]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/graphite-interchange.c
Update Copyright years for files modified in 2011 and/or 2012.
[thirdparty/gcc.git] / gcc / graphite-interchange.c
1 /* Interchange heuristics and transform for loop interchange on
2 polyhedral representation.
3
4 Copyright (C) 2009, 2010, 2011, 2012 Free Software Foundation, Inc.
5 Contributed by Sebastian Pop <sebastian.pop@amd.com> and
6 Harsha Jagasia <harsha.jagasia@amd.com>.
7
8 This file is part of GCC.
9
10 GCC is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 3, or (at your option)
13 any later version.
14
15 GCC is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with GCC; see the file COPYING3. If not see
22 <http://www.gnu.org/licenses/>. */
23
24 #include "config.h"
25
26 #ifdef HAVE_cloog
27 #include <isl/aff.h>
28 #include <isl/set.h>
29 #include <isl/map.h>
30 #include <isl/union_map.h>
31 #include <isl/ilp.h>
32 #include <cloog/cloog.h>
33 #include <cloog/isl/domain.h>
34 #endif
35
36 #include "system.h"
37 #include "coretypes.h"
38 #include "tree-flow.h"
39 #include "dumpfile.h"
40 #include "cfgloop.h"
41 #include "tree-chrec.h"
42 #include "tree-data-ref.h"
43 #include "tree-scalar-evolution.h"
44 #include "sese.h"
45
46 #ifdef HAVE_cloog
47 #include "graphite-poly.h"
48
49 /* XXX isl rewrite following comment */
50 /* Builds a linear expression, of dimension DIM, representing PDR's
51 memory access:
52
53 L = r_{n}*r_{n-1}*...*r_{1}*s_{0} + ... + r_{n}*s_{n-1} + s_{n}.
54
55 For an array A[10][20] with two subscript locations s0 and s1, the
56 linear memory access is 20 * s0 + s1: a stride of 1 in subscript s0
57 corresponds to a memory stride of 20.
58
59 OFFSET is a number of dimensions to prepend before the
60 subscript dimensions: s_0, s_1, ..., s_n.
61
62 Thus, the final linear expression has the following format:
63 0 .. 0_{offset} | 0 .. 0_{nit} | 0 .. 0_{gd} | 0 | c_0 c_1 ... c_n
64 where the expression itself is:
65 c_0 * s_0 + c_1 * s_1 + ... c_n * s_n. */
66
67 static isl_constraint *
68 build_linearized_memory_access (isl_map *map, poly_dr_p pdr)
69 {
70 isl_constraint *res;
71 isl_local_space *ls = isl_local_space_from_space (isl_map_get_space (map));
72 unsigned offset, nsubs;
73 int i;
74 isl_int size, subsize;
75
76 res = isl_equality_alloc (ls);
77 isl_int_init (size);
78 isl_int_set_ui (size, 1);
79 isl_int_init (subsize);
80 isl_int_set_ui (subsize, 1);
81
82 nsubs = isl_set_dim (pdr->extent, isl_dim_set);
83 /* -1 for the already included L dimension. */
84 offset = isl_map_dim (map, isl_dim_out) - 1 - nsubs;
85 res = isl_constraint_set_coefficient_si (res, isl_dim_out, offset + nsubs, -1);
86 /* Go through all subscripts from last to first. First dimension
87 is the alias set, ignore it. */
88 for (i = nsubs - 1; i >= 1; i--)
89 {
90 isl_space *dc;
91 isl_aff *aff;
92
93 res = isl_constraint_set_coefficient (res, isl_dim_out, offset + i, size);
94
95 dc = isl_set_get_space (pdr->extent);
96 aff = isl_aff_zero_on_domain (isl_local_space_from_space (dc));
97 aff = isl_aff_set_coefficient_si (aff, isl_dim_in, i, 1);
98 isl_set_max (pdr->extent, aff, &subsize);
99 isl_aff_free (aff);
100 isl_int_mul (size, size, subsize);
101 }
102
103 isl_int_clear (subsize);
104 isl_int_clear (size);
105
106 return res;
107 }
108
109 /* Set STRIDE to the stride of PDR in memory by advancing by one in
110 the loop at DEPTH. */
111
112 static void
113 pdr_stride_in_loop (mpz_t stride, graphite_dim_t depth, poly_dr_p pdr)
114 {
115 poly_bb_p pbb = PDR_PBB (pdr);
116 isl_map *map;
117 isl_set *set;
118 isl_aff *aff;
119 isl_space *dc;
120 isl_constraint *lma, *c;
121 isl_int islstride;
122 graphite_dim_t time_depth;
123 unsigned offset, nt;
124 unsigned i;
125 /* XXX isl rewrite following comments. */
126 /* Builds a partial difference equations and inserts them
127 into pointset powerset polyhedron P. Polyhedron is assumed
128 to have the format: T|I|T'|I'|G|S|S'|l1|l2.
