]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/graphite-interchange.c
Memoize memory strides per loop.
[thirdparty/gcc.git] / gcc / graphite-interchange.c
1 /* Interchange heuristics and transform for loop interchange on
2 polyhedral representation.
3
4 Copyright (C) 2009 Free Software Foundation, Inc.
5 Contributed by Sebastian Pop <sebastian.pop@amd.com> and
6 Harsha Jagasia <harsha.jagasia@amd.com>.
7
8 This file is part of GCC.
9
10 GCC is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 3, or (at your option)
13 any later version.
14
15 GCC is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with GCC; see the file COPYING3. If not see
22 <http://www.gnu.org/licenses/>. */
23 #include "config.h"
24 #include "system.h"
25 #include "coretypes.h"
26 #include "tm.h"
27 #include "ggc.h"
28 #include "tree.h"
29 #include "rtl.h"
30 #include "output.h"
31 #include "basic-block.h"
32 #include "diagnostic.h"
33 #include "tree-flow.h"
34 #include "toplev.h"
35 #include "tree-dump.h"
36 #include "timevar.h"
37 #include "cfgloop.h"
38 #include "tree-chrec.h"
39 #include "tree-data-ref.h"
40 #include "tree-scalar-evolution.h"
41 #include "tree-pass.h"
42 #include "domwalk.h"
43 #include "value-prof.h"
44 #include "pointer-set.h"
45 #include "gimple.h"
46 #include "params.h"
47
48 #ifdef HAVE_cloog
49 #include "cloog/cloog.h"
50 #include "ppl_c.h"
51 #include "sese.h"
52 #include "graphite-ppl.h"
53 #include "graphite.h"
54 #include "graphite-poly.h"
55
56 /* Builds a linear expression, of dimension DIM, representing PDR's
57 memory access:
58
59 L = r_{n}*r_{n-1}*...*r_{1}*s_{0} + ... + r_{n}*s_{n-1} + s_{n}.
60
61 For an array A[10][20] with two subscript locations s0 and s1, the
62 linear memory access is 20 * s0 + s1: a stride of 1 in subscript s0
63 corresponds to a memory stride of 20.
64
65 OFFSET is a number of dimensions to prepend before the
66 subscript dimensions: s_0, s_1, ..., s_n.
67
68 Thus, the final linear expression has the following format:
69 0 .. 0_{offset} | 0 .. 0_{nit} | 0 .. 0_{gd} | 0 | c_0 c_1 ... c_n
70 where the expression itself is:
71 c_0 * s_0 + c_1 * s_1 + ... c_n * s_n. */
72
73 static ppl_Linear_Expression_t
74 build_linearized_memory_access (ppl_dimension_type offset, poly_dr_p pdr)
75 {
76 ppl_Linear_Expression_t res;
77 ppl_Linear_Expression_t le;
78 ppl_dimension_type i;
79 ppl_dimension_type first = pdr_subscript_dim (pdr, 0);
80 ppl_dimension_type last = pdr_subscript_dim (pdr, PDR_NB_SUBSCRIPTS (pdr));
81 Value size, sub_size;
82 graphite_dim_t dim = offset + pdr_dim (pdr);
83
84 ppl_new_Linear_Expression_with_dimension (&res, dim);
85
86 value_init (size);
87 value_set_si (size, 1);
88 value_init (sub_size);
89 value_set_si (sub_size, 1);
90
91 for (i = last - 1; i >= first; i--)
92 {
93 ppl_set_coef_gmp (res, i + offset, size);
94
95 ppl_new_Linear_Expression_with_dimension (&le, dim - offset);
96 ppl_set_coef (le, i, 1);
97 ppl_max_for_le_pointset (PDR_ACCESSES (pdr), le, sub_size);
98 value_multiply (size, size, sub_size);
99 ppl_delete_Linear_Expression (le);
100 }
101
102 value_clear (sub_size);
103 value_clear (size);
104 return res;
105 }
106
107 /* Builds a partial difference equations and inserts them
108 into pointset powerset polyhedron P. Polyhedron is assumed
109 to have the format: T|I|T'|I'|G|S|S'|l1|l2.
110
111 TIME_DEPTH is the time dimension w.r.t. which we are
112 differentiating.
