]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/graphite-interchange.c
tree-ssa.h: Remove all #include's
[thirdparty/gcc.git] / gcc / graphite-interchange.c
1 /* Interchange heuristics and transform for loop interchange on
2 polyhedral representation.
3
4 Copyright (C) 2009-2013 Free Software Foundation, Inc.
5 Contributed by Sebastian Pop <sebastian.pop@amd.com> and
6 Harsha Jagasia <harsha.jagasia@amd.com>.
7
8 This file is part of GCC.
9
10 GCC is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 3, or (at your option)
13 any later version.
14
15 GCC is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with GCC; see the file COPYING3. If not see
22 <http://www.gnu.org/licenses/>. */
23
24 #include "config.h"
25
26 #ifdef HAVE_cloog
27 #include <isl/aff.h>
28 #include <isl/set.h>
29 #include <isl/map.h>
30 #include <isl/union_map.h>
31 #include <isl/ilp.h>
32 #include <cloog/cloog.h>
33 #include <cloog/isl/domain.h>
34 #endif
35
36 #include "system.h"
37 #include "coretypes.h"
38 #include "tree.h"
39 #include "gimple.h"
40 #include "tree-ssa-loop.h"
41 #include "dumpfile.h"
42 #include "cfgloop.h"
43 #include "tree-chrec.h"
44 #include "tree-data-ref.h"
45 #include "tree-scalar-evolution.h"
46 #include "sese.h"
47
48 #ifdef HAVE_cloog
49 #include "graphite-poly.h"
50
51 /* XXX isl rewrite following comment */
52 /* Builds a linear expression, of dimension DIM, representing PDR's
53 memory access:
54
55 L = r_{n}*r_{n-1}*...*r_{1}*s_{0} + ... + r_{n}*s_{n-1} + s_{n}.
56
57 For an array A[10][20] with two subscript locations s0 and s1, the
58 linear memory access is 20 * s0 + s1: a stride of 1 in subscript s0
59 corresponds to a memory stride of 20.
60
61 OFFSET is a number of dimensions to prepend before the
62 subscript dimensions: s_0, s_1, ..., s_n.
63
64 Thus, the final linear expression has the following format:
65 0 .. 0_{offset} | 0 .. 0_{nit} | 0 .. 0_{gd} | 0 | c_0 c_1 ... c_n
66 where the expression itself is:
67 c_0 * s_0 + c_1 * s_1 + ... c_n * s_n. */
68
69 static isl_constraint *
70 build_linearized_memory_access (isl_map *map, poly_dr_p pdr)
71 {
72 isl_constraint *res;
73 isl_local_space *ls = isl_local_space_from_space (isl_map_get_space (map));
74 unsigned offset, nsubs;
75 int i;
76 isl_int size, subsize;
77
78 res = isl_equality_alloc (ls);
79 isl_int_init (size);
80 isl_int_set_ui (size, 1);
81 isl_int_init (subsize);
82 isl_int_set_ui (subsize, 1);
83
84 nsubs = isl_set_dim (pdr->extent, isl_dim_set);
85 /* -1 for the already included L dimension. */
86 offset = isl_map_dim (map, isl_dim_out) - 1 - nsubs;
87 res = isl_constraint_set_coefficient_si (res, isl_dim_out, offset + nsubs, -1);
88 /* Go through all subscripts from last to first. First dimension
89 is the alias set, ignore it. */
90 for (i = nsubs - 1; i >= 1; i--)
91 {
92 isl_space *dc;
93 isl_aff *aff;
94
95 res = isl_constraint_set_coefficient (res, isl_dim_out, offset + i, size);
96
97 dc = isl_set_get_space (pdr->extent);
98 aff = isl_aff_zero_on_domain (isl_local_space_from_space (dc));
99 aff = isl_aff_set_coefficient_si (aff, isl_dim_in, i, 1);
100 isl_set_max (pdr->extent, aff, &subsize);
101 isl_aff_free (aff);
102 isl_int_mul (size, size, subsize);
103 }
104
105 isl_int_clear (subsize);
106 isl_int_clear (size);
107
108 return res;
109 }
110
111 /* Set STRIDE to the stride of PDR in memory by advancing by one in
112 the loop at DEPTH. */
113
114 static void
115 pdr_stride_in_loop (mpz_t stride, graphite_dim_t depth, poly_dr_p pdr)
116 {
117 poly_bb_p pbb = PDR_PBB (pdr);
118 isl_map *map;
119 isl_set *set;
120 isl_aff *aff;
121 isl_space *dc;
122 isl_constraint *lma, *c;
123 isl_int islstride;
124 graphite_dim_t time_depth;
125 unsigned offset, nt;
126 unsigned i;
127 /* XXX isl rewrite following comments. */
128 /* Builds a partial difference equations and inserts them
129 into pointset powerset polyhedron P. Polyhedron is assumed
130 to have the format: T|I|T'|I'|G|S|S'|l1|l2.