129
130 TIME_DEPTH is the time dimension w.r.t. which we are
131 differentiating.
132 OFFSET represents the number of dimensions between
133 columns t_{time_depth} and t'_{time_depth}.
134 DIM_SCTR is the number of scattering dimensions. It is
135 essentially the dimensionality of the T vector.
136
137 The following equations are inserted into the polyhedron P:
138 | t_1 = t_1'
139 | ...
140 | t_{time_depth-1} = t'_{time_depth-1}
141 | t_{time_depth} = t'_{time_depth} + 1
142 | t_{time_depth+1} = t'_{time_depth + 1}
143 | ...
144 | t_{dim_sctr} = t'_{dim_sctr}. */
145
146 /* Add the equality: t_{time_depth} = t'_{time_depth} + 1.
147 This is the core part of this alogrithm, since this
148 constraint asks for the memory access stride (difference)
149 between two consecutive points in time dimensions. */
150
151 /* Add equalities:
152 | t1 = t1'
153 | ...
154 | t_{time_depth-1} = t'_{time_depth-1}
155 | t_{time_depth+1} = t'_{time_depth+1}
156 | ...
157 | t_{dim_sctr} = t'_{dim_sctr}
158
159 This means that all the time dimensions are equal except for
160 time_depth, where the constraint is t_{depth} = t'_{depth} + 1
161 step. More to this: we should be careful not to add equalities
162 to the 'coupled' dimensions, which happens when the one dimension
163 is stripmined dimension, and the other dimension corresponds
164 to the point loop inside stripmined dimension. */
165
166 /* pdr->accesses: [P1..nb_param,I1..nb_domain]->[a,S1..nb_subscript]
167 ??? [P] not used for PDRs?
168 pdr->extent: [a,S1..nb_subscript]
169 pbb->domain: [P1..nb_param,I1..nb_domain]
170 pbb->transformed: [P1..nb_param,I1..nb_domain]->[T1..Tnb_sctr]
171 [T] includes local vars (currently unused)
172
173 First we create [P,I] -> [T,a,S]. */
174
175 map = isl_map_flat_range_product (isl_map_copy (pbb->transformed),
176 isl_map_copy (pdr->accesses));
177 /* Add a dimension for L: [P,I] -> [T,a,S,L].*/
178 map = isl_map_add_dims (map, isl_dim_out, 1);
179 /* Build a constraint for "lma[S] - L == 0", effectively calculating
180 L in terms of subscripts. */
181 lma = build_linearized_memory_access (map, pdr);
182 /* And add it to the map, so we now have:
183 [P,I] -> [T,a,S,L] : lma([S]) == L. */
184 map = isl_map_add_constraint (map, lma);
185
186 /* Then we create [P,I,P',I'] -> [T,a,S,L,T',a',S',L']. */
187 map = isl_map_flat_product (map, isl_map_copy (map));
188
189 /* Now add the equality T[time_depth] == T'[time_depth]+1. This will
190 force L' to be the linear address at T[time_depth] + 1. */
191 time_depth = psct_dynamic_dim (pbb, depth);
192 /* Length of [a,S] plus [L] ... */
193 offset = 1 + isl_map_dim (pdr->accesses, isl_dim_out);
194 /* ... plus [T]. */
195 offset += isl_map_dim (pbb->transformed, isl_dim_out);
196
197 c = isl_equality_alloc (isl_local_space_from_space (isl_map_get_space (map)));
198 c = isl_constraint_set_coefficient_si (c, isl_dim_out, time_depth, 1);
