]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/go/go-gcc.cc
options: Save and restore opts_set for Optimization and Target options
[thirdparty/gcc.git] / gcc / go / go-gcc.cc
1 // go-gcc.cc -- Go frontend to gcc IR.
2 // Copyright (C) 2011-2020 Free Software Foundation, Inc.
3 // Contributed by Ian Lance Taylor, Google.
4
5 // This file is part of GCC.
6
7 // GCC is free software; you can redistribute it and/or modify it under
8 // the terms of the GNU General Public License as published by the Free
9 // Software Foundation; either version 3, or (at your option) any later
10 // version.
11
12 // GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 // WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 // FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 // for more details.
16
17 // You should have received a copy of the GNU General Public License
18 // along with GCC; see the file COPYING3. If not see
19 // <http://www.gnu.org/licenses/>.
20
21 #include "go-system.h"
22
23 // This has to be included outside of extern "C", so we have to
24 // include it here before tree.h includes it later.
25 #include <gmp.h>
26
27 #include "tree.h"
28 #include "opts.h"
29 #include "fold-const.h"
30 #include "stringpool.h"
31 #include "stor-layout.h"
32 #include "varasm.h"
33 #include "tree-iterator.h"
34 #include "tm.h"
35 #include "function.h"
36 #include "cgraph.h"
37 #include "convert.h"
38 #include "gimple-expr.h"
39 #include "gimplify.h"
40 #include "langhooks.h"
41 #include "toplev.h"
42 #include "output.h"
43 #include "realmpfr.h"
44 #include "builtins.h"
45
46 #include "go-c.h"
47 #include "go-gcc.h"
48
49 #include "gogo.h"
50 #include "backend.h"
51
52 // A class wrapping a tree.
53
54 class Gcc_tree
55 {
56 public:
57 Gcc_tree(tree t)
58 : t_(t)
59 { }
60
61 tree
62 get_tree() const
63 { return this->t_; }
64
65 void
66 set_tree(tree t)
67 { this->t_ = t; }
68
69 private:
70 tree t_;
71 };
72
73 // In gcc, types, expressions, and statements are all trees.
74 class Btype : public Gcc_tree
75 {
76 public:
77 Btype(tree t)
78 : Gcc_tree(t)
79 { }
80 };
81
82 class Bexpression : public Gcc_tree
83 {
84 public:
85 Bexpression(tree t)
86 : Gcc_tree(t)
87 { }
88 };
89
90 class Bstatement : public Gcc_tree
91 {
92 public:
93 Bstatement(tree t)
94 : Gcc_tree(t)
95 { }
96 };
97
98 class Bfunction : public Gcc_tree
99 {
100 public:
101 Bfunction(tree t)
102 : Gcc_tree(t)
103 { }
104 };
105
106 class Bblock : public Gcc_tree
107 {
108 public:
109 Bblock(tree t)
110 : Gcc_tree(t)
111 { }
112 };
113
114 class Blabel : public Gcc_tree
115 {
116 public:
117 Blabel(tree t)
118 : Gcc_tree(t)
119 { }
120 };
121
122 // Bvariable is a bit more complicated, because of zero-sized types.
123 // The GNU linker does not permit dynamic variables with zero size.
124 // When we see such a variable, we generate a version of the type with
125 // non-zero size. However, when referring to the global variable, we
126 // want an expression of zero size; otherwise, if, say, the global
127 // variable is passed to a function, we will be passing a
128 // non-zero-sized value to a zero-sized value, which can lead to a
129 // miscompilation.
130
131 class Bvariable
132 {
133 public:
134 Bvariable(tree t)
135 : t_(t), orig_type_(NULL)
136 { }
137
138 Bvariable(tree t, tree orig_type)
139 : t_(t), orig_type_(orig_type)
140 { }
141
142 // Get the tree for use as an expression.
143 tree
144 get_tree(Location) const;
145
146 // Get the actual decl;
147 tree
148 get_decl() const
149 { return this->t_; }
150
151 private:
152 tree t_;
153 tree orig_type_;
154 };
155
156 // Get the tree of a variable for use as an expression. If this is a
157 // zero-sized global, create an expression that refers to the decl but
158 // has zero size.
159 tree
160 Bvariable::get_tree(Location location) const
161 {
162 if (this->orig_type_ == NULL
163 || this->t_ == error_mark_node
164 || TREE_TYPE(this->t_) == this->orig_type_)
165 return this->t_;
166 // Return *(orig_type*)&decl. */
167 tree t = build_fold_addr_expr_loc(location.gcc_location(), this->t_);
168 t = fold_build1_loc(location.gcc_location(), NOP_EXPR,
169 build_pointer_type(this->orig_type_), t);
170 return build_fold_indirect_ref_loc(location.gcc_location(), t);
171 }
172
173 // This file implements the interface between the Go frontend proper
174 // and the gcc IR. This implements specific instantiations of
175 // abstract classes defined by the Go frontend proper. The Go
176 // frontend proper class methods of these classes to generate the
177 // backend representation.
178
179 class Gcc_backend : public Backend
180 {
181 public:
182 Gcc_backend();
183
184 // Types.
185
186 Btype*
187 error_type()
188 { return this->make_type(error_mark_node); }
189
190 Btype*
191 void_type()
192 { return this->make_type(void_type_node); }
193
194 Btype*
195 bool_type()
196 { return this->make_type(boolean_type_node); }
197
198 Btype*
199 integer_type(bool, int);
200
201 Btype*
202 float_type(int);
203
204 Btype*
205 complex_type(int);
206
207 Btype*
208 pointer_type(Btype*);
209
210 Btype*
211 function_type(const Btyped_identifier&,
212 const std::vector<Btyped_identifier>&,
213 const std::vector<Btyped_identifier>&,
214 Btype*,
215 const Location);
216
217 Btype*
218 struct_type(const std::vector<Btyped_identifier>&);
219
220 Btype*
221 array_type(Btype*, Bexpression*);
222
223 Btype*
224 placeholder_pointer_type(const std::string&, Location, bool);
225
226 bool
227 set_placeholder_pointer_type(Btype*, Btype*);
228
229 bool
230 set_placeholder_function_type(Btype*, Btype*);
231
232 Btype*
233 placeholder_struct_type(const std::string&, Location);
234
235 bool
236 set_placeholder_struct_type(Btype* placeholder,
237 const std::vector<Btyped_identifier>&);
238
239 Btype*
240 placeholder_array_type(const std::string&, Location);
241
242 bool
243 set_placeholder_array_type(Btype*, Btype*, Bexpression*);
244
245 Btype*
246 named_type(const std::string&, Btype*, Location);
247
248 Btype*
249 circular_pointer_type(Btype*, bool);
250
251 bool
252 is_circular_pointer_type(Btype*);
253
254 int64_t
255 type_size(Btype*);
256
257 int64_t
258 type_alignment(Btype*);
259
260 int64_t
261 type_field_alignment(Btype*);
262
263 int64_t
264 type_field_offset(Btype*, size_t index);
265
266 // Expressions.
267
268 Bexpression*
269 zero_expression(Btype*);
270
271 Bexpression*
272 error_expression()
273 { return this->make_expression(error_mark_node); }
274
275 Bexpression*
276 nil_pointer_expression()
277 { return this->make_expression(null_pointer_node); }
278
279 Bexpression*
280 var_expression(Bvariable* var, Location);
281
282 Bexpression*
283 indirect_expression(Btype*, Bexpression* expr, bool known_valid, Location);
284
285 Bexpression*
286 named_constant_expression(Btype* btype, const std::string& name,
287 Bexpression* val, Location);
288
289 Bexpression*
290 integer_constant_expression(Btype* btype, mpz_t val);
291
292 Bexpression*
293 float_constant_expression(Btype* btype, mpfr_t val);
294
295 Bexpression*
296 complex_constant_expression(Btype* btype, mpc_t val);
297
298 Bexpression*
299 string_constant_expression(const std::string& val);
300
301 Bexpression*
302 boolean_constant_expression(bool val);
303
304 Bexpression*
305 real_part_expression(Bexpression* bcomplex, Location);
306
307 Bexpression*
308 imag_part_expression(Bexpression* bcomplex, Location);
309
310 Bexpression*
311 complex_expression(Bexpression* breal, Bexpression* bimag, Location);
312
313 Bexpression*
314 convert_expression(Btype* type, Bexpression* expr, Location);
315
316 Bexpression*
317 function_code_expression(Bfunction*, Location);
318
319 Bexpression*
320 address_expression(Bexpression*, Location);
321
322 Bexpression*
323 struct_field_expression(Bexpression*, size_t, Location);
324
325 Bexpression*
326 compound_expression(Bstatement*, Bexpression*, Location);
327
328 Bexpression*
329 conditional_expression(Bfunction*, Btype*, Bexpression*, Bexpression*,
330 Bexpression*, Location);
331
332 Bexpression*
333 unary_expression(Operator, Bexpression*, Location);
334
335 Bexpression*
336 binary_expression(Operator, Bexpression*, Bexpression*, Location);
337
338 Bexpression*
339 constructor_expression(Btype*, const std::vector<Bexpression*>&, Location);
340
341 Bexpression*
342 array_constructor_expression(Btype*, const std::vector<unsigned long>&,
343 const std::vector<Bexpression*>&, Location);
344
345 Bexpression*
346 pointer_offset_expression(Bexpression* base, Bexpression* offset, Location);
347
348 Bexpression*
349 array_index_expression(Bexpression* array, Bexpression* index, Location);
350
351 Bexpression*
352 call_expression(Bfunction* caller, Bexpression* fn,
353 const std::vector<Bexpression*>& args,
354 Bexpression* static_chain, Location);
355
356 // Statements.
357
358 Bstatement*
359 error_statement()
360 { return this->make_statement(error_mark_node); }
361
362 Bstatement*
363 expression_statement(Bfunction*, Bexpression*);
364
365 Bstatement*
366 init_statement(Bfunction*, Bvariable* var, Bexpression* init);
367
368 Bstatement*
369 assignment_statement(Bfunction*, Bexpression* lhs, Bexpression* rhs,
370 Location);
371
372 Bstatement*
373 return_statement(Bfunction*, const std::vector<Bexpression*>&,
374 Location);
375
376 Bstatement*
377 if_statement(Bfunction*, Bexpression* condition, Bblock* then_block,
378 Bblock* else_block, Location);
379
380 Bstatement*
381 switch_statement(Bfunction* function, Bexpression* value,
382 const std::vector<std::vector<Bexpression*> >& cases,
383 const std::vector<Bstatement*>& statements,
384 Location);
385
386 Bstatement*
387 compound_statement(Bstatement*, Bstatement*);
388
389 Bstatement*
390 statement_list(const std::vector<Bstatement*>&);
391
392 Bstatement*
393 exception_handler_statement(Bstatement* bstat, Bstatement* except_stmt,
394 Bstatement* finally_stmt, Location);
395
396 // Blocks.
397
398 Bblock*
399 block(Bfunction*, Bblock*, const std::vector<Bvariable*>&,
400 Location, Location);
401
402 void
403 block_add_statements(Bblock*, const std::vector<Bstatement*>&);
404
405 Bstatement*
406 block_statement(Bblock*);
407
408 // Variables.
409
410 Bvariable*
411 error_variable()
412 { return new Bvariable(error_mark_node); }
413
414 Bvariable*
415 global_variable(const std::string& var_name,
416 const std::string& asm_name,
417 Btype* btype,
418 bool is_external,
419 bool is_hidden,
420 bool in_unique_section,
421 Location location);
422
423 void
424 global_variable_set_init(Bvariable*, Bexpression*);
425
426 Bvariable*
427 local_variable(Bfunction*, const std::string&, Btype*, Bvariable*, bool,
428 Location);
429
430 Bvariable*
431 parameter_variable(Bfunction*, const std::string&, Btype*, bool,
432 Location);
433
434 Bvariable*
435 static_chain_variable(Bfunction*, const std::string&, Btype*, Location);
436
437 Bvariable*
438 temporary_variable(Bfunction*, Bblock*, Btype*, Bexpression*, bool,
439 Location, Bstatement**);
440
441 Bvariable*
442 implicit_variable(const std::string&, const std::string&, Btype*,
443 bool, bool, bool, int64_t);
444
445 void
446 implicit_variable_set_init(Bvariable*, const std::string&, Btype*,
447 bool, bool, bool, Bexpression*);
448
449 Bvariable*
450 implicit_variable_reference(const std::string&, const std::string&, Btype*);
451
452 Bvariable*
453 immutable_struct(const std::string&, const std::string&,
454 bool, bool, Btype*, Location);
455
456 void
457 immutable_struct_set_init(Bvariable*, const std::string&, bool, bool, Btype*,
458 Location, Bexpression*);
459
460 Bvariable*
461 immutable_struct_reference(const std::string&, const std::string&,
462 Btype*, Location);
463
464 // Labels.
465
466 Blabel*
467 label(Bfunction*, const std::string& name, Location);
468
469 Bstatement*
470 label_definition_statement(Blabel*);
471
472 Bstatement*
473 goto_statement(Blabel*, Location);
474
475 Bexpression*
476 label_address(Blabel*, Location);
477
478 // Functions.
479
480 Bfunction*
481 error_function()
482 { return this->make_function(error_mark_node); }
483
484 Bfunction*
485 function(Btype* fntype, const std::string& name, const std::string& asm_name,
486 unsigned int flags, Location);
487
488 Bstatement*
489 function_defer_statement(Bfunction* function, Bexpression* undefer,
490 Bexpression* defer, Location);
491
492 bool
493 function_set_parameters(Bfunction* function, const std::vector<Bvariable*>&);
494
495 bool
496 function_set_body(Bfunction* function, Bstatement* code_stmt);
497
498 Bfunction*
499 lookup_builtin(const std::string&);
500
501 void
502 write_global_definitions(const std::vector<Btype*>&,
503 const std::vector<Bexpression*>&,
504 const std::vector<Bfunction*>&,
505 const std::vector<Bvariable*>&);
506
507 void
508 write_export_data(const char* bytes, unsigned int size);
509
510
511 private:
512 // Make a Bexpression from a tree.
513 Bexpression*
514 make_expression(tree t)
515 { return new Bexpression(t); }
516
517 // Make a Bstatement from a tree.
518 Bstatement*
519 make_statement(tree t)
520 { return new Bstatement(t); }
521
522 // Make a Btype from a tree.
523 Btype*
524 make_type(tree t)
525 { return new Btype(t); }
526
527 Bfunction*
528 make_function(tree t)
529 { return new Bfunction(t); }
530
531 Btype*
532 fill_in_struct(Btype*, const std::vector<Btyped_identifier>&);
533
534 Btype*
535 fill_in_array(Btype*, Btype*, Bexpression*);
536
537 tree
538 non_zero_size_type(tree);
539
540 tree
541 convert_tree(tree, tree, Location);
542
543 private:
544 static const int builtin_const = 1 << 0;
545 static const int builtin_noreturn = 1 << 1;
546 static const int builtin_novops = 1 << 2;
547
548 void
549 define_builtin(built_in_function bcode, const char* name, const char* libname,
550 tree fntype, int flags);
551
552 // A mapping of the GCC built-ins exposed to GCCGo.
553 std::map<std::string, Bfunction*> builtin_functions_;
554 };
555
556 // A helper function to create a GCC identifier from a C++ string.
557
558 static inline tree
559 get_identifier_from_string(const std::string& str)
560 {
561 return get_identifier_with_length(str.data(), str.length());
562 }
563
564 // Define the built-in functions that are exposed to GCCGo.
565
566 Gcc_backend::Gcc_backend()
567 {
568 /* We need to define the fetch_and_add functions, since we use them
569 for ++ and --. */
570 tree t = this->integer_type(true, BITS_PER_UNIT)->get_tree();
571 tree p = build_pointer_type(build_qualified_type(t, TYPE_QUAL_VOLATILE));
572 this->define_builtin(BUILT_IN_SYNC_ADD_AND_FETCH_1, "__sync_fetch_and_add_1",
573 NULL, build_function_type_list(t, p, t, NULL_TREE), 0);
574
575 t = this->integer_type(true, BITS_PER_UNIT * 2)->get_tree();
576 p = build_pointer_type(build_qualified_type(t, TYPE_QUAL_VOLATILE));
577 this->define_builtin(BUILT_IN_SYNC_ADD_AND_FETCH_2, "__sync_fetch_and_add_2",
578 NULL, build_function_type_list(t, p, t, NULL_TREE), 0);
579
580 t = this->integer_type(true, BITS_PER_UNIT * 4)->get_tree();
581 p = build_pointer_type(build_qualified_type(t, TYPE_QUAL_VOLATILE));
582 this->define_builtin(BUILT_IN_SYNC_ADD_AND_FETCH_4, "__sync_fetch_and_add_4",
583 NULL, build_function_type_list(t, p, t, NULL_TREE), 0);
584
585 t = this->integer_type(true, BITS_PER_UNIT * 8)->get_tree();
586 p = build_pointer_type(build_qualified_type(t, TYPE_QUAL_VOLATILE));
587 this->define_builtin(BUILT_IN_SYNC_ADD_AND_FETCH_8, "__sync_fetch_and_add_8",
588 NULL, build_function_type_list(t, p, t, NULL_TREE), 0);
589
590 // We use __builtin_expect for magic import functions.