113 OFFSET represents the number of dimensions between
114 columns t_{time_depth} and t'_{time_depth}.
115 DIM_SCTR is the number of scattering dimensions. It is
116 essentially the dimensionality of the T vector.
117
118 The following equations are inserted into the polyhedron P:
119 | t_1 = t_1'
120 | ...
121 | t_{time_depth-1} = t'_{time_depth-1}
122 | t_{time_depth} = t'_{time_depth} + 1
123 | t_{time_depth+1} = t'_{time_depth + 1}
124 | ...
125 | t_{dim_sctr} = t'_{dim_sctr}. */
126
127 static void
128 build_partial_difference (ppl_Pointset_Powerset_C_Polyhedron_t *p,
129 ppl_dimension_type time_depth,
130 ppl_dimension_type offset,
131 ppl_dimension_type dim_sctr)
132 {
133 ppl_Constraint_t new_cstr;
134 ppl_Linear_Expression_t le;
135 ppl_dimension_type i;
136 ppl_dimension_type dim;
137 ppl_Pointset_Powerset_C_Polyhedron_t temp;
138
139 /* Add the equality: t_{time_depth} = t'_{time_depth} + 1.
140 This is the core part of this alogrithm, since this
141 constraint asks for the memory access stride (difference)
142 between two consecutive points in time dimensions. */
143
144 ppl_Pointset_Powerset_C_Polyhedron_space_dimension (*p, &dim);
145 ppl_new_Linear_Expression_with_dimension (&le, dim);
146 ppl_set_coef (le, time_depth, 1);
147 ppl_set_coef (le, time_depth + offset, -1);
148 ppl_set_inhomogeneous (le, 1);
149 ppl_new_Constraint (&new_cstr, le, PPL_CONSTRAINT_TYPE_EQUAL);
150 ppl_Pointset_Powerset_C_Polyhedron_add_constraint (*p, new_cstr);
151 ppl_delete_Linear_Expression (le);
152 ppl_delete_Constraint (new_cstr);
153
154 /* Add equalities:
155 | t1 = t1'
156 | ...
157 | t_{time_depth-1} = t'_{time_depth-1}
158 | t_{time_depth+1} = t'_{time_depth+1}
159 | ...
160 | t_{dim_sctr} = t'_{dim_sctr}
161
162 This means that all the time dimensions are equal except for
163 time_depth, where the constraint is t_{depth} = t'_{depth} + 1
164 step. More to this: we should be carefull not to add equalities
165 to the 'coupled' dimensions, which happens when the one dimension
166 is stripmined dimension, and the other dimension corresponds
167 to the point loop inside stripmined dimension. */
168
169 ppl_new_Pointset_Powerset_C_Polyhedron_from_Pointset_Powerset_C_Polyhedron (&temp, *p);
170
171 for (i = 0; i < dim_sctr; i++)
172 if (i != time_depth)
173 {
174 ppl_new_Linear_Expression_with_dimension (&le, dim);
175 ppl_set_coef (le, i, 1);
176 ppl_set_coef (le, i + offset, -1);
177 ppl_new_Constraint (&new_cstr, le, PPL_CONSTRAINT_TYPE_EQUAL);
178 ppl_Pointset_Powerset_C_Polyhedron_add_constraint (temp, new_cstr);
179
180 if (ppl_Pointset_Powerset_C_Polyhedron_is_empty (temp))
181 {
182 ppl_delete_Pointset_Powerset_C_Polyhedron (temp);
183 ppl_new_Pointset_Powerset_C_Polyhedron_from_Pointset_Powerset_C_Polyhedron (&temp, *p);
184 }
185 else
186 ppl_Pointset_Powerset_C_Polyhedron_add_constraint (*p, new_cstr);
187 ppl_delete_Linear_Expression (le);
188 ppl_delete_Constraint (new_cstr);
189 }
190