199 c = isl_constraint_set_coefficient_si (c, isl_dim_out,
200 offset + time_depth, -1);
201 c = isl_constraint_set_constant_si (c, 1);
202 map = isl_map_add_constraint (map, c);
203
204 /* Now we equate most of the T/T' elements (making PITaSL nearly
205 the same is (PITaSL)', except for one dimension, namely for 'depth'
206 (an index into [I]), after translating to index into [T]. Take care
207 to not produce an empty map, which indicates we wanted to equate
208 two dimensions that are already coupled via the above time_depth
209 dimension. Happens with strip mining where several scatter dimension
210 are interdependend. */
211 /* Length of [T]. */
212 nt = pbb_nb_scattering_transform (pbb) + pbb_nb_local_vars (pbb);
213 for (i = 0; i < nt; i++)
214 if (i != time_depth)
215 {
216 isl_map *temp = isl_map_equate (isl_map_copy (map),
217 isl_dim_out, i,
218 isl_dim_out, offset + i);
219 if (isl_map_is_empty (temp))
220 isl_map_free (temp);
221 else
222 {
223 isl_map_free (map);
224 map = temp;
225 }
226 }
227
228 /* Now maximize the expression L' - L. */
229 set = isl_map_range (map);
230 dc = isl_set_get_space (set);
231 aff = isl_aff_zero_on_domain (isl_local_space_from_space (dc));
232 aff = isl_aff_set_coefficient_si (aff, isl_dim_in, offset - 1, -1);
233 aff = isl_aff_set_coefficient_si (aff, isl_dim_in, offset + offset - 1, 1);
234 isl_int_init (islstride);
235 isl_set_max (set, aff, &islstride);
236 isl_int_get_gmp (islstride, stride);
237 isl_int_clear (islstride);
238 isl_aff_free (aff);
239 isl_set_free (set);
240
241 if (dump_file && (dump_flags & TDF_DETAILS))
242 {
243 gmp_fprintf (dump_file, "\nStride in BB_%d, DR_%d, depth %d: %Zd ",
244 pbb_index (pbb), PDR_ID (pdr), (int) depth, stride);
245 }
246 }
247
248 /* Sets STRIDES to the sum of all the strides of the data references
249 accessed in LOOP at DEPTH. */
250
251 static void
252 memory_strides_in_loop_1 (lst_p loop, graphite_dim_t depth, mpz_t strides)
253 {
254 int i, j;
255 lst_p l;
256 poly_dr_p pdr;
257 mpz_t s, n;
258
259 mpz_init (s);
260 mpz_init (n);
261
262 FOR_EACH_VEC_ELT (LST_SEQ (loop), j, l)
263 if (LST_LOOP_P (l))
264 memory_strides_in_loop_1 (l, depth, strides);
265 else
266 FOR_EACH_VEC_ELT (PBB_DRS (LST_PBB (l)), i, pdr)
267 {
268 pdr_stride_in_loop (s, depth, pdr);
269 mpz_set_si (n, PDR_NB_REFS (pdr));
270 mpz_mul (s, s, n);
271 mpz_add (strides, strides, s);
272 }
273
274 mpz_clear (s);
275 mpz_clear (n);
276 }
277
278 /* Sets STRIDES to the sum of all the strides of the data references
279 accessed in LOOP at DEPTH. */
280
281 static void
282 memory_strides_in_loop (lst_p loop, graphite_dim_t depth, mpz_t strides)
283 {
284 if (mpz_cmp_si (loop->memory_strides, -1) == 0)
285 {
286 mpz_set_si (strides, 0);
287 memory_strides_in_loop_1 (loop, depth, strides);
288 }
289 else
290 mpz_set (strides, loop->memory_strides);
291 }
292
293 /* Return true when the interchange of loops LOOP1 and LOOP2 is
294 profitable.