591 this->define_builtin(BUILT_IN_EXPECT, "__builtin_expect", NULL,
592 build_function_type_list(long_integer_type_node,
593 long_integer_type_node,
594 long_integer_type_node,
595 NULL_TREE),
596 builtin_const);
597
598 // We use __builtin_memcmp for struct comparisons.
599 this->define_builtin(BUILT_IN_MEMCMP, "__builtin_memcmp", "memcmp",
600 build_function_type_list(integer_type_node,
601 const_ptr_type_node,
602 const_ptr_type_node,
603 size_type_node,
604 NULL_TREE),
605 0);
606
607 // We use __builtin_memmove for copying data.
608 this->define_builtin(BUILT_IN_MEMMOVE, "__builtin_memmove", "memmove",
609 build_function_type_list(void_type_node,
610 ptr_type_node,
611 const_ptr_type_node,
612 size_type_node,
613 NULL_TREE),
614 0);
615
616 // We use __builtin_memset for zeroing data.
617 this->define_builtin(BUILT_IN_MEMSET, "__builtin_memset", "memset",
618 build_function_type_list(void_type_node,
619 ptr_type_node,
620 integer_type_node,
621 size_type_node,
622 NULL_TREE),
623 0);
624
625 // Used by runtime/internal/sys and math/bits.
626 this->define_builtin(BUILT_IN_CTZ, "__builtin_ctz", "ctz",
627 build_function_type_list(integer_type_node,
628 unsigned_type_node,
629 NULL_TREE),
630 builtin_const);
631 this->define_builtin(BUILT_IN_CTZLL, "__builtin_ctzll", "ctzll",
632 build_function_type_list(integer_type_node,
633 long_long_unsigned_type_node,
634 NULL_TREE),
635 builtin_const);
636 this->define_builtin(BUILT_IN_CLZ, "__builtin_clz", "clz",
637 build_function_type_list(integer_type_node,
638 unsigned_type_node,
639 NULL_TREE),
640 builtin_const);
641 this->define_builtin(BUILT_IN_CLZLL, "__builtin_clzll", "clzll",
642 build_function_type_list(integer_type_node,
643 long_long_unsigned_type_node,
644 NULL_TREE),
645 builtin_const);
646 this->define_builtin(BUILT_IN_POPCOUNT, "__builtin_popcount", "popcount",
647 build_function_type_list(integer_type_node,
648 unsigned_type_node,
649 NULL_TREE),
650 builtin_const);
651 this->define_builtin(BUILT_IN_POPCOUNTLL, "__builtin_popcountll", "popcountll",
652 build_function_type_list(integer_type_node,
653 long_long_unsigned_type_node,
654 NULL_TREE),
655 builtin_const);
656 this->define_builtin(BUILT_IN_BSWAP16, "__builtin_bswap16", "bswap16",
657 build_function_type_list(uint16_type_node,
658 uint16_type_node,
659 NULL_TREE),
660 builtin_const);
661 this->define_builtin(BUILT_IN_BSWAP32, "__builtin_bswap32", "bswap32",
662 build_function_type_list(uint32_type_node,
663 uint32_type_node,
664 NULL_TREE),
665 builtin_const);
666 this->define_builtin(BUILT_IN_BSWAP64, "__builtin_bswap64", "bswap64",
667 build_function_type_list(uint64_type_node,
668 uint64_type_node,
669 NULL_TREE),
670 builtin_const);
671
672 // We provide some functions for the math library.
673 tree math_function_type = build_function_type_list(double_type_node,
674 double_type_node,
675 NULL_TREE);
676 tree math_function_type_long =
677 build_function_type_list(long_double_type_node, long_double_type_node,
678 NULL_TREE);
679 tree math_function_type_two = build_function_type_list(double_type_node,
680 double_type_node,
681 double_type_node,
682 NULL_TREE);
683 tree math_function_type_long_two =
684 build_function_type_list(long_double_type_node, long_double_type_node,
685 long_double_type_node, NULL_TREE);
686 this->define_builtin(BUILT_IN_ACOS, "__builtin_acos", "acos",
687 math_function_type, builtin_const);
688 this->define_builtin(BUILT_IN_ACOSL, "__builtin_acosl", "acosl",
689 math_function_type_long, builtin_const);
690 this->define_builtin(BUILT_IN_ASIN, "__builtin_asin", "asin",
691 math_function_type, builtin_const);
692 this->define_builtin(BUILT_IN_ASINL, "__builtin_asinl", "asinl",
693 math_function_type_long, builtin_const);
694 this->define_builtin(BUILT_IN_ATAN, "__builtin_atan", "atan",
695 math_function_type, builtin_const);
696 this->define_builtin(BUILT_IN_ATANL, "__builtin_atanl", "atanl",
697 math_function_type_long, builtin_const);
698 this->define_builtin(BUILT_IN_ATAN2, "__builtin_atan2", "atan2",
699 math_function_type_two, builtin_const);
700 this->define_builtin(BUILT_IN_ATAN2L, "__builtin_atan2l", "atan2l",
701 math_function_type_long_two, builtin_const);
702 this->define_builtin(BUILT_IN_CEIL, "__builtin_ceil", "ceil",
703 math_function_type, builtin_const);
704 this->define_builtin(BUILT_IN_CEILL, "__builtin_ceill", "ceill",
705 math_function_type_long, builtin_const);
706 this->define_builtin(BUILT_IN_COS, "__builtin_cos", "cos",
707 math_function_type, builtin_const);
708 this->define_builtin(BUILT_IN_COSL, "__builtin_cosl", "cosl",
709 math_function_type_long, builtin_const);
710 this->define_builtin(BUILT_IN_EXP, "__builtin_exp", "exp",
711 math_function_type, builtin_const);
712 this->define_builtin(BUILT_IN_EXPL, "__builtin_expl", "expl",
713 math_function_type_long, builtin_const);
714 this->define_builtin(BUILT_IN_EXPM1, "__builtin_expm1", "expm1",
715 math_function_type, builtin_const);
716 this->define_builtin(BUILT_IN_EXPM1L, "__builtin_expm1l", "expm1l",
717 math_function_type_long, builtin_const);
718 this->define_builtin(BUILT_IN_FABS, "__builtin_fabs", "fabs",
719 math_function_type, builtin_const);
720 this->define_builtin(BUILT_IN_FABSL, "__builtin_fabsl", "fabsl",
721 math_function_type_long, builtin_const);
722 this->define_builtin(BUILT_IN_FLOOR, "__builtin_floor", "floor",
723 math_function_type, builtin_const);
724 this->define_builtin(BUILT_IN_FLOORL, "__builtin_floorl", "floorl",
725 math_function_type_long, builtin_const);
726 this->define_builtin(BUILT_IN_FMOD, "__builtin_fmod", "fmod",
727 math_function_type_two, builtin_const);
728 this->define_builtin(BUILT_IN_FMODL, "__builtin_fmodl", "fmodl",
729 math_function_type_long_two, builtin_const);
730 this->define_builtin(BUILT_IN_LDEXP, "__builtin_ldexp", "ldexp",
731 build_function_type_list(double_type_node,
732 double_type_node,
733 integer_type_node,
734 NULL_TREE),
735 builtin_const);
736 this->define_builtin(BUILT_IN_LDEXPL, "__builtin_ldexpl", "ldexpl",
737 build_function_type_list(long_double_type_node,
738 long_double_type_node,
739 integer_type_node,
740 NULL_TREE),
741 builtin_const);
742 this->define_builtin(BUILT_IN_LOG, "__builtin_log", "log",
743 math_function_type, builtin_const);
744 this->define_builtin(BUILT_IN_LOGL, "__builtin_logl", "logl",
745 math_function_type_long, builtin_const);
746 this->define_builtin(BUILT_IN_LOG1P, "__builtin_log1p", "log1p",
747 math_function_type, builtin_const);
748 this->define_builtin(BUILT_IN_LOG1PL, "__builtin_log1pl", "log1pl",
749 math_function_type_long, builtin_const);
750 this->define_builtin(BUILT_IN_LOG10, "__builtin_log10", "log10",
751 math_function_type, builtin_const);
752 this->define_builtin(BUILT_IN_LOG10L, "__builtin_log10l", "log10l",
753 math_function_type_long, builtin_const);
754 this->define_builtin(BUILT_IN_LOG2, "__builtin_log2", "log2",
755 math_function_type, builtin_const);
756 this->define_builtin(BUILT_IN_LOG2L, "__builtin_log2l", "log2l",
757 math_function_type_long, builtin_const);
758 this->define_builtin(BUILT_IN_SIN, "__builtin_sin", "sin",
759 math_function_type, builtin_const);
760 this->define_builtin(BUILT_IN_SINL, "__builtin_sinl", "sinl",
761 math_function_type_long, builtin_const);
762 this->define_builtin(BUILT_IN_SQRT, "__builtin_sqrt", "sqrt",
763 math_function_type, builtin_const);
764 this->define_builtin(BUILT_IN_SQRTL, "__builtin_sqrtl", "sqrtl",
765 math_function_type_long, builtin_const);
766 this->define_builtin(BUILT_IN_TAN, "__builtin_tan", "tan",
767 math_function_type, builtin_const);
768 this->define_builtin(BUILT_IN_TANL, "__builtin_tanl", "tanl",
769 math_function_type_long, builtin_const);
770 this->define_builtin(BUILT_IN_TRUNC, "__builtin_trunc", "trunc",
771 math_function_type, builtin_const);
772 this->define_builtin(BUILT_IN_TRUNCL, "__builtin_truncl", "truncl",
773 math_function_type_long, builtin_const);
774
775 // We use __builtin_return_address in the thunk we build for
776 // functions which call recover, and for runtime.getcallerpc.
777 t = build_function_type_list(ptr_type_node, unsigned_type_node, NULL_TREE);
778 this->define_builtin(BUILT_IN_RETURN_ADDRESS, "__builtin_return_address",
779 NULL, t, 0);
780
781 // The runtime calls __builtin_dwarf_cfa for runtime.getcallersp.
782 t = build_function_type_list(ptr_type_node, NULL_TREE);
783 this->define_builtin(BUILT_IN_DWARF_CFA, "__builtin_dwarf_cfa",
784 NULL, t, 0);
785
786 // The runtime calls __builtin_extract_return_addr when recording
787 // the address to which a function returns.
788 this->define_builtin(BUILT_IN_EXTRACT_RETURN_ADDR,
789 "__builtin_extract_return_addr", NULL,
790 build_function_type_list(ptr_type_node,
791 ptr_type_node,
792 NULL_TREE),
793 0);
794
795 // The compiler uses __builtin_trap for some exception handling
796 // cases.
797 this->define_builtin(BUILT_IN_TRAP, "__builtin_trap", NULL,
798 build_function_type(void_type_node, void_list_node),
799 builtin_noreturn);
800
801 // The runtime uses __builtin_prefetch.
802 this->define_builtin(BUILT_IN_PREFETCH, "__builtin_prefetch", NULL,
803 build_varargs_function_type_list(void_type_node,
804 const_ptr_type_node,
805 NULL_TREE),
806 builtin_novops);
807
808 // The compiler uses __builtin_unreachable for cases that cannot
809 // occur.
810 this->define_builtin(BUILT_IN_UNREACHABLE, "__builtin_unreachable", NULL,
811 build_function_type(void_type_node, void_list_node),
812 builtin_const | builtin_noreturn);
813
814 // We provide some atomic functions.
815 t = build_function_type_list(uint32_type_node,
816 ptr_type_node,
817 integer_type_node,
818 NULL_TREE);
819 this->define_builtin(BUILT_IN_ATOMIC_LOAD_4, "__atomic_load_4", NULL,
820 t, 0);
821
822 t = build_function_type_list(uint64_type_node,
823 ptr_type_node,
824 integer_type_node,
825 NULL_TREE);
826 this->define_builtin(BUILT_IN_ATOMIC_LOAD_8, "__atomic_load_8", NULL,
827 t, 0);
828
829 t = build_function_type_list(void_type_node,
830 ptr_type_node,
831 uint32_type_node,
832 integer_type_node,
833 NULL_TREE);
834 this->define_builtin(BUILT_IN_ATOMIC_STORE_4, "__atomic_store_4", NULL,
835 t, 0);
836
837 t = build_function_type_list(void_type_node,
838 ptr_type_node,
839 uint64_type_node,
840 integer_type_node,
841 NULL_TREE);
842 this->define_builtin(BUILT_IN_ATOMIC_STORE_8, "__atomic_store_8", NULL,
843 t, 0);
844
845 t = build_function_type_list(uint32_type_node,
846 ptr_type_node,
847 uint32_type_node,
848 integer_type_node,
849 NULL_TREE);
850 this->define_builtin(BUILT_IN_ATOMIC_EXCHANGE_4, "__atomic_exchange_4", NULL,
851 t, 0);
852
853 t = build_function_type_list(uint64_type_node,
854 ptr_type_node,
855 uint64_type_node,
856 integer_type_node,
857 NULL_TREE);
858 this->define_builtin(BUILT_IN_ATOMIC_EXCHANGE_8, "__atomic_exchange_8", NULL,
859 t, 0);
860
861 t = build_function_type_list(boolean_type_node,
862 ptr_type_node,
863 ptr_type_node,
864 uint32_type_node,
865 boolean_type_node,
866 integer_type_node,
867 integer_type_node,
868 NULL_TREE);
869 this->define_builtin(BUILT_IN_ATOMIC_COMPARE_EXCHANGE_4,
870 "__atomic_compare_exchange_4", NULL,
871 t, 0);
872
873 t = build_function_type_list(boolean_type_node,
874 ptr_type_node,
875 ptr_type_node,
876 uint64_type_node,
877 boolean_type_node,
878 integer_type_node,
879 integer_type_node,
880 NULL_TREE);
881 this->define_builtin(BUILT_IN_ATOMIC_COMPARE_EXCHANGE_8,
882 "__atomic_compare_exchange_8", NULL,
883 t, 0);
884
885 t = build_function_type_list(uint32_type_node,
886 ptr_type_node,
887 uint32_type_node,
888 integer_type_node,
889 NULL_TREE);
890 this->define_builtin(BUILT_IN_ATOMIC_ADD_FETCH_4, "__atomic_add_fetch_4", NULL,
891 t, 0);
892
893 t = build_function_type_list(uint64_type_node,
894 ptr_type_node,
895 uint64_type_node,
896 integer_type_node,
897 NULL_TREE);
898 this->define_builtin(BUILT_IN_ATOMIC_ADD_FETCH_8, "__atomic_add_fetch_8", NULL,
899 t, 0);
900
901 t = build_function_type_list(unsigned_char_type_node,
902 ptr_type_node,
903 unsigned_char_type_node,
904 integer_type_node,
905 NULL_TREE);
906 this->define_builtin(BUILT_IN_ATOMIC_AND_FETCH_1, "__atomic_and_fetch_1", NULL,
907 t, 0);
908 this->define_builtin(BUILT_IN_ATOMIC_FETCH_AND_1, "__atomic_fetch_and_1", NULL,
909 t, 0);
910
911 t = build_function_type_list(unsigned_char_type_node,
912 ptr_type_node,
913 unsigned_char_type_node,
914 integer_type_node,
915 NULL_TREE);
916 this->define_builtin(BUILT_IN_ATOMIC_OR_FETCH_1, "__atomic_or_fetch_1", NULL,
917 t, 0);
918 this->define_builtin(BUILT_IN_ATOMIC_FETCH_OR_1, "__atomic_fetch_or_1", NULL,
919 t, 0);
920 }
921
922 // Get an unnamed integer type.
