]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/graphite-interchange.c
Do not include unnecessary .h files.
[thirdparty/gcc.git] / gcc / graphite-interchange.c
1 /* Interchange heuristics and transform for loop interchange on
2 polyhedral representation.
3
4 Copyright (C) 2009, 2010 Free Software Foundation, Inc.
5 Contributed by Sebastian Pop <sebastian.pop@amd.com> and
6 Harsha Jagasia <harsha.jagasia@amd.com>.
7
8 This file is part of GCC.
9
10 GCC is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 3, or (at your option)
13 any later version.
14
15 GCC is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with GCC; see the file COPYING3. If not see
22 <http://www.gnu.org/licenses/>. */
23 #include "config.h"
24 #include "system.h"
25 #include "coretypes.h"
26 #include "tree-flow.h"
27 #include "tree-dump.h"
28 #include "cfgloop.h"
29 #include "tree-chrec.h"
30 #include "tree-data-ref.h"
31 #include "tree-scalar-evolution.h"
32 #include "sese.h"
33
34 #ifdef HAVE_cloog
35 #include "ppl_c.h"
36 #include "graphite-ppl.h"
37 #include "graphite-poly.h"
38
39 /* Builds a linear expression, of dimension DIM, representing PDR's
40 memory access:
41
42 L = r_{n}*r_{n-1}*...*r_{1}*s_{0} + ... + r_{n}*s_{n-1} + s_{n}.
43
44 For an array A[10][20] with two subscript locations s0 and s1, the
45 linear memory access is 20 * s0 + s1: a stride of 1 in subscript s0
46 corresponds to a memory stride of 20.
47
48 OFFSET is a number of dimensions to prepend before the
49 subscript dimensions: s_0, s_1, ..., s_n.
50
51 Thus, the final linear expression has the following format:
52 0 .. 0_{offset} | 0 .. 0_{nit} | 0 .. 0_{gd} | 0 | c_0 c_1 ... c_n
53 where the expression itself is:
54 c_0 * s_0 + c_1 * s_1 + ... c_n * s_n. */
55
56 static ppl_Linear_Expression_t
57 build_linearized_memory_access (ppl_dimension_type offset, poly_dr_p pdr)
58 {
59 ppl_Linear_Expression_t res;
60 ppl_Linear_Expression_t le;
61 ppl_dimension_type i;
62 ppl_dimension_type first = pdr_subscript_dim (pdr, 0);
63 ppl_dimension_type last = pdr_subscript_dim (pdr, PDR_NB_SUBSCRIPTS (pdr));
64 mpz_t size, sub_size;
65 graphite_dim_t dim = offset + pdr_dim (pdr);
66
67 ppl_new_Linear_Expression_with_dimension (&res, dim);
68
69 mpz_init (size);
70 mpz_set_si (size, 1);
71 mpz_init (sub_size);
72 mpz_set_si (sub_size, 1);
73
74 for (i = last - 1; i >= first; i--)
75 {
76 ppl_set_coef_gmp (res, i + offset, size);
77
78 ppl_new_Linear_Expression_with_dimension (&le, dim - offset);
79 ppl_set_coef (le, i, 1);
80 ppl_max_for_le_pointset (PDR_ACCESSES (pdr), le, sub_size);
81 mpz_mul (size, size, sub_size);
82 ppl_delete_Linear_Expression (le);
83 }
84
85 mpz_clear (sub_size);
86 mpz_clear (size);
87 return res;
88 }
89
90 /* Builds a partial difference equations and inserts them
91 into pointset powerset polyhedron P. Polyhedron is assumed
92 to have the format: T|I|T'|I'|G|S|S'|l1|l2.
93
94 TIME_DEPTH is the time dimension w.r.t. which we are
95 differentiating.
96 OFFSET represents the number of dimensions between
97 columns t_{time_depth} and t'_{time_depth}.
98 DIM_SCTR is the number of scattering dimensions. It is
99 essentially the dimensionality of the T vector.
100
101 The following equations are inserted into the polyhedron P:
102 | t_1 = t_1'
103 | ...
104 | t_{time_depth-1} = t'_{time_depth-1}
105 | t_{time_depth} = t'_{time_depth} + 1
106 | t_{time_depth+1} = t'_{time_depth + 1}
107 | ...