131
132 TIME_DEPTH is the time dimension w.r.t. which we are
133 differentiating.
134 OFFSET represents the number of dimensions between
135 columns t_{time_depth} and t'_{time_depth}.
136 DIM_SCTR is the number of scattering dimensions. It is
137 essentially the dimensionality of the T vector.
138
139 The following equations are inserted into the polyhedron P:
140 | t_1 = t_1'
141 | ...
142 | t_{time_depth-1} = t'_{time_depth-1}
143 | t_{time_depth} = t'_{time_depth} + 1
144 | t_{time_depth+1} = t'_{time_depth + 1}
145 | ...
146 | t_{dim_sctr} = t'_{dim_sctr}. */
147
148 /* Add the equality: t_{time_depth} = t'_{time_depth} + 1.
149 This is the core part of this alogrithm, since this
150 constraint asks for the memory access stride (difference)
151 between two consecutive points in time dimensions. */
152
153 /* Add equalities:
154 | t1 = t1'
155 | ...
156 | t_{time_depth-1} = t'_{time_depth-1}
157 | t_{time_depth+1} = t'_{time_depth+1}
158 | ...
159 | t_{dim_sctr} = t'_{dim_sctr}
160
161 This means that all the time dimensions are equal except for
162 time_depth, where the constraint is t_{depth} = t'_{depth} + 1
163 step. More to this: we should be careful not to add equalities
164 to the 'coupled' dimensions, which happens when the one dimension
165 is stripmined dimension, and the other dimension corresponds
166 to the point loop inside stripmined dimension. */
167
168 /* pdr->accesses: [P1..nb_param,I1..nb_domain]->[a,S1..nb_subscript]
169 ??? [P] not used for PDRs?
170 pdr->extent: [a,S1..nb_subscript]
171 pbb->domain: [P1..nb_param,I1..nb_domain]
172 pbb->transformed: [P1..nb_param,I1..nb_domain]->[T1..Tnb_sctr]
173 [T] includes local vars (currently unused)
174
175 First we create [P,I] -> [T,a,S]. */
176
177 map = isl_map_flat_range_product (isl_map_copy (pbb->transformed),
178 isl_map_copy (pdr->accesses));
179 /* Add a dimension for L: [P,I] -> [T,a,S,L].*/
180 map = isl_map_add_dims (map, isl_dim_out, 1);
181 /* Build a constraint for "lma[S] - L == 0", effectively calculating
182 L in terms of subscripts. */
183 lma = build_linearized_memory_access (map, pdr);
184 /* And add it to the map, so we now have:
185 [P,I] -> [T,a,S,L] : lma([S]) == L. */
186 map = isl_map_add_constraint (map, lma);
187
188 /* Then we create [P,I,P',I'] -> [T,a,S,L,T',a',S',L']. */
189 map = isl_map_flat_product (map, isl_map_copy (map));
190
191 /* Now add the equality T[time_depth] == T'[time_depth]+1. This will
192 force L' to be the linear address at T[time_depth] + 1. */
193 time_depth = psct_dynamic_dim (pbb, depth);
194 /* Length of [a,S] plus [L] ... */
195 offset = 1 + isl_map_dim (pdr->accesses, isl_dim_out);
196 /* ... plus [T]. */
197 offset += isl_map_dim (pbb->transformed, isl_dim_out);
198
199 c = isl_equality_alloc (isl_local_space_from_space (isl_map_get_space (map)));
200 c = isl_constraint_set_coefficient_si (c, isl_dim_out, time_depth, 1);
