]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/graphite-poly.h
Remove various unused items.
[thirdparty/gcc.git] / gcc / graphite-poly.h
1 /* Graphite polyhedral representation.
2 Copyright (C) 2009-2013 Free Software Foundation, Inc.
3 Contributed by Sebastian Pop <sebastian.pop@amd.com> and
4 Tobias Grosser <grosser@fim.uni-passau.de>.
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3, or (at your option)
11 any later version.
12
13 GCC is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
21
22 #ifndef GCC_GRAPHITE_POLY_H
23 #define GCC_GRAPHITE_POLY_H
24
25 typedef struct poly_dr *poly_dr_p;
26
27 typedef struct poly_bb *poly_bb_p;
28
29 typedef struct scop *scop_p;
30
31 typedef unsigned graphite_dim_t;
32
33 static inline graphite_dim_t pbb_dim_iter_domain (const struct poly_bb *);
34 static inline graphite_dim_t pbb_nb_params (const struct poly_bb *);
35 static inline graphite_dim_t scop_nb_params (scop_p);
36
37 /* A data reference can write or read some memory or we
38 just know it may write some memory. */
39 enum poly_dr_type
40 {
41 PDR_READ,
42 /* PDR_MAY_READs are represented using PDR_READS. This does not
43 limit the expressiveness. */
44 PDR_WRITE,
45 PDR_MAY_WRITE
46 };
47
48 struct poly_dr
49 {
50 /* An identifier for this PDR. */
51 int id;
52
53 /* The number of data refs identical to this one in the PBB. */
54 int nb_refs;
55
56 /* A pointer to compiler's data reference description. */
57 void *compiler_dr;
58
59 /* A pointer to the PBB that contains this data reference. */
60 poly_bb_p pbb;
61
62 enum poly_dr_type type;
63
64 /* The access polyhedron contains the polyhedral space this data
65 reference will access.
66
67 The polyhedron contains these dimensions:
68
69 - The alias set (a):
70 Every memory access is classified in at least one alias set.
71
72 - The subscripts (s_0, ..., s_n):
73 The memory is accessed using zero or more subscript dimensions.
74
75 - The iteration domain (variables and parameters)
76
77 Do not hardcode the dimensions. Use the following accessor functions:
78 - pdr_alias_set_dim
79 - pdr_subscript_dim
80 - pdr_iterator_dim
81 - pdr_parameter_dim
82
83 Example:
84
85 | int A[1335][123];
86 | int *p = malloc ();
87 |
88 | k = ...
89 | for i
90 | {
91 | if (unknown_function ())
92 | p = A;
93 | ... = p[?][?];
94 | for j
95 | A[i][j+k] = m;
96 | }
97
98 The data access A[i][j+k] in alias set "5" is described like this:
99
100 | i j k a s0 s1 1
101 | 0 0 0 1 0 0 -5 = 0
102 |-1 0 0 0 1 0 0 = 0
103 | 0 -1 -1 0 0 1 0 = 0
104 | 0 0 0 0 1 0 0 >= 0 # The last four lines describe the
105 | 0 0 0 0 0 1 0 >= 0 # array size.
106 | 0 0 0 0 -1 0 1335 >= 0
107 | 0 0 0 0 0 -1 123 >= 0
108
109 The pointer "*p" in alias set "5" and "7" is described as a union of
110 polyhedron:
111
112
113 | i k a s0 1
114 | 0 0 1 0 -5 = 0
115 | 0 0 0 1 0 >= 0
116
117 "or"
118
119 | i k a s0 1
120 | 0 0 1 0 -7 = 0
121 | 0 0 0 1 0 >= 0
122
123 "*p" accesses all of the object allocated with 'malloc'.
124
125 The scalar data access "m" is represented as an array with zero subscript
126 dimensions.
127
128 | i j k a 1
129 | 0 0 0 -1 15 = 0
130
131 The difference between the graphite internal format for access data and
132 the OpenSop format is in the order of columns.
133 Instead of having:
134
135 | i j k a s0 s1 1
136 | 0 0 0 1 0 0 -5 = 0
137 |-1 0 0 0 1 0 0 = 0
138 | 0 -1 -1 0 0 1 0 = 0
139 | 0 0 0 0 1 0 0 >= 0 # The last four lines describe the
140 | 0 0 0 0 0 1 0 >= 0 # array size.
141 | 0 0 0 0 -1 0 1335 >= 0
142 | 0 0 0 0 0 -1 123 >= 0
143
144 In OpenScop we have:
145
146 | a s0 s1 i j k 1
147 | 1 0 0 0 0 0 -5 = 0
148 | 0 1 0 -1 0 0 0 = 0
149 | 0 0 1 0 -1 -1 0 = 0
150 | 0 1 0 0 0 0 0 >= 0 # The last four lines describe the
151 | 0 0 1 0 0 0 0 >= 0 # array size.
152 | 0 -1 0 0 0 0 1335 >= 0
153 | 0 0 -1 0 0 0 123 >= 0
154
155 The OpenScop access function is printed as follows:
156
157 | 1 # The number of disjunct components in a union of access functions.
158 | R C O I L P # Described bellow.
159 | a s0 s1 i j k 1
160 | 1 0 0 0 0 0 -5 = 0
161 | 0 1 0 -1 0 0 0 = 0
162 | 0 0 1 0 -1 -1 0 = 0
163 | 0 1 0 0 0 0 0 >= 0 # The last four lines describe the
164 | 0 0 1 0 0 0 0 >= 0 # array size.
165 | 0 -1 0 0 0 0 1335 >= 0
166 | 0 0 -1 0 0 0 123 >= 0
167
168 Where:
169 - R: Number of rows.
170 - C: Number of columns.
171 - O: Number of output dimensions = alias set + number of subscripts.
172 - I: Number of input dimensions (iterators).
173 - L: Number of local (existentially quantified) dimensions.
174 - P: Number of parameters.