191 ppl_delete_Pointset_Powerset_C_Polyhedron (temp);
192 }
193
194
195 /* Set STRIDE to the stride of PDR in memory by advancing by one in
196 the loop at DEPTH. */
197
198 static void
199 pdr_stride_in_loop (Value stride, graphite_dim_t depth, poly_dr_p pdr)
200 {
201 ppl_dimension_type time_depth;
202 ppl_Linear_Expression_t le, lma;
203 ppl_Constraint_t new_cstr;
204 ppl_dimension_type i, *map;
205 ppl_Pointset_Powerset_C_Polyhedron_t p1, p2, sctr;
206 graphite_dim_t nb_subscripts = PDR_NB_SUBSCRIPTS (pdr) + 1;
207 poly_bb_p pbb = PDR_PBB (pdr);
208 ppl_dimension_type offset = pbb_nb_scattering_transform (pbb)
209 + pbb_nb_local_vars (pbb)
210 + pbb_dim_iter_domain (pbb);
211 ppl_dimension_type offsetg = offset + pbb_nb_params (pbb);
212 ppl_dimension_type dim_sctr = pbb_nb_scattering_transform (pbb)
213 + pbb_nb_local_vars (pbb);
214 ppl_dimension_type dim_L1 = offset + offsetg + 2 * nb_subscripts;
215 ppl_dimension_type dim_L2 = offset + offsetg + 2 * nb_subscripts + 1;
216 ppl_dimension_type new_dim = offset + offsetg + 2 * nb_subscripts + 2;
217
218 /* The resulting polyhedron should have the following format:
219 T|I|T'|I'|G|S|S'|l1|l2
220 where:
221 | T = t_1..t_{dim_sctr}
222 | I = i_1..i_{dim_iter_domain}
223 | T'= t'_1..t'_{dim_sctr}
224 | I'= i'_1..i'_{dim_iter_domain}
225 | G = g_1..g_{nb_params}
226 | S = s_1..s_{nb_subscripts}
227 | S'= s'_1..s'_{nb_subscripts}
228 | l1 and l2 are scalars.
229
230 Some invariants:
231 offset = dim_sctr + dim_iter_domain + nb_local_vars
232 offsetg = dim_sctr + dim_iter_domain + nb_local_vars + nb_params. */
233
234 /* Construct the T|I|0|0|G|0|0|0|0 part. */
235 {
236 ppl_new_Pointset_Powerset_C_Polyhedron_from_C_Polyhedron
237 (&sctr, PBB_TRANSFORMED_SCATTERING (pbb));
238 ppl_Pointset_Powerset_C_Polyhedron_add_space_dimensions_and_embed
239 (sctr, 2 * nb_subscripts + 2);
240 ppl_insert_dimensions_pointset (sctr, offset, offset);
241 }
242
243 /* Construct the 0|I|0|0|G|S|0|0|0 part. */
244 {
245 ppl_new_Pointset_Powerset_C_Polyhedron_from_Pointset_Powerset_C_Polyhedron
246 (&p1, PDR_ACCESSES (pdr));
247 ppl_Pointset_Powerset_C_Polyhedron_add_space_dimensions_and_embed
248 (p1, nb_subscripts + 2);
249 ppl_insert_dimensions_pointset (p1, 0, dim_sctr);
250 ppl_insert_dimensions_pointset (p1, offset, offset);
251 }
252
253 /* Construct the 0|0|0|0|0|S|0|l1|0 part. */
254 {
255 lma = build_linearized_memory_access (offset + dim_sctr, pdr);
256 ppl_set_coef (lma, dim_L1, -1);
257 ppl_new_Constraint (&new_cstr, lma, PPL_CONSTRAINT_TYPE_EQUAL);
258 ppl_Pointset_Powerset_C_Polyhedron_add_constraint (p1, new_cstr);
259 ppl_delete_Linear_Expression (lma);
260 ppl_delete_Constraint (new_cstr);
261 }
262
263 /* Now intersect all the parts to get the polyhedron P1:
264 T|I|0|0|G|0|0|0 |0
265 0|I|0|0|G|S|0|0 |0
266 0|0|0|0|0|S|0|l1|0
267 ------------------
268 T|I|0|0|G|S|0|l1|0. */
269
270 ppl_Pointset_Powerset_C_Polyhedron_intersection_assign (p1, sctr);