295
296 Example:
297
298 | int a[100][100];
299 |
300 | int
301 | foo (int N)
302 | {
303 | int j;
304 | int i;
305 |
306 | for (i = 0; i < N; i++)
307 | for (j = 0; j < N; j++)
308 | a[j][2 * i] += 1;
309 |
310 | return a[N][12];
311 | }
312
313 The data access A[j][i] is described like this:
314
315 | i j N a s0 s1 1
316 | 0 0 0 1 0 0 -5 = 0
317 | 0 -1 0 0 1 0 0 = 0
318 |-2 0 0 0 0 1 0 = 0
319 | 0 0 0 0 1 0 0 >= 0
320 | 0 0 0 0 0 1 0 >= 0
321 | 0 0 0 0 -1 0 100 >= 0
322 | 0 0 0 0 0 -1 100 >= 0
323
324 The linearized memory access L to A[100][100] is:
325
326 | i j N a s0 s1 1
327 | 0 0 0 0 100 1 0
328
329 TODO: the shown format is not valid as it does not show the fact
330 that the iteration domain "i j" is transformed using the scattering.
331
332 Next, to measure the impact of iterating once in loop "i", we build
333 a maximization problem: first, we add to DR accesses the dimensions
334 k, s2, s3, L1 = 100 * s0 + s1, L2, and D1: this is the polyhedron P1.
335 L1 and L2 are the linearized memory access functions.
336
337 | i j N a s0 s1 k s2 s3 L1 L2 D1 1
338 | 0 0 0 1 0 0 0 0 0 0 0 0 -5 = 0 alias = 5
339 | 0 -1 0 0 1 0 0 0 0 0 0 0 0 = 0 s0 = j
340 |-2 0 0 0 0 1 0 0 0 0 0 0 0 = 0 s1 = 2 * i
341 | 0 0 0 0 1 0 0 0 0 0 0 0 0 >= 0
342 | 0 0 0 0 0 1 0 0 0 0 0 0 0 >= 0
343 | 0 0 0 0 -1 0 0 0 0 0 0 0 100 >= 0
344 | 0 0 0 0 0 -1 0 0 0 0 0 0 100 >= 0
345 | 0 0 0 0 100 1 0 0 0 -1 0 0 0 = 0 L1 = 100 * s0 + s1
346
347 Then, we generate the polyhedron P2 by interchanging the dimensions
348 (s0, s2), (s1, s3), (L1, L2), (k, i)
349
350 | i j N a s0 s1 k s2 s3 L1 L2 D1 1
351 | 0 0 0 1 0 0 0 0 0 0 0 0 -5 = 0 alias = 5
352 | 0 -1 0 0 0 0 0 1 0 0 0 0 0 = 0 s2 = j
353 | 0 0 0 0 0 0 -2 0 1 0 0 0 0 = 0 s3 = 2 * k
354 | 0 0 0 0 0 0 0 1 0 0 0 0 0 >= 0
355 | 0 0 0 0 0 0 0 0 1 0 0 0 0 >= 0
356 | 0 0 0 0 0 0 0 -1 0 0 0 0 100 >= 0
357 | 0 0 0 0 0 0 0 0 -1 0 0 0 100 >= 0
358 | 0 0 0 0 0 0 0 100 1 0 -1 0 0 = 0 L2 = 100 * s2 + s3
359
360 then we add to P2 the equality k = i + 1:
361
362 |-1 0 0 0 0 0 1 0 0 0 0 0 -1 = 0 k = i + 1
363
364 and finally we maximize the expression "D1 = max (P1 inter P2, L2 - L1)".
365
366 Similarly, to determine the impact of one iteration on loop "j", we
367 interchange (k, j), we add "k = j + 1", and we compute D2 the
368 maximal value of the difference.
