]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/haifa-sched.c
* asan.c (create_cond_insert_point): Do not update edge count.
[thirdparty/gcc.git] / gcc / haifa-sched.c
1 /* Instruction scheduling pass.
2 Copyright (C) 1992-2017 Free Software Foundation, Inc.
3 Contributed by Michael Tiemann (tiemann@cygnus.com) Enhanced by,
4 and currently maintained by, Jim Wilson (wilson@cygnus.com)
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
12
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
21
22 /* Instruction scheduling pass. This file, along with sched-deps.c,
23 contains the generic parts. The actual entry point for
24 the normal instruction scheduling pass is found in sched-rgn.c.
25
26 We compute insn priorities based on data dependencies. Flow
27 analysis only creates a fraction of the data-dependencies we must
28 observe: namely, only those dependencies which the combiner can be
29 expected to use. For this pass, we must therefore create the
30 remaining dependencies we need to observe: register dependencies,
31 memory dependencies, dependencies to keep function calls in order,
32 and the dependence between a conditional branch and the setting of
33 condition codes are all dealt with here.
34
35 The scheduler first traverses the data flow graph, starting with
36 the last instruction, and proceeding to the first, assigning values
37 to insn_priority as it goes. This sorts the instructions
38 topologically by data dependence.
39
40 Once priorities have been established, we order the insns using
41 list scheduling. This works as follows: starting with a list of
42 all the ready insns, and sorted according to priority number, we
43 schedule the insn from the end of the list by placing its
44 predecessors in the list according to their priority order. We
45 consider this insn scheduled by setting the pointer to the "end" of
46 the list to point to the previous insn. When an insn has no
47 predecessors, we either queue it until sufficient time has elapsed
48 or add it to the ready list. As the instructions are scheduled or
49 when stalls are introduced, the queue advances and dumps insns into
50 the ready list. When all insns down to the lowest priority have
51 been scheduled, the critical path of the basic block has been made
52 as short as possible. The remaining insns are then scheduled in
53 remaining slots.
54
55 The following list shows the order in which we want to break ties
56 among insns in the ready list:
57
58 1. choose insn with the longest path to end of bb, ties
59 broken by
60 2. choose insn with least contribution to register pressure,
61 ties broken by
62 3. prefer in-block upon interblock motion, ties broken by
63 4. prefer useful upon speculative motion, ties broken by
64 5. choose insn with largest control flow probability, ties
65 broken by
66 6. choose insn with the least dependences upon the previously
67 scheduled insn, or finally
68 7 choose the insn which has the most insns dependent on it.
69 8. choose insn with lowest UID.
70
71 Memory references complicate matters. Only if we can be certain
72 that memory references are not part of the data dependency graph
73 (via true, anti, or output dependence), can we move operations past
74 memory references. To first approximation, reads can be done
75 independently, while writes introduce dependencies. Better
76 approximations will yield fewer dependencies.
77
78 Before reload, an extended analysis of interblock data dependences
79 is required for interblock scheduling. This is performed in
80 compute_block_dependences ().
81
82 Dependencies set up by memory references are treated in exactly the
83 same way as other dependencies, by using insn backward dependences
84 INSN_BACK_DEPS. INSN_BACK_DEPS are translated into forward dependences
85 INSN_FORW_DEPS for the purpose of forward list scheduling.
86
87 Having optimized the critical path, we may have also unduly
88 extended the lifetimes of some registers. If an operation requires
89 that constants be loaded into registers, it is certainly desirable
90 to load those constants as early as necessary, but no earlier.
91 I.e., it will not do to load up a bunch of registers at the
92 beginning of a basic block only to use them at the end, if they
93 could be loaded later, since this may result in excessive register
94 utilization.
95
96 Note that since branches are never in basic blocks, but only end
97 basic blocks, this pass will not move branches. But that is ok,
98 since we can use GNU's delayed branch scheduling pass to take care
99 of this case.
100
101 Also note that no further optimizations based on algebraic
102 identities are performed, so this pass would be a good one to
103 perform instruction splitting, such as breaking up a multiply
104 instruction into shifts and adds where that is profitable.
105
106 Given the memory aliasing analysis that this pass should perform,
107 it should be possible to remove redundant stores to memory, and to
108 load values from registers instead of hitting memory.
109
110 Before reload, speculative insns are moved only if a 'proof' exists
111 that no exception will be caused by this, and if no live registers
112 exist that inhibit the motion (live registers constraints are not
113 represented by data dependence edges).
114
115 This pass must update information that subsequent passes expect to
116 be correct. Namely: reg_n_refs, reg_n_sets, reg_n_deaths,
117 reg_n_calls_crossed, and reg_live_length. Also, BB_HEAD, BB_END.
118
119 The information in the line number notes is carefully retained by
120 this pass. Notes that refer to the starting and ending of
121 exception regions are also carefully retained by this pass. All
122 other NOTE insns are grouped in their same relative order at the
123 beginning of basic blocks and regions that have been scheduled. */
124 \f
125 #include "config.h"
126 #include "system.h"
127 #include "coretypes.h"
128 #include "backend.h"
129 #include "target.h"
130 #include "rtl.h"
131 #include "cfghooks.h"
132 #include "df.h"
133 #include "memmodel.h"
134 #include "tm_p.h"
135 #include "insn-config.h"
136 #include "regs.h"
137 #include "ira.h"
138 #include "recog.h"
139 #include "insn-attr.h"
140 #include "cfgrtl.h"
141 #include "cfgbuild.h"
142 #include "sched-int.h"
143 #include "common/common-target.h"
144 #include "params.h"
145 #include "dbgcnt.h"
146 #include "cfgloop.h"
147 #include "dumpfile.h"
148 #include "print-rtl.h"
149
150 #ifdef INSN_SCHEDULING
151
152 /* True if we do register pressure relief through live-range
153 shrinkage. */
154 static bool live_range_shrinkage_p;
155
156 /* Switch on live range shrinkage. */
157 void
158 initialize_live_range_shrinkage (void)
159 {
160 live_range_shrinkage_p = true;
161 }
162
163 /* Switch off live range shrinkage. */
164 void
165 finish_live_range_shrinkage (void)
166 {
167 live_range_shrinkage_p = false;
168 }
169
170 /* issue_rate is the number of insns that can be scheduled in the same
171 machine cycle. It can be defined in the config/mach/mach.h file,
172 otherwise we set it to 1. */
173
174 int issue_rate;
175
176 /* This can be set to true by a backend if the scheduler should not
177 enable a DCE pass. */
178 bool sched_no_dce;
179
180 /* The current initiation interval used when modulo scheduling. */
181 static int modulo_ii;
182
183 /* The maximum number of stages we are prepared to handle. */
184 static int modulo_max_stages;
185
186 /* The number of insns that exist in each iteration of the loop. We use this
187 to detect when we've scheduled all insns from the first iteration. */
188 static int modulo_n_insns;
189
190 /* The current count of insns in the first iteration of the loop that have
191 already been scheduled. */
192 static int modulo_insns_scheduled;
193
194 /* The maximum uid of insns from the first iteration of the loop. */
195 static int modulo_iter0_max_uid;
196
197 /* The number of times we should attempt to backtrack when modulo scheduling.
198 Decreased each time we have to backtrack. */
199 static int modulo_backtracks_left;
200
201 /* The stage in which the last insn from the original loop was
202 scheduled. */
203 static int modulo_last_stage;
204
205 /* sched-verbose controls the amount of debugging output the
206 scheduler prints. It is controlled by -fsched-verbose=N:
207 N=0: no debugging output.
208 N=1: default value.
209 N=2: bb's probabilities, detailed ready list info, unit/insn info.
210 N=3: rtl at abort point, control-flow, regions info.
211 N=5: dependences info. */
212 int sched_verbose = 0;
213
214 /* Debugging file. All printouts are sent to dump. */
215 FILE *sched_dump = 0;
216
217 /* This is a placeholder for the scheduler parameters common
218 to all schedulers. */
219 struct common_sched_info_def *common_sched_info;
220
221 #define INSN_TICK(INSN) (HID (INSN)->tick)
222 #define INSN_EXACT_TICK(INSN) (HID (INSN)->exact_tick)
223 #define INSN_TICK_ESTIMATE(INSN) (HID (INSN)->tick_estimate)
224 #define INTER_TICK(INSN) (HID (INSN)->inter_tick)
225 #define FEEDS_BACKTRACK_INSN(INSN) (HID (INSN)->feeds_backtrack_insn)
226 #define SHADOW_P(INSN) (HID (INSN)->shadow_p)
227 #define MUST_RECOMPUTE_SPEC_P(INSN) (HID (INSN)->must_recompute_spec)
228 /* Cached cost of the instruction. Use insn_sched_cost to get cost of the
229 insn. -1 here means that the field is not initialized. */
230 #define INSN_COST(INSN) (HID (INSN)->cost)
231
232 /* If INSN_TICK of an instruction is equal to INVALID_TICK,
233 then it should be recalculated from scratch. */
234 #define INVALID_TICK (-(max_insn_queue_index + 1))
235 /* The minimal value of the INSN_TICK of an instruction. */
236 #define MIN_TICK (-max_insn_queue_index)
237
238 /* Original order of insns in the ready list.
239 Used to keep order of normal insns while separating DEBUG_INSNs. */
240 #define INSN_RFS_DEBUG_ORIG_ORDER(INSN) (HID (INSN)->rfs_debug_orig_order)
241
242 /* The deciding reason for INSN's place in the ready list. */
243 #define INSN_LAST_RFS_WIN(INSN) (HID (INSN)->last_rfs_win)
244
245 /* List of important notes we must keep around. This is a pointer to the
246 last element in the list. */
247 rtx_insn *note_list;
248
249 static struct spec_info_def spec_info_var;
250 /* Description of the speculative part of the scheduling.
251 If NULL - no speculation. */
252 spec_info_t spec_info = NULL;
253
254 /* True, if recovery block was added during scheduling of current block.
255 Used to determine, if we need to fix INSN_TICKs. */
256 static bool haifa_recovery_bb_recently_added_p;
257
258 /* True, if recovery block was added during this scheduling pass.
259 Used to determine if we should have empty memory pools of dependencies
260 after finishing current region. */
261 bool haifa_recovery_bb_ever_added_p;
262
263 /* Counters of different types of speculative instructions. */
264 static int nr_begin_data, nr_be_in_data, nr_begin_control, nr_be_in_control;
265
266 /* Array used in {unlink, restore}_bb_notes. */
267 static rtx_insn **bb_header = 0;
268
269 /* Basic block after which recovery blocks will be created. */
270 static basic_block before_recovery;
271
272 /* Basic block just before the EXIT_BLOCK and after recovery, if we have
273 created it. */
274 basic_block after_recovery;
275
276 /* FALSE if we add bb to another region, so we don't need to initialize it. */
277 bool adding_bb_to_current_region_p = true;
278
279 /* Queues, etc. */
280
281 /* An instruction is ready to be scheduled when all insns preceding it
282 have already been scheduled. It is important to ensure that all
283 insns which use its result will not be executed until its result
284 has been computed. An insn is maintained in one of four structures:
285
286 (P) the "Pending" set of insns which cannot be scheduled until
287 their dependencies have been satisfied.
288 (Q) the "Queued" set of insns that can be scheduled when sufficient
289 time has passed.
290 (R) the "Ready" list of unscheduled, uncommitted insns.
291 (S) the "Scheduled" list of insns.
292
293 Initially, all insns are either "Pending" or "Ready" depending on
294 whether their dependencies are satisfied.
295
296 Insns move from the "Ready" list to the "Scheduled" list as they
297 are committed to the schedule. As this occurs, the insns in the
298 "Pending" list have their dependencies satisfied and move to either
299 the "Ready" list or the "Queued" set depending on whether
300 sufficient time has passed to make them ready. As time passes,
301 insns move from the "Queued" set to the "Ready" list.
302
303 The "Pending" list (P) are the insns in the INSN_FORW_DEPS of the
304 unscheduled insns, i.e., those that are ready, queued, and pending.
305 The "Queued" set (Q) is implemented by the variable `insn_queue'.
306 The "Ready" list (R) is implemented by the variables `ready' and
307 `n_ready'.
308 The "Scheduled" list (S) is the new insn chain built by this pass.
309
310 The transition (R->S) is implemented in the scheduling loop in
311 `schedule_block' when the best insn to schedule is chosen.
312 The transitions (P->R and P->Q) are implemented in `schedule_insn' as
313 insns move from the ready list to the scheduled list.
314 The transition (Q->R) is implemented in 'queue_to_insn' as time
315 passes or stalls are introduced. */
316
317 /* Implement a circular buffer to delay instructions until sufficient
318 time has passed. For the new pipeline description interface,
319 MAX_INSN_QUEUE_INDEX is a power of two minus one which is not less
320 than maximal time of instruction execution computed by genattr.c on
321 the base maximal time of functional unit reservations and getting a
322 result. This is the longest time an insn may be queued. */
323
324 static rtx_insn_list **insn_queue;
325 static int q_ptr = 0;
326 static int q_size = 0;
327 #define NEXT_Q(X) (((X)+1) & max_insn_queue_index)
328 #define NEXT_Q_AFTER(X, C) (((X)+C) & max_insn_queue_index)
329
330 #define QUEUE_SCHEDULED (-3)
331 #define QUEUE_NOWHERE (-2)
332 #define QUEUE_READY (-1)
333 /* QUEUE_SCHEDULED - INSN is scheduled.
334 QUEUE_NOWHERE - INSN isn't scheduled yet and is neither in
335 queue or ready list.
336 QUEUE_READY - INSN is in ready list.
337 N >= 0 - INSN queued for X [where NEXT_Q_AFTER (q_ptr, X) == N] cycles. */
338
339 #define QUEUE_INDEX(INSN) (HID (INSN)->queue_index)
340
341 /* The following variable value refers for all current and future
342 reservations of the processor units. */
343 state_t curr_state;
344
345 /* The following variable value is size of memory representing all
346 current and future reservations of the processor units. */
347 size_t dfa_state_size;
348
349 /* The following array is used to find the best insn from ready when
350 the automaton pipeline interface is used. */
351 signed char *ready_try = NULL;
352
353 /* The ready list. */
354 struct ready_list ready = {NULL, 0, 0, 0, 0};
355
356 /* The pointer to the ready list (to be removed). */
357 static struct ready_list *readyp = &ready;
358
359 /* Scheduling clock. */
360 static int clock_var;
361
362 /* Clock at which the previous instruction was issued. */
363 static int last_clock_var;
364
365 /* Set to true if, when queuing a shadow insn, we discover that it would be
366 scheduled too late. */
367 static bool must_backtrack;
368
369 /* The following variable value is number of essential insns issued on
370 the current cycle. An insn is essential one if it changes the
371 processors state. */
372 int cycle_issued_insns;
373
374 /* This records the actual schedule. It is built up during the main phase
375 of schedule_block, and afterwards used to reorder the insns in the RTL. */
376 static vec<rtx_insn *> scheduled_insns;
377
378 static int may_trap_exp (const_rtx, int);
379
380 /* Nonzero iff the address is comprised from at most 1 register. */
381 #define CONST_BASED_ADDRESS_P(x) \
382 (REG_P (x) \
383 || ((GET_CODE (x) == PLUS || GET_CODE (x) == MINUS \
384 || (GET_CODE (x) == LO_SUM)) \
385 && (CONSTANT_P (XEXP (x, 0)) \
386 || CONSTANT_P (XEXP (x, 1)))))
387
388 /* Returns a class that insn with GET_DEST(insn)=x may belong to,
389 as found by analyzing insn's expression. */
390
391 \f
392 static int haifa_luid_for_non_insn (rtx x);
393
394 /* Haifa version of sched_info hooks common to all headers. */
395 const struct common_sched_info_def haifa_common_sched_info =
396 {
397 NULL, /* fix_recovery_cfg */
398 NULL, /* add_block */
399 NULL, /* estimate_number_of_insns */
400 haifa_luid_for_non_insn, /* luid_for_non_insn */
401 SCHED_PASS_UNKNOWN /* sched_pass_id */
402 };
403
404 /* Mapping from instruction UID to its Logical UID. */
405 vec<int> sched_luids;
406
407 /* Next LUID to assign to an instruction. */
408 int sched_max_luid = 1;
409
410 /* Haifa Instruction Data. */
411 vec<haifa_insn_data_def> h_i_d;
412
413 void (* sched_init_only_bb) (basic_block, basic_block);
414
415 /* Split block function. Different schedulers might use different functions
416 to handle their internal data consistent. */
417 basic_block (* sched_split_block) (basic_block, rtx);
418
419 /* Create empty basic block after the specified block. */
420 basic_block (* sched_create_empty_bb) (basic_block);
421
422 /* Return the number of cycles until INSN is expected to be ready.
423 Return zero if it already is. */
424 static int
425 insn_delay (rtx_insn *insn)
426 {
427 return MAX (INSN_TICK (insn) - clock_var, 0);
428 }
429
430 static int
431 may_trap_exp (const_rtx x, int is_store)
432 {
433 enum rtx_code code;
434
435 if (x == 0)
436 return TRAP_FREE;
437 code = GET_CODE (x);
438 if (is_store)
439 {
440 if (code == MEM && may_trap_p (x))
441 return TRAP_RISKY;
442 else
443 return TRAP_FREE;
444 }
445 if (code == MEM)
446 {
447 /* The insn uses memory: a volatile load. */
448 if (MEM_VOLATILE_P (x))
449 return IRISKY;
450 /* An exception-free load. */
451 if (!may_trap_p (x))
452 return IFREE;
453 /* A load with 1 base register, to be further checked. */
454 if (CONST_BASED_ADDRESS_P (XEXP (x, 0)))
455 return PFREE_CANDIDATE;
456 /* No info on the load, to be further checked. */
457 return PRISKY_CANDIDATE;
458 }
459 else
460 {
461 const char *fmt;
462 int i, insn_class = TRAP_FREE;
463
464 /* Neither store nor load, check if it may cause a trap. */
465 if (may_trap_p (x))
466 return TRAP_RISKY;
467 /* Recursive step: walk the insn... */
468 fmt = GET_RTX_FORMAT (code);
469 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
470 {
471 if (fmt[i] == 'e')
472 {
473 int tmp_class = may_trap_exp (XEXP (x, i), is_store);
474 insn_class = WORST_CLASS (insn_class, tmp_class);
475 }
476 else if (fmt[i] == 'E')
477 {
478 int j;
479 for (j = 0; j < XVECLEN (x, i); j++)
480 {
481 int tmp_class = may_trap_exp (XVECEXP (x, i, j), is_store);
482 insn_class = WORST_CLASS (insn_class, tmp_class);
483 if (insn_class == TRAP_RISKY || insn_class == IRISKY)
484 break;
485 }
486 }
487 if (insn_class == TRAP_RISKY || insn_class == IRISKY)
488 break;
489 }
490 return insn_class;
491 }
492 }
493
494 /* Classifies rtx X of an insn for the purpose of verifying that X can be
495 executed speculatively (and consequently the insn can be moved
496 speculatively), by examining X, returning:
497 TRAP_RISKY: store, or risky non-load insn (e.g. division by variable).
498 TRAP_FREE: non-load insn.
499 IFREE: load from a globally safe location.
500 IRISKY: volatile load.
501 PFREE_CANDIDATE, PRISKY_CANDIDATE: load that need to be checked for
502 being either PFREE or PRISKY. */
503
504 static int
505 haifa_classify_rtx (const_rtx x)
506 {
507 int tmp_class = TRAP_FREE;
508 int insn_class = TRAP_FREE;
509 enum rtx_code code;
510
511 if (GET_CODE (x) == PARALLEL)
512 {
513 int i, len = XVECLEN (x, 0);
514
515 for (i = len - 1; i >= 0; i--)
516 {
517 tmp_class = haifa_classify_rtx (XVECEXP (x, 0, i));
518 insn_class = WORST_CLASS (insn_class, tmp_class);
519 if (insn_class == TRAP_RISKY || insn_class == IRISKY)
520 break;
521 }
522 }
523 else
524 {
525 code = GET_CODE (x);
526 switch (code)
527 {
528 case CLOBBER:
529 /* Test if it is a 'store'. */
530 tmp_class = may_trap_exp (XEXP (x, 0), 1);
531 break;
532 case SET:
533 /* Test if it is a store. */
534 tmp_class = may_trap_exp (SET_DEST (x), 1);
535 if (tmp_class == TRAP_RISKY)
536 break;
537 /* Test if it is a load. */
538 tmp_class =
539 WORST_CLASS (tmp_class,
540 may_trap_exp (SET_SRC (x), 0));
541 break;
542 case COND_EXEC:
543 tmp_class = haifa_classify_rtx (COND_EXEC_CODE (x));
544 if (tmp_class == TRAP_RISKY)
545 break;
546 tmp_class = WORST_CLASS (tmp_class,
547 may_trap_exp (COND_EXEC_TEST (x), 0));
548 break;
549 case TRAP_IF:
550 tmp_class = TRAP_RISKY;
551 break;
552 default:;
553 }
554 insn_class = tmp_class;
555 }
556
557 return insn_class;
558 }
559
560 int
561 haifa_classify_insn (const_rtx insn)
562 {
563 return haifa_classify_rtx (PATTERN (insn));
564 }
565 \f
566 /* After the scheduler initialization function has been called, this function
567 can be called to enable modulo scheduling. II is the initiation interval
568 we should use, it affects the delays for delay_pairs that were recorded as
569 separated by a given number of stages.
570
571 MAX_STAGES provides us with a limit
572 after which we give up scheduling; the caller must have unrolled at least
573 as many copies of the loop body and recorded delay_pairs for them.
574
575 INSNS is the number of real (non-debug) insns in one iteration of
576 the loop. MAX_UID can be used to test whether an insn belongs to
577 the first iteration of the loop; all of them have a uid lower than
578 MAX_UID. */
579 void
580 set_modulo_params (int ii, int max_stages, int insns, int max_uid)
581 {
582 modulo_ii = ii;
583 modulo_max_stages = max_stages;
584 modulo_n_insns = insns;
585 modulo_iter0_max_uid = max_uid;
586 modulo_backtracks_left = PARAM_VALUE (PARAM_MAX_MODULO_BACKTRACK_ATTEMPTS);
587 }
588
589 /* A structure to record a pair of insns where the first one is a real
590 insn that has delay slots, and the second is its delayed shadow.
591 I1 is scheduled normally and will emit an assembly instruction,
592 while I2 describes the side effect that takes place at the
593 transition between cycles CYCLES and (CYCLES + 1) after I1. */
594 struct delay_pair
595 {
596 struct delay_pair *next_same_i1;
597 rtx_insn *i1, *i2;
598 int cycles;
599 /* When doing modulo scheduling, we a delay_pair can also be used to
600 show that I1 and I2 are the same insn in a different stage. If that
601 is the case, STAGES will be nonzero. */
602 int stages;
603 };
604
605 /* Helpers for delay hashing. */
606
607 struct delay_i1_hasher : nofree_ptr_hash <delay_pair>
608 {
609 typedef void *compare_type;
610 static inline hashval_t hash (const delay_pair *);
611 static inline bool equal (const delay_pair *, const void *);
612 };
613
614 /* Returns a hash value for X, based on hashing just I1. */
615
616 inline hashval_t
617 delay_i1_hasher::hash (const delay_pair *x)
618 {
619 return htab_hash_pointer (x->i1);
620 }
621
622 /* Return true if I1 of pair X is the same as that of pair Y. */
623
624 inline bool
625 delay_i1_hasher::equal (const delay_pair *x, const void *y)
626 {
627 return x->i1 == y;
628 }
629
630 struct delay_i2_hasher : free_ptr_hash <delay_pair>
631 {
632 typedef void *compare_type;
633 static inline hashval_t hash (const delay_pair *);
634 static inline bool equal (const delay_pair *, const void *);
635 };
636
637 /* Returns a hash value for X, based on hashing just I2. */
638
639 inline hashval_t
640 delay_i2_hasher::hash (const delay_pair *x)
641 {
642 return htab_hash_pointer (x->i2);
643 }
644
645 /* Return true if I2 of pair X is the same as that of pair Y. */
646
647 inline bool
648 delay_i2_hasher::equal (const delay_pair *x, const void *y)
649 {
650 return x->i2 == y;
651 }
652
653 /* Two hash tables to record delay_pairs, one indexed by I1 and the other
654 indexed by I2. */
655 static hash_table<delay_i1_hasher> *delay_htab;
656 static hash_table<delay_i2_hasher> *delay_htab_i2;
657
658 /* Called through htab_traverse. Walk the hashtable using I2 as
659 index, and delete all elements involving an UID higher than
660 that pointed to by *DATA. */
661 int
662 haifa_htab_i2_traverse (delay_pair **slot, int *data)
663 {
664 int maxuid = *data;
665 struct delay_pair *p = *slot;
666 if (INSN_UID (p->i2) >= maxuid || INSN_UID (p->i1) >= maxuid)
667 {
668 delay_htab_i2->clear_slot (slot);
669 }
670 return 1;
671 }
672
673 /* Called through htab_traverse. Walk the hashtable using I2 as
674 index, and delete all elements involving an UID higher than
675 that pointed to by *DATA. */
676 int
677 haifa_htab_i1_traverse (delay_pair **pslot, int *data)
678 {
679 int maxuid = *data;
680 struct delay_pair *p, *first, **pprev;
681
682 if (INSN_UID ((*pslot)->i1) >= maxuid)
683 {
684 delay_htab->clear_slot (pslot);
685 return 1;
686 }
687 pprev = &first;
688 for (p = *pslot; p; p = p->next_same_i1)
689 {
690 if (INSN_UID (p->i2) < maxuid)
691 {
692 *pprev = p;
693 pprev = &p->next_same_i1;
694 }
695 }
696 *pprev = NULL;
697 if (first == NULL)
698 delay_htab->clear_slot (pslot);
699 else
700 *pslot = first;
701 return 1;
702 }
703
704 /* Discard all delay pairs which involve an insn with an UID higher
705 than MAX_UID. */
706 void
707 discard_delay_pairs_above (int max_uid)
708 {
709 delay_htab->traverse <int *, haifa_htab_i1_traverse> (&max_uid);
710 delay_htab_i2->traverse <int *, haifa_htab_i2_traverse> (&max_uid);
711 }
712
713 /* This function can be called by a port just before it starts the final
714 scheduling pass. It records the fact that an instruction with delay
715 slots has been split into two insns, I1 and I2. The first one will be
716 scheduled normally and initiates the operation. The second one is a
717 shadow which must follow a specific number of cycles after I1; its only
718 purpose is to show the side effect that occurs at that cycle in the RTL.
719 If a JUMP_INSN or a CALL_INSN has been split, I1 should be a normal INSN,
720 while I2 retains the original insn type.
721
722 There are two ways in which the number of cycles can be specified,
723 involving the CYCLES and STAGES arguments to this function. If STAGES
724 is zero, we just use the value of CYCLES. Otherwise, STAGES is a factor
725 which is multiplied by MODULO_II to give the number of cycles. This is
726 only useful if the caller also calls set_modulo_params to enable modulo
727 scheduling. */
728
729 void
730 record_delay_slot_pair (rtx_insn *i1, rtx_insn *i2, int cycles, int stages)
731 {
732 struct delay_pair *p = XNEW (struct delay_pair);
733 struct delay_pair **slot;
734
735 p->i1 = i1;
736 p->i2 = i2;
737 p->cycles = cycles;
738 p->stages = stages;
739
740 if (!delay_htab)
741 {
742 delay_htab = new hash_table<delay_i1_hasher> (10);
743 delay_htab_i2 = new hash_table<delay_i2_hasher> (10);
744 }
745 slot = delay_htab->find_slot_with_hash (i1, htab_hash_pointer (i1), INSERT);
746 p->next_same_i1 = *slot;
747 *slot = p;
748 slot = delay_htab_i2->find_slot (p, INSERT);
749 *slot = p;
750 }
751
752 /* Examine the delay pair hashtable to see if INSN is a shadow for another,
753 and return the other insn if so. Return NULL otherwise. */
754 rtx_insn *
755 real_insn_for_shadow (rtx_insn *insn)
756 {
757 struct delay_pair *pair;
758
759 if (!delay_htab)
760 return NULL;
761
762 pair = delay_htab_i2->find_with_hash (insn, htab_hash_pointer (insn));
763 if (!pair || pair->stages > 0)
764 return NULL;
765 return pair->i1;
766 }
767
768 /* For a pair P of insns, return the fixed distance in cycles from the first
769 insn after which the second must be scheduled. */
770 static int
771 pair_delay (struct delay_pair *p)
772 {
773 if (p->stages == 0)
774 return p->cycles;
775 else
776 return p->stages * modulo_ii;
777 }
778
779 /* Given an insn INSN, add a dependence on its delayed shadow if it
780 has one. Also try to find situations where shadows depend on each other
781 and add dependencies to the real insns to limit the amount of backtracking
782 needed. */
783 void
784 add_delay_dependencies (rtx_insn *insn)
785 {
786 struct delay_pair *pair;
787 sd_iterator_def sd_it;
788 dep_t dep;
789
790 if (!delay_htab)
791 return;
792
793 pair = delay_htab_i2->find_with_hash (insn, htab_hash_pointer (insn));
794 if (!pair)
795 return;
796 add_dependence (insn, pair->i1, REG_DEP_ANTI);
797 if (pair->stages)
798 return;
799
800 FOR_EACH_DEP (pair->i2, SD_LIST_BACK, sd_it, dep)
801 {
802 rtx_insn *pro = DEP_PRO (dep);
803 struct delay_pair *other_pair
804 = delay_htab_i2->find_with_hash (pro, htab_hash_pointer (pro));
805 if (!other_pair || other_pair->stages)
806 continue;
807 if (pair_delay (other_pair) >= pair_delay (pair))
808 {
809 if (sched_verbose >= 4)
810 {
811 fprintf (sched_dump, ";;\tadding dependence %d <- %d\n",
812 INSN_UID (other_pair->i1),
813 INSN_UID (pair->i1));
814 fprintf (sched_dump, ";;\tpair1 %d <- %d, cost %d\n",
815 INSN_UID (pair->i1),
816 INSN_UID (pair->i2),
817 pair_delay (pair));
818 fprintf (sched_dump, ";;\tpair2 %d <- %d, cost %d\n",
819 INSN_UID (other_pair->i1),
820 INSN_UID (other_pair->i2),
821 pair_delay (other_pair));
822 }
823 add_dependence (pair->i1, other_pair->i1, REG_DEP_ANTI);
824 }
825 }
826 }
827 \f
828 /* Forward declarations. */
829
830 static int priority (rtx_insn *);
831 static int autopref_rank_for_schedule (const rtx_insn *, const rtx_insn *);
832 static int rank_for_schedule (const void *, const void *);
833 static void swap_sort (rtx_insn **, int);
834 static void queue_insn (rtx_insn *, int, const char *);
835 static int schedule_insn (rtx_insn *);
836 static void adjust_priority (rtx_insn *);
837 static void advance_one_cycle (void);
838 static void extend_h_i_d (void);
839
840
841 /* Notes handling mechanism:
842 =========================
843 Generally, NOTES are saved before scheduling and restored after scheduling.
844 The scheduler distinguishes between two types of notes:
845
846 (1) LOOP_BEGIN, LOOP_END, SETJMP, EHREGION_BEG, EHREGION_END notes:
847 Before scheduling a region, a pointer to the note is added to the insn
848 that follows or precedes it. (This happens as part of the data dependence
849 computation). After scheduling an insn, the pointer contained in it is
850 used for regenerating the corresponding note (in reemit_notes).
851
852 (2) All other notes (e.g. INSN_DELETED): Before scheduling a block,
853 these notes are put in a list (in rm_other_notes() and
854 unlink_other_notes ()). After scheduling the block, these notes are
855 inserted at the beginning of the block (in schedule_block()). */
856
857 static void ready_add (struct ready_list *, rtx_insn *, bool);
858 static rtx_insn *ready_remove_first (struct ready_list *);
859 static rtx_insn *ready_remove_first_dispatch (struct ready_list *ready);
860
861 static void queue_to_ready (struct ready_list *);
862 static int early_queue_to_ready (state_t, struct ready_list *);
863
864 /* The following functions are used to implement multi-pass scheduling
865 on the first cycle. */
866 static rtx_insn *ready_remove (struct ready_list *, int);
867 static void ready_remove_insn (rtx_insn *);
868
869 static void fix_inter_tick (rtx_insn *, rtx_insn *);
870 static int fix_tick_ready (rtx_insn *);
871 static void change_queue_index (rtx_insn *, int);
872
873 /* The following functions are used to implement scheduling of data/control
874 speculative instructions. */
875
876 static void extend_h_i_d (void);
877 static void init_h_i_d (rtx_insn *);
878 static int haifa_speculate_insn (rtx_insn *, ds_t, rtx *);
879 static void generate_recovery_code (rtx_insn *);
880 static void process_insn_forw_deps_be_in_spec (rtx_insn *, rtx_insn *, ds_t);
881 static void begin_speculative_block (rtx_insn *);
882 static void add_to_speculative_block (rtx_insn *);
883 static void init_before_recovery (basic_block *);
884 static void create_check_block_twin (rtx_insn *, bool);
885 static void fix_recovery_deps (basic_block);
886 static bool haifa_change_pattern (rtx_insn *, rtx);
887 static void dump_new_block_header (int, basic_block, rtx_insn *, rtx_insn *);
888 static void restore_bb_notes (basic_block);
889 static void fix_jump_move (rtx_insn *);
890 static void move_block_after_check (rtx_insn *);
891 static void move_succs (vec<edge, va_gc> **, basic_block);
892 static void sched_remove_insn (rtx_insn *);
893 static void clear_priorities (rtx_insn *, rtx_vec_t *);
894 static void calc_priorities (rtx_vec_t);
895 static void add_jump_dependencies (rtx_insn *, rtx_insn *);
896
897 #endif /* INSN_SCHEDULING */
898 \f
899 /* Point to state used for the current scheduling pass. */
900 struct haifa_sched_info *current_sched_info;
901 \f
902 #ifndef INSN_SCHEDULING
903 void
904 schedule_insns (void)
905 {
906 }
907 #else
908
909 /* Do register pressure sensitive insn scheduling if the flag is set
910 up. */
911 enum sched_pressure_algorithm sched_pressure;
912
913 /* Map regno -> its pressure class. The map defined only when
914 SCHED_PRESSURE != SCHED_PRESSURE_NONE. */
915 enum reg_class *sched_regno_pressure_class;
916
917 /* The current register pressure. Only elements corresponding pressure
918 classes are defined. */
919 static int curr_reg_pressure[N_REG_CLASSES];
920
921 /* Saved value of the previous array. */
922 static int saved_reg_pressure[N_REG_CLASSES];
923
924 /* Register living at given scheduling point. */
925 static bitmap curr_reg_live;
926
927 /* Saved value of the previous array. */
928 static bitmap saved_reg_live;
929
930 /* Registers mentioned in the current region. */
931 static bitmap region_ref_regs;
932
933 /* Temporary bitmap used for SCHED_PRESSURE_MODEL. */
934 static bitmap tmp_bitmap;
935
936 /* Effective number of available registers of a given class (see comment
937 in sched_pressure_start_bb). */
938 static int sched_class_regs_num[N_REG_CLASSES];
939 /* Number of call_saved_regs and fixed_regs. Helpers for calculating of
940 sched_class_regs_num. */
941 static int call_saved_regs_num[N_REG_CLASSES];
942 static int fixed_regs_num[N_REG_CLASSES];
943
944 /* Initiate register pressure relative info for scheduling the current
945 region. Currently it is only clearing register mentioned in the
946 current region. */
947 void
948 sched_init_region_reg_pressure_info (void)
949 {
950 bitmap_clear (region_ref_regs);
951 }
952
953 /* PRESSURE[CL] describes the pressure on register class CL. Update it
954 for the birth (if BIRTH_P) or death (if !BIRTH_P) of register REGNO.
955 LIVE tracks the set of live registers; if it is null, assume that
956 every birth or death is genuine. */
957 static inline void
958 mark_regno_birth_or_death (bitmap live, int *pressure, int regno, bool birth_p)
959 {
960 enum reg_class pressure_class;
961
962 pressure_class = sched_regno_pressure_class[regno];
963 if (regno >= FIRST_PSEUDO_REGISTER)
964 {
965 if (pressure_class != NO_REGS)
966 {
967 if (birth_p)
968 {
969 if (!live || bitmap_set_bit (live, regno))
970 pressure[pressure_class]
971 += (ira_reg_class_max_nregs
972 [pressure_class][PSEUDO_REGNO_MODE (regno)]);
973 }
974 else
975 {
976 if (!live || bitmap_clear_bit (live, regno))
977 pressure[pressure_class]
978 -= (ira_reg_class_max_nregs
979 [pressure_class][PSEUDO_REGNO_MODE (regno)]);
980 }
981 }
982 }
983 else if (pressure_class != NO_REGS
984 && ! TEST_HARD_REG_BIT (ira_no_alloc_regs, regno))
985 {
986 if (birth_p)
987 {
988 if (!live || bitmap_set_bit (live, regno))
989 pressure[pressure_class]++;
990 }
991 else
992 {
993 if (!live || bitmap_clear_bit (live, regno))
994 pressure[pressure_class]--;
995 }
996 }
997 }
998
999 /* Initiate current register pressure related info from living
1000 registers given by LIVE. */
1001 static void
1002 initiate_reg_pressure_info (bitmap live)
1003 {
1004 int i;
1005 unsigned int j;
1006 bitmap_iterator bi;
1007
1008 for (i = 0; i < ira_pressure_classes_num; i++)
1009 curr_reg_pressure[ira_pressure_classes[i]] = 0;
1010 bitmap_clear (curr_reg_live);
1011 EXECUTE_IF_SET_IN_BITMAP (live, 0, j, bi)
1012 if (sched_pressure == SCHED_PRESSURE_MODEL
1013 || current_nr_blocks == 1
1014 || bitmap_bit_p (region_ref_regs, j))
1015 mark_regno_birth_or_death (curr_reg_live, curr_reg_pressure, j, true);
1016 }
1017
1018 /* Mark registers in X as mentioned in the current region. */
1019 static void
1020 setup_ref_regs (rtx x)
1021 {
1022 int i, j;
1023 const RTX_CODE code = GET_CODE (x);
1024 const char *fmt;
1025
1026 if (REG_P (x))
1027 {
1028 bitmap_set_range (region_ref_regs, REGNO (x), REG_NREGS (x));
1029 return;
1030 }
1031 fmt = GET_RTX_FORMAT (code);
1032 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1033 if (fmt[i] == 'e')
1034 setup_ref_regs (XEXP (x, i));
1035 else if (fmt[i] == 'E')
1036 {
1037 for (j = 0; j < XVECLEN (x, i); j++)
1038 setup_ref_regs (XVECEXP (x, i, j));
1039 }
1040 }
1041
1042 /* Initiate current register pressure related info at the start of
1043 basic block BB. */
1044 static void
1045 initiate_bb_reg_pressure_info (basic_block bb)
1046 {
1047 unsigned int i ATTRIBUTE_UNUSED;
1048 rtx_insn *insn;
1049
1050 if (current_nr_blocks > 1)
1051 FOR_BB_INSNS (bb, insn)
1052 if (NONDEBUG_INSN_P (insn))
1053 setup_ref_regs (PATTERN (insn));
1054 initiate_reg_pressure_info (df_get_live_in (bb));
1055 if (bb_has_eh_pred (bb))
1056 for (i = 0; ; ++i)
1057 {
1058 unsigned int regno = EH_RETURN_DATA_REGNO (i);
1059
1060 if (regno == INVALID_REGNUM)
1061 break;
1062 if (! bitmap_bit_p (df_get_live_in (bb), regno))
1063 mark_regno_birth_or_death (curr_reg_live, curr_reg_pressure,
1064 regno, true);
1065 }
1066 }
1067
1068 /* Save current register pressure related info. */
1069 static void
1070 save_reg_pressure (void)
1071 {
1072 int i;
1073
1074 for (i = 0; i < ira_pressure_classes_num; i++)
1075 saved_reg_pressure[ira_pressure_classes[i]]
1076 = curr_reg_pressure[ira_pressure_classes[i]];
1077 bitmap_copy (saved_reg_live, curr_reg_live);
1078 }
1079
1080 /* Restore saved register pressure related info. */
1081 static void
1082 restore_reg_pressure (void)
1083 {
1084 int i;
1085
1086 for (i = 0; i < ira_pressure_classes_num; i++)
1087 curr_reg_pressure[ira_pressure_classes[i]]
1088 = saved_reg_pressure[ira_pressure_classes[i]];
1089 bitmap_copy (curr_reg_live, saved_reg_live);
1090 }
1091
1092 /* Return TRUE if the register is dying after its USE. */
1093 static bool
1094 dying_use_p (struct reg_use_data *use)
1095 {
1096 struct reg_use_data *next;
1097
1098 for (next = use->next_regno_use; next != use; next = next->next_regno_use)
1099 if (NONDEBUG_INSN_P (next->insn)
1100 && QUEUE_INDEX (next->insn) != QUEUE_SCHEDULED)
1101 return false;
1102 return true;
1103 }
1104
1105 /* Print info about the current register pressure and its excess for
1106 each pressure class. */
1107 static void
1108 print_curr_reg_pressure (void)
1109 {
1110 int i;
1111 enum reg_class cl;
1112
1113 fprintf (sched_dump, ";;\t");
1114 for (i = 0; i < ira_pressure_classes_num; i++)
1115 {
1116 cl = ira_pressure_classes[i];
1117 gcc_assert (curr_reg_pressure[cl] >= 0);
1118 fprintf (sched_dump, " %s:%d(%d)", reg_class_names[cl],
1119 curr_reg_pressure[cl],
1120 curr_reg_pressure[cl] - sched_class_regs_num[cl]);
1121 }
1122 fprintf (sched_dump, "\n");
1123 }
1124 \f
1125 /* Determine if INSN has a condition that is clobbered if a register
1126 in SET_REGS is modified. */
1127 static bool
1128 cond_clobbered_p (rtx_insn *insn, HARD_REG_SET set_regs)
1129 {
1130 rtx pat = PATTERN (insn);
1131 gcc_assert (GET_CODE (pat) == COND_EXEC);
1132 if (TEST_HARD_REG_BIT (set_regs, REGNO (XEXP (COND_EXEC_TEST (pat), 0))))
1133 {
1134 sd_iterator_def sd_it;
1135 dep_t dep;
1136 haifa_change_pattern (insn, ORIG_PAT (insn));
1137 FOR_EACH_DEP (insn, SD_LIST_BACK, sd_it, dep)
1138 DEP_STATUS (dep) &= ~DEP_CANCELLED;
1139 TODO_SPEC (insn) = HARD_DEP;
1140 if (sched_verbose >= 2)
1141 fprintf (sched_dump,
1142 ";;\t\tdequeue insn %s because of clobbered condition\n",
1143 (*current_sched_info->print_insn) (insn, 0));
1144 return true;
1145 }
1146
1147 return false;
1148 }
1149
1150 /* This function should be called after modifying the pattern of INSN,
1151 to update scheduler data structures as needed. */
1152 static void
1153 update_insn_after_change (rtx_insn *insn)
1154 {
1155 sd_iterator_def sd_it;
1156 dep_t dep;
1157
1158 dfa_clear_single_insn_cache (insn);
1159
1160 sd_it = sd_iterator_start (insn,
1161 SD_LIST_FORW | SD_LIST_BACK | SD_LIST_RES_BACK);
1162 while (sd_iterator_cond (&sd_it, &dep))
1163 {
1164 DEP_COST (dep) = UNKNOWN_DEP_COST;
1165 sd_iterator_next (&sd_it);
1166 }
1167
1168 /* Invalidate INSN_COST, so it'll be recalculated. */
1169 INSN_COST (insn) = -1;
1170 /* Invalidate INSN_TICK, so it'll be recalculated. */
1171 INSN_TICK (insn) = INVALID_TICK;
1172
1173 /* Invalidate autoprefetch data entry. */
1174 INSN_AUTOPREF_MULTIPASS_DATA (insn)[0].status
1175 = AUTOPREF_MULTIPASS_DATA_UNINITIALIZED;
1176 INSN_AUTOPREF_MULTIPASS_DATA (insn)[1].status
1177 = AUTOPREF_MULTIPASS_DATA_UNINITIALIZED;
1178 }
1179
1180
1181 /* Two VECs, one to hold dependencies for which pattern replacements
1182 need to be applied or restored at the start of the next cycle, and
1183 another to hold an integer that is either one, to apply the
1184 corresponding replacement, or zero to restore it. */
1185 static vec<dep_t> next_cycle_replace_deps;
1186 static vec<int> next_cycle_apply;
1187
1188 static void apply_replacement (dep_t, bool);
1189 static void restore_pattern (dep_t, bool);
1190
1191 /* Look at the remaining dependencies for insn NEXT, and compute and return
1192 the TODO_SPEC value we should use for it. This is called after one of
1193 NEXT's dependencies has been resolved.
1194 We also perform pattern replacements for predication, and for broken
1195 replacement dependencies. The latter is only done if FOR_BACKTRACK is
1196 false. */
1197
1198 static ds_t
1199 recompute_todo_spec (rtx_insn *next, bool for_backtrack)
1200 {
1201 ds_t new_ds;
1202 sd_iterator_def sd_it;
1203 dep_t dep, modify_dep = NULL;
1204 int n_spec = 0;
1205 int n_control = 0;
1206 int n_replace = 0;
1207 bool first_p = true;
1208
1209 if (sd_lists_empty_p (next, SD_LIST_BACK))
1210 /* NEXT has all its dependencies resolved. */
1211 return 0;
1212
1213 if (!sd_lists_empty_p (next, SD_LIST_HARD_BACK))
1214 return HARD_DEP;
1215
1216 /* If NEXT is intended to sit adjacent to this instruction, we don't
1217 want to try to break any dependencies. Treat it as a HARD_DEP. */
1218 if (SCHED_GROUP_P (next))
1219 return HARD_DEP;
1220
1221 /* Now we've got NEXT with speculative deps only.