175
176 In the example, the vector "R C O I L P" is "7 7 3 2 0 1". */
177 isl_map *accesses;
178 isl_set *extent;
179
180 /* Data reference's base object set number, we must assure 2 pdrs are in the
181 same base object set before dependency checking. */
182 int dr_base_object_set;
183
184 /* The number of subscripts. */
185 graphite_dim_t nb_subscripts;
186 };
187
188 #define PDR_ID(PDR) (PDR->id)
189 #define PDR_NB_REFS(PDR) (PDR->nb_refs)
190 #define PDR_CDR(PDR) (PDR->compiler_dr)
191 #define PDR_PBB(PDR) (PDR->pbb)
192 #define PDR_TYPE(PDR) (PDR->type)
193 #define PDR_ACCESSES(PDR) (NULL)
194 #define PDR_BASE_OBJECT_SET(PDR) (PDR->dr_base_object_set)
195 #define PDR_NB_SUBSCRIPTS(PDR) (PDR->nb_subscripts)
196
197 void new_poly_dr (poly_bb_p, int, enum poly_dr_type, void *,
198 graphite_dim_t, isl_map *, isl_set *);
199 void free_poly_dr (poly_dr_p);
200 void debug_pdr (poly_dr_p, int);
201 void print_pdr (FILE *, poly_dr_p, int);
202 static inline scop_p pdr_scop (poly_dr_p pdr);
203
204 /* The dimension of the iteration domain of the scop of PDR. */
205
206 static inline graphite_dim_t
207 pdr_dim_iter_domain (poly_dr_p pdr)
208 {
209 return pbb_dim_iter_domain (PDR_PBB (pdr));
210 }
211
212 /* The number of parameters of the scop of PDR. */
213
214 static inline graphite_dim_t
215 pdr_nb_params (poly_dr_p pdr)
216 {
217 return scop_nb_params (pdr_scop (pdr));
218 }
219
220 /* The dimension of the alias set in PDR. */
221
222 static inline graphite_dim_t
223 pdr_alias_set_dim (poly_dr_p pdr)
224 {
225 poly_bb_p pbb = PDR_PBB (pdr);
226
227 return pbb_dim_iter_domain (pbb) + pbb_nb_params (pbb);
228 }
229
230 /* The dimension in PDR containing subscript S. */
231
232 static inline graphite_dim_t
233 pdr_subscript_dim (poly_dr_p pdr, graphite_dim_t s)
234 {
235 poly_bb_p pbb = PDR_PBB (pdr);
236
237 return pbb_dim_iter_domain (pbb) + pbb_nb_params (pbb) + 1 + s;
238 }
239
240 /* The dimension in PDR containing the loop iterator ITER. */
241
242 static inline graphite_dim_t
243 pdr_iterator_dim (poly_dr_p pdr ATTRIBUTE_UNUSED, graphite_dim_t iter)
244 {
245 return iter;
246 }
247
248 /* The dimension in PDR containing parameter PARAM. */
249
250 static inline graphite_dim_t
251 pdr_parameter_dim (poly_dr_p pdr, graphite_dim_t param)
252 {
253 poly_bb_p pbb = PDR_PBB (pdr);
254
255 return pbb_dim_iter_domain (pbb) + param;
256 }
257
258 /* Returns true when PDR is a "read". */
259
260 static inline bool
261 pdr_read_p (poly_dr_p pdr)
262 {
263 return PDR_TYPE (pdr) == PDR_READ;
264 }
265
266 /* Returns true when PDR is a "write". */
267
268 static inline bool
269 pdr_write_p (poly_dr_p pdr)
270 {
271 return PDR_TYPE (pdr) == PDR_WRITE;
272 }
273
274 /* Returns true when PDR is a "may write". */
275
276 static inline bool
277 pdr_may_write_p (poly_dr_p pdr)
278 {
279 return PDR_TYPE (pdr) == PDR_MAY_WRITE;
280 }
281
282 /* Return true when PDR1 and PDR2 are similar data accesses: they have
283 the same base array, and the same access functions. */
284
285 static inline bool
286 same_pdr_p (poly_dr_p pdr1, poly_dr_p pdr2)
287 {
288 return PDR_NB_SUBSCRIPTS (pdr1) == PDR_NB_SUBSCRIPTS (pdr2)
289 && PDR_BASE_OBJECT_SET (pdr1) == PDR_BASE_OBJECT_SET (pdr2);
290 }
291
292 typedef struct poly_scattering *poly_scattering_p;
293
294 struct poly_scattering
295 {
296 /* The number of local variables. */
297 int nb_local_variables;
298
299 /* The number of scattering dimensions. */
300 int nb_scattering;
301 };
302
303 /* POLY_BB represents a blackbox in the polyhedral model. */
304
305 struct poly_bb
306 {
307 /* Pointer to a basic block or a statement in the compiler. */
308 void *black_box;
309
310 /* Pointer to the SCOP containing this PBB. */
311 scop_p scop;
312
313 /* The iteration domain of this bb. The layout of this polyhedron
314 is I|G with I the iteration domain, G the context parameters.
315
316 Example:
317
318 for (i = a - 7*b + 8; i <= 3*a + 13*b + 20; i++)
319 for (j = 2; j <= 2*i + 5; j++)
320 for (k = 0; k <= 5; k++)
321 S (i,j,k)
322
323 Loop iterators: i, j, k
324 Parameters: a, b
325
326 | i >= a - 7b + 8
327 | i <= 3a + 13b + 20
328 | j >= 2
329 | j <= 2i + 5
330 | k >= 0
331 | k <= 5
332
333 The number of variables in the DOMAIN may change and is not
334 related to the number of loops in the original code. */
335 isl_set *domain;
336
337 /* The data references we access. */
338 vec<poly_dr_p> drs;
339
340 /* The original scattering. */
341 poly_scattering_p _original;
342 isl_map *schedule;
343
344 /* The transformed scattering. */
345 poly_scattering_p _transformed;
346 isl_map *transformed;
347
348 /* A copy of the transformed scattering. */
349 poly_scattering_p _saved;
350 isl_map *saved;
351
352 /* True when this PBB contains only a reduction statement. */
353 bool is_reduction;
354 };
355
356 #define PBB_BLACK_BOX(PBB) ((gimple_bb_p) PBB->black_box)
357 #define PBB_SCOP(PBB) (PBB->scop)
358 #define PBB_DOMAIN(PBB) (NULL)
359 #define PBB_DRS(PBB) (PBB->drs)
360 #define PBB_ORIGINAL(PBB) (PBB->_original)
361 #define PBB_ORIGINAL_SCATTERING(PBB) (NULL)
362 #define PBB_TRANSFORMED(PBB) (PBB->_transformed)
363 #define PBB_TRANSFORMED_SCATTERING(PBB) (NULL)
364 #define PBB_SAVED(PBB) (PBB->_saved)
365 /* XXX isl if we ever need local vars in the scatter, we can't use the
366 out dimension of transformed to count the scatterting transform dimension.