369
370 Finally, the profitability test is D1 < D2: if in the outer loop
371 the strides are smaller than in the inner loop, then it is
372 profitable to interchange the loops at DEPTH1 and DEPTH2. */
373
374 static bool
375 lst_interchange_profitable_p (lst_p nest, int depth1, int depth2)
376 {
377 mpz_t d1, d2;
378 bool res;
379
380 gcc_assert (depth1 < depth2);
381
382 mpz_init (d1);
383 mpz_init (d2);
384
385 memory_strides_in_loop (nest, depth1, d1);
386 memory_strides_in_loop (nest, depth2, d2);
387
388 res = mpz_cmp (d1, d2) < 0;
389
390 mpz_clear (d1);
391 mpz_clear (d2);
392
393 return res;
394 }
395
396 /* Interchanges the loops at DEPTH1 and DEPTH2 of the original
397 scattering and assigns the resulting polyhedron to the transformed
398 scattering. */
399
400 static void
401 pbb_interchange_loop_depths (graphite_dim_t depth1, graphite_dim_t depth2,
402 poly_bb_p pbb)
403 {
404 unsigned i;
405 unsigned dim1 = psct_dynamic_dim (pbb, depth1);
406 unsigned dim2 = psct_dynamic_dim (pbb, depth2);
407 isl_space *d = isl_map_get_space (pbb->transformed);
408 isl_space *d1 = isl_space_range (d);
409 unsigned n = isl_space_dim (d1, isl_dim_out);
410 isl_space *d2 = isl_space_add_dims (d1, isl_dim_in, n);
411 isl_map *x = isl_map_universe (d2);
412
413 x = isl_map_equate (x, isl_dim_in, dim1, isl_dim_out, dim2);
414 x = isl_map_equate (x, isl_dim_in, dim2, isl_dim_out, dim1);
415
416 for (i = 0; i < n; i++)
417 if (i != dim1 && i != dim2)
418 x = isl_map_equate (x, isl_dim_in, i, isl_dim_out, i);
419
420 pbb->transformed = isl_map_apply_range (pbb->transformed, x);
421 }
422
423 /* Apply the interchange of loops at depths DEPTH1 and DEPTH2 to all
424 the statements below LST. */
425
426 static void
427 lst_apply_interchange (lst_p lst, int depth1, int depth2)
428 {
429 if (!lst)
430 return;
431
432 if (LST_LOOP_P (lst))
433 {
434 int i;
435 lst_p l;
436
437 FOR_EACH_VEC_ELT (LST_SEQ (lst), i, l)
438 lst_apply_interchange (l, depth1, depth2);
439 }
440 else
441 pbb_interchange_loop_depths (depth1, depth2, LST_PBB (lst));
442 }
443
444 /* Return true when the nest starting at LOOP1 and ending on LOOP2 is
445 perfect: i.e. there are no sequence of statements. */
446
447 static bool
448 lst_perfectly_nested_p (lst_p loop1, lst_p loop2)
449 {
450 if (loop1 == loop2)
451 return true;
452
453 if (!LST_LOOP_P (loop1))
454 return false;
455
456 return LST_SEQ (loop1).length () == 1
457 && lst_perfectly_nested_p (LST_SEQ (loop1)[0], loop2);
458 }
459
460 /* Transform the loop nest between LOOP1 and LOOP2 into a perfect
461 nest. To continue the naming tradition, this function is called
462 after perfect_nestify. NEST is set to the perfectly nested loop
463 that is created. BEFORE/AFTER are set to the loops distributed
464 before/after the loop NEST. */
465
466 static void
467 lst_perfect_nestify (lst_p loop1, lst_p loop2, lst_p *before,
468 lst_p *nest, lst_p *after)
469 {
470 poly_bb_p first, last;
471
472 gcc_assert (loop1 && loop2
473 && loop1 != loop2
474 && LST_LOOP_P (loop1) && LST_LOOP_P (loop2));
475
476 first = LST_PBB (lst_find_first_pbb (loop2));
477 last = LST_PBB (lst_find_last_pbb (loop2));
478
479 *before = copy_lst (loop1);
480 *nest = copy_lst (loop1);
481 *after = copy_lst (loop1);
482
483 lst_remove_all_before_including_pbb (*before, first, false);
484 lst_remove_all_before_including_pbb (*after, last, true);
485
486 lst_remove_all_before_excluding_pbb (*nest, first, true);
487 lst_remove_all_before_excluding_pbb (*nest, last, false);
488
489 if (lst_empty_p (*before))
490 {
491 free_lst (*before);
492 *before = NULL;
493 }
494 if (lst_empty_p (*after))
495 {
496 free_lst (*after);
497 *after = NULL;
498 }
499 if (lst_empty_p (*nest))
500 {
501 free_lst (*nest);
