task *p = as_a <gomp_task *> (gimple_alloc (GIMPLE_OMP_TASK, 0));
927 if (body)
928 gimple_omp_set_body (p, body);
929 gimple_omp_task_set_clauses (p, clauses);
930 gimple_omp_task_set_child_fn (p, child_fn);
931 gimple_omp_task_set_data_arg (p, data_arg);
932 gimple_omp_task_set_copy_fn (p, copy_fn);
933 gimple_omp_task_set_arg_size (p, arg_size);
934 gimple_omp_task_set_arg_align (p, arg_align);
935
936 return p;
937 }
938
939
940 /* Build a GIMPLE_OMP_SECTION statement for a sections statement.
941
942 BODY is the sequence of statements in the section. */
943
944 gimple
945 gimple_build_omp_section (gimple_seq body)
946 {
947 gimple p = gimple_alloc (GIMPLE_OMP_SECTION, 0);
948 if (body)
949 gimple_omp_set_body (p, body);
950
951 return p;
952 }
953
954
955 /* Build a GIMPLE_OMP_MASTER statement.
956
957 BODY is the sequence of statements to be executed by just the master. */
958
959 gimple
960 gimple_build_omp_master (gimple_seq body)
961 {
962 gimple p = gimple_alloc (GIMPLE_OMP_MASTER, 0);
963 if (body)
964 gimple_omp_set_body (p, body);
965
966 return p;
967 }
968
969
970 /* Build a GIMPLE_OMP_TASKGROUP statement.
971
972 BODY is the sequence of statements to be executed by the taskgroup
973 construct. */
974
975 gimple
976 gimple_build_omp_taskgroup (gimple_seq body)
977 {
978 gimple p = gimple_alloc (GIMPLE_OMP_TASKGROUP, 0);
979 if (body)
980 gimple_omp_set_body (p, body);
981
982 return p;
983 }
984
985
986 /* Build a GIMPLE_OMP_CONTINUE statement.
987
988 CONTROL_DEF is the definition of the control variable.
989 CONTROL_USE is the use of the control variable. */
990
991 gomp_continue *
992 gimple_build_omp_continue (tree control_def, tree control_use)
993 {
994 gomp_continue *p
995 = as_a <gomp_continue *> (gimple_alloc (GIMPLE_OMP_CONTINUE, 0));
996 gimple_omp_continue_set_control_def (p, control_def);
997 gimple_omp_continue_set_control_use (p, control_use);
998 return p;
999 }
1000
1001 /* Build a GIMPLE_OMP_ORDERED statement.
1002
1003 BODY is the sequence of statements inside a loop that will executed in
1004 sequence. */
1005
1006 gimple
1007 gimple_build_omp_ordered (gimple_seq body)
1008 {
1009 gimple p = gimple_alloc (GIMPLE_OMP_ORDERED, 0);
1010 if (body)
1011 gimple_omp_set_body (p, body);
1012
1013 return p;
1014 }
1015
1016
1017 /* Build a GIMPLE_OMP_RETURN statement.
1018 WAIT_P is true if this is a non-waiting return. */
1019
1020 gimple
1021 gimple_build_omp_return (bool wait_p)
1022 {
1023 gimple p = gimple_alloc (GIMPLE_OMP_RETURN, 0);
1024 if (wait_p)
1025 gimple_omp_return_set_nowait (p);
1026
1027 return p;
1028 }
1029
1030
1031 /* Build a GIMPLE_OMP_SECTIONS statement.
1032
1033 BODY is a sequence of section statements.
1034 CLAUSES are any of the OMP sections contsruct's clauses: private,
1035 firstprivate, lastprivate, reduction, and nowait. */
1036
1037 gomp_sections *
1038 gimple_build_omp_sections (gimple_seq body, tree clauses)
1039 {
1040 gomp_sections *p
1041 = as_a <gomp_sections *> (gimple_alloc (GIMPLE_OMP_SECTIONS, 0));
1042 if (body)
1043 gimple_omp_set_body (p, body);
1044 gimple_omp_sections_set_clauses (p, clauses);
1045
1046 return p;
1047 }
1048
1049
1050 /* Build a GIMPLE_OMP_SECTIONS_SWITCH. */
1051
1052 gimple
1053 gimple_build_omp_sections_switch (void)
1054 {
1055 return gimple_alloc (GIMPLE_OMP_SECTIONS_SWITCH, 0);
1056 }
1057
1058
1059 /* Build a GIMPLE_OMP_SINGLE statement.
1060
1061 BODY is the sequence of statements that will be executed once.
1062 CLAUSES are any of the OMP single construct's clauses: private, firstprivate,
1063 copyprivate, nowait. */
1064
1065 gomp_single *
1066 gimple_build_omp_single (gimple_seq body, tree clauses)
1067 {
1068 gomp_single *p
1069 = as_a <gomp_single *> (gimple_alloc (GIMPLE_OMP_SINGLE, 0));
1070 if (body)
1071 gimple_omp_set_body (p, body);
1072 gimple_omp_single_set_clauses (p, clauses);
1073
1074 return p;
1075 }
1076
1077
1078 /* Build a GIMPLE_OMP_TARGET statement.
1079
1080 BODY is the sequence of statements that will be executed.
1081 KIND is the kind of the region.
1082 CLAUSES are any of the construct's clauses. */
1083
1084 gomp_target *
1085 gimple_build_omp_target (gimple_seq body, int kind, tree clauses)
1086 {
1087 gomp_target *p
1088 = as_a <gomp_target *> (gimple_alloc (GIMPLE_OMP_TARGET, 0));
1089 if (body)
1090 gimple_omp_set_body (p, body);
1091 gimple_omp_target_set_clauses (p, clauses);
1092 gimple_omp_target_set_kind (p, kind);
1093
1094 return p;
1095 }
1096
1097
1098 /* Build a GIMPLE_OMP_TEAMS statement.
1099
1100 BODY is the sequence of statements that will be executed.
1101 CLAUSES are any of the OMP teams construct's clauses. */
1102
1103 gomp_teams *
1104 gimple_build_omp_teams (gimple_seq body, tree clauses)
1105 {
1106 gomp_teams *p = as_a <gomp_teams *> (gimple_alloc (GIMPLE_OMP_TEAMS, 0));
1107 if (body)
1108 gimple_omp_set_body (p, body);
1109 gimple_omp_teams_set_clauses (p, clauses);
1110
1111 return p;
1112 }
1113
1114
1115 /* Build a GIMPLE_OMP_ATOMIC_LOAD statement. */
1116
1117 gomp_atomic_load *
1118 gimple_build_omp_atomic_load (tree lhs, tree rhs)
1119 {
1120 gomp_atomic_load *p
1121 = as_a <gomp_atomic_load *> (gimple_alloc (GIMPLE_OMP_ATOMIC_LOAD, 0));
1122 gimple_omp_atomic_load_set_lhs (p, lhs);
1123 gimple_omp_atomic_load_set_rhs (p, rhs);
1124 return p;
1125 }
1126
1127 /* Build a GIMPLE_OMP_ATOMIC_STORE statement.
1128
1129 VAL is the value we are storing. */
1130
1131 gomp_atomic_store *
1132 gimple_build_omp_atomic_store (tree val)
1133 {
1134 gomp_atomic_store *p
1135 = as_a <gomp_atomic_store *> (gimple_alloc (GIMPLE_OMP_ATOMIC_STORE, 0));
1136 gimple_omp_atomic_store_set_val (p, val);
1137 return p;
1138 }
1139
1140 /* Build a GIMPLE_TRANSACTION statement. */
1141
1142 gtransaction *
1143 gimple_build_transaction (gimple_seq body, tree label)
1144 {
1145 gtransaction *p
1146 = as_a <gtransaction *> (gimple_alloc (GIMPLE_TRANSACTION, 0));
1147 gimple_transaction_set_body (p, body);
1148 gimple_transaction_set_label (p, label);
1149 return p;
1150 }
1151
1152 /* Build a GIMPLE_PREDICT statement. PREDICT is one of the predictors from
1153 predict.def, OUTCOME is NOT_TAKEN or TAKEN. */
1154
1155 gimple
1156 gimple_build_predict (enum br_predictor predictor, enum prediction outcome)
1157 {
1158 gimple p = gimple_alloc (GIMPLE_PREDICT, 0);
1159 /* Ensure all the predictors fit into the lower bits of the subcode. */
1160 gcc_assert ((int) END_PREDICTORS <= GF_PREDICT_TAKEN);
1161 gimple_predict_set_predictor (p, predictor);
1162 gimple_predict_set_outcome (p, outcome);
1163 return p;
1164 }
1165
1166 #if defined ENABLE_GIMPLE_CHECKING
1167 /* Complain of a gimple type mismatch and die. */
1168
1169 void
1170 gimple_check_failed (const_gimple gs, const char *file, int line,
1171 const char *function, enum gimple_code code,
1172 enum tree_code subcode)
1173 {
1174 internal_error ("gimple check: expected %s(%s), have %s(%s) in %s, at %s:%d",
1175 gimple_code_name[code],
1176 get_tree_code_name (subcode),
1177 gimple_code_name[gimple_code (gs)],
1178 gs->subcode > 0
1179 ? get_tree_code_name ((enum tree_code) gs->subcode)
1180 : "",
1181 function, trim_filename (file), line);
1182 }
1183 #endif /* ENABLE_GIMPLE_CHECKING */
1184
1185
1186 /* Link gimple statement GS to the end of the sequence *SEQ_P. If
1187 *SEQ_P is NULL, a new sequence is allocated. */
1188
1189 void
1190 gimple_seq_add_stmt (gimple_seq *seq_p, gimple gs)
1191 {
1192 gimple_stmt_iterator si;
1193 if (gs == NULL)
1194 return;
1195
1196 si = gsi_last (*seq_p);
1197 gsi_insert_after (&si, gs, GSI_NEW_STMT);
1198 }
1199
1200 /* Link gimple statement GS to the end of the sequence *SEQ_P. If
1201 *SEQ_P is NULL, a new sequence is allocated. This function is
1202 similar to gimple_seq_add_stmt, but does not scan the operands.