271 ppl_delete_Pointset_Powerset_C_Polyhedron (sctr);
272
273 /* Build P2, which would have the following form:
274 0|0|T'|I'|G|0|S'|0|l2
275
276 P2 is built, by remapping the P1 polyhedron:
277 T|I|0|0|G|S|0|l1|0
278
279 using the following mapping:
280 T->T'
281 I->I'
282 S->S'
283 l1->l2. */
284 {
285 ppl_new_Pointset_Powerset_C_Polyhedron_from_Pointset_Powerset_C_Polyhedron
286 (&p2, p1);
287
288 map = ppl_new_id_map (new_dim);
289
290 /* TI -> T'I'. */
291 for (i = 0; i < offset; i++)
292 ppl_interchange (map, i, i + offset);
293
294 /* l1 -> l2. */
295 ppl_interchange (map, dim_L1, dim_L2);
296
297 /* S -> S'. */
298 for (i = 0; i < nb_subscripts; i++)
299 ppl_interchange (map, offset + offsetg + i,
300 offset + offsetg + nb_subscripts + i);
301
302 ppl_Pointset_Powerset_C_Polyhedron_map_space_dimensions (p2, map, new_dim);
303 free (map);
304 }
305
306 time_depth = psct_dynamic_dim (pbb, depth);
307
308 /* P1 = P1 inter P2. */
309 ppl_Pointset_Powerset_C_Polyhedron_intersection_assign (p1, p2);
310 build_partial_difference (&p1, time_depth, offset, dim_sctr);
311
312 /* Maximise the expression L2 - L1. */
313 {
314 ppl_new_Linear_Expression_with_dimension (&le, new_dim);
315 ppl_set_coef (le, dim_L2, 1);
316 ppl_set_coef (le, dim_L1, -1);
317 ppl_max_for_le_pointset (p1, le, stride);
318 }
319
320 if (dump_file && (dump_flags & TDF_DETAILS))
321 {
322 fprintf (dump_file, "\nStride in BB_%d, DR_%d, depth %d:",
323 pbb_index (pbb), PDR_ID (pdr), (int) depth);
324 value_print (dump_file, " %s ", stride);
325 }
326
327 ppl_delete_Pointset_Powerset_C_Polyhedron (p1);
328 ppl_delete_Pointset_Powerset_C_Polyhedron (p2);
329 ppl_delete_Linear_Expression (le);
330 }
331
332
333 /* Sets STRIDES to the sum of all the strides of the data references
334 accessed in LOOP at DEPTH. */
335
336 static void
337 memory_strides_in_loop_1 (lst_p loop, graphite_dim_t depth, Value strides)
338 {
339 int i, j;
340 lst_p l;
341 poly_dr_p pdr;
342 Value s, n;
343
344 value_init (s);
345 value_init (n);
346
347 for (j = 0; VEC_iterate (lst_p, LST_SEQ (loop), j, l); j++)
348 if (LST_LOOP_P (l))
349 memory_strides_in_loop_1 (l, depth, strides);
350 else
351 for (i = 0; VEC_iterate (poly_dr_p, PBB_DRS (LST_PBB (l)), i, pdr); i++)
352 {
353 pdr_stride_in_loop (s, depth, pdr);
354 value_set_si (n, PDR_NB_REFS (pdr));
355 value_multiply (s, s, n);
356 value_addto (strides, strides, s);
357 }
358
359 value_clear (s);
360 value_clear (n);
361 }
362
363 /* Sets STRIDES to the sum of all the strides of the data references
364 accessed in LOOP at DEPTH. */
365
366 static void
367 memory_strides_in_loop (lst_p loop, graphite_dim_t depth, Value strides)
368 {
369 if (value_mone_p (loop->memory_strides))
370 {
371 value_set_si (strides, 0);
372 memory_strides_in_loop_1 (loop, depth, strides);
373 }
374 else
375 value_assign (strides, loop->memory_strides);
376 }
377
378 /* Return true when the interchange of loops LOOP1 and LOOP2 is
379 profitable.