201 c = isl_constraint_set_coefficient_si (c, isl_dim_out,
202 offset + time_depth, -1);
203 c = isl_constraint_set_constant_si (c, 1);
204 map = isl_map_add_constraint (map, c);
205
206 /* Now we equate most of the T/T' elements (making PITaSL nearly
207 the same is (PITaSL)', except for one dimension, namely for 'depth'
208 (an index into [I]), after translating to index into [T]. Take care
209 to not produce an empty map, which indicates we wanted to equate
210 two dimensions that are already coupled via the above time_depth
211 dimension. Happens with strip mining where several scatter dimension
212 are interdependend. */
213 /* Length of [T]. */
214 nt = pbb_nb_scattering_transform (pbb) + pbb_nb_local_vars (pbb);
215 for (i = 0; i < nt; i++)
216 if (i != time_depth)
217 {
218 isl_map *temp = isl_map_equate (isl_map_copy (map),
219 isl_dim_out, i,
220 isl_dim_out, offset + i);
221 if (isl_map_is_empty (temp))
222 isl_map_free (temp);
223 else
224 {
225 isl_map_free (map);
226 map = temp;
227 }
228 }
229
230 /* Now maximize the expression L' - L. */
231 set = isl_map_range (map);
232 dc = isl_set_get_space (set);
233 aff = isl_aff_zero_on_domain (isl_local_space_from_space (dc));
234 aff = isl_aff_set_coefficient_si (aff, isl_dim_in, offset - 1, -1);
235 aff = isl_aff_set_coefficient_si (aff, isl_dim_in, offset + offset - 1, 1);
236 isl_int_init (islstride);
237 isl_set_max (set, aff, &islstride);
238 isl_int_get_gmp (islstride, stride);
239 isl_int_clear (islstride);
240 isl_aff_free (aff);
241 isl_set_free (set);
242
243 if (dump_file && (dump_flags & TDF_DETAILS))
244 {
245 gmp_fprintf (dump_file, "\nStride in BB_%d, DR_%d, depth %d: %Zd ",
246 pbb_index (pbb), PDR_ID (pdr), (int) depth, stride);
247 }
248 }
249
250 /* Sets STRIDES to the sum of all the strides of the data references
251 accessed in LOOP at DEPTH. */
252
253 static void
254 memory_strides_in_loop_1 (lst_p loop, graphite_dim_t depth, mpz_t strides)
255 {
256 int i, j;
257 lst_p l;
258 poly_dr_p pdr;
259 mpz_t s, n;
260
261 mpz_init (s);
262 mpz_init (n);
263
264 FOR_EACH_VEC_ELT (LST_SEQ (loop), j, l)
265 if (LST_LOOP_P (l))
266 memory_strides_in_loop_1 (l, depth, strides);
267 else
268 FOR_EACH_VEC_ELT (PBB_DRS (LST_PBB (l)), i, pdr)
269 {
270 pdr_stride_in_loop (s, depth, pdr);
271 mpz_set_si (n, PDR_NB_REFS (pdr));
272 mpz_mul (s, s, n);
273 mpz_add (strides, strides, s);
274 }
275
276 mpz_clear (s);
277 mpz_clear (n);
278 }
279
280 /* Sets STRIDES to the sum of all the strides of the data references
281 accessed in LOOP at DEPTH. */
282
283 static void
284 memory_strides_in_loop (lst_p loop, graphite_dim_t depth, mpz_t strides)
285 {
286 if (mpz_cmp_si (loop->memory_strides, -1) == 0)
287 {
288 mpz_set_si (strides, 0);
289 memory_strides_in_loop_1 (loop, depth, strides);
290 }
291 else
292 mpz_set (strides, loop->memory_strides);
293 }
294
295 /* Return true when the interchange of loops LOOP1 and LOOP2 is
296 profitable.