1203 During gimplification, we need to manipulate statement sequences
1204 before the def/use vectors have been constructed. */
1205
1206 void
1207 gimple_seq_add_stmt_without_update (gimple_seq *seq_p, gimple gs)
1208 {
1209 gimple_stmt_iterator si;
1210
1211 if (gs == NULL)
1212 return;
1213
1214 si = gsi_last (*seq_p);
1215 gsi_insert_after_without_update (&si, gs, GSI_NEW_STMT);
1216 }
1217
1218 /* Append sequence SRC to the end of sequence *DST_P. If *DST_P is
1219 NULL, a new sequence is allocated. */
1220
1221 void
1222 gimple_seq_add_seq (gimple_seq *dst_p, gimple_seq src)
1223 {
1224 gimple_stmt_iterator si;
1225 if (src == NULL)
1226 return;
1227
1228 si = gsi_last (*dst_p);
1229 gsi_insert_seq_after (&si, src, GSI_NEW_STMT);
1230 }
1231
1232 /* Append sequence SRC to the end of sequence *DST_P. If *DST_P is
1233 NULL, a new sequence is allocated. This function is
1234 similar to gimple_seq_add_seq, but does not scan the operands. */
1235
1236 void
1237 gimple_seq_add_seq_without_update (gimple_seq *dst_p, gimple_seq src)
1238 {
1239 gimple_stmt_iterator si;
1240 if (src == NULL)
1241 return;
1242
1243 si = gsi_last (*dst_p);
1244 gsi_insert_seq_after_without_update (&si, src, GSI_NEW_STMT);
1245 }
1246
1247 /* Determine whether to assign a location to the statement GS. */
1248
1249 static bool
1250 should_carry_location_p (gimple gs)
1251 {
1252 /* Don't emit a line note for a label. We particularly don't want to
1253 emit one for the break label, since it doesn't actually correspond
1254 to the beginning of the loop/switch. */
1255 if (gimple_code (gs) == GIMPLE_LABEL)
1256 return false;
1257
1258 return true;
1259 }
1260
1261 /* Set the location for gimple statement GS to LOCATION. */
1262
1263 static void
1264 annotate_one_with_location (gimple gs, location_t location)
1265 {
1266 if (!gimple_has_location (gs)
1267 && !gimple_do_not_emit_location_p (gs)
1268 && should_carry_location_p (gs))
1269 gimple_set_location (gs, location);
1270 }
1271
1272 /* Set LOCATION for all the statements after iterator GSI in sequence
1273 SEQ. If GSI is pointing to the end of the sequence, start with the
1274 first statement in SEQ. */
1275
1276 void
1277 annotate_all_with_location_after (gimple_seq seq, gimple_stmt_iterator gsi,
1278 location_t location)
1279 {
1280 if (gsi_end_p (gsi))
1281 gsi = gsi_start (seq);
1282 else
1283 gsi_next (&gsi);
1284
1285 for (; !gsi_end_p (gsi); gsi_next (&gsi))
1286 annotate_one_with_location (gsi_stmt (gsi), location);
1287 }
1288
1289 /* Set the location for all the statements in a sequence STMT_P to LOCATION. */
1290
1291 void
1292 annotate_all_with_location (gimple_seq stmt_p, location_t location)
1293 {
1294 gimple_stmt_iterator i;
1295
1296 if (gimple_seq_empty_p (stmt_p))
1297 return;
1298
1299 for (i = gsi_start (stmt_p); !gsi_end_p (i); gsi_next (&i))
1300 {
1301 gimple gs = gsi_stmt (i);
1302 annotate_one_with_location (gs, location);
1303 }
1304 }
1305
1306 /* Helper function of empty_body_p. Return true if STMT is an empty
1307 statement. */
1308
1309 static bool
1310 empty_stmt_p (gimple stmt)
1311 {
1312 if (gimple_code (stmt) == GIMPLE_NOP)
1313 return true;
1314 if (gbind *bind_stmt = dyn_cast <gbind *> (stmt))
1315 return empty_body_p (gimple_bind_body (bind_stmt));
1316 return false;
1317 }
1318
1319
1320 /* Return true if BODY contains nothing but empty statements. */
1321
1322 bool
1323 empty_body_p (gimple_seq body)
1324 {
1325 gimple_stmt_iterator i;
1326
1327 if (gimple_seq_empty_p (body))
1328 return true;
1329 for (i = gsi_start (body); !gsi_end_p (i); gsi_next (&i))
1330 if (!empty_stmt_p (gsi_stmt (i))
1331 && !is_gimple_debug (gsi_stmt (i)))
1332 return false;
1333
1334 return true;
1335 }
1336
1337
1338 /* Perform a deep copy of sequence SRC and return the result. */
1339
1340 gimple_seq
1341 gimple_seq_copy (gimple_seq src)
1342 {
1343 gimple_stmt_iterator gsi;
1344 gimple_seq new_seq = NULL;
1345 gimple stmt;
1346
1347 for (gsi = gsi_start (src); !gsi_end_p (gsi); gsi_next (&gsi))
1348 {
1349 stmt = gimple_copy (gsi_stmt (gsi));
1350 gimple_seq_add_stmt (&new_seq, stmt);
1351 }
1352
1353 return new_seq;
1354 }
1355
1356
1357
1358 /* Return true if calls C1 and C2 are known to go to the same function. */
1359
1360 bool
1361 gimple_call_same_target_p (const_gimple c1, const_gimple c2)
1362 {
1363 if (gimple_call_internal_p (c1))
1364 return (gimple_call_internal_p (c2)
1365 && gimple_call_internal_fn (c1) == gimple_call_internal_fn (c2));
1366 else
1367 return (gimple_call_fn (c1) == gimple_call_fn (c2)
1368 || (gimple_call_fndecl (c1)
1369 && gimple_call_fndecl (c1) == gimple_call_fndecl (c2)));
1370 }
1371
1372 /* Detect flags from a GIMPLE_CALL. This is just like
1373 call_expr_flags, but for gimple tuples. */
1374
1375 int
1376 gimple_call_flags (const_gimple stmt)
1377 {
1378 int flags;
1379 tree decl = gimple_call_fndecl (stmt);
1380
1381 if (decl)
1382 flags = flags_from_decl_or_type (decl);
1383 else if (gimple_call_internal_p (stmt))
1384 flags = internal_fn_flags (gimple_call_internal_fn (stmt));
1385 else
1386 flags = flags_from_decl_or_type (gimple_call_fntype (stmt));
1387
1388 if (stmt->subcode & GF_CALL_NOTHROW)
1389 flags |= ECF_NOTHROW;
1390
1391 return flags;
1392 }
1393
1394 /* Return the "fn spec" string for call STMT. */
1395
1396 static const_tree
1397 gimple_call_fnspec (const gcall *stmt)
1398 {
1399 tree type, attr;
1400
1401 if (gimple_call_internal_p (stmt))
1402 return internal_fn_fnspec (gimple_call_internal_fn (stmt));
1403
1404 type = gimple_call_fntype (stmt);
1405 if (!type)
1406 return NULL_TREE;
1407
1408 attr = lookup_attribute ("fn spec", TYPE_ATTRIBUTES (type));
1409 if (!attr)
1410 return NULL_TREE;
1411
1412 return TREE_VALUE (TREE_VALUE (attr));
1413 }
1414
1415 /* Detects argument flags for argument number ARG on call STMT. */
1416
1417 int
1418 gimple_call_arg_flags (const gcall *stmt, unsigned arg)
1419 {
1420 const_tree attr = gimple_call_fnspec (stmt);
1421
1422 if (!attr || 1 + arg >= (unsigned) TREE_STRING_LENGTH (attr))
1423 return 0;
1424
1425 switch (TREE_STRING_POINTER (attr)[1 + arg])
1426 {
1427 case 'x':
1428 case 'X':
1429 return EAF_UNUSED;
1430
1431 case 'R':
1432 return EAF_DIRECT | EAF_NOCLOBBER | EAF_NOESCAPE;
1433
1434 case 'r':
1435 return EAF_NOCLOBBER | EAF_NOESCAPE;
1436
1437 case 'W':
1438 return EAF_DIRECT | EAF_NOESCAPE;
1439
1440 case 'w':
1441 return EAF_NOESCAPE;
1442
1443 case '.':
1444 default:
1445 return 0;
1446 }
1447 }
1448
1449 /* Detects return flags for the call STMT. */
1450
1451 int
1452 gimple_call_return_flags (const gcall *stmt)
1453 {
1454 const_tree attr;
1455
1456 if (gimple_call_flags (stmt) & ECF_MALLOC)
1457 return ERF_NOALIAS;
1458
1459 attr = gimple_call_fnspec (stmt);
1460 if (!attr || TREE_STRING_LENGTH (attr) < 1)
1461 return 0;
1462
1463 switch (TREE_STRING_POINTER (attr)[0])
1464 {
1465 case '1':
1466 case '2':
1467 case '3':
1468 case '4':
1469 return ERF_RETURNS_ARG | (TREE_STRING_POINTER (attr)[0] - '1');
1470
1471 case 'm':
1472 return ERF_NOALIAS;
1473
1474 case '.':
1475 default:
1476 return 0;
1477 }
1478 }
1479
1480
1481 /* Return true if GS is a copy assignment. */
1482
1483 bool
1484 gimple_assign_copy_p (gimple gs)
1485 {
1486 return (gimple_assign_single_p (gs)
1487 && is_gimple_val (gimple_op (gs, 1)));
1488 }
1489
1490
1491 /* Return true if GS is a SSA_NAME copy assignment. */
1492
1493 bool
1494 gimple_assign_ssa_name_copy_p (gimple gs)
1495 {
1496 return (gimple_assign_single_p (gs)
1497 && TREE_CODE (gimple_assign_lhs (gs)) == SSA_NAME
1498 && TREE_CODE (gimple_assign_rhs1 (gs)) == SSA_NAME);
1499 }
1500
1501
1502 /* Return true if GS is an assignment with a unary RHS, but the
1503 operator has no effect on the assigned value. The logic is adapted
1504 from STRIP_NOPS. This predicate is intended to be used in tuplifying
1505 instances in which STRIP_NOPS was previously applied to the RHS of
1506 an assignment.