380
381 Example:
382
383 | int a[100][100];
384 |
385 | int
386 | foo (int N)
387 | {
388 | int j;
389 | int i;
390 |
391 | for (i = 0; i < N; i++)
392 | for (j = 0; j < N; j++)
393 | a[j][2 * i] += 1;
394 |
395 | return a[N][12];
396 | }
397
398 The data access A[j][i] is described like this:
399
400 | i j N a s0 s1 1
401 | 0 0 0 1 0 0 -5 = 0
402 | 0 -1 0 0 1 0 0 = 0
403 |-2 0 0 0 0 1 0 = 0
404 | 0 0 0 0 1 0 0 >= 0
405 | 0 0 0 0 0 1 0 >= 0
406 | 0 0 0 0 -1 0 100 >= 0
407 | 0 0 0 0 0 -1 100 >= 0
408
409 The linearized memory access L to A[100][100] is:
410
411 | i j N a s0 s1 1
412 | 0 0 0 0 100 1 0
413
414 TODO: the shown format is not valid as it does not show the fact
415 that the iteration domain "i j" is transformed using the scattering.
416
417 Next, to measure the impact of iterating once in loop "i", we build
418 a maximization problem: first, we add to DR accesses the dimensions
419 k, s2, s3, L1 = 100 * s0 + s1, L2, and D1: this is the polyhedron P1.
420 L1 and L2 are the linearized memory access functions.
421
422 | i j N a s0 s1 k s2 s3 L1 L2 D1 1
423 | 0 0 0 1 0 0 0 0 0 0 0 0 -5 = 0 alias = 5
424 | 0 -1 0 0 1 0 0 0 0 0 0 0 0 = 0 s0 = j
425 |-2 0 0 0 0 1 0 0 0 0 0 0 0 = 0 s1 = 2 * i
426 | 0 0 0 0 1 0 0 0 0 0 0 0 0 >= 0
427 | 0 0 0 0 0 1 0 0 0 0 0 0 0 >= 0
428 | 0 0 0 0 -1 0 0 0 0 0 0 0 100 >= 0
429 | 0 0 0 0 0 -1 0 0 0 0 0 0 100 >= 0
430 | 0 0 0 0 100 1 0 0 0 -1 0 0 0 = 0 L1 = 100 * s0 + s1
431
432 Then, we generate the polyhedron P2 by interchanging the dimensions
433 (s0, s2), (s1, s3), (L1, L2), (k, i)
434
435 | i j N a s0 s1 k s2 s3 L1 L2 D1 1
436 | 0 0 0 1 0 0 0 0 0 0 0 0 -5 = 0 alias = 5
437 | 0 -1 0 0 0 0 0 1 0 0 0 0 0 = 0 s2 = j
438 | 0 0 0 0 0 0 -2 0 1 0 0 0 0 = 0 s3 = 2 * k
439 | 0 0 0 0 0 0 0 1 0 0 0 0 0 >= 0
440 | 0 0 0 0 0 0 0 0 1 0 0 0 0 >= 0
441 | 0 0 0 0 0 0 0 -1 0 0 0 0 100 >= 0
442 | 0 0 0 0 0 0 0 0 -1 0 0 0 100 >= 0
443 | 0 0 0 0 0 0 0 100 1 0 -1 0 0 = 0 L2 = 100 * s2 + s3
444
445 then we add to P2 the equality k = i + 1:
446
447 |-1 0 0 0 0 0 1 0 0 0 0 0 -1 = 0 k = i + 1
448
449 and finally we maximize the expression "D1 = max (P1 inter P2, L2 - L1)".
450
451 Similarly, to determine the impact of one iteration on loop "j", we
452 interchange (k, j), we add "k = j + 1", and we compute D2 the
453 maximal value of the difference.