297
298 Example:
299
300 | int a[100][100];
301 |
302 | int
303 | foo (int N)
304 | {
305 | int j;
306 | int i;
307 |
308 | for (i = 0; i < N; i++)
309 | for (j = 0; j < N; j++)
310 | a[j][2 * i] += 1;
311 |
312 | return a[N][12];
313 | }
314
315 The data access A[j][i] is described like this:
316
317 | i j N a s0 s1 1
318 | 0 0 0 1 0 0 -5 = 0
319 | 0 -1 0 0 1 0 0 = 0
320 |-2 0 0 0 0 1 0 = 0
321 | 0 0 0 0 1 0 0 >= 0
322 | 0 0 0 0 0 1 0 >= 0
323 | 0 0 0 0 -1 0 100 >= 0
324 | 0 0 0 0 0 -1 100 >= 0
325
326 The linearized memory access L to A[100][100] is:
327
328 | i j N a s0 s1 1
329 | 0 0 0 0 100 1 0
330
331 TODO: the shown format is not valid as it does not show the fact
332 that the iteration domain "i j" is transformed using the scattering.
333
334 Next, to measure the impact of iterating once in loop "i", we build
335 a maximization problem: first, we add to DR accesses the dimensions
336 k, s2, s3, L1 = 100 * s0 + s1, L2, and D1: this is the polyhedron P1.
337 L1 and L2 are the linearized memory access functions.
338
339 | i j N a s0 s1 k s2 s3 L1 L2 D1 1
340 | 0 0 0 1 0 0 0 0 0 0 0 0 -5 = 0 alias = 5
341 | 0 -1 0 0 1 0 0 0 0 0 0 0 0 = 0 s0 = j
342 |-2 0 0 0 0 1 0 0 0 0 0 0 0 = 0 s1 = 2 * i
343 | 0 0 0 0 1 0 0 0 0 0 0 0 0 >= 0
344 | 0 0 0 0 0 1 0 0 0 0 0 0 0 >= 0
345 | 0 0 0 0 -1 0 0 0 0 0 0 0 100 >= 0
346 | 0 0 0 0 0 -1 0 0 0 0 0 0 100 >= 0
347 | 0 0 0 0 100 1 0 0 0 -1 0 0 0 = 0 L1 = 100 * s0 + s1
348
349 Then, we generate the polyhedron P2 by interchanging the dimensions
350 (s0, s2), (s1, s3), (L1, L2), (k, i)
351
352 | i j N a s0 s1 k s2 s3 L1 L2 D1 1
353 | 0 0 0 1 0 0 0 0 0 0 0 0 -5 = 0 alias = 5
354 | 0 -1 0 0 0 0 0 1 0 0 0 0 0 = 0 s2 = j
355 | 0 0 0 0 0 0 -2 0 1 0 0 0 0 = 0 s3 = 2 * k
356 | 0 0 0 0 0 0 0 1 0 0 0 0 0 >= 0
357 | 0 0 0 0 0 0 0 0 1 0 0 0 0 >= 0
358 | 0 0 0 0 0 0 0 -1 0 0 0 0 100 >= 0
359 | 0 0 0 0 0 0 0 0 -1 0 0 0 100 >= 0
360 | 0 0 0 0 0 0 0 100 1 0 -1 0 0 = 0 L2 = 100 * s2 + s3
361
362 then we add to P2 the equality k = i + 1:
363
364 |-1 0 0 0 0 0 1 0 0 0 0 0 -1 = 0 k = i + 1
365
366 and finally we maximize the expression "D1 = max (P1 inter P2, L2 - L1)".
367
368 Similarly, to determine the impact of one iteration on loop "j", we
369 interchange (k, j), we add "k = j + 1", and we compute D2 the
370 maximal value of the difference.