1507
1508 NOTE: In the use cases that led to the creation of this function
1509 and of gimple_assign_single_p, it is typical to test for either
1510 condition and to proceed in the same manner. In each case, the
1511 assigned value is represented by the single RHS operand of the
1512 assignment. I suspect there may be cases where gimple_assign_copy_p,
1513 gimple_assign_single_p, or equivalent logic is used where a similar
1514 treatment of unary NOPs is appropriate. */
1515
1516 bool
1517 gimple_assign_unary_nop_p (gimple gs)
1518 {
1519 return (is_gimple_assign (gs)
1520 && (CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (gs))
1521 || gimple_assign_rhs_code (gs) == NON_LVALUE_EXPR)
1522 && gimple_assign_rhs1 (gs) != error_mark_node
1523 && (TYPE_MODE (TREE_TYPE (gimple_assign_lhs (gs)))
1524 == TYPE_MODE (TREE_TYPE (gimple_assign_rhs1 (gs)))));
1525 }
1526
1527 /* Set BB to be the basic block holding G. */
1528
1529 void
1530 gimple_set_bb (gimple stmt, basic_block bb)
1531 {
1532 stmt->bb = bb;
1533
1534 if (gimple_code (stmt) != GIMPLE_LABEL)
1535 return;
1536
1537 /* If the statement is a label, add the label to block-to-labels map
1538 so that we can speed up edge creation for GIMPLE_GOTOs. */
1539 if (cfun->cfg)
1540 {
1541 tree t;
1542 int uid;
1543
1544 t = gimple_label_label (as_a <glabel *> (stmt));
1545 uid = LABEL_DECL_UID (t);
1546 if (uid == -1)
1547 {
1548 unsigned old_len =
1549 vec_safe_length (label_to_block_map_for_fn (cfun));
1550 LABEL_DECL_UID (t) = uid = cfun->cfg->last_label_uid++;
1551 if (old_len <= (unsigned) uid)
1552 {
1553 unsigned new_len = 3 * uid / 2 + 1;
1554
1555 vec_safe_grow_cleared (label_to_block_map_for_fn (cfun),
1556 new_len);
1557 }
1558 }
1559
1560 (*label_to_block_map_for_fn (cfun))[uid] = bb;
1561 }
1562 }
1563
1564
1565 /* Modify the RHS of the assignment pointed-to by GSI using the
1566 operands in the expression tree EXPR.
1567
1568 NOTE: The statement pointed-to by GSI may be reallocated if it
1569 did not have enough operand slots.
1570
1571 This function is useful to convert an existing tree expression into
1572 the flat representation used for the RHS of a GIMPLE assignment.
1573 It will reallocate memory as needed to expand or shrink the number
1574 of operand slots needed to represent EXPR.
1575
1576 NOTE: If you find yourself building a tree and then calling this
1577 function, you are most certainly doing it the slow way. It is much
1578 better to build a new assignment or to use the function
1579 gimple_assign_set_rhs_with_ops, which does not require an
1580 expression tree to be built. */
1581
1582 void
1583 gimple_assign_set_rhs_from_tree (gimple_stmt_iterator *gsi, tree expr)
1584 {
1585 enum tree_code subcode;
1586 tree op1, op2, op3;
1587
1588 extract_ops_from_tree_1 (expr, &subcode, &op1, &op2, &op3);
1589 gimple_assign_set_rhs_with_ops (gsi, subcode, op1, op2, op3);
1590 }
1591
1592
1593 /* Set the RHS of assignment statement pointed-to by GSI to CODE with
1594 operands OP1, OP2 and OP3.
1595
1596 NOTE: The statement pointed-to by GSI may be reallocated if it
1597 did not have enough operand slots. */
1598
1599 void
1600 gimple_assign_set_rhs_with_ops (gimple_stmt_iterator *gsi, enum tree_code code,
1601 tree op1, tree op2, tree op3)
1602 {
1603 unsigned new_rhs_ops = get_gimple_rhs_num_ops (code);
1604 gimple stmt = gsi_stmt (*gsi);
1605
1606 /* If the new CODE needs more operands, allocate a new statement. */
1607 if (gimple_num_ops (stmt) < new_rhs_ops + 1)
1608 {
1609 tree lhs = gimple_assign_lhs (stmt);
1610 gimple new_stmt = gimple_alloc (gimple_code (stmt), new_rhs_ops + 1);
1611 memcpy (new_stmt, stmt, gimple_size (gimple_code (stmt)));
1612 gimple_init_singleton (new_stmt);
1613 gsi_replace (gsi, new_stmt, true);
1614 stmt = new_stmt;
1615
1616 /* The LHS needs to be reset as this also changes the SSA name
1617 on the LHS. */
1618 gimple_assign_set_lhs (stmt, lhs);
1619 }
1620
1621 gimple_set_num_ops (stmt, new_rhs_ops + 1);
1622 gimple_set_subcode (stmt, code);
1623 gimple_assign_set_rhs1 (stmt, op1);
1624 if (new_rhs_ops > 1)
1625 gimple_assign_set_rhs2 (stmt, op2);
1626 if (new_rhs_ops > 2)
1627 gimple_assign_set_rhs3 (stmt, op3);
1628 }
1629
1630
1631 /* Return the LHS of a statement that performs an assignment,
1632 either a GIMPLE_ASSIGN or a GIMPLE_CALL. Returns NULL_TREE
1633 for a call to a function that returns no value, or for a
1634 statement other than an assignment or a call. */
1635
1636 tree
1637 gimple_get_lhs (const_gimple stmt)
1638 {
1639 enum gimple_code code = gimple_code (stmt);
1640
1641 if (code == GIMPLE_ASSIGN)
1642 return gimple_assign_lhs (stmt);
1643 else if (code == GIMPLE_CALL)
1644 return gimple_call_lhs (stmt);
1645 else
1646 return NULL_TREE;
1647 }
1648
1649
1650 /* Set the LHS of a statement that performs an assignment,
1651 either a GIMPLE_ASSIGN or a GIMPLE_CALL. */
1652
1653 void
1654 gimple_set_lhs (gimple stmt, tree lhs)
1655 {
1656 enum gimple_code code = gimple_code (stmt);
1657
1658 if (code == GIMPLE_ASSIGN)
1659 gimple_assign_set_lhs (stmt, lhs);
1660 else if (code == GIMPLE_CALL)
1661 gimple_call_set_lhs (stmt, lhs);
1662 else
1663 gcc_unreachable ();
1664 }
1665
1666
1667 /* Return a deep copy of statement STMT. All the operands from STMT
1668 are reallocated and copied using unshare_expr. The DEF, USE, VDEF
1669 and VUSE operand arrays are set to empty in the new copy. The new
1670 copy isn't part of any sequence. */
1671
1672 gimple
1673 gimple_copy (gimple stmt)
1674 {
1675 enum gimple_code code = gimple_code (stmt);
1676 unsigned num_ops = gimple_num_ops (stmt);
1677 gimple copy = gimple_alloc (code, num_ops);
1678 unsigned i;
1679
1680 /* Shallow copy all the fields from STMT. */
1681 memcpy (copy, stmt, gimple_size (code));
1682 gimple_init_singleton (copy);
1683
1684 /* If STMT has sub-statements, deep-copy them as well. */
1685 if (gimple_has_substatements (stmt))
1686 {
1687 gimple_seq new_seq;
1688 tree t;
1689
1690 switch (gimple_code (stmt))
1691 {
1692 case GIMPLE_BIND:
1693 {
1694 gbind *bind_stmt = as_a <gbind *> (stmt);
1695 gbind *bind_copy = as_a <gbind *> (copy);
1696 new_seq = gimple_seq_copy (gimple_bind_body (bind_stmt));
1697 gimple_bind_set_body (bind_copy, new_seq);
1698 gimple_bind_set_vars (bind_copy,
1699 unshare_expr (gimple_bind_vars (bind_stmt)));
1700 gimple_bind_set_block (bind_copy, gimple_bind_block (bind_stmt));
1701 }
1702 break;
1703
1704 case GIMPLE_CATCH:
1705 {
1706 gcatch *catch_stmt = as_a <gcatch *> (stmt);
1707 gcatch *catch_copy = as_a <gcatch *> (copy);
1708 new_seq = gimple_seq_copy (gimple_catch_handler (catch_stmt));
1709 gimple_catch_set_handler (catch_copy, new_seq);
1710 t = unshare_expr (gimple_catch_types (catch_stmt));
1711 gimple_catch_set_types (catch_copy, t);
1712 }
1713 break;
1714
1715 case GIMPLE_EH_FILTER:
1716 {
1717 geh_filter *eh_filter_stmt = as_a <geh_filter *> (stmt);
1718 geh_filter *eh_filter_copy = as_a <geh_filter *> (copy);
1719 new_seq
1720 = gimple_seq_copy (gimple_eh_filter_failure (eh_filter_stmt));
1721 gimple_eh_filter_set_failure (eh_filter_copy, new_seq);
1722 t = unshare_expr (gimple_eh_filter_types (eh_filter_stmt));
1723 gimple_eh_filter_set_types (eh_filter_copy, t);
1724 }
1725 break;
1726
1727 case GIMPLE_EH_ELSE:
1728 {
1729 geh_else *eh_else_stmt = as_a <geh_else *> (stmt);
1730 geh_else *eh_else_copy = as_a <geh_else *> (copy);
1731 new_seq = gimple_seq_copy (gimple_eh_else_n_body (eh_else_stmt));
1732 gimple_eh_else_set_n_body (eh_else_copy, new_seq);
1733 new_seq = gimple_seq_copy (gimple_eh_else_e_body (eh_else_stmt));
1734 gimple_eh_else_set_e_body (eh_else_copy, new_seq);
1735 }
1736 break;
1737