367 */
368 #define PBB_NB_LOCAL_VARIABLES(PBB) (0)
369 #define PBB_NB_SCATTERING_TRANSFORM(PBB) (isl_map_n_out (PBB->transformed))
370 #define PBB_IS_REDUCTION(PBB) (PBB->is_reduction)
371
372 extern poly_bb_p new_poly_bb (scop_p, void *);
373 extern void free_poly_bb (poly_bb_p);
374 extern void debug_loop_vec (poly_bb_p);
375 extern void schedule_to_scattering (poly_bb_p, int);
376 extern void print_pbb_domain (FILE *, poly_bb_p, int);
377 extern void print_pbb (FILE *, poly_bb_p, int);
378 extern void print_scop_context (FILE *, scop_p, int);
379 extern void print_scop (FILE *, scop_p, int);
380 extern void print_cloog (FILE *, scop_p, int);
381 extern void debug_pbb_domain (poly_bb_p, int);
382 extern void debug_pbb (poly_bb_p, int);
383 extern void print_pdrs (FILE *, poly_bb_p, int);
384 extern void debug_pdrs (poly_bb_p, int);
385 extern void debug_scop_context (scop_p, int);
386 extern void debug_scop (scop_p, int);
387 extern void debug_cloog (scop_p, int);
388 extern void print_scop_params (FILE *, scop_p, int);
389 extern void debug_scop_params (scop_p, int);
390 extern void print_iteration_domain (FILE *, poly_bb_p, int);
391 extern void print_iteration_domains (FILE *, scop_p, int);
392 extern void debug_iteration_domain (poly_bb_p, int);
393 extern void debug_iteration_domains (scop_p, int);
394 extern void print_isl_set (FILE *, isl_set *);
395 extern void print_isl_map (FILE *, isl_map *);
396 extern void print_isl_aff (FILE *, isl_aff *);
397 extern void print_isl_constraint (FILE *, isl_constraint *);
398 extern void debug_isl_set (isl_set *);
399 extern void debug_isl_map (isl_map *);
400 extern void debug_isl_aff (isl_aff *);
401 extern void debug_isl_constraint (isl_constraint *);
402 extern int scop_do_interchange (scop_p);
403 extern int scop_do_strip_mine (scop_p, int);
404 extern bool scop_do_block (scop_p);
405 extern bool flatten_all_loops (scop_p);
406 extern bool optimize_isl(scop_p);
407 extern void pbb_number_of_iterations_at_time (poly_bb_p, graphite_dim_t, mpz_t);
408 extern void debug_gmp_value (mpz_t);
409
410 /* Return the number of write data references in PBB. */
411
412 static inline int
413 number_of_write_pdrs (poly_bb_p pbb)
414 {
415 int res = 0;
416 int i;
417 poly_dr_p pdr;
418
419 for (i = 0; PBB_DRS (pbb).iterate (i, &pdr); i++)
420 if (PDR_TYPE (pdr) == PDR_WRITE)
421 res++;
422
423 return res;
424 }
425
426 /* Returns a gimple_bb from BB. */
427
428 static inline gimple_bb_p
429 gbb_from_bb (basic_block bb)
430 {
431 return (gimple_bb_p) bb->aux;
432 }
433
434 /* The poly_bb of the BB. */
435
436 static inline poly_bb_p
437 pbb_from_bb (basic_block bb)
438 {
439 return GBB_PBB (gbb_from_bb (bb));
440 }
441
442 /* The basic block of the PBB. */
443
444 static inline basic_block
445 pbb_bb (poly_bb_p pbb)
446 {
447 return GBB_BB (PBB_BLACK_BOX (pbb));
448 }
449
450 /* The index of the PBB. */
451
452 static inline int
453 pbb_index (poly_bb_p pbb)
454 {
455 return pbb_bb (pbb)->index;
456 }
457
458 /* The loop of the PBB. */
459
460 static inline loop_p
461 pbb_loop (poly_bb_p pbb)
462 {
463 return gbb_loop (PBB_BLACK_BOX (pbb));
464 }
465
466 /* The scop that contains the PDR. */
467
468 static inline scop_p
469 pdr_scop (poly_dr_p pdr)
470 {
471 return PBB_SCOP (PDR_PBB (pdr));
472 }
473
474 /* Set black box of PBB to BLACKBOX. */
475
476 static inline void
477 pbb_set_black_box (poly_bb_p pbb, void *black_box)
478 {
479 pbb->black_box = black_box;
480 }
481
482 /* The number of loops around PBB: the dimension of the iteration
483 domain. */
484
485 static inline graphite_dim_t
486 pbb_dim_iter_domain (const struct poly_bb *pbb)
487 {
488 return isl_set_dim (pbb->domain, isl_dim_set);
489 }
490
491 /* The number of params defined in PBB. */
492
493 static inline graphite_dim_t
494 pbb_nb_params (const struct poly_bb *pbb)
495 {
496 scop_p scop = PBB_SCOP (pbb);
497
498 return scop_nb_params (scop);
499 }
500
501 /* The number of scattering dimensions in the SCATTERING polyhedron
502 of a PBB for a given SCOP. */
503
504 static inline graphite_dim_t
505 pbb_nb_scattering_orig (const struct poly_bb *pbb)
506 {
507 return 2 * pbb_dim_iter_domain (pbb) + 1;
508 }
509
510 /* The number of scattering dimensions in PBB. */
511
512 static inline graphite_dim_t
513 pbb_nb_scattering_transform (const struct poly_bb *pbb)
514 {
515 return PBB_NB_SCATTERING_TRANSFORM (pbb);
516 }
517
518 /* The number of dynamic scattering dimensions in PBB. */
519
520 static inline graphite_dim_t
521 pbb_nb_dynamic_scattering_transform (const struct poly_bb *pbb)
522 {
523 /* This function requires the 2d + 1 scattering format to be
524 invariant during all transformations. */
525 gcc_assert (PBB_NB_SCATTERING_TRANSFORM (pbb) % 2);
526 return PBB_NB_SCATTERING_TRANSFORM (pbb) / 2;
527 }
528
529 /* Returns the number of local variables used in the transformed
530 scattering polyhedron of PBB. */
531
532 static inline graphite_dim_t
533 pbb_nb_local_vars (const struct poly_bb *pbb ATTRIBUTE_UNUSED)
534 {