371
372 Finally, the profitability test is D1 < D2: if in the outer loop
373 the strides are smaller than in the inner loop, then it is
374 profitable to interchange the loops at DEPTH1 and DEPTH2. */
375
376 static bool
377 lst_interchange_profitable_p (lst_p nest, int depth1, int depth2)
378 {
379 mpz_t d1, d2;
380 bool res;
381
382 gcc_assert (depth1 < depth2);
383
384 mpz_init (d1);
385 mpz_init (d2);
386
387 memory_strides_in_loop (nest, depth1, d1);
388 memory_strides_in_loop (nest, depth2, d2);
389
390 res = mpz_cmp (d1, d2) < 0;
391
392 mpz_clear (d1);
393 mpz_clear (d2);
394
395 return res;
396 }
397
398 /* Interchanges the loops at DEPTH1 and DEPTH2 of the original
399 scattering and assigns the resulting polyhedron to the transformed
400 scattering. */
401
402 static void
403 pbb_interchange_loop_depths (graphite_dim_t depth1, graphite_dim_t depth2,
404 poly_bb_p pbb)
405 {
406 unsigned i;
407 unsigned dim1 = psct_dynamic_dim (pbb, depth1);
408 unsigned dim2 = psct_dynamic_dim (pbb, depth2);
409 isl_space *d = isl_map_get_space (pbb->transformed);
410 isl_space *d1 = isl_space_range (d);
411 unsigned n = isl_space_dim (d1, isl_dim_out);
412 isl_space *d2 = isl_space_add_dims (d1, isl_dim_in, n);
413 isl_map *x = isl_map_universe (d2);
414
415 x = isl_map_equate (x, isl_dim_in, dim1, isl_dim_out, dim2);
416 x = isl_map_equate (x, isl_dim_in, dim2, isl_dim_out, dim1);
417
418 for (i = 0; i < n; i++)
419 if (i != dim1 && i != dim2)
420 x = isl_map_equate (x, isl_dim_in, i, isl_dim_out, i);
421
422 pbb->transformed = isl_map_apply_range (pbb->transformed, x);
423 }
424
425 /* Apply the interchange of loops at depths DEPTH1 and DEPTH2 to all
426 the statements below LST. */
427
428 static void
429 lst_apply_interchange (lst_p lst, int depth1, int depth2)
430 {
431 if (!lst)
432 return;
433
434 if (LST_LOOP_P (lst))
435 {
436 int i;
437 lst_p l;
438
439 FOR_EACH_VEC_ELT (LST_SEQ (lst), i, l)
440 lst_apply_interchange (l, depth1, depth2);
441 }
442 else
443 pbb_interchange_loop_depths (depth1, depth2, LST_PBB (lst));
444 }
445
446 /* Return true when the nest starting at LOOP1 and ending on LOOP2 is
447 perfect: i.e. there are no sequence of statements. */
448
449 static bool
450 lst_perfectly_nested_p (lst_p loop1, lst_p loop2)
451 {
452 if (loop1 == loop2)
453 return true;
454
455 if (!LST_LOOP_P (loop1))
456 return false;
457
458 return LST_SEQ (loop1).length () == 1
459 && lst_perfectly_nested_p (LST_SEQ (loop1)[0], loop2);
460 }
461
462 /* Transform the loop nest between LOOP1 and LOOP2 into a perfect
463 nest. To continue the naming tradition, this function is called
464 after perfect_nestify. NEST is set to the perfectly nested loop
465 that is created. BEFORE/AFTER are set to the loops distributed
466 before/after the loop NEST. */
467
468 static void
469 lst_perfect_nestify (lst_p loop1, lst_p loop2, lst_p *before,
470 lst_p *nest, lst_p *after)
471 {
472 poly_bb_p first, last;
473
474 gcc_assert (loop1 && loop2
475 && loop1 != loop2
476 && LST_LOOP_P (loop1) && LST_LOOP_P (loop2));
477
478 first = LST_PBB (lst_find_first_pbb (loop2));
479 last = LST_PBB (lst_find_last_pbb (loop2));
480
481 *before = copy_lst (loop1);
482 *nest = copy_lst (loop1);
483 *after = copy_lst (loop1);
484
485 lst_remove_all_before_including_pbb (*before, first, false);
486 lst_remove_all_before_including_pbb (*after, last, true);
487
488 lst_remove_all_before_excluding_pbb (*nest, first, true);
489 lst_remove_all_before_excluding_pbb (*nest, last, false);
490
491 if (lst_empty_p (*before))
492 {
493 free_lst (*before);
494 *before = NULL;
495 }
496 if (lst_empty_p (*after))
497 {
498 free_lst (*after);
499 *after = NULL;
500 }
501 if (lst_empty_p (*nest))
502 {
503 free_lst (*nest);