923
924 Btype*
925 Gcc_backend::integer_type(bool is_unsigned, int bits)
926 {
927 tree type;
928 if (is_unsigned)
929 {
930 if (bits == INT_TYPE_SIZE)
931 type = unsigned_type_node;
932 else if (bits == CHAR_TYPE_SIZE)
933 type = unsigned_char_type_node;
934 else if (bits == SHORT_TYPE_SIZE)
935 type = short_unsigned_type_node;
936 else if (bits == LONG_TYPE_SIZE)
937 type = long_unsigned_type_node;
938 else if (bits == LONG_LONG_TYPE_SIZE)
939 type = long_long_unsigned_type_node;
940 else
941 type = make_unsigned_type(bits);
942 }
943 else
944 {
945 if (bits == INT_TYPE_SIZE)
946 type = integer_type_node;
947 else if (bits == CHAR_TYPE_SIZE)
948 type = signed_char_type_node;
949 else if (bits == SHORT_TYPE_SIZE)
950 type = short_integer_type_node;
951 else if (bits == LONG_TYPE_SIZE)
952 type = long_integer_type_node;
953 else if (bits == LONG_LONG_TYPE_SIZE)
954 type = long_long_integer_type_node;
955 else
956 type = make_signed_type(bits);
957 }
958 return this->make_type(type);
959 }
960
961 // Get an unnamed float type.
962
963 Btype*
964 Gcc_backend::float_type(int bits)
965 {
966 tree type;
967 if (bits == FLOAT_TYPE_SIZE)
968 type = float_type_node;
969 else if (bits == DOUBLE_TYPE_SIZE)
970 type = double_type_node;
971 else if (bits == LONG_DOUBLE_TYPE_SIZE)
972 type = long_double_type_node;
973 else
974 {
975 type = make_node(REAL_TYPE);
976 TYPE_PRECISION(type) = bits;
977 layout_type(type);
978 }
979 return this->make_type(type);
980 }
981
982 // Get an unnamed complex type.
983
984 Btype*
985 Gcc_backend::complex_type(int bits)
986 {
987 tree type;
988 if (bits == FLOAT_TYPE_SIZE * 2)
989 type = complex_float_type_node;
990 else if (bits == DOUBLE_TYPE_SIZE * 2)
991 type = complex_double_type_node;
992 else if (bits == LONG_DOUBLE_TYPE_SIZE * 2)
993 type = complex_long_double_type_node;
994 else
995 {
996 type = make_node(REAL_TYPE);
997 TYPE_PRECISION(type) = bits / 2;
998 layout_type(type);
999 type = build_complex_type(type);
1000 }
1001 return this->make_type(type);
1002 }
1003
1004 // Get a pointer type.
1005
1006 Btype*
1007 Gcc_backend::pointer_type(Btype* to_type)
1008 {
1009 tree to_type_tree = to_type->get_tree();
1010 if (to_type_tree == error_mark_node)
1011 return this->error_type();
1012 tree type = build_pointer_type(to_type_tree);
1013 return this->make_type(type);
1014 }
1015
1016 // Make a function type.
1017
1018 Btype*
1019 Gcc_backend::function_type(const Btyped_identifier& receiver,
1020 const std::vector<Btyped_identifier>& parameters,
1021 const std::vector<Btyped_identifier>& results,
1022 Btype* result_struct,
1023 Location)
1024 {
1025 tree args = NULL_TREE;
1026 tree* pp = &args;
1027 if (receiver.btype != NULL)
1028 {
1029 tree t = receiver.btype->get_tree();
1030 if (t == error_mark_node)
1031 return this->error_type();
1032 *pp = tree_cons(NULL_TREE, t, NULL_TREE);
1033 pp = &TREE_CHAIN(*pp);
1034 }
1035
1036 for (std::vector<Btyped_identifier>::const_iterator p = parameters.begin();
1037 p != parameters.end();
1038 ++p)
1039 {
1040 tree t = p->btype->get_tree();
1041 if (t == error_mark_node)
1042 return this->error_type();
1043 *pp = tree_cons(NULL_TREE, t, NULL_TREE);
1044 pp = &TREE_CHAIN(*pp);
1045 }
1046
1047 // Varargs is handled entirely at the Go level. When converted to
1048 // GENERIC functions are not varargs.
1049 *pp = void_list_node;
1050
1051 tree result;
1052 if (results.empty())
1053 result = void_type_node;
1054 else if (results.size() == 1)
1055 result = results.front().btype->get_tree();
1056 else
1057 {
1058 gcc_assert(result_struct != NULL);
1059 result = result_struct->get_tree();
1060 }
1061 if (result == error_mark_node)
1062 return this->error_type();
1063
1064 // The libffi library cannot represent a zero-sized object. To
1065 // avoid causing confusion on 32-bit SPARC, we treat a function that
1066 // returns a zero-sized value as returning void. That should do no
1067 // harm since there is no actual value to be returned. See
1068 // https://gcc.gnu.org/PR72814 for details.
1069 if (result != void_type_node && int_size_in_bytes(result) == 0)
1070 result = void_type_node;
1071
1072 tree fntype = build_function_type(result, args);
1073 if (fntype == error_mark_node)
1074 return this->error_type();
1075
1076 return this->make_type(build_pointer_type(fntype));
1077 }
1078
1079 // Make a struct type.
1080
1081 Btype*
1082 Gcc_backend::struct_type(const std::vector<Btyped_identifier>& fields)
1083 {
1084 return this->fill_in_struct(this->make_type(make_node(RECORD_TYPE)), fields);
1085 }
1086
1087 // Fill in the fields of a struct type.
1088
1089 Btype*
1090 Gcc_backend::fill_in_struct(Btype* fill,
1091 const std::vector<Btyped_identifier>& fields)
1092 {
1093 tree fill_tree = fill->get_tree();
1094 tree field_trees = NULL_TREE;
1095 tree* pp = &field_trees;
1096 for (std::vector<Btyped_identifier>::const_iterator p = fields.begin();
1097 p != fields.end();
1098 ++p)
1099 {
1100 tree name_tree = get_identifier_from_string(p->name);
1101 tree type_tree = p->btype->get_tree();
1102 if (type_tree == error_mark_node)
1103 return this->error_type();
1104 tree field = build_decl(p->location.gcc_location(), FIELD_DECL, name_tree,
1105 type_tree);
1106 DECL_CONTEXT(field) = fill_tree;
1107 *pp = field;
1108 pp = &DECL_CHAIN(field);
1109 }
1110 TYPE_FIELDS(fill_tree) = field_trees;
1111 layout_type(fill_tree);
1112
1113 // Because Go permits converting between named struct types and
1114 // equivalent struct types, for which we use VIEW_CONVERT_EXPR, and
1115 // because we don't try to maintain TYPE_CANONICAL for struct types,
1116 // we need to tell the middle-end to use structural equality.
1117 SET_TYPE_STRUCTURAL_EQUALITY(fill_tree);
1118
1119 return fill;
1120 }
1121
1122 // Make an array type.
1123
1124 Btype*
1125 Gcc_backend::array_type(Btype* element_btype, Bexpression* length)
1126 {
1127 return this->fill_in_array(this->make_type(make_node(ARRAY_TYPE)),
1128 element_btype, length);
1129 }
1130
1131 // Fill in an array type.
1132
1133 Btype*
1134 Gcc_backend::fill_in_array(Btype* fill, Btype* element_type,
1135 Bexpression* length)
1136 {
1137 tree element_type_tree = element_type->get_tree();
1138 tree length_tree = length->get_tree();
1139 if (element_type_tree == error_mark_node || length_tree == error_mark_node)
1140 return this->error_type();
1141
1142 gcc_assert(TYPE_SIZE(element_type_tree) != NULL_TREE);
1143
1144 length_tree = fold_convert(sizetype, length_tree);
1145
1146 // build_index_type takes the maximum index, which is one less than
1147 // the length.
1148 tree index_type_tree = build_index_type(fold_build2(MINUS_EXPR, sizetype,
1149 length_tree,
1150 size_one_node));
1151
1152 tree fill_tree = fill->get_tree();
1153 TREE_TYPE(fill_tree) = element_type_tree;
1154 TYPE_DOMAIN(fill_tree) = index_type_tree;
1155 TYPE_ADDR_SPACE(fill_tree) = TYPE_ADDR_SPACE(element_type_tree);
1156 layout_type(fill_tree);
1157
1158 if (TYPE_STRUCTURAL_EQUALITY_P(element_type_tree))
1159 SET_TYPE_STRUCTURAL_EQUALITY(fill_tree);
1160 else if (TYPE_CANONICAL(element_type_tree) != element_type_tree
1161 || TYPE_CANONICAL(index_type_tree) != index_type_tree)
1162 TYPE_CANONICAL(fill_tree) =
1163 build_array_type(TYPE_CANONICAL(element_type_tree),
1164 TYPE_CANONICAL(index_type_tree));
1165
1166 return fill;
1167 }
1168
1169 // Create a placeholder for a pointer type.
1170
1171 Btype*
1172 Gcc_backend::placeholder_pointer_type(const std::string& name,
1173 Location location, bool)
1174 {
1175 tree ret = build_distinct_type_copy(ptr_type_node);
1176 if (!name.empty())
1177 {
1178 tree decl = build_decl(location.gcc_location(), TYPE_DECL,
1179 get_identifier_from_string(name),
1180 ret);
1181 TYPE_NAME(ret) = decl;
1182 }
1183 return this->make_type(ret);
1184 }
1185
1186 // Set the real target type for a placeholder pointer type.
1187
1188 bool
1189 Gcc_backend::set_placeholder_pointer_type(Btype* placeholder,
1190 Btype* to_type)
1191 {
1192 tree pt = placeholder->get_tree();
1193 if (pt == error_mark_node)
1194 return false;
1195 gcc_assert(TREE_CODE(pt) == POINTER_TYPE);
1196 tree tt = to_type->get_tree();
1197 if (tt == error_mark_node)
1198 {
1199 placeholder->set_tree(error_mark_node);
1200 return false;
1201 }
1202 gcc_assert(TREE_CODE(tt) == POINTER_TYPE);
1203 TREE_TYPE(pt) = TREE_TYPE(tt);
1204 TYPE_CANONICAL(pt) = TYPE_CANONICAL(tt);
1205 if (TYPE_NAME(pt) != NULL_TREE)
1206 {
1207 // Build the data structure gcc wants to see for a typedef.
1208 tree copy = build_variant_type_copy(pt);
1209 TYPE_NAME(copy) = NULL_TREE;
1210 DECL_ORIGINAL_TYPE(TYPE_NAME(pt)) = copy;
1211 }
1212 return true;
1213 }
1214
1215 // Set the real values for a placeholder function type.
1216
1217 bool
1218 Gcc_backend::set_placeholder_function_type(Btype* placeholder, Btype* ft)
1219 {
1220 return this->set_placeholder_pointer_type(placeholder, ft);
1221 }
1222
1223 // Create a placeholder for a struct type.
1224
1225 Btype*
1226 Gcc_backend::placeholder_struct_type(const std::string& name,
1227 Location location)
1228 {
1229 tree ret = make_node(RECORD_TYPE);
1230 if (!name.empty())
1231 {
1232 tree decl = build_decl(location.gcc_location(), TYPE_DECL,
1233 get_identifier_from_string(name),
1234 ret);
1235 TYPE_NAME(ret) = decl;
1236
1237 // The struct type that eventually replaces this placeholder will require
1238 // structural equality. The placeholder must too, so that the requirement
1239 // for structural equality propagates to references that are constructed
1240 // before the replacement occurs.
1241 SET_TYPE_STRUCTURAL_EQUALITY(ret);
1242 }
1243 return this->make_type(ret);
1244 }
1245
1246 // Fill in the fields of a placeholder struct type.
1247
1248 bool
1249 Gcc_backend::set_placeholder_struct_type(
1250 Btype* placeholder,
1251 const std::vector<Btyped_identifier>& fields)
1252 {
1253 tree t = placeholder->get_tree();
1254 gcc_assert(TREE_CODE(t) == RECORD_TYPE && TYPE_FIELDS(t) == NULL_TREE);
1255 Btype* r = this->fill_in_struct(placeholder, fields);
1256
1257 if (TYPE_NAME(t) != NULL_TREE)
1258 {
1259 // Build the data structure gcc wants to see for a typedef.
1260 tree copy = build_distinct_type_copy(t);
1261 TYPE_NAME(copy) = NULL_TREE;
1262 DECL_ORIGINAL_TYPE(TYPE_NAME(t)) = copy;
1263 TYPE_SIZE(copy) = NULL_TREE;
1264 Btype* bc = this->make_type(copy);
1265 this->fill_in_struct(bc, fields);
1266 delete bc;
1267 }
1268
1269 return r->get_tree() != error_mark_node;
1270 }
1271
1272 // Create a placeholder for an array type.
1273
1274 Btype*
1275 Gcc_backend::placeholder_array_type(const std::string& name,
1276 Location location)
1277 {
1278 tree ret = make_node(ARRAY_TYPE);
1279 tree decl = build_decl(location.gcc_location(), TYPE_DECL,
1280 get_identifier_from_string(name),
1281 ret);
1282 TYPE_NAME(ret) = decl;
1283 return this->make_type(ret);
1284 }
1285
1286 // Fill in the fields of a placeholder array type.
1287
1288 bool
1289 Gcc_backend::set_placeholder_array_type(Btype* placeholder,
1290 Btype* element_btype,
1291 Bexpression* length)
1292 {
1293 tree t = placeholder->get_tree();
1294 gcc_assert(TREE_CODE(t) == ARRAY_TYPE && TREE_TYPE(t) == NULL_TREE);
1295 Btype* r = this->fill_in_array(placeholder, element_btype, length);
1296
1297 // Build the data structure gcc wants to see for a typedef.
1298 tree copy = build_distinct_type_copy(t);
1299 TYPE_NAME(copy) = NULL_TREE;
1300 DECL_ORIGINAL_TYPE(TYPE_NAME(t)) = copy;
1301
1302 return r->get_tree() != error_mark_node;
1303 }
1304
1305 // Return a named version of a type.
1306
1307 Btype*
1308 Gcc_backend::named_type(const std::string& name, Btype* btype,
1309 Location location)
1310 {
1311 tree type = btype->get_tree();
1312 if (type == error_mark_node)
1313 return this->error_type();
1314
1315 // The middle-end expects a basic type to have a name. In Go every
1316 // basic type will have a name. The first time we see a basic type,
1317 // give it whatever Go name we have at this point.
1318 if (TYPE_NAME(type) == NULL_TREE
1319 && location.gcc_location() == BUILTINS_LOCATION
1320 && (TREE_CODE(type) == INTEGER_TYPE
1321 || TREE_CODE(type) == REAL_TYPE
1322 || TREE_CODE(type) == COMPLEX_TYPE
1323 || TREE_CODE(type) == BOOLEAN_TYPE))
1324 {
1325 tree decl = build_decl(BUILTINS_LOCATION, TYPE_DECL,
1326 get_identifier_from_string(name),
1327 type);
1328 TYPE_NAME(type) = decl;
1329 return this->make_type(type);
1330 }
1331
1332 tree copy = build_variant_type_copy(type);
1333 tree decl = build_decl(location.gcc_location(), TYPE_DECL,
1334 get_identifier_from_string(name),
1335 copy);
1336 DECL_ORIGINAL_TYPE(decl) = type;
1337 TYPE_NAME(copy) = decl;
1338 return this->make_type(copy);
1339 }
1340
1341 // Return a pointer type used as a marker for a circular type.
1342
1343 Btype*
1344 Gcc_backend::circular_pointer_type(Btype*, bool)
1345 {
1346 return this->make_type(ptr_type_node);
1347 }
1348
1349 // Return whether we might be looking at a circular type.
1350
1351 bool
1352 Gcc_backend::is_circular_pointer_type(Btype* btype)
1353 {
1354 return btype->get_tree() == ptr_type_node;
1355 }
1356
1357 // Return the size of a type.
1358
1359 int64_t
1360 Gcc_backend::type_size(Btype* btype)
1361 {
1362 tree t = btype->get_tree();
1363 if (t == error_mark_node)
1364 return 1;
1365 if (t == void_type_node)
1366 return 0;
1367 t = TYPE_SIZE_UNIT(t);
1368 gcc_assert(tree_fits_uhwi_p (t));
1369 unsigned HOST_WIDE_INT val_wide = TREE_INT_CST_LOW(t);
1370 int64_t ret = static_cast<int64_t>(val_wide);
1371 if (ret < 0 || static_cast<unsigned HOST_WIDE_INT>(ret) != val_wide)
1372 return -1;
1373 return ret;
1374 }
1375
1376 // Return the alignment of a type.
1377
1378 int64_t
1379 Gcc_backend::type_alignment(Btype* btype)
1380 {
1381 tree t = btype->get_tree();
1382 if (t == error_mark_node)
1383 return 1;
1384 return TYPE_ALIGN_UNIT(t);
1385 }
1386
1387 // Return the alignment of a struct field of type BTYPE.
1388
1389 int64_t
1390 Gcc_backend::type_field_alignment(Btype* btype)
1391 {
1392 tree t = btype->get_tree();
1393 if (t == error_mark_node)
1394 return 1;
1395 return go_field_alignment(t);
1396 }
1397
1398 // Return the offset of a field in a struct.