502 *nest = NULL;
503 }
504 }
505
506 /* Try to interchange LOOP1 with LOOP2 for all the statements of the
507 body of LOOP2. LOOP1 contains LOOP2. Return true if it did the
508 interchange. */
509
510 static bool
511 lst_try_interchange_loops (scop_p scop, lst_p loop1, lst_p loop2)
512 {
513 int depth1 = lst_depth (loop1);
514 int depth2 = lst_depth (loop2);
515 lst_p transformed;
516
517 lst_p before = NULL, nest = NULL, after = NULL;
518
519 if (!lst_perfectly_nested_p (loop1, loop2))
520 lst_perfect_nestify (loop1, loop2, &before, &nest, &after);
521
522 if (!lst_interchange_profitable_p (loop2, depth1, depth2))
523 return false;
524
525 lst_apply_interchange (loop2, depth1, depth2);
526
527 /* Sync the transformed LST information and the PBB scatterings
528 before using the scatterings in the data dependence analysis. */
529 if (before || nest || after)
530 {
531 transformed = lst_substitute_3 (SCOP_TRANSFORMED_SCHEDULE (scop), loop1,
532 before, nest, after);
533 lst_update_scattering (transformed);
534 free_lst (transformed);
535 }
536
537 if (graphite_legal_transform (scop))
538 {
539 if (dump_file && (dump_flags & TDF_DETAILS))
540 fprintf (dump_file,
541 "Loops at depths %d and %d will be interchanged.\n",
542 depth1, depth2);
543
544 /* Transform the SCOP_TRANSFORMED_SCHEDULE of the SCOP. */
545 lst_insert_in_sequence (before, loop1, true);
546 lst_insert_in_sequence (after, loop1, false);
547
548 if (nest)
549 {
550 lst_replace (loop1, nest);
551 free_lst (loop1);
552 }
553
554 return true;
555 }
556
557 /* Undo the transform. */
558 free_lst (before);
559 free_lst (nest);
560 free_lst (after);
561 lst_apply_interchange (loop2, depth2, depth1);
562 return false;
563 }
564
565 /* Selects the inner loop in LST_SEQ (INNER_FATHER) to be interchanged
566 with the loop OUTER in LST_SEQ (OUTER_FATHER). */
567
568 static bool
569 lst_interchange_select_inner (scop_p scop, lst_p outer_father, int outer,
570 lst_p inner_father)
571 {
572 int inner;
573 lst_p loop1, loop2;
574
575 gcc_assert (outer_father
576 && LST_LOOP_P (outer_father)
577 && LST_LOOP_P (LST_SEQ (outer_father)[outer])
578 && inner_father
579 && LST_LOOP_P (inner_father));
580
581 loop1 = LST_SEQ (outer_father)[outer];
582
583 FOR_EACH_VEC_ELT (LST_SEQ (inner_father), inner, loop2)
584 if (LST_LOOP_P (loop2)
585 && (lst_try_interchange_loops (scop, loop1, loop2)
586 || lst_interchange_select_inner (scop, outer_father, outer, loop2)))
587 return true;
588
589 return false;
590 }
591
592 /* Interchanges all the loops of LOOP and the loops of its body that
593 are considered profitable to interchange. Return the number of
594 interchanged loops. OUTER is the index in LST_SEQ (LOOP) that
595 points to the next outer loop to be considered for interchange. */
596
597 static int
598 lst_interchange_select_outer (scop_p scop, lst_p loop, int outer)
599 {
600 lst_p l;
601 int res = 0;
602 int i = 0;
603 lst_p father;
604
605 if (!loop || !LST_LOOP_P (loop))
606 return 0;
607
608 father = LST_LOOP_FATHER (loop);
609 if (father)
610 {
611 while (lst_interchange_select_inner (scop, father, outer, loop))
612 {
613 res++;
614 loop = LST_SEQ (father)[outer];
615 }
616 }
617
618 if (LST_LOOP_P (loop))
619 FOR_EACH_VEC_ELT (LST_SEQ (loop), i, l)
620 if (LST_LOOP_P (l))
621 res += lst_interchange_select_outer (scop, l, i);
622
623 return res;
624 }
625
626 /* Interchanges all the loop depths that are considered profitable for
627 SCOP. Return the number of interchanged loops. */
628
629 int
630 scop_do_interchange (scop_p scop)
631 {
632 int res = lst_interchange_select_outer
633 (scop, SCOP_TRANSFORMED_SCHEDULE (scop), 0);
634
635 lst_update_scattering (SCOP_TRANSFORMED_SCHEDULE (scop));
636
637 return res;
638 }
639
640
641 #endif
642