1222 1. Look at the deps to see what we have to do.
1223 2. Check if we can do 'todo'. */
1224 new_ds = 0;
1225
1226 FOR_EACH_DEP (next, SD_LIST_BACK, sd_it, dep)
1227 {
1228 rtx_insn *pro = DEP_PRO (dep);
1229 ds_t ds = DEP_STATUS (dep) & SPECULATIVE;
1230
1231 if (DEBUG_INSN_P (pro) && !DEBUG_INSN_P (next))
1232 continue;
1233
1234 if (ds)
1235 {
1236 n_spec++;
1237 if (first_p)
1238 {
1239 first_p = false;
1240
1241 new_ds = ds;
1242 }
1243 else
1244 new_ds = ds_merge (new_ds, ds);
1245 }
1246 else if (DEP_TYPE (dep) == REG_DEP_CONTROL)
1247 {
1248 if (QUEUE_INDEX (pro) != QUEUE_SCHEDULED)
1249 {
1250 n_control++;
1251 modify_dep = dep;
1252 }
1253 DEP_STATUS (dep) &= ~DEP_CANCELLED;
1254 }
1255 else if (DEP_REPLACE (dep) != NULL)
1256 {
1257 if (QUEUE_INDEX (pro) != QUEUE_SCHEDULED)
1258 {
1259 n_replace++;
1260 modify_dep = dep;
1261 }
1262 DEP_STATUS (dep) &= ~DEP_CANCELLED;
1263 }
1264 }
1265
1266 if (n_replace > 0 && n_control == 0 && n_spec == 0)
1267 {
1268 if (!dbg_cnt (sched_breakdep))
1269 return HARD_DEP;
1270 FOR_EACH_DEP (next, SD_LIST_BACK, sd_it, dep)
1271 {
1272 struct dep_replacement *desc = DEP_REPLACE (dep);
1273 if (desc != NULL)
1274 {
1275 if (desc->insn == next && !for_backtrack)
1276 {
1277 gcc_assert (n_replace == 1);
1278 apply_replacement (dep, true);
1279 }
1280 DEP_STATUS (dep) |= DEP_CANCELLED;
1281 }
1282 }
1283 return 0;
1284 }
1285
1286 else if (n_control == 1 && n_replace == 0 && n_spec == 0)
1287 {
1288 rtx_insn *pro, *other;
1289 rtx new_pat;
1290 rtx cond = NULL_RTX;
1291 bool success;
1292 rtx_insn *prev = NULL;
1293 int i;
1294 unsigned regno;
1295
1296 if ((current_sched_info->flags & DO_PREDICATION) == 0
1297 || (ORIG_PAT (next) != NULL_RTX
1298 && PREDICATED_PAT (next) == NULL_RTX))
1299 return HARD_DEP;
1300
1301 pro = DEP_PRO (modify_dep);
1302 other = real_insn_for_shadow (pro);
1303 if (other != NULL_RTX)
1304 pro = other;
1305
1306 cond = sched_get_reverse_condition_uncached (pro);
1307 regno = REGNO (XEXP (cond, 0));
1308
1309 /* Find the last scheduled insn that modifies the condition register.
1310 We can stop looking once we find the insn we depend on through the
1311 REG_DEP_CONTROL; if the condition register isn't modified after it,
1312 we know that it still has the right value. */
1313 if (QUEUE_INDEX (pro) == QUEUE_SCHEDULED)
1314 FOR_EACH_VEC_ELT_REVERSE (scheduled_insns, i, prev)
1315 {
1316 HARD_REG_SET t;
1317
1318 find_all_hard_reg_sets (prev, &t, true);
1319 if (TEST_HARD_REG_BIT (t, regno))
1320 return HARD_DEP;
1321 if (prev == pro)
1322 break;
1323 }
1324 if (ORIG_PAT (next) == NULL_RTX)
1325 {
1326 ORIG_PAT (next) = PATTERN (next);
1327
1328 new_pat = gen_rtx_COND_EXEC (VOIDmode, cond, PATTERN (next));
1329 success = haifa_change_pattern (next, new_pat);
1330 if (!success)
1331 return HARD_DEP;
1332 PREDICATED_PAT (next) = new_pat;
1333 }
1334 else if (PATTERN (next) != PREDICATED_PAT (next))
1335 {
1336 bool success = haifa_change_pattern (next,
1337 PREDICATED_PAT (next));
1338 gcc_assert (success);
1339 }
1340 DEP_STATUS (modify_dep) |= DEP_CANCELLED;
1341 return DEP_CONTROL;
1342 }
1343
1344 if (PREDICATED_PAT (next) != NULL_RTX)
1345 {
1346 int tick = INSN_TICK (next);
1347 bool success = haifa_change_pattern (next,
1348 ORIG_PAT (next));
1349 INSN_TICK (next) = tick;
1350 gcc_assert (success);
1351 }
1352
1353 /* We can't handle the case where there are both speculative and control
1354 dependencies, so we return HARD_DEP in such a case. Also fail if
1355 we have speculative dependencies with not enough points, or more than
1356 one control dependency. */
1357 if ((n_spec > 0 && (n_control > 0 || n_replace > 0))
1358 || (n_spec > 0
1359 /* Too few points? */
1360 && ds_weak (new_ds) < spec_info->data_weakness_cutoff)
1361 || n_control > 0
1362 || n_replace > 0)
1363 return HARD_DEP;
1364
1365 return new_ds;
1366 }
1367 \f
1368 /* Pointer to the last instruction scheduled. */
1369 static rtx_insn *last_scheduled_insn;
1370
1371 /* Pointer to the last nondebug instruction scheduled within the
1372 block, or the prev_head of the scheduling block. Used by
1373 rank_for_schedule, so that insns independent of the last scheduled
1374 insn will be preferred over dependent instructions. */
1375 static rtx_insn *last_nondebug_scheduled_insn;
1376
1377 /* Pointer that iterates through the list of unscheduled insns if we
1378 have a dbg_cnt enabled. It always points at an insn prior to the
1379 first unscheduled one. */
1380 static rtx_insn *nonscheduled_insns_begin;
1381
1382 /* Compute cost of executing INSN.
1383 This is the number of cycles between instruction issue and
1384 instruction results. */
1385 int
1386 insn_sched_cost (rtx_insn *insn)
1387 {
1388 int cost;
1389
1390 if (sched_fusion)
1391 return 0;
1392
1393 if (sel_sched_p ())
1394 {
1395 if (recog_memoized (insn) < 0)
1396 return 0;
1397
1398 cost = insn_default_latency (insn);
1399 if (cost < 0)
1400 cost = 0;
1401
1402 return cost;
1403 }
1404
1405 cost = INSN_COST (insn);
1406
1407 if (cost < 0)
1408 {
1409 /* A USE insn, or something else we don't need to
1410 understand. We can't pass these directly to
1411 result_ready_cost or insn_default_latency because it will
1412 trigger a fatal error for unrecognizable insns. */
1413 if (recog_memoized (insn) < 0)
1414 {
1415 INSN_COST (insn) = 0;
1416 return 0;
1417 }
1418 else
1419 {
1420 cost = insn_default_latency (insn);
1421 if (cost < 0)
1422 cost = 0;
1423
1424 INSN_COST (insn) = cost;
1425 }
1426 }
1427
1428 return cost;
1429 }
1430
1431 /* Compute cost of dependence LINK.
1432 This is the number of cycles between instruction issue and
1433 instruction results.
1434 ??? We also use this function to call recog_memoized on all insns. */
1435 int
1436 dep_cost_1 (dep_t link, dw_t dw)
1437 {
1438 rtx_insn *insn = DEP_PRO (link);
1439 rtx_insn *used = DEP_CON (link);
1440 int cost;
1441
1442 if (DEP_COST (link) != UNKNOWN_DEP_COST)
1443 return DEP_COST (link);
1444
1445 if (delay_htab)
1446 {
1447 struct delay_pair *delay_entry;
1448 delay_entry
1449 = delay_htab_i2->find_with_hash (used, htab_hash_pointer (used));
1450 if (delay_entry)
1451 {
1452 if (delay_entry->i1 == insn)
1453 {
1454 DEP_COST (link) = pair_delay (delay_entry);
1455 return DEP_COST (link);
1456 }
1457 }
1458 }
1459
1460 /* A USE insn should never require the value used to be computed.
1461 This allows the computation of a function's result and parameter
1462 values to overlap the return and call. We don't care about the
1463 dependence cost when only decreasing register pressure. */
1464 if (recog_memoized (used) < 0)
1465 {
1466 cost = 0;
1467 recog_memoized (insn);
1468 }
1469 else
1470 {
1471 enum reg_note dep_type = DEP_TYPE (link);
1472
1473 cost = insn_sched_cost (insn);
1474
1475 if (INSN_CODE (insn) >= 0)
1476 {
1477 if (dep_type == REG_DEP_ANTI)
1478 cost = 0;
1479 else if (dep_type == REG_DEP_OUTPUT)
1480 {
1481 cost = (insn_default_latency (insn)
1482 - insn_default_latency (used));
1483 if (cost <= 0)
1484 cost = 1;
1485 }
1486 else if (bypass_p (insn))
1487 cost = insn_latency (insn, used);
1488 }
1489
1490
1491 if (targetm.sched.adjust_cost)
1492 cost = targetm.sched.adjust_cost (used, (int) dep_type, insn, cost,
1493 dw);
1494
1495 if (cost < 0)
1496 cost = 0;
1497 }
1498
1499 DEP_COST (link) = cost;
1500 return cost;
1501 }
1502
1503 /* Compute cost of dependence LINK.
1504 This is the number of cycles between instruction issue and
1505 instruction results. */
1506 int
1507 dep_cost (dep_t link)
1508 {
1509 return dep_cost_1 (link, 0);
1510 }
1511
1512 /* Use this sel-sched.c friendly function in reorder2 instead of increasing
1513 INSN_PRIORITY explicitly. */
1514 void
1515 increase_insn_priority (rtx_insn *insn, int amount)
1516 {
1517 if (!sel_sched_p ())
1518 {
1519 /* We're dealing with haifa-sched.c INSN_PRIORITY. */
1520 if (INSN_PRIORITY_KNOWN (insn))
1521 INSN_PRIORITY (insn) += amount;
1522 }
1523 else
1524 {
1525 /* In sel-sched.c INSN_PRIORITY is not kept up to date.
1526 Use EXPR_PRIORITY instead. */
1527 sel_add_to_insn_priority (insn, amount);
1528 }
1529 }
1530
1531 /* Return 'true' if DEP should be included in priority calculations. */
1532 static bool
1533 contributes_to_priority_p (dep_t dep)
1534 {
1535 if (DEBUG_INSN_P (DEP_CON (dep))
1536 || DEBUG_INSN_P (DEP_PRO (dep)))
1537 return false;
1538
1539 /* Critical path is meaningful in block boundaries only. */
1540 if (!current_sched_info->contributes_to_priority (DEP_CON (dep),
1541 DEP_PRO (dep)))
1542 return false;
1543
1544 if (DEP_REPLACE (dep) != NULL)
1545 return false;
1546
1547 /* If flag COUNT_SPEC_IN_CRITICAL_PATH is set,
1548 then speculative instructions will less likely be
1549 scheduled. That is because the priority of
1550 their producers will increase, and, thus, the
1551 producers will more likely be scheduled, thus,
1552 resolving the dependence. */
1553 if (sched_deps_info->generate_spec_deps
1554 && !(spec_info->flags & COUNT_SPEC_IN_CRITICAL_PATH)
1555 && (DEP_STATUS (dep) & SPECULATIVE))
1556 return false;
1557
1558 return true;
1559 }
1560
1561 /* Compute the number of nondebug deps in list LIST for INSN. */
1562
1563 static int
1564 dep_list_size (rtx_insn *insn, sd_list_types_def list)
1565 {
1566 sd_iterator_def sd_it;
1567 dep_t dep;
1568 int dbgcount = 0, nodbgcount = 0;
1569
1570 if (!MAY_HAVE_DEBUG_INSNS)
1571 return sd_lists_size (insn, list);
1572
1573 FOR_EACH_DEP (insn, list, sd_it, dep)
1574 {
1575 if (DEBUG_INSN_P (DEP_CON (dep)))
1576 dbgcount++;
1577 else if (!DEBUG_INSN_P (DEP_PRO (dep)))
1578 nodbgcount++;
1579 }
1580
1581 gcc_assert (dbgcount + nodbgcount == sd_lists_size (insn, list));
1582
1583 return nodbgcount;
1584 }
1585
1586 bool sched_fusion;
1587
1588 /* Compute the priority number for INSN. */
1589 static int
1590 priority (rtx_insn *insn)
1591 {
1592 if (! INSN_P (insn))
1593 return 0;
1594
1595 /* We should not be interested in priority of an already scheduled insn. */
1596 gcc_assert (QUEUE_INDEX (insn) != QUEUE_SCHEDULED);
1597
1598 if (!INSN_PRIORITY_KNOWN (insn))
1599 {
1600 int this_priority = -1;
1601
1602 if (sched_fusion)
1603 {
1604 int this_fusion_priority;
1605
1606 targetm.sched.fusion_priority (insn, FUSION_MAX_PRIORITY,
1607 &this_fusion_priority, &this_priority);
1608 INSN_FUSION_PRIORITY (insn) = this_fusion_priority;
1609 }
1610 else if (dep_list_size (insn, SD_LIST_FORW) == 0)
1611 /* ??? We should set INSN_PRIORITY to insn_sched_cost when and insn
1612 has some forward deps but all of them are ignored by
1613 contributes_to_priority hook. At the moment we set priority of
1614 such insn to 0. */
1615 this_priority = insn_sched_cost (insn);
1616 else
1617 {
1618 rtx_insn *prev_first, *twin;
1619 basic_block rec;
1620
1621 /* For recovery check instructions we calculate priority slightly
1622 different than that of normal instructions. Instead of walking
1623 through INSN_FORW_DEPS (check) list, we walk through
1624 INSN_FORW_DEPS list of each instruction in the corresponding
1625 recovery block. */
1626
1627 /* Selective scheduling does not define RECOVERY_BLOCK macro. */
1628 rec = sel_sched_p () ? NULL : RECOVERY_BLOCK (insn);
1629 if (!rec || rec == EXIT_BLOCK_PTR_FOR_FN (cfun))
1630 {
1631 prev_first = PREV_INSN (insn);
1632 twin = insn;
1633 }
1634 else
1635 {
1636 prev_first = NEXT_INSN (BB_HEAD (rec));
1637 twin = PREV_INSN (BB_END (rec));
1638 }
1639
1640 do
1641 {
1642 sd_iterator_def sd_it;
1643 dep_t dep;
1644
1645 FOR_EACH_DEP (twin, SD_LIST_FORW, sd_it, dep)
1646 {
1647 rtx_insn *next;
1648 int next_priority;
1649
1650 next = DEP_CON (dep);
1651
1652 if (BLOCK_FOR_INSN (next) != rec)
1653 {
1654 int cost;
1655
1656 if (!contributes_to_priority_p (dep))
1657 continue;
1658
1659 if (twin == insn)
1660 cost = dep_cost (dep);
1661 else
1662 {
1663 struct _dep _dep1, *dep1 = &_dep1;
1664
1665 init_dep (dep1, insn, next, REG_DEP_ANTI);
1666
1667 cost = dep_cost (dep1);
1668 }
1669
1670 next_priority = cost + priority (next);
1671
1672 if (next_priority > this_priority)
1673 this_priority = next_priority;
1674 }
1675 }
1676
1677 twin = PREV_INSN (twin);
1678 }
1679 while (twin != prev_first);
1680 }
1681
1682 if (this_priority < 0)
1683 {
1684 gcc_assert (this_priority == -1);
1685
1686 this_priority = insn_sched_cost (insn);
1687 }
1688
1689 INSN_PRIORITY (insn) = this_priority;
1690 INSN_PRIORITY_STATUS (insn) = 1;
1691 }
1692
1693 return INSN_PRIORITY (insn);
1694 }
1695 \f
1696 /* Macros and functions for keeping the priority queue sorted, and
1697 dealing with queuing and dequeuing of instructions. */
1698
1699 /* For each pressure class CL, set DEATH[CL] to the number of registers
1700 in that class that die in INSN. */
1701
1702 static void
1703 calculate_reg_deaths (rtx_insn *insn, int *death)
1704 {
1705 int i;
1706 struct reg_use_data *use;
1707
1708 for (i = 0; i < ira_pressure_classes_num; i++)
1709 death[ira_pressure_classes[i]] = 0;
1710 for (use = INSN_REG_USE_LIST (insn); use != NULL; use = use->next_insn_use)
1711 if (dying_use_p (use))
1712 mark_regno_birth_or_death (0, death, use->regno, true);
1713 }
1714
1715 /* Setup info about the current register pressure impact of scheduling
1716 INSN at the current scheduling point. */
1717 static void
1718 setup_insn_reg_pressure_info (rtx_insn *insn)
1719 {
1720 int i, change, before, after, hard_regno;
1721 int excess_cost_change;
1722 machine_mode mode;
1723 enum reg_class cl;
1724 struct reg_pressure_data *pressure_info;
1725 int *max_reg_pressure;
1726 static int death[N_REG_CLASSES];
1727
1728 gcc_checking_assert (!DEBUG_INSN_P (insn));
1729
1730 excess_cost_change = 0;
1731 calculate_reg_deaths (insn, death);
1732 pressure_info = INSN_REG_PRESSURE (insn);
1733 max_reg_pressure = INSN_MAX_REG_PRESSURE (insn);
1734 gcc_assert (pressure_info != NULL && max_reg_pressure != NULL);
1735 for (i = 0; i < ira_pressure_classes_num; i++)
1736 {
1737 cl = ira_pressure_classes[i];
1738 gcc_assert (curr_reg_pressure[cl] >= 0);
1739 change = (int) pressure_info[i].set_increase - death[cl];
1740 before = MAX (0, max_reg_pressure[i] - sched_class_regs_num[cl]);
1741 after = MAX (0, max_reg_pressure[i] + change
1742 - sched_class_regs_num[cl]);
1743 hard_regno = ira_class_hard_regs[cl][0];
1744 gcc_assert (hard_regno >= 0);
1745 mode = reg_raw_mode[hard_regno];
1746 excess_cost_change += ((after - before)
1747 * (ira_memory_move_cost[mode][cl][0]
1748 + ira_memory_move_cost[mode][cl][1]));
1749 }
1750 INSN_REG_PRESSURE_EXCESS_COST_CHANGE (insn) = excess_cost_change;
1751 }
1752 \f
1753 /* This is the first page of code related to SCHED_PRESSURE_MODEL.
1754 It tries to make the scheduler take register pressure into account
1755 without introducing too many unnecessary stalls. It hooks into the
1756 main scheduling algorithm at several points:
1757
1758 - Before scheduling starts, model_start_schedule constructs a
1759 "model schedule" for the current block. This model schedule is
1760 chosen solely to keep register pressure down. It does not take the
1761 target's pipeline or the original instruction order into account,
1762 except as a tie-breaker. It also doesn't work to a particular
1763 pressure limit.
1764
1765 This model schedule gives us an idea of what pressure can be
1766 achieved for the block and gives us an example of a schedule that
1767 keeps to that pressure. It also makes the final schedule less
1768 dependent on the original instruction order. This is important
1769 because the original order can either be "wide" (many values live
1770 at once, such as in user-scheduled code) or "narrow" (few values
1771 live at once, such as after loop unrolling, where several
1772 iterations are executed sequentially).
1773
1774 We do not apply this model schedule to the rtx stream. We simply
1775 record it in model_schedule. We also compute the maximum pressure,
1776 MP, that was seen during this schedule.
1777
1778 - Instructions are added to the ready queue even if they require
1779 a stall. The length of the stall is instead computed as:
1780
1781 MAX (INSN_TICK (INSN) - clock_var, 0)
1782
1783 (= insn_delay). This allows rank_for_schedule to choose between
1784 introducing a deliberate stall or increasing pressure.
1785
1786 - Before sorting the ready queue, model_set_excess_costs assigns
1787 a pressure-based cost to each ready instruction in the queue.
1788 This is the instruction's INSN_REG_PRESSURE_EXCESS_COST_CHANGE
1789 (ECC for short) and is effectively measured in cycles.
1790
1791 - rank_for_schedule ranks instructions based on:
1792
1793 ECC (insn) + insn_delay (insn)
1794
1795 then as:
1796
1797 insn_delay (insn)
1798
1799 So, for example, an instruction X1 with an ECC of 1 that can issue
1800 now will win over an instruction X0 with an ECC of zero that would
1801 introduce a stall of one cycle. However, an instruction X2 with an
1802 ECC of 2 that can issue now will lose to both X0 and X1.
1803
1804 - When an instruction is scheduled, model_recompute updates the model
1805 schedule with the new pressures (some of which might now exceed the
1806 original maximum pressure MP). model_update_limit_points then searches
1807 for the new point of maximum pressure, if not already known. */
1808
1809 /* Used to separate high-verbosity debug information for SCHED_PRESSURE_MODEL
1810 from surrounding debug information. */
1811 #define MODEL_BAR \
1812 ";;\t\t+------------------------------------------------------\n"
1813
1814 /* Information about the pressure on a particular register class at a
1815 particular point of the model schedule. */
1816 struct model_pressure_data {
1817 /* The pressure at this point of the model schedule, or -1 if the
1818 point is associated with an instruction that has already been
1819 scheduled. */
1820 int ref_pressure;
1821
1822 /* The maximum pressure during or after this point of the model schedule. */
1823 int max_pressure;
1824 };
1825
1826 /* Per-instruction information that is used while building the model
1827 schedule. Here, "schedule" refers to the model schedule rather
1828 than the main schedule. */
1829 struct model_insn_info {
1830 /* The instruction itself. */
1831 rtx_insn *insn;
1832
1833 /* If this instruction is in model_worklist, these fields link to the
1834 previous (higher-priority) and next (lower-priority) instructions
1835 in the list. */
1836 struct model_insn_info *prev;
1837 struct model_insn_info *next;
1838
1839 /* While constructing the schedule, QUEUE_INDEX describes whether an
1840 instruction has already been added to the schedule (QUEUE_SCHEDULED),
1841 is in model_worklist (QUEUE_READY), or neither (QUEUE_NOWHERE).
1842 old_queue records the value that QUEUE_INDEX had before scheduling
1843 started, so that we can restore it once the schedule is complete. */
1844 int old_queue;
1845
1846 /* The relative importance of an unscheduled instruction. Higher
1847 values indicate greater importance. */
1848 unsigned int model_priority;
1849
1850 /* The length of the longest path of satisfied true dependencies
1851 that leads to this instruction. */
1852 unsigned int depth;
1853
1854 /* The length of the longest path of dependencies of any kind
1855 that leads from this instruction. */
1856 unsigned int alap;
1857
1858 /* The number of predecessor nodes that must still be scheduled. */
1859 int unscheduled_preds;
1860 };
1861
1862 /* Information about the pressure limit for a particular register class.
1863 This structure is used when applying a model schedule to the main
1864 schedule. */
1865 struct model_pressure_limit {
1866 /* The maximum register pressure seen in the original model schedule. */
1867 int orig_pressure;
1868
1869 /* The maximum register pressure seen in the current model schedule
1870 (which excludes instructions that have already been scheduled). */
1871 int pressure;
1872
1873 /* The point of the current model schedule at which PRESSURE is first
1874 reached. It is set to -1 if the value needs to be recomputed. */
1875 int point;
1876 };
1877
1878 /* Describes a particular way of measuring register pressure. */
1879 struct model_pressure_group {
1880 /* Index PCI describes the maximum pressure on ira_pressure_classes[PCI]. */
1881 struct model_pressure_limit limits[N_REG_CLASSES];
1882
1883 /* Index (POINT * ira_num_pressure_classes + PCI) describes the pressure
1884 on register class ira_pressure_classes[PCI] at point POINT of the
1885 current model schedule. A POINT of model_num_insns describes the
1886 pressure at the end of the schedule. */
1887 struct model_pressure_data *model;
1888 };
1889
1890 /* Index POINT gives the instruction at point POINT of the model schedule.
1891 This array doesn't change during main scheduling. */
1892 static vec<rtx_insn *> model_schedule;
1893
1894 /* The list of instructions in the model worklist, sorted in order of
1895 decreasing priority. */
1896 static struct model_insn_info *model_worklist;
1897
1898 /* Index I describes the instruction with INSN_LUID I. */
1899 static struct model_insn_info *model_insns;
1900
1901 /* The number of instructions in the model schedule. */
1902 static int model_num_insns;
1903
1904 /* The index of the first instruction in model_schedule that hasn't yet been
1905 added to the main schedule, or model_num_insns if all of them have. */
1906 static int model_curr_point;
1907
1908 /* Describes the pressure before each instruction in the model schedule. */
1909 static struct model_pressure_group model_before_pressure;
1910
1911 /* The first unused model_priority value (as used in model_insn_info). */
1912 static unsigned int model_next_priority;
1913
1914
1915 /* The model_pressure_data for ira_pressure_classes[PCI] in GROUP
1916 at point POINT of the model schedule. */
1917 #define MODEL_PRESSURE_DATA(GROUP, POINT, PCI) \
1918 (&(GROUP)->model[(POINT) * ira_pressure_classes_num + (PCI)])
1919
1920 /* The maximum pressure on ira_pressure_classes[PCI] in GROUP at or
1921 after point POINT of the model schedule. */
1922 #define MODEL_MAX_PRESSURE(GROUP, POINT, PCI) \
1923 (MODEL_PRESSURE_DATA (GROUP, POINT, PCI)->max_pressure)
1924
1925 /* The pressure on ira_pressure_classes[PCI] in GROUP at point POINT
1926 of the model schedule. */
1927 #define MODEL_REF_PRESSURE(GROUP, POINT, PCI) \
1928 (MODEL_PRESSURE_DATA (GROUP, POINT, PCI)->ref_pressure)
1929
1930 /* Information about INSN that is used when creating the model schedule. */
1931 #define MODEL_INSN_INFO(INSN) \
1932 (&model_insns[INSN_LUID (INSN)])
1933
1934 /* The instruction at point POINT of the model schedule. */
1935 #define MODEL_INSN(POINT) \
1936 (model_schedule[POINT])
1937
1938
1939 /* Return INSN's index in the model schedule, or model_num_insns if it
1940 doesn't belong to that schedule. */
1941
1942 static int
1943 model_index (rtx_insn *insn)
1944 {
1945 if (INSN_MODEL_INDEX (insn) == 0)
1946 return model_num_insns;
1947 return INSN_MODEL_INDEX (insn) - 1;
1948 }
1949
1950 /* Make sure that GROUP->limits is up-to-date for the current point
1951 of the model schedule. */
1952
1953 static void
1954 model_update_limit_points_in_group (struct model_pressure_group *group)
1955 {
1956 int pci, max_pressure, point;
1957
1958 for (pci = 0; pci < ira_pressure_classes_num; pci++)
1959 {
1960 /* We may have passed the final point at which the pressure in
1961 group->limits[pci].pressure was reached. Update the limit if so. */
1962 max_pressure = MODEL_MAX_PRESSURE (group, model_curr_point, pci);
1963 group->limits[pci].pressure = max_pressure;
1964
1965 /* Find the point at which MAX_PRESSURE is first reached. We need
1966 to search in three cases:
1967
1968 - We've already moved past the previous pressure point.
1969 In this case we search forward from model_curr_point.
1970
1971 - We scheduled the previous point of maximum pressure ahead of
1972 its position in the model schedule, but doing so didn't bring
1973 the pressure point earlier. In this case we search forward
1974 from that previous pressure point.
1975
1976 - Scheduling an instruction early caused the maximum pressure
1977 to decrease. In this case we will have set the pressure
1978 point to -1, and we search forward from model_curr_point. */
1979 point = MAX (group->limits[pci].point, model_curr_point);
1980 while (point < model_num_insns
1981 && MODEL_REF_PRESSURE (group, point, pci) < max_pressure)
1982 point++;
1983 group->limits[pci].point = point;
1984
1985 gcc_assert (MODEL_REF_PRESSURE (group, point, pci) == max_pressure);
1986 gcc_assert (MODEL_MAX_PRESSURE (group, point, pci) == max_pressure);
1987 }
1988 }
1989
1990 /* Make sure that all register-pressure limits are up-to-date for the
1991 current position in the model schedule. */
1992
1993 static void
1994 model_update_limit_points (void)
1995 {
1996 model_update_limit_points_in_group (&model_before_pressure);
1997 }
1998
1999 /* Return the model_index of the last unscheduled use in chain USE
2000 outside of USE's instruction. Return -1 if there are no other uses,
2001 or model_num_insns if the register is live at the end of the block. */
2002
2003 static int
2004 model_last_use_except (struct reg_use_data *use)
2005 {
2006 struct reg_use_data *next;
2007 int last, index;
2008
2009 last = -1;
2010 for (next = use->next_regno_use; next != use; next = next->next_regno_use)
2011 if (NONDEBUG_INSN_P (next->insn)
2012 && QUEUE_INDEX (next->insn) != QUEUE_SCHEDULED)
2013 {
2014 index = model_index (next->insn);
2015 if (index == model_num_insns)
2016 return model_num_insns;
2017 if (last < index)
2018 last = index;
2019 }
2020 return last;
2021 }
2022
2023 /* An instruction with model_index POINT has just been scheduled, and it
2024 adds DELTA to the pressure on ira_pressure_classes[PCI] after POINT - 1.
2025 Update MODEL_REF_PRESSURE (GROUP, POINT, PCI) and
2026 MODEL_MAX_PRESSURE (GROUP, POINT, PCI) accordingly. */
2027
2028 static void
2029 model_start_update_pressure (struct model_pressure_group *group,
2030 int point, int pci, int delta)
2031 {
2032 int next_max_pressure;
2033
2034 if (point == model_num_insns)
2035 {
2036 /* The instruction wasn't part of the model schedule; it was moved
2037 from a different block. Update the pressure for the end of
2038 the model schedule. */
2039 MODEL_REF_PRESSURE (group, point, pci) += delta;
2040 MODEL_MAX_PRESSURE (group, point, pci) += delta;
2041 }
2042 else
2043 {
2044 /* Record that this instruction has been scheduled. Nothing now
2045 changes between POINT and POINT + 1, so get the maximum pressure
2046 from the latter. If the maximum pressure decreases, the new
2047 pressure point may be before POINT. */
2048 MODEL_REF_PRESSURE (group, point, pci) = -1;
2049 next_max_pressure = MODEL_MAX_PRESSURE (group, point + 1, pci);
2050 if (MODEL_MAX_PRESSURE (group, point, pci) > next_max_pressure)
2051 {
2052 MODEL_MAX_PRESSURE (group, point, pci) = next_max_pressure;
2053 if (group->limits[pci].point == point)
2054 group->limits[pci].point = -1;
2055 }
2056 }
2057 }
2058
2059 /* Record that scheduling a later instruction has changed the pressure
2060 at point POINT of the model schedule by DELTA (which might be 0).
2061 Update GROUP accordingly. Return nonzero if these changes might
2062 trigger changes to previous points as well. */
2063
2064 static int
2065 model_update_pressure (struct model_pressure_group *group,
2066 int point, int pci, int delta)
2067 {
2068 int ref_pressure, max_pressure, next_max_pressure;
2069
2070 /* If POINT hasn't yet been scheduled, update its pressure. */
2071 ref_pressure = MODEL_REF_PRESSURE (group, point, pci);
2072 if (ref_pressure >= 0 && delta != 0)
2073 {
2074 ref_pressure += delta;
2075 MODEL_REF_PRESSURE (group, point, pci) = ref_pressure;
2076
2077 /* Check whether the maximum pressure in the overall schedule
2078 has increased. (This means that the MODEL_MAX_PRESSURE of
2079 every point <= POINT will need to increase too; see below.) */
2080 if (group->limits[pci].pressure < ref_pressure)
2081 group->limits[pci].pressure = ref_pressure;
2082
2083 /* If we are at maximum pressure, and the maximum pressure
2084 point was previously unknown or later than POINT,
2085 bring it forward. */
2086 if (group->limits[pci].pressure == ref_pressure
2087 && !IN_RANGE (group->limits[pci].point, 0, point))
2088 group->limits[pci].point = point;
2089
2090 /* If POINT used to be the point of maximum pressure, but isn't
2091 any longer, we need to recalculate it using a forward walk. */
2092 if (group->limits[pci].pressure > ref_pressure
2093 && group->limits[pci].point == point)
2094 group->limits[pci].point = -1;
2095 }
2096
2097 /* Update the maximum pressure at POINT. Changes here might also
2098 affect the maximum pressure at POINT - 1. */
2099 next_max_pressure = MODEL_MAX_PRESSURE (group, point + 1, pci);
2100 max_pressure = MAX (ref_pressure, next_max_pressure);
2101 if (MODEL_MAX_PRESSURE (group, point, pci) != max_pressure)
2102 {
2103 MODEL_MAX_PRESSURE (group, point, pci) = max_pressure;
2104 return 1;
2105 }
2106 return 0;
2107 }
2108
2109 /* INSN has just been scheduled. Update the model schedule accordingly. */
2110
2111 static void
2112 model_recompute (rtx_insn *insn)
2113 {
2114 struct {
2115 int last_use;
2116 int regno;
2117 } uses[FIRST_PSEUDO_REGISTER + MAX_RECOG_OPERANDS];
2118 struct reg_use_data *use;
2119 struct reg_pressure_data *reg_pressure;
2120 int delta[N_REG_CLASSES];
2121 int pci, point, mix, new_last, cl, ref_pressure, queue;
2122 unsigned int i, num_uses, num_pending_births;
2123 bool print_p;
2124
2125 /* The destinations of INSN were previously live from POINT onwards, but are
2126 now live from model_curr_point onwards. Set up DELTA accordingly. */
2127 point = model_index (insn);
2128 reg_pressure = INSN_REG_PRESSURE (insn);
2129 for (pci = 0; pci < ira_pressure_classes_num; pci++)
2130 {
2131 cl = ira_pressure_classes[pci];
2132 delta[cl] = reg_pressure[pci].set_increase;
2133 }
2134
2135 /* Record which registers previously died at POINT, but which now die
2136 before POINT. Adjust DELTA so that it represents the effect of
2137 this change after POINT - 1. Set NUM_PENDING_BIRTHS to the number of
2138 registers that will be born in the range [model_curr_point, POINT). */
2139 num_uses = 0;
2140 num_pending_births = 0;
2141 bitmap_clear (tmp_bitmap);
2142 for (use = INSN_REG_USE_LIST (insn); use != NULL; use = use->next_insn_use)
2143 {
2144 new_last = model_last_use_except (use);
2145 if (new_last < point && bitmap_set_bit (tmp_bitmap, use->regno))
2146 {
2147 gcc_assert (num_uses < ARRAY_SIZE (uses));
2148 uses[num_uses].last_use = new_last;
2149 uses[num_uses].regno = use->regno;
2150 /* This register is no longer live after POINT - 1. */
2151 mark_regno_birth_or_death (NULL, delta, use->regno, false);
2152 num_uses++;
2153 if (new_last >= 0)
2154 num_pending_births++;
2155 }
2156 }
2157
2158 /* Update the MODEL_REF_PRESSURE and MODEL_MAX_PRESSURE for POINT.
2159 Also set each group pressure limit for POINT. */
2160 for (pci = 0; pci < ira_pressure_classes_num; pci++)
2161 {
2162 cl = ira_pressure_classes[pci];
2163 model_start_update_pressure (&model_before_pressure,
2164 point, pci, delta[cl]);
2165 }
2166
2167 /* Walk the model schedule backwards, starting immediately before POINT. */
2168 print_p = false;
2169 if (point != model_curr_point)
2170 do
2171 {
2172 point--;
2173 insn = MODEL_INSN (point);
2174 queue = QUEUE_INDEX (insn);
2175
2176 if (queue != QUEUE_SCHEDULED)
2177 {
2178 /* DELTA describes the effect of the move on the register pressure
2179 after POINT. Make it describe the effect on the pressure
2180 before POINT. */
2181 i = 0;
2182 while (i < num_uses)
2183 {
2184 if (uses[i].last_use == point)
2185 {
2186 /* This register is now live again. */
2187 mark_regno_birth_or_death (NULL, delta,
2188 uses[i].regno, true);
2189
2190 /* Remove this use from the array. */
2191 uses[i] = uses[num_uses - 1];
2192 num_uses--;
2193 num_pending_births--;
2194 }
2195 else
2196 i++;
2197 }
2198
2199 if (sched_verbose >= 5)
2200 {
2201 if (!print_p)
2202 {
2203 fprintf (sched_dump, MODEL_BAR);
2204 fprintf (sched_dump, ";;\t\t| New pressure for model"
2205 " schedule\n");
2206 fprintf (sched_dump, MODEL_BAR);
2207 print_p = true;
2208 }
2209
2210 fprintf (sched_dump, ";;\t\t| %3d %4d %-30s ",
2211 point, INSN_UID (insn),
2212 str_pattern_slim (PATTERN (insn)));
2213 for (pci = 0; pci < ira_pressure_classes_num; pci++)
2214 {
2215 cl = ira_pressure_classes[pci];
2216 ref_pressure = MODEL_REF_PRESSURE (&model_before_pressure,
2217 point, pci);
2218 fprintf (sched_dump, " %s:[%d->%d]",
2219 reg_class_names[ira_pressure_classes[pci]],
2220 ref_pressure, ref_pressure + delta[cl]);
2221 }
2222 fprintf (sched_dump, "\n");
2223 }
2224 }
2225
2226 /* Adjust the pressure at POINT. Set MIX to nonzero if POINT - 1
2227 might have changed as well. */
2228 mix = num_pending_births;
2229 for (pci = 0; pci < ira_pressure_classes_num; pci++)
2230 {
2231 cl = ira_pressure_classes[pci];
2232 mix |= delta[cl];
2233 mix |= model_update_pressure (&model_before_pressure,
2234 point, pci, delta[cl]);
2235 }
2236 }
2237 while (mix && point > model_curr_point);
2238
2239 if (print_p)
2240 fprintf (sched_dump, MODEL_BAR);
2241 }
2242
2243 /* After DEP, which was cancelled, has been resolved for insn NEXT,
2244 check whether the insn's pattern needs restoring. */
2245 static bool
2246 must_restore_pattern_p (rtx_insn *next, dep_t dep)
2247 {
2248 if (QUEUE_INDEX (next) == QUEUE_SCHEDULED)
2249 return false;
2250
2251 if (DEP_TYPE (dep) == REG_DEP_CONTROL)
2252 {
2253 gcc_assert (ORIG_PAT (next) != NULL_RTX);
2254 gcc_assert (next == DEP_CON (dep));
2255 }
2256 else
2257 {
2258 struct dep_replacement *desc = DEP_REPLACE (dep);
2259 if (desc->insn != next)
2260 {
2261 gcc_assert (*desc->loc == desc->orig);
2262 return false;
2263 }
2264 }
2265 return true;
2266 }
2267 \f
2268 /* model_spill_cost (CL, P, P') returns the cost of increasing the
2269 pressure on CL from P to P'. We use this to calculate a "base ECC",
2270 baseECC (CL, X), for each pressure class CL and each instruction X.