1399
1400 int64_t
1401 Gcc_backend::type_field_offset(Btype* btype, size_t index)
1402 {
1403 tree struct_tree = btype->get_tree();
1404 if (struct_tree == error_mark_node)
1405 return 0;
1406 gcc_assert(TREE_CODE(struct_tree) == RECORD_TYPE);
1407 tree field = TYPE_FIELDS(struct_tree);
1408 for (; index > 0; --index)
1409 {
1410 field = DECL_CHAIN(field);
1411 gcc_assert(field != NULL_TREE);
1412 }
1413 HOST_WIDE_INT offset_wide = int_byte_position(field);
1414 int64_t ret = static_cast<int64_t>(offset_wide);
1415 gcc_assert(ret == offset_wide);
1416 return ret;
1417 }
1418
1419 // Return the zero value for a type.
1420
1421 Bexpression*
1422 Gcc_backend::zero_expression(Btype* btype)
1423 {
1424 tree t = btype->get_tree();
1425 tree ret;
1426 if (t == error_mark_node)
1427 ret = error_mark_node;
1428 else
1429 ret = build_zero_cst(t);
1430 return this->make_expression(ret);
1431 }
1432
1433 // An expression that references a variable.
1434
1435 Bexpression*
1436 Gcc_backend::var_expression(Bvariable* var, Location location)
1437 {
1438 tree ret = var->get_tree(location);
1439 if (ret == error_mark_node)
1440 return this->error_expression();
1441 return this->make_expression(ret);
1442 }
1443
1444 // An expression that indirectly references an expression.
1445
1446 Bexpression*
1447 Gcc_backend::indirect_expression(Btype* btype, Bexpression* expr,
1448 bool known_valid, Location location)
1449 {
1450 tree expr_tree = expr->get_tree();
1451 tree type_tree = btype->get_tree();
1452 if (expr_tree == error_mark_node || type_tree == error_mark_node)
1453 return this->error_expression();
1454
1455 // If the type of EXPR is a recursive pointer type, then we
1456 // need to insert a cast before indirecting.
1457 tree target_type_tree = TREE_TYPE(TREE_TYPE(expr_tree));
1458 if (VOID_TYPE_P(target_type_tree))
1459 expr_tree = fold_convert_loc(location.gcc_location(),
1460 build_pointer_type(type_tree), expr_tree);
1461
1462 tree ret = build_fold_indirect_ref_loc(location.gcc_location(),
1463 expr_tree);
1464 if (known_valid)
1465 TREE_THIS_NOTRAP(ret) = 1;
1466 return this->make_expression(ret);
1467 }
1468
1469 // Return an expression that declares a constant named NAME with the
1470 // constant value VAL in BTYPE.
1471
1472 Bexpression*
1473 Gcc_backend::named_constant_expression(Btype* btype, const std::string& name,
1474 Bexpression* val, Location location)
1475 {
1476 tree type_tree = btype->get_tree();
1477 tree const_val = val->get_tree();
1478 if (type_tree == error_mark_node || const_val == error_mark_node)
1479 return this->error_expression();
1480
1481 tree name_tree = get_identifier_from_string(name);
1482 tree decl = build_decl(location.gcc_location(), CONST_DECL, name_tree,
1483 type_tree);
1484 DECL_INITIAL(decl) = const_val;
1485 TREE_CONSTANT(decl) = 1;
1486 TREE_READONLY(decl) = 1;
1487
1488 go_preserve_from_gc(decl);
1489 return this->make_expression(decl);
1490 }
1491
1492 // Return a typed value as a constant integer.
1493
1494 Bexpression*
1495 Gcc_backend::integer_constant_expression(Btype* btype, mpz_t val)
1496 {
1497 tree t = btype->get_tree();
1498 if (t == error_mark_node)
1499 return this->error_expression();
1500
1501 tree ret = double_int_to_tree(t, mpz_get_double_int(t, val, true));
1502 return this->make_expression(ret);
1503 }
1504
1505 // Return a typed value as a constant floating-point number.
1506
1507 Bexpression*
1508 Gcc_backend::float_constant_expression(Btype* btype, mpfr_t val)
1509 {
1510 tree t = btype->get_tree();
1511 tree ret;
1512 if (t == error_mark_node)
1513 return this->error_expression();
1514
1515 REAL_VALUE_TYPE r1;
1516 real_from_mpfr(&r1, val, t, GMP_RNDN);
1517 REAL_VALUE_TYPE r2;
1518 real_convert(&r2, TYPE_MODE(t), &r1);
1519 ret = build_real(t, r2);
1520 return this->make_expression(ret);
1521 }
1522
1523 // Return a typed real and imaginary value as a constant complex number.
1524
1525 Bexpression*
1526 Gcc_backend::complex_constant_expression(Btype* btype, mpc_t val)
1527 {
1528 tree t = btype->get_tree();
1529 tree ret;
1530 if (t == error_mark_node)
1531 return this->error_expression();
1532
1533 REAL_VALUE_TYPE r1;
1534 real_from_mpfr(&r1, mpc_realref(val), TREE_TYPE(t), GMP_RNDN);
1535 REAL_VALUE_TYPE r2;
1536 real_convert(&r2, TYPE_MODE(TREE_TYPE(t)), &r1);
1537
1538 REAL_VALUE_TYPE r3;
1539 real_from_mpfr(&r3, mpc_imagref(val), TREE_TYPE(t), GMP_RNDN);
1540 REAL_VALUE_TYPE r4;
1541 real_convert(&r4, TYPE_MODE(TREE_TYPE(t)), &r3);
1542
1543 ret = build_complex(t, build_real(TREE_TYPE(t), r2),
1544 build_real(TREE_TYPE(t), r4));
1545 return this->make_expression(ret);
1546 }
1547
1548 // Make a constant string expression.
1549
1550 Bexpression*
1551 Gcc_backend::string_constant_expression(const std::string& val)
1552 {
1553 tree index_type = build_index_type(size_int(val.length()));
1554 tree const_char_type = build_qualified_type(unsigned_char_type_node,
1555 TYPE_QUAL_CONST);
1556 tree string_type = build_array_type(const_char_type, index_type);
1557 TYPE_STRING_FLAG(string_type) = 1;
1558 tree string_val = build_string(val.length(), val.data());
1559 TREE_TYPE(string_val) = string_type;
1560
1561 return this->make_expression(string_val);
1562 }
1563
1564 // Make a constant boolean expression.
1565
1566 Bexpression*
1567 Gcc_backend::boolean_constant_expression(bool val)
1568 {
1569 tree bool_cst = val ? boolean_true_node : boolean_false_node;
1570 return this->make_expression(bool_cst);
1571 }
1572
1573 // Return the real part of a complex expression.
1574
1575 Bexpression*
1576 Gcc_backend::real_part_expression(Bexpression* bcomplex, Location location)
1577 {
1578 tree complex_tree = bcomplex->get_tree();
1579 if (complex_tree == error_mark_node)
1580 return this->error_expression();
1581 gcc_assert(COMPLEX_FLOAT_TYPE_P(TREE_TYPE(complex_tree)));
1582 tree ret = fold_build1_loc(location.gcc_location(), REALPART_EXPR,
1583 TREE_TYPE(TREE_TYPE(complex_tree)),
1584 complex_tree);
1585 return this->make_expression(ret);
1586 }
1587
1588 // Return the imaginary part of a complex expression.
1589
1590 Bexpression*
1591 Gcc_backend::imag_part_expression(Bexpression* bcomplex, Location location)
1592 {
1593 tree complex_tree = bcomplex->get_tree();
1594 if (complex_tree == error_mark_node)
1595 return this->error_expression();
1596 gcc_assert(COMPLEX_FLOAT_TYPE_P(TREE_TYPE(complex_tree)));
1597 tree ret = fold_build1_loc(location.gcc_location(), IMAGPART_EXPR,
1598 TREE_TYPE(TREE_TYPE(complex_tree)),
1599 complex_tree);
1600 return this->make_expression(ret);
1601 }
1602
1603 // Make a complex expression given its real and imaginary parts.
1604
1605 Bexpression*
1606 Gcc_backend::complex_expression(Bexpression* breal, Bexpression* bimag,
1607 Location location)
1608 {
1609 tree real_tree = breal->get_tree();
1610 tree imag_tree = bimag->get_tree();
1611 if (real_tree == error_mark_node || imag_tree == error_mark_node)
1612 return this->error_expression();
1613 gcc_assert(TYPE_MAIN_VARIANT(TREE_TYPE(real_tree))
1614 == TYPE_MAIN_VARIANT(TREE_TYPE(imag_tree)));
1615 gcc_assert(SCALAR_FLOAT_TYPE_P(TREE_TYPE(real_tree)));
1616 tree ret = fold_build2_loc(location.gcc_location(), COMPLEX_EXPR,
1617 build_complex_type(TREE_TYPE(real_tree)),
1618 real_tree, imag_tree);
1619 return this->make_expression(ret);
1620 }
1621
1622 // An expression that converts an expression to a different type.
1623
1624 Bexpression*
1625 Gcc_backend::convert_expression(Btype* type, Bexpression* expr,
1626 Location location)
1627 {
1628 tree type_tree = type->get_tree();
1629 tree expr_tree = expr->get_tree();
1630 if (type_tree == error_mark_node
1631 || expr_tree == error_mark_node
1632 || TREE_TYPE(expr_tree) == error_mark_node)
1633 return this->error_expression();
1634
1635 tree ret;
1636 if (this->type_size(type) == 0
1637 || TREE_TYPE(expr_tree) == void_type_node)
1638 {
1639 // Do not convert zero-sized types.
1640 ret = expr_tree;
1641 }
1642 else if (TREE_CODE(type_tree) == INTEGER_TYPE)
1643 ret = fold(convert_to_integer(type_tree, expr_tree));
1644 else if (TREE_CODE(type_tree) == REAL_TYPE)
1645 ret = fold(convert_to_real(type_tree, expr_tree));
1646 else if (TREE_CODE(type_tree) == COMPLEX_TYPE)
1647 ret = fold(convert_to_complex(type_tree, expr_tree));
1648 else if (TREE_CODE(type_tree) == POINTER_TYPE
1649 && TREE_CODE(TREE_TYPE(expr_tree)) == INTEGER_TYPE)
1650 ret = fold(convert_to_pointer(type_tree, expr_tree));
1651 else if (TREE_CODE(type_tree) == RECORD_TYPE
1652 || TREE_CODE(type_tree) == ARRAY_TYPE)
1653 ret = fold_build1_loc(location.gcc_location(), VIEW_CONVERT_EXPR,
1654 type_tree, expr_tree);
1655 else
1656 ret = fold_convert_loc(location.gcc_location(), type_tree, expr_tree);
1657
1658 return this->make_expression(ret);
1659 }
1660
1661 // Get the address of a function.
1662
1663 Bexpression*
1664 Gcc_backend::function_code_expression(Bfunction* bfunc, Location location)
1665 {
1666 tree func = bfunc->get_tree();
1667 if (func == error_mark_node)
1668 return this->error_expression();
1669
1670 tree ret = build_fold_addr_expr_loc(location.gcc_location(), func);
1671 return this->make_expression(ret);
1672 }
1673
1674 // Get the address of an expression.
1675
1676 Bexpression*
1677 Gcc_backend::address_expression(Bexpression* bexpr, Location location)
1678 {
1679 tree expr = bexpr->get_tree();
1680 if (expr == error_mark_node)
1681 return this->error_expression();
1682
1683 tree ret = build_fold_addr_expr_loc(location.gcc_location(), expr);
1684 return this->make_expression(ret);
1685 }
1686
1687 // Return an expression for the field at INDEX in BSTRUCT.
1688
1689 Bexpression*
1690 Gcc_backend::struct_field_expression(Bexpression* bstruct, size_t index,
1691 Location location)
1692 {
1693 tree struct_tree = bstruct->get_tree();
1694 if (struct_tree == error_mark_node
1695 || TREE_TYPE(struct_tree) == error_mark_node)
1696 return this->error_expression();
1697 gcc_assert(TREE_CODE(TREE_TYPE(struct_tree)) == RECORD_TYPE);
1698 tree field = TYPE_FIELDS(TREE_TYPE(struct_tree));
1699 if (field == NULL_TREE)
1700 {
1701 // This can happen for a type which refers to itself indirectly
1702 // and then turns out to be erroneous.
1703 return this->error_expression();
1704 }
1705 for (unsigned int i = index; i > 0; --i)
1706 {
1707 field = DECL_CHAIN(field);
1708 gcc_assert(field != NULL_TREE);
1709 }
1710 if (TREE_TYPE(field) == error_mark_node)
1711 return this->error_expression();
1712 tree ret = fold_build3_loc(location.gcc_location(), COMPONENT_REF,
1713 TREE_TYPE(field), struct_tree, field,
1714 NULL_TREE);
1715 if (TREE_CONSTANT(struct_tree))
1716 TREE_CONSTANT(ret) = 1;
1717 return this->make_expression(ret);
1718 }
1719
1720 // Return an expression that executes BSTAT before BEXPR.
1721
1722 Bexpression*
1723 Gcc_backend::compound_expression(Bstatement* bstat, Bexpression* bexpr,
1724 Location location)
1725 {
1726 tree stat = bstat->get_tree();
1727 tree expr = bexpr->get_tree();
1728 if (stat == error_mark_node || expr == error_mark_node)
1729 return this->error_expression();
1730 tree ret = fold_build2_loc(location.gcc_location(), COMPOUND_EXPR,
1731 TREE_TYPE(expr), stat, expr);
1732 return this->make_expression(ret);
1733 }
1734
1735 // Return an expression that executes THEN_EXPR if CONDITION is true, or
1736 // ELSE_EXPR otherwise.
1737
1738 Bexpression*
1739 Gcc_backend::conditional_expression(Bfunction*, Btype* btype,
1740 Bexpression* condition,
1741 Bexpression* then_expr,
1742 Bexpression* else_expr, Location location)
1743 {
1744 tree type_tree = btype == NULL ? void_type_node : btype->get_tree();
1745 tree cond_tree = condition->get_tree();
1746 tree then_tree = then_expr->get_tree();
1747 tree else_tree = else_expr == NULL ? NULL_TREE : else_expr->get_tree();
1748 if (type_tree == error_mark_node
1749 || cond_tree == error_mark_node
1750 || then_tree == error_mark_node
1751 || else_tree == error_mark_node)
1752 return this->error_expression();
1753 tree ret = build3_loc(location.gcc_location(), COND_EXPR, type_tree,
1754 cond_tree, then_tree, else_tree);
1755 return this->make_expression(ret);
1756 }
1757
1758 // Return an expression for the unary operation OP EXPR.
1759
1760 Bexpression*
1761 Gcc_backend::unary_expression(Operator op, Bexpression* expr, Location location)
1762 {
1763 tree expr_tree = expr->get_tree();
1764 if (expr_tree == error_mark_node
1765 || TREE_TYPE(expr_tree) == error_mark_node)
1766 return this->error_expression();
1767
1768 tree type_tree = TREE_TYPE(expr_tree);
1769 enum tree_code code;
1770 switch (op)
1771 {
1772 case OPERATOR_MINUS:
1773 {
1774 tree computed_type = excess_precision_type(type_tree);
1775 if (computed_type != NULL_TREE)
1776 {
1777 expr_tree = convert(computed_type, expr_tree);
1778 type_tree = computed_type;
1779 }
1780 code = NEGATE_EXPR;
1781 break;
1782 }
1783 case OPERATOR_NOT:
1784 code = TRUTH_NOT_EXPR;
1785 break;
1786 case OPERATOR_XOR:
1787 code = BIT_NOT_EXPR;
1788 break;
1789 default:
1790 gcc_unreachable();
1791 break;
1792 }
1793
1794 tree ret = fold_build1_loc(location.gcc_location(), code, type_tree,
1795 expr_tree);
1796 return this->make_expression(ret);
1797 }
1798
1799 // Convert a gofrontend operator to an equivalent tree_code.