535 /* For now we do not have any local variables, as we do not do strip
536 mining for example. */
537 return PBB_NB_LOCAL_VARIABLES (pbb);
538 }
539
540 /* The dimension in the domain of PBB containing the iterator ITER. */
541
542 static inline graphite_dim_t
543 pbb_iterator_dim (poly_bb_p pbb ATTRIBUTE_UNUSED, graphite_dim_t iter)
544 {
545 return iter;
546 }
547
548 /* The dimension in the domain of PBB containing the iterator ITER. */
549
550 static inline graphite_dim_t
551 pbb_parameter_dim (poly_bb_p pbb, graphite_dim_t param)
552 {
553 return param
554 + pbb_dim_iter_domain (pbb);
555 }
556
557 /* The dimension in the original scattering polyhedron of PBB
558 containing the scattering iterator SCATTER. */
559
560 static inline graphite_dim_t
561 psco_scattering_dim (poly_bb_p pbb ATTRIBUTE_UNUSED, graphite_dim_t scatter)
562 {
563 gcc_assert (scatter < pbb_nb_scattering_orig (pbb));
564 return scatter;
565 }
566
567 /* The dimension in the transformed scattering polyhedron of PBB
568 containing the scattering iterator SCATTER. */
569
570 static inline graphite_dim_t
571 psct_scattering_dim (poly_bb_p pbb ATTRIBUTE_UNUSED, graphite_dim_t scatter)
572 {
573 gcc_assert (scatter <= pbb_nb_scattering_transform (pbb));
574 return scatter;
575 }
576
577 /* The dimension in the transformed scattering polyhedron of PBB of
578 the local variable LV. */
579
580 static inline graphite_dim_t
581 psct_local_var_dim (poly_bb_p pbb, graphite_dim_t lv)
582 {
583 gcc_assert (lv <= pbb_nb_local_vars (pbb));
584 return lv + pbb_nb_scattering_transform (pbb);
585 }
586
587 /* The dimension in the original scattering polyhedron of PBB
588 containing the loop iterator ITER. */
589
590 static inline graphite_dim_t
591 psco_iterator_dim (poly_bb_p pbb, graphite_dim_t iter)
592 {
593 gcc_assert (iter < pbb_dim_iter_domain (pbb));
594 return iter + pbb_nb_scattering_orig (pbb);
595 }
596
597 /* The dimension in the transformed scattering polyhedron of PBB
598 containing the loop iterator ITER. */
599
600 static inline graphite_dim_t
601 psct_iterator_dim (poly_bb_p pbb, graphite_dim_t iter)
602 {
603 gcc_assert (iter < pbb_dim_iter_domain (pbb));
604 return iter
605 + pbb_nb_scattering_transform (pbb)
606 + pbb_nb_local_vars (pbb);
607 }
608
609 /* The dimension in the original scattering polyhedron of PBB
610 containing parameter PARAM. */
611
612 static inline graphite_dim_t
613 psco_parameter_dim (poly_bb_p pbb, graphite_dim_t param)
614 {
615 gcc_assert (param < pbb_nb_params (pbb));
616 return param
617 + pbb_nb_scattering_orig (pbb)
618 + pbb_dim_iter_domain (pbb);
619 }
620
621 /* The dimension in the transformed scattering polyhedron of PBB
622 containing parameter PARAM. */
623
624 static inline graphite_dim_t
625 psct_parameter_dim (poly_bb_p pbb, graphite_dim_t param)
626 {
627 gcc_assert (param < pbb_nb_params (pbb));
628 return param
629 + pbb_nb_scattering_transform (pbb)
630 + pbb_nb_local_vars (pbb)
631 + pbb_dim_iter_domain (pbb);
632 }
633
634 /* The scattering dimension of PBB corresponding to the dynamic level
635 LEVEL. */
636
637 static inline graphite_dim_t
638 psct_dynamic_dim (poly_bb_p pbb, graphite_dim_t level)
639 {
640 graphite_dim_t result = 1 + 2 * level;
641
642 gcc_assert (result < pbb_nb_scattering_transform (pbb));
643 return result;
644 }
645
646 /* The scattering dimension of PBB corresponding to the static
647 sequence of the loop level LEVEL. */
648
649 static inline graphite_dim_t
650 psct_static_dim (poly_bb_p pbb, graphite_dim_t level)
651 {
652 graphite_dim_t result = 2 * level;
653
654 gcc_assert (result < pbb_nb_scattering_transform (pbb));
655 return result;
656 }
657
658 /* Adds to the transformed scattering polyhedron of PBB a new local
659 variable and returns its index. */
660
661 static inline graphite_dim_t
662 psct_add_local_variable (poly_bb_p pbb ATTRIBUTE_UNUSED)
663 {
664 gcc_unreachable ();
665 return 0;
666 }
667
668 typedef struct lst *lst_p;
669
670 /* Loops and Statements Tree. */
671 struct lst {
672
673 /* LOOP_P is true when an LST node is a loop. */
674 bool loop_p;
675
676 /* A pointer to the loop that contains this node. */
677 lst_p loop_father;
678
679 /* The sum of all the memory strides for an LST loop. */
680 mpz_t memory_strides;
681
682 /* Loop nodes contain a sequence SEQ of LST nodes, statements
683 contain a pointer to their polyhedral representation PBB. */
684 union {
685 poly_bb_p pbb;
686 vec<lst_p> seq;
687 } node;
688 };
689
690 #define LST_LOOP_P(LST) ((LST)->loop_p)
691 #define LST_LOOP_FATHER(LST) ((LST)->loop_father)
692 #define LST_PBB(LST) ((LST)->node.pbb)
693 #define LST_SEQ(LST) ((LST)->node.seq)
694 #define LST_LOOP_MEMORY_STRIDES(LST) ((LST)->memory_strides)
695
696 void scop_to_lst (scop_p);
697 void print_lst (FILE *, lst_p, int);
698 void debug_lst (lst_p);
699 void dot_lst (lst_p);
700
701 /* Creates a new LST loop with SEQ. */
702
703 static inline lst_p
704 new_lst_loop (vec<lst_p> seq)
705 {
706 lst_p lst = XNEW (struct lst);
707 int i;
708 lst_p l;
709
710 LST_LOOP_P (lst) = true;