108 | t_{dim_sctr} = t'_{dim_sctr}. */
109
110 static void
111 build_partial_difference (ppl_Pointset_Powerset_C_Polyhedron_t *p,
112 ppl_dimension_type time_depth,
113 ppl_dimension_type offset,
114 ppl_dimension_type dim_sctr)
115 {
116 ppl_Constraint_t new_cstr;
117 ppl_Linear_Expression_t le;
118 ppl_dimension_type i;
119 ppl_dimension_type dim;
120 ppl_Pointset_Powerset_C_Polyhedron_t temp;
121
122 /* Add the equality: t_{time_depth} = t'_{time_depth} + 1.
123 This is the core part of this alogrithm, since this
124 constraint asks for the memory access stride (difference)
125 between two consecutive points in time dimensions. */
126
127 ppl_Pointset_Powerset_C_Polyhedron_space_dimension (*p, &dim);
128 ppl_new_Linear_Expression_with_dimension (&le, dim);
129 ppl_set_coef (le, time_depth, 1);
130 ppl_set_coef (le, time_depth + offset, -1);
131 ppl_set_inhomogeneous (le, 1);
132 ppl_new_Constraint (&new_cstr, le, PPL_CONSTRAINT_TYPE_EQUAL);
133 ppl_Pointset_Powerset_C_Polyhedron_add_constraint (*p, new_cstr);
134 ppl_delete_Linear_Expression (le);
135 ppl_delete_Constraint (new_cstr);
136
137 /* Add equalities:
138 | t1 = t1'
139 | ...
140 | t_{time_depth-1} = t'_{time_depth-1}
141 | t_{time_depth+1} = t'_{time_depth+1}
142 | ...
143 | t_{dim_sctr} = t'_{dim_sctr}
144
145 This means that all the time dimensions are equal except for
146 time_depth, where the constraint is t_{depth} = t'_{depth} + 1
147 step. More to this: we should be carefull not to add equalities
148 to the 'coupled' dimensions, which happens when the one dimension
149 is stripmined dimension, and the other dimension corresponds
150 to the point loop inside stripmined dimension. */
151
152 ppl_new_Pointset_Powerset_C_Polyhedron_from_Pointset_Powerset_C_Polyhedron (&temp, *p);
153
154 for (i = 0; i < dim_sctr; i++)
155 if (i != time_depth)
156 {
157 ppl_new_Linear_Expression_with_dimension (&le, dim);
158 ppl_set_coef (le, i, 1);
159 ppl_set_coef (le, i + offset, -1);
160 ppl_new_Constraint (&new_cstr, le, PPL_CONSTRAINT_TYPE_EQUAL);
161 ppl_Pointset_Powerset_C_Polyhedron_add_constraint (temp, new_cstr);
162
163 if (ppl_Pointset_Powerset_C_Polyhedron_is_empty (temp))
164 {
165 ppl_delete_Pointset_Powerset_C_Polyhedron (temp);
166 ppl_new_Pointset_Powerset_C_Polyhedron_from_Pointset_Powerset_C_Polyhedron (&temp, *p);
167 }
168 else
169 ppl_Pointset_Powerset_C_Polyhedron_add_constraint (*p, new_cstr);
170 ppl_delete_Linear_Expression (le);
171 ppl_delete_Constraint (new_cstr);
172 }
173
174 ppl_delete_Pointset_Powerset_C_Polyhedron (temp);
175 }
176
177
178 /* Set STRIDE to the stride of PDR in memory by advancing by one in
179 the loop at DEPTH. */
180
181 static void
182 pdr_stride_in_loop (mpz_t stride, graphite_dim_t depth, poly_dr_p pdr)
183 {
184 ppl_dimension_type time_depth;
185 ppl_Linear_Expression_t le, lma;
186 ppl_Constraint_t new_cstr;
187 ppl_dimension_type i, *map;
188 ppl_Pointset_Powerset_C_Polyhedron_t p1, p2, sctr;
189 graphite_dim_t nb_subscripts = PDR_NB_SUBSCRIPTS (pdr) + 1;
190 poly_bb_p pbb = PDR_PBB (pdr);
191 ppl_dimension_type offset = pbb_nb_scattering_transform (pbb)
192 + pbb_nb_local_vars (pbb)
193 + pbb_dim_iter_domain (pbb);
194 ppl_dimension_type offsetg = offset + pbb_nb_params (pbb);
195 ppl_dimension_type dim_sctr = pbb_nb_scattering_transform (pbb)
196 + pbb_nb_local_vars (pbb);
197 ppl_dimension_type dim_L1 = offset + offsetg + 2 * nb_subscripts;
198 ppl_dimension_type dim_L2 = offset + offsetg + 2 * nb_subscripts + 1;
199 ppl_dimension_type new_dim = offset + offsetg + 2 * nb_subscripts + 2;
200
201 /* The resulting polyhedron should have the following format:
202 T|I|T'|I'|G|S|S'|l1|l2
203 where:
204 | T = t_1..t_{dim_sctr}
205 | I = i_1..i_{dim_iter_domain}
206 | T'= t'_1..t'_{dim_sctr}
207 | I'= i'_1..i'_{dim_iter_domain}
208 | G = g_1..g_{nb_params}
209 | S = s_1..s_{nb_subscripts}
210 | S'= s'_1..s'_{nb_subscripts}
211 | l1 and l2 are scalars.