2271 Supposing X changes the pressure on CL from P to P', and that the
2272 maximum pressure on CL in the current model schedule is MP', then:
2273
2274 * if X occurs before or at the next point of maximum pressure in
2275 the model schedule and P' > MP', then:
2276
2277 baseECC (CL, X) = model_spill_cost (CL, MP, P')
2278
2279 The idea is that the pressure after scheduling a fixed set of
2280 instructions -- in this case, the set up to and including the
2281 next maximum pressure point -- is going to be the same regardless
2282 of the order; we simply want to keep the intermediate pressure
2283 under control. Thus X has a cost of zero unless scheduling it
2284 now would exceed MP'.
2285
2286 If all increases in the set are by the same amount, no zero-cost
2287 instruction will ever cause the pressure to exceed MP'. However,
2288 if X is instead moved past an instruction X' with pressure in the
2289 range (MP' - (P' - P), MP'), the pressure at X' will increase
2290 beyond MP'. Since baseECC is very much a heuristic anyway,
2291 it doesn't seem worth the overhead of tracking cases like these.
2292
2293 The cost of exceeding MP' is always based on the original maximum
2294 pressure MP. This is so that going 2 registers over the original
2295 limit has the same cost regardless of whether it comes from two
2296 separate +1 deltas or from a single +2 delta.
2297
2298 * if X occurs after the next point of maximum pressure in the model
2299 schedule and P' > P, then:
2300
2301 baseECC (CL, X) = model_spill_cost (CL, MP, MP' + (P' - P))
2302
2303 That is, if we move X forward across a point of maximum pressure,
2304 and if X increases the pressure by P' - P, then we conservatively
2305 assume that scheduling X next would increase the maximum pressure
2306 by P' - P. Again, the cost of doing this is based on the original
2307 maximum pressure MP, for the same reason as above.
2308
2309 * if P' < P, P > MP, and X occurs at or after the next point of
2310 maximum pressure, then:
2311
2312 baseECC (CL, X) = -model_spill_cost (CL, MAX (MP, P'), P)
2313
2314 That is, if we have already exceeded the original maximum pressure MP,
2315 and if X might reduce the maximum pressure again -- or at least push
2316 it further back, and thus allow more scheduling freedom -- it is given
2317 a negative cost to reflect the improvement.
2318
2319 * otherwise,
2320
2321 baseECC (CL, X) = 0
2322
2323 In this case, X is not expected to affect the maximum pressure MP',
2324 so it has zero cost.
2325
2326 We then create a combined value baseECC (X) that is the sum of
2327 baseECC (CL, X) for each pressure class CL.
2328
2329 baseECC (X) could itself be used as the ECC value described above.
2330 However, this is often too conservative, in the sense that it
2331 tends to make high-priority instructions that increase pressure
2332 wait too long in cases where introducing a spill would be better.
2333 For this reason the final ECC is a priority-adjusted form of
2334 baseECC (X). Specifically, we calculate:
2335
2336 P (X) = INSN_PRIORITY (X) - insn_delay (X) - baseECC (X)
2337 baseP = MAX { P (X) | baseECC (X) <= 0 }
2338
2339 Then:
2340
2341 ECC (X) = MAX (MIN (baseP - P (X), baseECC (X)), 0)
2342
2343 Thus an instruction's effect on pressure is ignored if it has a high
2344 enough priority relative to the ones that don't increase pressure.
2345 Negative values of baseECC (X) do not increase the priority of X
2346 itself, but they do make it harder for other instructions to
2347 increase the pressure further.
2348
2349 This pressure cost is deliberately timid. The intention has been
2350 to choose a heuristic that rarely interferes with the normal list
2351 scheduler in cases where that scheduler would produce good code.
2352 We simply want to curb some of its worst excesses. */
2353
2354 /* Return the cost of increasing the pressure in class CL from FROM to TO.
2355
2356 Here we use the very simplistic cost model that every register above
2357 sched_class_regs_num[CL] has a spill cost of 1. We could use other
2358 measures instead, such as one based on MEMORY_MOVE_COST. However:
2359
2360 (1) In order for an instruction to be scheduled, the higher cost
2361 would need to be justified in a single saving of that many stalls.
2362 This is overly pessimistic, because the benefit of spilling is
2363 often to avoid a sequence of several short stalls rather than
2364 a single long one.
2365
2366 (2) The cost is still arbitrary. Because we are not allocating
2367 registers during scheduling, we have no way of knowing for
2368 sure how many memory accesses will be required by each spill,
2369 where the spills will be placed within the block, or even
2370 which block(s) will contain the spills.
2371
2372 So a higher cost than 1 is often too conservative in practice,
2373 forcing blocks to contain unnecessary stalls instead of spill code.
2374 The simple cost below seems to be the best compromise. It reduces
2375 the interference with the normal list scheduler, which helps make
2376 it more suitable for a default-on option. */
2377
2378 static int
2379 model_spill_cost (int cl, int from, int to)
2380 {
2381 from = MAX (from, sched_class_regs_num[cl]);
2382 return MAX (to, from) - from;
2383 }
2384
2385 /* Return baseECC (ira_pressure_classes[PCI], POINT), given that
2386 P = curr_reg_pressure[ira_pressure_classes[PCI]] and that
2387 P' = P + DELTA. */
2388
2389 static int
2390 model_excess_group_cost (struct model_pressure_group *group,
2391 int point, int pci, int delta)
2392 {
2393 int pressure, cl;
2394
2395 cl = ira_pressure_classes[pci];
2396 if (delta < 0 && point >= group->limits[pci].point)
2397 {
2398 pressure = MAX (group->limits[pci].orig_pressure,
2399 curr_reg_pressure[cl] + delta);
2400 return -model_spill_cost (cl, pressure, curr_reg_pressure[cl]);
2401 }
2402
2403 if (delta > 0)
2404 {
2405 if (point > group->limits[pci].point)
2406 pressure = group->limits[pci].pressure + delta;
2407 else
2408 pressure = curr_reg_pressure[cl] + delta;
2409
2410 if (pressure > group->limits[pci].pressure)
2411 return model_spill_cost (cl, group->limits[pci].orig_pressure,
2412 pressure);
2413 }
2414
2415 return 0;
2416 }
2417
2418 /* Return baseECC (MODEL_INSN (INSN)). Dump the costs to sched_dump
2419 if PRINT_P. */
2420
2421 static int
2422 model_excess_cost (rtx_insn *insn, bool print_p)
2423 {
2424 int point, pci, cl, cost, this_cost, delta;
2425 struct reg_pressure_data *insn_reg_pressure;
2426 int insn_death[N_REG_CLASSES];
2427
2428 calculate_reg_deaths (insn, insn_death);
2429 point = model_index (insn);
2430 insn_reg_pressure = INSN_REG_PRESSURE (insn);
2431 cost = 0;
2432
2433 if (print_p)
2434 fprintf (sched_dump, ";;\t\t| %3d %4d | %4d %+3d |", point,
2435 INSN_UID (insn), INSN_PRIORITY (insn), insn_delay (insn));
2436
2437 /* Sum up the individual costs for each register class. */
2438 for (pci = 0; pci < ira_pressure_classes_num; pci++)
2439 {
2440 cl = ira_pressure_classes[pci];
2441 delta = insn_reg_pressure[pci].set_increase - insn_death[cl];
2442 this_cost = model_excess_group_cost (&model_before_pressure,
2443 point, pci, delta);
2444 cost += this_cost;
2445 if (print_p)
2446 fprintf (sched_dump, " %s:[%d base cost %d]",
2447 reg_class_names[cl], delta, this_cost);
2448 }
2449
2450 if (print_p)
2451 fprintf (sched_dump, "\n");
2452
2453 return cost;
2454 }
2455
2456 /* Dump the next points of maximum pressure for GROUP. */
2457
2458 static void
2459 model_dump_pressure_points (struct model_pressure_group *group)
2460 {
2461 int pci, cl;
2462
2463 fprintf (sched_dump, ";;\t\t| pressure points");
2464 for (pci = 0; pci < ira_pressure_classes_num; pci++)
2465 {
2466 cl = ira_pressure_classes[pci];
2467 fprintf (sched_dump, " %s:[%d->%d at ", reg_class_names[cl],
2468 curr_reg_pressure[cl], group->limits[pci].pressure);
2469 if (group->limits[pci].point < model_num_insns)
2470 fprintf (sched_dump, "%d:%d]", group->limits[pci].point,
2471 INSN_UID (MODEL_INSN (group->limits[pci].point)));
2472 else
2473 fprintf (sched_dump, "end]");
2474 }
2475 fprintf (sched_dump, "\n");
2476 }
2477
2478 /* Set INSN_REG_PRESSURE_EXCESS_COST_CHANGE for INSNS[0...COUNT-1]. */
2479
2480 static void
2481 model_set_excess_costs (rtx_insn **insns, int count)
2482 {
2483 int i, cost, priority_base, priority;
2484 bool print_p;
2485
2486 /* Record the baseECC value for each instruction in the model schedule,
2487 except that negative costs are converted to zero ones now rather than
2488 later. Do not assign a cost to debug instructions, since they must
2489 not change code-generation decisions. Experiments suggest we also
2490 get better results by not assigning a cost to instructions from
2491 a different block.
2492
2493 Set PRIORITY_BASE to baseP in the block comment above. This is the
2494 maximum priority of the "cheap" instructions, which should always
2495 include the next model instruction. */
2496 priority_base = 0;
2497 print_p = false;
2498 for (i = 0; i < count; i++)
2499 if (INSN_MODEL_INDEX (insns[i]))
2500 {
2501 if (sched_verbose >= 6 && !print_p)
2502 {
2503 fprintf (sched_dump, MODEL_BAR);
2504 fprintf (sched_dump, ";;\t\t| Pressure costs for ready queue\n");
2505 model_dump_pressure_points (&model_before_pressure);
2506 fprintf (sched_dump, MODEL_BAR);
2507 print_p = true;
2508 }
2509 cost = model_excess_cost (insns[i], print_p);
2510 if (cost <= 0)
2511 {
2512 priority = INSN_PRIORITY (insns[i]) - insn_delay (insns[i]) - cost;
2513 priority_base = MAX (priority_base, priority);
2514 cost = 0;
2515 }
2516 INSN_REG_PRESSURE_EXCESS_COST_CHANGE (insns[i]) = cost;
2517 }
2518 if (print_p)
2519 fprintf (sched_dump, MODEL_BAR);
2520
2521 /* Use MAX (baseECC, 0) and baseP to calculcate ECC for each
2522 instruction. */
2523 for (i = 0; i < count; i++)
2524 {
2525 cost = INSN_REG_PRESSURE_EXCESS_COST_CHANGE (insns[i]);
2526 priority = INSN_PRIORITY (insns[i]) - insn_delay (insns[i]);
2527 if (cost > 0 && priority > priority_base)
2528 {
2529 cost += priority_base - priority;
2530 INSN_REG_PRESSURE_EXCESS_COST_CHANGE (insns[i]) = MAX (cost, 0);
2531 }
2532 }
2533 }
2534 \f
2535
2536 /* Enum of rank_for_schedule heuristic decisions. */
2537 enum rfs_decision {
2538 RFS_LIVE_RANGE_SHRINK1, RFS_LIVE_RANGE_SHRINK2,
2539 RFS_SCHED_GROUP, RFS_PRESSURE_DELAY, RFS_PRESSURE_TICK,
2540 RFS_FEEDS_BACKTRACK_INSN, RFS_PRIORITY, RFS_SPECULATION,
2541 RFS_SCHED_RANK, RFS_LAST_INSN, RFS_PRESSURE_INDEX,
2542 RFS_DEP_COUNT, RFS_TIE, RFS_FUSION, RFS_N };
2543
2544 /* Corresponding strings for print outs. */
2545 static const char *rfs_str[RFS_N] = {
2546 "RFS_LIVE_RANGE_SHRINK1", "RFS_LIVE_RANGE_SHRINK2",
2547 "RFS_SCHED_GROUP", "RFS_PRESSURE_DELAY", "RFS_PRESSURE_TICK",
2548 "RFS_FEEDS_BACKTRACK_INSN", "RFS_PRIORITY", "RFS_SPECULATION",
2549 "RFS_SCHED_RANK", "RFS_LAST_INSN", "RFS_PRESSURE_INDEX",
2550 "RFS_DEP_COUNT", "RFS_TIE", "RFS_FUSION" };
2551
2552 /* Statistical breakdown of rank_for_schedule decisions. */
2553 struct rank_for_schedule_stats_t { unsigned stats[RFS_N]; };
2554 static rank_for_schedule_stats_t rank_for_schedule_stats;
2555
2556 /* Return the result of comparing insns TMP and TMP2 and update
2557 Rank_For_Schedule statistics. */
2558 static int
2559 rfs_result (enum rfs_decision decision, int result, rtx tmp, rtx tmp2)
2560 {
2561 ++rank_for_schedule_stats.stats[decision];
2562 if (result < 0)
2563 INSN_LAST_RFS_WIN (tmp) = decision;
2564 else if (result > 0)
2565 INSN_LAST_RFS_WIN (tmp2) = decision;
2566 else
2567 gcc_unreachable ();
2568 return result;
2569 }
2570
2571 /* Sorting predicate to move DEBUG_INSNs to the top of ready list, while
2572 keeping normal insns in original order. */
2573
2574 static int
2575 rank_for_schedule_debug (const void *x, const void *y)
2576 {
2577 rtx_insn *tmp = *(rtx_insn * const *) y;
2578 rtx_insn *tmp2 = *(rtx_insn * const *) x;
2579
2580 /* Schedule debug insns as early as possible. */
2581 if (DEBUG_INSN_P (tmp) && !DEBUG_INSN_P (tmp2))
2582 return -1;
2583 else if (!DEBUG_INSN_P (tmp) && DEBUG_INSN_P (tmp2))
2584 return 1;
2585 else if (DEBUG_INSN_P (tmp) && DEBUG_INSN_P (tmp2))
2586 return INSN_LUID (tmp) - INSN_LUID (tmp2);
2587 else
2588 return INSN_RFS_DEBUG_ORIG_ORDER (tmp2) - INSN_RFS_DEBUG_ORIG_ORDER (tmp);
2589 }
2590
2591 /* Returns a positive value if x is preferred; returns a negative value if
2592 y is preferred. Should never return 0, since that will make the sort
2593 unstable. */
2594
2595 static int
2596 rank_for_schedule (const void *x, const void *y)
2597 {
2598 rtx_insn *tmp = *(rtx_insn * const *) y;
2599 rtx_insn *tmp2 = *(rtx_insn * const *) x;
2600 int tmp_class, tmp2_class;
2601 int val, priority_val, info_val, diff;
2602
2603 if (live_range_shrinkage_p)
2604 {
2605 /* Don't use SCHED_PRESSURE_MODEL -- it results in much worse
2606 code. */
2607 gcc_assert (sched_pressure == SCHED_PRESSURE_WEIGHTED);
2608 if ((INSN_REG_PRESSURE_EXCESS_COST_CHANGE (tmp) < 0
2609 || INSN_REG_PRESSURE_EXCESS_COST_CHANGE (tmp2) < 0)
2610 && (diff = (INSN_REG_PRESSURE_EXCESS_COST_CHANGE (tmp)
2611 - INSN_REG_PRESSURE_EXCESS_COST_CHANGE (tmp2))) != 0)
2612 return rfs_result (RFS_LIVE_RANGE_SHRINK1, diff, tmp, tmp2);
2613 /* Sort by INSN_LUID (original insn order), so that we make the
2614 sort stable. This minimizes instruction movement, thus
2615 minimizing sched's effect on debugging and cross-jumping. */
2616 return rfs_result (RFS_LIVE_RANGE_SHRINK2,
2617 INSN_LUID (tmp) - INSN_LUID (tmp2), tmp, tmp2);
2618 }
2619
2620 /* The insn in a schedule group should be issued the first. */
2621 if (flag_sched_group_heuristic &&
2622 SCHED_GROUP_P (tmp) != SCHED_GROUP_P (tmp2))
2623 return rfs_result (RFS_SCHED_GROUP, SCHED_GROUP_P (tmp2) ? 1 : -1,
2624 tmp, tmp2);
2625
2626 /* Make sure that priority of TMP and TMP2 are initialized. */
2627 gcc_assert (INSN_PRIORITY_KNOWN (tmp) && INSN_PRIORITY_KNOWN (tmp2));
2628
2629 if (sched_fusion)
2630 {
2631 /* The instruction that has the same fusion priority as the last
2632 instruction is the instruction we picked next. If that is not
2633 the case, we sort ready list firstly by fusion priority, then
2634 by priority, and at last by INSN_LUID. */
2635 int a = INSN_FUSION_PRIORITY (tmp);
2636 int b = INSN_FUSION_PRIORITY (tmp2);
2637 int last = -1;
2638
2639 if (last_nondebug_scheduled_insn
2640 && !NOTE_P (last_nondebug_scheduled_insn)
2641 && BLOCK_FOR_INSN (tmp)
2642 == BLOCK_FOR_INSN (last_nondebug_scheduled_insn))
2643 last = INSN_FUSION_PRIORITY (last_nondebug_scheduled_insn);
2644
2645 if (a != last && b != last)
2646 {
2647 if (a == b)
2648 {
2649 a = INSN_PRIORITY (tmp);
2650 b = INSN_PRIORITY (tmp2);
2651 }
2652 if (a != b)
2653 return rfs_result (RFS_FUSION, b - a, tmp, tmp2);
2654 else
2655 return rfs_result (RFS_FUSION,
2656 INSN_LUID (tmp) - INSN_LUID (tmp2), tmp, tmp2);
2657 }
2658 else if (a == b)
2659 {
2660 gcc_assert (last_nondebug_scheduled_insn
2661 && !NOTE_P (last_nondebug_scheduled_insn));
2662 last = INSN_PRIORITY (last_nondebug_scheduled_insn);
2663
2664 a = abs (INSN_PRIORITY (tmp) - last);
2665 b = abs (INSN_PRIORITY (tmp2) - last);
2666 if (a != b)
2667 return rfs_result (RFS_FUSION, a - b, tmp, tmp2);
2668 else
2669 return rfs_result (RFS_FUSION,
2670 INSN_LUID (tmp) - INSN_LUID (tmp2), tmp, tmp2);
2671 }
2672 else if (a == last)
2673 return rfs_result (RFS_FUSION, -1, tmp, tmp2);
2674 else
2675 return rfs_result (RFS_FUSION, 1, tmp, tmp2);
2676 }
2677
2678 if (sched_pressure != SCHED_PRESSURE_NONE)
2679 {
2680 /* Prefer insn whose scheduling results in the smallest register
2681 pressure excess. */
2682 if ((diff = (INSN_REG_PRESSURE_EXCESS_COST_CHANGE (tmp)
2683 + insn_delay (tmp)
2684 - INSN_REG_PRESSURE_EXCESS_COST_CHANGE (tmp2)
2685 - insn_delay (tmp2))))
2686 return rfs_result (RFS_PRESSURE_DELAY, diff, tmp, tmp2);
2687 }
2688
2689 if (sched_pressure != SCHED_PRESSURE_NONE
2690 && (INSN_TICK (tmp2) > clock_var || INSN_TICK (tmp) > clock_var)
2691 && INSN_TICK (tmp2) != INSN_TICK (tmp))
2692 {
2693 diff = INSN_TICK (tmp) - INSN_TICK (tmp2);
2694 return rfs_result (RFS_PRESSURE_TICK, diff, tmp, tmp2);
2695 }
2696
2697 /* If we are doing backtracking in this schedule, prefer insns that
2698 have forward dependencies with negative cost against an insn that
2699 was already scheduled. */
2700 if (current_sched_info->flags & DO_BACKTRACKING)
2701 {
2702 priority_val = FEEDS_BACKTRACK_INSN (tmp2) - FEEDS_BACKTRACK_INSN (tmp);
2703 if (priority_val)
2704 return rfs_result (RFS_FEEDS_BACKTRACK_INSN, priority_val, tmp, tmp2);
2705 }
2706
2707 /* Prefer insn with higher priority. */
2708 priority_val = INSN_PRIORITY (tmp2) - INSN_PRIORITY (tmp);
2709
2710 if (flag_sched_critical_path_heuristic && priority_val)
2711 return rfs_result (RFS_PRIORITY, priority_val, tmp, tmp2);
2712
2713 if (PARAM_VALUE (PARAM_SCHED_AUTOPREF_QUEUE_DEPTH) >= 0)
2714 {
2715 int autopref = autopref_rank_for_schedule (tmp, tmp2);
2716 if (autopref != 0)
2717 return autopref;
2718 }
2719
2720 /* Prefer speculative insn with greater dependencies weakness. */
2721 if (flag_sched_spec_insn_heuristic && spec_info)
2722 {
2723 ds_t ds1, ds2;
2724 dw_t dw1, dw2;
2725 int dw;
2726
2727 ds1 = TODO_SPEC (tmp) & SPECULATIVE;
2728 if (ds1)
2729 dw1 = ds_weak (ds1);
2730 else
2731 dw1 = NO_DEP_WEAK;
2732
2733 ds2 = TODO_SPEC (tmp2) & SPECULATIVE;
2734 if (ds2)
2735 dw2 = ds_weak (ds2);
2736 else
2737 dw2 = NO_DEP_WEAK;
2738
2739 dw = dw2 - dw1;
2740 if (dw > (NO_DEP_WEAK / 8) || dw < -(NO_DEP_WEAK / 8))
2741 return rfs_result (RFS_SPECULATION, dw, tmp, tmp2);
2742 }
2743
2744 info_val = (*current_sched_info->rank) (tmp, tmp2);
2745 if (flag_sched_rank_heuristic && info_val)
2746 return rfs_result (RFS_SCHED_RANK, info_val, tmp, tmp2);
2747
2748 /* Compare insns based on their relation to the last scheduled
2749 non-debug insn. */
2750 if (flag_sched_last_insn_heuristic && last_nondebug_scheduled_insn)
2751 {
2752 dep_t dep1;
2753 dep_t dep2;
2754 rtx_insn *last = last_nondebug_scheduled_insn;
2755
2756 /* Classify the instructions into three classes:
2757 1) Data dependent on last schedule insn.
2758 2) Anti/Output dependent on last scheduled insn.
2759 3) Independent of last scheduled insn, or has latency of one.
2760 Choose the insn from the highest numbered class if different. */
2761 dep1 = sd_find_dep_between (last, tmp, true);
2762
2763 if (dep1 == NULL || dep_cost (dep1) == 1)
2764 tmp_class = 3;
2765 else if (/* Data dependence. */
2766 DEP_TYPE (dep1) == REG_DEP_TRUE)
2767 tmp_class = 1;
2768 else
2769 tmp_class = 2;
2770
2771 dep2 = sd_find_dep_between (last, tmp2, true);
2772
2773 if (dep2 == NULL || dep_cost (dep2) == 1)
2774 tmp2_class = 3;
2775 else if (/* Data dependence. */
2776 DEP_TYPE (dep2) == REG_DEP_TRUE)
2777 tmp2_class = 1;
2778 else
2779 tmp2_class = 2;
2780
2781 if ((val = tmp2_class - tmp_class))
2782 return rfs_result (RFS_LAST_INSN, val, tmp, tmp2);
2783 }
2784
2785 /* Prefer instructions that occur earlier in the model schedule. */
2786 if (sched_pressure == SCHED_PRESSURE_MODEL
2787 && INSN_BB (tmp) == target_bb && INSN_BB (tmp2) == target_bb)
2788 {
2789 diff = model_index (tmp) - model_index (tmp2);
2790 gcc_assert (diff != 0);
2791 return rfs_result (RFS_PRESSURE_INDEX, diff, tmp, tmp2);
2792 }
2793
2794 /* Prefer the insn which has more later insns that depend on it.
2795 This gives the scheduler more freedom when scheduling later
2796 instructions at the expense of added register pressure. */
2797
2798 val = (dep_list_size (tmp2, SD_LIST_FORW)
2799 - dep_list_size (tmp, SD_LIST_FORW));
2800
2801 if (flag_sched_dep_count_heuristic && val != 0)
2802 return rfs_result (RFS_DEP_COUNT, val, tmp, tmp2);
2803
2804 /* If insns are equally good, sort by INSN_LUID (original insn order),
2805 so that we make the sort stable. This minimizes instruction movement,
2806 thus minimizing sched's effect on debugging and cross-jumping. */
2807 return rfs_result (RFS_TIE, INSN_LUID (tmp) - INSN_LUID (tmp2), tmp, tmp2);
2808 }
2809
2810 /* Resort the array A in which only element at index N may be out of order. */
2811
2812 HAIFA_INLINE static void
2813 swap_sort (rtx_insn **a, int n)
2814 {
2815 rtx_insn *insn = a[n - 1];
2816 int i = n - 2;
2817
2818 while (i >= 0 && rank_for_schedule (a + i, &insn) >= 0)
2819 {
2820 a[i + 1] = a[i];
2821 i -= 1;
2822 }
2823 a[i + 1] = insn;
2824 }
2825
2826 /* Add INSN to the insn queue so that it can be executed at least
2827 N_CYCLES after the currently executing insn. Preserve insns
2828 chain for debugging purposes. REASON will be printed in debugging
2829 output. */
2830
2831 HAIFA_INLINE static void
2832 queue_insn (rtx_insn *insn, int n_cycles, const char *reason)
2833 {
2834 int next_q = NEXT_Q_AFTER (q_ptr, n_cycles);
2835 rtx_insn_list *link = alloc_INSN_LIST (insn, insn_queue[next_q]);
2836 int new_tick;
2837
2838 gcc_assert (n_cycles <= max_insn_queue_index);
2839 gcc_assert (!DEBUG_INSN_P (insn));
2840
2841 insn_queue[next_q] = link;
2842 q_size += 1;
2843
2844 if (sched_verbose >= 2)
2845 {
2846 fprintf (sched_dump, ";;\t\tReady-->Q: insn %s: ",
2847 (*current_sched_info->print_insn) (insn, 0));
2848
2849 fprintf (sched_dump, "queued for %d cycles (%s).\n", n_cycles, reason);
2850 }
2851
2852 QUEUE_INDEX (insn) = next_q;
2853
2854 if (current_sched_info->flags & DO_BACKTRACKING)
2855 {
2856 new_tick = clock_var + n_cycles;
2857 if (INSN_TICK (insn) == INVALID_TICK || INSN_TICK (insn) < new_tick)
2858 INSN_TICK (insn) = new_tick;
2859
2860 if (INSN_EXACT_TICK (insn) != INVALID_TICK
2861 && INSN_EXACT_TICK (insn) < clock_var + n_cycles)
2862 {
2863 must_backtrack = true;
2864 if (sched_verbose >= 2)
2865 fprintf (sched_dump, ";;\t\tcausing a backtrack.\n");
2866 }
2867 }
2868 }
2869
2870 /* Remove INSN from queue. */
2871 static void
2872 queue_remove (rtx_insn *insn)
2873 {
2874 gcc_assert (QUEUE_INDEX (insn) >= 0);
2875 remove_free_INSN_LIST_elem (insn, &insn_queue[QUEUE_INDEX (insn)]);
2876 q_size--;
2877 QUEUE_INDEX (insn) = QUEUE_NOWHERE;
2878 }
2879
2880 /* Return a pointer to the bottom of the ready list, i.e. the insn
2881 with the lowest priority. */
2882
2883 rtx_insn **
2884 ready_lastpos (struct ready_list *ready)
2885 {
2886 gcc_assert (ready->n_ready >= 1);
2887 return ready->vec + ready->first - ready->n_ready + 1;
2888 }
2889
2890 /* Add an element INSN to the ready list so that it ends up with the
2891 lowest/highest priority depending on FIRST_P. */
2892
2893 HAIFA_INLINE static void
2894 ready_add (struct ready_list *ready, rtx_insn *insn, bool first_p)
2895 {
2896 if (!first_p)
2897 {
2898 if (ready->first == ready->n_ready)
2899 {
2900 memmove (ready->vec + ready->veclen - ready->n_ready,
2901 ready_lastpos (ready),
2902 ready->n_ready * sizeof (rtx));
2903 ready->first = ready->veclen - 1;
2904 }
2905 ready->vec[ready->first - ready->n_ready] = insn;
2906 }
2907 else
2908 {
2909 if (ready->first == ready->veclen - 1)
2910 {
2911 if (ready->n_ready)
2912 /* ready_lastpos() fails when called with (ready->n_ready == 0). */
2913 memmove (ready->vec + ready->veclen - ready->n_ready - 1,
2914 ready_lastpos (ready),
2915 ready->n_ready * sizeof (rtx));
2916 ready->first = ready->veclen - 2;
2917 }
2918 ready->vec[++(ready->first)] = insn;
2919 }
2920
2921 ready->n_ready++;
2922 if (DEBUG_INSN_P (insn))
2923 ready->n_debug++;
2924
2925 gcc_assert (QUEUE_INDEX (insn) != QUEUE_READY);
2926 QUEUE_INDEX (insn) = QUEUE_READY;
2927
2928 if (INSN_EXACT_TICK (insn) != INVALID_TICK
2929 && INSN_EXACT_TICK (insn) < clock_var)
2930 {
2931 must_backtrack = true;
2932 }
2933 }
2934
2935 /* Remove the element with the highest priority from the ready list and
2936 return it. */
2937
2938 HAIFA_INLINE static rtx_insn *
2939 ready_remove_first (struct ready_list *ready)
2940 {
2941 rtx_insn *t;
2942
2943 gcc_assert (ready->n_ready);
2944 t = ready->vec[ready->first--];
2945 ready->n_ready--;
2946 if (DEBUG_INSN_P (t))
2947 ready->n_debug--;
2948 /* If the queue becomes empty, reset it. */
2949 if (ready->n_ready == 0)
2950 ready->first = ready->veclen - 1;
2951
2952 gcc_assert (QUEUE_INDEX (t) == QUEUE_READY);
2953 QUEUE_INDEX (t) = QUEUE_NOWHERE;
2954
2955 return t;
2956 }
2957
2958 /* The following code implements multi-pass scheduling for the first
2959 cycle. In other words, we will try to choose ready insn which
2960 permits to start maximum number of insns on the same cycle. */
2961
2962 /* Return a pointer to the element INDEX from the ready. INDEX for
2963 insn with the highest priority is 0, and the lowest priority has
2964 N_READY - 1. */
2965
2966 rtx_insn *
2967 ready_element (struct ready_list *ready, int index)
2968 {
2969 gcc_assert (ready->n_ready && index < ready->n_ready);
2970
2971 return ready->vec[ready->first - index];
2972 }
2973
2974 /* Remove the element INDEX from the ready list and return it. INDEX
2975 for insn with the highest priority is 0, and the lowest priority
2976 has N_READY - 1. */
2977
2978 HAIFA_INLINE static rtx_insn *
2979 ready_remove (struct ready_list *ready, int index)
2980 {
2981 rtx_insn *t;
2982 int i;
2983
2984 if (index == 0)
2985 return ready_remove_first (ready);
2986 gcc_assert (ready->n_ready && index < ready->n_ready);
2987 t = ready->vec[ready->first - index];
2988 ready->n_ready--;
2989 if (DEBUG_INSN_P (t))
2990 ready->n_debug--;
2991 for (i = index; i < ready->n_ready; i++)
2992 ready->vec[ready->first - i] = ready->vec[ready->first - i - 1];
2993 QUEUE_INDEX (t) = QUEUE_NOWHERE;
2994 return t;
2995 }
2996
2997 /* Remove INSN from the ready list. */
2998 static void
2999 ready_remove_insn (rtx_insn *insn)
3000 {
3001 int i;
3002
3003 for (i = 0; i < readyp->n_ready; i++)
3004 if (ready_element (readyp, i) == insn)
3005 {
3006 ready_remove (readyp, i);
3007 return;
3008 }
3009 gcc_unreachable ();
3010 }
3011
3012 /* Calculate difference of two statistics set WAS and NOW.
3013 Result returned in WAS. */
3014 static void
3015 rank_for_schedule_stats_diff (rank_for_schedule_stats_t *was,
3016 const rank_for_schedule_stats_t *now)
3017 {
3018 for (int i = 0; i < RFS_N; ++i)
3019 was->stats[i] = now->stats[i] - was->stats[i];
3020 }
3021
3022 /* Print rank_for_schedule statistics. */
3023 static void
3024 print_rank_for_schedule_stats (const char *prefix,
3025 const rank_for_schedule_stats_t *stats,
3026 struct ready_list *ready)
3027 {
3028 for (int i = 0; i < RFS_N; ++i)
3029 if (stats->stats[i])
3030 {
3031 fprintf (sched_dump, "%s%20s: %u", prefix, rfs_str[i], stats->stats[i]);
3032
3033 if (ready != NULL)
3034 /* Print out insns that won due to RFS_<I>. */
3035 {
3036 rtx_insn **p = ready_lastpos (ready);
3037
3038 fprintf (sched_dump, ":");
3039 /* Start with 1 since least-priority insn didn't have any wins. */
3040 for (int j = 1; j < ready->n_ready; ++j)
3041 if (INSN_LAST_RFS_WIN (p[j]) == i)
3042 fprintf (sched_dump, " %s",
3043 (*current_sched_info->print_insn) (p[j], 0));
3044 }
3045 fprintf (sched_dump, "\n");
3046 }
3047 }
3048
3049 /* Separate DEBUG_INSNS from normal insns. DEBUG_INSNs go to the end
3050 of array. */
3051 static void
3052 ready_sort_debug (struct ready_list *ready)
3053 {
3054 int i;
3055 rtx_insn **first = ready_lastpos (ready);
3056
3057 for (i = 0; i < ready->n_ready; ++i)
3058 if (!DEBUG_INSN_P (first[i]))
3059 INSN_RFS_DEBUG_ORIG_ORDER (first[i]) = i;
3060
3061 qsort (first, ready->n_ready, sizeof (rtx), rank_for_schedule_debug);
3062 }
3063
3064 /* Sort non-debug insns in the ready list READY by ascending priority.
3065 Assumes that all debug insns are separated from the real insns. */
3066 static void
3067 ready_sort_real (struct ready_list *ready)
3068 {
3069 int i;
3070 rtx_insn **first = ready_lastpos (ready);
3071 int n_ready_real = ready->n_ready - ready->n_debug;
3072
3073 if (sched_pressure == SCHED_PRESSURE_WEIGHTED)
3074 for (i = 0; i < n_ready_real; ++i)
3075 setup_insn_reg_pressure_info (first[i]);
3076 else if (sched_pressure == SCHED_PRESSURE_MODEL
3077 && model_curr_point < model_num_insns)
3078 model_set_excess_costs (first, n_ready_real);
3079
3080 rank_for_schedule_stats_t stats1;
3081 if (sched_verbose >= 4)
3082 stats1 = rank_for_schedule_stats;
3083
3084 if (n_ready_real == 2)
3085 swap_sort (first, n_ready_real);
3086 else if (n_ready_real > 2)
3087 /* HACK: Disable qsort checking for now (PR82396). */
3088 (qsort) (first, n_ready_real, sizeof (rtx), rank_for_schedule);
3089
3090 if (sched_verbose >= 4)
3091 {
3092 rank_for_schedule_stats_diff (&stats1, &rank_for_schedule_stats);
3093 print_rank_for_schedule_stats (";;\t\t", &stats1, ready);
3094 }
3095 }
3096
3097 /* Sort the ready list READY by ascending priority. */
3098 static void
3099 ready_sort (struct ready_list *ready)
3100 {
3101 if (ready->n_debug > 0)
3102 ready_sort_debug (ready);
3103 else
3104 ready_sort_real (ready);
3105 }
3106
3107 /* PREV is an insn that is ready to execute. Adjust its priority if that
3108 will help shorten or lengthen register lifetimes as appropriate. Also
3109 provide a hook for the target to tweak itself. */
3110
3111 HAIFA_INLINE static void
3112 adjust_priority (rtx_insn *prev)
3113 {
3114 /* ??? There used to be code here to try and estimate how an insn
3115 affected register lifetimes, but it did it by looking at REG_DEAD
3116 notes, which we removed in schedule_region. Nor did it try to
3117 take into account register pressure or anything useful like that.
3118
3119 Revisit when we have a machine model to work with and not before. */
3120
3121 if (targetm.sched.adjust_priority)
3122 INSN_PRIORITY (prev) =
3123 targetm.sched.adjust_priority (prev, INSN_PRIORITY (prev));
3124 }
3125
3126 /* Advance DFA state STATE on one cycle. */
3127 void
3128 advance_state (state_t state)
3129 {
3130 if (targetm.sched.dfa_pre_advance_cycle)
3131 targetm.sched.dfa_pre_advance_cycle ();
3132
3133 if (targetm.sched.dfa_pre_cycle_insn)
3134 state_transition (state,
3135 targetm.sched.dfa_pre_cycle_insn ());
3136
3137 state_transition (state, NULL);
3138
3139 if (targetm.sched.dfa_post_cycle_insn)
3140 state_transition (state,
3141 targetm.sched.dfa_post_cycle_insn ());
3142
3143 if (targetm.sched.dfa_post_advance_cycle)
3144 targetm.sched.dfa_post_advance_cycle ();
3145 }
3146
3147 /* Advance time on one cycle. */
3148 HAIFA_INLINE static void
3149 advance_one_cycle (void)
3150 {
3151 advance_state (curr_state);
3152 if (sched_verbose >= 4)
3153 fprintf (sched_dump, ";;\tAdvance the current state.\n");
3154 }
3155
3156 /* Update register pressure after scheduling INSN. */
3157 static void
3158 update_register_pressure (rtx_insn *insn)
3159 {
3160 struct reg_use_data *use;
3161 struct reg_set_data *set;
3162
3163 gcc_checking_assert (!DEBUG_INSN_P (insn));
3164
3165 for (use = INSN_REG_USE_LIST (insn); use != NULL; use = use->next_insn_use)
3166 if (dying_use_p (use))
3167 mark_regno_birth_or_death (curr_reg_live, curr_reg_pressure,
3168 use->regno, false);
3169 for (set = INSN_REG_SET_LIST (insn); set != NULL; set = set->next_insn_set)
3170 mark_regno_birth_or_death (curr_reg_live, curr_reg_pressure,
3171 set->regno, true);
3172 }
3173
3174 /* Set up or update (if UPDATE_P) max register pressure (see its
3175 meaning in sched-int.h::_haifa_insn_data) for all current BB insns
3176 after insn AFTER. */
3177 static void
3178 setup_insn_max_reg_pressure (rtx_insn *after, bool update_p)
3179 {
3180 int i, p;
3181 bool eq_p;
3182 rtx_insn *insn;
3183 static int max_reg_pressure[N_REG_CLASSES];
3184
3185 save_reg_pressure ();
3186 for (i = 0; i < ira_pressure_classes_num; i++)
3187 max_reg_pressure[ira_pressure_classes[i]]
3188 = curr_reg_pressure[ira_pressure_classes[i]];
3189 for (insn = NEXT_INSN (after);
3190 insn != NULL_RTX && ! BARRIER_P (insn)
3191 && BLOCK_FOR_INSN (insn) == BLOCK_FOR_INSN (after);
3192 insn = NEXT_INSN (insn))
3193 if (NONDEBUG_INSN_P (insn))
3194 {
3195 eq_p = true;
3196 for (i = 0; i < ira_pressure_classes_num; i++)
3197 {
3198 p = max_reg_pressure[ira_pressure_classes[i]];
3199 if (INSN_MAX_REG_PRESSURE (insn)[i] != p)
3200 {
3201 eq_p = false;
3202 INSN_MAX_REG_PRESSURE (insn)[i]
3203 = max_reg_pressure[ira_pressure_classes[i]];
3204 }
3205 }
3206 if (update_p && eq_p)
3207 break;
3208 update_register_pressure (insn);
3209 for (i = 0; i < ira_pressure_classes_num; i++)
3210 if (max_reg_pressure[ira_pressure_classes[i]]
3211 < curr_reg_pressure[ira_pressure_classes[i]])
3212 max_reg_pressure[ira_pressure_classes[i]]
3213 = curr_reg_pressure[ira_pressure_classes[i]];
3214 }
3215 restore_reg_pressure ();
3216 }
3217
3218 /* Update the current register pressure after scheduling INSN. Update
3219 also max register pressure for unscheduled insns of the current
3220 BB. */
3221 static void
3222 update_reg_and_insn_max_reg_pressure (rtx_insn *insn)
3223 {
3224 int i;
3225 int before[N_REG_CLASSES];
3226
3227 for (i = 0; i < ira_pressure_classes_num; i++)
3228 before[i] = curr_reg_pressure[ira_pressure_classes[i]];
3229 update_register_pressure (insn);
3230 for (i = 0; i < ira_pressure_classes_num; i++)
3231 if (curr_reg_pressure[ira_pressure_classes[i]] != before[i])
3232 break;
3233 if (i < ira_pressure_classes_num)
3234 setup_insn_max_reg_pressure (insn, true);
3235 }
3236
3237 /* Set up register pressure at the beginning of basic block BB whose
3238 insns starting after insn AFTER. Set up also max register pressure
3239 for all insns of the basic block. */
3240 void
3241 sched_setup_bb_reg_pressure_info (basic_block bb, rtx_insn *after)
3242 {
3243 gcc_assert (sched_pressure == SCHED_PRESSURE_WEIGHTED);
3244 initiate_bb_reg_pressure_info (bb);
3245 setup_insn_max_reg_pressure (after, false);
3246 }
3247 \f
3248 /* If doing predication while scheduling, verify whether INSN, which
3249 has just been scheduled, clobbers the conditions of any
3250 instructions that must be predicated in order to break their
3251 dependencies. If so, remove them from the queues so that they will
3252 only be scheduled once their control dependency is resolved. */
3253
3254 static void
3255 check_clobbered_conditions (rtx_insn *insn)
3256 {
3257 HARD_REG_SET t;
3258 int i;
3259
3260 if ((current_sched_info->flags & DO_PREDICATION) == 0)
3261 return;
3262
3263 find_all_hard_reg_sets (insn, &t, true);
3264
3265 restart:
3266 for (i = 0; i < ready.n_ready; i++)
3267 {
3268 rtx_insn *x = ready_element (&ready, i);
3269 if (TODO_SPEC (x) == DEP_CONTROL && cond_clobbered_p (x, t))
3270 {
3271 ready_remove_insn (x);
3272 goto restart;
3273 }
3274 }
3275 for (i = 0; i <= max_insn_queue_index; i++)
3276 {
3277 rtx_insn_list *link;
3278 int q = NEXT_Q_AFTER (q_ptr, i);
3279
3280 restart_queue:
3281 for (link = insn_queue[q]; link; link = link->next ())
3282 {
3283 rtx_insn *x = link->insn ();
3284 if (TODO_SPEC (x) == DEP_CONTROL && cond_clobbered_p (x, t))
3285 {
3286 queue_remove (x);
3287 goto restart_queue;
3288 }
3289 }
3290 }
3291 }
3292 \f
3293 /* Return (in order):
3294
3295 - positive if INSN adversely affects the pressure on one
3296 register class
3297
3298 - negative if INSN reduces the pressure on one register class
3299
3300 - 0 if INSN doesn't affect the pressure on any register class. */
3301
3302 static int
3303 model_classify_pressure (struct model_insn_info *insn)
3304 {
3305 struct reg_pressure_data *reg_pressure;
3306 int death[N_REG_CLASSES];
3307 int pci, cl, sum;
3308
3309 calculate_reg_deaths (insn->insn, death);
3310 reg_pressure = INSN_REG_PRESSURE (insn->insn);
3311 sum = 0;
3312 for (pci = 0; pci < ira_pressure_classes_num; pci++)
3313 {
3314 cl = ira_pressure_classes[pci];
3315 if (death[cl] < reg_pressure[pci].set_increase)
3316 return 1;
3317 sum += reg_pressure[pci].set_increase - death[cl];
3318 }
3319 return sum;
3320 }
3321
3322 /* Return true if INSN1 should come before INSN2 in the model schedule. */
3323
3324 static int
3325 model_order_p (struct model_insn_info *insn1, struct model_insn_info *insn2)
3326 {
3327 unsigned int height1, height2;
3328 unsigned int priority1, priority2;
3329
3330 /* Prefer instructions with a higher model priority. */
3331 if (insn1->model_priority != insn2->model_priority)
3332 return insn1->model_priority > insn2->model_priority;
3333
3334 /* Combine the length of the longest path of satisfied true dependencies
3335 that leads to each instruction (depth) with the length of the longest
3336 path of any dependencies that leads from the instruction (alap).