711 LST_SEQ (lst) = seq;
712 LST_LOOP_FATHER (lst) = NULL;
713 mpz_init (LST_LOOP_MEMORY_STRIDES (lst));
714 mpz_set_si (LST_LOOP_MEMORY_STRIDES (lst), -1);
715
716 for (i = 0; seq.iterate (i, &l); i++)
717 LST_LOOP_FATHER (l) = lst;
718
719 return lst;
720 }
721
722 /* Creates a new LST statement with PBB. */
723
724 static inline lst_p
725 new_lst_stmt (poly_bb_p pbb)
726 {
727 lst_p lst = XNEW (struct lst);
728
729 LST_LOOP_P (lst) = false;
730 LST_PBB (lst) = pbb;
731 LST_LOOP_FATHER (lst) = NULL;
732 return lst;
733 }
734
735 /* Frees the memory used by LST. */
736
737 static inline void
738 free_lst (lst_p lst)
739 {
740 if (!lst)
741 return;
742
743 if (LST_LOOP_P (lst))
744 {
745 int i;
746 lst_p l;
747
748 for (i = 0; LST_SEQ (lst).iterate (i, &l); i++)
749 free_lst (l);
750
751 mpz_clear (LST_LOOP_MEMORY_STRIDES (lst));
752 LST_SEQ (lst).release ();
753 }
754
755 free (lst);
756 }
757
758 /* Returns a copy of LST. */
759
760 static inline lst_p
761 copy_lst (lst_p lst)
762 {
763 if (!lst)
764 return NULL;
765
766 if (LST_LOOP_P (lst))
767 {
768 int i;
769 lst_p l;
770 vec<lst_p> seq;
771 seq.create (5);
772
773 for (i = 0; LST_SEQ (lst).iterate (i, &l); i++)
774 seq.safe_push (copy_lst (l));
775
776 return new_lst_loop (seq);
777 }
778
779 return new_lst_stmt (LST_PBB (lst));
780 }
781
782 /* Adds a new loop under the loop LST. */
783
784 static inline void
785 lst_add_loop_under_loop (lst_p lst)
786 {
787 vec<lst_p> seq;
788 seq.create (1);
789 lst_p l = new_lst_loop (LST_SEQ (lst));
790
791 gcc_assert (LST_LOOP_P (lst));
792
793 LST_LOOP_FATHER (l) = lst;
794 seq.quick_push (l);
795 LST_SEQ (lst) = seq;
796 }
797
798 /* Returns the loop depth of LST. */
799
800 static inline int
801 lst_depth (lst_p lst)
802 {
803 if (!lst)
804 return -2;
805
806 /* The depth of the outermost "fake" loop is -1. This outermost
807 loop does not have a loop father and it is just a container, as
808 in the loop representation of GCC. */
809 if (!LST_LOOP_FATHER (lst))
810 return -1;
811
812 return lst_depth (LST_LOOP_FATHER (lst)) + 1;
813 }
814
815 /* Returns the Dewey number for LST. */
816
817 static inline int
818 lst_dewey_number (lst_p lst)
819 {
820 int i;
821 lst_p l;
822
823 if (!lst)
824 return -1;
825
826 if (!LST_LOOP_FATHER (lst))
827 return 0;
828
829 FOR_EACH_VEC_ELT (LST_SEQ (LST_LOOP_FATHER (lst)), i, l)
830 if (l == lst)
831 return i;
832
833 return -1;
834 }
835
836 /* Returns the Dewey number of LST at depth DEPTH. */
837
838 static inline int
839 lst_dewey_number_at_depth (lst_p lst, int depth)
840 {
841 gcc_assert (lst && depth >= 0 && lst_depth (lst) <= depth);
842
843 if (lst_depth (lst) == depth)
844 return lst_dewey_number (lst);
845
846 return lst_dewey_number_at_depth (LST_LOOP_FATHER (lst), depth);
847 }
848
849 /* Returns the predecessor of LST in the sequence of its loop father.
850 Returns NULL if LST is the first statement in the sequence. */
851
852 static inline lst_p
853 lst_pred (lst_p lst)
854 {
855 int dewey;
856 lst_p father;
857
858 if (!lst || !LST_LOOP_FATHER (lst))
859 return NULL;
860
861 dewey = lst_dewey_number (lst);
862 if (dewey == 0)
863 return NULL;
864
865 father = LST_LOOP_FATHER (lst);
866 return LST_SEQ (father)[dewey - 1];
867 }
868
869 /* Returns the successor of LST in the sequence of its loop father.
870 Returns NULL if there is none. */
871
872 static inline lst_p
873 lst_succ (lst_p lst)
874 {
875 int dewey;
876 lst_p father;
877
878 if (!lst || !LST_LOOP_FATHER (lst))
879 return NULL;
880
881 dewey = lst_dewey_number (lst);
882 father = LST_LOOP_FATHER (lst);
883
884 if (LST_SEQ (father).length () == (unsigned) dewey + 1)
885 return NULL;
886
887 return LST_SEQ (father)[dewey + 1];
888 }
889
890
891 /* Return the LST node corresponding to PBB. */
892
893 static inline lst_p
894 lst_find_pbb (lst_p lst, poly_bb_p pbb)
895 {
896 int i;
897 lst_p l;
898
899 if (!lst)
900 return NULL;
901
902 if (!LST_LOOP_P (lst))
903 return (pbb == LST_PBB (lst)) ? lst : NULL;
904
905 for (i = 0; LST_SEQ (lst).iterate (i, &l); i++)
906 {
907 lst_p res = lst_find_pbb (l, pbb);
908 if (res)
909 return res;
910 }
911
912 return NULL;
913 }
914
915 /* Return the LST node corresponding to the loop around STMT at depth
916 LOOP_DEPTH. */
917
918 static inline lst_p
919 find_lst_loop (lst_p stmt, int loop_depth)
920 {
921 lst_p loop = LST_LOOP_FATHER (stmt);
922
923 gcc_assert (loop_depth >= 0);
924
925 while (loop_depth < lst_depth (loop))
926 loop = LST_LOOP_FATHER (loop);
927
928 return loop;
929 }
930
931 /* Return the first LST representing a PBB statement in LST. */
932
933 static inline lst_p
934 lst_find_first_pbb (lst_p lst)
935 {
936 int i;
937 lst_p l;
938
939 if (!lst)
940 return NULL;
941
942 if (!LST_LOOP_P (lst))
943 return lst;
944
945 for (i = 0; LST_SEQ (lst).iterate (i, &l); i++)
946 {
947 lst_p res = lst_find_first_pbb (l);
948 if (res)
949 return res;
950 }
951
952 return NULL;
953 }
954
955 /* Returns true when LST is a loop that does not contain
956 statements. */
957
958 static inline bool