212
213 Some invariants:
214 offset = dim_sctr + dim_iter_domain + nb_local_vars
215 offsetg = dim_sctr + dim_iter_domain + nb_local_vars + nb_params. */
216
217 /* Construct the T|I|0|0|G|0|0|0|0 part. */
218 {
219 ppl_new_Pointset_Powerset_C_Polyhedron_from_C_Polyhedron
220 (&sctr, PBB_TRANSFORMED_SCATTERING (pbb));
221 ppl_Pointset_Powerset_C_Polyhedron_add_space_dimensions_and_embed
222 (sctr, 2 * nb_subscripts + 2);
223 ppl_insert_dimensions_pointset (sctr, offset, offset);
224 }
225
226 /* Construct the 0|I|0|0|G|S|0|0|0 part. */
227 {
228 ppl_new_Pointset_Powerset_C_Polyhedron_from_Pointset_Powerset_C_Polyhedron
229 (&p1, PDR_ACCESSES (pdr));
230 ppl_Pointset_Powerset_C_Polyhedron_add_space_dimensions_and_embed
231 (p1, nb_subscripts + 2);
232 ppl_insert_dimensions_pointset (p1, 0, dim_sctr);
233 ppl_insert_dimensions_pointset (p1, offset, offset);
234 }
235
236 /* Construct the 0|0|0|0|0|S|0|l1|0 part. */
237 {
238 lma = build_linearized_memory_access (offset + dim_sctr, pdr);
239 ppl_set_coef (lma, dim_L1, -1);
240 ppl_new_Constraint (&new_cstr, lma, PPL_CONSTRAINT_TYPE_EQUAL);
241 ppl_Pointset_Powerset_C_Polyhedron_add_constraint (p1, new_cstr);
242 ppl_delete_Linear_Expression (lma);
243 ppl_delete_Constraint (new_cstr);
244 }
245
246 /* Now intersect all the parts to get the polyhedron P1:
247 T|I|0|0|G|0|0|0 |0
248 0|I|0|0|G|S|0|0 |0
249 0|0|0|0|0|S|0|l1|0
250 ------------------
251 T|I|0|0|G|S|0|l1|0. */
252
253 ppl_Pointset_Powerset_C_Polyhedron_intersection_assign (p1, sctr);
254 ppl_delete_Pointset_Powerset_C_Polyhedron (sctr);
255
256 /* Build P2, which would have the following form:
257 0|0|T'|I'|G|0|S'|0|l2
258
259 P2 is built, by remapping the P1 polyhedron:
260 T|I|0|0|G|S|0|l1|0
261
262 using the following mapping:
263 T->T'
264 I->I'
265 S->S'
266 l1->l2. */
267 {
268 ppl_new_Pointset_Powerset_C_Polyhedron_from_Pointset_Powerset_C_Polyhedron
269 (&p2, p1);
270
271 map = ppl_new_id_map (new_dim);
272
273 /* TI -> T'I'. */
274 for (i = 0; i < offset; i++)
275 ppl_interchange (map, i, i + offset);
276
277 /* l1 -> l2. */
278 ppl_interchange (map, dim_L1, dim_L2);
279
280 /* S -> S'. */
281 for (i = 0; i < nb_subscripts; i++)
282 ppl_interchange (map, offset + offsetg + i,
283 offset + offsetg + nb_subscripts + i);
284
285 ppl_Pointset_Powerset_C_Polyhedron_map_space_dimensions (p2, map, new_dim);
286 free (map);
287 }
288
289 time_depth = psct_dynamic_dim (pbb, depth);
290
291 /* P1 = P1 inter P2. */
292 ppl_Pointset_Powerset_C_Polyhedron_intersection_assign (p1, p2);
293 build_partial_difference (&p1, time_depth, offset, dim_sctr);
294
295 /* Maximise the expression L2 - L1. */
296 {
297 ppl_new_Linear_Expression_with_dimension (&le, new_dim);