504 *nest = NULL;
505 }
506 }
507
508 /* Try to interchange LOOP1 with LOOP2 for all the statements of the
509 body of LOOP2. LOOP1 contains LOOP2. Return true if it did the
510 interchange. */
511
512 static bool
513 lst_try_interchange_loops (scop_p scop, lst_p loop1, lst_p loop2)
514 {
515 int depth1 = lst_depth (loop1);
516 int depth2 = lst_depth (loop2);
517 lst_p transformed;
518
519 lst_p before = NULL, nest = NULL, after = NULL;
520
521 if (!lst_perfectly_nested_p (loop1, loop2))
522 lst_perfect_nestify (loop1, loop2, &before, &nest, &after);
523
524 if (!lst_interchange_profitable_p (loop2, depth1, depth2))
525 return false;
526
527 lst_apply_interchange (loop2, depth1, depth2);
528
529 /* Sync the transformed LST information and the PBB scatterings
530 before using the scatterings in the data dependence analysis. */
531 if (before || nest || after)
532 {
533 transformed = lst_substitute_3 (SCOP_TRANSFORMED_SCHEDULE (scop), loop1,
534 before, nest, after);
535 lst_update_scattering (transformed);
536 free_lst (transformed);
537 }
538
539 if (graphite_legal_transform (scop))
540 {
541 if (dump_file && (dump_flags & TDF_DETAILS))
542 fprintf (dump_file,
543 "Loops at depths %d and %d will be interchanged.\n",
544 depth1, depth2);
545
546 /* Transform the SCOP_TRANSFORMED_SCHEDULE of the SCOP. */
547 lst_insert_in_sequence (before, loop1, true);
548 lst_insert_in_sequence (after, loop1, false);
549
550 if (nest)
551 {
552 lst_replace (loop1, nest);
553 free_lst (loop1);
554 }
555
556 return true;
557 }
558
559 /* Undo the transform. */
560 free_lst (before);
561 free_lst (nest);
562 free_lst (after);
563 lst_apply_interchange (loop2, depth2, depth1);
564 return false;
565 }
566
567 /* Selects the inner loop in LST_SEQ (INNER_FATHER) to be interchanged
568 with the loop OUTER in LST_SEQ (OUTER_FATHER). */
569
570 static bool
571 lst_interchange_select_inner (scop_p scop, lst_p outer_father, int outer,
572 lst_p inner_father)
573 {
574 int inner;
575 lst_p loop1, loop2;
576
577 gcc_assert (outer_father
578 && LST_LOOP_P (outer_father)
579 && LST_LOOP_P (LST_SEQ (outer_father)[outer])
580 && inner_father
581 && LST_LOOP_P (inner_father));
582
583 loop1 = LST_SEQ (outer_father)[outer];
584
585 FOR_EACH_VEC_ELT (LST_SEQ (inner_father), inner, loop2)
586 if (LST_LOOP_P (loop2)
587 && (lst_try_interchange_loops (scop, loop1, loop2)
588 || lst_interchange_select_inner (scop, outer_father, outer, loop2)))
589 return true;
590
591 return false;
592 }
593
594 /* Interchanges all the loops of LOOP and the loops of its body that
595 are considered profitable to interchange. Return the number of
596 interchanged loops. OUTER is the index in LST_SEQ (LOOP) that
597 points to the next outer loop to be considered for interchange. */
598
599 static int
600 lst_interchange_select_outer (scop_p scop, lst_p loop, int outer)
601 {
602 lst_p l;
603 int res = 0;
604 int i = 0;
605 lst_p father;
606
607 if (!loop || !LST_LOOP_P (loop))
608 return 0;
609
610 father = LST_LOOP_FATHER (loop);
611 if (father)
612 {
613 while (lst_interchange_select_inner (scop, father, outer, loop))
614 {
615 res++;
616 loop = LST_SEQ (father)[outer];
617 }
618 }
619
620 if (LST_LOOP_P (loop))
621 FOR_EACH_VEC_ELT (LST_SEQ (loop), i, l)
622 if (LST_LOOP_P (l))
623 res += lst_interchange_select_outer (scop, l, i);
624
625 return res;
626 }
627
628 /* Interchanges all the loop depths that are considered profitable for
629 SCOP. Return the number of interchanged loops. */
630
631 int
632 scop_do_interchange (scop_p scop)
633 {
634 int res = lst_interchange_select_outer
635 (scop, SCOP_TRANSFORMED_SCHEDULE (scop), 0);
636
637 lst_update_scattering (SCOP_TRANSFORMED_SCHEDULE (scop));
638
639 return res;
640 }
641
642
643 #endif
644