1800
1801 static enum tree_code
1802 operator_to_tree_code(Operator op, tree type)
1803 {
1804 enum tree_code code;
1805 switch (op)
1806 {
1807 case OPERATOR_EQEQ:
1808 code = EQ_EXPR;
1809 break;
1810 case OPERATOR_NOTEQ:
1811 code = NE_EXPR;
1812 break;
1813 case OPERATOR_LT:
1814 code = LT_EXPR;
1815 break;
1816 case OPERATOR_LE:
1817 code = LE_EXPR;
1818 break;
1819 case OPERATOR_GT:
1820 code = GT_EXPR;
1821 break;
1822 case OPERATOR_GE:
1823 code = GE_EXPR;
1824 break;
1825 case OPERATOR_OROR:
1826 code = TRUTH_ORIF_EXPR;
1827 break;
1828 case OPERATOR_ANDAND:
1829 code = TRUTH_ANDIF_EXPR;
1830 break;
1831 case OPERATOR_PLUS:
1832 code = PLUS_EXPR;
1833 break;
1834 case OPERATOR_MINUS:
1835 code = MINUS_EXPR;
1836 break;
1837 case OPERATOR_OR:
1838 code = BIT_IOR_EXPR;
1839 break;
1840 case OPERATOR_XOR:
1841 code = BIT_XOR_EXPR;
1842 break;
1843 case OPERATOR_MULT:
1844 code = MULT_EXPR;
1845 break;
1846 case OPERATOR_DIV:
1847 if (TREE_CODE(type) == REAL_TYPE || TREE_CODE(type) == COMPLEX_TYPE)
1848 code = RDIV_EXPR;
1849 else
1850 code = TRUNC_DIV_EXPR;
1851 break;
1852 case OPERATOR_MOD:
1853 code = TRUNC_MOD_EXPR;
1854 break;
1855 case OPERATOR_LSHIFT:
1856 code = LSHIFT_EXPR;
1857 break;
1858 case OPERATOR_RSHIFT:
1859 code = RSHIFT_EXPR;
1860 break;
1861 case OPERATOR_AND:
1862 code = BIT_AND_EXPR;
1863 break;
1864 case OPERATOR_BITCLEAR:
1865 code = BIT_AND_EXPR;
1866 break;
1867 default:
1868 gcc_unreachable();
1869 }
1870
1871 return code;
1872 }
1873
1874 // Return an expression for the binary operation LEFT OP RIGHT.
1875
1876 Bexpression*
1877 Gcc_backend::binary_expression(Operator op, Bexpression* left,
1878 Bexpression* right, Location location)
1879 {
1880 tree left_tree = left->get_tree();
1881 tree right_tree = right->get_tree();
1882 if (left_tree == error_mark_node
1883 || right_tree == error_mark_node)
1884 return this->error_expression();
1885 enum tree_code code = operator_to_tree_code(op, TREE_TYPE(left_tree));
1886
1887 bool use_left_type = op != OPERATOR_OROR && op != OPERATOR_ANDAND;
1888 tree type_tree = use_left_type ? TREE_TYPE(left_tree) : TREE_TYPE(right_tree);
1889 tree computed_type = excess_precision_type(type_tree);
1890 if (computed_type != NULL_TREE)
1891 {
1892 left_tree = convert(computed_type, left_tree);
1893 right_tree = convert(computed_type, right_tree);
1894 type_tree = computed_type;
1895 }
1896
1897 // For comparison operators, the resulting type should be boolean.
1898 switch (op)
1899 {
1900 case OPERATOR_EQEQ:
1901 case OPERATOR_NOTEQ:
1902 case OPERATOR_LT:
1903 case OPERATOR_LE:
1904 case OPERATOR_GT:
1905 case OPERATOR_GE:
1906 type_tree = boolean_type_node;
1907 break;
1908 default:
1909 break;
1910 }
1911
1912 tree ret = fold_build2_loc(location.gcc_location(), code, type_tree,
1913 left_tree, right_tree);
1914 return this->make_expression(ret);
1915 }
1916
1917 // Return an expression that constructs BTYPE with VALS.
1918
1919 Bexpression*
1920 Gcc_backend::constructor_expression(Btype* btype,
1921 const std::vector<Bexpression*>& vals,
1922 Location location)
1923 {
1924 tree type_tree = btype->get_tree();
1925 if (type_tree == error_mark_node)
1926 return this->error_expression();
1927
1928 vec<constructor_elt, va_gc> *init;
1929 vec_alloc(init, vals.size());
1930
1931 tree sink = NULL_TREE;
1932 bool is_constant = true;
1933 tree field = TYPE_FIELDS(type_tree);
1934 for (std::vector<Bexpression*>::const_iterator p = vals.begin();
1935 p != vals.end();
1936 ++p, field = DECL_CHAIN(field))
1937 {
1938 gcc_assert(field != NULL_TREE);
1939 tree val = (*p)->get_tree();
1940 if (TREE_TYPE(field) == error_mark_node
1941 || val == error_mark_node
1942 || TREE_TYPE(val) == error_mark_node)
1943 return this->error_expression();
1944
1945 if (int_size_in_bytes(TREE_TYPE(field)) == 0)
1946 {
1947 // GIMPLE cannot represent indices of zero-sized types so
1948 // trying to construct a map with zero-sized keys might lead
1949 // to errors. Instead, we evaluate each expression that
1950 // would have been added as a map element for its
1951 // side-effects and construct an empty map.
1952 append_to_statement_list(val, &sink);
1953 continue;
1954 }
1955
1956 constructor_elt empty = {NULL, NULL};
1957 constructor_elt* elt = init->quick_push(empty);
1958 elt->index = field;
1959 elt->value = this->convert_tree(TREE_TYPE(field), val, location);
1960 if (!TREE_CONSTANT(elt->value))
1961 is_constant = false;
1962 }
1963 gcc_assert(field == NULL_TREE);
1964 tree ret = build_constructor(type_tree, init);
1965 if (is_constant)
1966 TREE_CONSTANT(ret) = 1;
1967 if (sink != NULL_TREE)
1968 ret = fold_build2_loc(location.gcc_location(), COMPOUND_EXPR,
1969 type_tree, sink, ret);
1970 return this->make_expression(ret);
1971 }
1972
1973 Bexpression*
1974 Gcc_backend::array_constructor_expression(
1975 Btype* array_btype, const std::vector<unsigned long>& indexes,
1976 const std::vector<Bexpression*>& vals, Location location)
1977 {
1978 tree type_tree = array_btype->get_tree();
1979 if (type_tree == error_mark_node)
1980 return this->error_expression();
1981
1982 gcc_assert(indexes.size() == vals.size());
1983
1984 tree element_type = TREE_TYPE(type_tree);
1985 HOST_WIDE_INT element_size = int_size_in_bytes(element_type);
1986 vec<constructor_elt, va_gc> *init;
1987 vec_alloc(init, element_size == 0 ? 0 : vals.size());
1988
1989 tree sink = NULL_TREE;
1990 bool is_constant = true;
1991 for (size_t i = 0; i < vals.size(); ++i)
1992 {
1993 tree index = size_int(indexes[i]);
1994 tree val = (vals[i])->get_tree();
1995
1996 if (index == error_mark_node
1997 || val == error_mark_node)
1998 return this->error_expression();
1999
2000 if (element_size == 0)
2001 {
2002 // GIMPLE cannot represent arrays of zero-sized types so trying
2003 // to construct an array of zero-sized values might lead to errors.
2004 // Instead, we evaluate each expression that would have been added as
2005 // an array value for its side-effects and construct an empty array.
2006 append_to_statement_list(val, &sink);
2007 continue;
2008 }
2009
2010 if (!TREE_CONSTANT(val))
2011 is_constant = false;
2012
2013 constructor_elt empty = {NULL, NULL};
2014 constructor_elt* elt = init->quick_push(empty);
2015 elt->index = index;
2016 elt->value = val;
2017 }
2018
2019 tree ret = build_constructor(type_tree, init);
2020 if (is_constant)
2021 TREE_CONSTANT(ret) = 1;
2022 if (sink != NULL_TREE)
2023 ret = fold_build2_loc(location.gcc_location(), COMPOUND_EXPR,
2024 type_tree, sink, ret);
2025 return this->make_expression(ret);
2026 }
2027
2028 // Return an expression for the address of BASE[INDEX].
2029
2030 Bexpression*
2031 Gcc_backend::pointer_offset_expression(Bexpression* base, Bexpression* index,
2032 Location location)
2033 {
2034 tree base_tree = base->get_tree();
2035 tree index_tree = index->get_tree();
2036 tree element_type_tree = TREE_TYPE(TREE_TYPE(base_tree));
2037 if (base_tree == error_mark_node
2038 || TREE_TYPE(base_tree) == error_mark_node
2039 || index_tree == error_mark_node
2040 || element_type_tree == error_mark_node)
2041 return this->error_expression();
2042
2043 tree element_size = TYPE_SIZE_UNIT(element_type_tree);
2044 index_tree = fold_convert_loc(location.gcc_location(), sizetype, index_tree);
2045 tree offset = fold_build2_loc(location.gcc_location(), MULT_EXPR, sizetype,
2046 index_tree, element_size);
2047 tree ptr = fold_build2_loc(location.gcc_location(), POINTER_PLUS_EXPR,
2048 TREE_TYPE(base_tree), base_tree, offset);
2049 return this->make_expression(ptr);
2050 }
2051
2052 // Return an expression representing ARRAY[INDEX]
2053
2054 Bexpression*
2055 Gcc_backend::array_index_expression(Bexpression* array, Bexpression* index,
2056 Location location)
2057 {
2058 tree array_tree = array->get_tree();
2059 tree index_tree = index->get_tree();
2060 if (array_tree == error_mark_node
2061 || TREE_TYPE(array_tree) == error_mark_node
2062 || index_tree == error_mark_node)
2063 return this->error_expression();
2064
2065 // A function call that returns a zero sized object will have been
2066 // changed to return void. If we see void here, assume we are
2067 // dealing with a zero sized type and just evaluate the operands.
2068 tree ret;
2069 if (TREE_TYPE(array_tree) != void_type_node)
2070 ret = build4_loc(location.gcc_location(), ARRAY_REF,
2071 TREE_TYPE(TREE_TYPE(array_tree)), array_tree,
2072 index_tree, NULL_TREE, NULL_TREE);
2073 else
2074 ret = fold_build2_loc(location.gcc_location(), COMPOUND_EXPR,
2075 void_type_node, array_tree, index_tree);
2076
2077 return this->make_expression(ret);
2078 }
2079
2080 // Create an expression for a call to FN_EXPR with FN_ARGS.
2081 Bexpression*
2082 Gcc_backend::call_expression(Bfunction*, // containing fcn for call
2083 Bexpression* fn_expr,
2084 const std::vector<Bexpression*>& fn_args,
2085 Bexpression* chain_expr,
2086 Location location)
2087 {
2088 tree fn = fn_expr->get_tree();
2089 if (fn == error_mark_node || TREE_TYPE(fn) == error_mark_node)
2090 return this->error_expression();
2091
2092 gcc_assert(FUNCTION_POINTER_TYPE_P(TREE_TYPE(fn)));
2093 tree rettype = TREE_TYPE(TREE_TYPE(TREE_TYPE(fn)));
2094
2095 size_t nargs = fn_args.size();
2096 tree* args = nargs == 0 ? NULL : new tree[nargs];
2097 for (size_t i = 0; i < nargs; ++i)
2098 {
2099 args[i] = fn_args.at(i)->get_tree();
2100 if (args[i] == error_mark_node)
2101 return this->error_expression();
2102 }
2103
2104 tree fndecl = fn;
2105 if (TREE_CODE(fndecl) == ADDR_EXPR)
2106 fndecl = TREE_OPERAND(fndecl, 0);
2107
2108 // This is to support builtin math functions when using 80387 math.
2109 tree excess_type = NULL_TREE;
2110 if (optimize
2111 && TREE_CODE(fndecl) == FUNCTION_DECL
2112 && fndecl_built_in_p (fndecl, BUILT_IN_NORMAL)
2113 && DECL_IS_BUILTIN (fndecl)
2114 && nargs > 0
2115 && ((SCALAR_FLOAT_TYPE_P(rettype)
2116 && SCALAR_FLOAT_TYPE_P(TREE_TYPE(args[0])))
2117 || (COMPLEX_FLOAT_TYPE_P(rettype)
2118 && COMPLEX_FLOAT_TYPE_P(TREE_TYPE(args[0])))))
2119 {
2120 excess_type = excess_precision_type(TREE_TYPE(args[0]));
2121 if (excess_type != NULL_TREE)
2122 {
2123 tree excess_fndecl = mathfn_built_in(excess_type,
2124 DECL_FUNCTION_CODE(fndecl));
2125 if (excess_fndecl == NULL_TREE)
2126 excess_type = NULL_TREE;
2127 else
2128 {
2129 fn = build_fold_addr_expr_loc(location.gcc_location(),
2130 excess_fndecl);
2131 for (size_t i = 0; i < nargs; ++i)
2132 {
2133 if (SCALAR_FLOAT_TYPE_P(TREE_TYPE(args[i]))
2134 || COMPLEX_FLOAT_TYPE_P(TREE_TYPE(args[i])))
2135 args[i] = ::convert(excess_type, args[i]);
2136 }
2137 }
2138 }
2139 }
2140
2141 tree ret =
2142 build_call_array_loc(location.gcc_location(),
2143 excess_type != NULL_TREE ? excess_type : rettype,
2144 fn, nargs, args);
2145
2146 if (chain_expr)
2147 CALL_EXPR_STATIC_CHAIN (ret) = chain_expr->get_tree();
2148
2149 if (excess_type != NULL_TREE)
2150 {
2151 // Calling convert here can undo our excess precision change.
2152 // That may or may not be a bug in convert_to_real.
2153 ret = build1_loc(location.gcc_location(), NOP_EXPR, rettype, ret);
2154 }
2155
2156 delete[] args;
2157 return this->make_expression(ret);
2158 }
2159
2160 // An expression as a statement.
2161
2162 Bstatement*
2163 Gcc_backend::expression_statement(Bfunction*, Bexpression* expr)
2164 {
2165 return this->make_statement(expr->get_tree());
2166 }
2167
2168 // Variable initialization.
2169
2170 Bstatement*
2171 Gcc_backend::init_statement(Bfunction*, Bvariable* var, Bexpression* init)
2172 {
2173 tree var_tree = var->get_decl();
2174 tree init_tree = init->get_tree();
2175 if (var_tree == error_mark_node || init_tree == error_mark_node)
2176 return this->error_statement();
2177 gcc_assert(TREE_CODE(var_tree) == VAR_DECL);
2178
2179 // To avoid problems with GNU ld, we don't make zero-sized
2180 // externally visible variables. That might lead us to doing an
2181 // initialization of a zero-sized expression to a non-zero sized
2182 // variable, or vice-versa. Avoid crashes by omitting the
2183 // initializer. Such initializations don't mean anything anyhow.
2184 if (int_size_in_bytes(TREE_TYPE(var_tree)) != 0
2185 && init_tree != NULL_TREE
2186 && TREE_TYPE(init_tree) != void_type_node
2187 && int_size_in_bytes(TREE_TYPE(init_tree)) != 0)
2188 {
2189 DECL_INITIAL(var_tree) = init_tree;
2190 init_tree = NULL_TREE;
2191 }
2192
2193 tree ret = build1_loc(DECL_SOURCE_LOCATION(var_tree), DECL_EXPR,
2194 void_type_node, var_tree);
2195 if (init_tree != NULL_TREE)
2196 ret = build2_loc(DECL_SOURCE_LOCATION(var_tree), COMPOUND_EXPR,
2197 void_type_node, init_tree, ret);
2198
2199 return this->make_statement(ret);
2200 }
2201
2202 // Assignment.
2203
2204 Bstatement*
2205 Gcc_backend::assignment_statement(Bfunction* bfn, Bexpression* lhs,
2206 Bexpression* rhs, Location location)
2207 {
2208 tree lhs_tree = lhs->get_tree();
2209 tree rhs_tree = rhs->get_tree();
2210 if (lhs_tree == error_mark_node || rhs_tree == error_mark_node)
2211 return this->error_statement();
2212
2213 // To avoid problems with GNU ld, we don't make zero-sized
2214 // externally visible variables. That might lead us to doing an
2215 // assignment of a zero-sized expression to a non-zero sized
2216 // expression; avoid crashes here by avoiding assignments of
2217 // zero-sized expressions. Such assignments don't really mean
2218 // anything anyhow.
2219 if (TREE_TYPE(lhs_tree) == void_type_node
2220 || int_size_in_bytes(TREE_TYPE(lhs_tree)) == 0
2221 || TREE_TYPE(rhs_tree) == void_type_node
2222 || int_size_in_bytes(TREE_TYPE(rhs_tree)) == 0)
2223 return this->compound_statement(this->expression_statement(bfn, lhs),
2224 this->expression_statement(bfn, rhs));
2225
2226 rhs_tree = this->convert_tree(TREE_TYPE(lhs_tree), rhs_tree, location);
2227
2228 return this->make_statement(fold_build2_loc(location.gcc_location(),
2229 MODIFY_EXPR,
2230 void_type_node,
2231 lhs_tree, rhs_tree));
2232 }
2233
2234 // Return.