298 ppl_set_coef (le, dim_L2, 1);
299 ppl_set_coef (le, dim_L1, -1);
300 ppl_max_for_le_pointset (p1, le, stride);
301 }
302
303 if (dump_file && (dump_flags & TDF_DETAILS))
304 {
305 char *str;
306 void (*gmp_free) (void *, size_t);
307
308 fprintf (dump_file, "\nStride in BB_%d, DR_%d, depth %d:",
309 pbb_index (pbb), PDR_ID (pdr), (int) depth);
310 str = mpz_get_str (0, 10, stride);
311 fprintf (dump_file, " %s ", str);
312 mp_get_memory_functions (NULL, NULL, &gmp_free);
313 (*gmp_free) (str, strlen (str) + 1);
314 }
315
316 ppl_delete_Pointset_Powerset_C_Polyhedron (p1);
317 ppl_delete_Pointset_Powerset_C_Polyhedron (p2);
318 ppl_delete_Linear_Expression (le);
319 }
320
321
322 /* Sets STRIDES to the sum of all the strides of the data references
323 accessed in LOOP at DEPTH. */
324
325 static void
326 memory_strides_in_loop_1 (lst_p loop, graphite_dim_t depth, mpz_t strides)
327 {
328 int i, j;
329 lst_p l;
330 poly_dr_p pdr;
331 mpz_t s, n;
332
333 mpz_init (s);
334 mpz_init (n);
335
336 FOR_EACH_VEC_ELT (lst_p, LST_SEQ (loop), j, l)
337 if (LST_LOOP_P (l))
338 memory_strides_in_loop_1 (l, depth, strides);
339 else
340 FOR_EACH_VEC_ELT (poly_dr_p, PBB_DRS (LST_PBB (l)), i, pdr)
341 {
342 pdr_stride_in_loop (s, depth, pdr);
343 mpz_set_si (n, PDR_NB_REFS (pdr));
344 mpz_mul (s, s, n);
345 mpz_add (strides, strides, s);
346 }
347
348 mpz_clear (s);
349 mpz_clear (n);
350 }
351
352 /* Sets STRIDES to the sum of all the strides of the data references
353 accessed in LOOP at DEPTH. */
354
355 static void
356 memory_strides_in_loop (lst_p loop, graphite_dim_t depth, mpz_t strides)
357 {
358 if (mpz_cmp_si (loop->memory_strides, -1) == 0)
359 {
360 mpz_set_si (strides, 0);
361 memory_strides_in_loop_1 (loop, depth, strides);
362 }
363 else
364 mpz_set (strides, loop->memory_strides);
365 }
366
367 /* Return true when the interchange of loops LOOP1 and LOOP2 is
368 profitable.
369
370 Example:
371
372 | int a[100][100];
373 |
374 | int
375 | foo (int N)
376 | {
377 | int j;
378 | int i;
379 |
380 | for (i = 0; i < N; i++)
381 | for (j = 0; j < N; j++)
382 | a[j][2 * i] += 1;
383 |
384 | return a[N][12];
385 | }
386
387 The data access A[j][i] is described like this:
388
389 | i j N a s0 s1 1
390 | 0 0 0 1 0 0 -5 = 0
391 | 0 -1 0 0 1 0 0 = 0
392 |-2 0 0 0 0 1 0 = 0
393 | 0 0 0 0 1 0 0 >= 0
394 | 0 0 0 0 0 1 0 >= 0
395 | 0 0 0 0 -1 0 100 >= 0
396 | 0 0 0 0 0 -1 100 >= 0
397
398 The linearized memory access L to A[100][100] is:
399
400 | i j N a s0 s1 1
401 | 0 0 0 0 100 1 0
402
403 TODO: the shown format is not valid as it does not show the fact
404 that the iteration domain "i j" is transformed using the scattering.