3337 Prefer instructions with the greatest combined length. If the combined
3338 lengths are equal, prefer instructions with the greatest depth.
3339
3340 The idea is that, if we have a set S of "equal" instructions that each
3341 have ALAP value X, and we pick one such instruction I, any true-dependent
3342 successors of I that have ALAP value X - 1 should be preferred over S.
3343 This encourages the schedule to be "narrow" rather than "wide".
3344 However, if I is a low-priority instruction that we decided to
3345 schedule because of its model_classify_pressure, and if there
3346 is a set of higher-priority instructions T, the aforementioned
3347 successors of I should not have the edge over T. */
3348 height1 = insn1->depth + insn1->alap;
3349 height2 = insn2->depth + insn2->alap;
3350 if (height1 != height2)
3351 return height1 > height2;
3352 if (insn1->depth != insn2->depth)
3353 return insn1->depth > insn2->depth;
3354
3355 /* We have no real preference between INSN1 an INSN2 as far as attempts
3356 to reduce pressure go. Prefer instructions with higher priorities. */
3357 priority1 = INSN_PRIORITY (insn1->insn);
3358 priority2 = INSN_PRIORITY (insn2->insn);
3359 if (priority1 != priority2)
3360 return priority1 > priority2;
3361
3362 /* Use the original rtl sequence as a tie-breaker. */
3363 return insn1 < insn2;
3364 }
3365
3366 /* Add INSN to the model worklist immediately after PREV. Add it to the
3367 beginning of the list if PREV is null. */
3368
3369 static void
3370 model_add_to_worklist_at (struct model_insn_info *insn,
3371 struct model_insn_info *prev)
3372 {
3373 gcc_assert (QUEUE_INDEX (insn->insn) == QUEUE_NOWHERE);
3374 QUEUE_INDEX (insn->insn) = QUEUE_READY;
3375
3376 insn->prev = prev;
3377 if (prev)
3378 {
3379 insn->next = prev->next;
3380 prev->next = insn;
3381 }
3382 else
3383 {
3384 insn->next = model_worklist;
3385 model_worklist = insn;
3386 }
3387 if (insn->next)
3388 insn->next->prev = insn;
3389 }
3390
3391 /* Remove INSN from the model worklist. */
3392
3393 static void
3394 model_remove_from_worklist (struct model_insn_info *insn)
3395 {
3396 gcc_assert (QUEUE_INDEX (insn->insn) == QUEUE_READY);
3397 QUEUE_INDEX (insn->insn) = QUEUE_NOWHERE;
3398
3399 if (insn->prev)
3400 insn->prev->next = insn->next;
3401 else
3402 model_worklist = insn->next;
3403 if (insn->next)
3404 insn->next->prev = insn->prev;
3405 }
3406
3407 /* Add INSN to the model worklist. Start looking for a suitable position
3408 between neighbors PREV and NEXT, testing at most MAX_SCHED_READY_INSNS
3409 insns either side. A null PREV indicates the beginning of the list and
3410 a null NEXT indicates the end. */
3411
3412 static void
3413 model_add_to_worklist (struct model_insn_info *insn,
3414 struct model_insn_info *prev,
3415 struct model_insn_info *next)
3416 {
3417 int count;
3418
3419 count = MAX_SCHED_READY_INSNS;
3420 if (count > 0 && prev && model_order_p (insn, prev))
3421 do
3422 {
3423 count--;
3424 prev = prev->prev;
3425 }
3426 while (count > 0 && prev && model_order_p (insn, prev));
3427 else
3428 while (count > 0 && next && model_order_p (next, insn))
3429 {
3430 count--;
3431 prev = next;
3432 next = next->next;
3433 }
3434 model_add_to_worklist_at (insn, prev);
3435 }
3436
3437 /* INSN may now have a higher priority (in the model_order_p sense)
3438 than before. Move it up the worklist if necessary. */
3439
3440 static void
3441 model_promote_insn (struct model_insn_info *insn)
3442 {
3443 struct model_insn_info *prev;
3444 int count;
3445
3446 prev = insn->prev;
3447 count = MAX_SCHED_READY_INSNS;
3448 while (count > 0 && prev && model_order_p (insn, prev))
3449 {
3450 count--;
3451 prev = prev->prev;
3452 }
3453 if (prev != insn->prev)
3454 {
3455 model_remove_from_worklist (insn);
3456 model_add_to_worklist_at (insn, prev);
3457 }
3458 }
3459
3460 /* Add INSN to the end of the model schedule. */
3461
3462 static void
3463 model_add_to_schedule (rtx_insn *insn)
3464 {
3465 unsigned int point;
3466
3467 gcc_assert (QUEUE_INDEX (insn) == QUEUE_NOWHERE);
3468 QUEUE_INDEX (insn) = QUEUE_SCHEDULED;
3469
3470 point = model_schedule.length ();
3471 model_schedule.quick_push (insn);
3472 INSN_MODEL_INDEX (insn) = point + 1;
3473 }
3474
3475 /* Analyze the instructions that are to be scheduled, setting up
3476 MODEL_INSN_INFO (...) and model_num_insns accordingly. Add ready
3477 instructions to model_worklist. */
3478
3479 static void
3480 model_analyze_insns (void)
3481 {
3482 rtx_insn *start, *end, *iter;
3483 sd_iterator_def sd_it;
3484 dep_t dep;
3485 struct model_insn_info *insn, *con;
3486
3487 model_num_insns = 0;
3488 start = PREV_INSN (current_sched_info->next_tail);
3489 end = current_sched_info->prev_head;
3490 for (iter = start; iter != end; iter = PREV_INSN (iter))
3491 if (NONDEBUG_INSN_P (iter))
3492 {
3493 insn = MODEL_INSN_INFO (iter);
3494 insn->insn = iter;
3495 FOR_EACH_DEP (iter, SD_LIST_FORW, sd_it, dep)
3496 {
3497 con = MODEL_INSN_INFO (DEP_CON (dep));
3498 if (con->insn && insn->alap < con->alap + 1)
3499 insn->alap = con->alap + 1;
3500 }
3501
3502 insn->old_queue = QUEUE_INDEX (iter);
3503 QUEUE_INDEX (iter) = QUEUE_NOWHERE;
3504
3505 insn->unscheduled_preds = dep_list_size (iter, SD_LIST_HARD_BACK);
3506 if (insn->unscheduled_preds == 0)
3507 model_add_to_worklist (insn, NULL, model_worklist);
3508
3509 model_num_insns++;
3510 }
3511 }
3512
3513 /* The global state describes the register pressure at the start of the
3514 model schedule. Initialize GROUP accordingly. */
3515
3516 static void
3517 model_init_pressure_group (struct model_pressure_group *group)
3518 {
3519 int pci, cl;
3520
3521 for (pci = 0; pci < ira_pressure_classes_num; pci++)
3522 {
3523 cl = ira_pressure_classes[pci];
3524 group->limits[pci].pressure = curr_reg_pressure[cl];
3525 group->limits[pci].point = 0;
3526 }
3527 /* Use index model_num_insns to record the state after the last
3528 instruction in the model schedule. */
3529 group->model = XNEWVEC (struct model_pressure_data,
3530 (model_num_insns + 1) * ira_pressure_classes_num);
3531 }
3532
3533 /* Record that MODEL_REF_PRESSURE (GROUP, POINT, PCI) is PRESSURE.
3534 Update the maximum pressure for the whole schedule. */
3535
3536 static void
3537 model_record_pressure (struct model_pressure_group *group,
3538 int point, int pci, int pressure)
3539 {
3540 MODEL_REF_PRESSURE (group, point, pci) = pressure;
3541 if (group->limits[pci].pressure < pressure)
3542 {
3543 group->limits[pci].pressure = pressure;
3544 group->limits[pci].point = point;
3545 }
3546 }
3547
3548 /* INSN has just been added to the end of the model schedule. Record its
3549 register-pressure information. */
3550
3551 static void
3552 model_record_pressures (struct model_insn_info *insn)
3553 {
3554 struct reg_pressure_data *reg_pressure;
3555 int point, pci, cl, delta;
3556 int death[N_REG_CLASSES];
3557
3558 point = model_index (insn->insn);
3559 if (sched_verbose >= 2)
3560 {
3561 if (point == 0)
3562 {
3563 fprintf (sched_dump, "\n;;\tModel schedule:\n;;\n");
3564 fprintf (sched_dump, ";;\t| idx insn | mpri hght dpth prio |\n");
3565 }
3566 fprintf (sched_dump, ";;\t| %3d %4d | %4d %4d %4d %4d | %-30s ",
3567 point, INSN_UID (insn->insn), insn->model_priority,
3568 insn->depth + insn->alap, insn->depth,
3569 INSN_PRIORITY (insn->insn),
3570 str_pattern_slim (PATTERN (insn->insn)));
3571 }
3572 calculate_reg_deaths (insn->insn, death);
3573 reg_pressure = INSN_REG_PRESSURE (insn->insn);
3574 for (pci = 0; pci < ira_pressure_classes_num; pci++)
3575 {
3576 cl = ira_pressure_classes[pci];
3577 delta = reg_pressure[pci].set_increase - death[cl];
3578 if (sched_verbose >= 2)
3579 fprintf (sched_dump, " %s:[%d,%+d]", reg_class_names[cl],
3580 curr_reg_pressure[cl], delta);
3581 model_record_pressure (&model_before_pressure, point, pci,
3582 curr_reg_pressure[cl]);
3583 }
3584 if (sched_verbose >= 2)
3585 fprintf (sched_dump, "\n");
3586 }
3587
3588 /* All instructions have been added to the model schedule. Record the
3589 final register pressure in GROUP and set up all MODEL_MAX_PRESSUREs. */
3590
3591 static void
3592 model_record_final_pressures (struct model_pressure_group *group)
3593 {
3594 int point, pci, max_pressure, ref_pressure, cl;
3595
3596 for (pci = 0; pci < ira_pressure_classes_num; pci++)
3597 {
3598 /* Record the final pressure for this class. */
3599 cl = ira_pressure_classes[pci];
3600 point = model_num_insns;
3601 ref_pressure = curr_reg_pressure[cl];
3602 model_record_pressure (group, point, pci, ref_pressure);
3603
3604 /* Record the original maximum pressure. */
3605 group->limits[pci].orig_pressure = group->limits[pci].pressure;
3606
3607 /* Update the MODEL_MAX_PRESSURE for every point of the schedule. */
3608 max_pressure = ref_pressure;
3609 MODEL_MAX_PRESSURE (group, point, pci) = max_pressure;
3610 while (point > 0)
3611 {
3612 point--;
3613 ref_pressure = MODEL_REF_PRESSURE (group, point, pci);
3614 max_pressure = MAX (max_pressure, ref_pressure);
3615 MODEL_MAX_PRESSURE (group, point, pci) = max_pressure;
3616 }
3617 }
3618 }
3619
3620 /* Update all successors of INSN, given that INSN has just been scheduled. */
3621
3622 static void
3623 model_add_successors_to_worklist (struct model_insn_info *insn)
3624 {
3625 sd_iterator_def sd_it;
3626 struct model_insn_info *con;
3627 dep_t dep;
3628
3629 FOR_EACH_DEP (insn->insn, SD_LIST_FORW, sd_it, dep)
3630 {
3631 con = MODEL_INSN_INFO (DEP_CON (dep));
3632 /* Ignore debug instructions, and instructions from other blocks. */
3633 if (con->insn)
3634 {
3635 con->unscheduled_preds--;
3636
3637 /* Update the depth field of each true-dependent successor.
3638 Increasing the depth gives them a higher priority than
3639 before. */
3640 if (DEP_TYPE (dep) == REG_DEP_TRUE && con->depth < insn->depth + 1)
3641 {
3642 con->depth = insn->depth + 1;
3643 if (QUEUE_INDEX (con->insn) == QUEUE_READY)
3644 model_promote_insn (con);
3645 }
3646
3647 /* If this is a true dependency, or if there are no remaining
3648 dependencies for CON (meaning that CON only had non-true
3649 dependencies), make sure that CON is on the worklist.
3650 We don't bother otherwise because it would tend to fill the
3651 worklist with a lot of low-priority instructions that are not
3652 yet ready to issue. */
3653 if ((con->depth > 0 || con->unscheduled_preds == 0)
3654 && QUEUE_INDEX (con->insn) == QUEUE_NOWHERE)
3655 model_add_to_worklist (con, insn, insn->next);
3656 }
3657 }
3658 }
3659
3660 /* Give INSN a higher priority than any current instruction, then give
3661 unscheduled predecessors of INSN a higher priority still. If any of
3662 those predecessors are not on the model worklist, do the same for its
3663 predecessors, and so on. */
3664
3665 static void
3666 model_promote_predecessors (struct model_insn_info *insn)
3667 {
3668 struct model_insn_info *pro, *first;
3669 sd_iterator_def sd_it;
3670 dep_t dep;
3671
3672 if (sched_verbose >= 7)
3673 fprintf (sched_dump, ";;\t+--- priority of %d = %d, priority of",
3674 INSN_UID (insn->insn), model_next_priority);
3675 insn->model_priority = model_next_priority++;
3676 model_remove_from_worklist (insn);
3677 model_add_to_worklist_at (insn, NULL);
3678
3679 first = NULL;
3680 for (;;)
3681 {
3682 FOR_EACH_DEP (insn->insn, SD_LIST_HARD_BACK, sd_it, dep)
3683 {
3684 pro = MODEL_INSN_INFO (DEP_PRO (dep));
3685 /* The first test is to ignore debug instructions, and instructions
3686 from other blocks. */
3687 if (pro->insn
3688 && pro->model_priority != model_next_priority
3689 && QUEUE_INDEX (pro->insn) != QUEUE_SCHEDULED)
3690 {
3691 pro->model_priority = model_next_priority;
3692 if (sched_verbose >= 7)
3693 fprintf (sched_dump, " %d", INSN_UID (pro->insn));
3694 if (QUEUE_INDEX (pro->insn) == QUEUE_READY)
3695 {
3696 /* PRO is already in the worklist, but it now has
3697 a higher priority than before. Move it at the
3698 appropriate place. */
3699 model_remove_from_worklist (pro);
3700 model_add_to_worklist (pro, NULL, model_worklist);
3701 }
3702 else
3703 {
3704 /* PRO isn't in the worklist. Recursively process
3705 its predecessors until we find one that is. */
3706 pro->next = first;
3707 first = pro;
3708 }
3709 }
3710 }
3711 if (!first)
3712 break;
3713 insn = first;
3714 first = insn->next;
3715 }
3716 if (sched_verbose >= 7)
3717 fprintf (sched_dump, " = %d\n", model_next_priority);
3718 model_next_priority++;
3719 }
3720
3721 /* Pick one instruction from model_worklist and process it. */
3722
3723 static void
3724 model_choose_insn (void)
3725 {
3726 struct model_insn_info *insn, *fallback;
3727 int count;
3728
3729 if (sched_verbose >= 7)
3730 {
3731 fprintf (sched_dump, ";;\t+--- worklist:\n");
3732 insn = model_worklist;
3733 count = MAX_SCHED_READY_INSNS;
3734 while (count > 0 && insn)
3735 {
3736 fprintf (sched_dump, ";;\t+--- %d [%d, %d, %d, %d]\n",
3737 INSN_UID (insn->insn), insn->model_priority,
3738 insn->depth + insn->alap, insn->depth,
3739 INSN_PRIORITY (insn->insn));
3740 count--;
3741 insn = insn->next;
3742 }
3743 }
3744
3745 /* Look for a ready instruction whose model_classify_priority is zero
3746 or negative, picking the highest-priority one. Adding such an
3747 instruction to the schedule now should do no harm, and may actually
3748 do some good.
3749
3750 Failing that, see whether there is an instruction with the highest
3751 extant model_priority that is not yet ready, but which would reduce
3752 pressure if it became ready. This is designed to catch cases like:
3753
3754 (set (mem (reg R1)) (reg R2))
3755
3756 where the instruction is the last remaining use of R1 and where the
3757 value of R2 is not yet available (or vice versa). The death of R1
3758 means that this instruction already reduces pressure. It is of
3759 course possible that the computation of R2 involves other registers
3760 that are hard to kill, but such cases are rare enough for this
3761 heuristic to be a win in general.
3762
3763 Failing that, just pick the highest-priority instruction in the
3764 worklist. */
3765 count = MAX_SCHED_READY_INSNS;
3766 insn = model_worklist;
3767 fallback = 0;
3768 for (;;)
3769 {
3770 if (count == 0 || !insn)
3771 {
3772 insn = fallback ? fallback : model_worklist;
3773 break;
3774 }
3775 if (insn->unscheduled_preds)
3776 {
3777 if (model_worklist->model_priority == insn->model_priority
3778 && !fallback
3779 && model_classify_pressure (insn) < 0)
3780 fallback = insn;
3781 }
3782 else
3783 {
3784 if (model_classify_pressure (insn) <= 0)
3785 break;
3786 }
3787 count--;
3788 insn = insn->next;
3789 }
3790
3791 if (sched_verbose >= 7 && insn != model_worklist)
3792 {
3793 if (insn->unscheduled_preds)
3794 fprintf (sched_dump, ";;\t+--- promoting insn %d, with dependencies\n",
3795 INSN_UID (insn->insn));
3796 else
3797 fprintf (sched_dump, ";;\t+--- promoting insn %d, which is ready\n",
3798 INSN_UID (insn->insn));
3799 }
3800 if (insn->unscheduled_preds)
3801 /* INSN isn't yet ready to issue. Give all its predecessors the
3802 highest priority. */
3803 model_promote_predecessors (insn);
3804 else
3805 {
3806 /* INSN is ready. Add it to the end of model_schedule and
3807 process its successors. */
3808 model_add_successors_to_worklist (insn);
3809 model_remove_from_worklist (insn);
3810 model_add_to_schedule (insn->insn);
3811 model_record_pressures (insn);
3812 update_register_pressure (insn->insn);
3813 }
3814 }
3815
3816 /* Restore all QUEUE_INDEXs to the values that they had before
3817 model_start_schedule was called. */
3818
3819 static void
3820 model_reset_queue_indices (void)
3821 {
3822 unsigned int i;
3823 rtx_insn *insn;
3824
3825 FOR_EACH_VEC_ELT (model_schedule, i, insn)
3826 QUEUE_INDEX (insn) = MODEL_INSN_INFO (insn)->old_queue;
3827 }
3828
3829 /* We have calculated the model schedule and spill costs. Print a summary
3830 to sched_dump. */
3831
3832 static void
3833 model_dump_pressure_summary (void)
3834 {
3835 int pci, cl;
3836
3837 fprintf (sched_dump, ";; Pressure summary:");
3838 for (pci = 0; pci < ira_pressure_classes_num; pci++)
3839 {
3840 cl = ira_pressure_classes[pci];
3841 fprintf (sched_dump, " %s:%d", reg_class_names[cl],
3842 model_before_pressure.limits[pci].pressure);
3843 }
3844 fprintf (sched_dump, "\n\n");
3845 }
3846
3847 /* Initialize the SCHED_PRESSURE_MODEL information for the current
3848 scheduling region. */
3849
3850 static void
3851 model_start_schedule (basic_block bb)
3852 {
3853 model_next_priority = 1;
3854 model_schedule.create (sched_max_luid);
3855 model_insns = XCNEWVEC (struct model_insn_info, sched_max_luid);
3856
3857 gcc_assert (bb == BLOCK_FOR_INSN (NEXT_INSN (current_sched_info->prev_head)));
3858 initiate_reg_pressure_info (df_get_live_in (bb));
3859
3860 model_analyze_insns ();
3861 model_init_pressure_group (&model_before_pressure);
3862 while (model_worklist)
3863 model_choose_insn ();
3864 gcc_assert (model_num_insns == (int) model_schedule.length ());
3865 if (sched_verbose >= 2)
3866 fprintf (sched_dump, "\n");
3867
3868 model_record_final_pressures (&model_before_pressure);
3869 model_reset_queue_indices ();
3870
3871 XDELETEVEC (model_insns);
3872
3873 model_curr_point = 0;
3874 initiate_reg_pressure_info (df_get_live_in (bb));
3875 if (sched_verbose >= 1)
3876 model_dump_pressure_summary ();
3877 }
3878
3879 /* Free the information associated with GROUP. */
3880
3881 static void
3882 model_finalize_pressure_group (struct model_pressure_group *group)
3883 {
3884 XDELETEVEC (group->model);
3885 }
3886
3887 /* Free the information created by model_start_schedule. */
3888
3889 static void
3890 model_end_schedule (void)
3891 {
3892 model_finalize_pressure_group (&model_before_pressure);
3893 model_schedule.release ();
3894 }
3895
3896 /* Prepare reg pressure scheduling for basic block BB. */
3897 static void
3898 sched_pressure_start_bb (basic_block bb)
3899 {
3900 /* Set the number of available registers for each class taking into account
3901 relative probability of current basic block versus function prologue and
3902 epilogue.
3903 * If the basic block executes much more often than the prologue/epilogue
3904 (e.g., inside a hot loop), then cost of spill in the prologue is close to
3905 nil, so the effective number of available registers is
3906 (ira_class_hard_regs_num[cl] - fixed_regs_num[cl] - 0).
3907 * If the basic block executes as often as the prologue/epilogue,
3908 then spill in the block is as costly as in the prologue, so the effective
3909 number of available registers is
3910 (ira_class_hard_regs_num[cl] - fixed_regs_num[cl]
3911 - call_saved_regs_num[cl]).
3912 Note that all-else-equal, we prefer to spill in the prologue, since that
3913 allows "extra" registers for other basic blocks of the function.
3914 * If the basic block is on the cold path of the function and executes
3915 rarely, then we should always prefer to spill in the block, rather than
3916 in the prologue/epilogue. The effective number of available register is
3917 (ira_class_hard_regs_num[cl] - fixed_regs_num[cl]
3918 - call_saved_regs_num[cl]). */
3919 {
3920 int i;
3921 int entry_freq = ENTRY_BLOCK_PTR_FOR_FN (cfun)->frequency;
3922 int bb_freq = bb->frequency;
3923
3924 if (bb_freq == 0)
3925 {
3926 if (entry_freq == 0)
3927 entry_freq = bb_freq = 1;
3928 }
3929 if (bb_freq < entry_freq)
3930 bb_freq = entry_freq;
3931
3932 for (i = 0; i < ira_pressure_classes_num; ++i)
3933 {
3934 enum reg_class cl = ira_pressure_classes[i];
3935 sched_class_regs_num[cl] = ira_class_hard_regs_num[cl]
3936 - fixed_regs_num[cl];
3937 sched_class_regs_num[cl]
3938 -= (call_saved_regs_num[cl] * entry_freq) / bb_freq;
3939 }
3940 }
3941
3942 if (sched_pressure == SCHED_PRESSURE_MODEL)
3943 model_start_schedule (bb);
3944 }
3945 \f
3946 /* A structure that holds local state for the loop in schedule_block. */
3947 struct sched_block_state
3948 {
3949 /* True if no real insns have been scheduled in the current cycle. */
3950 bool first_cycle_insn_p;
3951 /* True if a shadow insn has been scheduled in the current cycle, which
3952 means that no more normal insns can be issued. */
3953 bool shadows_only_p;
3954 /* True if we're winding down a modulo schedule, which means that we only
3955 issue insns with INSN_EXACT_TICK set. */
3956 bool modulo_epilogue;
3957 /* Initialized with the machine's issue rate every cycle, and updated
3958 by calls to the variable_issue hook. */
3959 int can_issue_more;
3960 };
3961
3962 /* INSN is the "currently executing insn". Launch each insn which was
3963 waiting on INSN. READY is the ready list which contains the insns
3964 that are ready to fire. CLOCK is the current cycle. The function
3965 returns necessary cycle advance after issuing the insn (it is not
3966 zero for insns in a schedule group). */
3967
3968 static int
3969 schedule_insn (rtx_insn *insn)
3970 {
3971 sd_iterator_def sd_it;
3972 dep_t dep;
3973 int i;
3974 int advance = 0;
3975
3976 if (sched_verbose >= 1)
3977 {
3978 struct reg_pressure_data *pressure_info;
3979 fprintf (sched_dump, ";;\t%3i--> %s %-40s:",
3980 clock_var, (*current_sched_info->print_insn) (insn, 1),
3981 str_pattern_slim (PATTERN (insn)));
3982
3983 if (recog_memoized (insn) < 0)
3984 fprintf (sched_dump, "nothing");
3985 else
3986 print_reservation (sched_dump, insn);
3987 pressure_info = INSN_REG_PRESSURE (insn);
3988 if (pressure_info != NULL)
3989 {
3990 fputc (':', sched_dump);
3991 for (i = 0; i < ira_pressure_classes_num; i++)
3992 fprintf (sched_dump, "%s%s%+d(%d)",
3993 scheduled_insns.length () > 1
3994 && INSN_LUID (insn)
3995 < INSN_LUID (scheduled_insns[scheduled_insns.length () - 2]) ? "@" : "",
3996 reg_class_names[ira_pressure_classes[i]],
3997 pressure_info[i].set_increase, pressure_info[i].change);
3998 }
3999 if (sched_pressure == SCHED_PRESSURE_MODEL
4000 && model_curr_point < model_num_insns
4001 && model_index (insn) == model_curr_point)
4002 fprintf (sched_dump, ":model %d", model_curr_point);
4003 fputc ('\n', sched_dump);
4004 }
4005
4006 if (sched_pressure == SCHED_PRESSURE_WEIGHTED && !DEBUG_INSN_P (insn))
4007 update_reg_and_insn_max_reg_pressure (insn);
4008
4009 /* Scheduling instruction should have all its dependencies resolved and
4010 should have been removed from the ready list. */
4011 gcc_assert (sd_lists_empty_p (insn, SD_LIST_HARD_BACK));
4012
4013 /* Reset debug insns invalidated by moving this insn. */
4014 if (MAY_HAVE_DEBUG_INSNS && !DEBUG_INSN_P (insn))
4015 for (sd_it = sd_iterator_start (insn, SD_LIST_BACK);
4016 sd_iterator_cond (&sd_it, &dep);)
4017 {
4018 rtx_insn *dbg = DEP_PRO (dep);
4019 struct reg_use_data *use, *next;
4020
4021 if (DEP_STATUS (dep) & DEP_CANCELLED)
4022 {
4023 sd_iterator_next (&sd_it);
4024 continue;
4025 }
4026
4027 gcc_assert (DEBUG_INSN_P (dbg));
4028
4029 if (sched_verbose >= 6)
4030 fprintf (sched_dump, ";;\t\tresetting: debug insn %d\n",
4031 INSN_UID (dbg));
4032
4033 /* ??? Rather than resetting the debug insn, we might be able
4034 to emit a debug temp before the just-scheduled insn, but
4035 this would involve checking that the expression at the
4036 point of the debug insn is equivalent to the expression
4037 before the just-scheduled insn. They might not be: the
4038 expression in the debug insn may depend on other insns not
4039 yet scheduled that set MEMs, REGs or even other debug
4040 insns. It's not clear that attempting to preserve debug
4041 information in these cases is worth the effort, given how
4042 uncommon these resets are and the likelihood that the debug
4043 temps introduced won't survive the schedule change. */
4044 INSN_VAR_LOCATION_LOC (dbg) = gen_rtx_UNKNOWN_VAR_LOC ();
4045 df_insn_rescan (dbg);
4046
4047 /* Unknown location doesn't use any registers. */
4048 for (use = INSN_REG_USE_LIST (dbg); use != NULL; use = next)
4049 {
4050 struct reg_use_data *prev = use;
4051
4052 /* Remove use from the cyclic next_regno_use chain first. */
4053 while (prev->next_regno_use != use)
4054 prev = prev->next_regno_use;
4055 prev->next_regno_use = use->next_regno_use;
4056 next = use->next_insn_use;
4057 free (use);
4058 }
4059 INSN_REG_USE_LIST (dbg) = NULL;
4060
4061 /* We delete rather than resolve these deps, otherwise we
4062 crash in sched_free_deps(), because forward deps are
4063 expected to be released before backward deps. */
4064 sd_delete_dep (sd_it);
4065 }
4066
4067 gcc_assert (QUEUE_INDEX (insn) == QUEUE_NOWHERE);
4068 QUEUE_INDEX (insn) = QUEUE_SCHEDULED;
4069
4070 if (sched_pressure == SCHED_PRESSURE_MODEL
4071 && model_curr_point < model_num_insns
4072 && NONDEBUG_INSN_P (insn))
4073 {
4074 if (model_index (insn) == model_curr_point)
4075 do
4076 model_curr_point++;
4077 while (model_curr_point < model_num_insns
4078 && (QUEUE_INDEX (MODEL_INSN (model_curr_point))
4079 == QUEUE_SCHEDULED));
4080 else
4081 model_recompute (insn);
4082 model_update_limit_points ();
4083 update_register_pressure (insn);
4084 if (sched_verbose >= 2)
4085 print_curr_reg_pressure ();
4086 }
4087
4088 gcc_assert (INSN_TICK (insn) >= MIN_TICK);
4089 if (INSN_TICK (insn) > clock_var)
4090 /* INSN has been prematurely moved from the queue to the ready list.
4091 This is possible only if following flags are set. */
4092 gcc_assert (flag_sched_stalled_insns || sched_fusion);
4093
4094 /* ??? Probably, if INSN is scheduled prematurely, we should leave
4095 INSN_TICK untouched. This is a machine-dependent issue, actually. */
4096 INSN_TICK (insn) = clock_var;
4097
4098 check_clobbered_conditions (insn);
4099
4100 /* Update dependent instructions. First, see if by scheduling this insn
4101 now we broke a dependence in a way that requires us to change another
4102 insn. */
4103 for (sd_it = sd_iterator_start (insn, SD_LIST_SPEC_BACK);
4104 sd_iterator_cond (&sd_it, &dep); sd_iterator_next (&sd_it))
4105 {
4106 struct dep_replacement *desc = DEP_REPLACE (dep);
4107 rtx_insn *pro = DEP_PRO (dep);
4108 if (QUEUE_INDEX (pro) != QUEUE_SCHEDULED
4109 && desc != NULL && desc->insn == pro)
4110 apply_replacement (dep, false);
4111 }
4112
4113 /* Go through and resolve forward dependencies. */
4114 for (sd_it = sd_iterator_start (insn, SD_LIST_FORW);
4115 sd_iterator_cond (&sd_it, &dep);)
4116 {
4117 rtx_insn *next = DEP_CON (dep);
4118 bool cancelled = (DEP_STATUS (dep) & DEP_CANCELLED) != 0;
4119
4120 /* Resolve the dependence between INSN and NEXT.
4121 sd_resolve_dep () moves current dep to another list thus
4122 advancing the iterator. */
4123 sd_resolve_dep (sd_it);
4124
4125 if (cancelled)
4126 {
4127 if (must_restore_pattern_p (next, dep))
4128 restore_pattern (dep, false);
4129 continue;
4130 }
4131
4132 /* Don't bother trying to mark next as ready if insn is a debug
4133 insn. If insn is the last hard dependency, it will have
4134 already been discounted. */
4135 if (DEBUG_INSN_P (insn) && !DEBUG_INSN_P (next))
4136 continue;
4137
4138 if (!IS_SPECULATION_BRANCHY_CHECK_P (insn))
4139 {
4140 int effective_cost;
4141
4142 effective_cost = try_ready (next);
4143
4144 if (effective_cost >= 0
4145 && SCHED_GROUP_P (next)
4146 && advance < effective_cost)
4147 advance = effective_cost;
4148 }
4149 else
4150 /* Check always has only one forward dependence (to the first insn in
4151 the recovery block), therefore, this will be executed only once. */
4152 {
4153 gcc_assert (sd_lists_empty_p (insn, SD_LIST_FORW));
4154 fix_recovery_deps (RECOVERY_BLOCK (insn));
4155 }
4156 }
4157
4158 /* Annotate the instruction with issue information -- TImode
4159 indicates that the instruction is expected not to be able
4160 to issue on the same cycle as the previous insn. A machine
4161 may use this information to decide how the instruction should
4162 be aligned. */
4163 if (issue_rate > 1
4164 && GET_CODE (PATTERN (insn)) != USE
4165 && GET_CODE (PATTERN (insn)) != CLOBBER
4166 && !DEBUG_INSN_P (insn))
4167 {
4168 if (reload_completed)
4169 PUT_MODE (insn, clock_var > last_clock_var ? TImode : VOIDmode);
4170 last_clock_var = clock_var;
4171 }
4172
4173 if (nonscheduled_insns_begin != NULL_RTX)
4174 /* Indicate to debug counters that INSN is scheduled. */
4175 nonscheduled_insns_begin = insn;
4176
4177 return advance;
4178 }
4179
4180 /* Functions for handling of notes. */
4181
4182 /* Add note list that ends on FROM_END to the end of TO_ENDP. */
4183 void
4184 concat_note_lists (rtx_insn *from_end, rtx_insn **to_endp)
4185 {
4186 rtx_insn *from_start;
4187
4188 /* It's easy when have nothing to concat. */
4189 if (from_end == NULL)
4190 return;
4191
4192 /* It's also easy when destination is empty. */
4193 if (*to_endp == NULL)
4194 {
4195 *to_endp = from_end;
4196 return;
4197 }
4198
4199 from_start = from_end;
4200 while (PREV_INSN (from_start) != NULL)
4201 from_start = PREV_INSN (from_start);
4202
4203 SET_PREV_INSN (from_start) = *to_endp;
4204 SET_NEXT_INSN (*to_endp) = from_start;
4205 *to_endp = from_end;
4206 }
4207
4208 /* Delete notes between HEAD and TAIL and put them in the chain
4209 of notes ended by NOTE_LIST. */
4210 void
4211 remove_notes (rtx_insn *head, rtx_insn *tail)
4212 {
4213 rtx_insn *next_tail, *insn, *next;
4214
4215 note_list = 0;
4216 if (head == tail && !INSN_P (head))
4217 return;
4218
4219 next_tail = NEXT_INSN (tail);
4220 for (insn = head; insn != next_tail; insn = next)
4221 {
4222 next = NEXT_INSN (insn);
4223 if (!NOTE_P (insn))
4224 continue;
4225
4226 switch (NOTE_KIND (insn))
4227 {
4228 case NOTE_INSN_BASIC_BLOCK:
4229 continue;
4230
4231 case NOTE_INSN_EPILOGUE_BEG:
4232 if (insn != tail)
4233 {
4234 remove_insn (insn);
4235 add_reg_note (next, REG_SAVE_NOTE,
4236 GEN_INT (NOTE_INSN_EPILOGUE_BEG));
4237 break;
4238 }
4239 /* FALLTHRU */
4240
4241 default:
4242 remove_insn (insn);
4243
4244 /* Add the note to list that ends at NOTE_LIST. */
4245 SET_PREV_INSN (insn) = note_list;
4246 SET_NEXT_INSN (insn) = NULL_RTX;
4247 if (note_list)
4248 SET_NEXT_INSN (note_list) = insn;
4249 note_list = insn;
4250 break;
4251 }
4252
4253 gcc_assert ((sel_sched_p () || insn != tail) && insn != head);
4254 }
4255 }
4256
4257 /* A structure to record enough data to allow us to backtrack the scheduler to
4258 a previous state. */
4259 struct haifa_saved_data
4260 {
4261 /* Next entry on the list. */
4262 struct haifa_saved_data *next;
4263
4264 /* Backtracking is associated with scheduling insns that have delay slots.
4265 DELAY_PAIR points to the structure that contains the insns involved, and
4266 the number of cycles between them. */
4267 struct delay_pair *delay_pair;
4268
4269 /* Data used by the frontend (e.g. sched-ebb or sched-rgn). */
4270 void *fe_saved_data;
4271 /* Data used by the backend. */
4272 void *be_saved_data;
4273
4274 /* Copies of global state. */
4275 int clock_var, last_clock_var;
4276 struct ready_list ready;
4277 state_t curr_state;
4278
4279 rtx_insn *last_scheduled_insn;
4280 rtx_insn *last_nondebug_scheduled_insn;
4281 rtx_insn *nonscheduled_insns_begin;
4282 int cycle_issued_insns;
4283
4284 /* Copies of state used in the inner loop of schedule_block. */
4285 struct sched_block_state sched_block;
4286
4287 /* We don't need to save q_ptr, as its value is arbitrary and we can set it
4288 to 0 when restoring. */
4289 int q_size;
4290 rtx_insn_list **insn_queue;
4291
4292 /* Describe pattern replacements that occurred since this backtrack point
4293 was queued. */
4294 vec<dep_t> replacement_deps;
4295 vec<int> replace_apply;
4296
4297 /* A copy of the next-cycle replacement vectors at the time of the backtrack
4298 point. */
4299 vec<dep_t> next_cycle_deps;
4300 vec<int> next_cycle_apply;
4301 };
4302
4303 /* A record, in reverse order, of all scheduled insns which have delay slots
4304 and may require backtracking. */
4305 static struct haifa_saved_data *backtrack_queue;
4306
4307 /* For every dependency of INSN, set the FEEDS_BACKTRACK_INSN bit according
4308 to SET_P. */
4309 static void
4310 mark_backtrack_feeds (rtx_insn *insn, int set_p)
4311 {
4312 sd_iterator_def sd_it;
4313 dep_t dep;
4314 FOR_EACH_DEP (insn, SD_LIST_HARD_BACK, sd_it, dep)
4315 {
4316 FEEDS_BACKTRACK_INSN (DEP_PRO (dep)) = set_p;
4317 }
4318 }
4319
4320 /* Save the current scheduler state so that we can backtrack to it
4321 later if necessary. PAIR gives the insns that make it necessary to
4322 save this point. SCHED_BLOCK is the local state of schedule_block
4323 that need to be saved. */
4324 static void
4325 save_backtrack_point (struct delay_pair *pair,
4326 struct sched_block_state sched_block)
4327 {
4328 int i;
4329 struct haifa_saved_data *save = XNEW (struct haifa_saved_data);
4330
4331 save->curr_state = xmalloc (dfa_state_size);
4332 memcpy (save->curr_state, curr_state, dfa_state_size);
4333
4334 save->ready.first = ready.first;
4335 save->ready.n_ready = ready.n_ready;
4336 save->ready.n_debug = ready.n_debug;
4337 save->ready.veclen = ready.veclen;
4338 save->ready.vec = XNEWVEC (rtx_insn *, ready.veclen);
4339 memcpy (save->ready.vec, ready.vec, ready.veclen * sizeof (rtx));
4340
4341 save->insn_queue = XNEWVEC (rtx_insn_list *, max_insn_queue_index + 1);
4342 save->q_size = q_size;
4343 for (i = 0; i <= max_insn_queue_index; i++)
4344 {
4345 int q = NEXT_Q_AFTER (q_ptr, i);
4346 save->insn_queue[i] = copy_INSN_LIST (insn_queue[q]);
4347 }
4348
4349 save->clock_var = clock_var;
4350 save->last_clock_var = last_clock_var;
4351 save->cycle_issued_insns = cycle_issued_insns;
4352 save->last_scheduled_insn = last_scheduled_insn;
4353 save->last_nondebug_scheduled_insn = last_nondebug_scheduled_insn;
4354 save->nonscheduled_insns_begin = nonscheduled_insns_begin;
4355
4356 save->sched_block = sched_block;
4357
4358 save->replacement_deps.create (0);
4359 save->replace_apply.create (0);
4360 save->next_cycle_deps = next_cycle_replace_deps.copy ();
4361 save->next_cycle_apply = next_cycle_apply.copy ();
4362
4363 if (current_sched_info->save_state)
4364 save->fe_saved_data = (*current_sched_info->save_state) ();
4365
4366 if (targetm.sched.alloc_sched_context)
4367 {
4368 save->be_saved_data = targetm.sched.alloc_sched_context ();
4369 targetm.sched.init_sched_context (save->be_saved_data, false);
4370 }
4371 else
4372 save->be_saved_data = NULL;
4373
4374 save->delay_pair = pair;
4375
4376 save->next = backtrack_queue;
4377 backtrack_queue = save;
4378
4379 while (pair)
4380 {
4381 mark_backtrack_feeds (pair->i2, 1);
4382 INSN_TICK (pair->i2) = INVALID_TICK;
4383 INSN_EXACT_TICK (pair->i2) = clock_var + pair_delay (pair);
4384 SHADOW_P (pair->i2) = pair->stages == 0;
4385 pair = pair->next_same_i1;
4386 }
4387 }
4388
4389 /* Walk the ready list and all queues. If any insns have unresolved backwards
4390 dependencies, these must be cancelled deps, broken by predication. Set or
4391 clear (depending on SET) the DEP_CANCELLED bit in DEP_STATUS. */
4392
4393 static void
4394 toggle_cancelled_flags (bool set)
4395 {
4396 int i;
4397 sd_iterator_def sd_it;
4398 dep_t dep;
4399
4400 if (ready.n_ready > 0)
4401 {
4402 rtx_insn **first = ready_lastpos (&ready);
4403 for (i = 0; i < ready.n_ready; i++)
4404 FOR_EACH_DEP (first[i], SD_LIST_BACK, sd_it, dep)
4405 if (!DEBUG_INSN_P (DEP_PRO (dep)))
4406 {
4407 if (set)
4408 DEP_STATUS (dep) |= DEP_CANCELLED;
4409 else
4410 DEP_STATUS (dep) &= ~DEP_CANCELLED;
4411 }
4412 }
4413 for (i = 0; i <= max_insn_queue_index; i++)
4414 {
4415 int q = NEXT_Q_AFTER (q_ptr, i);
4416 rtx_insn_list *link;
4417 for (link = insn_queue[q]; link; link = link->next ())
4418 {
4419 rtx_insn *insn = link->insn ();
4420 FOR_EACH_DEP (insn, SD_LIST_BACK, sd_it, dep)
4421 if (!DEBUG_INSN_P (DEP_PRO (dep)))
4422 {
4423 if (set)
4424 DEP_STATUS (dep) |= DEP_CANCELLED;
4425 else
4426 DEP_STATUS (dep) &= ~DEP_CANCELLED;
4427 }
4428 }
4429 }
4430 }
4431
4432 /* Undo the replacements that have occurred after backtrack point SAVE
4433 was placed. */
4434 static void
4435 undo_replacements_for_backtrack (struct haifa_saved_data *save)
4436 {
4437 while (!save->replacement_deps.is_empty ())
4438 {
4439 dep_t dep = save->replacement_deps.pop ();
4440 int apply_p = save->replace_apply.pop ();
4441
4442 if (apply_p)
4443 restore_pattern (dep, true);
4444 else
4445 apply_replacement (dep, true);
4446 }
4447 save->replacement_deps.release ();
4448 save->replace_apply.release ();
4449 }
4450
4451 /* Pop entries from the SCHEDULED_INSNS vector up to and including INSN.