2235
2236 Bstatement*
2237 Gcc_backend::return_statement(Bfunction* bfunction,
2238 const std::vector<Bexpression*>& vals,
2239 Location location)
2240 {
2241 tree fntree = bfunction->get_tree();
2242 if (fntree == error_mark_node)
2243 return this->error_statement();
2244 tree result = DECL_RESULT(fntree);
2245 if (result == error_mark_node)
2246 return this->error_statement();
2247
2248 // If the result size is zero bytes, we have set the function type
2249 // to have a result type of void, so don't return anything.
2250 // See the function_type method.
2251 tree res_type = TREE_TYPE(result);
2252 if (res_type == void_type_node || int_size_in_bytes(res_type) == 0)
2253 {
2254 tree stmt_list = NULL_TREE;
2255 for (std::vector<Bexpression*>::const_iterator p = vals.begin();
2256 p != vals.end();
2257 p++)
2258 {
2259 tree val = (*p)->get_tree();
2260 if (val == error_mark_node)
2261 return this->error_statement();
2262 append_to_statement_list(val, &stmt_list);
2263 }
2264 tree ret = fold_build1_loc(location.gcc_location(), RETURN_EXPR,
2265 void_type_node, NULL_TREE);
2266 append_to_statement_list(ret, &stmt_list);
2267 return this->make_statement(stmt_list);
2268 }
2269
2270 tree ret;
2271 if (vals.empty())
2272 ret = fold_build1_loc(location.gcc_location(), RETURN_EXPR, void_type_node,
2273 NULL_TREE);
2274 else if (vals.size() == 1)
2275 {
2276 tree val = vals.front()->get_tree();
2277 if (val == error_mark_node)
2278 return this->error_statement();
2279 tree set = fold_build2_loc(location.gcc_location(), MODIFY_EXPR,
2280 void_type_node, result,
2281 vals.front()->get_tree());
2282 ret = fold_build1_loc(location.gcc_location(), RETURN_EXPR,
2283 void_type_node, set);
2284 }
2285 else
2286 {
2287 // To return multiple values, copy the values into a temporary
2288 // variable of the right structure type, and then assign the
2289 // temporary variable to the DECL_RESULT in the return
2290 // statement.
2291 tree stmt_list = NULL_TREE;
2292 tree rettype = TREE_TYPE(result);
2293
2294 if (DECL_STRUCT_FUNCTION(fntree) == NULL)
2295 push_struct_function(fntree);
2296 else
2297 push_cfun(DECL_STRUCT_FUNCTION(fntree));
2298 tree rettmp = create_tmp_var(rettype, "RESULT");
2299 pop_cfun();
2300
2301 tree field = TYPE_FIELDS(rettype);
2302 for (std::vector<Bexpression*>::const_iterator p = vals.begin();
2303 p != vals.end();
2304 p++, field = DECL_CHAIN(field))
2305 {
2306 gcc_assert(field != NULL_TREE);
2307 tree ref = fold_build3_loc(location.gcc_location(), COMPONENT_REF,
2308 TREE_TYPE(field), rettmp, field,
2309 NULL_TREE);
2310 tree val = (*p)->get_tree();
2311 if (val == error_mark_node)
2312 return this->error_statement();
2313 tree set = fold_build2_loc(location.gcc_location(), MODIFY_EXPR,
2314 void_type_node,
2315 ref, (*p)->get_tree());
2316 append_to_statement_list(set, &stmt_list);
2317 }
2318 gcc_assert(field == NULL_TREE);
2319 tree set = fold_build2_loc(location.gcc_location(), MODIFY_EXPR,
2320 void_type_node,
2321 result, rettmp);
2322 tree ret_expr = fold_build1_loc(location.gcc_location(), RETURN_EXPR,
2323 void_type_node, set);
2324 append_to_statement_list(ret_expr, &stmt_list);
2325 ret = stmt_list;
2326 }
2327 return this->make_statement(ret);
2328 }
2329
2330 // Create a statement that attempts to execute BSTAT and calls EXCEPT_STMT if an
2331 // error occurs. EXCEPT_STMT may be NULL. FINALLY_STMT may be NULL and if not
2332 // NULL, it will always be executed. This is used for handling defers in Go
2333 // functions. In C++, the resulting code is of this form:
2334 // try { BSTAT; } catch { EXCEPT_STMT; } finally { FINALLY_STMT; }
2335
2336 Bstatement*
2337 Gcc_backend::exception_handler_statement(Bstatement* bstat,
2338 Bstatement* except_stmt,
2339 Bstatement* finally_stmt,
2340 Location location)
2341 {
2342 tree stat_tree = bstat->get_tree();
2343 tree except_tree = except_stmt == NULL ? NULL_TREE : except_stmt->get_tree();
2344 tree finally_tree = finally_stmt == NULL
2345 ? NULL_TREE
2346 : finally_stmt->get_tree();
2347
2348 if (stat_tree == error_mark_node
2349 || except_tree == error_mark_node
2350 || finally_tree == error_mark_node)
2351 return this->error_statement();
2352
2353 if (except_tree != NULL_TREE)
2354 stat_tree = build2_loc(location.gcc_location(), TRY_CATCH_EXPR,
2355 void_type_node, stat_tree,
2356 build2_loc(location.gcc_location(), CATCH_EXPR,
2357 void_type_node, NULL, except_tree));
2358 if (finally_tree != NULL_TREE)
2359 stat_tree = build2_loc(location.gcc_location(), TRY_FINALLY_EXPR,
2360 void_type_node, stat_tree, finally_tree);
2361 return this->make_statement(stat_tree);
2362 }
2363
2364 // If.
2365
2366 Bstatement*
2367 Gcc_backend::if_statement(Bfunction*, Bexpression* condition,
2368 Bblock* then_block, Bblock* else_block,
2369 Location location)
2370 {
2371 tree cond_tree = condition->get_tree();
2372 tree then_tree = then_block->get_tree();
2373 tree else_tree = else_block == NULL ? NULL_TREE : else_block->get_tree();
2374 if (cond_tree == error_mark_node
2375 || then_tree == error_mark_node
2376 || else_tree == error_mark_node)
2377 return this->error_statement();
2378 tree ret = build3_loc(location.gcc_location(), COND_EXPR, void_type_node,
2379 cond_tree, then_tree, else_tree);
2380 return this->make_statement(ret);
2381 }
2382
2383 // Switch.
2384
2385 Bstatement*
2386 Gcc_backend::switch_statement(
2387 Bfunction* function,
2388 Bexpression* value,
2389 const std::vector<std::vector<Bexpression*> >& cases,
2390 const std::vector<Bstatement*>& statements,
2391 Location switch_location)
2392 {
2393 gcc_assert(cases.size() == statements.size());
2394
2395 tree decl = function->get_tree();
2396 if (DECL_STRUCT_FUNCTION(decl) == NULL)
2397 push_struct_function(decl);
2398 else
2399 push_cfun(DECL_STRUCT_FUNCTION(decl));
2400
2401 tree stmt_list = NULL_TREE;
2402 std::vector<std::vector<Bexpression*> >::const_iterator pc = cases.begin();
2403 for (std::vector<Bstatement*>::const_iterator ps = statements.begin();
2404 ps != statements.end();
2405 ++ps, ++pc)
2406 {
2407 if (pc->empty())
2408 {
2409 location_t loc = (*ps != NULL
2410 ? EXPR_LOCATION((*ps)->get_tree())
2411 : UNKNOWN_LOCATION);
2412 tree label = create_artificial_label(loc);
2413 tree c = build_case_label(NULL_TREE, NULL_TREE, label);
2414 append_to_statement_list(c, &stmt_list);
2415 }
2416 else
2417 {
2418 for (std::vector<Bexpression*>::const_iterator pcv = pc->begin();
2419 pcv != pc->end();
2420 ++pcv)
2421 {
2422 tree t = (*pcv)->get_tree();
2423 if (t == error_mark_node)
2424 return this->error_statement();
2425 location_t loc = EXPR_LOCATION(t);
2426 tree label = create_artificial_label(loc);
2427 tree c = build_case_label((*pcv)->get_tree(), NULL_TREE, label);
2428 append_to_statement_list(c, &stmt_list);
2429 }
2430 }
2431
2432 if (*ps != NULL)
2433 {
2434 tree t = (*ps)->get_tree();
2435 if (t == error_mark_node)
2436 return this->error_statement();
2437 append_to_statement_list(t, &stmt_list);
2438 }
2439 }
2440 pop_cfun();
2441
2442 tree tv = value->get_tree();
2443 if (tv == error_mark_node)
2444 return this->error_statement();
2445 tree t = build2_loc(switch_location.gcc_location(), SWITCH_EXPR,
2446 NULL_TREE, tv, stmt_list);
2447 return this->make_statement(t);
2448 }
2449
2450 // Pair of statements.
2451
2452 Bstatement*
2453 Gcc_backend::compound_statement(Bstatement* s1, Bstatement* s2)
2454 {
2455 tree stmt_list = NULL_TREE;
2456 tree t = s1->get_tree();
2457 if (t == error_mark_node)
2458 return this->error_statement();
2459 append_to_statement_list(t, &stmt_list);
2460 t = s2->get_tree();
2461 if (t == error_mark_node)
2462 return this->error_statement();
2463 append_to_statement_list(t, &stmt_list);
2464
2465 // If neither statement has any side effects, stmt_list can be NULL
2466 // at this point.
2467 if (stmt_list == NULL_TREE)
2468 stmt_list = integer_zero_node;
2469
2470 return this->make_statement(stmt_list);
2471 }
2472
2473 // List of statements.
2474
2475 Bstatement*
2476 Gcc_backend::statement_list(const std::vector<Bstatement*>& statements)
2477 {
2478 tree stmt_list = NULL_TREE;
2479 for (std::vector<Bstatement*>::const_iterator p = statements.begin();
2480 p != statements.end();
2481 ++p)
2482 {
2483 tree t = (*p)->get_tree();
2484 if (t == error_mark_node)
2485 return this->error_statement();
2486 append_to_statement_list(t, &stmt_list);
2487 }
2488 return this->make_statement(stmt_list);
2489 }
2490
2491 // Make a block. For some reason gcc uses a dual structure for
2492 // blocks: BLOCK tree nodes and BIND_EXPR tree nodes. Since the
2493 // BIND_EXPR node points to the BLOCK node, we store the BIND_EXPR in
2494 // the Bblock.
2495
2496 Bblock*
2497 Gcc_backend::block(Bfunction* function, Bblock* enclosing,
2498 const std::vector<Bvariable*>& vars,
2499 Location start_location,
2500 Location)
2501 {
2502 tree block_tree = make_node(BLOCK);
2503 if (enclosing == NULL)
2504 {
2505 tree fndecl = function->get_tree();
2506 gcc_assert(fndecl != NULL_TREE);
2507
2508 // We may have already created a block for local variables when
2509 // we take the address of a parameter.
2510 if (DECL_INITIAL(fndecl) == NULL_TREE)
2511 {
2512 BLOCK_SUPERCONTEXT(block_tree) = fndecl;
2513 DECL_INITIAL(fndecl) = block_tree;
2514 }
2515 else
2516 {
2517 tree superblock_tree = DECL_INITIAL(fndecl);
2518 BLOCK_SUPERCONTEXT(block_tree) = superblock_tree;
2519 tree* pp;
2520 for (pp = &BLOCK_SUBBLOCKS(superblock_tree);
2521 *pp != NULL_TREE;
2522 pp = &BLOCK_CHAIN(*pp))
2523 ;
2524 *pp = block_tree;
2525 }
2526 }
2527 else
2528 {
2529 tree superbind_tree = enclosing->get_tree();
2530 tree superblock_tree = BIND_EXPR_BLOCK(superbind_tree);
2531 gcc_assert(TREE_CODE(superblock_tree) == BLOCK);
2532
2533 BLOCK_SUPERCONTEXT(block_tree) = superblock_tree;
2534 tree* pp;
2535 for (pp = &BLOCK_SUBBLOCKS(superblock_tree);
2536 *pp != NULL_TREE;
2537 pp = &BLOCK_CHAIN(*pp))
2538 ;
2539 *pp = block_tree;
2540 }
2541
2542 tree* pp = &BLOCK_VARS(block_tree);
2543 for (std::vector<Bvariable*>::const_iterator pv = vars.begin();
2544 pv != vars.end();
2545 ++pv)
2546 {
2547 *pp = (*pv)->get_decl();
2548 if (*pp != error_mark_node)
2549 pp = &DECL_CHAIN(*pp);
2550 }
2551 *pp = NULL_TREE;
2552
2553 TREE_USED(block_tree) = 1;
2554
2555 tree bind_tree = build3_loc(start_location.gcc_location(), BIND_EXPR,
2556 void_type_node, BLOCK_VARS(block_tree),
2557 NULL_TREE, block_tree);
2558 TREE_SIDE_EFFECTS(bind_tree) = 1;
2559 return new Bblock(bind_tree);
2560 }
2561
2562 // Add statements to a block.
2563
2564 void
2565 Gcc_backend::block_add_statements(Bblock* bblock,
2566 const std::vector<Bstatement*>& statements)
2567 {
2568 tree stmt_list = NULL_TREE;
2569 for (std::vector<Bstatement*>::const_iterator p = statements.begin();
2570 p != statements.end();
2571 ++p)
2572 {
2573 tree s = (*p)->get_tree();
2574 if (s != error_mark_node)
2575 append_to_statement_list(s, &stmt_list);
2576 }
2577
2578 tree bind_tree = bblock->get_tree();
2579 gcc_assert(TREE_CODE(bind_tree) == BIND_EXPR);
2580 BIND_EXPR_BODY(bind_tree) = stmt_list;
2581 }
2582
2583 // Return a block as a statement.
2584
2585 Bstatement*
2586 Gcc_backend::block_statement(Bblock* bblock)
2587 {
2588 tree bind_tree = bblock->get_tree();
2589 gcc_assert(TREE_CODE(bind_tree) == BIND_EXPR);
2590 return this->make_statement(bind_tree);
2591 }
2592
2593 // This is not static because we declare it with GTY(()) in go-c.h.
2594 tree go_non_zero_struct;
2595
2596 // Return a type corresponding to TYPE with non-zero size.
2597
2598 tree
2599 Gcc_backend::non_zero_size_type(tree type)
2600 {
2601 if (int_size_in_bytes(type) != 0)
2602 return type;
2603
2604 switch (TREE_CODE(type))
2605 {
2606 case RECORD_TYPE:
2607 if (TYPE_FIELDS(type) != NULL_TREE)
2608 {
2609 tree ns = make_node(RECORD_TYPE);
2610 tree field_trees = NULL_TREE;
2611 tree *pp = &field_trees;
2612 for (tree field = TYPE_FIELDS(type);
2613 field != NULL_TREE;
2614 field = DECL_CHAIN(field))
2615 {
2616 tree ft = TREE_TYPE(field);
2617 if (field == TYPE_FIELDS(type))
2618 ft = non_zero_size_type(ft);
2619 tree f = build_decl(DECL_SOURCE_LOCATION(field), FIELD_DECL,
2620 DECL_NAME(field), ft);
2621 DECL_CONTEXT(f) = ns;
2622 *pp = f;
2623 pp = &DECL_CHAIN(f);
2624 }
2625 TYPE_FIELDS(ns) = field_trees;
2626 layout_type(ns);
2627 return ns;
2628 }
2629
2630 if (go_non_zero_struct == NULL_TREE)
2631 {
2632 type = make_node(RECORD_TYPE);
2633 tree field = build_decl(UNKNOWN_LOCATION, FIELD_DECL,
2634 get_identifier("dummy"),
2635 boolean_type_node);
2636 DECL_CONTEXT(field) = type;
2637 TYPE_FIELDS(type) = field;
2638 layout_type(type);
2639 go_non_zero_struct = type;
2640 }
2641 return go_non_zero_struct;
2642
2643 case ARRAY_TYPE:
2644 {
2645 tree element_type = non_zero_size_type(TREE_TYPE(type));
2646 return build_array_type_nelts(element_type, 1);
2647 }
2648
2649 default:
2650 gcc_unreachable();
2651 }
2652
2653 gcc_unreachable();
2654 }
2655
2656 // Convert EXPR_TREE to TYPE_TREE. Sometimes the same unnamed Go type
2657 // can be created multiple times and thus have multiple tree
2658 // representations. Make sure this does not confuse the middle-end.