1738 case GIMPLE_TRY:
1739 {
1740 gtry *try_stmt = as_a <gtry *> (stmt);
1741 gtry *try_copy = as_a <gtry *> (copy);
1742 new_seq = gimple_seq_copy (gimple_try_eval (try_stmt));
1743 gimple_try_set_eval (try_copy, new_seq);
1744 new_seq = gimple_seq_copy (gimple_try_cleanup (try_stmt));
1745 gimple_try_set_cleanup (try_copy, new_seq);
1746 }
1747 break;
1748
1749 case GIMPLE_OMP_FOR:
1750 new_seq = gimple_seq_copy (gimple_omp_for_pre_body (stmt));
1751 gimple_omp_for_set_pre_body (copy, new_seq);
1752 t = unshare_expr (gimple_omp_for_clauses (stmt));
1753 gimple_omp_for_set_clauses (copy, t);
1754 {
1755 gomp_for *omp_for_copy = as_a <gomp_for *> (copy);
1756 omp_for_copy->iter = ggc_vec_alloc<gimple_omp_for_iter>
1757 ( gimple_omp_for_collapse (stmt));
1758 }
1759 for (i = 0; i < gimple_omp_for_collapse (stmt); i++)
1760 {
1761 gimple_omp_for_set_cond (copy, i,
1762 gimple_omp_for_cond (stmt, i));
1763 gimple_omp_for_set_index (copy, i,
1764 gimple_omp_for_index (stmt, i));
1765 t = unshare_expr (gimple_omp_for_initial (stmt, i));
1766 gimple_omp_for_set_initial (copy, i, t);
1767 t = unshare_expr (gimple_omp_for_final (stmt, i));
1768 gimple_omp_for_set_final (copy, i, t);
1769 t = unshare_expr (gimple_omp_for_incr (stmt, i));
1770 gimple_omp_for_set_incr (copy, i, t);
1771 }
1772 goto copy_omp_body;
1773
1774 case GIMPLE_OMP_PARALLEL:
1775 {
1776 gomp_parallel *omp_par_stmt = as_a <gomp_parallel *> (stmt);
1777 gomp_parallel *omp_par_copy = as_a <gomp_parallel *> (copy);
1778 t = unshare_expr (gimple_omp_parallel_clauses (omp_par_stmt));
1779 gimple_omp_parallel_set_clauses (omp_par_copy, t);
1780 t = unshare_expr (gimple_omp_parallel_child_fn (omp_par_stmt));
1781 gimple_omp_parallel_set_child_fn (omp_par_copy, t);
1782 t = unshare_expr (gimple_omp_parallel_data_arg (omp_par_stmt));
1783 gimple_omp_parallel_set_data_arg (omp_par_copy, t);
1784 }
1785 goto copy_omp_body;
1786
1787 case GIMPLE_OMP_TASK:
1788 t = unshare_expr (gimple_omp_task_clauses (stmt));
1789 gimple_omp_task_set_clauses (copy, t);
1790 t = unshare_expr (gimple_omp_task_child_fn (stmt));
1791 gimple_omp_task_set_child_fn (copy, t);
1792 t = unshare_expr (gimple_omp_task_data_arg (stmt));
1793 gimple_omp_task_set_data_arg (copy, t);
1794 t = unshare_expr (gimple_omp_task_copy_fn (stmt));
1795 gimple_omp_task_set_copy_fn (copy, t);
1796 t = unshare_expr (gimple_omp_task_arg_size (stmt));
1797 gimple_omp_task_set_arg_size (copy, t);
1798 t = unshare_expr (gimple_omp_task_arg_align (stmt));
1799 gimple_omp_task_set_arg_align (copy, t);
1800 goto copy_omp_body;
1801
1802 case GIMPLE_OMP_CRITICAL:
1803 t = unshare_expr (gimple_omp_critical_name (
1804 as_a <gomp_critical *> (stmt)));
1805 gimple_omp_critical_set_name (as_a <gomp_critical *> (copy), t);
1806 goto copy_omp_body;
1807
1808 case GIMPLE_OMP_SECTIONS:
1809 t = unshare_expr (gimple_omp_sections_clauses (stmt));
1810 gimple_omp_sections_set_clauses (copy, t);
1811 t = unshare_expr (gimple_omp_sections_control (stmt));
1812 gimple_omp_sections_set_control (copy, t);
1813 /* FALLTHRU */
1814
1815 case GIMPLE_OMP_SINGLE:
1816 case GIMPLE_OMP_TARGET:
1817 case GIMPLE_OMP_TEAMS:
1818 case GIMPLE_OMP_SECTION:
1819 case GIMPLE_OMP_MASTER:
1820 case GIMPLE_OMP_TASKGROUP:
1821 case GIMPLE_OMP_ORDERED:
1822 copy_omp_body:
1823 new_seq = gimple_seq_copy (gimple_omp_body (stmt));
1824 gimple_omp_set_body (copy, new_seq);
1825 break;
1826
1827 case GIMPLE_TRANSACTION:
1828 new_seq = gimple_seq_copy (gimple_transaction_body (
1829 as_a <gtransaction *> (stmt)));
1830 gimple_transaction_set_body (as_a <gtransaction *> (copy),
1831 new_seq);
1832 break;
1833
1834 case GIMPLE_WITH_CLEANUP_EXPR:
1835 new_seq = gimple_seq_copy (gimple_wce_cleanup (stmt));
1836 gimple_wce_set_cleanup (copy, new_seq);
1837 break;
1838
1839 default:
1840 gcc_unreachable ();
1841 }
1842 }
1843
1844 /* Make copy of operands. */
1845 for (i = 0; i < num_ops; i++)
1846 gimple_set_op (copy, i, unshare_expr (gimple_op (stmt, i)));
1847
1848 if (gimple_has_mem_ops (stmt))
1849 {
1850 gimple_set_vdef (copy, gimple_vdef (stmt));
1851 gimple_set_vuse (copy, gimple_vuse (stmt));
1852 }
1853
1854 /* Clear out SSA operand vectors on COPY. */
1855 if (gimple_has_ops (stmt))
1856 {
1857 gimple_set_use_ops (copy, NULL);
1858
1859 /* SSA operands need to be updated. */
1860 gimple_set_modified (copy, true);
1861 }
1862
1863 return copy;
1864 }
1865
1866
1867 /* Return true if statement S has side-effects. We consider a
1868 statement to have side effects if:
1869
1870 - It is a GIMPLE_CALL not marked with ECF_PURE or ECF_CONST.
1871 - Any of its operands are marked TREE_THIS_VOLATILE or TREE_SIDE_EFFECTS. */
1872
1873 bool
1874 gimple_has_side_effects (const_gimple s)
1875 {
1876 if (is_gimple_debug (s))
1877 return false;
1878
1879 /* We don't have to scan the arguments to check for
1880 volatile arguments, though, at present, we still
1881 do a scan to check for TREE_SIDE_EFFECTS. */
1882 if (gimple_has_volatile_ops (s))
1883 return true;
1884
1885 if (gimple_code (s) == GIMPLE_ASM
1886 && gimple_asm_volatile_p (as_a <const gasm *> (s)))
1887 return true;
1888
1889 if (is_gimple_call (s))
1890 {
1891 int flags = gimple_call_flags (s);
1892
1893 /* An infinite loop is considered a side effect. */
1894 if (!(flags & (ECF_CONST | ECF_PURE))
1895 || (flags & ECF_LOOPING_CONST_OR_PURE))
1896 return true;
1897
1898 return false;
1899 }
1900
1901 return false;
1902 }
1903
1904 /* Helper for gimple_could_trap_p and gimple_assign_rhs_could_trap_p.
1905 Return true if S can trap. When INCLUDE_MEM is true, check whether
1906 the memory operations could trap. When INCLUDE_STORES is true and
1907 S is a GIMPLE_ASSIGN, the LHS of the assignment is also checked. */
1908
1909 bool
1910 gimple_could_trap_p_1 (gimple s, bool include_mem, bool include_stores)
1911 {
1912 tree t, div = NULL_TREE;
1913 enum tree_code op;
1914
1915 if (include_mem)
1916 {
1917 unsigned i, start = (is_gimple_assign (s) && !include_stores) ? 1 : 0;
1918
1919 for (i = start; i < gimple_num_ops (s); i++)
1920 if (tree_could_trap_p (gimple_op (s, i)))
1921 return true;
1922 }
1923
1924 switch (gimple_code (s))
1925 {
1926 case GIMPLE_ASM:
1927 return gimple_asm_volatile_p (as_a <gasm *> (s));
1928
1929 case GIMPLE_CALL:
1930 t = gimple_call_fndecl (s);
1931 /* Assume that calls to weak functions may trap. */
1932 if (!t || !DECL_P (t) || DECL_WEAK (t))
1933 return true;
1934 return false;
1935
1936 case GIMPLE_ASSIGN:
1937 t = gimple_expr_type (s);
1938 op = gimple_assign_rhs_code (s);
1939 if (get_gimple_rhs_class (op) == GIMPLE_BINARY_RHS)
1940 div = gimple_assign_rhs2 (s);
1941 return (operation_could_trap_p (op, FLOAT_TYPE_P (t),
1942 (INTEGRAL_TYPE_P (t)
1943 && TYPE_OVERFLOW_TRAPS (t)),
1944 div));
1945
1946 default:
1947 break;
1948 }
1949
1950 return false;
1951 }
1952
1953 /* Return true if statement S can trap. */
1954
1955 bool
1956 gimple_could_trap_p (gimple s)
1957 {
1958 return gimple_could_trap_p_1 (s, true, true);
1959 }
1960
1961 /* Return true if RHS of a GIMPLE_ASSIGN S can trap. */
1962
1963 bool
1964 gimple_assign_rhs_could_trap_p (gimple s)
1965 {
1966 gcc_assert (is_gimple_assign (s));
1967 return gimple_could_trap_p_1 (s, true, false);
1968 }
1969
1970
1971 /* Print debugging information for gimple stmts generated. */
1972
1973 void
1974 dump_gimple_statistics (void)
1975 {
1976 int i, total_tuples = 0, total_bytes = 0;
1977
1978 if (! GATHER_STATISTICS)
1979 {
1980 fprintf (stderr, "No gimple statistics\n");
1981 return;
1982 }
1983
1984 fprintf (stderr, "\nGIMPLE statements\n");
1985 fprintf (stderr, "Kind Stmts Bytes\n");
1986 fprintf (stderr, "---------------------------------------\n");