4452 Restore their dependencies to an unresolved state, and mark them as
4453 queued nowhere. */
4454
4455 static void
4456 unschedule_insns_until (rtx_insn *insn)
4457 {
4458 auto_vec<rtx_insn *> recompute_vec;
4459
4460 /* Make two passes over the insns to be unscheduled. First, we clear out
4461 dependencies and other trivial bookkeeping. */
4462 for (;;)
4463 {
4464 rtx_insn *last;
4465 sd_iterator_def sd_it;
4466 dep_t dep;
4467
4468 last = scheduled_insns.pop ();
4469
4470 /* This will be changed by restore_backtrack_point if the insn is in
4471 any queue. */
4472 QUEUE_INDEX (last) = QUEUE_NOWHERE;
4473 if (last != insn)
4474 INSN_TICK (last) = INVALID_TICK;
4475
4476 if (modulo_ii > 0 && INSN_UID (last) < modulo_iter0_max_uid)
4477 modulo_insns_scheduled--;
4478
4479 for (sd_it = sd_iterator_start (last, SD_LIST_RES_FORW);
4480 sd_iterator_cond (&sd_it, &dep);)
4481 {
4482 rtx_insn *con = DEP_CON (dep);
4483 sd_unresolve_dep (sd_it);
4484 if (!MUST_RECOMPUTE_SPEC_P (con))
4485 {
4486 MUST_RECOMPUTE_SPEC_P (con) = 1;
4487 recompute_vec.safe_push (con);
4488 }
4489 }
4490
4491 if (last == insn)
4492 break;
4493 }
4494
4495 /* A second pass, to update ready and speculation status for insns
4496 depending on the unscheduled ones. The first pass must have
4497 popped the scheduled_insns vector up to the point where we
4498 restart scheduling, as recompute_todo_spec requires it to be
4499 up-to-date. */
4500 while (!recompute_vec.is_empty ())
4501 {
4502 rtx_insn *con;
4503
4504 con = recompute_vec.pop ();
4505 MUST_RECOMPUTE_SPEC_P (con) = 0;
4506 if (!sd_lists_empty_p (con, SD_LIST_HARD_BACK))
4507 {
4508 TODO_SPEC (con) = HARD_DEP;
4509 INSN_TICK (con) = INVALID_TICK;
4510 if (PREDICATED_PAT (con) != NULL_RTX)
4511 haifa_change_pattern (con, ORIG_PAT (con));
4512 }
4513 else if (QUEUE_INDEX (con) != QUEUE_SCHEDULED)
4514 TODO_SPEC (con) = recompute_todo_spec (con, true);
4515 }
4516 }
4517
4518 /* Restore scheduler state from the topmost entry on the backtracking queue.
4519 PSCHED_BLOCK_P points to the local data of schedule_block that we must
4520 overwrite with the saved data.
4521 The caller must already have called unschedule_insns_until. */
4522
4523 static void
4524 restore_last_backtrack_point (struct sched_block_state *psched_block)
4525 {
4526 int i;
4527 struct haifa_saved_data *save = backtrack_queue;
4528
4529 backtrack_queue = save->next;
4530
4531 if (current_sched_info->restore_state)
4532 (*current_sched_info->restore_state) (save->fe_saved_data);
4533
4534 if (targetm.sched.alloc_sched_context)
4535 {
4536 targetm.sched.set_sched_context (save->be_saved_data);
4537 targetm.sched.free_sched_context (save->be_saved_data);
4538 }
4539
4540 /* Do this first since it clobbers INSN_TICK of the involved
4541 instructions. */
4542 undo_replacements_for_backtrack (save);
4543
4544 /* Clear the QUEUE_INDEX of everything in the ready list or one
4545 of the queues. */
4546 if (ready.n_ready > 0)
4547 {
4548 rtx_insn **first = ready_lastpos (&ready);
4549 for (i = 0; i < ready.n_ready; i++)
4550 {
4551 rtx_insn *insn = first[i];
4552 QUEUE_INDEX (insn) = QUEUE_NOWHERE;
4553 INSN_TICK (insn) = INVALID_TICK;
4554 }
4555 }
4556 for (i = 0; i <= max_insn_queue_index; i++)
4557 {
4558 int q = NEXT_Q_AFTER (q_ptr, i);
4559
4560 for (rtx_insn_list *link = insn_queue[q]; link; link = link->next ())
4561 {
4562 rtx_insn *x = link->insn ();
4563 QUEUE_INDEX (x) = QUEUE_NOWHERE;
4564 INSN_TICK (x) = INVALID_TICK;
4565 }
4566 free_INSN_LIST_list (&insn_queue[q]);
4567 }
4568
4569 free (ready.vec);
4570 ready = save->ready;
4571
4572 if (ready.n_ready > 0)
4573 {
4574 rtx_insn **first = ready_lastpos (&ready);
4575 for (i = 0; i < ready.n_ready; i++)
4576 {
4577 rtx_insn *insn = first[i];
4578 QUEUE_INDEX (insn) = QUEUE_READY;
4579 TODO_SPEC (insn) = recompute_todo_spec (insn, true);
4580 INSN_TICK (insn) = save->clock_var;
4581 }
4582 }
4583
4584 q_ptr = 0;
4585 q_size = save->q_size;
4586 for (i = 0; i <= max_insn_queue_index; i++)
4587 {
4588 int q = NEXT_Q_AFTER (q_ptr, i);
4589
4590 insn_queue[q] = save->insn_queue[q];
4591
4592 for (rtx_insn_list *link = insn_queue[q]; link; link = link->next ())
4593 {
4594 rtx_insn *x = link->insn ();
4595 QUEUE_INDEX (x) = i;
4596 TODO_SPEC (x) = recompute_todo_spec (x, true);
4597 INSN_TICK (x) = save->clock_var + i;
4598 }
4599 }
4600 free (save->insn_queue);
4601
4602 toggle_cancelled_flags (true);
4603
4604 clock_var = save->clock_var;
4605 last_clock_var = save->last_clock_var;
4606 cycle_issued_insns = save->cycle_issued_insns;
4607 last_scheduled_insn = save->last_scheduled_insn;
4608 last_nondebug_scheduled_insn = save->last_nondebug_scheduled_insn;
4609 nonscheduled_insns_begin = save->nonscheduled_insns_begin;
4610
4611 *psched_block = save->sched_block;
4612
4613 memcpy (curr_state, save->curr_state, dfa_state_size);
4614 free (save->curr_state);
4615
4616 mark_backtrack_feeds (save->delay_pair->i2, 0);
4617
4618 gcc_assert (next_cycle_replace_deps.is_empty ());
4619 next_cycle_replace_deps = save->next_cycle_deps.copy ();
4620 next_cycle_apply = save->next_cycle_apply.copy ();
4621
4622 free (save);
4623
4624 for (save = backtrack_queue; save; save = save->next)
4625 {
4626 mark_backtrack_feeds (save->delay_pair->i2, 1);
4627 }
4628 }
4629
4630 /* Discard all data associated with the topmost entry in the backtrack
4631 queue. If RESET_TICK is false, we just want to free the data. If true,
4632 we are doing this because we discovered a reason to backtrack. In the
4633 latter case, also reset the INSN_TICK for the shadow insn. */
4634 static void
4635 free_topmost_backtrack_point (bool reset_tick)
4636 {
4637 struct haifa_saved_data *save = backtrack_queue;
4638 int i;
4639
4640 backtrack_queue = save->next;
4641
4642 if (reset_tick)
4643 {
4644 struct delay_pair *pair = save->delay_pair;
4645 while (pair)
4646 {
4647 INSN_TICK (pair->i2) = INVALID_TICK;
4648 INSN_EXACT_TICK (pair->i2) = INVALID_TICK;
4649 pair = pair->next_same_i1;
4650 }
4651 undo_replacements_for_backtrack (save);
4652 }
4653 else
4654 {
4655 save->replacement_deps.release ();
4656 save->replace_apply.release ();
4657 }
4658
4659 if (targetm.sched.free_sched_context)
4660 targetm.sched.free_sched_context (save->be_saved_data);
4661 if (current_sched_info->restore_state)
4662 free (save->fe_saved_data);
4663 for (i = 0; i <= max_insn_queue_index; i++)
4664 free_INSN_LIST_list (&save->insn_queue[i]);
4665 free (save->insn_queue);
4666 free (save->curr_state);
4667 free (save->ready.vec);
4668 free (save);
4669 }
4670
4671 /* Free the entire backtrack queue. */
4672 static void
4673 free_backtrack_queue (void)
4674 {
4675 while (backtrack_queue)
4676 free_topmost_backtrack_point (false);
4677 }
4678
4679 /* Apply a replacement described by DESC. If IMMEDIATELY is false, we
4680 may have to postpone the replacement until the start of the next cycle,
4681 at which point we will be called again with IMMEDIATELY true. This is
4682 only done for machines which have instruction packets with explicit
4683 parallelism however. */
4684 static void
4685 apply_replacement (dep_t dep, bool immediately)
4686 {
4687 struct dep_replacement *desc = DEP_REPLACE (dep);
4688 if (!immediately && targetm.sched.exposed_pipeline && reload_completed)
4689 {
4690 next_cycle_replace_deps.safe_push (dep);
4691 next_cycle_apply.safe_push (1);
4692 }
4693 else
4694 {
4695 bool success;
4696
4697 if (QUEUE_INDEX (desc->insn) == QUEUE_SCHEDULED)
4698 return;
4699
4700 if (sched_verbose >= 5)
4701 fprintf (sched_dump, "applying replacement for insn %d\n",
4702 INSN_UID (desc->insn));
4703
4704 success = validate_change (desc->insn, desc->loc, desc->newval, 0);
4705 gcc_assert (success);
4706
4707 update_insn_after_change (desc->insn);
4708 if ((TODO_SPEC (desc->insn) & (HARD_DEP | DEP_POSTPONED)) == 0)
4709 fix_tick_ready (desc->insn);
4710
4711 if (backtrack_queue != NULL)
4712 {
4713 backtrack_queue->replacement_deps.safe_push (dep);
4714 backtrack_queue->replace_apply.safe_push (1);
4715 }
4716 }
4717 }
4718
4719 /* We have determined that a pattern involved in DEP must be restored.
4720 If IMMEDIATELY is false, we may have to postpone the replacement
4721 until the start of the next cycle, at which point we will be called
4722 again with IMMEDIATELY true. */
4723 static void
4724 restore_pattern (dep_t dep, bool immediately)
4725 {
4726 rtx_insn *next = DEP_CON (dep);
4727 int tick = INSN_TICK (next);
4728
4729 /* If we already scheduled the insn, the modified version is
4730 correct. */
4731 if (QUEUE_INDEX (next) == QUEUE_SCHEDULED)
4732 return;
4733
4734 if (!immediately && targetm.sched.exposed_pipeline && reload_completed)
4735 {
4736 next_cycle_replace_deps.safe_push (dep);
4737 next_cycle_apply.safe_push (0);
4738 return;
4739 }
4740
4741
4742 if (DEP_TYPE (dep) == REG_DEP_CONTROL)
4743 {
4744 if (sched_verbose >= 5)
4745 fprintf (sched_dump, "restoring pattern for insn %d\n",
4746 INSN_UID (next));
4747 haifa_change_pattern (next, ORIG_PAT (next));
4748 }
4749 else
4750 {
4751 struct dep_replacement *desc = DEP_REPLACE (dep);
4752 bool success;
4753
4754 if (sched_verbose >= 5)
4755 fprintf (sched_dump, "restoring pattern for insn %d\n",
4756 INSN_UID (desc->insn));
4757 tick = INSN_TICK (desc->insn);
4758
4759 success = validate_change (desc->insn, desc->loc, desc->orig, 0);
4760 gcc_assert (success);
4761 update_insn_after_change (desc->insn);
4762 if (backtrack_queue != NULL)
4763 {
4764 backtrack_queue->replacement_deps.safe_push (dep);
4765 backtrack_queue->replace_apply.safe_push (0);
4766 }
4767 }
4768 INSN_TICK (next) = tick;
4769 if (TODO_SPEC (next) == DEP_POSTPONED)
4770 return;
4771
4772 if (sd_lists_empty_p (next, SD_LIST_BACK))
4773 TODO_SPEC (next) = 0;
4774 else if (!sd_lists_empty_p (next, SD_LIST_HARD_BACK))
4775 TODO_SPEC (next) = HARD_DEP;
4776 }
4777
4778 /* Perform pattern replacements that were queued up until the next
4779 cycle. */
4780 static void
4781 perform_replacements_new_cycle (void)
4782 {
4783 int i;
4784 dep_t dep;
4785 FOR_EACH_VEC_ELT (next_cycle_replace_deps, i, dep)
4786 {
4787 int apply_p = next_cycle_apply[i];
4788 if (apply_p)
4789 apply_replacement (dep, true);
4790 else
4791 restore_pattern (dep, true);
4792 }
4793 next_cycle_replace_deps.truncate (0);
4794 next_cycle_apply.truncate (0);
4795 }
4796
4797 /* Compute INSN_TICK_ESTIMATE for INSN. PROCESSED is a bitmap of
4798 instructions we've previously encountered, a set bit prevents
4799 recursion. BUDGET is a limit on how far ahead we look, it is
4800 reduced on recursive calls. Return true if we produced a good
4801 estimate, or false if we exceeded the budget. */
4802 static bool
4803 estimate_insn_tick (bitmap processed, rtx_insn *insn, int budget)
4804 {
4805 sd_iterator_def sd_it;
4806 dep_t dep;
4807 int earliest = INSN_TICK (insn);
4808
4809 FOR_EACH_DEP (insn, SD_LIST_BACK, sd_it, dep)
4810 {
4811 rtx_insn *pro = DEP_PRO (dep);
4812 int t;
4813
4814 if (DEP_STATUS (dep) & DEP_CANCELLED)
4815 continue;
4816
4817 if (QUEUE_INDEX (pro) == QUEUE_SCHEDULED)
4818 gcc_assert (INSN_TICK (pro) + dep_cost (dep) <= INSN_TICK (insn));
4819 else
4820 {
4821 int cost = dep_cost (dep);
4822 if (cost >= budget)
4823 return false;
4824 if (!bitmap_bit_p (processed, INSN_LUID (pro)))
4825 {
4826 if (!estimate_insn_tick (processed, pro, budget - cost))
4827 return false;
4828 }
4829 gcc_assert (INSN_TICK_ESTIMATE (pro) != INVALID_TICK);
4830 t = INSN_TICK_ESTIMATE (pro) + cost;
4831 if (earliest == INVALID_TICK || t > earliest)
4832 earliest = t;
4833 }
4834 }
4835 bitmap_set_bit (processed, INSN_LUID (insn));
4836 INSN_TICK_ESTIMATE (insn) = earliest;
4837 return true;
4838 }
4839
4840 /* Examine the pair of insns in P, and estimate (optimistically, assuming
4841 infinite resources) the cycle in which the delayed shadow can be issued.
4842 Return the number of cycles that must pass before the real insn can be
4843 issued in order to meet this constraint. */
4844 static int
4845 estimate_shadow_tick (struct delay_pair *p)
4846 {
4847 auto_bitmap processed;
4848 int t;
4849 bool cutoff;
4850
4851 cutoff = !estimate_insn_tick (processed, p->i2,
4852 max_insn_queue_index + pair_delay (p));
4853 if (cutoff)
4854 return max_insn_queue_index;
4855 t = INSN_TICK_ESTIMATE (p->i2) - (clock_var + pair_delay (p) + 1);
4856 if (t > 0)
4857 return t;
4858 return 0;
4859 }
4860
4861 /* If INSN has no unresolved backwards dependencies, add it to the schedule and
4862 recursively resolve all its forward dependencies. */
4863 static void
4864 resolve_dependencies (rtx_insn *insn)
4865 {
4866 sd_iterator_def sd_it;
4867 dep_t dep;
4868
4869 /* Don't use sd_lists_empty_p; it ignores debug insns. */
4870 if (DEPS_LIST_FIRST (INSN_HARD_BACK_DEPS (insn)) != NULL
4871 || DEPS_LIST_FIRST (INSN_SPEC_BACK_DEPS (insn)) != NULL)
4872 return;
4873
4874 if (sched_verbose >= 4)
4875 fprintf (sched_dump, ";;\tquickly resolving %d\n", INSN_UID (insn));
4876
4877 if (QUEUE_INDEX (insn) >= 0)
4878 queue_remove (insn);
4879
4880 scheduled_insns.safe_push (insn);
4881
4882 /* Update dependent instructions. */
4883 for (sd_it = sd_iterator_start (insn, SD_LIST_FORW);
4884 sd_iterator_cond (&sd_it, &dep);)
4885 {
4886 rtx_insn *next = DEP_CON (dep);
4887
4888 if (sched_verbose >= 4)
4889 fprintf (sched_dump, ";;\t\tdep %d against %d\n", INSN_UID (insn),
4890 INSN_UID (next));
4891
4892 /* Resolve the dependence between INSN and NEXT.
4893 sd_resolve_dep () moves current dep to another list thus
4894 advancing the iterator. */
4895 sd_resolve_dep (sd_it);
4896
4897 if (!IS_SPECULATION_BRANCHY_CHECK_P (insn))
4898 {
4899 resolve_dependencies (next);
4900 }
4901 else
4902 /* Check always has only one forward dependence (to the first insn in
4903 the recovery block), therefore, this will be executed only once. */
4904 {
4905 gcc_assert (sd_lists_empty_p (insn, SD_LIST_FORW));
4906 }
4907 }
4908 }
4909
4910
4911 /* Return the head and tail pointers of ebb starting at BEG and ending
4912 at END. */
4913 void
4914 get_ebb_head_tail (basic_block beg, basic_block end,
4915 rtx_insn **headp, rtx_insn **tailp)
4916 {
4917 rtx_insn *beg_head = BB_HEAD (beg);
4918 rtx_insn * beg_tail = BB_END (beg);
4919 rtx_insn * end_head = BB_HEAD (end);
4920 rtx_insn * end_tail = BB_END (end);
4921
4922 /* Don't include any notes or labels at the beginning of the BEG
4923 basic block, or notes at the end of the END basic blocks. */
4924
4925 if (LABEL_P (beg_head))
4926 beg_head = NEXT_INSN (beg_head);
4927
4928 while (beg_head != beg_tail)
4929 if (NOTE_P (beg_head))
4930 beg_head = NEXT_INSN (beg_head);
4931 else if (DEBUG_INSN_P (beg_head))
4932 {
4933 rtx_insn * note, *next;
4934
4935 for (note = NEXT_INSN (beg_head);
4936 note != beg_tail;
4937 note = next)
4938 {
4939 next = NEXT_INSN (note);
4940 if (NOTE_P (note))
4941 {
4942 if (sched_verbose >= 9)
4943 fprintf (sched_dump, "reorder %i\n", INSN_UID (note));
4944
4945 reorder_insns_nobb (note, note, PREV_INSN (beg_head));
4946
4947 if (BLOCK_FOR_INSN (note) != beg)
4948 df_insn_change_bb (note, beg);
4949 }
4950 else if (!DEBUG_INSN_P (note))
4951 break;
4952 }
4953
4954 break;
4955 }
4956 else
4957 break;
4958
4959 *headp = beg_head;
4960
4961 if (beg == end)
4962 end_head = beg_head;
4963 else if (LABEL_P (end_head))
4964 end_head = NEXT_INSN (end_head);
4965
4966 while (end_head != end_tail)
4967 if (NOTE_P (end_tail))
4968 end_tail = PREV_INSN (end_tail);
4969 else if (DEBUG_INSN_P (end_tail))
4970 {
4971 rtx_insn * note, *prev;
4972
4973 for (note = PREV_INSN (end_tail);
4974 note != end_head;
4975 note = prev)
4976 {
4977 prev = PREV_INSN (note);
4978 if (NOTE_P (note))
4979 {
4980 if (sched_verbose >= 9)
4981 fprintf (sched_dump, "reorder %i\n", INSN_UID (note));
4982
4983 reorder_insns_nobb (note, note, end_tail);
4984
4985 if (end_tail == BB_END (end))
4986 BB_END (end) = note;
4987
4988 if (BLOCK_FOR_INSN (note) != end)
4989 df_insn_change_bb (note, end);
4990 }
4991 else if (!DEBUG_INSN_P (note))
4992 break;
4993 }
4994
4995 break;
4996 }
4997 else
4998 break;
4999
5000 *tailp = end_tail;
5001 }
5002
5003 /* Return nonzero if there are no real insns in the range [ HEAD, TAIL ]. */
5004
5005 int
5006 no_real_insns_p (const rtx_insn *head, const rtx_insn *tail)
5007 {
5008 while (head != NEXT_INSN (tail))
5009 {
5010 if (!NOTE_P (head) && !LABEL_P (head))
5011 return 0;
5012 head = NEXT_INSN (head);
5013 }
5014 return 1;
5015 }
5016
5017 /* Restore-other-notes: NOTE_LIST is the end of a chain of notes
5018 previously found among the insns. Insert them just before HEAD. */
5019 rtx_insn *
5020 restore_other_notes (rtx_insn *head, basic_block head_bb)
5021 {
5022 if (note_list != 0)
5023 {
5024 rtx_insn *note_head = note_list;
5025
5026 if (head)
5027 head_bb = BLOCK_FOR_INSN (head);
5028 else
5029 head = NEXT_INSN (bb_note (head_bb));
5030
5031 while (PREV_INSN (note_head))
5032 {
5033 set_block_for_insn (note_head, head_bb);
5034 note_head = PREV_INSN (note_head);
5035 }
5036 /* In the above cycle we've missed this note. */
5037 set_block_for_insn (note_head, head_bb);
5038
5039 SET_PREV_INSN (note_head) = PREV_INSN (head);
5040 SET_NEXT_INSN (PREV_INSN (head)) = note_head;
5041 SET_PREV_INSN (head) = note_list;
5042 SET_NEXT_INSN (note_list) = head;
5043
5044 if (BLOCK_FOR_INSN (head) != head_bb)
5045 BB_END (head_bb) = note_list;
5046
5047 head = note_head;
5048 }
5049
5050 return head;
5051 }
5052
5053 /* When we know we are going to discard the schedule due to a failed attempt
5054 at modulo scheduling, undo all replacements. */
5055 static void
5056 undo_all_replacements (void)
5057 {
5058 rtx_insn *insn;
5059 int i;
5060
5061 FOR_EACH_VEC_ELT (scheduled_insns, i, insn)
5062 {
5063 sd_iterator_def sd_it;
5064 dep_t dep;
5065
5066 /* See if we must undo a replacement. */
5067 for (sd_it = sd_iterator_start (insn, SD_LIST_RES_FORW);
5068 sd_iterator_cond (&sd_it, &dep); sd_iterator_next (&sd_it))
5069 {
5070 struct dep_replacement *desc = DEP_REPLACE (dep);
5071 if (desc != NULL)
5072 validate_change (desc->insn, desc->loc, desc->orig, 0);
5073 }
5074 }
5075 }
5076
5077 /* Return first non-scheduled insn in the current scheduling block.
5078 This is mostly used for debug-counter purposes. */
5079 static rtx_insn *
5080 first_nonscheduled_insn (void)
5081 {
5082 rtx_insn *insn = (nonscheduled_insns_begin != NULL_RTX
5083 ? nonscheduled_insns_begin
5084 : current_sched_info->prev_head);
5085
5086 do
5087 {
5088 insn = next_nonnote_nondebug_insn (insn);
5089 }
5090 while (QUEUE_INDEX (insn) == QUEUE_SCHEDULED);
5091
5092 return insn;
5093 }
5094
5095 /* Move insns that became ready to fire from queue to ready list. */
5096
5097 static void
5098 queue_to_ready (struct ready_list *ready)
5099 {
5100 rtx_insn *insn;
5101 rtx_insn_list *link;
5102 rtx_insn *skip_insn;
5103
5104 q_ptr = NEXT_Q (q_ptr);
5105
5106 if (dbg_cnt (sched_insn) == false)
5107 /* If debug counter is activated do not requeue the first
5108 nonscheduled insn. */
5109 skip_insn = first_nonscheduled_insn ();
5110 else
5111 skip_insn = NULL;
5112
5113 /* Add all pending insns that can be scheduled without stalls to the
5114 ready list. */
5115 for (link = insn_queue[q_ptr]; link; link = link->next ())
5116 {
5117 insn = link->insn ();
5118 q_size -= 1;
5119
5120 if (sched_verbose >= 2)
5121 fprintf (sched_dump, ";;\t\tQ-->Ready: insn %s: ",
5122 (*current_sched_info->print_insn) (insn, 0));
5123
5124 /* If the ready list is full, delay the insn for 1 cycle.
5125 See the comment in schedule_block for the rationale. */
5126 if (!reload_completed
5127 && (ready->n_ready - ready->n_debug > MAX_SCHED_READY_INSNS
5128 || (sched_pressure == SCHED_PRESSURE_MODEL
5129 /* Limit pressure recalculations to MAX_SCHED_READY_INSNS
5130 instructions too. */
5131 && model_index (insn) > (model_curr_point
5132 + MAX_SCHED_READY_INSNS)))
5133 && !(sched_pressure == SCHED_PRESSURE_MODEL
5134 && model_curr_point < model_num_insns
5135 /* Always allow the next model instruction to issue. */
5136 && model_index (insn) == model_curr_point)
5137 && !SCHED_GROUP_P (insn)
5138 && insn != skip_insn)
5139 {
5140 if (sched_verbose >= 2)
5141 fprintf (sched_dump, "keeping in queue, ready full\n");
5142 queue_insn (insn, 1, "ready full");
5143 }
5144 else
5145 {
5146 ready_add (ready, insn, false);
5147 if (sched_verbose >= 2)
5148 fprintf (sched_dump, "moving to ready without stalls\n");
5149 }
5150 }
5151 free_INSN_LIST_list (&insn_queue[q_ptr]);
5152
5153 /* If there are no ready insns, stall until one is ready and add all
5154 of the pending insns at that point to the ready list. */
5155 if (ready->n_ready == 0)
5156 {
5157 int stalls;
5158
5159 for (stalls = 1; stalls <= max_insn_queue_index; stalls++)
5160 {
5161 if ((link = insn_queue[NEXT_Q_AFTER (q_ptr, stalls)]))
5162 {
5163 for (; link; link = link->next ())
5164 {
5165 insn = link->insn ();
5166 q_size -= 1;
5167
5168 if (sched_verbose >= 2)
5169 fprintf (sched_dump, ";;\t\tQ-->Ready: insn %s: ",
5170 (*current_sched_info->print_insn) (insn, 0));
5171
5172 ready_add (ready, insn, false);
5173 if (sched_verbose >= 2)
5174 fprintf (sched_dump, "moving to ready with %d stalls\n", stalls);
5175 }
5176 free_INSN_LIST_list (&insn_queue[NEXT_Q_AFTER (q_ptr, stalls)]);
5177
5178 advance_one_cycle ();
5179
5180 break;
5181 }
5182
5183 advance_one_cycle ();
5184 }
5185
5186 q_ptr = NEXT_Q_AFTER (q_ptr, stalls);
5187 clock_var += stalls;
5188 if (sched_verbose >= 2)
5189 fprintf (sched_dump, ";;\tAdvancing clock by %d cycle[s] to %d\n",
5190 stalls, clock_var);
5191 }
5192 }
5193
5194 /* Used by early_queue_to_ready. Determines whether it is "ok" to
5195 prematurely move INSN from the queue to the ready list. Currently,
5196 if a target defines the hook 'is_costly_dependence', this function
5197 uses the hook to check whether there exist any dependences which are
5198 considered costly by the target, between INSN and other insns that
5199 have already been scheduled. Dependences are checked up to Y cycles
5200 back, with default Y=1; The flag -fsched-stalled-insns-dep=Y allows
5201 controlling this value.
5202 (Other considerations could be taken into account instead (or in
5203 addition) depending on user flags and target hooks. */
5204
5205 static bool
5206 ok_for_early_queue_removal (rtx_insn *insn)
5207 {
5208 if (targetm.sched.is_costly_dependence)
5209 {
5210 int n_cycles;
5211 int i = scheduled_insns.length ();
5212 for (n_cycles = flag_sched_stalled_insns_dep; n_cycles; n_cycles--)
5213 {
5214 while (i-- > 0)
5215 {
5216 int cost;
5217
5218 rtx_insn *prev_insn = scheduled_insns[i];
5219
5220 if (!NOTE_P (prev_insn))
5221 {
5222 dep_t dep;
5223
5224 dep = sd_find_dep_between (prev_insn, insn, true);
5225
5226 if (dep != NULL)
5227 {
5228 cost = dep_cost (dep);
5229
5230 if (targetm.sched.is_costly_dependence (dep, cost,
5231 flag_sched_stalled_insns_dep - n_cycles))
5232 return false;
5233 }
5234 }
5235
5236 if (GET_MODE (prev_insn) == TImode) /* end of dispatch group */
5237 break;
5238 }
5239
5240 if (i == 0)
5241 break;
5242 }
5243 }
5244
5245 return true;
5246 }
5247
5248
5249 /* Remove insns from the queue, before they become "ready" with respect
5250 to FU latency considerations. */
5251
5252 static int
5253 early_queue_to_ready (state_t state, struct ready_list *ready)
5254 {
5255 rtx_insn *insn;
5256 rtx_insn_list *link;
5257 rtx_insn_list *next_link;
5258 rtx_insn_list *prev_link;
5259 bool move_to_ready;
5260 int cost;
5261 state_t temp_state = alloca (dfa_state_size);
5262 int stalls;
5263 int insns_removed = 0;
5264
5265 /*
5266 Flag '-fsched-stalled-insns=X' determines the aggressiveness of this
5267 function:
5268
5269 X == 0: There is no limit on how many queued insns can be removed
5270 prematurely. (flag_sched_stalled_insns = -1).
5271
5272 X >= 1: Only X queued insns can be removed prematurely in each
5273 invocation. (flag_sched_stalled_insns = X).
5274
5275 Otherwise: Early queue removal is disabled.
5276 (flag_sched_stalled_insns = 0)
5277 */
5278
5279 if (! flag_sched_stalled_insns)
5280 return 0;
5281
5282 for (stalls = 0; stalls <= max_insn_queue_index; stalls++)
5283 {
5284 if ((link = insn_queue[NEXT_Q_AFTER (q_ptr, stalls)]))
5285 {
5286 if (sched_verbose > 6)
5287 fprintf (sched_dump, ";; look at index %d + %d\n", q_ptr, stalls);
5288
5289 prev_link = 0;
5290 while (link)
5291 {
5292 next_link = link->next ();
5293 insn = link->insn ();
5294 if (insn && sched_verbose > 6)
5295 print_rtl_single (sched_dump, insn);
5296
5297 memcpy (temp_state, state, dfa_state_size);
5298 if (recog_memoized (insn) < 0)
5299 /* non-negative to indicate that it's not ready
5300 to avoid infinite Q->R->Q->R... */
5301 cost = 0;
5302 else
5303 cost = state_transition (temp_state, insn);
5304
5305 if (sched_verbose >= 6)
5306 fprintf (sched_dump, "transition cost = %d\n", cost);
5307
5308 move_to_ready = false;
5309 if (cost < 0)
5310 {
5311 move_to_ready = ok_for_early_queue_removal (insn);
5312 if (move_to_ready == true)
5313 {
5314 /* move from Q to R */
5315 q_size -= 1;
5316 ready_add (ready, insn, false);
5317
5318 if (prev_link)
5319 XEXP (prev_link, 1) = next_link;
5320 else
5321 insn_queue[NEXT_Q_AFTER (q_ptr, stalls)] = next_link;
5322
5323 free_INSN_LIST_node (link);
5324
5325 if (sched_verbose >= 2)
5326 fprintf (sched_dump, ";;\t\tEarly Q-->Ready: insn %s\n",
5327 (*current_sched_info->print_insn) (insn, 0));
5328
5329 insns_removed++;
5330 if (insns_removed == flag_sched_stalled_insns)
5331 /* Remove no more than flag_sched_stalled_insns insns
5332 from Q at a time. */
5333 return insns_removed;
5334 }
5335 }
5336
5337 if (move_to_ready == false)
5338 prev_link = link;
5339
5340 link = next_link;
5341 } /* while link */
5342 } /* if link */
5343
5344 } /* for stalls.. */
5345
5346 return insns_removed;
5347 }
5348
5349
5350 /* Print the ready list for debugging purposes.
5351 If READY_TRY is non-zero then only print insns that max_issue
5352 will consider. */
5353 static void
5354 debug_ready_list_1 (struct ready_list *ready, signed char *ready_try)
5355 {
5356 rtx_insn **p;
5357 int i;
5358
5359 if (ready->n_ready == 0)
5360 {
5361 fprintf (sched_dump, "\n");
5362 return;
5363 }
5364
5365 p = ready_lastpos (ready);
5366 for (i = 0; i < ready->n_ready; i++)
5367 {
5368 if (ready_try != NULL && ready_try[ready->n_ready - i - 1])
5369 continue;
5370
5371 fprintf (sched_dump, " %s:%d",
5372 (*current_sched_info->print_insn) (p[i], 0),
5373 INSN_LUID (p[i]));
5374 if (sched_pressure != SCHED_PRESSURE_NONE)
5375 fprintf (sched_dump, "(cost=%d",
5376 INSN_REG_PRESSURE_EXCESS_COST_CHANGE (p[i]));
5377 fprintf (sched_dump, ":prio=%d", INSN_PRIORITY (p[i]));
5378 if (INSN_TICK (p[i]) > clock_var)
5379 fprintf (sched_dump, ":delay=%d", INSN_TICK (p[i]) - clock_var);
5380 if (sched_pressure == SCHED_PRESSURE_MODEL)
5381 fprintf (sched_dump, ":idx=%d",
5382 model_index (p[i]));
5383 if (sched_pressure != SCHED_PRESSURE_NONE)
5384 fprintf (sched_dump, ")");
5385 }
5386 fprintf (sched_dump, "\n");
5387 }
5388
5389 /* Print the ready list. Callable from debugger. */
5390 static void
5391 debug_ready_list (struct ready_list *ready)
5392 {
5393 debug_ready_list_1 (ready, NULL);
5394 }
5395
5396 /* Search INSN for REG_SAVE_NOTE notes and convert them back into insn
5397 NOTEs. This is used for NOTE_INSN_EPILOGUE_BEG, so that sched-ebb
5398 replaces the epilogue note in the correct basic block. */
5399 void
5400 reemit_notes (rtx_insn *insn)
5401 {
5402 rtx note;
5403 rtx_insn *last = insn;
5404
5405 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
5406 {
5407 if (REG_NOTE_KIND (note) == REG_SAVE_NOTE)
5408 {
5409 enum insn_note note_type = (enum insn_note) INTVAL (XEXP (note, 0));
5410
5411 last = emit_note_before (note_type, last);
5412 remove_note (insn, note);
5413 }
5414 }
5415 }
5416
5417 /* Move INSN. Reemit notes if needed. Update CFG, if needed. */
5418 static void
5419 move_insn (rtx_insn *insn, rtx_insn *last, rtx nt)
5420 {
5421 if (PREV_INSN (insn) != last)
5422 {
5423 basic_block bb;
5424 rtx_insn *note;
5425 int jump_p = 0;
5426
5427 bb = BLOCK_FOR_INSN (insn);
5428
5429 /* BB_HEAD is either LABEL or NOTE. */
5430 gcc_assert (BB_HEAD (bb) != insn);
5431
5432 if (BB_END (bb) == insn)
5433 /* If this is last instruction in BB, move end marker one
5434 instruction up. */
5435 {
5436 /* Jumps are always placed at the end of basic block. */
5437 jump_p = control_flow_insn_p (insn);
5438
5439 gcc_assert (!jump_p
5440 || ((common_sched_info->sched_pass_id == SCHED_RGN_PASS)
5441 && IS_SPECULATION_BRANCHY_CHECK_P (insn))
5442 || (common_sched_info->sched_pass_id
5443 == SCHED_EBB_PASS));
5444
5445 gcc_assert (BLOCK_FOR_INSN (PREV_INSN (insn)) == bb);
5446
5447 BB_END (bb) = PREV_INSN (insn);
5448 }
5449
5450 gcc_assert (BB_END (bb) != last);
5451
5452 if (jump_p)
5453 /* We move the block note along with jump. */
5454 {
5455 gcc_assert (nt);
5456
5457 note = NEXT_INSN (insn);
5458 while (NOTE_NOT_BB_P (note) && note != nt)
5459 note = NEXT_INSN (note);
5460
5461 if (note != nt
5462 && (LABEL_P (note)
5463 || BARRIER_P (note)))
5464 note = NEXT_INSN (note);
5465
5466 gcc_assert (NOTE_INSN_BASIC_BLOCK_P (note));
5467 }
5468 else
5469 note = insn;
5470
5471 SET_NEXT_INSN (PREV_INSN (insn)) = NEXT_INSN (note);
5472 SET_PREV_INSN (NEXT_INSN (note)) = PREV_INSN (insn);
5473
5474 SET_NEXT_INSN (note) = NEXT_INSN (last);
5475 SET_PREV_INSN (NEXT_INSN (last)) = note;
5476
5477 SET_NEXT_INSN (last) = insn;
5478 SET_PREV_INSN (insn) = last;
5479
5480 bb = BLOCK_FOR_INSN (last);
5481
5482 if (jump_p)
5483 {
5484 fix_jump_move (insn);
5485
5486 if (BLOCK_FOR_INSN (insn) != bb)
5487 move_block_after_check (insn);
5488
5489 gcc_assert (BB_END (bb) == last);
5490 }
5491
5492 df_insn_change_bb (insn, bb);
5493
5494 /* Update BB_END, if needed. */
5495 if (BB_END (bb) == last)
5496 BB_END (bb) = insn;
5497 }
5498
5499 SCHED_GROUP_P (insn) = 0;
5500 }
5501
5502 /* Return true if scheduling INSN will finish current clock cycle. */
5503 static bool
5504 insn_finishes_cycle_p (rtx_insn *insn)
5505 {
5506 if (SCHED_GROUP_P (insn))
5507 /* After issuing INSN, rest of the sched_group will be forced to issue
5508 in order. Don't make any plans for the rest of cycle. */
5509 return true;
5510
5511 /* Finishing the block will, apparently, finish the cycle. */
5512 if (current_sched_info->insn_finishes_block_p
5513 && current_sched_info->insn_finishes_block_p (insn))
5514 return true;
5515
5516 return false;
5517 }
5518
5519 /* Helper for autopref_multipass_init. Given a SET in PAT and whether
5520 we're expecting a memory WRITE or not, check that the insn is relevant to
5521 the autoprefetcher modelling code. Return true iff that is the case.