959 lst_empty_p (lst_p lst)
960 {
961 return !lst_find_first_pbb (lst);
962 }
963
964 /* Return the last LST representing a PBB statement in LST. */
965
966 static inline lst_p
967 lst_find_last_pbb (lst_p lst)
968 {
969 int i;
970 lst_p l, res = NULL;
971
972 if (!lst)
973 return NULL;
974
975 if (!LST_LOOP_P (lst))
976 return lst;
977
978 for (i = 0; LST_SEQ (lst).iterate (i, &l); i++)
979 {
980 lst_p last = lst_find_last_pbb (l);
981
982 if (last)
983 res = last;
984 }
985
986 gcc_assert (res);
987 return res;
988 }
989
990 /* Returns true if LOOP contains LST, in other words, if LST is nested
991 in LOOP. */
992
993 static inline bool
994 lst_contains_p (lst_p loop, lst_p lst)
995 {
996 if (!loop || !lst || !LST_LOOP_P (loop))
997 return false;
998
999 if (loop == lst)
1000 return true;
1001
1002 return lst_contains_p (loop, LST_LOOP_FATHER (lst));
1003 }
1004
1005 /* Returns true if LOOP contains PBB, in other words, if PBB is nested
1006 in LOOP. */
1007
1008 static inline bool
1009 lst_contains_pbb (lst_p loop, poly_bb_p pbb)
1010 {
1011 return lst_find_pbb (loop, pbb) ? true : false;
1012 }
1013
1014 /* Creates a loop nest of depth NB_LOOPS containing LST. */
1015
1016 static inline lst_p
1017 lst_create_nest (int nb_loops, lst_p lst)
1018 {
1019 lst_p res, loop;
1020 vec<lst_p> seq;
1021
1022 if (nb_loops == 0)
1023 return lst;
1024
1025 seq.create (1);
1026 loop = lst_create_nest (nb_loops - 1, lst);
1027 seq.quick_push (loop);
1028 res = new_lst_loop (seq);
1029 LST_LOOP_FATHER (loop) = res;
1030
1031 return res;
1032 }
1033
1034 /* Removes LST from the sequence of statements of its loop father. */
1035
1036 static inline void
1037 lst_remove_from_sequence (lst_p lst)
1038 {
1039 lst_p father = LST_LOOP_FATHER (lst);
1040 int dewey = lst_dewey_number (lst);
1041
1042 gcc_assert (lst && father && dewey >= 0);
1043
1044 LST_SEQ (father).ordered_remove (dewey);
1045 LST_LOOP_FATHER (lst) = NULL;
1046 }
1047
1048 /* Removes the loop LST and inline its body in the father loop. */
1049
1050 static inline void
1051 lst_remove_loop_and_inline_stmts_in_loop_father (lst_p lst)
1052 {
1053 lst_p l, father = LST_LOOP_FATHER (lst);
1054 int i, dewey = lst_dewey_number (lst);
1055
1056 gcc_assert (lst && father && dewey >= 0);
1057
1058 LST_SEQ (father).ordered_remove (dewey);
1059 LST_LOOP_FATHER (lst) = NULL;
1060
1061 FOR_EACH_VEC_ELT (LST_SEQ (lst), i, l)
1062 {
1063 LST_SEQ (father).safe_insert (dewey + i, l);
1064 LST_LOOP_FATHER (l) = father;
1065 }
1066 }
1067
1068 /* Sets NITER to the upper bound approximation of the number of
1069 iterations of loop LST. */
1070
1071 static inline void
1072 lst_niter_for_loop (lst_p lst, mpz_t niter)
1073 {
1074 int depth = lst_depth (lst);
1075 poly_bb_p pbb = LST_PBB (lst_find_first_pbb (lst));
1076
1077 gcc_assert (LST_LOOP_P (lst));
1078 pbb_number_of_iterations_at_time (pbb, psct_dynamic_dim (pbb, depth), niter);
1079 }
1080
1081 /* Updates the scattering of PBB to be at the DEWEY number in the loop
1082 at depth LEVEL. */
1083
1084 static inline void
1085 pbb_update_scattering (poly_bb_p pbb, graphite_dim_t level, int dewey)
1086 {
1087 graphite_dim_t sched = psct_static_dim (pbb, level);
1088 isl_space *d = isl_map_get_space (pbb->transformed);
1089 isl_space *d1 = isl_space_range (d);
1090 unsigned i, n = isl_space_dim (d1, isl_dim_out);
1091 isl_space *d2 = isl_space_add_dims (d1, isl_dim_in, n);
1092 isl_map *x = isl_map_universe (d2);
1093
1094 x = isl_map_fix_si (x, isl_dim_out, sched, dewey);
1095
1096 for (i = 0; i < n; i++)
1097 if (i != sched)
1098 x = isl_map_equate (x, isl_dim_in, i, isl_dim_out, i);
1099
1100 pbb->transformed = isl_map_apply_range (pbb->transformed, x);
1101 }
1102
1103 /* Updates the scattering of all the PBBs under LST to be at the DEWEY
1104 number in the loop at depth LEVEL. */
1105
1106 static inline void
1107 lst_update_scattering_under (lst_p lst, int level, int dewey)
1108 {
1109 int i;
1110 lst_p l;
1111
1112 gcc_assert (lst && level >= 0 && dewey >= 0);
1113
1114 if (LST_LOOP_P (lst))
1115 for (i = 0; LST_SEQ (lst).iterate (i, &l); i++)
1116 lst_update_scattering_under (l, level, dewey);
1117 else
1118 pbb_update_scattering (LST_PBB (lst), level, dewey);
1119 }
1120
1121 /* Updates the all the scattering levels of all the PBBs under
1122 LST. */
1123
1124 static inline void
1125 lst_update_scattering (lst_p lst)
1126 {
1127 int i;
1128 lst_p l;
1129
1130 if (!lst)
1131 return;
1132
1133 if (LST_LOOP_FATHER (lst))
1134 {
1135 lst_p father = LST_LOOP_FATHER (lst);
1136 int dewey = lst_dewey_number (lst);
1137 int level = lst_depth (lst);
1138
1139 gcc_assert (lst && father && dewey >= 0 && level >= 0);
1140
1141 for (i = dewey; LST_SEQ (father).iterate (i, &l); i++)
1142 lst_update_scattering_under (l, level, i);
1143 }
1144
1145 if (LST_LOOP_P (lst))
1146 for (i = 0; LST_SEQ (lst).iterate (i, &l); i++)
1147 lst_update_scattering (l);
1148 }
1149
1150 /* Inserts LST1 before LST2 if BEFORE is true; inserts LST1 after LST2
1151 if BEFORE is false. */