1987 for (i = 0; i < (int) gimple_alloc_kind_all; ++i)
1988 {
1989 fprintf (stderr, "%-20s %7d %10d\n", gimple_alloc_kind_names[i],
1990 gimple_alloc_counts[i], gimple_alloc_sizes[i]);
1991 total_tuples += gimple_alloc_counts[i];
1992 total_bytes += gimple_alloc_sizes[i];
1993 }
1994 fprintf (stderr, "---------------------------------------\n");
1995 fprintf (stderr, "%-20s %7d %10d\n", "Total", total_tuples, total_bytes);
1996 fprintf (stderr, "---------------------------------------\n");
1997 }
1998
1999
2000 /* Return the number of operands needed on the RHS of a GIMPLE
2001 assignment for an expression with tree code CODE. */
2002
2003 unsigned
2004 get_gimple_rhs_num_ops (enum tree_code code)
2005 {
2006 enum gimple_rhs_class rhs_class = get_gimple_rhs_class (code);
2007
2008 if (rhs_class == GIMPLE_UNARY_RHS || rhs_class == GIMPLE_SINGLE_RHS)
2009 return 1;
2010 else if (rhs_class == GIMPLE_BINARY_RHS)
2011 return 2;
2012 else if (rhs_class == GIMPLE_TERNARY_RHS)
2013 return 3;
2014 else
2015 gcc_unreachable ();
2016 }
2017
2018 #define DEFTREECODE(SYM, STRING, TYPE, NARGS) \
2019 (unsigned char) \
2020 ((TYPE) == tcc_unary ? GIMPLE_UNARY_RHS \
2021 : ((TYPE) == tcc_binary \
2022 || (TYPE) == tcc_comparison) ? GIMPLE_BINARY_RHS \
2023 : ((TYPE) == tcc_constant \
2024 || (TYPE) == tcc_declaration \
2025 || (TYPE) == tcc_reference) ? GIMPLE_SINGLE_RHS \
2026 : ((SYM) == TRUTH_AND_EXPR \
2027 || (SYM) == TRUTH_OR_EXPR \
2028 || (SYM) == TRUTH_XOR_EXPR) ? GIMPLE_BINARY_RHS \
2029 : (SYM) == TRUTH_NOT_EXPR ? GIMPLE_UNARY_RHS \
2030 : ((SYM) == COND_EXPR \
2031 || (SYM) == WIDEN_MULT_PLUS_EXPR \
2032 || (SYM) == WIDEN_MULT_MINUS_EXPR \
2033 || (SYM) == DOT_PROD_EXPR \
2034 || (SYM) == SAD_EXPR \
2035 || (SYM) == REALIGN_LOAD_EXPR \
2036 || (SYM) == VEC_COND_EXPR \
2037 || (SYM) == VEC_PERM_EXPR \
2038 || (SYM) == FMA_EXPR) ? GIMPLE_TERNARY_RHS \
2039 : ((SYM) == CONSTRUCTOR \
2040 || (SYM) == OBJ_TYPE_REF \
2041 || (SYM) == ASSERT_EXPR \
2042 || (SYM) == ADDR_EXPR \
2043 || (SYM) == WITH_SIZE_EXPR \
2044 || (SYM) == SSA_NAME) ? GIMPLE_SINGLE_RHS \
2045 : GIMPLE_INVALID_RHS),
2046 #define END_OF_BASE_TREE_CODES (unsigned char) GIMPLE_INVALID_RHS,
2047
2048 const unsigned char gimple_rhs_class_table[] = {
2049 #include "all-tree.def"
2050 };
2051
2052 #undef DEFTREECODE
2053 #undef END_OF_BASE_TREE_CODES
2054
2055 /* Canonicalize a tree T for use in a COND_EXPR as conditional. Returns
2056 a canonicalized tree that is valid for a COND_EXPR or NULL_TREE, if
2057 we failed to create one. */
2058
2059 tree
2060 canonicalize_cond_expr_cond (tree t)
2061 {
2062 /* Strip conversions around boolean operations. */
2063 if (CONVERT_EXPR_P (t)
2064 && (truth_value_p (TREE_CODE (TREE_OPERAND (t, 0)))
2065 || TREE_CODE (TREE_TYPE (TREE_OPERAND (t, 0)))
2066 == BOOLEAN_TYPE))
2067 t = TREE_OPERAND (t, 0);
2068
2069 /* For !x use x == 0. */
2070 if (TREE_CODE (t) == TRUTH_NOT_EXPR)
2071 {
2072 tree top0 = TREE_OPERAND (t, 0);
2073 t = build2 (EQ_EXPR, TREE_TYPE (t),
2074 top0, build_int_cst (TREE_TYPE (top0), 0));
2075 }
2076 /* For cmp ? 1 : 0 use cmp. */
2077 else if (TREE_CODE (t) == COND_EXPR
2078 && COMPARISON_CLASS_P (TREE_OPERAND (t, 0))
2079 && integer_onep (TREE_OPERAND (t, 1))
2080 && integer_zerop (TREE_OPERAND (t, 2)))
2081 {
2082 tree top0 = TREE_OPERAND (t, 0);
2083 t = build2 (TREE_CODE (top0), TREE_TYPE (t),
2084 TREE_OPERAND (top0, 0), TREE_OPERAND (top0, 1));
2085 }
2086 /* For x ^ y use x != y. */
2087 else if (TREE_CODE (t) == BIT_XOR_EXPR)
2088 t = build2 (NE_EXPR, TREE_TYPE (t),
2089 TREE_OPERAND (t, 0), TREE_OPERAND (t, 1));
2090
2091 if (is_gimple_condexpr (t))
2092 return t;
2093
2094 return NULL_TREE;
2095 }
2096
2097 /* Build a GIMPLE_CALL identical to STMT but skipping the arguments in
2098 the positions marked by the set ARGS_TO_SKIP. */
2099
2100 gcall *
2101 gimple_call_copy_skip_args (gcall *stmt, bitmap args_to_skip)
2102 {
2103 int i;
2104 int nargs = gimple_call_num_args (stmt);
2105 auto_vec<tree> vargs (nargs);
2106 gcall *new_stmt;
2107
2108 for (i = 0; i < nargs; i++)
2109 if (!bitmap_bit_p (args_to_skip, i))
2110 vargs.quick_push (gimple_call_arg (stmt, i));
2111
2112 if (gimple_call_internal_p (stmt))
2113 new_stmt = gimple_build_call_internal_vec (gimple_call_internal_fn (stmt),
2114 vargs);
2115 else
2116 new_stmt = gimple_build_call_vec (gimple_call_fn (stmt), vargs);
2117
2118 if (gimple_call_lhs (stmt))
2119 gimple_call_set_lhs (new_stmt, gimple_call_lhs (stmt));
2120
2121 gimple_set_vuse (new_stmt, gimple_vuse (stmt));
2122 gimple_set_vdef (new_stmt, gimple_vdef (stmt));
2123
2124 if (gimple_has_location (stmt))
2125 gimple_set_location (new_stmt, gimple_location (stmt));
2126 gimple_call_copy_flags (new_stmt, stmt);
2127 gimple_call_set_chain (new_stmt, gimple_call_chain (stmt));
2128
2129 gimple_set_modified (new_stmt, true);
2130
2131 return new_stmt;
2132 }
2133
2134
2135
2136 /* Return true if the field decls F1 and F2 are at the same offset.
2137
2138 This is intended to be used on GIMPLE types only. */
2139
2140 bool
2141 gimple_compare_field_offset (tree f1, tree f2)
2142 {
2143 if (DECL_OFFSET_ALIGN (f1) == DECL_OFFSET_ALIGN (f2))
2144 {
2145 tree offset1 = DECL_FIELD_OFFSET (f1);
2146 tree offset2 = DECL_FIELD_OFFSET (f2);
2147 return ((offset1 == offset2
2148 /* Once gimplification is done, self-referential offsets are
2149 instantiated as operand #2 of the COMPONENT_REF built for
2150 each access and reset. Therefore, they are not relevant
2151 anymore and fields are interchangeable provided that they
2152 represent the same access. */
2153 || (TREE_CODE (offset1) == PLACEHOLDER_EXPR
2154 && TREE_CODE (offset2) == PLACEHOLDER_EXPR
2155 && (DECL_SIZE (f1) == DECL_SIZE (f2)
2156 || (TREE_CODE (DECL_SIZE (f1)) == PLACEHOLDER_EXPR
2157 && TREE_CODE (DECL_SIZE (f2)) == PLACEHOLDER_EXPR)
2158 || operand_equal_p (DECL_SIZE (f1), DECL_SIZE (f2), 0))
2159 && DECL_ALIGN (f1) == DECL_ALIGN (f2))
2160 || operand_equal_p (offset1, offset2, 0))
2161 && tree_int_cst_equal (DECL_FIELD_BIT_OFFSET (f1),
2162 DECL_FIELD_BIT_OFFSET (f2)));
2163 }
2164
2165 /* Fortran and C do not always agree on what DECL_OFFSET_ALIGN
2166 should be, so handle differing ones specially by decomposing
2167 the offset into a byte and bit offset manually. */
2168 if (tree_fits_shwi_p (DECL_FIELD_OFFSET (f1))
2169 && tree_fits_shwi_p (DECL_FIELD_OFFSET (f2)))
2170 {
2171 unsigned HOST_WIDE_INT byte_offset1, byte_offset2;
2172 unsigned HOST_WIDE_INT bit_offset1, bit_offset2;
2173 bit_offset1 = TREE_INT_CST_LOW (DECL_FIELD_BIT_OFFSET (f1));
2174 byte_offset1 = (TREE_INT_CST_LOW (DECL_FIELD_OFFSET (f1))
2175 + bit_offset1 / BITS_PER_UNIT);
2176 bit_offset2 = TREE_INT_CST_LOW (DECL_FIELD_BIT_OFFSET (f2));
2177 byte_offset2 = (TREE_INT_CST_LOW (DECL_FIELD_OFFSET (f2))
2178 + bit_offset2 / BITS_PER_UNIT);
2179 if (byte_offset1 != byte_offset2)
2180 return false;
2181 return bit_offset1 % BITS_PER_UNIT == bit_offset2 % BITS_PER_UNIT;
2182 }
2183
2184 return false;
2185 }
2186
2187
2188 /* Return a type the same as TYPE except unsigned or
2189 signed according to UNSIGNEDP. */
2190
2191 static tree
2192 gimple_signed_or_unsigned_type (bool unsignedp, tree type)
2193 {
2194 tree type1;
2195 int i;
2196
2197 type1 = TYPE_MAIN_VARIANT (type);
2198 if (type1 == signed_char_type_node
2199 || type1 == char_type_node
2200 || type1 == unsigned_char_type_node)
2201 return unsignedp ? unsigned_char_type_node : signed_char_type_node;
2202 if (type1 == integer_type_node || type1 == unsigned_type_node)
2203 return unsignedp ? unsigned_type_node : integer_type_node;
2204 if (type1 == short_integer_type_node || type1 == short_unsigned_type_node)