5522 If it is relevant, record the base register of the memory op in BASE and
5523 the offset in OFFSET. */
5524
5525 static bool
5526 analyze_set_insn_for_autopref (rtx pat, bool write, rtx *base, int *offset)
5527 {
5528 if (GET_CODE (pat) != SET)
5529 return false;
5530
5531 rtx mem = write ? SET_DEST (pat) : SET_SRC (pat);
5532 if (!MEM_P (mem))
5533 return false;
5534
5535 struct address_info info;
5536 decompose_mem_address (&info, mem);
5537
5538 /* TODO: Currently only (base+const) addressing is supported. */
5539 if (info.base == NULL || !REG_P (*info.base)
5540 || (info.disp != NULL && !CONST_INT_P (*info.disp)))
5541 return false;
5542
5543 *base = *info.base;
5544 *offset = info.disp ? INTVAL (*info.disp) : 0;
5545 return true;
5546 }
5547
5548 /* Functions to model cache auto-prefetcher.
5549
5550 Some of the CPUs have cache auto-prefetcher, which /seems/ to initiate
5551 memory prefetches if it sees instructions with consequitive memory accesses
5552 in the instruction stream. Details of such hardware units are not published,
5553 so we can only guess what exactly is going on there.
5554 In the scheduler, we model abstract auto-prefetcher. If there are memory
5555 insns in the ready list (or the queue) that have same memory base, but
5556 different offsets, then we delay the insns with larger offsets until insns
5557 with smaller offsets get scheduled. If PARAM_SCHED_AUTOPREF_QUEUE_DEPTH
5558 is "1", then we look at the ready list; if it is N>1, then we also look
5559 through N-1 queue entries.
5560 If the param is N>=0, then rank_for_schedule will consider auto-prefetching
5561 among its heuristics.
5562 Param value of "-1" disables modelling of the auto-prefetcher. */
5563
5564 /* Initialize autoprefetcher model data for INSN. */
5565 static void
5566 autopref_multipass_init (const rtx_insn *insn, int write)
5567 {
5568 autopref_multipass_data_t data = &INSN_AUTOPREF_MULTIPASS_DATA (insn)[write];
5569
5570 gcc_assert (data->status == AUTOPREF_MULTIPASS_DATA_UNINITIALIZED);
5571 data->base = NULL_RTX;
5572 data->min_offset = 0;
5573 data->max_offset = 0;
5574 data->multi_mem_insn_p = false;
5575 /* Set insn entry initialized, but not relevant for auto-prefetcher. */
5576 data->status = AUTOPREF_MULTIPASS_DATA_IRRELEVANT;
5577
5578 rtx pat = PATTERN (insn);
5579
5580 /* We have a multi-set insn like a load-multiple or store-multiple.
5581 We care about these as long as all the memory ops inside the PARALLEL
5582 have the same base register. We care about the minimum and maximum
5583 offsets from that base but don't check for the order of those offsets
5584 within the PARALLEL insn itself. */
5585 if (GET_CODE (pat) == PARALLEL)
5586 {
5587 int n_elems = XVECLEN (pat, 0);
5588
5589 int i = 0;
5590 rtx prev_base = NULL_RTX;
5591 int min_offset = 0;
5592 int max_offset = 0;
5593
5594 for (i = 0; i < n_elems; i++)
5595 {
5596 rtx set = XVECEXP (pat, 0, i);
5597 if (GET_CODE (set) != SET)
5598 return;
5599
5600 rtx base = NULL_RTX;
5601 int offset = 0;
5602 if (!analyze_set_insn_for_autopref (set, write, &base, &offset))
5603 return;
5604
5605 if (i == 0)
5606 {
5607 prev_base = base;
5608 min_offset = offset;
5609 max_offset = offset;
5610 }
5611 /* Ensure that all memory operations in the PARALLEL use the same
5612 base register. */
5613 else if (REGNO (base) != REGNO (prev_base))
5614 return;
5615 else
5616 {
5617 min_offset = MIN (min_offset, offset);
5618 max_offset = MAX (max_offset, offset);
5619 }
5620 }
5621
5622 /* If we reached here then we have a valid PARALLEL of multiple memory
5623 ops with prev_base as the base and min_offset and max_offset
5624 containing the offsets range. */
5625 gcc_assert (prev_base);
5626 data->base = prev_base;
5627 data->min_offset = min_offset;
5628 data->max_offset = max_offset;
5629 data->multi_mem_insn_p = true;
5630 data->status = AUTOPREF_MULTIPASS_DATA_NORMAL;
5631
5632 return;
5633 }
5634
5635 /* Otherwise this is a single set memory operation. */
5636 rtx set = single_set (insn);
5637 if (set == NULL_RTX)
5638 return;
5639
5640 if (!analyze_set_insn_for_autopref (set, write, &data->base,
5641 &data->min_offset))
5642 return;
5643
5644 /* This insn is relevant for the auto-prefetcher.
5645 The base and offset fields will have been filled in the
5646 analyze_set_insn_for_autopref call above. */
5647 data->status = AUTOPREF_MULTIPASS_DATA_NORMAL;
5648 }
5649
5650
5651 /* Helper for autopref_rank_for_schedule. Given the data of two
5652 insns relevant to the auto-prefetcher modelling code DATA1 and DATA2
5653 return their comparison result. Return 0 if there is no sensible
5654 ranking order for the two insns. */
5655
5656 static int
5657 autopref_rank_data (autopref_multipass_data_t data1,
5658 autopref_multipass_data_t data2)
5659 {
5660 /* Simple case when both insns are simple single memory ops. */
5661 if (!data1->multi_mem_insn_p && !data2->multi_mem_insn_p)
5662 return data1->min_offset - data2->min_offset;
5663
5664 /* Two load/store multiple insns. Return 0 if the offset ranges
5665 overlap and the difference between the minimum offsets otherwise. */
5666 else if (data1->multi_mem_insn_p && data2->multi_mem_insn_p)
5667 {
5668 int min1 = data1->min_offset;
5669 int max1 = data1->max_offset;
5670 int min2 = data2->min_offset;
5671 int max2 = data2->max_offset;
5672
5673 if (max1 < min2 || min1 > max2)
5674 return min1 - min2;
5675 else
5676 return 0;
5677 }
5678
5679 /* The other two cases is a pair of a load/store multiple and
5680 a simple memory op. Return 0 if the single op's offset is within the
5681 range of the multi-op insn and the difference between the single offset
5682 and the minimum offset of the multi-set insn otherwise. */
5683 else if (data1->multi_mem_insn_p && !data2->multi_mem_insn_p)
5684 {
5685 int max1 = data1->max_offset;
5686 int min1 = data1->min_offset;
5687
5688 if (data2->min_offset >= min1
5689 && data2->min_offset <= max1)
5690 return 0;
5691 else
5692 return min1 - data2->min_offset;
5693 }
5694 else
5695 {
5696 int max2 = data2->max_offset;
5697 int min2 = data2->min_offset;
5698
5699 if (data1->min_offset >= min2
5700 && data1->min_offset <= max2)
5701 return 0;
5702 else
5703 return data1->min_offset - min2;
5704 }
5705 }
5706
5707 /* Helper function for rank_for_schedule sorting. */
5708 static int
5709 autopref_rank_for_schedule (const rtx_insn *insn1, const rtx_insn *insn2)
5710 {
5711 int r = 0;
5712 for (int write = 0; write < 2 && !r; ++write)
5713 {
5714 autopref_multipass_data_t data1
5715 = &INSN_AUTOPREF_MULTIPASS_DATA (insn1)[write];
5716 autopref_multipass_data_t data2
5717 = &INSN_AUTOPREF_MULTIPASS_DATA (insn2)[write];
5718
5719 if (data1->status == AUTOPREF_MULTIPASS_DATA_UNINITIALIZED)
5720 autopref_multipass_init (insn1, write);
5721
5722 if (data2->status == AUTOPREF_MULTIPASS_DATA_UNINITIALIZED)
5723 autopref_multipass_init (insn2, write);
5724
5725 int irrel1 = data1->status == AUTOPREF_MULTIPASS_DATA_IRRELEVANT;
5726 int irrel2 = data2->status == AUTOPREF_MULTIPASS_DATA_IRRELEVANT;
5727
5728 if (!irrel1 && !irrel2)
5729 r = autopref_rank_data (data1, data2);
5730 else
5731 r = irrel2 - irrel1;
5732 }
5733
5734 return r;
5735 }
5736
5737 /* True if header of debug dump was printed. */
5738 static bool autopref_multipass_dfa_lookahead_guard_started_dump_p;
5739
5740 /* Helper for autopref_multipass_dfa_lookahead_guard.
5741 Return "1" if INSN1 should be delayed in favor of INSN2. */
5742 static int
5743 autopref_multipass_dfa_lookahead_guard_1 (const rtx_insn *insn1,
5744 const rtx_insn *insn2, int write)
5745 {
5746 autopref_multipass_data_t data1
5747 = &INSN_AUTOPREF_MULTIPASS_DATA (insn1)[write];
5748 autopref_multipass_data_t data2
5749 = &INSN_AUTOPREF_MULTIPASS_DATA (insn2)[write];
5750
5751 if (data2->status == AUTOPREF_MULTIPASS_DATA_UNINITIALIZED)
5752 autopref_multipass_init (insn2, write);
5753 if (data2->status == AUTOPREF_MULTIPASS_DATA_IRRELEVANT)
5754 return 0;
5755
5756 if (rtx_equal_p (data1->base, data2->base)
5757 && autopref_rank_data (data1, data2) > 0)
5758 {
5759 if (sched_verbose >= 2)
5760 {
5761 if (!autopref_multipass_dfa_lookahead_guard_started_dump_p)
5762 {
5763 fprintf (sched_dump,
5764 ";;\t\tnot trying in max_issue due to autoprefetch "
5765 "model: ");
5766 autopref_multipass_dfa_lookahead_guard_started_dump_p = true;
5767 }
5768
5769 fprintf (sched_dump, " %d(%d)", INSN_UID (insn1), INSN_UID (insn2));
5770 }
5771
5772 return 1;
5773 }
5774
5775 return 0;
5776 }
5777
5778 /* General note:
5779
5780 We could have also hooked autoprefetcher model into
5781 first_cycle_multipass_backtrack / first_cycle_multipass_issue hooks
5782 to enable intelligent selection of "[r1+0]=r2; [r1+4]=r3" on the same cycle
5783 (e.g., once "[r1+0]=r2" is issued in max_issue(), "[r1+4]=r3" gets
5784 unblocked). We don't bother about this yet because target of interest
5785 (ARM Cortex-A15) can issue only 1 memory operation per cycle. */
5786
5787 /* Implementation of first_cycle_multipass_dfa_lookahead_guard hook.
5788 Return "1" if INSN1 should not be considered in max_issue due to
5789 auto-prefetcher considerations. */
5790 int
5791 autopref_multipass_dfa_lookahead_guard (rtx_insn *insn1, int ready_index)
5792 {
5793 int r = 0;
5794
5795 /* Exit early if the param forbids this or if we're not entering here through
5796 normal haifa scheduling. This can happen if selective scheduling is
5797 explicitly enabled. */
5798 if (!insn_queue || PARAM_VALUE (PARAM_SCHED_AUTOPREF_QUEUE_DEPTH) <= 0)
5799 return 0;
5800
5801 if (sched_verbose >= 2 && ready_index == 0)
5802 autopref_multipass_dfa_lookahead_guard_started_dump_p = false;
5803
5804 for (int write = 0; write < 2; ++write)
5805 {
5806 autopref_multipass_data_t data1
5807 = &INSN_AUTOPREF_MULTIPASS_DATA (insn1)[write];
5808
5809 if (data1->status == AUTOPREF_MULTIPASS_DATA_UNINITIALIZED)
5810 autopref_multipass_init (insn1, write);
5811 if (data1->status == AUTOPREF_MULTIPASS_DATA_IRRELEVANT)
5812 continue;
5813
5814 if (ready_index == 0
5815 && data1->status == AUTOPREF_MULTIPASS_DATA_DONT_DELAY)
5816 /* We allow only a single delay on priviledged instructions.
5817 Doing otherwise would cause infinite loop. */
5818 {
5819 if (sched_verbose >= 2)
5820 {
5821 if (!autopref_multipass_dfa_lookahead_guard_started_dump_p)
5822 {
5823 fprintf (sched_dump,
5824 ";;\t\tnot trying in max_issue due to autoprefetch "
5825 "model: ");
5826 autopref_multipass_dfa_lookahead_guard_started_dump_p = true;
5827 }
5828
5829 fprintf (sched_dump, " *%d*", INSN_UID (insn1));
5830 }
5831 continue;
5832 }
5833
5834 for (int i2 = 0; i2 < ready.n_ready; ++i2)
5835 {
5836 rtx_insn *insn2 = get_ready_element (i2);
5837 if (insn1 == insn2)
5838 continue;
5839 r = autopref_multipass_dfa_lookahead_guard_1 (insn1, insn2, write);
5840 if (r)
5841 {
5842 if (ready_index == 0)
5843 {
5844 r = -1;
5845 data1->status = AUTOPREF_MULTIPASS_DATA_DONT_DELAY;
5846 }
5847 goto finish;
5848 }
5849 }
5850
5851 if (PARAM_VALUE (PARAM_SCHED_AUTOPREF_QUEUE_DEPTH) == 1)
5852 continue;
5853
5854 /* Everything from the current queue slot should have been moved to
5855 the ready list. */
5856 gcc_assert (insn_queue[NEXT_Q_AFTER (q_ptr, 0)] == NULL_RTX);
5857
5858 int n_stalls = PARAM_VALUE (PARAM_SCHED_AUTOPREF_QUEUE_DEPTH) - 1;
5859 if (n_stalls > max_insn_queue_index)
5860 n_stalls = max_insn_queue_index;
5861
5862 for (int stalls = 1; stalls <= n_stalls; ++stalls)
5863 {
5864 for (rtx_insn_list *link = insn_queue[NEXT_Q_AFTER (q_ptr, stalls)];
5865 link != NULL_RTX;
5866 link = link->next ())
5867 {
5868 rtx_insn *insn2 = link->insn ();
5869 r = autopref_multipass_dfa_lookahead_guard_1 (insn1, insn2,
5870 write);
5871 if (r)
5872 {
5873 /* Queue INSN1 until INSN2 can issue. */
5874 r = -stalls;
5875 if (ready_index == 0)
5876 data1->status = AUTOPREF_MULTIPASS_DATA_DONT_DELAY;
5877 goto finish;
5878 }
5879 }
5880 }
5881 }
5882
5883 finish:
5884 if (sched_verbose >= 2
5885 && autopref_multipass_dfa_lookahead_guard_started_dump_p
5886 && (ready_index == ready.n_ready - 1 || r < 0))
5887 /* This does not /always/ trigger. We don't output EOL if the last
5888 insn is not recognized (INSN_CODE < 0) and lookahead_guard is not
5889 called. We can live with this. */
5890 fprintf (sched_dump, "\n");
5891
5892 return r;
5893 }
5894
5895 /* Define type for target data used in multipass scheduling. */
5896 #ifndef TARGET_SCHED_FIRST_CYCLE_MULTIPASS_DATA_T
5897 # define TARGET_SCHED_FIRST_CYCLE_MULTIPASS_DATA_T int
5898 #endif
5899 typedef TARGET_SCHED_FIRST_CYCLE_MULTIPASS_DATA_T first_cycle_multipass_data_t;
5900
5901 /* The following structure describe an entry of the stack of choices. */
5902 struct choice_entry
5903 {
5904 /* Ordinal number of the issued insn in the ready queue. */
5905 int index;
5906 /* The number of the rest insns whose issues we should try. */
5907 int rest;
5908 /* The number of issued essential insns. */
5909 int n;
5910 /* State after issuing the insn. */
5911 state_t state;
5912 /* Target-specific data. */
5913 first_cycle_multipass_data_t target_data;
5914 };
5915
5916 /* The following array is used to implement a stack of choices used in
5917 function max_issue. */
5918 static struct choice_entry *choice_stack;
5919
5920 /* This holds the value of the target dfa_lookahead hook. */
5921 int dfa_lookahead;
5922
5923 /* The following variable value is maximal number of tries of issuing
5924 insns for the first cycle multipass insn scheduling. We define
5925 this value as constant*(DFA_LOOKAHEAD**ISSUE_RATE). We would not
5926 need this constraint if all real insns (with non-negative codes)
5927 had reservations because in this case the algorithm complexity is
5928 O(DFA_LOOKAHEAD**ISSUE_RATE). Unfortunately, the dfa descriptions
5929 might be incomplete and such insn might occur. For such
5930 descriptions, the complexity of algorithm (without the constraint)
5931 could achieve DFA_LOOKAHEAD ** N , where N is the queue length. */
5932 static int max_lookahead_tries;
5933
5934 /* The following function returns maximal (or close to maximal) number
5935 of insns which can be issued on the same cycle and one of which
5936 insns is insns with the best rank (the first insn in READY). To
5937 make this function tries different samples of ready insns. READY
5938 is current queue `ready'. Global array READY_TRY reflects what
5939 insns are already issued in this try. The function stops immediately,
5940 if it reached the such a solution, that all instruction can be issued.
5941 INDEX will contain index of the best insn in READY. The following
5942 function is used only for first cycle multipass scheduling.
5943
5944 PRIVILEGED_N >= 0
5945
5946 This function expects recognized insns only. All USEs,
5947 CLOBBERs, etc must be filtered elsewhere. */
5948 int
5949 max_issue (struct ready_list *ready, int privileged_n, state_t state,
5950 bool first_cycle_insn_p, int *index)
5951 {
5952 int n, i, all, n_ready, best, delay, tries_num;
5953 int more_issue;
5954 struct choice_entry *top;
5955 rtx_insn *insn;
5956
5957 if (sched_fusion)
5958 return 0;
5959
5960 n_ready = ready->n_ready;
5961 gcc_assert (dfa_lookahead >= 1 && privileged_n >= 0
5962 && privileged_n <= n_ready);
5963
5964 /* Init MAX_LOOKAHEAD_TRIES. */
5965 if (max_lookahead_tries == 0)
5966 {
5967 max_lookahead_tries = 100;
5968 for (i = 0; i < issue_rate; i++)
5969 max_lookahead_tries *= dfa_lookahead;
5970 }
5971
5972 /* Init max_points. */
5973 more_issue = issue_rate - cycle_issued_insns;
5974 gcc_assert (more_issue >= 0);
5975
5976 /* The number of the issued insns in the best solution. */
5977 best = 0;
5978
5979 top = choice_stack;
5980
5981 /* Set initial state of the search. */
5982 memcpy (top->state, state, dfa_state_size);
5983 top->rest = dfa_lookahead;
5984 top->n = 0;
5985 if (targetm.sched.first_cycle_multipass_begin)
5986 targetm.sched.first_cycle_multipass_begin (&top->target_data,
5987 ready_try, n_ready,
5988 first_cycle_insn_p);
5989
5990 /* Count the number of the insns to search among. */
5991 for (all = i = 0; i < n_ready; i++)
5992 if (!ready_try [i])
5993 all++;
5994
5995 if (sched_verbose >= 2)
5996 {
5997 fprintf (sched_dump, ";;\t\tmax_issue among %d insns:", all);
5998 debug_ready_list_1 (ready, ready_try);
5999 }
6000
6001 /* I is the index of the insn to try next. */
6002 i = 0;
6003 tries_num = 0;
6004 for (;;)
6005 {
6006 if (/* If we've reached a dead end or searched enough of what we have
6007 been asked... */
6008 top->rest == 0
6009 /* or have nothing else to try... */
6010 || i >= n_ready
6011 /* or should not issue more. */
6012 || top->n >= more_issue)
6013 {
6014 /* ??? (... || i == n_ready). */
6015 gcc_assert (i <= n_ready);
6016
6017 /* We should not issue more than issue_rate instructions. */
6018 gcc_assert (top->n <= more_issue);
6019
6020 if (top == choice_stack)
6021 break;
6022
6023 if (best < top - choice_stack)
6024 {
6025 if (privileged_n)
6026 {
6027 n = privileged_n;
6028 /* Try to find issued privileged insn. */
6029 while (n && !ready_try[--n])
6030 ;
6031 }
6032
6033 if (/* If all insns are equally good... */
6034 privileged_n == 0
6035 /* Or a privileged insn will be issued. */
6036 || ready_try[n])
6037 /* Then we have a solution. */
6038 {
6039 best = top - choice_stack;
6040 /* This is the index of the insn issued first in this
6041 solution. */
6042 *index = choice_stack [1].index;
6043 if (top->n == more_issue || best == all)
6044 break;
6045 }
6046 }
6047
6048 /* Set ready-list index to point to the last insn
6049 ('i++' below will advance it to the next insn). */
6050 i = top->index;
6051
6052 /* Backtrack. */
6053 ready_try [i] = 0;
6054
6055 if (targetm.sched.first_cycle_multipass_backtrack)
6056 targetm.sched.first_cycle_multipass_backtrack (&top->target_data,
6057 ready_try, n_ready);
6058
6059 top--;
6060 memcpy (state, top->state, dfa_state_size);
6061 }
6062 else if (!ready_try [i])
6063 {
6064 tries_num++;
6065 if (tries_num > max_lookahead_tries)
6066 break;
6067 insn = ready_element (ready, i);
6068 delay = state_transition (state, insn);
6069 if (delay < 0)
6070 {
6071 if (state_dead_lock_p (state)
6072 || insn_finishes_cycle_p (insn))
6073 /* We won't issue any more instructions in the next
6074 choice_state. */
6075 top->rest = 0;
6076 else
6077 top->rest--;
6078
6079 n = top->n;
6080 if (memcmp (top->state, state, dfa_state_size) != 0)
6081 n++;
6082
6083 /* Advance to the next choice_entry. */
6084 top++;
6085 /* Initialize it. */
6086 top->rest = dfa_lookahead;
6087 top->index = i;
6088 top->n = n;
6089 memcpy (top->state, state, dfa_state_size);
6090 ready_try [i] = 1;
6091
6092 if (targetm.sched.first_cycle_multipass_issue)
6093 targetm.sched.first_cycle_multipass_issue (&top->target_data,
6094 ready_try, n_ready,
6095 insn,
6096 &((top - 1)
6097 ->target_data));
6098
6099 i = -1;
6100 }
6101 }
6102
6103 /* Increase ready-list index. */
6104 i++;
6105 }
6106
6107 if (targetm.sched.first_cycle_multipass_end)
6108 targetm.sched.first_cycle_multipass_end (best != 0
6109 ? &choice_stack[1].target_data
6110 : NULL);
6111
6112 /* Restore the original state of the DFA. */
6113 memcpy (state, choice_stack->state, dfa_state_size);
6114
6115 return best;
6116 }
6117
6118 /* The following function chooses insn from READY and modifies
6119 READY. The following function is used only for first
6120 cycle multipass scheduling.
6121 Return:
6122 -1 if cycle should be advanced,
6123 0 if INSN_PTR is set to point to the desirable insn,
6124 1 if choose_ready () should be restarted without advancing the cycle. */
6125 static int
6126 choose_ready (struct ready_list *ready, bool first_cycle_insn_p,
6127 rtx_insn **insn_ptr)
6128 {
6129 if (dbg_cnt (sched_insn) == false)
6130 {
6131 if (nonscheduled_insns_begin == NULL_RTX)
6132 nonscheduled_insns_begin = current_sched_info->prev_head;
6133
6134 rtx_insn *insn = first_nonscheduled_insn ();
6135
6136 if (QUEUE_INDEX (insn) == QUEUE_READY)
6137 /* INSN is in the ready_list. */
6138 {
6139 ready_remove_insn (insn);
6140 *insn_ptr = insn;
6141 return 0;
6142 }
6143
6144 /* INSN is in the queue. Advance cycle to move it to the ready list. */
6145 gcc_assert (QUEUE_INDEX (insn) >= 0);
6146 return -1;
6147 }
6148
6149 if (dfa_lookahead <= 0 || SCHED_GROUP_P (ready_element (ready, 0))
6150 || DEBUG_INSN_P (ready_element (ready, 0)))
6151 {
6152 if (targetm.sched.dispatch (NULL, IS_DISPATCH_ON))
6153 *insn_ptr = ready_remove_first_dispatch (ready);
6154 else
6155 *insn_ptr = ready_remove_first (ready);
6156
6157 return 0;
6158 }
6159 else
6160 {
6161 /* Try to choose the best insn. */
6162 int index = 0, i;
6163 rtx_insn *insn;
6164
6165 insn = ready_element (ready, 0);
6166 if (INSN_CODE (insn) < 0)
6167 {
6168 *insn_ptr = ready_remove_first (ready);
6169 return 0;
6170 }
6171
6172 /* Filter the search space. */
6173 for (i = 0; i < ready->n_ready; i++)
6174 {
6175 ready_try[i] = 0;
6176
6177 insn = ready_element (ready, i);
6178
6179 /* If this insn is recognizable we should have already
6180 recognized it earlier.
6181 ??? Not very clear where this is supposed to be done.
6182 See dep_cost_1. */
6183 gcc_checking_assert (INSN_CODE (insn) >= 0
6184 || recog_memoized (insn) < 0);
6185 if (INSN_CODE (insn) < 0)
6186 {
6187 /* Non-recognized insns at position 0 are handled above. */
6188 gcc_assert (i > 0);
6189 ready_try[i] = 1;
6190 continue;
6191 }
6192
6193 if (targetm.sched.first_cycle_multipass_dfa_lookahead_guard)
6194 {
6195 ready_try[i]
6196 = (targetm.sched.first_cycle_multipass_dfa_lookahead_guard
6197 (insn, i));
6198
6199 if (ready_try[i] < 0)
6200 /* Queue instruction for several cycles.
6201 We need to restart choose_ready as we have changed
6202 the ready list. */
6203 {
6204 change_queue_index (insn, -ready_try[i]);
6205 return 1;
6206 }
6207
6208 /* Make sure that we didn't end up with 0'th insn filtered out.
6209 Don't be tempted to make life easier for backends and just
6210 requeue 0'th insn if (ready_try[0] == 0) and restart
6211 choose_ready. Backends should be very considerate about
6212 requeueing instructions -- especially the highest priority
6213 one at position 0. */
6214 gcc_assert (ready_try[i] == 0 || i > 0);
6215 if (ready_try[i])
6216 continue;
6217 }
6218
6219 gcc_assert (ready_try[i] == 0);
6220 /* INSN made it through the scrutiny of filters! */
6221 }
6222
6223 if (max_issue (ready, 1, curr_state, first_cycle_insn_p, &index) == 0)
6224 {
6225 *insn_ptr = ready_remove_first (ready);
6226 if (sched_verbose >= 4)
6227 fprintf (sched_dump, ";;\t\tChosen insn (but can't issue) : %s \n",
6228 (*current_sched_info->print_insn) (*insn_ptr, 0));
6229 return 0;
6230 }
6231 else
6232 {
6233 if (sched_verbose >= 4)
6234 fprintf (sched_dump, ";;\t\tChosen insn : %s\n",
6235 (*current_sched_info->print_insn)
6236 (ready_element (ready, index), 0));
6237
6238 *insn_ptr = ready_remove (ready, index);
6239 return 0;
6240 }
6241 }
6242 }
6243
6244 /* This function is called when we have successfully scheduled a
6245 block. It uses the schedule stored in the scheduled_insns vector
6246 to rearrange the RTL. PREV_HEAD is used as the anchor to which we
6247 append the scheduled insns; TAIL is the insn after the scheduled
6248 block. TARGET_BB is the argument passed to schedule_block. */
6249
6250 static void
6251 commit_schedule (rtx_insn *prev_head, rtx_insn *tail, basic_block *target_bb)
6252 {
6253 unsigned int i;
6254 rtx_insn *insn;
6255
6256 last_scheduled_insn = prev_head;
6257 for (i = 0;
6258 scheduled_insns.iterate (i, &insn);
6259 i++)
6260 {
6261 if (control_flow_insn_p (last_scheduled_insn)
6262 || current_sched_info->advance_target_bb (*target_bb, insn))
6263 {
6264 *target_bb = current_sched_info->advance_target_bb (*target_bb, 0);
6265
6266 if (sched_verbose)
6267 {
6268 rtx_insn *x;
6269
6270 x = next_real_insn (last_scheduled_insn);
6271 gcc_assert (x);
6272 dump_new_block_header (1, *target_bb, x, tail);
6273 }
6274
6275 last_scheduled_insn = bb_note (*target_bb);
6276 }
6277
6278 if (current_sched_info->begin_move_insn)
6279 (*current_sched_info->begin_move_insn) (insn, last_scheduled_insn);
6280 move_insn (insn, last_scheduled_insn,
6281 current_sched_info->next_tail);
6282 if (!DEBUG_INSN_P (insn))
6283 reemit_notes (insn);
6284 last_scheduled_insn = insn;
6285 }
6286
6287 scheduled_insns.truncate (0);
6288 }
6289
6290 /* Examine all insns on the ready list and queue those which can't be
6291 issued in this cycle. TEMP_STATE is temporary scheduler state we
6292 can use as scratch space. If FIRST_CYCLE_INSN_P is true, no insns
6293 have been issued for the current cycle, which means it is valid to
6294 issue an asm statement.
6295
6296 If SHADOWS_ONLY_P is true, we eliminate all real insns and only
6297 leave those for which SHADOW_P is true. If MODULO_EPILOGUE is true,
6298 we only leave insns which have an INSN_EXACT_TICK. */
6299
6300 static void
6301 prune_ready_list (state_t temp_state, bool first_cycle_insn_p,
6302 bool shadows_only_p, bool modulo_epilogue_p)
6303 {
6304 int i, pass;
6305 bool sched_group_found = false;
6306 int min_cost_group = 0;
6307
6308 if (sched_fusion)
6309 return;
6310
6311 for (i = 0; i < ready.n_ready; i++)
6312 {
6313 rtx_insn *insn = ready_element (&ready, i);
6314 if (SCHED_GROUP_P (insn))
6315 {
6316 sched_group_found = true;
6317 break;
6318 }
6319 }
6320
6321 /* Make two passes if there's a SCHED_GROUP_P insn; make sure to handle
6322 such an insn first and note its cost. If at least one SCHED_GROUP_P insn
6323 gets queued, then all other insns get queued for one cycle later. */
6324 for (pass = sched_group_found ? 0 : 1; pass < 2; )
6325 {
6326 int n = ready.n_ready;
6327 for (i = 0; i < n; i++)
6328 {
6329 rtx_insn *insn = ready_element (&ready, i);
6330 int cost = 0;
6331 const char *reason = "resource conflict";
6332
6333 if (DEBUG_INSN_P (insn))
6334 continue;
6335
6336 if (sched_group_found && !SCHED_GROUP_P (insn)
6337 && ((pass == 0) || (min_cost_group >= 1)))
6338 {
6339 if (pass == 0)
6340 continue;
6341 cost = min_cost_group;
6342 reason = "not in sched group";
6343 }
6344 else if (modulo_epilogue_p
6345 && INSN_EXACT_TICK (insn) == INVALID_TICK)
6346 {
6347 cost = max_insn_queue_index;
6348 reason = "not an epilogue insn";
6349 }
6350 else if (shadows_only_p && !SHADOW_P (insn))
6351 {
6352 cost = 1;
6353 reason = "not a shadow";
6354 }
6355 else if (recog_memoized (insn) < 0)
6356 {
6357 if (!first_cycle_insn_p
6358 && (GET_CODE (PATTERN (insn)) == ASM_INPUT
6359 || asm_noperands (PATTERN (insn)) >= 0))
6360 cost = 1;
6361 reason = "asm";
6362 }
6363 else if (sched_pressure != SCHED_PRESSURE_NONE)
6364 {
6365 if (sched_pressure == SCHED_PRESSURE_MODEL
6366 && INSN_TICK (insn) <= clock_var)
6367 {
6368 memcpy (temp_state, curr_state, dfa_state_size);
6369 if (state_transition (temp_state, insn) >= 0)
6370 INSN_TICK (insn) = clock_var + 1;
6371 }
6372 cost = 0;
6373 }
6374 else
6375 {
6376 int delay_cost = 0;
6377
6378 if (delay_htab)
6379 {
6380 struct delay_pair *delay_entry;
6381 delay_entry
6382 = delay_htab->find_with_hash (insn,
6383 htab_hash_pointer (insn));
6384 while (delay_entry && delay_cost == 0)
6385 {
6386 delay_cost = estimate_shadow_tick (delay_entry);
6387 if (delay_cost > max_insn_queue_index)
6388 delay_cost = max_insn_queue_index;
6389 delay_entry = delay_entry->next_same_i1;
6390 }
6391 }
6392
6393 memcpy (temp_state, curr_state, dfa_state_size);
6394 cost = state_transition (temp_state, insn);
6395 if (cost < 0)
6396 cost = 0;
6397 else if (cost == 0)
6398 cost = 1;
6399 if (cost < delay_cost)
6400 {
6401 cost = delay_cost;
6402 reason = "shadow tick";
6403 }
6404 }
6405 if (cost >= 1)
6406 {
6407 if (SCHED_GROUP_P (insn) && cost > min_cost_group)
6408 min_cost_group = cost;
6409 ready_remove (&ready, i);
6410 /* Normally we'd want to queue INSN for COST cycles. However,
6411 if SCHED_GROUP_P is set, then we must ensure that nothing
6412 else comes between INSN and its predecessor. If there is
6413 some other insn ready to fire on the next cycle, then that
6414 invariant would be broken.
6415
6416 So when SCHED_GROUP_P is set, just queue this insn for a
6417 single cycle. */
6418 queue_insn (insn, SCHED_GROUP_P (insn) ? 1 : cost, reason);
6419 if (i + 1 < n)
6420 break;
6421 }
6422 }
6423 if (i == n)
6424 pass++;
6425 }
6426 }
6427
6428 /* Called when we detect that the schedule is impossible. We examine the
6429 backtrack queue to find the earliest insn that caused this condition. */
6430
6431 static struct haifa_saved_data *
6432 verify_shadows (void)
6433 {
6434 struct haifa_saved_data *save, *earliest_fail = NULL;
6435 for (save = backtrack_queue; save; save = save->next)
6436 {
6437 int t;
6438 struct delay_pair *pair = save->delay_pair;
6439 rtx_insn *i1 = pair->i1;
6440
6441 for (; pair; pair = pair->next_same_i1)
6442 {
6443 rtx_insn *i2 = pair->i2;
6444
6445 if (QUEUE_INDEX (i2) == QUEUE_SCHEDULED)
6446 continue;
6447
6448 t = INSN_TICK (i1) + pair_delay (pair);
6449 if (t < clock_var)
6450 {
6451 if (sched_verbose >= 2)
6452 fprintf (sched_dump,
6453 ";;\t\tfailed delay requirements for %d/%d (%d->%d)"
6454 ", not ready\n",
6455 INSN_UID (pair->i1), INSN_UID (pair->i2),
6456 INSN_TICK (pair->i1), INSN_EXACT_TICK (pair->i2));
6457 earliest_fail = save;
6458 break;
6459 }
6460 if (QUEUE_INDEX (i2) >= 0)
6461 {
6462 int queued_for = INSN_TICK (i2);
6463
6464 if (t < queued_for)
6465 {
6466 if (sched_verbose >= 2)
6467 fprintf (sched_dump,
6468 ";;\t\tfailed delay requirements for %d/%d"
6469 " (%d->%d), queued too late\n",
6470 INSN_UID (pair->i1), INSN_UID (pair->i2),
6471 INSN_TICK (pair->i1), INSN_EXACT_TICK (pair->i2));
6472 earliest_fail = save;
6473 break;
6474 }
6475 }
6476 }
6477 }
6478
6479 return earliest_fail;
6480 }
6481
6482 /* Print instructions together with useful scheduling information between
6483 HEAD and TAIL (inclusive). */
6484 static void
6485 dump_insn_stream (rtx_insn *head, rtx_insn *tail)
6486 {
6487 fprintf (sched_dump, ";;\t| insn | prio |\n");
6488
6489 rtx_insn *next_tail = NEXT_INSN (tail);
6490 for (rtx_insn *insn = head; insn != next_tail; insn = NEXT_INSN (insn))
6491 {
6492 int priority = NOTE_P (insn) ? 0 : INSN_PRIORITY (insn);
6493 const char *pattern = (NOTE_P (insn)
6494 ? "note"
6495 : str_pattern_slim (PATTERN (insn)));
6496
6497 fprintf (sched_dump, ";;\t| %4d | %4d | %-30s ",
6498 INSN_UID (insn), priority, pattern);
6499
6500 if (sched_verbose >= 4)
6501 {
6502 if (NOTE_P (insn) || LABEL_P (insn) || recog_memoized (insn) < 0)
6503 fprintf (sched_dump, "nothing");
6504 else
6505 print_reservation (sched_dump, insn);
6506 }
6507 fprintf (sched_dump, "\n");
6508 }
6509 }
6510
6511 /* Use forward list scheduling to rearrange insns of block pointed to by
6512 TARGET_BB, possibly bringing insns from subsequent blocks in the same
6513 region. */
6514
6515 bool
6516 schedule_block (basic_block *target_bb, state_t init_state)
6517 {
6518 int i;
6519 bool success = modulo_ii == 0;
6520 struct sched_block_state ls;
6521 state_t temp_state = NULL; /* It is used for multipass scheduling. */
6522 int sort_p, advance, start_clock_var;
6523
6524 /* Head/tail info for this block. */
6525 rtx_insn *prev_head = current_sched_info->prev_head;
6526 rtx_insn *next_tail = current_sched_info->next_tail;
6527 rtx_insn *head = NEXT_INSN (prev_head);
6528 rtx_insn *tail = PREV_INSN (next_tail);
6529
6530 if ((current_sched_info->flags & DONT_BREAK_DEPENDENCIES) == 0
6531 && sched_pressure != SCHED_PRESSURE_MODEL && !sched_fusion)
6532 find_modifiable_mems (head, tail);
6533
6534 /* We used to have code to avoid getting parameters moved from hard
6535 argument registers into pseudos.
6536
6537 However, it was removed when it proved to be of marginal benefit
6538 and caused problems because schedule_block and compute_forward_dependences
6539 had different notions of what the "head" insn was. */
6540
6541 gcc_assert (head != tail || INSN_P (head));
6542
6543 haifa_recovery_bb_recently_added_p = false;
6544
6545 backtrack_queue = NULL;
6546
6547 /* Debug info. */
6548 if (sched_verbose)
6549 {
6550 dump_new_block_header (0, *target_bb, head, tail);
6551
6552 if (sched_verbose >= 2)
6553 {
6554 dump_insn_stream (head, tail);
6555 memset (&rank_for_schedule_stats, 0,
6556 sizeof (rank_for_schedule_stats));
6557 }
6558 }
6559
6560 if (init_state == NULL)
6561 state_reset (curr_state);
6562 else
6563 memcpy (curr_state, init_state, dfa_state_size);
6564
6565 /* Clear the ready list. */
6566 ready.first = ready.veclen - 1;
6567 ready.n_ready = 0;
6568 ready.n_debug = 0;
6569
6570 /* It is used for first cycle multipass scheduling. */
6571 temp_state = alloca (dfa_state_size);
6572
6573 if (targetm.sched.init)
6574 targetm.sched.init (sched_dump, sched_verbose, ready.veclen);
6575
6576 /* We start inserting insns after PREV_HEAD. */
6577 last_scheduled_insn = prev_head;
6578 last_nondebug_scheduled_insn = NULL;
6579 nonscheduled_insns_begin = NULL;
6580
6581 gcc_assert ((NOTE_P (last_scheduled_insn)
6582 || DEBUG_INSN_P (last_scheduled_insn))
6583 && BLOCK_FOR_INSN (last_scheduled_insn) == *target_bb);
6584
6585 /* Initialize INSN_QUEUE. Q_SIZE is the total number of insns in the
6586 queue. */
6587 q_ptr = 0;
6588 q_size = 0;
6589
6590 insn_queue = XALLOCAVEC (rtx_insn_list *, max_insn_queue_index + 1);
6591 memset (insn_queue, 0, (max_insn_queue_index + 1) * sizeof (rtx));
6592
6593 /* Start just before the beginning of time. */
6594 clock_var = -1;
6595
6596 /* We need queue and ready lists and clock_var be initialized
6597 in try_ready () (which is called through init_ready_list ()). */
6598 (*current_sched_info->init_ready_list) ();
6599
6600 if (sched_pressure)
6601 sched_pressure_start_bb (*target_bb);
6602
6603 /* The algorithm is O(n^2) in the number of ready insns at any given
6604 time in the worst case. Before reload we are more likely to have
6605 big lists so truncate them to a reasonable size. */
6606 if (!reload_completed
6607 && ready.n_ready - ready.n_debug > MAX_SCHED_READY_INSNS)
6608 {
6609 ready_sort_debug (&ready);
6610 ready_sort_real (&ready);
6611
6612 /* Find first free-standing insn past MAX_SCHED_READY_INSNS.
6613 If there are debug insns, we know they're first. */
6614 for (i = MAX_SCHED_READY_INSNS + ready.n_debug; i < ready.n_ready; i++)
6615 if (!SCHED_GROUP_P (ready_element (&ready, i)))
6616 break;
6617
6618 if (sched_verbose >= 2)
6619 {
6620 fprintf (sched_dump,
6621 ";;\t\tReady list on entry: %d insns: ", ready.n_ready);
6622 debug_ready_list (&ready);
6623 fprintf (sched_dump,
6624 ";;\t\t before reload => truncated to %d insns\n", i);
6625 }
6626
6627 /* Delay all insns past it for 1 cycle. If debug counter is
6628 activated make an exception for the insn right after
6629 nonscheduled_insns_begin. */
6630 {
6631 rtx_insn *skip_insn;
6632
6633 if (dbg_cnt (sched_insn) == false)
6634 skip_insn = first_nonscheduled_insn ();
6635 else
6636 skip_insn = NULL;
6637
6638 while (i < ready.n_ready)
6639 {
6640 rtx_insn *insn;
6641
6642 insn = ready_remove (&ready, i);
6643
6644 if (insn != skip_insn)
6645 queue_insn (insn, 1, "list truncated");
6646 }
6647 if (skip_insn)
6648 ready_add (&ready, skip_insn, true);
6649 }
6650 }
6651
6652 /* Now we can restore basic block notes and maintain precise cfg. */
6653 restore_bb_notes (*target_bb);
6654
6655 last_clock_var = -1;
6656
6657 advance = 0;
6658
6659 gcc_assert (scheduled_insns.length () == 0);
6660 sort_p = TRUE;
6661 must_backtrack = false;
6662 modulo_insns_scheduled = 0;
6663
6664 ls.modulo_epilogue = false;
6665 ls.first_cycle_insn_p = true;
6666
6667 /* Loop until all the insns in BB are scheduled. */
6668 while ((*current_sched_info->schedule_more_p) ())
6669 {
6670 perform_replacements_new_cycle ();
6671 do
6672 {
6673 start_clock_var = clock_var;
6674
6675 clock_var++;
6676
6677 advance_one_cycle ();
6678
6679 /* Add to the ready list all pending insns that can be issued now.