1152
1153 static inline void
1154 lst_insert_in_sequence (lst_p lst1, lst_p lst2, bool before)
1155 {
1156 lst_p father;
1157 int dewey;
1158
1159 /* Do not insert empty loops. */
1160 if (!lst1 || lst_empty_p (lst1))
1161 return;
1162
1163 father = LST_LOOP_FATHER (lst2);
1164 dewey = lst_dewey_number (lst2);
1165
1166 gcc_assert (lst2 && father && dewey >= 0);
1167
1168 LST_SEQ (father).safe_insert (before ? dewey : dewey + 1, lst1);
1169 LST_LOOP_FATHER (lst1) = father;
1170 }
1171
1172 /* Replaces LST1 with LST2. */
1173
1174 static inline void
1175 lst_replace (lst_p lst1, lst_p lst2)
1176 {
1177 lst_p father;
1178 int dewey;
1179
1180 if (!lst2 || lst_empty_p (lst2))
1181 return;
1182
1183 father = LST_LOOP_FATHER (lst1);
1184 dewey = lst_dewey_number (lst1);
1185 LST_LOOP_FATHER (lst2) = father;
1186 LST_SEQ (father)[dewey] = lst2;
1187 }
1188
1189 /* Returns a copy of ROOT where LST has been replaced by a copy of the
1190 LSTs A B C in this sequence. */
1191
1192 static inline lst_p
1193 lst_substitute_3 (lst_p root, lst_p lst, lst_p a, lst_p b, lst_p c)
1194 {
1195 int i;
1196 lst_p l;
1197 vec<lst_p> seq;
1198
1199 if (!root)
1200 return NULL;
1201
1202 gcc_assert (lst && root != lst);
1203
1204 if (!LST_LOOP_P (root))
1205 return new_lst_stmt (LST_PBB (root));
1206
1207 seq.create (5);
1208
1209 for (i = 0; LST_SEQ (root).iterate (i, &l); i++)
1210 if (l != lst)
1211 seq.safe_push (lst_substitute_3 (l, lst, a, b, c));
1212 else
1213 {
1214 if (!lst_empty_p (a))
1215 seq.safe_push (copy_lst (a));
1216 if (!lst_empty_p (b))
1217 seq.safe_push (copy_lst (b));
1218 if (!lst_empty_p (c))
1219 seq.safe_push (copy_lst (c));
1220 }
1221
1222 return new_lst_loop (seq);
1223 }
1224
1225 /* Moves LST before LOOP if BEFORE is true, and after the LOOP if
1226 BEFORE is false. */
1227
1228 static inline void
1229 lst_distribute_lst (lst_p loop, lst_p lst, bool before)
1230 {
1231 int loop_depth = lst_depth (loop);
1232 int depth = lst_depth (lst);
1233 int nb_loops = depth - loop_depth;
1234
1235 gcc_assert (lst && loop && LST_LOOP_P (loop) && nb_loops > 0);
1236
1237 lst_remove_from_sequence (lst);
1238 lst_insert_in_sequence (lst_create_nest (nb_loops, lst), loop, before);
1239 }
1240
1241 /* Removes from LOOP all the statements before/after and including PBB
1242 if BEFORE is true/false. Returns the negation of BEFORE when the
1243 statement PBB has been found. */
1244
1245 static inline bool
1246 lst_remove_all_before_including_pbb (lst_p loop, poly_bb_p pbb, bool before)
1247 {
1248 int i;
1249 lst_p l;
1250
1251 if (!loop || !LST_LOOP_P (loop))
1252 return before;
1253
1254 for (i = 0; LST_SEQ (loop).iterate (i, &l);)
1255 if (LST_LOOP_P (l))
1256 {
1257 before = lst_remove_all_before_including_pbb (l, pbb, before);
1258
1259 if (LST_SEQ (l).length () == 0)
1260 {
1261 LST_SEQ (loop).ordered_remove (i);
1262 free_lst (l);
1263 }
1264 else
1265 i++;
1266 }
1267 else
1268 {
1269 if (before)
1270 {
1271 if (LST_PBB (l) == pbb)
1272 before = false;
1273
1274 LST_SEQ (loop).ordered_remove (i);
1275 free_lst (l);
1276 }
1277 else if (LST_PBB (l) == pbb)
1278 {
1279 before = true;
1280 LST_SEQ (loop).ordered_remove (i);
1281 free_lst (l);
1282 }
1283 else
1284 i++;
1285 }
1286
1287 return before;
1288 }
1289
1290 /* Removes from LOOP all the statements before/after and excluding PBB
1291 if BEFORE is true/false; Returns the negation of BEFORE when the
1292 statement PBB has been found. */
1293
1294 static inline bool
1295 lst_remove_all_before_excluding_pbb (lst_p loop, poly_bb_p pbb, bool before)
1296 {
1297 int i;
1298 lst_p l;
1299
1300 if (!loop || !LST_LOOP_P (loop))
1301 return before;
1302
1303 for (i = 0; LST_SEQ (loop).iterate (i, &l);)
1304 if (LST_LOOP_P (l))
1305 {
1306 before = lst_remove_all_before_excluding_pbb (l, pbb, before);
1307
1308 if (LST_SEQ (l).length () == 0)
1309 {
1310 LST_SEQ (loop).ordered_remove (i);
1311 free_lst (l);
1312 continue;
1313 }
1314
1315 i++;
1316 }
1317 else
1318 {
1319 if (before && LST_PBB (l) != pbb)
1320 {
1321 LST_SEQ (loop).ordered_remove (i);
1322 free_lst (l);
1323 continue;
1324 }
1325
1326 i++;
1327
1328 if (LST_PBB (l) == pbb)
1329 before = before ? false : true;
1330 }
1331
1332 return before;
1333 }
1334
1335 /* A SCOP is a Static Control Part of the program, simple enough to be
1336 represented in polyhedral form. */
1337 struct scop
1338 {
1339 /* A SCOP is defined as a SESE region. */
1340 void *region;
1341
1342 /* Number of parameters in SCoP. */
1343 graphite_dim_t nb_params;
1344
1345 /* All the basic blocks in this scop that contain memory references
1346 and that will be represented as statements in the polyhedral
1347 representation. */
1348 vec<poly_bb_p> bbs;
1349
1350 /* Original, transformed and saved schedules. */
1351 lst_p original_schedule, transformed_schedule, saved_schedule;
1352
1353 /* The context describes known restrictions concerning the parameters
1354 and relations in between the parameters.
1355
1356 void f (int8_t a, uint_16_t b) {
1357 c = 2 a + b;
1358 ...