405
406 Next, to measure the impact of iterating once in loop "i", we build
407 a maximization problem: first, we add to DR accesses the dimensions
408 k, s2, s3, L1 = 100 * s0 + s1, L2, and D1: this is the polyhedron P1.
409 L1 and L2 are the linearized memory access functions.
410
411 | i j N a s0 s1 k s2 s3 L1 L2 D1 1
412 | 0 0 0 1 0 0 0 0 0 0 0 0 -5 = 0 alias = 5
413 | 0 -1 0 0 1 0 0 0 0 0 0 0 0 = 0 s0 = j
414 |-2 0 0 0 0 1 0 0 0 0 0 0 0 = 0 s1 = 2 * i
415 | 0 0 0 0 1 0 0 0 0 0 0 0 0 >= 0
416 | 0 0 0 0 0 1 0 0 0 0 0 0 0 >= 0
417 | 0 0 0 0 -1 0 0 0 0 0 0 0 100 >= 0
418 | 0 0 0 0 0 -1 0 0 0 0 0 0 100 >= 0
419 | 0 0 0 0 100 1 0 0 0 -1 0 0 0 = 0 L1 = 100 * s0 + s1
420
421 Then, we generate the polyhedron P2 by interchanging the dimensions
422 (s0, s2), (s1, s3), (L1, L2), (k, i)
423
424 | i j N a s0 s1 k s2 s3 L1 L2 D1 1
425 | 0 0 0 1 0 0 0 0 0 0 0 0 -5 = 0 alias = 5
426 | 0 -1 0 0 0 0 0 1 0 0 0 0 0 = 0 s2 = j
427 | 0 0 0 0 0 0 -2 0 1 0 0 0 0 = 0 s3 = 2 * k
428 | 0 0 0 0 0 0 0 1 0 0 0 0 0 >= 0
429 | 0 0 0 0 0 0 0 0 1 0 0 0 0 >= 0
430 | 0 0 0 0 0 0 0 -1 0 0 0 0 100 >= 0
431 | 0 0 0 0 0 0 0 0 -1 0 0 0 100 >= 0
432 | 0 0 0 0 0 0 0 100 1 0 -1 0 0 = 0 L2 = 100 * s2 + s3
433
434 then we add to P2 the equality k = i + 1:
435
436 |-1 0 0 0 0 0 1 0 0 0 0 0 -1 = 0 k = i + 1
437
438 and finally we maximize the expression "D1 = max (P1 inter P2, L2 - L1)".
439
440 Similarly, to determine the impact of one iteration on loop "j", we
441 interchange (k, j), we add "k = j + 1", and we compute D2 the
442 maximal value of the difference.