6680 If there are no ready insns, increment clock until one
6681 is ready and add all pending insns at that point to the ready
6682 list. */
6683 queue_to_ready (&ready);
6684
6685 gcc_assert (ready.n_ready);
6686
6687 if (sched_verbose >= 2)
6688 {
6689 fprintf (sched_dump, ";;\t\tReady list after queue_to_ready:");
6690 debug_ready_list (&ready);
6691 }
6692 advance -= clock_var - start_clock_var;
6693 }
6694 while (advance > 0);
6695
6696 if (ls.modulo_epilogue)
6697 {
6698 int stage = clock_var / modulo_ii;
6699 if (stage > modulo_last_stage * 2 + 2)
6700 {
6701 if (sched_verbose >= 2)
6702 fprintf (sched_dump,
6703 ";;\t\tmodulo scheduled succeeded at II %d\n",
6704 modulo_ii);
6705 success = true;
6706 goto end_schedule;
6707 }
6708 }
6709 else if (modulo_ii > 0)
6710 {
6711 int stage = clock_var / modulo_ii;
6712 if (stage > modulo_max_stages)
6713 {
6714 if (sched_verbose >= 2)
6715 fprintf (sched_dump,
6716 ";;\t\tfailing schedule due to excessive stages\n");
6717 goto end_schedule;
6718 }
6719 if (modulo_n_insns == modulo_insns_scheduled
6720 && stage > modulo_last_stage)
6721 {
6722 if (sched_verbose >= 2)
6723 fprintf (sched_dump,
6724 ";;\t\tfound kernel after %d stages, II %d\n",
6725 stage, modulo_ii);
6726 ls.modulo_epilogue = true;
6727 }
6728 }
6729
6730 prune_ready_list (temp_state, true, false, ls.modulo_epilogue);
6731 if (ready.n_ready == 0)
6732 continue;
6733 if (must_backtrack)
6734 goto do_backtrack;
6735
6736 ls.shadows_only_p = false;
6737 cycle_issued_insns = 0;
6738 ls.can_issue_more = issue_rate;
6739 for (;;)
6740 {
6741 rtx_insn *insn;
6742 int cost;
6743 bool asm_p;
6744
6745 if (sort_p && ready.n_ready > 0)
6746 {
6747 /* Sort the ready list based on priority. This must be
6748 done every iteration through the loop, as schedule_insn
6749 may have readied additional insns that will not be
6750 sorted correctly. */
6751 ready_sort (&ready);
6752
6753 if (sched_verbose >= 2)
6754 {
6755 fprintf (sched_dump,
6756 ";;\t\tReady list after ready_sort: ");
6757 debug_ready_list (&ready);
6758 }
6759 }
6760
6761 /* We don't want md sched reorder to even see debug isns, so put
6762 them out right away. */
6763 if (ready.n_ready && DEBUG_INSN_P (ready_element (&ready, 0))
6764 && (*current_sched_info->schedule_more_p) ())
6765 {
6766 while (ready.n_ready && DEBUG_INSN_P (ready_element (&ready, 0)))
6767 {
6768 rtx_insn *insn = ready_remove_first (&ready);
6769 gcc_assert (DEBUG_INSN_P (insn));
6770 (*current_sched_info->begin_schedule_ready) (insn);
6771 scheduled_insns.safe_push (insn);
6772 last_scheduled_insn = insn;
6773 advance = schedule_insn (insn);
6774 gcc_assert (advance == 0);
6775 if (ready.n_ready > 0)
6776 ready_sort (&ready);
6777 }
6778 }
6779
6780 if (ls.first_cycle_insn_p && !ready.n_ready)
6781 break;
6782
6783 resume_after_backtrack:
6784 /* Allow the target to reorder the list, typically for
6785 better instruction bundling. */
6786 if (sort_p
6787 && (ready.n_ready == 0
6788 || !SCHED_GROUP_P (ready_element (&ready, 0))))
6789 {
6790 if (ls.first_cycle_insn_p && targetm.sched.reorder)
6791 ls.can_issue_more
6792 = targetm.sched.reorder (sched_dump, sched_verbose,
6793 ready_lastpos (&ready),
6794 &ready.n_ready, clock_var);
6795 else if (!ls.first_cycle_insn_p && targetm.sched.reorder2)
6796 ls.can_issue_more
6797 = targetm.sched.reorder2 (sched_dump, sched_verbose,
6798 ready.n_ready
6799 ? ready_lastpos (&ready) : NULL,
6800 &ready.n_ready, clock_var);
6801 }
6802
6803 restart_choose_ready:
6804 if (sched_verbose >= 2)
6805 {
6806 fprintf (sched_dump, ";;\tReady list (t = %3d): ",
6807 clock_var);
6808 debug_ready_list (&ready);
6809 if (sched_pressure == SCHED_PRESSURE_WEIGHTED)
6810 print_curr_reg_pressure ();
6811 }
6812
6813 if (ready.n_ready == 0
6814 && ls.can_issue_more
6815 && reload_completed)
6816 {
6817 /* Allow scheduling insns directly from the queue in case
6818 there's nothing better to do (ready list is empty) but
6819 there are still vacant dispatch slots in the current cycle. */
6820 if (sched_verbose >= 6)
6821 fprintf (sched_dump,";;\t\tSecond chance\n");
6822 memcpy (temp_state, curr_state, dfa_state_size);
6823 if (early_queue_to_ready (temp_state, &ready))
6824 ready_sort (&ready);
6825 }
6826
6827 if (ready.n_ready == 0
6828 || !ls.can_issue_more
6829 || state_dead_lock_p (curr_state)
6830 || !(*current_sched_info->schedule_more_p) ())
6831 break;
6832
6833 /* Select and remove the insn from the ready list. */
6834 if (sort_p)
6835 {
6836 int res;
6837
6838 insn = NULL;
6839 res = choose_ready (&ready, ls.first_cycle_insn_p, &insn);
6840
6841 if (res < 0)
6842 /* Finish cycle. */
6843 break;
6844 if (res > 0)
6845 goto restart_choose_ready;
6846
6847 gcc_assert (insn != NULL_RTX);
6848 }
6849 else
6850 insn = ready_remove_first (&ready);
6851
6852 if (sched_pressure != SCHED_PRESSURE_NONE
6853 && INSN_TICK (insn) > clock_var)
6854 {
6855 ready_add (&ready, insn, true);
6856 advance = 1;
6857 break;
6858 }
6859
6860 if (targetm.sched.dfa_new_cycle
6861 && targetm.sched.dfa_new_cycle (sched_dump, sched_verbose,
6862 insn, last_clock_var,
6863 clock_var, &sort_p))
6864 /* SORT_P is used by the target to override sorting
6865 of the ready list. This is needed when the target
6866 has modified its internal structures expecting that
6867 the insn will be issued next. As we need the insn
6868 to have the highest priority (so it will be returned by
6869 the ready_remove_first call above), we invoke
6870 ready_add (&ready, insn, true).
6871 But, still, there is one issue: INSN can be later
6872 discarded by scheduler's front end through
6873 current_sched_info->can_schedule_ready_p, hence, won't
6874 be issued next. */
6875 {
6876 ready_add (&ready, insn, true);
6877 break;
6878 }
6879
6880 sort_p = TRUE;
6881
6882 if (current_sched_info->can_schedule_ready_p
6883 && ! (*current_sched_info->can_schedule_ready_p) (insn))
6884 /* We normally get here only if we don't want to move
6885 insn from the split block. */
6886 {
6887 TODO_SPEC (insn) = DEP_POSTPONED;
6888 goto restart_choose_ready;
6889 }
6890
6891 if (delay_htab)
6892 {
6893 /* If this insn is the first part of a delay-slot pair, record a
6894 backtrack point. */
6895 struct delay_pair *delay_entry;
6896 delay_entry
6897 = delay_htab->find_with_hash (insn, htab_hash_pointer (insn));
6898 if (delay_entry)
6899 {
6900 save_backtrack_point (delay_entry, ls);
6901 if (sched_verbose >= 2)
6902 fprintf (sched_dump, ";;\t\tsaving backtrack point\n");
6903 }
6904 }
6905
6906 /* DECISION is made. */
6907
6908 if (modulo_ii > 0 && INSN_UID (insn) < modulo_iter0_max_uid)
6909 {
6910 modulo_insns_scheduled++;
6911 modulo_last_stage = clock_var / modulo_ii;
6912 }
6913 if (TODO_SPEC (insn) & SPECULATIVE)
6914 generate_recovery_code (insn);
6915
6916 if (targetm.sched.dispatch (NULL, IS_DISPATCH_ON))
6917 targetm.sched.dispatch_do (insn, ADD_TO_DISPATCH_WINDOW);
6918
6919 /* Update counters, etc in the scheduler's front end. */
6920 (*current_sched_info->begin_schedule_ready) (insn);
6921 scheduled_insns.safe_push (insn);
6922 gcc_assert (NONDEBUG_INSN_P (insn));
6923 last_nondebug_scheduled_insn = last_scheduled_insn = insn;
6924
6925 if (recog_memoized (insn) >= 0)
6926 {
6927 memcpy (temp_state, curr_state, dfa_state_size);
6928 cost = state_transition (curr_state, insn);
6929 if (sched_pressure != SCHED_PRESSURE_WEIGHTED && !sched_fusion)
6930 gcc_assert (cost < 0);
6931 if (memcmp (temp_state, curr_state, dfa_state_size) != 0)
6932 cycle_issued_insns++;
6933 asm_p = false;
6934 }
6935 else
6936 asm_p = (GET_CODE (PATTERN (insn)) == ASM_INPUT
6937 || asm_noperands (PATTERN (insn)) >= 0);
6938
6939 if (targetm.sched.variable_issue)
6940 ls.can_issue_more =
6941 targetm.sched.variable_issue (sched_dump, sched_verbose,
6942 insn, ls.can_issue_more);
6943 /* A naked CLOBBER or USE generates no instruction, so do
6944 not count them against the issue rate. */
6945 else if (GET_CODE (PATTERN (insn)) != USE
6946 && GET_CODE (PATTERN (insn)) != CLOBBER)
6947 ls.can_issue_more--;
6948 advance = schedule_insn (insn);
6949
6950 if (SHADOW_P (insn))
6951 ls.shadows_only_p = true;
6952
6953 /* After issuing an asm insn we should start a new cycle. */
6954 if (advance == 0 && asm_p)
6955 advance = 1;
6956
6957 if (must_backtrack)
6958 break;
6959
6960 if (advance != 0)
6961 break;
6962
6963 ls.first_cycle_insn_p = false;
6964 if (ready.n_ready > 0)
6965 prune_ready_list (temp_state, false, ls.shadows_only_p,
6966 ls.modulo_epilogue);
6967 }
6968
6969 do_backtrack:
6970 if (!must_backtrack)
6971 for (i = 0; i < ready.n_ready; i++)
6972 {
6973 rtx_insn *insn = ready_element (&ready, i);
6974 if (INSN_EXACT_TICK (insn) == clock_var)
6975 {
6976 must_backtrack = true;
6977 clock_var++;
6978 break;
6979 }
6980 }
6981 if (must_backtrack && modulo_ii > 0)
6982 {
6983 if (modulo_backtracks_left == 0)
6984 goto end_schedule;
6985 modulo_backtracks_left--;
6986 }
6987 while (must_backtrack)
6988 {
6989 struct haifa_saved_data *failed;
6990 rtx_insn *failed_insn;
6991
6992 must_backtrack = false;
6993 failed = verify_shadows ();
6994 gcc_assert (failed);
6995
6996 failed_insn = failed->delay_pair->i1;
6997 /* Clear these queues. */
6998 perform_replacements_new_cycle ();
6999 toggle_cancelled_flags (false);
7000 unschedule_insns_until (failed_insn);
7001 while (failed != backtrack_queue)
7002 free_topmost_backtrack_point (true);
7003 restore_last_backtrack_point (&ls);
7004 if (sched_verbose >= 2)
7005 fprintf (sched_dump, ";;\t\trewind to cycle %d\n", clock_var);
7006 /* Delay by at least a cycle. This could cause additional
7007 backtracking. */
7008 queue_insn (failed_insn, 1, "backtracked");
7009 advance = 0;
7010 if (must_backtrack)
7011 continue;
7012 if (ready.n_ready > 0)
7013 goto resume_after_backtrack;
7014 else
7015 {
7016 if (clock_var == 0 && ls.first_cycle_insn_p)
7017 goto end_schedule;
7018 advance = 1;
7019 break;
7020 }
7021 }
7022 ls.first_cycle_insn_p = true;
7023 }
7024 if (ls.modulo_epilogue)
7025 success = true;
7026 end_schedule:
7027 if (!ls.first_cycle_insn_p || advance)
7028 advance_one_cycle ();
7029 perform_replacements_new_cycle ();
7030 if (modulo_ii > 0)
7031 {
7032 /* Once again, debug insn suckiness: they can be on the ready list
7033 even if they have unresolved dependencies. To make our view
7034 of the world consistent, remove such "ready" insns. */
7035 restart_debug_insn_loop:
7036 for (i = ready.n_ready - 1; i >= 0; i--)
7037 {
7038 rtx_insn *x;
7039
7040 x = ready_element (&ready, i);
7041 if (DEPS_LIST_FIRST (INSN_HARD_BACK_DEPS (x)) != NULL
7042 || DEPS_LIST_FIRST (INSN_SPEC_BACK_DEPS (x)) != NULL)
7043 {
7044 ready_remove (&ready, i);
7045 goto restart_debug_insn_loop;
7046 }
7047 }
7048 for (i = ready.n_ready - 1; i >= 0; i--)
7049 {
7050 rtx_insn *x;
7051
7052 x = ready_element (&ready, i);
7053 resolve_dependencies (x);
7054 }
7055 for (i = 0; i <= max_insn_queue_index; i++)
7056 {
7057 rtx_insn_list *link;
7058 while ((link = insn_queue[i]) != NULL)
7059 {
7060 rtx_insn *x = link->insn ();
7061 insn_queue[i] = link->next ();
7062 QUEUE_INDEX (x) = QUEUE_NOWHERE;
7063 free_INSN_LIST_node (link);
7064 resolve_dependencies (x);
7065 }
7066 }
7067 }
7068
7069 if (!success)
7070 undo_all_replacements ();
7071
7072 /* Debug info. */
7073 if (sched_verbose)
7074 {
7075 fprintf (sched_dump, ";;\tReady list (final): ");
7076 debug_ready_list (&ready);
7077 }
7078
7079 if (modulo_ii == 0 && current_sched_info->queue_must_finish_empty)
7080 /* Sanity check -- queue must be empty now. Meaningless if region has
7081 multiple bbs. */
7082 gcc_assert (!q_size && !ready.n_ready && !ready.n_debug);
7083 else if (modulo_ii == 0)
7084 {
7085 /* We must maintain QUEUE_INDEX between blocks in region. */
7086 for (i = ready.n_ready - 1; i >= 0; i--)
7087 {
7088 rtx_insn *x;
7089
7090 x = ready_element (&ready, i);
7091 QUEUE_INDEX (x) = QUEUE_NOWHERE;
7092 TODO_SPEC (x) = HARD_DEP;
7093 }
7094
7095 if (q_size)
7096 for (i = 0; i <= max_insn_queue_index; i++)
7097 {
7098 rtx_insn_list *link;
7099 for (link = insn_queue[i]; link; link = link->next ())
7100 {
7101 rtx_insn *x;
7102
7103 x = link->insn ();
7104 QUEUE_INDEX (x) = QUEUE_NOWHERE;
7105 TODO_SPEC (x) = HARD_DEP;
7106 }
7107 free_INSN_LIST_list (&insn_queue[i]);
7108 }
7109 }
7110
7111 if (sched_pressure == SCHED_PRESSURE_MODEL)
7112 model_end_schedule ();
7113
7114 if (success)
7115 {
7116 commit_schedule (prev_head, tail, target_bb);
7117 if (sched_verbose)
7118 fprintf (sched_dump, ";; total time = %d\n", clock_var);
7119 }
7120 else
7121 last_scheduled_insn = tail;
7122
7123 scheduled_insns.truncate (0);
7124
7125 if (!current_sched_info->queue_must_finish_empty
7126 || haifa_recovery_bb_recently_added_p)
7127 {
7128 /* INSN_TICK (minimum clock tick at which the insn becomes
7129 ready) may be not correct for the insn in the subsequent
7130 blocks of the region. We should use a correct value of
7131 `clock_var' or modify INSN_TICK. It is better to keep
7132 clock_var value equal to 0 at the start of a basic block.
7133 Therefore we modify INSN_TICK here. */
7134 fix_inter_tick (NEXT_INSN (prev_head), last_scheduled_insn);
7135 }
7136
7137 if (targetm.sched.finish)
7138 {
7139 targetm.sched.finish (sched_dump, sched_verbose);
7140 /* Target might have added some instructions to the scheduled block
7141 in its md_finish () hook. These new insns don't have any data
7142 initialized and to identify them we extend h_i_d so that they'll
7143 get zero luids. */
7144 sched_extend_luids ();
7145 }
7146
7147 /* Update head/tail boundaries. */
7148 head = NEXT_INSN (prev_head);
7149 tail = last_scheduled_insn;
7150
7151 if (sched_verbose)
7152 {
7153 fprintf (sched_dump, ";; new head = %d\n;; new tail = %d\n",
7154 INSN_UID (head), INSN_UID (tail));
7155
7156 if (sched_verbose >= 2)
7157 {
7158 dump_insn_stream (head, tail);
7159 print_rank_for_schedule_stats (";; TOTAL ", &rank_for_schedule_stats,
7160 NULL);
7161 }
7162
7163 fprintf (sched_dump, "\n");
7164 }
7165
7166 head = restore_other_notes (head, NULL);
7167
7168 current_sched_info->head = head;
7169 current_sched_info->tail = tail;
7170
7171 free_backtrack_queue ();
7172
7173 return success;
7174 }
7175 \f
7176 /* Set_priorities: compute priority of each insn in the block. */
7177
7178 int
7179 set_priorities (rtx_insn *head, rtx_insn *tail)
7180 {
7181 rtx_insn *insn;
7182 int n_insn;
7183 int sched_max_insns_priority =
7184 current_sched_info->sched_max_insns_priority;
7185 rtx_insn *prev_head;
7186
7187 if (head == tail && ! INSN_P (head))
7188 gcc_unreachable ();
7189
7190 n_insn = 0;
7191
7192 prev_head = PREV_INSN (head);
7193 for (insn = tail; insn != prev_head; insn = PREV_INSN (insn))
7194 {
7195 if (!INSN_P (insn))
7196 continue;
7197
7198 n_insn++;
7199 (void) priority (insn);
7200
7201 gcc_assert (INSN_PRIORITY_KNOWN (insn));
7202
7203 sched_max_insns_priority = MAX (sched_max_insns_priority,
7204 INSN_PRIORITY (insn));
7205 }
7206
7207 current_sched_info->sched_max_insns_priority = sched_max_insns_priority;
7208
7209 return n_insn;
7210 }
7211
7212 /* Set sched_dump and sched_verbose for the desired debugging output. */
7213 void
7214 setup_sched_dump (void)
7215 {
7216 sched_verbose = sched_verbose_param;
7217 sched_dump = dump_file;
7218 if (!dump_file)
7219 sched_verbose = 0;
7220 }
7221
7222 /* Allocate data for register pressure sensitive scheduling. */
7223 static void
7224 alloc_global_sched_pressure_data (void)
7225 {
7226 if (sched_pressure != SCHED_PRESSURE_NONE)
7227 {
7228 int i, max_regno = max_reg_num ();
7229
7230 if (sched_dump != NULL)
7231 /* We need info about pseudos for rtl dumps about pseudo
7232 classes and costs. */
7233 regstat_init_n_sets_and_refs ();
7234 ira_set_pseudo_classes (true, sched_verbose ? sched_dump : NULL);
7235 sched_regno_pressure_class
7236 = (enum reg_class *) xmalloc (max_regno * sizeof (enum reg_class));
7237 for (i = 0; i < max_regno; i++)
7238 sched_regno_pressure_class[i]
7239 = (i < FIRST_PSEUDO_REGISTER
7240 ? ira_pressure_class_translate[REGNO_REG_CLASS (i)]
7241 : ira_pressure_class_translate[reg_allocno_class (i)]);
7242 curr_reg_live = BITMAP_ALLOC (NULL);
7243 if (sched_pressure == SCHED_PRESSURE_WEIGHTED)
7244 {
7245 saved_reg_live = BITMAP_ALLOC (NULL);
7246 region_ref_regs = BITMAP_ALLOC (NULL);
7247 }
7248 if (sched_pressure == SCHED_PRESSURE_MODEL)
7249 tmp_bitmap = BITMAP_ALLOC (NULL);
7250
7251 /* Calculate number of CALL_SAVED_REGS and FIXED_REGS in register classes
7252 that we calculate register pressure for. */
7253 for (int c = 0; c < ira_pressure_classes_num; ++c)
7254 {
7255 enum reg_class cl = ira_pressure_classes[c];
7256
7257 call_saved_regs_num[cl] = 0;
7258 fixed_regs_num[cl] = 0;
7259
7260 for (int i = 0; i < ira_class_hard_regs_num[cl]; ++i)
7261 if (!call_used_regs[ira_class_hard_regs[cl][i]])
7262 ++call_saved_regs_num[cl];
7263 else if (fixed_regs[ira_class_hard_regs[cl][i]])
7264 ++fixed_regs_num[cl];
7265 }
7266 }
7267 }
7268
7269 /* Free data for register pressure sensitive scheduling. Also called
7270 from schedule_region when stopping sched-pressure early. */
7271 void
7272 free_global_sched_pressure_data (void)
7273 {
7274 if (sched_pressure != SCHED_PRESSURE_NONE)
7275 {
7276 if (regstat_n_sets_and_refs != NULL)
7277 regstat_free_n_sets_and_refs ();
7278 if (sched_pressure == SCHED_PRESSURE_WEIGHTED)
7279 {
7280 BITMAP_FREE (region_ref_regs);
7281 BITMAP_FREE (saved_reg_live);
7282 }
7283 if (sched_pressure == SCHED_PRESSURE_MODEL)
7284 BITMAP_FREE (tmp_bitmap);
7285 BITMAP_FREE (curr_reg_live);
7286 free (sched_regno_pressure_class);
7287 }
7288 }
7289
7290 /* Initialize some global state for the scheduler. This function works
7291 with the common data shared between all the schedulers. It is called
7292 from the scheduler specific initialization routine. */
7293
7294 void
7295 sched_init (void)
7296 {
7297 /* Disable speculative loads in their presence if cc0 defined. */
7298 if (HAVE_cc0)
7299 flag_schedule_speculative_load = 0;
7300
7301 if (targetm.sched.dispatch (NULL, IS_DISPATCH_ON))
7302 targetm.sched.dispatch_do (NULL, DISPATCH_INIT);
7303
7304 if (live_range_shrinkage_p)
7305 sched_pressure = SCHED_PRESSURE_WEIGHTED;
7306 else if (flag_sched_pressure
7307 && !reload_completed
7308 && common_sched_info->sched_pass_id == SCHED_RGN_PASS)
7309 sched_pressure = ((enum sched_pressure_algorithm)
7310 PARAM_VALUE (PARAM_SCHED_PRESSURE_ALGORITHM));
7311 else
7312 sched_pressure = SCHED_PRESSURE_NONE;
7313
7314 if (sched_pressure != SCHED_PRESSURE_NONE)
7315 ira_setup_eliminable_regset ();
7316
7317 /* Initialize SPEC_INFO. */
7318 if (targetm.sched.set_sched_flags)
7319 {
7320 spec_info = &spec_info_var;
7321 targetm.sched.set_sched_flags (spec_info);
7322
7323 if (spec_info->mask != 0)
7324 {
7325 spec_info->data_weakness_cutoff =
7326 (PARAM_VALUE (PARAM_SCHED_SPEC_PROB_CUTOFF) * MAX_DEP_WEAK) / 100;
7327 spec_info->control_weakness_cutoff =
7328 (PARAM_VALUE (PARAM_SCHED_SPEC_PROB_CUTOFF)
7329 * REG_BR_PROB_BASE) / 100;
7330 }
7331 else
7332 /* So we won't read anything accidentally. */
7333 spec_info = NULL;
7334
7335 }
7336 else
7337 /* So we won't read anything accidentally. */
7338 spec_info = 0;
7339
7340 /* Initialize issue_rate. */
7341 if (targetm.sched.issue_rate)
7342 issue_rate = targetm.sched.issue_rate ();
7343 else
7344 issue_rate = 1;
7345
7346 if (targetm.sched.first_cycle_multipass_dfa_lookahead
7347 /* Don't use max_issue with reg_pressure scheduling. Multipass
7348 scheduling and reg_pressure scheduling undo each other's decisions. */
7349 && sched_pressure == SCHED_PRESSURE_NONE)
7350 dfa_lookahead = targetm.sched.first_cycle_multipass_dfa_lookahead ();
7351 else
7352 dfa_lookahead = 0;
7353
7354 /* Set to "0" so that we recalculate. */
7355 max_lookahead_tries = 0;
7356
7357 if (targetm.sched.init_dfa_pre_cycle_insn)
7358 targetm.sched.init_dfa_pre_cycle_insn ();
7359
7360 if (targetm.sched.init_dfa_post_cycle_insn)
7361 targetm.sched.init_dfa_post_cycle_insn ();
7362
7363 dfa_start ();
7364 dfa_state_size = state_size ();
7365
7366 init_alias_analysis ();
7367
7368 if (!sched_no_dce)
7369 df_set_flags (DF_LR_RUN_DCE);
7370 df_note_add_problem ();
7371
7372 /* More problems needed for interloop dep calculation in SMS. */
7373 if (common_sched_info->sched_pass_id == SCHED_SMS_PASS)
7374 {
7375 df_rd_add_problem ();
7376 df_chain_add_problem (DF_DU_CHAIN + DF_UD_CHAIN);
7377 }
7378
7379 df_analyze ();
7380
7381 /* Do not run DCE after reload, as this can kill nops inserted
7382 by bundling. */
7383 if (reload_completed)
7384 df_clear_flags (DF_LR_RUN_DCE);
7385
7386 regstat_compute_calls_crossed ();
7387
7388 if (targetm.sched.init_global)
7389 targetm.sched.init_global (sched_dump, sched_verbose, get_max_uid () + 1);
7390
7391 alloc_global_sched_pressure_data ();
7392
7393 curr_state = xmalloc (dfa_state_size);
7394 }
7395
7396 static void haifa_init_only_bb (basic_block, basic_block);
7397
7398 /* Initialize data structures specific to the Haifa scheduler. */
7399 void
7400 haifa_sched_init (void)
7401 {
7402 setup_sched_dump ();
7403 sched_init ();
7404
7405 scheduled_insns.create (0);
7406
7407 if (spec_info != NULL)
7408 {
7409 sched_deps_info->use_deps_list = 1;
7410 sched_deps_info->generate_spec_deps = 1;
7411 }
7412
7413 /* Initialize luids, dependency caches, target and h_i_d for the
7414 whole function. */
7415 {
7416 sched_init_bbs ();
7417
7418 auto_vec<basic_block> bbs (n_basic_blocks_for_fn (cfun));
7419 basic_block bb;
7420 FOR_EACH_BB_FN (bb, cfun)
7421 bbs.quick_push (bb);
7422 sched_init_luids (bbs);
7423 sched_deps_init (true);
7424 sched_extend_target ();
7425 haifa_init_h_i_d (bbs);
7426 }
7427
7428 sched_init_only_bb = haifa_init_only_bb;
7429 sched_split_block = sched_split_block_1;
7430 sched_create_empty_bb = sched_create_empty_bb_1;
7431 haifa_recovery_bb_ever_added_p = false;
7432
7433 nr_begin_data = nr_begin_control = nr_be_in_data = nr_be_in_control = 0;
7434 before_recovery = 0;
7435 after_recovery = 0;
7436
7437 modulo_ii = 0;
7438 }
7439
7440 /* Finish work with the data specific to the Haifa scheduler. */
7441 void
7442 haifa_sched_finish (void)
7443 {
7444 sched_create_empty_bb = NULL;
7445 sched_split_block = NULL;
7446 sched_init_only_bb = NULL;
7447
7448 if (spec_info && spec_info->dump)
7449 {
7450 char c = reload_completed ? 'a' : 'b';
7451
7452 fprintf (spec_info->dump,
7453 ";; %s:\n", current_function_name ());
7454
7455 fprintf (spec_info->dump,
7456 ";; Procedure %cr-begin-data-spec motions == %d\n",
7457 c, nr_begin_data);
7458 fprintf (spec_info->dump,
7459 ";; Procedure %cr-be-in-data-spec motions == %d\n",
7460 c, nr_be_in_data);
7461 fprintf (spec_info->dump,
7462 ";; Procedure %cr-begin-control-spec motions == %d\n",
7463 c, nr_begin_control);
7464 fprintf (spec_info->dump,
7465 ";; Procedure %cr-be-in-control-spec motions == %d\n",
7466 c, nr_be_in_control);
7467 }
7468
7469 scheduled_insns.release ();
7470
7471 /* Finalize h_i_d, dependency caches, and luids for the whole
7472 function. Target will be finalized in md_global_finish (). */
7473 sched_deps_finish ();
7474 sched_finish_luids ();
7475 current_sched_info = NULL;
7476 insn_queue = NULL;
7477 sched_finish ();
7478 }
7479
7480 /* Free global data used during insn scheduling. This function works with
7481 the common data shared between the schedulers. */
7482
7483 void
7484 sched_finish (void)
7485 {
7486 haifa_finish_h_i_d ();
7487 free_global_sched_pressure_data ();
7488 free (curr_state);
7489
7490 if (targetm.sched.finish_global)
7491 targetm.sched.finish_global (sched_dump, sched_verbose);
7492
7493 end_alias_analysis ();
7494
7495 regstat_free_calls_crossed ();
7496
7497 dfa_finish ();
7498 }
7499
7500 /* Free all delay_pair structures that were recorded. */
7501 void
7502 free_delay_pairs (void)
7503 {
7504 if (delay_htab)
7505 {
7506 delay_htab->empty ();
7507 delay_htab_i2->empty ();
7508 }
7509 }
7510
7511 /* Fix INSN_TICKs of the instructions in the current block as well as
7512 INSN_TICKs of their dependents.
7513 HEAD and TAIL are the begin and the end of the current scheduled block. */
7514 static void
7515 fix_inter_tick (rtx_insn *head, rtx_insn *tail)
7516 {
7517 /* Set of instructions with corrected INSN_TICK. */
7518 auto_bitmap processed;
7519 /* ??? It is doubtful if we should assume that cycle advance happens on
7520 basic block boundaries. Basically insns that are unconditionally ready
7521 on the start of the block are more preferable then those which have
7522 a one cycle dependency over insn from the previous block. */
7523 int next_clock = clock_var + 1;
7524
7525 /* Iterates over scheduled instructions and fix their INSN_TICKs and
7526 INSN_TICKs of dependent instructions, so that INSN_TICKs are consistent
7527 across different blocks. */
7528 for (tail = NEXT_INSN (tail); head != tail; head = NEXT_INSN (head))
7529 {
7530 if (INSN_P (head))
7531 {
7532 int tick;
7533 sd_iterator_def sd_it;
7534 dep_t dep;
7535
7536 tick = INSN_TICK (head);
7537 gcc_assert (tick >= MIN_TICK);
7538
7539 /* Fix INSN_TICK of instruction from just scheduled block. */
7540 if (bitmap_set_bit (processed, INSN_LUID (head)))
7541 {
7542 tick -= next_clock;
7543
7544 if (tick < MIN_TICK)
7545 tick = MIN_TICK;
7546
7547 INSN_TICK (head) = tick;
7548 }
7549
7550 if (DEBUG_INSN_P (head))
7551 continue;
7552
7553 FOR_EACH_DEP (head, SD_LIST_RES_FORW, sd_it, dep)
7554 {
7555 rtx_insn *next;
7556
7557 next = DEP_CON (dep);
7558 tick = INSN_TICK (next);
7559
7560 if (tick != INVALID_TICK
7561 /* If NEXT has its INSN_TICK calculated, fix it.
7562 If not - it will be properly calculated from
7563 scratch later in fix_tick_ready. */
7564 && bitmap_set_bit (processed, INSN_LUID (next)))
7565 {
7566 tick -= next_clock;
7567
7568 if (tick < MIN_TICK)
7569 tick = MIN_TICK;
7570
7571 if (tick > INTER_TICK (next))
7572 INTER_TICK (next) = tick;
7573 else
7574 tick = INTER_TICK (next);
7575
7576 INSN_TICK (next) = tick;
7577 }
7578 }
7579 }
7580 }
7581 }
7582
7583 /* Check if NEXT is ready to be added to the ready or queue list.
7584 If "yes", add it to the proper list.
7585 Returns:
7586 -1 - is not ready yet,
7587 0 - added to the ready list,
7588 0 < N - queued for N cycles. */
7589 int
7590 try_ready (rtx_insn *next)
7591 {
7592 ds_t old_ts, new_ts;
7593
7594 old_ts = TODO_SPEC (next);
7595
7596 gcc_assert (!(old_ts & ~(SPECULATIVE | HARD_DEP | DEP_CONTROL | DEP_POSTPONED))
7597 && (old_ts == HARD_DEP
7598 || old_ts == DEP_POSTPONED
7599 || (old_ts & SPECULATIVE)
7600 || old_ts == DEP_CONTROL));
7601
7602 new_ts = recompute_todo_spec (next, false);
7603
7604 if (new_ts & (HARD_DEP | DEP_POSTPONED))
7605 gcc_assert (new_ts == old_ts
7606 && QUEUE_INDEX (next) == QUEUE_NOWHERE);
7607 else if (current_sched_info->new_ready)
7608 new_ts = current_sched_info->new_ready (next, new_ts);
7609
7610 /* * if !(old_ts & SPECULATIVE) (e.g. HARD_DEP or 0), then insn might
7611 have its original pattern or changed (speculative) one. This is due
7612 to changing ebb in region scheduling.
7613 * But if (old_ts & SPECULATIVE), then we are pretty sure that insn
7614 has speculative pattern.
7615
7616 We can't assert (!(new_ts & HARD_DEP) || new_ts == old_ts) here because
7617 control-speculative NEXT could have been discarded by sched-rgn.c
7618 (the same case as when discarded by can_schedule_ready_p ()). */
7619
7620 if ((new_ts & SPECULATIVE)
7621 /* If (old_ts == new_ts), then (old_ts & SPECULATIVE) and we don't
7622 need to change anything. */
7623 && new_ts != old_ts)
7624 {
7625 int res;
7626 rtx new_pat;
7627
7628 gcc_assert ((new_ts & SPECULATIVE) && !(new_ts & ~SPECULATIVE));
7629
7630 res = haifa_speculate_insn (next, new_ts, &new_pat);
7631
7632 switch (res)
7633 {
7634 case -1:
7635 /* It would be nice to change DEP_STATUS of all dependences,
7636 which have ((DEP_STATUS & SPECULATIVE) == new_ts) to HARD_DEP,
7637 so we won't reanalyze anything. */
7638 new_ts = HARD_DEP;
7639 break;
7640
7641 case 0:
7642 /* We follow the rule, that every speculative insn
7643 has non-null ORIG_PAT. */
7644 if (!ORIG_PAT (next))
7645 ORIG_PAT (next) = PATTERN (next);
7646 break;
7647
7648 case 1:
7649 if (!ORIG_PAT (next))
7650 /* If we gonna to overwrite the original pattern of insn,
7651 save it. */
7652 ORIG_PAT (next) = PATTERN (next);
7653
7654 res = haifa_change_pattern (next, new_pat);
7655 gcc_assert (res);
7656 break;
7657
7658 default:
7659 gcc_unreachable ();
7660 }
7661 }
7662
7663 /* We need to restore pattern only if (new_ts == 0), because otherwise it is
7664 either correct (new_ts & SPECULATIVE),
7665 or we simply don't care (new_ts & HARD_DEP). */
7666
7667 gcc_assert (!ORIG_PAT (next)
7668 || !IS_SPECULATION_BRANCHY_CHECK_P (next));
7669
7670 TODO_SPEC (next) = new_ts;
7671
7672 if (new_ts & (HARD_DEP | DEP_POSTPONED))
7673 {
7674 /* We can't assert (QUEUE_INDEX (next) == QUEUE_NOWHERE) here because
7675 control-speculative NEXT could have been discarded by sched-rgn.c
7676 (the same case as when discarded by can_schedule_ready_p ()). */
7677 /*gcc_assert (QUEUE_INDEX (next) == QUEUE_NOWHERE);*/
7678
7679 change_queue_index (next, QUEUE_NOWHERE);
7680
7681 return -1;
7682 }
7683 else if (!(new_ts & BEGIN_SPEC)
7684 && ORIG_PAT (next) && PREDICATED_PAT (next) == NULL_RTX
7685 && !IS_SPECULATION_CHECK_P (next))
7686 /* We should change pattern of every previously speculative
7687 instruction - and we determine if NEXT was speculative by using
7688 ORIG_PAT field. Except one case - speculation checks have ORIG_PAT
7689 pat too, so skip them. */
7690 {
7691 bool success = haifa_change_pattern (next, ORIG_PAT (next));
7692 gcc_assert (success);
7693 ORIG_PAT (next) = 0;
7694 }
7695
7696 if (sched_verbose >= 2)
7697 {
7698 fprintf (sched_dump, ";;\t\tdependencies resolved: insn %s",
7699 (*current_sched_info->print_insn) (next, 0));
7700
7701 if (spec_info && spec_info->dump)
7702 {
7703 if (new_ts & BEGIN_DATA)
7704 fprintf (spec_info->dump, "; data-spec;");
7705 if (new_ts & BEGIN_CONTROL)
7706 fprintf (spec_info->dump, "; control-spec;");
7707 if (new_ts & BE_IN_CONTROL)
7708 fprintf (spec_info->dump, "; in-control-spec;");
7709 }
7710 if (TODO_SPEC (next) & DEP_CONTROL)
7711 fprintf (sched_dump, " predicated");
7712 fprintf (sched_dump, "\n");
7713 }
7714
7715 adjust_priority (next);
7716
7717 return fix_tick_ready (next);
7718 }
7719
7720 /* Calculate INSN_TICK of NEXT and add it to either ready or queue list. */
7721 static int
7722 fix_tick_ready (rtx_insn *next)
7723 {
7724 int tick, delay;
7725
7726 if (!DEBUG_INSN_P (next) && !sd_lists_empty_p (next, SD_LIST_RES_BACK))
7727 {
7728 int full_p;
7729 sd_iterator_def sd_it;
7730 dep_t dep;
7731
7732 tick = INSN_TICK (next);
7733 /* if tick is not equal to INVALID_TICK, then update
7734 INSN_TICK of NEXT with the most recent resolved dependence
7735 cost. Otherwise, recalculate from scratch. */
7736 full_p = (tick == INVALID_TICK);
7737
7738 FOR_EACH_DEP (next, SD_LIST_RES_BACK, sd_it, dep)
7739 {
7740 rtx_insn *pro = DEP_PRO (dep);
7741 int tick1;
7742
7743 gcc_assert (INSN_TICK (pro) >= MIN_TICK);
7744
7745 tick1 = INSN_TICK (pro) + dep_cost (dep);
7746 if (tick1 > tick)
7747 tick = tick1;
7748
7749 if (!full_p)
7750 break;
7751 }
7752 }
7753 else
7754 tick = -1;
7755
7756 INSN_TICK (next) = tick;
7757
7758 delay = tick - clock_var;
7759 if (delay <= 0 || sched_pressure != SCHED_PRESSURE_NONE || sched_fusion)
7760 delay = QUEUE_READY;
7761
7762 change_queue_index (next, delay);
7763
7764 return delay;
7765 }
7766
7767 /* Move NEXT to the proper queue list with (DELAY >= 1),
7768 or add it to the ready list (DELAY == QUEUE_READY),
7769 or remove it from ready and queue lists at all (DELAY == QUEUE_NOWHERE). */
7770 static void
7771 change_queue_index (rtx_insn *next, int delay)
7772 {
7773 int i = QUEUE_INDEX (next);
7774
7775 gcc_assert (QUEUE_NOWHERE <= delay && delay <= max_insn_queue_index
7776 && delay != 0);
7777 gcc_assert (i != QUEUE_SCHEDULED);
7778
7779 if ((delay > 0 && NEXT_Q_AFTER (q_ptr, delay) == i)
7780 || (delay < 0 && delay == i))
7781 /* We have nothing to do. */
7782 return;
7783
7784 /* Remove NEXT from wherever it is now. */
7785 if (i == QUEUE_READY)
7786 ready_remove_insn (next);
7787 else if (i >= 0)
7788 queue_remove (next);
7789
7790 /* Add it to the proper place. */
7791 if (delay == QUEUE_READY)
7792 ready_add (readyp, next, false);
7793 else if (delay >= 1)
7794 queue_insn (next, delay, "change queue index");
7795
7796 if (sched_verbose >= 2)
7797 {
7798 fprintf (sched_dump, ";;\t\ttick updated: insn %s",
7799 (*current_sched_info->print_insn) (next, 0));
7800
7801 if (delay == QUEUE_READY)
7802 fprintf (sched_dump, " into ready\n");
7803 else if (delay >= 1)
7804 fprintf (sched_dump, " into queue with cost=%d\n", delay);
7805 else
7806 fprintf (sched_dump, " removed from ready or queue lists\n");
7807 }
7808 }
7809
7810 static int sched_ready_n_insns = -1;
7811
7812 /* Initialize per region data structures. */
7813 void
7814 sched_extend_ready_list (int new_sched_ready_n_insns)
7815 {
7816 int i;
7817
7818 if (sched_ready_n_insns == -1)
7819 /* At the first call we need to initialize one more choice_stack
7820 entry. */
7821 {
7822 i = 0;
7823 sched_ready_n_insns = 0;
7824 scheduled_insns.reserve (new_sched_ready_n_insns);
7825 }
7826 else
7827 i = sched_ready_n_insns + 1;
7828
7829 ready.veclen = new_sched_ready_n_insns + issue_rate;
7830 ready.vec = XRESIZEVEC (rtx_insn *, ready.vec, ready.veclen);
7831
7832 gcc_assert (new_sched_ready_n_insns >= sched_ready_n_insns);
7833
7834 ready_try = (signed char *) xrecalloc (ready_try, new_sched_ready_n_insns,
7835 sched_ready_n_insns,
7836 sizeof (*ready_try));
7837
7838 /* We allocate +1 element to save initial state in the choice_stack[0]
7839 entry. */
7840 choice_stack = XRESIZEVEC (struct choice_entry, choice_stack,
7841 new_sched_ready_n_insns + 1);
7842
7843 for (; i <= new_sched_ready_n_insns; i++)
7844 {
7845 choice_stack[i].state = xmalloc (dfa_state_size);
7846
7847 if (targetm.sched.first_cycle_multipass_init)
7848 targetm.sched.first_cycle_multipass_init (&(choice_stack[i]
7849 .target_data));
7850 }
7851
7852 sched_ready_n_insns = new_sched_ready_n_insns;
7853 }
7854
7855 /* Free per region data structures. */
7856 void
7857 sched_finish_ready_list (void)
7858 {
7859 int i;
7860
7861 free (ready.vec);
7862 ready.vec = NULL;
7863 ready.veclen = 0;
7864
7865 free (ready_try);
7866 ready_try = NULL;
7867
7868 for (i = 0; i <= sched_ready_n_insns; i++)
7869 {
7870 if (targetm.sched.first_cycle_multipass_fini)
7871 targetm.sched.first_cycle_multipass_fini (&(choice_stack[i]
7872 .target_data));
7873
7874 free (choice_stack [i].state);
7875 }
7876 free (choice_stack);
7877 choice_stack = NULL;
7878
7879 sched_ready_n_insns = -1;
7880 }
7881
7882 static int
7883 haifa_luid_for_non_insn (rtx x)
7884 {
7885 gcc_assert (NOTE_P (x) || LABEL_P (x));
7886
7887 return 0;
7888 }
7889
7890 /* Generates recovery code for INSN. */
7891 static void
7892 generate_recovery_code (rtx_insn *insn)
7893 {
7894 if (TODO_SPEC (insn) & BEGIN_SPEC)
7895 begin_speculative_block (insn);
7896
7897 /* Here we have insn with no dependencies to
7898 instructions other then CHECK_SPEC ones. */
7899
7900 if (TODO_SPEC (insn) & BE_IN_SPEC)
7901 add_to_speculative_block (insn);
7902 }
7903
7904 /* Helper function.