2659
2660 tree
2661 Gcc_backend::convert_tree(tree type_tree, tree expr_tree, Location location)
2662 {
2663 if (type_tree == TREE_TYPE(expr_tree))
2664 return expr_tree;
2665
2666 if (type_tree == error_mark_node
2667 || expr_tree == error_mark_node
2668 || TREE_TYPE(expr_tree) == error_mark_node)
2669 return error_mark_node;
2670
2671 gcc_assert(TREE_CODE(type_tree) == TREE_CODE(TREE_TYPE(expr_tree)));
2672 if (POINTER_TYPE_P(type_tree)
2673 || INTEGRAL_TYPE_P(type_tree)
2674 || SCALAR_FLOAT_TYPE_P(type_tree)
2675 || COMPLEX_FLOAT_TYPE_P(type_tree))
2676 return fold_convert_loc(location.gcc_location(), type_tree, expr_tree);
2677 else if (TREE_CODE(type_tree) == RECORD_TYPE
2678 || TREE_CODE(type_tree) == ARRAY_TYPE)
2679 {
2680 gcc_assert(int_size_in_bytes(type_tree)
2681 == int_size_in_bytes(TREE_TYPE(expr_tree)));
2682 if (TYPE_MAIN_VARIANT(type_tree)
2683 == TYPE_MAIN_VARIANT(TREE_TYPE(expr_tree)))
2684 return fold_build1_loc(location.gcc_location(), NOP_EXPR,
2685 type_tree, expr_tree);
2686 return fold_build1_loc(location.gcc_location(), VIEW_CONVERT_EXPR,
2687 type_tree, expr_tree);
2688 }
2689
2690 gcc_unreachable();
2691 }
2692
2693 // Make a global variable.
2694
2695 Bvariable*
2696 Gcc_backend::global_variable(const std::string& var_name,
2697 const std::string& asm_name,
2698 Btype* btype,
2699 bool is_external,
2700 bool is_hidden,
2701 bool in_unique_section,
2702 Location location)
2703 {
2704 tree type_tree = btype->get_tree();
2705 if (type_tree == error_mark_node)
2706 return this->error_variable();
2707
2708 // The GNU linker does not like dynamic variables with zero size.
2709 tree orig_type_tree = type_tree;
2710 if ((is_external || !is_hidden) && int_size_in_bytes(type_tree) == 0)
2711 type_tree = this->non_zero_size_type(type_tree);
2712
2713 tree decl = build_decl(location.gcc_location(), VAR_DECL,
2714 get_identifier_from_string(var_name),
2715 type_tree);
2716 if (is_external)
2717 DECL_EXTERNAL(decl) = 1;
2718 else
2719 TREE_STATIC(decl) = 1;
2720 if (!is_hidden)
2721 {
2722 TREE_PUBLIC(decl) = 1;
2723 SET_DECL_ASSEMBLER_NAME(decl, get_identifier_from_string(asm_name));
2724 }
2725 else
2726 {
2727 SET_DECL_ASSEMBLER_NAME(decl, get_identifier_from_string(asm_name));
2728 }
2729
2730 TREE_USED(decl) = 1;
2731
2732 if (in_unique_section)
2733 resolve_unique_section (decl, 0, 1);
2734
2735 go_preserve_from_gc(decl);
2736
2737 return new Bvariable(decl, orig_type_tree);
2738 }
2739
2740 // Set the initial value of a global variable.
2741
2742 void
2743 Gcc_backend::global_variable_set_init(Bvariable* var, Bexpression* expr)
2744 {
2745 tree expr_tree = expr->get_tree();
2746 if (expr_tree == error_mark_node)
2747 return;
2748 gcc_assert(TREE_CONSTANT(expr_tree));
2749 tree var_decl = var->get_decl();
2750 if (var_decl == error_mark_node)
2751 return;
2752 DECL_INITIAL(var_decl) = expr_tree;
2753
2754 // If this variable goes in a unique section, it may need to go into
2755 // a different one now that DECL_INITIAL is set.
2756 if (symtab_node::get(var_decl)
2757 && symtab_node::get(var_decl)->implicit_section)
2758 {
2759 set_decl_section_name (var_decl, NULL);
2760 resolve_unique_section (var_decl,
2761 compute_reloc_for_constant (expr_tree),
2762 1);
2763 }
2764 }
2765
2766 // Make a local variable.
2767
2768 Bvariable*
2769 Gcc_backend::local_variable(Bfunction* function, const std::string& name,
2770 Btype* btype, Bvariable* decl_var,
2771 bool is_address_taken, Location location)
2772 {
2773 tree type_tree = btype->get_tree();
2774 if (type_tree == error_mark_node)
2775 return this->error_variable();
2776 tree decl = build_decl(location.gcc_location(), VAR_DECL,
2777 get_identifier_from_string(name),
2778 type_tree);
2779 DECL_CONTEXT(decl) = function->get_tree();
2780 TREE_USED(decl) = 1;
2781 if (is_address_taken)
2782 TREE_ADDRESSABLE(decl) = 1;
2783 if (decl_var != NULL)
2784 {
2785 DECL_HAS_VALUE_EXPR_P(decl) = 1;
2786 SET_DECL_VALUE_EXPR(decl, decl_var->get_decl());
2787 }
2788 go_preserve_from_gc(decl);
2789 return new Bvariable(decl);
2790 }
2791
2792 // Make a function parameter variable.
2793
2794 Bvariable*
2795 Gcc_backend::parameter_variable(Bfunction* function, const std::string& name,
2796 Btype* btype, bool is_address_taken,
2797 Location location)
2798 {
2799 tree type_tree = btype->get_tree();
2800 if (type_tree == error_mark_node)
2801 return this->error_variable();
2802 tree decl = build_decl(location.gcc_location(), PARM_DECL,
2803 get_identifier_from_string(name),
2804 type_tree);
2805 DECL_CONTEXT(decl) = function->get_tree();
2806 DECL_ARG_TYPE(decl) = type_tree;
2807 TREE_USED(decl) = 1;
2808 if (is_address_taken)
2809 TREE_ADDRESSABLE(decl) = 1;
2810 go_preserve_from_gc(decl);
2811 return new Bvariable(decl);
2812 }
2813
2814 // Make a static chain variable.
2815
2816 Bvariable*
2817 Gcc_backend::static_chain_variable(Bfunction* function, const std::string& name,
2818 Btype* btype, Location location)
2819 {
2820 tree type_tree = btype->get_tree();
2821 if (type_tree == error_mark_node)
2822 return this->error_variable();
2823 tree decl = build_decl(location.gcc_location(), PARM_DECL,
2824 get_identifier_from_string(name), type_tree);
2825 tree fndecl = function->get_tree();
2826 DECL_CONTEXT(decl) = fndecl;
2827 DECL_ARG_TYPE(decl) = type_tree;
2828 TREE_USED(decl) = 1;
2829 DECL_ARTIFICIAL(decl) = 1;
2830 DECL_IGNORED_P(decl) = 1;
2831 TREE_READONLY(decl) = 1;
2832
2833 struct function *f = DECL_STRUCT_FUNCTION(fndecl);
2834 if (f == NULL)
2835 {
2836 push_struct_function(fndecl);
2837 pop_cfun();
2838 f = DECL_STRUCT_FUNCTION(fndecl);
2839 }
2840 gcc_assert(f->static_chain_decl == NULL);
2841 f->static_chain_decl = decl;
2842 DECL_STATIC_CHAIN(fndecl) = 1;
2843
2844 go_preserve_from_gc(decl);
2845 return new Bvariable(decl);
2846 }
2847
2848 // Make a temporary variable.
2849
2850 Bvariable*
2851 Gcc_backend::temporary_variable(Bfunction* function, Bblock* bblock,
2852 Btype* btype, Bexpression* binit,
2853 bool is_address_taken,
2854 Location location,
2855 Bstatement** pstatement)
2856 {
2857 gcc_assert(function != NULL);
2858 tree decl = function->get_tree();
2859 tree type_tree = btype->get_tree();
2860 tree init_tree = binit == NULL ? NULL_TREE : binit->get_tree();
2861 if (type_tree == error_mark_node
2862 || init_tree == error_mark_node
2863 || decl == error_mark_node)
2864 {
2865 *pstatement = this->error_statement();
2866 return this->error_variable();
2867 }
2868
2869 tree var;
2870 // We can only use create_tmp_var if the type is not addressable.
2871 if (!TREE_ADDRESSABLE(type_tree))
2872 {
2873 if (DECL_STRUCT_FUNCTION(decl) == NULL)
2874 push_struct_function(decl);
2875 else
2876 push_cfun(DECL_STRUCT_FUNCTION(decl));
2877
2878 var = create_tmp_var(type_tree, "GOTMP");
2879 pop_cfun();
2880 }
2881 else
2882 {
2883 gcc_assert(bblock != NULL);
2884 var = build_decl(location.gcc_location(), VAR_DECL,
2885 create_tmp_var_name("GOTMP"),
2886 type_tree);
2887 DECL_ARTIFICIAL(var) = 1;
2888 DECL_IGNORED_P(var) = 1;
2889 TREE_USED(var) = 1;
2890 DECL_CONTEXT(var) = decl;
2891
2892 // We have to add this variable to the BLOCK and the BIND_EXPR.
2893 tree bind_tree = bblock->get_tree();
2894 gcc_assert(TREE_CODE(bind_tree) == BIND_EXPR);
2895 tree block_tree = BIND_EXPR_BLOCK(bind_tree);
2896 gcc_assert(TREE_CODE(block_tree) == BLOCK);
2897 DECL_CHAIN(var) = BLOCK_VARS(block_tree);
2898 BLOCK_VARS(block_tree) = var;
2899 BIND_EXPR_VARS(bind_tree) = BLOCK_VARS(block_tree);
2900 }
2901
2902 if (this->type_size(btype) != 0
2903 && init_tree != NULL_TREE
2904 && TREE_TYPE(init_tree) != void_type_node)
2905 DECL_INITIAL(var) = this->convert_tree(type_tree, init_tree, location);
2906
2907 if (is_address_taken)
2908 TREE_ADDRESSABLE(var) = 1;
2909
2910 *pstatement = this->make_statement(build1_loc(location.gcc_location(),
2911 DECL_EXPR,
2912 void_type_node, var));
2913
2914 // For a zero sized type, don't initialize VAR with BINIT, but still
2915 // evaluate BINIT for its side effects.
2916 if (init_tree != NULL_TREE
2917 && (this->type_size(btype) == 0
2918 || TREE_TYPE(init_tree) == void_type_node))
2919 *pstatement =
2920 this->compound_statement(this->expression_statement(function, binit),
2921 *pstatement);
2922
2923 return new Bvariable(var);
2924 }
2925
2926 // Create an implicit variable that is compiler-defined. This is used when
2927 // generating GC root variables and storing the values of a slice initializer.
2928
2929 Bvariable*
2930 Gcc_backend::implicit_variable(const std::string& name,
2931 const std::string& asm_name,
2932 Btype* type, bool is_hidden, bool is_constant,
2933 bool is_common, int64_t alignment)
2934 {
2935 tree type_tree = type->get_tree();
2936 if (type_tree == error_mark_node)
2937 return this->error_variable();
2938
2939 tree decl = build_decl(BUILTINS_LOCATION, VAR_DECL,
2940 get_identifier_from_string(name), type_tree);
2941 DECL_EXTERNAL(decl) = 0;
2942 TREE_PUBLIC(decl) = !is_hidden;
2943 TREE_STATIC(decl) = 1;
2944 TREE_USED(decl) = 1;
2945 DECL_ARTIFICIAL(decl) = 1;
2946 if (is_common)
2947 {
2948 DECL_COMMON(decl) = 1;
2949
2950 // When the initializer for one implicit_variable refers to another,
2951 // it needs to know the visibility of the referenced struct so that
2952 // compute_reloc_for_constant will return the right value. On many
2953 // systems calling make_decl_one_only will mark the decl as weak,
2954 // which will change the return value of compute_reloc_for_constant.
2955 // We can't reliably call make_decl_one_only yet, because we don't
2956 // yet know the initializer. This issue doesn't arise in C because
2957 // Go initializers, unlike C initializers, can be indirectly
2958 // recursive. To ensure that compute_reloc_for_constant computes
2959 // the right value if some other initializer refers to this one, we
2960 // mark this symbol as weak here. We undo that below in
2961 // immutable_struct_set_init before calling mark_decl_one_only.
2962 DECL_WEAK(decl) = 1;
2963 }
2964 if (is_constant)
2965 {
2966 TREE_READONLY(decl) = 1;
2967 TREE_CONSTANT(decl) = 1;
2968 }
2969 if (alignment != 0)
2970 {
2971 SET_DECL_ALIGN(decl, alignment * BITS_PER_UNIT);
2972 DECL_USER_ALIGN(decl) = 1;
2973 }
2974 if (! asm_name.empty())
2975 SET_DECL_ASSEMBLER_NAME(decl, get_identifier_from_string(asm_name));
2976
2977 go_preserve_from_gc(decl);
2978 return new Bvariable(decl);
2979 }
2980
2981 // Set the initalizer for a variable created by implicit_variable.
2982 // This is where we finish compiling the variable.
2983
2984 void
2985 Gcc_backend::implicit_variable_set_init(Bvariable* var, const std::string&,
2986 Btype*, bool, bool, bool is_common,
2987 Bexpression* init)
2988 {
2989 tree decl = var->get_decl();
2990 tree init_tree;
2991 if (init == NULL)
2992 init_tree = NULL_TREE;
2993 else
2994 init_tree = init->get_tree();
2995 if (decl == error_mark_node || init_tree == error_mark_node)
2996 return;
2997
2998 DECL_INITIAL(decl) = init_tree;
2999
3000 // Now that DECL_INITIAL is set, we can't call make_decl_one_only.
3001 // See the comment where DECL_WEAK is set in implicit_variable.
3002 if (is_common)
3003 {
3004 DECL_WEAK(decl) = 0;
3005 make_decl_one_only(decl, DECL_ASSEMBLER_NAME(decl));
3006 }
3007
3008 resolve_unique_section(decl, 2, 1);
3009
3010 rest_of_decl_compilation(decl, 1, 0);
3011 }
3012
3013 // Return a reference to an implicit variable defined in another package.
3014
3015 Bvariable*
3016 Gcc_backend::implicit_variable_reference(const std::string& name,
3017 const std::string& asm_name,
3018 Btype* btype)
3019 {
3020 tree type_tree = btype->get_tree();
3021 if (type_tree == error_mark_node)
3022 return this->error_variable();
3023
3024 tree decl = build_decl(BUILTINS_LOCATION, VAR_DECL,
3025 get_identifier_from_string(name), type_tree);
3026 DECL_EXTERNAL(decl) = 1;
3027 TREE_PUBLIC(decl) = 1;
3028 TREE_STATIC(decl) = 0;
3029 DECL_ARTIFICIAL(decl) = 1;
3030 if (! asm_name.empty())
3031 SET_DECL_ASSEMBLER_NAME(decl, get_identifier_from_string(asm_name));
3032 go_preserve_from_gc(decl);
3033 return new Bvariable(decl);
3034 }
3035
3036 // Create a named immutable initialized data structure.
3037
3038 Bvariable*
3039 Gcc_backend::immutable_struct(const std::string& name,
3040 const std::string& asm_name,
3041 bool is_hidden,
3042 bool is_common, Btype* btype, Location location)
3043 {
3044 tree type_tree = btype->get_tree();
3045 if (type_tree == error_mark_node)
3046 return this->error_variable();
3047 gcc_assert(TREE_CODE(type_tree) == RECORD_TYPE);
3048 tree decl = build_decl(location.gcc_location(), VAR_DECL,
3049 get_identifier_from_string(name),
3050 build_qualified_type(type_tree, TYPE_QUAL_CONST));
3051 TREE_STATIC(decl) = 1;
3052 TREE_USED(decl) = 1;
3053 TREE_READONLY(decl) = 1;
3054 TREE_CONSTANT(decl) = 1;
3055 DECL_ARTIFICIAL(decl) = 1;
3056 if (!is_hidden)
3057 TREE_PUBLIC(decl) = 1;
3058 if (! asm_name.empty())
3059 SET_DECL_ASSEMBLER_NAME(decl, get_identifier_from_string(asm_name));
3060
3061 // When the initializer for one immutable_struct refers to another,
3062 // it needs to know the visibility of the referenced struct so that
3063 // compute_reloc_for_constant will return the right value. On many
3064 // systems calling make_decl_one_only will mark the decl as weak,
3065 // which will change the return value of compute_reloc_for_constant.
3066 // We can't reliably call make_decl_one_only yet, because we don't
3067 // yet know the initializer. This issue doesn't arise in C because
3068 // Go initializers, unlike C initializers, can be indirectly
3069 // recursive. To ensure that compute_reloc_for_constant computes
3070 // the right value if some other initializer refers to this one, we
3071 // mark this symbol as weak here. We undo that below in
3072 // immutable_struct_set_init before calling mark_decl_one_only.
3073 if (is_common)
3074 DECL_WEAK(decl) = 1;
3075
3076 // We don't call rest_of_decl_compilation until we have the
3077 // initializer.
3078
3079 go_preserve_from_gc(decl);
3080 return new Bvariable(decl);
3081 }
3082
3083 // Set the initializer for a variable created by immutable_struct.