1359 }
1360
1361 Here we can add these restrictions to the context:
1362
1363 -128 >= a >= 127
1364 0 >= b >= 65,535
1365 c = 2a + b */
1366 isl_set *context;
1367
1368 /* The context used internally by ISL. */
1369 isl_ctx *ctx;
1370
1371 /* The original dependence relations:
1372 RAW are read after write dependences,
1373 WAR are write after read dependences,
1374 WAW are write after write dependences. */
1375 isl_union_map *must_raw, *may_raw, *must_raw_no_source, *may_raw_no_source,
1376 *must_war, *may_war, *must_war_no_source, *may_war_no_source,
1377 *must_waw, *may_waw, *must_waw_no_source, *may_waw_no_source;
1378
1379 /* True when the scop has been converted to its polyhedral
1380 representation. */
1381 bool poly_scop_p;
1382 };
1383
1384 #define SCOP_BBS(S) (S->bbs)
1385 #define SCOP_REGION(S) ((sese) S->region)
1386 #define SCOP_CONTEXT(S) (NULL)
1387 #define SCOP_ORIGINAL_SCHEDULE(S) (S->original_schedule)
1388 #define SCOP_TRANSFORMED_SCHEDULE(S) (S->transformed_schedule)
1389 #define SCOP_SAVED_SCHEDULE(S) (S->saved_schedule)
1390 #define POLY_SCOP_P(S) (S->poly_scop_p)
1391
1392 extern scop_p new_scop (void *);
1393 extern void free_scop (scop_p);
1394 extern void free_scops (vec<scop_p> );
1395 extern void print_generated_program (FILE *, scop_p);
1396 extern void debug_generated_program (scop_p);
1397 extern void print_scattering_function (FILE *, poly_bb_p, int);
1398 extern void print_scattering_functions (FILE *, scop_p, int);
1399 extern void debug_scattering_function (poly_bb_p, int);
1400 extern void debug_scattering_functions (scop_p, int);
1401 extern int scop_max_loop_depth (scop_p);
1402 extern int unify_scattering_dimensions (scop_p);
1403 extern bool apply_poly_transforms (scop_p);
1404 extern bool graphite_legal_transform (scop_p);
1405 extern void cloog_checksum (scop_p);
1406
1407 /* Set the region of SCOP to REGION. */
1408
1409 static inline void
1410 scop_set_region (scop_p scop, void *region)
1411 {
1412 scop->region = region;
1413 }
1414
1415 /* Returns the number of parameters for SCOP. */
1416
1417 static inline graphite_dim_t
1418 scop_nb_params (scop_p scop)
1419 {
1420 return scop->nb_params;
1421 }
1422
1423 /* Set the number of params of SCOP to NB_PARAMS. */
1424
1425 static inline void
1426 scop_set_nb_params (scop_p scop, graphite_dim_t nb_params)
1427 {
1428 scop->nb_params = nb_params;
1429 }
1430
1431 /* Allocates a new empty poly_scattering structure. */
1432
1433 static inline poly_scattering_p
1434 poly_scattering_new (void)
1435 {
1436 poly_scattering_p res = XNEW (struct poly_scattering);
1437
1438 res->nb_local_variables = 0;
1439 res->nb_scattering = 0;
1440 return res;
1441 }
1442
1443 /* Free a poly_scattering structure. */
1444
1445 static inline void
1446 poly_scattering_free (poly_scattering_p s)
1447 {
1448 free (s);
1449 }
1450
1451 /* Copies S and return a new scattering. */
1452
1453 static inline poly_scattering_p
1454 poly_scattering_copy (poly_scattering_p s)
1455 {
1456 poly_scattering_p res = poly_scattering_new ();
1457
1458 res->nb_local_variables = s->nb_local_variables;
1459 res->nb_scattering = s->nb_scattering;
1460 return res;
1461 }
1462
1463 /* Saves the transformed scattering of PBB. */
1464
1465 static inline void
1466 store_scattering_pbb (poly_bb_p pbb)
1467 {
1468 isl_map_free (pbb->saved);
1469 pbb->saved = isl_map_copy (pbb->transformed);
1470 }
1471
1472 /* Stores the SCOP_TRANSFORMED_SCHEDULE to SCOP_SAVED_SCHEDULE. */
1473
1474 static inline void
1475 store_lst_schedule (scop_p scop)
1476 {
1477 if (SCOP_SAVED_SCHEDULE (scop))
1478 free_lst (SCOP_SAVED_SCHEDULE (scop));
1479
1480 SCOP_SAVED_SCHEDULE (scop) = copy_lst (SCOP_TRANSFORMED_SCHEDULE (scop));
1481 }
1482
1483 /* Restores the SCOP_TRANSFORMED_SCHEDULE from SCOP_SAVED_SCHEDULE. */
1484
1485 static inline void
1486 restore_lst_schedule (scop_p scop)
1487 {
1488 if (SCOP_TRANSFORMED_SCHEDULE (scop))
1489 free_lst (SCOP_TRANSFORMED_SCHEDULE (scop));
1490
1491 SCOP_TRANSFORMED_SCHEDULE (scop) = copy_lst (SCOP_SAVED_SCHEDULE (scop));
1492 }
1493
1494 /* Saves the scattering for all the pbbs in the SCOP. */
1495
1496 static inline void
1497 store_scattering (scop_p scop)
1498 {
1499 int i;
1500 poly_bb_p pbb;
1501
1502 for (i = 0; SCOP_BBS (scop).iterate (i, &pbb); i++)
1503 store_scattering_pbb (pbb);
1504
1505 store_lst_schedule (scop);
1506 }
1507
1508 /* Restores the scattering of PBB. */
1509
1510 static inline void
1511 restore_scattering_pbb (poly_bb_p pbb)
1512 {
1513 gcc_assert (pbb->saved);
1514
1515 isl_map_free (pbb->transformed);
1516 pbb->transformed = isl_map_copy (pbb->saved);
1517 }
1518
1519 /* Restores the scattering for all the pbbs in the SCOP. */
1520
1521 static inline void
1522 restore_scattering (scop_p scop)
1523 {
1524 int i;
1525 poly_bb_p pbb;
1526
1527 for (i = 0; SCOP_BBS (scop).iterate (i, &pbb); i++)
1528 restore_scattering_pbb (pbb);
1529
1530 restore_lst_schedule (scop);
1531 }
1532
1533 bool graphite_legal_transform (scop_p);
1534 poly_bb_p find_pbb_via_hash (htab_t, basic_block);
1535 bool loop_is_parallel_p (loop_p, htab_t, int);
1536 scop_p get_loop_body_pbbs (loop_p, htab_t, vec<poly_bb_p> *);
1537 isl_map *reverse_loop_at_level (poly_bb_p, int);
1538 isl_union_map *reverse_loop_for_pbbs (scop_p, vec<poly_bb_p> , int);
1539 __isl_give isl_union_map *extend_schedule (__isl_take isl_union_map *);
1540
1541
1542 void
1543 compute_deps (scop_p scop, vec<poly_bb_p> pbbs,
1544 isl_union_map **must_raw,
1545 isl_union_map **may_raw,
1546 isl_union_map **must_raw_no_source,
1547 isl_union_map **may_raw_no_source,
1548 isl_union_map **must_war,
1549 isl_union_map **may_war,
1550 isl_union_map **must_war_no_source,
1551 isl_union_map **may_war_no_source,
1552 isl_union_map **must_waw,
1553 isl_union_map **may_waw,
1554 isl_union_map **must_waw_no_source,
1555 isl_union_map **may_waw_no_source);
1556
1557 #endif