454
455 Finally, the profitability test is D1 < D2: if in the outer loop
456 the strides are smaller than in the inner loop, then it is
457 profitable to interchange the loops at DEPTH1 and DEPTH2. */
458
459 static bool
460 lst_interchange_profitable_p (lst_p loop1, lst_p loop2)
461 {
462 Value d1, d2;
463 bool res;
464
465 gcc_assert (loop1 && loop2
466 && LST_LOOP_P (loop1) && LST_LOOP_P (loop2)
467 && lst_depth (loop1) < lst_depth (loop2));
468
469 value_init (d1);
470 value_init (d2);
471
472 memory_strides_in_loop (loop1, lst_depth (loop1), d1);
473 memory_strides_in_loop (loop2, lst_depth (loop2), d2);
474
475 res = value_lt (d1, d2);
476
477 value_clear (d1);
478 value_clear (d2);
479
480 return res;
481 }
482
483 /* Interchanges the loops at DEPTH1 and DEPTH2 of the original
484 scattering and assigns the resulting polyhedron to the transformed
485 scattering. */
486
487 static void
488 pbb_interchange_loop_depths (graphite_dim_t depth1, graphite_dim_t depth2,
489 poly_bb_p pbb)
490 {
491 ppl_dimension_type i, dim;
492 ppl_dimension_type *map;
493 ppl_Polyhedron_t poly = PBB_TRANSFORMED_SCATTERING (pbb);
494 ppl_dimension_type dim1 = psct_dynamic_dim (pbb, depth1);
495 ppl_dimension_type dim2 = psct_dynamic_dim (pbb, depth2);
496
497 ppl_Polyhedron_space_dimension (poly, &dim);
498 map = (ppl_dimension_type *) XNEWVEC (ppl_dimension_type, dim);
499
500 for (i = 0; i < dim; i++)
501 map[i] = i;
502
503 map[dim1] = dim2;
504 map[dim2] = dim1;
505
506 ppl_Polyhedron_map_space_dimensions (poly, map, dim);
507 free (map);
508 }
509
510 /* Apply the interchange of loops at depths DEPTH1 and DEPTH2 to all
511 the statements below LST. */
512
513 static void
514 lst_apply_interchange (lst_p lst, int depth1, int depth2)
515 {
516 if (!lst)
517 return;
518
519 if (LST_LOOP_P (lst))
520 {
521 int i;
522 lst_p l;
523
524 for (i = 0; VEC_iterate (lst_p, LST_SEQ (lst), i, l); i++)
525 lst_apply_interchange (l, depth1, depth2);
526 }
527 else
528 pbb_interchange_loop_depths (depth1, depth2, LST_PBB (lst));
529 }
530
531 /* Return true when the nest starting at LOOP1 and ending on LOOP2 is
532 perfect: i.e. there are no sequence of statements. */
533
534 static bool
535 lst_perfectly_nested_p (lst_p loop1, lst_p loop2)
536 {
537 if (loop1 == loop2)
538 return true;
539
540 if (!LST_LOOP_P (loop1))
541 return false;
542
543 return VEC_length (lst_p, LST_SEQ (loop1)) == 1
544 && lst_perfectly_nested_p (VEC_index (lst_p, LST_SEQ (loop1), 0), loop2);
545 }
546
547 /* Transform the loop nest between LOOP1 and LOOP2 into a perfect
548 nest. To continue the naming tradition, this function is called
549 after perfect_nestify. NEST is set to the perfectly nested loop
550 that is created. BEFORE/AFTER are set to the loops distributed
551 before/after the loop NEST. */
552
553 static void
554 lst_perfect_nestify (lst_p loop1, lst_p loop2, lst_p *before,
555 lst_p *nest, lst_p *after)
556 {
557 poly_bb_p first, last;
558
559 gcc_assert (loop1 && loop2
560 && loop1 != loop2
561 && LST_LOOP_P (loop1) && LST_LOOP_P (loop2));
562
563 first = LST_PBB (lst_find_first_pbb (loop2));
564 last = LST_PBB (lst_find_last_pbb (loop2));
565
566 *before = copy_lst (loop1);
567 *nest = copy_lst (loop1);
568 *after = copy_lst (loop1);
569
570 lst_remove_all_before_including_pbb (*before, first, false);
571 lst_remove_all_before_including_pbb (*after, last, true);
572
573 lst_remove_all_before_excluding_pbb (*nest, first, true);
574 lst_remove_all_before_excluding_pbb (*nest, last, false);
575
576 if (lst_empty_p (*before))
577 {
578 free_lst (*before);
579 *before = NULL;
580 }
581 if (lst_empty_p (*after))
582 {
583 free_lst (*after);
584 *after = NULL;
585 }
586 if (lst_empty_p (*nest))
587 {
588 free_lst (*nest);
589 *nest = NULL;
590 }
591 }
592