2205 return unsignedp ? short_unsigned_type_node : short_integer_type_node;
2206 if (type1 == long_integer_type_node || type1 == long_unsigned_type_node)
2207 return unsignedp ? long_unsigned_type_node : long_integer_type_node;
2208 if (type1 == long_long_integer_type_node
2209 || type1 == long_long_unsigned_type_node)
2210 return unsignedp
2211 ? long_long_unsigned_type_node
2212 : long_long_integer_type_node;
2213
2214 for (i = 0; i < NUM_INT_N_ENTS; i ++)
2215 if (int_n_enabled_p[i]
2216 && (type1 == int_n_trees[i].unsigned_type
2217 || type1 == int_n_trees[i].signed_type))
2218 return unsignedp
2219 ? int_n_trees[i].unsigned_type
2220 : int_n_trees[i].signed_type;
2221
2222 #if HOST_BITS_PER_WIDE_INT >= 64
2223 if (type1 == intTI_type_node || type1 == unsigned_intTI_type_node)
2224 return unsignedp ? unsigned_intTI_type_node : intTI_type_node;
2225 #endif
2226 if (type1 == intDI_type_node || type1 == unsigned_intDI_type_node)
2227 return unsignedp ? unsigned_intDI_type_node : intDI_type_node;
2228 if (type1 == intSI_type_node || type1 == unsigned_intSI_type_node)
2229 return unsignedp ? unsigned_intSI_type_node : intSI_type_node;
2230 if (type1 == intHI_type_node || type1 == unsigned_intHI_type_node)
2231 return unsignedp ? unsigned_intHI_type_node : intHI_type_node;
2232 if (type1 == intQI_type_node || type1 == unsigned_intQI_type_node)
2233 return unsignedp ? unsigned_intQI_type_node : intQI_type_node;
2234
2235 #define GIMPLE_FIXED_TYPES(NAME) \
2236 if (type1 == short_ ## NAME ## _type_node \
2237 || type1 == unsigned_short_ ## NAME ## _type_node) \
2238 return unsignedp ? unsigned_short_ ## NAME ## _type_node \
2239 : short_ ## NAME ## _type_node; \
2240 if (type1 == NAME ## _type_node \
2241 || type1 == unsigned_ ## NAME ## _type_node) \
2242 return unsignedp ? unsigned_ ## NAME ## _type_node \
2243 : NAME ## _type_node; \
2244 if (type1 == long_ ## NAME ## _type_node \
2245 || type1 == unsigned_long_ ## NAME ## _type_node) \
2246 return unsignedp ? unsigned_long_ ## NAME ## _type_node \
2247 : long_ ## NAME ## _type_node; \
2248 if (type1 == long_long_ ## NAME ## _type_node \
2249 || type1 == unsigned_long_long_ ## NAME ## _type_node) \
2250 return unsignedp ? unsigned_long_long_ ## NAME ## _type_node \
2251 : long_long_ ## NAME ## _type_node;
2252
2253 #define GIMPLE_FIXED_MODE_TYPES(NAME) \
2254 if (type1 == NAME ## _type_node \
2255 || type1 == u ## NAME ## _type_node) \
2256 return unsignedp ? u ## NAME ## _type_node \
2257 : NAME ## _type_node;
2258
2259 #define GIMPLE_FIXED_TYPES_SAT(NAME) \
2260 if (type1 == sat_ ## short_ ## NAME ## _type_node \
2261 || type1 == sat_ ## unsigned_short_ ## NAME ## _type_node) \
2262 return unsignedp ? sat_ ## unsigned_short_ ## NAME ## _type_node \
2263 : sat_ ## short_ ## NAME ## _type_node; \
2264 if (type1 == sat_ ## NAME ## _type_node \
2265 || type1 == sat_ ## unsigned_ ## NAME ## _type_node) \
2266 return unsignedp ? sat_ ## unsigned_ ## NAME ## _type_node \
2267 : sat_ ## NAME ## _type_node; \
2268 if (type1 == sat_ ## long_ ## NAME ## _type_node \
2269 || type1 == sat_ ## unsigned_long_ ## NAME ## _type_node) \
2270 return unsignedp ? sat_ ## unsigned_long_ ## NAME ## _type_node \
2271 : sat_ ## long_ ## NAME ## _type_node; \
2272 if (type1 == sat_ ## long_long_ ## NAME ## _type_node \
2273 || type1 == sat_ ## unsigned_long_long_ ## NAME ## _type_node) \
2274 return unsignedp ? sat_ ## unsigned_long_long_ ## NAME ## _type_node \
2275 : sat_ ## long_long_ ## NAME ## _type_node;
2276
2277 #define GIMPLE_FIXED_MODE_TYPES_SAT(NAME) \
2278 if (type1 == sat_ ## NAME ## _type_node \
2279 || type1 == sat_ ## u ## NAME ## _type_node) \
2280 return unsignedp ? sat_ ## u ## NAME ## _type_node \
2281 : sat_ ## NAME ## _type_node;
2282
2283 GIMPLE_FIXED_TYPES (fract);
2284 GIMPLE_FIXED_TYPES_SAT (fract);
2285 GIMPLE_FIXED_TYPES (accum);
2286 GIMPLE_FIXED_TYPES_SAT (accum);
2287
2288 GIMPLE_FIXED_MODE_TYPES (qq);
2289 GIMPLE_FIXED_MODE_TYPES (hq);
2290 GIMPLE_FIXED_MODE_TYPES (sq);
2291 GIMPLE_FIXED_MODE_TYPES (dq);
2292 GIMPLE_FIXED_MODE_TYPES (tq);
2293 GIMPLE_FIXED_MODE_TYPES_SAT (qq);
2294 GIMPLE_FIXED_MODE_TYPES_SAT (hq);
2295 GIMPLE_FIXED_MODE_TYPES_SAT (sq);
2296 GIMPLE_FIXED_MODE_TYPES_SAT (dq);
2297 GIMPLE_FIXED_MODE_TYPES_SAT (tq);
2298 GIMPLE_FIXED_MODE_TYPES (ha);
2299 GIMPLE_FIXED_MODE_TYPES (sa);
2300 GIMPLE_FIXED_MODE_TYPES (da);
2301 GIMPLE_FIXED_MODE_TYPES (ta);
2302 GIMPLE_FIXED_MODE_TYPES_SAT (ha);
2303 GIMPLE_FIXED_MODE_TYPES_SAT (sa);
2304 GIMPLE_FIXED_MODE_TYPES_SAT (da);
2305 GIMPLE_FIXED_MODE_TYPES_SAT (ta);
2306
2307 /* For ENUMERAL_TYPEs in C++, must check the mode of the types, not
2308 the precision; they have precision set to match their range, but
2309 may use a wider mode to match an ABI. If we change modes, we may
2310 wind up with bad conversions. For INTEGER_TYPEs in C, must check
2311 the precision as well, so as to yield correct results for
2312 bit-field types. C++ does not have these separate bit-field
2313 types, and producing a signed or unsigned variant of an
2314 ENUMERAL_TYPE may cause other problems as well. */
2315 if (!INTEGRAL_TYPE_P (type)
2316 || TYPE_UNSIGNED (type) == unsignedp)
2317 return type;
2318
2319 #define TYPE_OK(node) \
2320 (TYPE_MODE (type) == TYPE_MODE (node) \
2321 && TYPE_PRECISION (type) == TYPE_PRECISION (node))
2322 if (TYPE_OK (signed_char_type_node))
2323 return unsignedp ? unsigned_char_type_node : signed_char_type_node;
2324 if (TYPE_OK (integer_type_node))
2325 return unsignedp ? unsigned_type_node : integer_type_node;
2326 if (TYPE_OK (short_integer_type_node))
2327 return unsignedp ? short_unsigned_type_node : short_integer_type_node;
2328 if (TYPE_OK (long_integer_type_node))
2329 return unsignedp ? long_unsigned_type_node : long_integer_type_node;
2330 if (TYPE_OK (long_long_integer_type_node))
2331 return (unsignedp
2332 ? long_long_unsigned_type_node
2333 : long_long_integer_type_node);
2334
2335 for (i = 0; i < NUM_INT_N_ENTS; i ++)
2336 if (int_n_enabled_p[i]
2337 && TYPE_MODE (type) == int_n_data[i].m
2338 && TYPE_PRECISION (type) == int_n_data[i].bitsize)
2339 return unsignedp
2340 ? int_n_trees[i].unsigned_type
2341 : int_n_trees[i].signed_type;
2342
2343 #if HOST_BITS_PER_WIDE_INT >= 64
2344 if (TYPE_OK (intTI_type_node))
2345 return unsignedp ? unsigned_intTI_type_node : intTI_type_node;
2346 #endif
2347 if (TYPE_OK (intDI_type_node))
2348 return unsignedp ? unsigned_intDI_type_node : intDI_type_node;
2349 if (TYPE_OK (intSI_type_node))
2350 return unsignedp ? unsigned_intSI_type_node : intSI_type_node;
2351 if (TYPE_OK (intHI_type_node))
2352 return unsignedp ? unsigned_intHI_type_node : intHI_type_node;
2353 if (TYPE_OK (intQI_type_node))
2354 return unsignedp ? unsigned_intQI_type_node : intQI_type_node;
2355
2356 #undef GIMPLE_FIXED_TYPES
2357 #undef GIMPLE_FIXED_MODE_TYPES
2358 #undef GIMPLE_FIXED_TYPES_SAT
2359 #undef GIMPLE_FIXED_MODE_TYPES_SAT
2360 #undef TYPE_OK
2361
2362 return build_nonstandard_integer_type (TYPE_PRECISION (type), unsignedp);
2363 }
2364
2365
2366 /* Return an unsigned type the same as TYPE in other respects. */
2367
2368 tree
2369 gimple_unsigned_type (tree type)
2370 {
2371 return gimple_signed_or_unsigned_type (true, type);
2372 }
2373
2374
2375 /* Return a signed type the same as TYPE in other respects. */
2376
2377 tree
2378 gimple_signed_type (tree type)
2379 {
2380 return gimple_signed_or_unsigned_type (false, type);
2381 }
2382
2383
2384 /* Return the typed-based alias set for T, which may be an expression
2385 or a type. Return -1 if we don't do anything special. */
2386
2387 alias_set_type
2388 gimple_get_alias_set (tree t)
2389 {
2390 tree u;
2391