3084 // This is where we finish compiling the variable.
3085
3086 void
3087 Gcc_backend::immutable_struct_set_init(Bvariable* var, const std::string&,
3088 bool, bool is_common, Btype*, Location,
3089 Bexpression* initializer)
3090 {
3091 tree decl = var->get_decl();
3092 tree init_tree = initializer->get_tree();
3093 if (decl == error_mark_node || init_tree == error_mark_node)
3094 return;
3095
3096 DECL_INITIAL(decl) = init_tree;
3097
3098 // Now that DECL_INITIAL is set, we can't call make_decl_one_only.
3099 // See the comment where DECL_WEAK is set in immutable_struct.
3100 if (is_common)
3101 {
3102 DECL_WEAK(decl) = 0;
3103 make_decl_one_only(decl, DECL_ASSEMBLER_NAME(decl));
3104 }
3105
3106 // These variables are often unneeded in the final program, so put
3107 // them in their own section so that linker GC can discard them.
3108 resolve_unique_section(decl,
3109 compute_reloc_for_constant (init_tree),
3110 1);
3111
3112 rest_of_decl_compilation(decl, 1, 0);
3113 }
3114
3115 // Return a reference to an immutable initialized data structure
3116 // defined in another package.
3117
3118 Bvariable*
3119 Gcc_backend::immutable_struct_reference(const std::string& name,
3120 const std::string& asm_name,
3121 Btype* btype,
3122 Location location)
3123 {
3124 tree type_tree = btype->get_tree();
3125 if (type_tree == error_mark_node)
3126 return this->error_variable();
3127 gcc_assert(TREE_CODE(type_tree) == RECORD_TYPE);
3128 tree decl = build_decl(location.gcc_location(), VAR_DECL,
3129 get_identifier_from_string(name),
3130 build_qualified_type(type_tree, TYPE_QUAL_CONST));
3131 TREE_READONLY(decl) = 1;
3132 TREE_CONSTANT(decl) = 1;
3133 DECL_ARTIFICIAL(decl) = 1;
3134 TREE_PUBLIC(decl) = 1;
3135 DECL_EXTERNAL(decl) = 1;
3136 if (! asm_name.empty())
3137 SET_DECL_ASSEMBLER_NAME(decl, get_identifier_from_string(asm_name));
3138 go_preserve_from_gc(decl);
3139 return new Bvariable(decl);
3140 }
3141
3142 // Make a label.
3143
3144 Blabel*
3145 Gcc_backend::label(Bfunction* function, const std::string& name,
3146 Location location)
3147 {
3148 tree decl;
3149 if (name.empty())
3150 {
3151 tree func_tree = function->get_tree();
3152 if (DECL_STRUCT_FUNCTION(func_tree) == NULL)
3153 push_struct_function(func_tree);
3154 else
3155 push_cfun(DECL_STRUCT_FUNCTION(func_tree));
3156
3157 decl = create_artificial_label(location.gcc_location());
3158
3159 pop_cfun();
3160 }
3161 else
3162 {
3163 tree id = get_identifier_from_string(name);
3164 decl = build_decl(location.gcc_location(), LABEL_DECL, id,
3165 void_type_node);
3166 DECL_CONTEXT(decl) = function->get_tree();
3167 }
3168 return new Blabel(decl);
3169 }
3170
3171 // Make a statement which defines a label.
3172
3173 Bstatement*
3174 Gcc_backend::label_definition_statement(Blabel* label)
3175 {
3176 tree lab = label->get_tree();
3177 tree ret = fold_build1_loc(DECL_SOURCE_LOCATION(lab), LABEL_EXPR,
3178 void_type_node, lab);
3179 return this->make_statement(ret);
3180 }
3181
3182 // Make a goto statement.
3183
3184 Bstatement*
3185 Gcc_backend::goto_statement(Blabel* label, Location location)
3186 {
3187 tree lab = label->get_tree();
3188 tree ret = fold_build1_loc(location.gcc_location(), GOTO_EXPR, void_type_node,
3189 lab);
3190 return this->make_statement(ret);
3191 }
3192
3193 // Get the address of a label.
3194
3195 Bexpression*
3196 Gcc_backend::label_address(Blabel* label, Location location)
3197 {
3198 tree lab = label->get_tree();
3199 TREE_USED(lab) = 1;
3200 TREE_ADDRESSABLE(lab) = 1;
3201 tree ret = fold_convert_loc(location.gcc_location(), ptr_type_node,
3202 build_fold_addr_expr_loc(location.gcc_location(),
3203 lab));
3204 return this->make_expression(ret);
3205 }
3206
3207 // Declare or define a new function.
3208
3209 Bfunction*
3210 Gcc_backend::function(Btype* fntype, const std::string& name,
3211 const std::string& asm_name, unsigned int flags,
3212 Location location)
3213 {
3214 tree functype = fntype->get_tree();
3215 if (functype != error_mark_node)
3216 {
3217 gcc_assert(FUNCTION_POINTER_TYPE_P(functype));
3218 functype = TREE_TYPE(functype);
3219 }
3220 tree id = get_identifier_from_string(name);
3221 if (functype == error_mark_node || id == error_mark_node)
3222 return this->error_function();
3223
3224 tree decl = build_decl(location.gcc_location(), FUNCTION_DECL, id, functype);
3225 if (! asm_name.empty())
3226 SET_DECL_ASSEMBLER_NAME(decl, get_identifier_from_string(asm_name));
3227 if ((flags & function_is_visible) != 0)
3228 TREE_PUBLIC(decl) = 1;
3229 if ((flags & function_is_declaration) != 0)
3230 DECL_EXTERNAL(decl) = 1;
3231 else
3232 {
3233 tree restype = TREE_TYPE(functype);
3234 tree resdecl =
3235 build_decl(location.gcc_location(), RESULT_DECL, NULL_TREE, restype);
3236 DECL_ARTIFICIAL(resdecl) = 1;
3237 DECL_IGNORED_P(resdecl) = 1;
3238 DECL_CONTEXT(resdecl) = decl;
3239 DECL_RESULT(decl) = resdecl;
3240 }
3241 if ((flags & function_is_inlinable) == 0)
3242 DECL_UNINLINABLE(decl) = 1;
3243 if ((flags & function_no_split_stack) != 0)
3244 {
3245 tree attr = get_identifier ("no_split_stack");
3246 DECL_ATTRIBUTES(decl) = tree_cons(attr, NULL_TREE, NULL_TREE);
3247 }
3248 if ((flags & function_does_not_return) != 0)
3249 TREE_THIS_VOLATILE(decl) = 1;
3250 if ((flags & function_in_unique_section) != 0)
3251 resolve_unique_section(decl, 0, 1);
3252 if ((flags & function_only_inline) != 0)
3253 {
3254 TREE_PUBLIC (decl) = 1;
3255 DECL_EXTERNAL(decl) = 1;
3256 DECL_DECLARED_INLINE_P(decl) = 1;
3257 }
3258
3259 // Optimize thunk functions for size. A thunk created for a defer
3260 // statement that may call recover looks like:
3261 // if runtime.setdeferretaddr(L1) {
3262 // goto L1
3263 // }
3264 // realfn()
3265 // L1:
3266 // The idea is that L1 should be the address to which realfn
3267 // returns. This only works if this little function is not over
3268 // optimized. At some point GCC started duplicating the epilogue in
3269 // the basic-block reordering pass, breaking this assumption.
3270 // Optimizing the function for size avoids duplicating the epilogue.
3271 // This optimization shouldn't matter for any thunk since all thunks
3272 // are small.
3273 size_t pos = name.find("..thunk");
3274 if (pos != std::string::npos)
3275 {
3276 for (pos += 7; pos < name.length(); ++pos)
3277 {
3278 if (name[pos] < '0' || name[pos] > '9')
3279 break;
3280 }
3281 if (pos == name.length())
3282 {
3283 struct cl_optimization cur_opts;
3284 cl_optimization_save(&cur_opts, &global_options,
3285 &global_options_set);
3286 global_options.x_optimize_size = 1;
3287 global_options.x_optimize_fast = 0;
3288 global_options.x_optimize_debug = 0;
3289 DECL_FUNCTION_SPECIFIC_OPTIMIZATION(decl) =
3290 build_optimization_node(&global_options, &global_options_set);
3291 cl_optimization_restore(&global_options, &global_options_set,
3292 &cur_opts);
3293 }
3294 }
3295
3296 go_preserve_from_gc(decl);
3297 return new Bfunction(decl);
3298 }
3299
3300 // Create a statement that runs all deferred calls for FUNCTION. This should
3301 // be a statement that looks like this in C++:
3302 // finish:
3303 // try { UNDEFER; } catch { CHECK_DEFER; goto finish; }
3304
3305 Bstatement*
3306 Gcc_backend::function_defer_statement(Bfunction* function, Bexpression* undefer,
3307 Bexpression* defer, Location location)
3308 {
3309 tree undefer_tree = undefer->get_tree();
3310 tree defer_tree = defer->get_tree();
3311 tree fntree = function->get_tree();
3312
3313 if (undefer_tree == error_mark_node
3314 || defer_tree == error_mark_node
3315 || fntree == error_mark_node)
3316 return this->error_statement();
3317
3318 if (DECL_STRUCT_FUNCTION(fntree) == NULL)
3319 push_struct_function(fntree);
3320 else
3321 push_cfun(DECL_STRUCT_FUNCTION(fntree));
3322
3323 tree stmt_list = NULL;
3324 Blabel* blabel = this->label(function, "", location);
3325 Bstatement* label_def = this->label_definition_statement(blabel);
3326 append_to_statement_list(label_def->get_tree(), &stmt_list);
3327
3328 Bstatement* jump_stmt = this->goto_statement(blabel, location);
3329 tree jump = jump_stmt->get_tree();
3330 tree catch_body = build2(COMPOUND_EXPR, void_type_node, defer_tree, jump);
3331 catch_body = build2(CATCH_EXPR, void_type_node, NULL, catch_body);
3332 tree try_catch =
3333 build2(TRY_CATCH_EXPR, void_type_node, undefer_tree, catch_body);
3334 append_to_statement_list(try_catch, &stmt_list);
3335 pop_cfun();
3336
3337 return this->make_statement(stmt_list);
3338 }
3339
3340 // Record PARAM_VARS as the variables to use for the parameters of FUNCTION.
3341 // This will only be called for a function definition.
3342
3343 bool
3344 Gcc_backend::function_set_parameters(Bfunction* function,
3345 const std::vector<Bvariable*>& param_vars)
3346 {
3347 tree func_tree = function->get_tree();
3348 if (func_tree == error_mark_node)
3349 return false;
3350
3351 tree params = NULL_TREE;
3352 tree *pp = &params;
3353 for (std::vector<Bvariable*>::const_iterator pv = param_vars.begin();
3354 pv != param_vars.end();
3355 ++pv)
3356 {
3357 *pp = (*pv)->get_decl();
3358 gcc_assert(*pp != error_mark_node);
3359 pp = &DECL_CHAIN(*pp);
3360 }
3361 *pp = NULL_TREE;
3362 DECL_ARGUMENTS(func_tree) = params;
3363 return true;
3364 }
3365
3366 // Set the function body for FUNCTION using the code in CODE_BLOCK.
3367
3368 bool
3369 Gcc_backend::function_set_body(Bfunction* function, Bstatement* code_stmt)
3370 {
3371 tree func_tree = function->get_tree();
3372 tree code = code_stmt->get_tree();
3373
3374 if (func_tree == error_mark_node || code == error_mark_node)
3375 return false;
3376 DECL_SAVED_TREE(func_tree) = code;
3377 return true;
3378 }
3379
3380 // Look up a named built-in function in the current backend implementation.
3381 // Returns NULL if no built-in function by that name exists.
3382
3383 Bfunction*
3384 Gcc_backend::lookup_builtin(const std::string& name)
3385 {
3386 if (this->builtin_functions_.count(name) != 0)
3387 return this->builtin_functions_[name];
3388 return NULL;
3389 }
3390
3391 // Write the definitions for all TYPE_DECLS, CONSTANT_DECLS,
3392 // FUNCTION_DECLS, and VARIABLE_DECLS declared globally, as well as
3393 // emit early debugging information.
3394
3395 void
3396 Gcc_backend::write_global_definitions(
3397 const std::vector<Btype*>& type_decls,
3398 const std::vector<Bexpression*>& constant_decls,
3399 const std::vector<Bfunction*>& function_decls,
3400 const std::vector<Bvariable*>& variable_decls)
3401 {
3402 size_t count_definitions = type_decls.size() + constant_decls.size()
3403 + function_decls.size() + variable_decls.size();
3404
3405 tree* defs = new tree[count_definitions];
3406
3407 // Convert all non-erroneous declarations into Gimple form.
3408 size_t i = 0;
3409 for (std::vector<Bvariable*>::const_iterator p = variable_decls.begin();
3410 p != variable_decls.end();
3411 ++p)
3412 {
3413 tree v = (*p)->get_decl();
3414 if (v != error_mark_node)
3415 {
3416 defs[i] = v;
3417 go_preserve_from_gc(defs[i]);
3418 ++i;
3419 }
3420 }
3421
3422 for (std::vector<Btype*>::const_iterator p = type_decls.begin();
3423 p != type_decls.end();
3424 ++p)
3425 {
3426 tree type_tree = (*p)->get_tree();
3427 if (type_tree != error_mark_node
3428 && IS_TYPE_OR_DECL_P(type_tree))
3429 {
3430 defs[i] = TYPE_NAME(type_tree);
3431 gcc_assert(defs[i] != NULL);
3432 go_preserve_from_gc(defs[i]);
3433 ++i;
3434 }
3435 }
3436 for (std::vector<Bexpression*>::const_iterator p = constant_decls.begin();
3437 p != constant_decls.end();
3438 ++p)
3439 {
3440 if ((*p)->get_tree() != error_mark_node)
3441 {
3442 defs[i] = (*p)->get_tree();
3443 go_preserve_from_gc(defs[i]);
3444 ++i;
3445 }
3446 }
3447 for (std::vector<Bfunction*>::const_iterator p = function_decls.begin();
3448 p != function_decls.end();
3449 ++p)
3450 {
3451 tree decl = (*p)->get_tree();
3452 if (decl != error_mark_node)
3453 {
3454 go_preserve_from_gc(decl);
3455 if (DECL_STRUCT_FUNCTION(decl) == NULL)
3456 allocate_struct_function(decl, false);
3457 cgraph_node::finalize_function(decl, true);
3458
3459 defs[i] = decl;
3460 ++i;
3461 }
3462 }
3463
3464 // Pass everything back to the middle-end.
3465
3466 wrapup_global_declarations(defs, i);
3467
3468 delete[] defs;
3469 }
3470
3471 void
3472 Gcc_backend::write_export_data(const char* bytes, unsigned int size)
3473 {
3474 go_write_export_data(bytes, size);
3475 }
3476
3477
3478 // Define a builtin function. BCODE is the builtin function code
3479 // defined by builtins.def. NAME is the name of the builtin function.
3480 // LIBNAME is the name of the corresponding library function, and is
3481 // NULL if there isn't one. FNTYPE is the type of the function.
3482 // CONST_P is true if the function has the const attribute.
3483 // NORETURN_P is true if the function has the noreturn attribute.
3484
3485 void
3486 Gcc_backend::define_builtin(built_in_function bcode, const char* name,
3487 const char* libname, tree fntype, int flags)
3488 {
3489 tree decl = add_builtin_function(name, fntype, bcode, BUILT_IN_NORMAL,
3490 libname, NULL_TREE);
3491 if ((flags & builtin_const) != 0)
3492 TREE_READONLY(decl) = 1;
3493 if ((flags & builtin_noreturn) != 0)
3494 TREE_THIS_VOLATILE(decl) = 1;
3495 if ((flags & builtin_novops) != 0)
3496 DECL_IS_NOVOPS(decl) = 1;
3497 set_builtin_decl(bcode, decl, true);
3498 this->builtin_functions_[name] = this->make_function(decl);
3499 if (libname != NULL)
3500 {
3501 decl = add_builtin_function(libname, fntype, bcode, BUILT_IN_NORMAL,
3502 NULL, NULL_TREE);
3503 if ((flags & builtin_const) != 0)
3504 TREE_READONLY(decl) = 1;
3505 if ((flags & builtin_noreturn) != 0)
3506 TREE_THIS_VOLATILE(decl) = 1;
3507 if ((flags & builtin_novops) != 0)
3508 DECL_IS_NOVOPS(decl) = 1;
3509 this->builtin_functions_[libname] = this->make_function(decl);
3510 }
3511 }
3512
3513 // Return the backend generator.
3514
3515 Backend*
3516 go_get_backend()
3517 {
3518 return new Gcc_backend();
3519 }