443
444 Finally, the profitability test is D1 < D2: if in the outer loop
445 the strides are smaller than in the inner loop, then it is
446 profitable to interchange the loops at DEPTH1 and DEPTH2. */
447
448 static bool
449 lst_interchange_profitable_p (lst_p loop1, lst_p loop2)
450 {
451 mpz_t d1, d2;
452 bool res;
453
454 gcc_assert (loop1 && loop2
455 && LST_LOOP_P (loop1) && LST_LOOP_P (loop2)
456 && lst_depth (loop1) < lst_depth (loop2));
457
458 mpz_init (d1);
459 mpz_init (d2);
460
461 memory_strides_in_loop (loop1, lst_depth (loop1), d1);
462 memory_strides_in_loop (loop2, lst_depth (loop2), d2);
463
464 res = mpz_cmp (d1, d2) < 0;
465
466 mpz_clear (d1);
467 mpz_clear (d2);
468
469 return res;
470 }
471
472 /* Interchanges the loops at DEPTH1 and DEPTH2 of the original
473 scattering and assigns the resulting polyhedron to the transformed
474 scattering. */
475
476 static void
477 pbb_interchange_loop_depths (graphite_dim_t depth1, graphite_dim_t depth2,
478 poly_bb_p pbb)
479 {
480 ppl_dimension_type i, dim;
481 ppl_dimension_type *map;
482 ppl_Polyhedron_t poly = PBB_TRANSFORMED_SCATTERING (pbb);
483 ppl_dimension_type dim1 = psct_dynamic_dim (pbb, depth1);
484 ppl_dimension_type dim2 = psct_dynamic_dim (pbb, depth2);
485
486 ppl_Polyhedron_space_dimension (poly, &dim);
487 map = (ppl_dimension_type *) XNEWVEC (ppl_dimension_type, dim);
488
489 for (i = 0; i < dim; i++)
490 map[i] = i;
491
492 map[dim1] = dim2;
493 map[dim2] = dim1;
494
495 ppl_Polyhedron_map_space_dimensions (poly, map, dim);
496 free (map);
497 }
498
499 /* Apply the interchange of loops at depths DEPTH1 and DEPTH2 to all
500 the statements below LST. */
501
502 static void
503 lst_apply_interchange (lst_p lst, int depth1, int depth2)
504 {
505 if (!lst)
506 return;
507
508 if (LST_LOOP_P (lst))
509 {
510 int i;
511 lst_p l;
512
513 FOR_EACH_VEC_ELT (lst_p, LST_SEQ (lst), i, l)
514 lst_apply_interchange (l, depth1, depth2);
515 }
516 else
517 pbb_interchange_loop_depths (depth1, depth2, LST_PBB (lst));
518 }
519
520 /* Return true when the nest starting at LOOP1 and ending on LOOP2 is
521 perfect: i.e. there are no sequence of statements. */
522
523 static bool
524 lst_perfectly_nested_p (lst_p loop1, lst_p loop2)
525 {
526 if (loop1 == loop2)
527 return true;
528
529 if (!LST_LOOP_P (loop1))
530 return false;
531
532 return VEC_length (lst_p, LST_SEQ (loop1)) == 1
533 && lst_perfectly_nested_p (VEC_index (lst_p, LST_SEQ (loop1), 0), loop2);
534 }
535
536 /* Transform the loop nest between LOOP1 and LOOP2 into a perfect
537 nest. To continue the naming tradition, this function is called
538 after perfect_nestify. NEST is set to the perfectly nested loop
539 that is created. BEFORE/AFTER are set to the loops distributed
540 before/after the loop NEST. */
541
542 static void
543 lst_perfect_nestify (lst_p loop1, lst_p loop2, lst_p *before,
544 lst_p *nest, lst_p *after)
545 {
546 poly_bb_p first, last;
547
548 gcc_assert (loop1 && loop2
549 && loop1 != loop2
550 && LST_LOOP_P (loop1) && LST_LOOP_P (loop2));
551
552 first = LST_PBB (lst_find_first_pbb (loop2));
553 last = LST_PBB (lst_find_last_pbb (loop2));
554
555 *before = copy_lst (loop1);
556 *nest = copy_lst (loop1);
557 *after = copy_lst (loop1);
558
559 lst_remove_all_before_including_pbb (*before, first, false);
560 lst_remove_all_before_including_pbb (*after, last, true);
561
562 lst_remove_all_before_excluding_pbb (*nest, first, true);
563 lst_remove_all_before_excluding_pbb (*nest, last, false);
564
565 if (lst_empty_p (*before))
566 {
567 free_lst (*before);
568 *before = NULL;
569 }
570 if (lst_empty_p (*after))
571 {
572 free_lst (*after);
573 *after = NULL;
574 }
575 if (lst_empty_p (*nest))
576 {
577 free_lst (*nest);
578 *nest = NULL;
579 }
580 }
581