2392 /* Permit type-punning when accessing a union, provided the access
2393 is directly through the union. For example, this code does not
2394 permit taking the address of a union member and then storing
2395 through it. Even the type-punning allowed here is a GCC
2396 extension, albeit a common and useful one; the C standard says
2397 that such accesses have implementation-defined behavior. */
2398 for (u = t;
2399 TREE_CODE (u) == COMPONENT_REF || TREE_CODE (u) == ARRAY_REF;
2400 u = TREE_OPERAND (u, 0))
2401 if (TREE_CODE (u) == COMPONENT_REF
2402 && TREE_CODE (TREE_TYPE (TREE_OPERAND (u, 0))) == UNION_TYPE)
2403 return 0;
2404
2405 /* That's all the expressions we handle specially. */
2406 if (!TYPE_P (t))
2407 return -1;
2408
2409 /* For convenience, follow the C standard when dealing with
2410 character types. Any object may be accessed via an lvalue that
2411 has character type. */
2412 if (t == char_type_node
2413 || t == signed_char_type_node
2414 || t == unsigned_char_type_node)
2415 return 0;
2416
2417 /* Allow aliasing between signed and unsigned variants of the same
2418 type. We treat the signed variant as canonical. */
2419 if (TREE_CODE (t) == INTEGER_TYPE && TYPE_UNSIGNED (t))
2420 {
2421 tree t1 = gimple_signed_type (t);
2422
2423 /* t1 == t can happen for boolean nodes which are always unsigned. */
2424 if (t1 != t)
2425 return get_alias_set (t1);
2426 }
2427
2428 return -1;
2429 }
2430
2431
2432 /* Helper for gimple_ior_addresses_taken_1. */
2433
2434 static bool
2435 gimple_ior_addresses_taken_1 (gimple, tree addr, tree, void *data)
2436 {
2437 bitmap addresses_taken = (bitmap)data;
2438 addr = get_base_address (addr);
2439 if (addr
2440 && DECL_P (addr))
2441 {
2442 bitmap_set_bit (addresses_taken, DECL_UID (addr));
2443 return true;
2444 }
2445 return false;
2446 }
2447
2448 /* Set the bit for the uid of all decls that have their address taken
2449 in STMT in the ADDRESSES_TAKEN bitmap. Returns true if there
2450 were any in this stmt. */
2451
2452 bool
2453 gimple_ior_addresses_taken (bitmap addresses_taken, gimple stmt)
2454 {
2455 return walk_stmt_load_store_addr_ops (stmt, addresses_taken, NULL, NULL,
2456 gimple_ior_addresses_taken_1);
2457 }
2458
2459
2460 /* Return true if TYPE1 and TYPE2 are compatible enough for builtin
2461 processing. */
2462
2463 static bool
2464 validate_type (tree type1, tree type2)
2465 {
2466 if (INTEGRAL_TYPE_P (type1)
2467 && INTEGRAL_TYPE_P (type2))
2468 ;
2469 else if (POINTER_TYPE_P (type1)
2470 && POINTER_TYPE_P (type2))
2471 ;
2472 else if (TREE_CODE (type1)
2473 != TREE_CODE (type2))
2474 return false;
2475 return true;
2476 }
2477
2478 /* Return true when STMTs arguments and return value match those of FNDECL,
2479 a decl of a builtin function. */
2480
2481 bool
2482 gimple_builtin_call_types_compatible_p (const_gimple stmt, tree fndecl)
2483 {
2484 gcc_checking_assert (DECL_BUILT_IN_CLASS (fndecl) != NOT_BUILT_IN);
2485
2486 tree ret = gimple_call_lhs (stmt);
2487 if (ret
2488 && !validate_type (TREE_TYPE (ret), TREE_TYPE (TREE_TYPE (fndecl))))
2489 return false;
2490
2491 tree targs = TYPE_ARG_TYPES (TREE_TYPE (fndecl));
2492 unsigned nargs = gimple_call_num_args (stmt);
2493 for (unsigned i = 0; i < nargs; ++i)
2494 {
2495 /* Variadic args follow. */
2496 if (!targs)
2497 return true;
2498 tree arg = gimple_call_arg (stmt, i);
2499 if (!validate_type (TREE_TYPE (arg), TREE_VALUE (targs)))
2500 return false;
2501 targs = TREE_CHAIN (targs);
2502 }
2503 if (targs && !VOID_TYPE_P (TREE_VALUE (targs)))
2504 return false;
2505 return true;
2506 }
2507
2508 /* Return true when STMT is builtins call. */
2509
2510 bool
2511 gimple_call_builtin_p (const_gimple stmt)
2512 {
2513 tree fndecl;
2514 if (is_gimple_call (stmt)
2515 && (fndecl = gimple_call_fndecl (stmt)) != NULL_TREE
2516 && DECL_BUILT_IN_CLASS (fndecl) != NOT_BUILT_IN)
2517 return gimple_builtin_call_types_compatible_p (stmt, fndecl);
2518 return false;
2519 }
2520
2521 /* Return true when STMT is builtins call to CLASS. */
2522
2523 bool
2524 gimple_call_builtin_p (const_gimple stmt, enum built_in_class klass)
2525 {
2526 tree fndecl;
2527 if (is_gimple_call (stmt)
2528 && (fndecl = gimple_call_fndecl (stmt)) != NULL_TREE
2529 && DECL_BUILT_IN_CLASS (fndecl) == klass)
2530 return gimple_builtin_call_types_compatible_p (stmt, fndecl);
2531 return false;
2532 }
2533
2534 /* Return true when STMT is builtins call to CODE of CLASS. */
2535
2536 bool
2537 gimple_call_builtin_p (const_gimple stmt, enum built_in_function code)
2538 {
2539 tree fndecl;
2540 if (is_gimple_call (stmt)
2541 && (fndecl = gimple_call_fndecl (stmt)) != NULL_TREE
2542 && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL
2543 && DECL_FUNCTION_CODE (fndecl) == code)
2544 return gimple_builtin_call_types_compatible_p (stmt, fndecl);
2545 return false;
2546 }
2547
2548 /* Return true if STMT clobbers memory. STMT is required to be a
2549 GIMPLE_ASM. */
2550
2551 bool
2552 gimple_asm_clobbers_memory_p (const gasm *stmt)
2553 {
2554 unsigned i;
2555
2556 for (i = 0; i < gimple_asm_nclobbers (stmt); i++)
2557 {
2558 tree op = gimple_asm_clobber_op (stmt, i);
2559 if (strcmp (TREE_STRING_POINTER (TREE_VALUE (op)), "memory") == 0)
2560 return true;
2561 }
2562
2563 return false;
2564 }
2565
2566 /* Dump bitmap SET (assumed to contain VAR_DECLs) to FILE. */
2567
2568 void
2569 dump_decl_set (FILE *file, bitmap set)
2570 {
2571 if (set)
2572 {
2573 bitmap_iterator bi;
2574 unsigned i;
2575
2576 fprintf (file, "{ ");
2577
2578 EXECUTE_IF_SET_IN_BITMAP (set, 0, i, bi)
2579 {
2580 fprintf (file, "D.%u", i);
2581 fprintf (file, " ");
2582 }
2583
2584 fprintf (file, "}");
2585 }
2586 else
2587 fprintf (file, "NIL");
2588 }
2589
2590 /* Return true when CALL is a call stmt that definitely doesn't
2591 free any memory or makes it unavailable otherwise. */
2592 bool
2593 nonfreeing_call_p (gimple call)
2594 {
2595 if (gimple_call_builtin_p (call, BUILT_IN_NORMAL)
2596 && gimple_call_flags (call) & ECF_LEAF)
2597 switch (DECL_FUNCTION_CODE (gimple_call_fndecl (call)))
2598 {
2599 /* Just in case these become ECF_LEAF in the future. */
2600 case BUILT_IN_FREE:
2601 case BUILT_IN_TM_FREE:
2602 case BUILT_IN_REALLOC:
2603 case BUILT_IN_STACK_RESTORE:
2604 return false;
2605 default:
2606 return true;
2607 }
2608 else if (gimple_call_internal_p (call))
2609 switch (gimple_call_internal_fn (call))
2610 {
2611 case IFN_ABNORMAL_DISPATCHER:
2612 return true;
2613 default:
2614 if (gimple_call_flags (call) & ECF_LEAF)
2615 return true;
2616 return false;
2617 }
2618
2619 tree fndecl = gimple_call_fndecl (call);
2620 if (!fndecl)
2621 return false;
2622 struct cgraph_node *n = cgraph_node::get (fndecl);
2623 if (!n)
2624 return false;
2625 enum availability availability;
2626 n = n->function_symbol (&availability);
2627 if (!n || availability <= AVAIL_INTERPOSABLE)
2628 return false;
2629 return n->nonfreeing_fn;
2630 }
2631
2632 /* Callback for walk_stmt_load_store_ops.
2633
2634 Return TRUE if OP will dereference the tree stored in DATA, FALSE
2635 otherwise.
2636
2637 This routine only makes a superficial check for a dereference. Thus
2638 it must only be used if it is safe to return a false negative. */
2639 static bool
2640 check_loadstore (gimple, tree op, tree, void *data)
2641 {
2642 if ((TREE_CODE (op) == MEM_REF || TREE_CODE (op) == TARGET_MEM_REF)
2643 && operand_equal_p (TREE_OPERAND (op, 0), (tree)data, 0))
2644 return true;
2645 return false;
2646 }
2647
2648 /* If OP can be inferred to be non-NULL after STMT executes, return true.
2649
2650 DEREFERENCE is TRUE if we can use a pointer dereference to infer a
2651 non-NULL range, FALSE otherwise.