593 /* Try to interchange LOOP1 with LOOP2 for all the statements of the
594 body of LOOP2. LOOP1 contains LOOP2. Return true if it did the
595 interchange. */
596
597 static bool
598 lst_try_interchange_loops (scop_p scop, lst_p loop1, lst_p loop2)
599 {
600 int depth1 = lst_depth (loop1);
601 int depth2 = lst_depth (loop2);
602 lst_p transformed;
603
604 lst_p before = NULL, nest = NULL, after = NULL;
605
606 if (!lst_interchange_profitable_p (loop1, loop2))
607 return false;
608
609 if (!lst_perfectly_nested_p (loop1, loop2))
610 lst_perfect_nestify (loop1, loop2, &before, &nest, &after);
611
612 lst_apply_interchange (loop2, depth1, depth2);
613
614 /* Sync the transformed LST information and the PBB scatterings
615 before using the scatterings in the data dependence analysis. */
616 if (before || nest || after)
617 {
618 transformed = lst_substitute_3 (SCOP_TRANSFORMED_SCHEDULE (scop), loop1,
619 before, nest, after);
620 lst_update_scattering (transformed);
621 free_lst (transformed);
622 }
623
624 if (graphite_legal_transform (scop))
625 {
626 if (dump_file && (dump_flags & TDF_DETAILS))
627 fprintf (dump_file,
628 "Loops at depths %d and %d will be interchanged.\n",
629 depth1, depth2);
630
631 /* Transform the SCOP_TRANSFORMED_SCHEDULE of the SCOP. */
632 lst_insert_in_sequence (before, loop1, true);
633 lst_insert_in_sequence (after, loop1, false);
634
635 if (nest)
636 {
637 lst_replace (loop1, nest);
638 free_lst (loop1);
639 }
640
641 return true;
642 }
643
644 /* Undo the transform. */
645 free_lst (before);
646 free_lst (nest);
647 free_lst (after);
648 lst_apply_interchange (loop2, depth2, depth1);
649 return false;
650 }
651
652 /* Selects the inner loop in LST_SEQ (INNER_FATHER) to be interchanged
653 with the loop OUTER in LST_SEQ (OUTER_FATHER). */
654
655 static bool
656 lst_interchange_select_inner (scop_p scop, lst_p outer_father, int outer,
657 lst_p inner_father)
658 {
659 int inner;
660 lst_p loop1, loop2;
661
662 gcc_assert (outer_father
663 && LST_LOOP_P (outer_father)
664 && LST_LOOP_P (VEC_index (lst_p, LST_SEQ (outer_father), outer))
665 && inner_father
666 && LST_LOOP_P (inner_father));
667
668 loop1 = VEC_index (lst_p, LST_SEQ (outer_father), outer);
669
670 for (inner = 0; VEC_iterate (lst_p, LST_SEQ (inner_father), inner, loop2); inner++)
671 if (LST_LOOP_P (loop2)
672 && (lst_try_interchange_loops (scop, loop1, loop2)
673 || lst_interchange_select_inner (scop, outer_father, outer, loop2)))
674 return true;
675
676 return false;
677 }
678
679 /* Interchanges all the loops of LOOP and the loops of its body that
680 are considered profitable to interchange. Return true if it did
681 interchanged some loops. OUTER is the index in LST_SEQ (LOOP) that
682 points to the next outer loop to be considered for interchange. */
683
684 static bool
685 lst_interchange_select_outer (scop_p scop, lst_p loop, int outer)
686 {
687 lst_p l;
688 bool res = false;
689 int i = 0;
690 lst_p father;
691
692 if (!loop || !LST_LOOP_P (loop))
693 return false;
694
695 father = LST_LOOP_FATHER (loop);
696 if (father)
697 {
698 while (lst_interchange_select_inner (scop, father, outer, loop))
699 {
700 res = true;
701 loop = VEC_index (lst_p, LST_SEQ (father), outer);
702 }
703 }
704
705 if (LST_LOOP_P (loop))
706 for (i = 0; VEC_iterate (lst_p, LST_SEQ (loop), i, l); i++)
707 if (LST_LOOP_P (l))
708 res |= lst_interchange_select_outer (scop, l, i);
709
710 return res;
711 }
712
713 /* Interchanges all the loop depths that are considered profitable for SCOP. */
714
715 bool
716 scop_do_interchange (scop_p scop)
717 {
718 bool res = lst_interchange_select_outer
719 (scop, SCOP_TRANSFORMED_SCHEDULE (scop), 0);
720
721 lst_update_scattering (SCOP_TRANSFORMED_SCHEDULE (scop));
722
723 return res;
724 }
725
726
727 #endif
728