582 /* Try to interchange LOOP1 with LOOP2 for all the statements of the
583 body of LOOP2. LOOP1 contains LOOP2. Return true if it did the
584 interchange. */
585
586 static bool
587 lst_try_interchange_loops (scop_p scop, lst_p loop1, lst_p loop2)
588 {
589 int depth1 = lst_depth (loop1);
590 int depth2 = lst_depth (loop2);
591 lst_p transformed;
592
593 lst_p before = NULL, nest = NULL, after = NULL;
594
595 if (!lst_interchange_profitable_p (loop1, loop2))
596 return false;
597
598 if (!lst_perfectly_nested_p (loop1, loop2))
599 lst_perfect_nestify (loop1, loop2, &before, &nest, &after);
600
601 lst_apply_interchange (loop2, depth1, depth2);
602
603 /* Sync the transformed LST information and the PBB scatterings
604 before using the scatterings in the data dependence analysis. */
605 if (before || nest || after)
606 {
607 transformed = lst_substitute_3 (SCOP_TRANSFORMED_SCHEDULE (scop), loop1,
608 before, nest, after);
609 lst_update_scattering (transformed);
610 free_lst (transformed);
611 }
612
613 if (graphite_legal_transform (scop))
614 {
615 if (dump_file && (dump_flags & TDF_DETAILS))
616 fprintf (dump_file,
617 "Loops at depths %d and %d will be interchanged.\n",
618 depth1, depth2);
619
620 /* Transform the SCOP_TRANSFORMED_SCHEDULE of the SCOP. */
621 lst_insert_in_sequence (before, loop1, true);
622 lst_insert_in_sequence (after, loop1, false);
623
624 if (nest)
625 {
626 lst_replace (loop1, nest);
627 free_lst (loop1);
628 }
629
630 return true;
631 }
632
633 /* Undo the transform. */
634 free_lst (before);
635 free_lst (nest);
636 free_lst (after);
637 lst_apply_interchange (loop2, depth2, depth1);
638 return false;
639 }
640
641 /* Selects the inner loop in LST_SEQ (INNER_FATHER) to be interchanged
642 with the loop OUTER in LST_SEQ (OUTER_FATHER). */
643
644 static bool
645 lst_interchange_select_inner (scop_p scop, lst_p outer_father, int outer,
646 lst_p inner_father)
647 {
648 int inner;
649 lst_p loop1, loop2;
650
651 gcc_assert (outer_father
652 && LST_LOOP_P (outer_father)
653 && LST_LOOP_P (VEC_index (lst_p, LST_SEQ (outer_father), outer))
654 && inner_father
655 && LST_LOOP_P (inner_father));
656
657 loop1 = VEC_index (lst_p, LST_SEQ (outer_father), outer);
658
659 FOR_EACH_VEC_ELT (lst_p, LST_SEQ (inner_father), inner, loop2)
660 if (LST_LOOP_P (loop2)
661 && (lst_try_interchange_loops (scop, loop1, loop2)
662 || lst_interchange_select_inner (scop, outer_father, outer, loop2)))
663 return true;
664
665 return false;
666 }
667
668 /* Interchanges all the loops of LOOP and the loops of its body that
669 are considered profitable to interchange. Return true if it did
670 interchanged some loops. OUTER is the index in LST_SEQ (LOOP) that
671 points to the next outer loop to be considered for interchange. */
672
673 static bool
674 lst_interchange_select_outer (scop_p scop, lst_p loop, int outer)
675 {
676 lst_p l;
677 bool res = false;
678 int i = 0;
679 lst_p father;
680
681 if (!loop || !LST_LOOP_P (loop))
682 return false;
683
684 father = LST_LOOP_FATHER (loop);
685 if (father)
686 {
687 while (lst_interchange_select_inner (scop, father, outer, loop))
688 {
689 res = true;
690 loop = VEC_index (lst_p, LST_SEQ (father), outer);
691 }
692 }
693
694 if (LST_LOOP_P (loop))
695 FOR_EACH_VEC_ELT (lst_p, LST_SEQ (loop), i, l)
696 if (LST_LOOP_P (l))
697 res |= lst_interchange_select_outer (scop, l, i);
698
699 return res;
700 }
701
702 /* Interchanges all the loop depths that are considered profitable for SCOP. */
703
704 bool
705 scop_do_interchange (scop_p scop)
706 {
707 bool res = lst_interchange_select_outer
708 (scop, SCOP_TRANSFORMED_SCHEDULE (scop), 0);
709
710 lst_update_scattering (SCOP_TRANSFORMED_SCHEDULE (scop));
711
712 return res;
713 }
714
715
716 #endif
717