2652
2653 ATTRIBUTE is TRUE if we can use attributes to infer a non-NULL range
2654 for function arguments and return values. FALSE otherwise. */
2655
2656 bool
2657 infer_nonnull_range (gimple stmt, tree op, bool dereference, bool attribute)
2658 {
2659 /* We can only assume that a pointer dereference will yield
2660 non-NULL if -fdelete-null-pointer-checks is enabled. */
2661 if (!flag_delete_null_pointer_checks
2662 || !POINTER_TYPE_P (TREE_TYPE (op))
2663 || gimple_code (stmt) == GIMPLE_ASM)
2664 return false;
2665
2666 if (dereference
2667 && walk_stmt_load_store_ops (stmt, (void *)op,
2668 check_loadstore, check_loadstore))
2669 return true;
2670
2671 if (attribute
2672 && is_gimple_call (stmt) && !gimple_call_internal_p (stmt))
2673 {
2674 tree fntype = gimple_call_fntype (stmt);
2675 tree attrs = TYPE_ATTRIBUTES (fntype);
2676 for (; attrs; attrs = TREE_CHAIN (attrs))
2677 {
2678 attrs = lookup_attribute ("nonnull", attrs);
2679
2680 /* If "nonnull" wasn't specified, we know nothing about
2681 the argument. */
2682 if (attrs == NULL_TREE)
2683 return false;
2684
2685 /* If "nonnull" applies to all the arguments, then ARG
2686 is non-null if it's in the argument list. */
2687 if (TREE_VALUE (attrs) == NULL_TREE)
2688 {
2689 for (unsigned int i = 0; i < gimple_call_num_args (stmt); i++)
2690 {
2691 if (POINTER_TYPE_P (TREE_TYPE (gimple_call_arg (stmt, i)))
2692 && operand_equal_p (op, gimple_call_arg (stmt, i), 0))
2693 return true;
2694 }
2695 return false;
2696 }
2697
2698 /* Now see if op appears in the nonnull list. */
2699 for (tree t = TREE_VALUE (attrs); t; t = TREE_CHAIN (t))
2700 {
2701 int idx = TREE_INT_CST_LOW (TREE_VALUE (t)) - 1;
2702 tree arg = gimple_call_arg (stmt, idx);
2703 if (operand_equal_p (op, arg, 0))
2704 return true;
2705 }
2706 }
2707 }
2708
2709 /* If this function is marked as returning non-null, then we can
2710 infer OP is non-null if it is used in the return statement. */
2711 if (attribute)
2712 if (greturn *return_stmt = dyn_cast <greturn *> (stmt))
2713 if (gimple_return_retval (return_stmt)
2714 && operand_equal_p (gimple_return_retval (return_stmt), op, 0)
2715 && lookup_attribute ("returns_nonnull",
2716 TYPE_ATTRIBUTES (TREE_TYPE (current_function_decl))))
2717 return true;
2718
2719 return false;
2720 }
2721
2722 /* Compare two case labels. Because the front end should already have
2723 made sure that case ranges do not overlap, it is enough to only compare
2724 the CASE_LOW values of each case label. */
2725
2726 static int
2727 compare_case_labels (const void *p1, const void *p2)
2728 {
2729 const_tree const case1 = *(const_tree const*)p1;
2730 const_tree const case2 = *(const_tree const*)p2;
2731
2732 /* The 'default' case label always goes first. */
2733 if (!CASE_LOW (case1))
2734 return -1;
2735 else if (!CASE_LOW (case2))
2736 return 1;
2737 else
2738 return tree_int_cst_compare (CASE_LOW (case1), CASE_LOW (case2));
2739 }
2740
2741 /* Sort the case labels in LABEL_VEC in place in ascending order. */
2742
2743 void
2744 sort_case_labels (vec<tree> label_vec)
2745 {
2746 label_vec.qsort (compare_case_labels);
2747 }
2748 \f
2749 /* Prepare a vector of case labels to be used in a GIMPLE_SWITCH statement.
2750
2751 LABELS is a vector that contains all case labels to look at.
2752
2753 INDEX_TYPE is the type of the switch index expression. Case labels
2754 in LABELS are discarded if their values are not in the value range
2755 covered by INDEX_TYPE. The remaining case label values are folded
2756 to INDEX_TYPE.
2757
2758 If a default case exists in LABELS, it is removed from LABELS and
2759 returned in DEFAULT_CASEP. If no default case exists, but the
2760 case labels already cover the whole range of INDEX_TYPE, a default
2761 case is returned pointing to one of the existing case labels.
2762 Otherwise DEFAULT_CASEP is set to NULL_TREE.
2763
2764 DEFAULT_CASEP may be NULL, in which case the above comment doesn't
2765 apply and no action is taken regardless of whether a default case is
2766 found or not. */
2767
2768 void
2769 preprocess_case_label_vec_for_gimple (vec<tree> labels,
2770 tree index_type,
2771 tree *default_casep)
2772 {
2773 tree min_value, max_value;
2774 tree default_case = NULL_TREE;
2775 size_t i, len;
2776
2777 i = 0;
2778 min_value = TYPE_MIN_VALUE (index_type);
2779 max_value = TYPE_MAX_VALUE (index_type);
2780 while (i < labels.length ())
2781 {
2782 tree elt = labels[i];
2783 tree low = CASE_LOW (elt);
2784 tree high = CASE_HIGH (elt);
2785 bool remove_element = FALSE;
2786
2787 if (low)
2788 {
2789 gcc_checking_assert (TREE_CODE (low) == INTEGER_CST);
2790 gcc_checking_assert (!high || TREE_CODE (high) == INTEGER_CST);
2791
2792 /* This is a non-default case label, i.e. it has a value.
2793
2794 See if the case label is reachable within the range of
2795 the index type. Remove out-of-range case values. Turn
2796 case ranges into a canonical form (high > low strictly)
2797 and convert the case label values to the index type.
2798
2799 NB: The type of gimple_switch_index() may be the promoted
2800 type, but the case labels retain the original type. */
2801
2802 if (high)
2803 {
2804 /* This is a case range. Discard empty ranges.
2805 If the bounds or the range are equal, turn this
2806 into a simple (one-value) case. */
2807 int cmp = tree_int_cst_compare (high, low);
2808 if (cmp < 0)
2809 remove_element = TRUE;
2810 else if (cmp == 0)
2811 high = NULL_TREE;
2812 }
2813
2814 if (! high)
2815 {
2816 /* If the simple case value is unreachable, ignore it. */
2817 if ((TREE_CODE (min_value) == INTEGER_CST
2818 && tree_int_cst_compare (low, min_value) < 0)
2819 || (TREE_CODE (max_value) == INTEGER_CST
2820 && tree_int_cst_compare (low, max_value) > 0))
2821 remove_element = TRUE;
2822 else
2823 low = fold_convert (index_type, low);
2824 }
2825 else
2826 {
2827 /* If the entire case range is unreachable, ignore it. */
2828 if ((TREE_CODE (min_value) == INTEGER_CST
2829 && tree_int_cst_compare (high, min_value) < 0)
2830 || (TREE_CODE (max_value) == INTEGER_CST
2831 && tree_int_cst_compare (low, max_value) > 0))
2832 remove_element = TRUE;
2833 else
2834 {
2835 /* If the lower bound is less than the index type's
2836 minimum value, truncate the range bounds. */
2837 if (TREE_CODE (min_value) == INTEGER_CST
2838 && tree_int_cst_compare (low, min_value) < 0)
2839 low = min_value;
2840 low = fold_convert (index_type, low);
2841
2842 /* If the upper bound is greater than the index type's
2843 maximum value, truncate the range bounds. */
2844 if (TREE_CODE (max_value) == INTEGER_CST
2845 && tree_int_cst_compare (high, max_value) > 0)
2846 high = max_value;
2847 high = fold_convert (index_type, high);
2848
2849 /* We may have folded a case range to a one-value case. */
2850 if (tree_int_cst_equal (low, high))
2851 high = NULL_TREE;
2852 }
2853 }
2854
2855 CASE_LOW (elt) = low;
2856 CASE_HIGH (elt) = high;
2857 }
2858 else
2859 {
2860 gcc_assert (!default_case);
2861 default_case = elt;
2862 /* The default case must be passed separately to the
2863 gimple_build_switch routine. But if DEFAULT_CASEP
2864 is NULL, we do not remove the default case (it would
2865 be completely lost). */
2866 if (default_casep)
2867 remove_element = TRUE;
2868 }
2869
2870 if (remove_element)
2871 labels.ordered_remove (i);
2872 else
2873 i++;
2874 }
2875 len = i;
2876
2877 if (!labels.is_empty ())
2878 sort_case_labels (labels);
2879
2880 if (default_casep && !default_case)
2881 {
2882 /* If the switch has no default label, add one, so that we jump
2883 around the switch body. If the labels already cover the whole
2884 range of the switch index_type, add the default label pointing
2885 to one of the existing labels. */
2886 if (len
2887 && TYPE_MIN_VALUE (index_type)
2888 && TYPE_MAX_VALUE (index_type)
2889 && tree_int_cst_equal (CASE_LOW (labels[0]),
2890 TYPE_MIN_VALUE (index_type)))
2891 {
2892 tree low, high = CASE_HIGH (labels[len - 1]);
2893 if (!high)
2894 high = CASE_LOW (labels[len - 1]);
2895 if (tree_int_cst_equal (high, TYPE_MAX_VALUE (index_type)))
2896 {
2897 for (i = 1; i < len; i++)
2898 {
2899 high = CASE_LOW (labels[i]);
2900 low = CASE_HIGH (labels[i - 1]);
2901 if (!low)
2902 low = CASE_LOW (labels[i - 1]);
2903 if (wi::add (low, 1) != high)
2904 break;
2905 }
2906 if (i == len)
2907 {
2908 tree label = CASE_LABEL (labels[0]);
2909 default_case = build_case_label (NULL_TREE, NULL_TREE,
2910 label);
2911 }
2912 }
2913 }
2914 }
2915
2916 if (default_casep)
2917 *default_casep = default_case;
2918 }
2919
2920 /* Set the location of all statements in SEQ to LOC. */
2921
2922 void
2923 gimple_seq_set_location (gimple_seq seq, location_t loc)
2924 {
2925 for (gimple_stmt_iterator i = gsi_start (seq); !gsi_end_p (i); gsi_next (&i))
2926 gimple_set_location (gsi_stmt (i), loc);
2927 }
2928
2929 /* Release SSA_NAMEs in SEQ as well as the GIMPLE statements. */
2930
2931 void
2932 gimple_seq_discard (gimple_seq seq)
2933 {
2934 gimple_stmt_iterator gsi;
2935
2936 for (gsi = gsi_start (seq); !gsi_end_p (gsi); )
2937 {
2938 gimple stmt = gsi_stmt (gsi);
2939 gsi_remove (&gsi, true);
2940 release_defs (stmt);
2941 ggc_free (stmt);
2942 }
2943 }
2944
2945 /* See if STMT now calls function that takes no parameters and if so, drop
2946 call arguments. This is used when devirtualization machinery redirects
2947 to __builtiln_unreacahble or __cxa_pure_virutal. */
2948
2949 void
2950 maybe_remove_unused_call_args (struct function *fn, gimple stmt)
2951 {
2952 tree decl = gimple_call_fndecl (stmt);
2953 if (TYPE_ARG_TYPES (TREE_TYPE (decl))
2954 && TREE_VALUE (TYPE_ARG_TYPES (TREE_TYPE (decl))) == void_type_node
2955 && gimple_call_num_args (stmt))
2956 {
2957 gimple_set_num_ops (stmt, 3);
2958 update_stmt_fn (fn, stmt);
2959 }
2960 }