7905 Tries to add speculative dependencies of type FS between instructions
7906 in deps_list L and TWIN. */
7907 static void
7908 process_insn_forw_deps_be_in_spec (rtx_insn *insn, rtx_insn *twin, ds_t fs)
7909 {
7910 sd_iterator_def sd_it;
7911 dep_t dep;
7912
7913 FOR_EACH_DEP (insn, SD_LIST_FORW, sd_it, dep)
7914 {
7915 ds_t ds;
7916 rtx_insn *consumer;
7917
7918 consumer = DEP_CON (dep);
7919
7920 ds = DEP_STATUS (dep);
7921
7922 if (/* If we want to create speculative dep. */
7923 fs
7924 /* And we can do that because this is a true dep. */
7925 && (ds & DEP_TYPES) == DEP_TRUE)
7926 {
7927 gcc_assert (!(ds & BE_IN_SPEC));
7928
7929 if (/* If this dep can be overcome with 'begin speculation'. */
7930 ds & BEGIN_SPEC)
7931 /* Then we have a choice: keep the dep 'begin speculative'
7932 or transform it into 'be in speculative'. */
7933 {
7934 if (/* In try_ready we assert that if insn once became ready
7935 it can be removed from the ready (or queue) list only
7936 due to backend decision. Hence we can't let the
7937 probability of the speculative dep to decrease. */
7938 ds_weak (ds) <= ds_weak (fs))
7939 {
7940 ds_t new_ds;
7941
7942 new_ds = (ds & ~BEGIN_SPEC) | fs;
7943
7944 if (/* consumer can 'be in speculative'. */
7945 sched_insn_is_legitimate_for_speculation_p (consumer,
7946 new_ds))
7947 /* Transform it to be in speculative. */
7948 ds = new_ds;
7949 }
7950 }
7951 else
7952 /* Mark the dep as 'be in speculative'. */
7953 ds |= fs;
7954 }
7955
7956 {
7957 dep_def _new_dep, *new_dep = &_new_dep;
7958
7959 init_dep_1 (new_dep, twin, consumer, DEP_TYPE (dep), ds);
7960 sd_add_dep (new_dep, false);
7961 }
7962 }
7963 }
7964
7965 /* Generates recovery code for BEGIN speculative INSN. */
7966 static void
7967 begin_speculative_block (rtx_insn *insn)
7968 {
7969 if (TODO_SPEC (insn) & BEGIN_DATA)
7970 nr_begin_data++;
7971 if (TODO_SPEC (insn) & BEGIN_CONTROL)
7972 nr_begin_control++;
7973
7974 create_check_block_twin (insn, false);
7975
7976 TODO_SPEC (insn) &= ~BEGIN_SPEC;
7977 }
7978
7979 static void haifa_init_insn (rtx_insn *);
7980
7981 /* Generates recovery code for BE_IN speculative INSN. */
7982 static void
7983 add_to_speculative_block (rtx_insn *insn)
7984 {
7985 ds_t ts;
7986 sd_iterator_def sd_it;
7987 dep_t dep;
7988 auto_vec<rtx_insn *, 10> twins;
7989
7990 ts = TODO_SPEC (insn);
7991 gcc_assert (!(ts & ~BE_IN_SPEC));
7992
7993 if (ts & BE_IN_DATA)
7994 nr_be_in_data++;
7995 if (ts & BE_IN_CONTROL)
7996 nr_be_in_control++;
7997
7998 TODO_SPEC (insn) &= ~BE_IN_SPEC;
7999 gcc_assert (!TODO_SPEC (insn));
8000
8001 DONE_SPEC (insn) |= ts;
8002
8003 /* First we convert all simple checks to branchy. */
8004 for (sd_it = sd_iterator_start (insn, SD_LIST_SPEC_BACK);
8005 sd_iterator_cond (&sd_it, &dep);)
8006 {
8007 rtx_insn *check = DEP_PRO (dep);
8008
8009 if (IS_SPECULATION_SIMPLE_CHECK_P (check))
8010 {
8011 create_check_block_twin (check, true);
8012
8013 /* Restart search. */
8014 sd_it = sd_iterator_start (insn, SD_LIST_SPEC_BACK);
8015 }
8016 else
8017 /* Continue search. */
8018 sd_iterator_next (&sd_it);
8019 }
8020
8021 auto_vec<rtx_insn *> priorities_roots;
8022 clear_priorities (insn, &priorities_roots);
8023
8024 while (1)
8025 {
8026 rtx_insn *check, *twin;
8027 basic_block rec;
8028
8029 /* Get the first backward dependency of INSN. */
8030 sd_it = sd_iterator_start (insn, SD_LIST_SPEC_BACK);
8031 if (!sd_iterator_cond (&sd_it, &dep))
8032 /* INSN has no backward dependencies left. */
8033 break;
8034
8035 gcc_assert ((DEP_STATUS (dep) & BEGIN_SPEC) == 0
8036 && (DEP_STATUS (dep) & BE_IN_SPEC) != 0
8037 && (DEP_STATUS (dep) & DEP_TYPES) == DEP_TRUE);
8038
8039 check = DEP_PRO (dep);
8040
8041 gcc_assert (!IS_SPECULATION_CHECK_P (check) && !ORIG_PAT (check)
8042 && QUEUE_INDEX (check) == QUEUE_NOWHERE);
8043
8044 rec = BLOCK_FOR_INSN (check);
8045
8046 twin = emit_insn_before (copy_insn (PATTERN (insn)), BB_END (rec));
8047 haifa_init_insn (twin);
8048
8049 sd_copy_back_deps (twin, insn, true);
8050
8051 if (sched_verbose && spec_info->dump)
8052 /* INSN_BB (insn) isn't determined for twin insns yet.
8053 So we can't use current_sched_info->print_insn. */
8054 fprintf (spec_info->dump, ";;\t\tGenerated twin insn : %d/rec%d\n",
8055 INSN_UID (twin), rec->index);
8056
8057 twins.safe_push (twin);
8058
8059 /* Add dependences between TWIN and all appropriate
8060 instructions from REC. */
8061 FOR_EACH_DEP (insn, SD_LIST_SPEC_BACK, sd_it, dep)
8062 {
8063 rtx_insn *pro = DEP_PRO (dep);
8064
8065 gcc_assert (DEP_TYPE (dep) == REG_DEP_TRUE);
8066
8067 /* INSN might have dependencies from the instructions from
8068 several recovery blocks. At this iteration we process those
8069 producers that reside in REC. */
8070 if (BLOCK_FOR_INSN (pro) == rec)
8071 {
8072 dep_def _new_dep, *new_dep = &_new_dep;
8073
8074 init_dep (new_dep, pro, twin, REG_DEP_TRUE);
8075 sd_add_dep (new_dep, false);
8076 }
8077 }
8078
8079 process_insn_forw_deps_be_in_spec (insn, twin, ts);
8080
8081 /* Remove all dependencies between INSN and insns in REC. */
8082 for (sd_it = sd_iterator_start (insn, SD_LIST_SPEC_BACK);
8083 sd_iterator_cond (&sd_it, &dep);)
8084 {
8085 rtx_insn *pro = DEP_PRO (dep);
8086
8087 if (BLOCK_FOR_INSN (pro) == rec)
8088 sd_delete_dep (sd_it);
8089 else
8090 sd_iterator_next (&sd_it);
8091 }
8092 }
8093
8094 /* We couldn't have added the dependencies between INSN and TWINS earlier
8095 because that would make TWINS appear in the INSN_BACK_DEPS (INSN). */
8096 unsigned int i;
8097 rtx_insn *twin;
8098 FOR_EACH_VEC_ELT_REVERSE (twins, i, twin)
8099 {
8100 dep_def _new_dep, *new_dep = &_new_dep;
8101
8102 init_dep (new_dep, insn, twin, REG_DEP_OUTPUT);
8103 sd_add_dep (new_dep, false);
8104 }
8105
8106 calc_priorities (priorities_roots);
8107 }
8108
8109 /* Extends and fills with zeros (only the new part) array pointed to by P. */
8110 void *
8111 xrecalloc (void *p, size_t new_nmemb, size_t old_nmemb, size_t size)
8112 {
8113 gcc_assert (new_nmemb >= old_nmemb);
8114 p = XRESIZEVAR (void, p, new_nmemb * size);
8115 memset (((char *) p) + old_nmemb * size, 0, (new_nmemb - old_nmemb) * size);
8116 return p;
8117 }
8118
8119 /* Helper function.
8120 Find fallthru edge from PRED. */
8121 edge
8122 find_fallthru_edge_from (basic_block pred)
8123 {
8124 edge e;
8125 basic_block succ;
8126
8127 succ = pred->next_bb;
8128 gcc_assert (succ->prev_bb == pred);
8129
8130 if (EDGE_COUNT (pred->succs) <= EDGE_COUNT (succ->preds))
8131 {
8132 e = find_fallthru_edge (pred->succs);
8133
8134 if (e)
8135 {
8136 gcc_assert (e->dest == succ);
8137 return e;
8138 }
8139 }
8140 else
8141 {
8142 e = find_fallthru_edge (succ->preds);
8143
8144 if (e)
8145 {
8146 gcc_assert (e->src == pred);
8147 return e;
8148 }
8149 }
8150
8151 return NULL;
8152 }
8153
8154 /* Extend per basic block data structures. */
8155 static void
8156 sched_extend_bb (void)
8157 {
8158 /* The following is done to keep current_sched_info->next_tail non null. */
8159 rtx_insn *end = BB_END (EXIT_BLOCK_PTR_FOR_FN (cfun)->prev_bb);
8160 rtx_insn *insn = DEBUG_INSN_P (end) ? prev_nondebug_insn (end) : end;
8161 if (NEXT_INSN (end) == 0
8162 || (!NOTE_P (insn)
8163 && !LABEL_P (insn)
8164 /* Don't emit a NOTE if it would end up before a BARRIER. */
8165 && !BARRIER_P (NEXT_INSN (end))))
8166 {
8167 rtx_note *note = emit_note_after (NOTE_INSN_DELETED, end);
8168 /* Make note appear outside BB. */
8169 set_block_for_insn (note, NULL);
8170 BB_END (EXIT_BLOCK_PTR_FOR_FN (cfun)->prev_bb) = end;
8171 }
8172 }
8173
8174 /* Init per basic block data structures. */
8175 void
8176 sched_init_bbs (void)
8177 {
8178 sched_extend_bb ();
8179 }
8180
8181 /* Initialize BEFORE_RECOVERY variable. */
8182 static void
8183 init_before_recovery (basic_block *before_recovery_ptr)
8184 {
8185 basic_block last;
8186 edge e;
8187
8188 last = EXIT_BLOCK_PTR_FOR_FN (cfun)->prev_bb;
8189 e = find_fallthru_edge_from (last);
8190
8191 if (e)
8192 {
8193 /* We create two basic blocks:
8194 1. Single instruction block is inserted right after E->SRC
8195 and has jump to
8196 2. Empty block right before EXIT_BLOCK.
8197 Between these two blocks recovery blocks will be emitted. */
8198
8199 basic_block single, empty;
8200
8201 /* If the fallthrough edge to exit we've found is from the block we've
8202 created before, don't do anything more. */
8203 if (last == after_recovery)
8204 return;
8205
8206 adding_bb_to_current_region_p = false;
8207
8208 single = sched_create_empty_bb (last);
8209 empty = sched_create_empty_bb (single);
8210
8211 /* Add new blocks to the root loop. */
8212 if (current_loops != NULL)
8213 {
8214 add_bb_to_loop (single, (*current_loops->larray)[0]);
8215 add_bb_to_loop (empty, (*current_loops->larray)[0]);
8216 }
8217
8218 single->count = last->count;
8219 empty->count = last->count;
8220 single->frequency = last->frequency;
8221 empty->frequency = last->frequency;
8222 BB_COPY_PARTITION (single, last);
8223 BB_COPY_PARTITION (empty, last);
8224
8225 redirect_edge_succ (e, single);
8226 make_single_succ_edge (single, empty, 0);
8227 make_single_succ_edge (empty, EXIT_BLOCK_PTR_FOR_FN (cfun),
8228 EDGE_FALLTHRU);
8229
8230 rtx_code_label *label = block_label (empty);
8231 rtx_jump_insn *x = emit_jump_insn_after (targetm.gen_jump (label),
8232 BB_END (single));
8233 JUMP_LABEL (x) = label;
8234 LABEL_NUSES (label)++;
8235 haifa_init_insn (x);
8236
8237 emit_barrier_after (x);
8238
8239 sched_init_only_bb (empty, NULL);
8240 sched_init_only_bb (single, NULL);
8241 sched_extend_bb ();
8242
8243 adding_bb_to_current_region_p = true;
8244 before_recovery = single;
8245 after_recovery = empty;
8246
8247 if (before_recovery_ptr)
8248 *before_recovery_ptr = before_recovery;
8249
8250 if (sched_verbose >= 2 && spec_info->dump)
8251 fprintf (spec_info->dump,
8252 ";;\t\tFixed fallthru to EXIT : %d->>%d->%d->>EXIT\n",
8253 last->index, single->index, empty->index);
8254 }
8255 else
8256 before_recovery = last;
8257 }
8258
8259 /* Returns new recovery block. */
8260 basic_block
8261 sched_create_recovery_block (basic_block *before_recovery_ptr)
8262 {
8263 rtx_insn *barrier;
8264 basic_block rec;
8265
8266 haifa_recovery_bb_recently_added_p = true;
8267 haifa_recovery_bb_ever_added_p = true;
8268
8269 init_before_recovery (before_recovery_ptr);
8270
8271 barrier = get_last_bb_insn (before_recovery);
8272 gcc_assert (BARRIER_P (barrier));
8273
8274 rtx_insn *label = emit_label_after (gen_label_rtx (), barrier);
8275
8276 rec = create_basic_block (label, label, before_recovery);
8277
8278 /* A recovery block always ends with an unconditional jump. */
8279 emit_barrier_after (BB_END (rec));
8280
8281 if (BB_PARTITION (before_recovery) != BB_UNPARTITIONED)
8282 BB_SET_PARTITION (rec, BB_COLD_PARTITION);
8283
8284 if (sched_verbose && spec_info->dump)
8285 fprintf (spec_info->dump, ";;\t\tGenerated recovery block rec%d\n",
8286 rec->index);
8287
8288 return rec;
8289 }
8290
8291 /* Create edges: FIRST_BB -> REC; FIRST_BB -> SECOND_BB; REC -> SECOND_BB
8292 and emit necessary jumps. */
8293 void
8294 sched_create_recovery_edges (basic_block first_bb, basic_block rec,
8295 basic_block second_bb)
8296 {
8297 int edge_flags;
8298
8299 /* This is fixing of incoming edge. */
8300 /* ??? Which other flags should be specified? */
8301 if (BB_PARTITION (first_bb) != BB_PARTITION (rec))
8302 /* Partition type is the same, if it is "unpartitioned". */
8303 edge_flags = EDGE_CROSSING;
8304 else
8305 edge_flags = 0;
8306
8307 edge e2 = single_succ_edge (first_bb);
8308 edge e = make_edge (first_bb, rec, edge_flags);
8309
8310 /* TODO: The actual probability can be determined and is computed as
8311 'todo_spec' variable in create_check_block_twin and
8312 in sel-sched.c `check_ds' in create_speculation_check. */
8313 e->probability = profile_probability::very_unlikely ();
8314 rec->count = e->count ();
8315 rec->frequency = EDGE_FREQUENCY (e);
8316 e2->probability = e->probability.invert ();
8317
8318 rtx_code_label *label = block_label (second_bb);
8319 rtx_jump_insn *jump = emit_jump_insn_after (targetm.gen_jump (label),
8320 BB_END (rec));
8321 JUMP_LABEL (jump) = label;
8322 LABEL_NUSES (label)++;
8323
8324 if (BB_PARTITION (second_bb) != BB_PARTITION (rec))
8325 /* Partition type is the same, if it is "unpartitioned". */
8326 {
8327 /* Rewritten from cfgrtl.c. */
8328 if (crtl->has_bb_partition && targetm_common.have_named_sections)
8329 {
8330 /* We don't need the same note for the check because
8331 any_condjump_p (check) == true. */
8332 CROSSING_JUMP_P (jump) = 1;
8333 }
8334 edge_flags = EDGE_CROSSING;
8335 }
8336 else
8337 edge_flags = 0;
8338
8339 make_single_succ_edge (rec, second_bb, edge_flags);
8340 if (dom_info_available_p (CDI_DOMINATORS))
8341 set_immediate_dominator (CDI_DOMINATORS, rec, first_bb);
8342 }
8343
8344 /* This function creates recovery code for INSN. If MUTATE_P is nonzero,
8345 INSN is a simple check, that should be converted to branchy one. */
8346 static void
8347 create_check_block_twin (rtx_insn *insn, bool mutate_p)
8348 {
8349 basic_block rec;
8350 rtx_insn *label, *check, *twin;
8351 rtx check_pat;
8352 ds_t fs;
8353 sd_iterator_def sd_it;
8354 dep_t dep;
8355 dep_def _new_dep, *new_dep = &_new_dep;
8356 ds_t todo_spec;
8357
8358 gcc_assert (ORIG_PAT (insn) != NULL_RTX);
8359
8360 if (!mutate_p)
8361 todo_spec = TODO_SPEC (insn);
8362 else
8363 {
8364 gcc_assert (IS_SPECULATION_SIMPLE_CHECK_P (insn)
8365 && (TODO_SPEC (insn) & SPECULATIVE) == 0);
8366
8367 todo_spec = CHECK_SPEC (insn);
8368 }
8369
8370 todo_spec &= SPECULATIVE;
8371
8372 /* Create recovery block. */
8373 if (mutate_p || targetm.sched.needs_block_p (todo_spec))
8374 {
8375 rec = sched_create_recovery_block (NULL);
8376 label = BB_HEAD (rec);
8377 }
8378 else
8379 {
8380 rec = EXIT_BLOCK_PTR_FOR_FN (cfun);
8381 label = NULL;
8382 }
8383
8384 /* Emit CHECK. */
8385 check_pat = targetm.sched.gen_spec_check (insn, label, todo_spec);
8386
8387 if (rec != EXIT_BLOCK_PTR_FOR_FN (cfun))
8388 {
8389 /* To have mem_reg alive at the beginning of second_bb,
8390 we emit check BEFORE insn, so insn after splitting
8391 insn will be at the beginning of second_bb, which will
8392 provide us with the correct life information. */
8393 check = emit_jump_insn_before (check_pat, insn);
8394 JUMP_LABEL (check) = label;
8395 LABEL_NUSES (label)++;
8396 }
8397 else
8398 check = emit_insn_before (check_pat, insn);
8399
8400 /* Extend data structures. */
8401 haifa_init_insn (check);
8402
8403 /* CHECK is being added to current region. Extend ready list. */
8404 gcc_assert (sched_ready_n_insns != -1);
8405 sched_extend_ready_list (sched_ready_n_insns + 1);
8406
8407 if (current_sched_info->add_remove_insn)
8408 current_sched_info->add_remove_insn (insn, 0);
8409
8410 RECOVERY_BLOCK (check) = rec;
8411
8412 if (sched_verbose && spec_info->dump)
8413 fprintf (spec_info->dump, ";;\t\tGenerated check insn : %s\n",
8414 (*current_sched_info->print_insn) (check, 0));
8415
8416 gcc_assert (ORIG_PAT (insn));
8417
8418 /* Initialize TWIN (twin is a duplicate of original instruction
8419 in the recovery block). */
8420 if (rec != EXIT_BLOCK_PTR_FOR_FN (cfun))
8421 {
8422 sd_iterator_def sd_it;
8423 dep_t dep;
8424
8425 FOR_EACH_DEP (insn, SD_LIST_RES_BACK, sd_it, dep)
8426 if ((DEP_STATUS (dep) & DEP_OUTPUT) != 0)
8427 {
8428 struct _dep _dep2, *dep2 = &_dep2;
8429
8430 init_dep (dep2, DEP_PRO (dep), check, REG_DEP_TRUE);
8431
8432 sd_add_dep (dep2, true);
8433 }
8434
8435 twin = emit_insn_after (ORIG_PAT (insn), BB_END (rec));
8436 haifa_init_insn (twin);
8437
8438 if (sched_verbose && spec_info->dump)
8439 /* INSN_BB (insn) isn't determined for twin insns yet.
8440 So we can't use current_sched_info->print_insn. */
8441 fprintf (spec_info->dump, ";;\t\tGenerated twin insn : %d/rec%d\n",
8442 INSN_UID (twin), rec->index);
8443 }
8444 else
8445 {
8446 ORIG_PAT (check) = ORIG_PAT (insn);
8447 HAS_INTERNAL_DEP (check) = 1;
8448 twin = check;
8449 /* ??? We probably should change all OUTPUT dependencies to
8450 (TRUE | OUTPUT). */
8451 }
8452
8453 /* Copy all resolved back dependencies of INSN to TWIN. This will
8454 provide correct value for INSN_TICK (TWIN). */
8455 sd_copy_back_deps (twin, insn, true);
8456
8457 if (rec != EXIT_BLOCK_PTR_FOR_FN (cfun))
8458 /* In case of branchy check, fix CFG. */
8459 {
8460 basic_block first_bb, second_bb;
8461 rtx_insn *jump;
8462
8463 first_bb = BLOCK_FOR_INSN (check);
8464 second_bb = sched_split_block (first_bb, check);
8465
8466 sched_create_recovery_edges (first_bb, rec, second_bb);
8467
8468 sched_init_only_bb (second_bb, first_bb);
8469 sched_init_only_bb (rec, EXIT_BLOCK_PTR_FOR_FN (cfun));
8470
8471 jump = BB_END (rec);
8472 haifa_init_insn (jump);
8473 }
8474
8475 /* Move backward dependences from INSN to CHECK and
8476 move forward dependences from INSN to TWIN. */
8477
8478 /* First, create dependencies between INSN's producers and CHECK & TWIN. */
8479 FOR_EACH_DEP (insn, SD_LIST_BACK, sd_it, dep)
8480 {
8481 rtx_insn *pro = DEP_PRO (dep);
8482 ds_t ds;
8483
8484 /* If BEGIN_DATA: [insn ~~TRUE~~> producer]:
8485 check --TRUE--> producer ??? or ANTI ???
8486 twin --TRUE--> producer
8487 twin --ANTI--> check
8488
8489 If BEGIN_CONTROL: [insn ~~ANTI~~> producer]:
8490 check --ANTI--> producer
8491 twin --ANTI--> producer
8492 twin --ANTI--> check
8493
8494 If BE_IN_SPEC: [insn ~~TRUE~~> producer]:
8495 check ~~TRUE~~> producer
8496 twin ~~TRUE~~> producer
8497 twin --ANTI--> check */
8498
8499 ds = DEP_STATUS (dep);
8500
8501 if (ds & BEGIN_SPEC)
8502 {
8503 gcc_assert (!mutate_p);
8504 ds &= ~BEGIN_SPEC;
8505 }
8506
8507 init_dep_1 (new_dep, pro, check, DEP_TYPE (dep), ds);
8508 sd_add_dep (new_dep, false);
8509
8510 if (rec != EXIT_BLOCK_PTR_FOR_FN (cfun))
8511 {
8512 DEP_CON (new_dep) = twin;
8513 sd_add_dep (new_dep, false);
8514 }
8515 }
8516
8517 /* Second, remove backward dependencies of INSN. */
8518 for (sd_it = sd_iterator_start (insn, SD_LIST_SPEC_BACK);
8519 sd_iterator_cond (&sd_it, &dep);)
8520 {
8521 if ((DEP_STATUS (dep) & BEGIN_SPEC)
8522 || mutate_p)
8523 /* We can delete this dep because we overcome it with
8524 BEGIN_SPECULATION. */
8525 sd_delete_dep (sd_it);
8526 else
8527 sd_iterator_next (&sd_it);
8528 }
8529
8530 /* Future Speculations. Determine what BE_IN speculations will be like. */
8531 fs = 0;
8532
8533 /* Fields (DONE_SPEC (x) & BEGIN_SPEC) and CHECK_SPEC (x) are set only
8534 here. */
8535
8536 gcc_assert (!DONE_SPEC (insn));
8537
8538 if (!mutate_p)
8539 {
8540 ds_t ts = TODO_SPEC (insn);
8541
8542 DONE_SPEC (insn) = ts & BEGIN_SPEC;
8543 CHECK_SPEC (check) = ts & BEGIN_SPEC;
8544
8545 /* Luckiness of future speculations solely depends upon initial
8546 BEGIN speculation. */
8547 if (ts & BEGIN_DATA)
8548 fs = set_dep_weak (fs, BE_IN_DATA, get_dep_weak (ts, BEGIN_DATA));
8549 if (ts & BEGIN_CONTROL)
8550 fs = set_dep_weak (fs, BE_IN_CONTROL,
8551 get_dep_weak (ts, BEGIN_CONTROL));
8552 }
8553 else
8554 CHECK_SPEC (check) = CHECK_SPEC (insn);
8555
8556 /* Future speculations: call the helper. */
8557 process_insn_forw_deps_be_in_spec (insn, twin, fs);
8558
8559 if (rec != EXIT_BLOCK_PTR_FOR_FN (cfun))
8560 {
8561 /* Which types of dependencies should we use here is,
8562 generally, machine-dependent question... But, for now,
8563 it is not. */
8564
8565 if (!mutate_p)
8566 {
8567 init_dep (new_dep, insn, check, REG_DEP_TRUE);
8568 sd_add_dep (new_dep, false);
8569
8570 init_dep (new_dep, insn, twin, REG_DEP_OUTPUT);
8571 sd_add_dep (new_dep, false);
8572 }
8573 else
8574 {
8575 if (spec_info->dump)
8576 fprintf (spec_info->dump, ";;\t\tRemoved simple check : %s\n",
8577 (*current_sched_info->print_insn) (insn, 0));
8578
8579 /* Remove all dependencies of the INSN. */
8580 {
8581 sd_it = sd_iterator_start (insn, (SD_LIST_FORW
8582 | SD_LIST_BACK
8583 | SD_LIST_RES_BACK));
8584 while (sd_iterator_cond (&sd_it, &dep))
8585 sd_delete_dep (sd_it);
8586 }
8587
8588 /* If former check (INSN) already was moved to the ready (or queue)
8589 list, add new check (CHECK) there too. */
8590 if (QUEUE_INDEX (insn) != QUEUE_NOWHERE)
8591 try_ready (check);
8592
8593 /* Remove old check from instruction stream and free its
8594 data. */
8595 sched_remove_insn (insn);
8596 }
8597
8598 init_dep (new_dep, check, twin, REG_DEP_ANTI);
8599 sd_add_dep (new_dep, false);
8600 }
8601 else
8602 {
8603 init_dep_1 (new_dep, insn, check, REG_DEP_TRUE, DEP_TRUE | DEP_OUTPUT);
8604 sd_add_dep (new_dep, false);
8605 }
8606
8607 if (!mutate_p)
8608 /* Fix priorities. If MUTATE_P is nonzero, this is not necessary,
8609 because it'll be done later in add_to_speculative_block. */
8610 {
8611 auto_vec<rtx_insn *> priorities_roots;
8612
8613 clear_priorities (twin, &priorities_roots);
8614 calc_priorities (priorities_roots);
8615 }
8616 }
8617
8618 /* Removes dependency between instructions in the recovery block REC
8619 and usual region instructions. It keeps inner dependences so it
8620 won't be necessary to recompute them. */
8621 static void
8622 fix_recovery_deps (basic_block rec)
8623 {
8624 rtx_insn *note, *insn, *jump;
8625 auto_vec<rtx_insn *, 10> ready_list;
8626 auto_bitmap in_ready;
8627
8628 /* NOTE - a basic block note. */
8629 note = NEXT_INSN (BB_HEAD (rec));
8630 gcc_assert (NOTE_INSN_BASIC_BLOCK_P (note));
8631 insn = BB_END (rec);
8632 gcc_assert (JUMP_P (insn));
8633 insn = PREV_INSN (insn);
8634
8635 do
8636 {
8637 sd_iterator_def sd_it;
8638 dep_t dep;
8639
8640 for (sd_it = sd_iterator_start (insn, SD_LIST_FORW);
8641 sd_iterator_cond (&sd_it, &dep);)
8642 {
8643 rtx_insn *consumer = DEP_CON (dep);
8644
8645 if (BLOCK_FOR_INSN (consumer) != rec)
8646 {
8647 sd_delete_dep (sd_it);
8648
8649 if (bitmap_set_bit (in_ready, INSN_LUID (consumer)))
8650 ready_list.safe_push (consumer);
8651 }
8652 else
8653 {
8654 gcc_assert ((DEP_STATUS (dep) & DEP_TYPES) == DEP_TRUE);
8655
8656 sd_iterator_next (&sd_it);
8657 }
8658 }
8659
8660 insn = PREV_INSN (insn);
8661 }
8662 while (insn != note);
8663
8664 /* Try to add instructions to the ready or queue list. */
8665 unsigned int i;
8666 rtx_insn *temp;
8667 FOR_EACH_VEC_ELT_REVERSE (ready_list, i, temp)
8668 try_ready (temp);
8669
8670 /* Fixing jump's dependences. */
8671 insn = BB_HEAD (rec);
8672 jump = BB_END (rec);
8673
8674 gcc_assert (LABEL_P (insn));
8675 insn = NEXT_INSN (insn);
8676
8677 gcc_assert (NOTE_INSN_BASIC_BLOCK_P (insn));
8678 add_jump_dependencies (insn, jump);
8679 }
8680
8681 /* Change pattern of INSN to NEW_PAT. Invalidate cached haifa
8682 instruction data. */
8683 static bool
8684 haifa_change_pattern (rtx_insn *insn, rtx new_pat)
8685 {
8686 int t;
8687
8688 t = validate_change (insn, &PATTERN (insn), new_pat, 0);
8689 if (!t)
8690 return false;
8691
8692 update_insn_after_change (insn);
8693 return true;
8694 }
8695
8696 /* -1 - can't speculate,
8697 0 - for speculation with REQUEST mode it is OK to use
8698 current instruction pattern,
8699 1 - need to change pattern for *NEW_PAT to be speculative. */
8700 int
8701 sched_speculate_insn (rtx_insn *insn, ds_t request, rtx *new_pat)
8702 {
8703 gcc_assert (current_sched_info->flags & DO_SPECULATION
8704 && (request & SPECULATIVE)
8705 && sched_insn_is_legitimate_for_speculation_p (insn, request));
8706
8707 if ((request & spec_info->mask) != request)
8708 return -1;
8709
8710 if (request & BE_IN_SPEC
8711 && !(request & BEGIN_SPEC))
8712 return 0;
8713
8714 return targetm.sched.speculate_insn (insn, request, new_pat);
8715 }
8716
8717 static int
8718 haifa_speculate_insn (rtx_insn *insn, ds_t request, rtx *new_pat)
8719 {
8720 gcc_assert (sched_deps_info->generate_spec_deps
8721 && !IS_SPECULATION_CHECK_P (insn));
8722
8723 if (HAS_INTERNAL_DEP (insn)
8724 || SCHED_GROUP_P (insn))
8725 return -1;
8726
8727 return sched_speculate_insn (insn, request, new_pat);
8728 }
8729
8730 /* Print some information about block BB, which starts with HEAD and
8731 ends with TAIL, before scheduling it.
8732 I is zero, if scheduler is about to start with the fresh ebb. */
8733 static void
8734 dump_new_block_header (int i, basic_block bb, rtx_insn *head, rtx_insn *tail)
8735 {
8736 if (!i)
8737 fprintf (sched_dump,
8738 ";; ======================================================\n");
8739 else
8740 fprintf (sched_dump,
8741 ";; =====================ADVANCING TO=====================\n");
8742 fprintf (sched_dump,
8743 ";; -- basic block %d from %d to %d -- %s reload\n",
8744 bb->index, INSN_UID (head), INSN_UID (tail),
8745 (reload_completed ? "after" : "before"));
8746 fprintf (sched_dump,
8747 ";; ======================================================\n");
8748 fprintf (sched_dump, "\n");
8749 }
8750
8751 /* Unlink basic block notes and labels and saves them, so they
8752 can be easily restored. We unlink basic block notes in EBB to
8753 provide back-compatibility with the previous code, as target backends
8754 assume, that there'll be only instructions between
8755 current_sched_info->{head and tail}. We restore these notes as soon
8756 as we can.
8757 FIRST (LAST) is the first (last) basic block in the ebb.
8758 NB: In usual case (FIRST == LAST) nothing is really done. */
8759 void
8760 unlink_bb_notes (basic_block first, basic_block last)
8761 {
8762 /* We DON'T unlink basic block notes of the first block in the ebb. */
8763 if (first == last)
8764 return;
8765
8766 bb_header = XNEWVEC (rtx_insn *, last_basic_block_for_fn (cfun));
8767
8768 /* Make a sentinel. */
8769 if (last->next_bb != EXIT_BLOCK_PTR_FOR_FN (cfun))
8770 bb_header[last->next_bb->index] = 0;
8771
8772 first = first->next_bb;
8773 do
8774 {
8775 rtx_insn *prev, *label, *note, *next;
8776
8777 label = BB_HEAD (last);
8778 if (LABEL_P (label))
8779 note = NEXT_INSN (label);
8780 else
8781 note = label;
8782 gcc_assert (NOTE_INSN_BASIC_BLOCK_P (note));
8783
8784 prev = PREV_INSN (label);
8785 next = NEXT_INSN (note);
8786 gcc_assert (prev && next);
8787
8788 SET_NEXT_INSN (prev) = next;
8789 SET_PREV_INSN (next) = prev;
8790
8791 bb_header[last->index] = label;
8792
8793 if (last == first)
8794 break;
8795
8796 last = last->prev_bb;
8797 }
8798 while (1);
8799 }
8800
8801 /* Restore basic block notes.
8802 FIRST is the first basic block in the ebb. */
8803 static void
8804 restore_bb_notes (basic_block first)
8805 {
8806 if (!bb_header)
8807 return;
8808
8809 /* We DON'T unlink basic block notes of the first block in the ebb. */
8810 first = first->next_bb;
8811 /* Remember: FIRST is actually a second basic block in the ebb. */
8812
8813 while (first != EXIT_BLOCK_PTR_FOR_FN (cfun)
8814 && bb_header[first->index])
8815 {
8816 rtx_insn *prev, *label, *note, *next;
8817
8818 label = bb_header[first->index];
8819 prev = PREV_INSN (label);
8820 next = NEXT_INSN (prev);
8821
8822 if (LABEL_P (label))
8823 note = NEXT_INSN (label);
8824 else
8825 note = label;
8826 gcc_assert (NOTE_INSN_BASIC_BLOCK_P (note));
8827
8828 bb_header[first->index] = 0;
8829
8830 SET_NEXT_INSN (prev) = label;
8831 SET_NEXT_INSN (note) = next;
8832 SET_PREV_INSN (next) = note;
8833
8834 first = first->next_bb;
8835 }
8836
8837 free (bb_header);
8838 bb_header = 0;
8839 }
8840
8841 /* Helper function.
8842 Fix CFG after both in- and inter-block movement of
8843 control_flow_insn_p JUMP. */
8844 static void
8845 fix_jump_move (rtx_insn *jump)
8846 {
8847 basic_block bb, jump_bb, jump_bb_next;
8848
8849 bb = BLOCK_FOR_INSN (PREV_INSN (jump));
8850 jump_bb = BLOCK_FOR_INSN (jump);
8851 jump_bb_next = jump_bb->next_bb;
8852
8853 gcc_assert (common_sched_info->sched_pass_id == SCHED_EBB_PASS
8854 || IS_SPECULATION_BRANCHY_CHECK_P (jump));
8855
8856 if (!NOTE_INSN_BASIC_BLOCK_P (BB_END (jump_bb_next)))
8857 /* if jump_bb_next is not empty. */
8858 BB_END (jump_bb) = BB_END (jump_bb_next);
8859
8860 if (BB_END (bb) != PREV_INSN (jump))
8861 /* Then there are instruction after jump that should be placed
8862 to jump_bb_next. */
8863 BB_END (jump_bb_next) = BB_END (bb);
8864 else
8865 /* Otherwise jump_bb_next is empty. */
8866 BB_END (jump_bb_next) = NEXT_INSN (BB_HEAD (jump_bb_next));
8867
8868 /* To make assertion in move_insn happy. */
8869 BB_END (bb) = PREV_INSN (jump);
8870
8871 update_bb_for_insn (jump_bb_next);
8872 }
8873
8874 /* Fix CFG after interblock movement of control_flow_insn_p JUMP. */
8875 static void
8876 move_block_after_check (rtx_insn *jump)
8877 {
8878 basic_block bb, jump_bb, jump_bb_next;
8879 vec<edge, va_gc> *t;
8880
8881 bb = BLOCK_FOR_INSN (PREV_INSN (jump));
8882 jump_bb = BLOCK_FOR_INSN (jump);
8883 jump_bb_next = jump_bb->next_bb;
8884
8885 update_bb_for_insn (jump_bb);
8886
8887 gcc_assert (IS_SPECULATION_CHECK_P (jump)
8888 || IS_SPECULATION_CHECK_P (BB_END (jump_bb_next)));
8889
8890 unlink_block (jump_bb_next);
8891 link_block (jump_bb_next, bb);
8892
8893 t = bb->succs;
8894 bb->succs = 0;
8895 move_succs (&(jump_bb->succs), bb);
8896 move_succs (&(jump_bb_next->succs), jump_bb);
8897 move_succs (&t, jump_bb_next);
8898
8899 df_mark_solutions_dirty ();
8900
8901 common_sched_info->fix_recovery_cfg
8902 (bb->index, jump_bb->index, jump_bb_next->index);
8903 }
8904
8905 /* Helper function for move_block_after_check.
8906 This functions attaches edge vector pointed to by SUCCSP to
8907 block TO. */
8908 static void
8909 move_succs (vec<edge, va_gc> **succsp, basic_block to)
8910 {
8911 edge e;
8912 edge_iterator ei;
8913
8914 gcc_assert (to->succs == 0);
8915
8916 to->succs = *succsp;
8917
8918 FOR_EACH_EDGE (e, ei, to->succs)
8919 e->src = to;
8920
8921 *succsp = 0;
8922 }
8923
8924 /* Remove INSN from the instruction stream.
8925 INSN should have any dependencies. */
8926 static void
8927 sched_remove_insn (rtx_insn *insn)
8928 {
8929 sd_finish_insn (insn);
8930
8931 change_queue_index (insn, QUEUE_NOWHERE);
8932 current_sched_info->add_remove_insn (insn, 1);
8933 delete_insn (insn);
8934 }
8935
8936 /* Clear priorities of all instructions, that are forward dependent on INSN.
8937 Store in vector pointed to by ROOTS_PTR insns on which priority () should
8938 be invoked to initialize all cleared priorities. */
8939 static void
8940 clear_priorities (rtx_insn *insn, rtx_vec_t *roots_ptr)
8941 {
8942 sd_iterator_def sd_it;
8943 dep_t dep;
8944 bool insn_is_root_p = true;
8945
8946 gcc_assert (QUEUE_INDEX (insn) != QUEUE_SCHEDULED);
8947
8948 FOR_EACH_DEP (insn, SD_LIST_BACK, sd_it, dep)
8949 {
8950 rtx_insn *pro = DEP_PRO (dep);
8951
8952 if (INSN_PRIORITY_STATUS (pro) >= 0
8953 && QUEUE_INDEX (insn) != QUEUE_SCHEDULED)
8954 {
8955 /* If DEP doesn't contribute to priority then INSN itself should
8956 be added to priority roots. */
8957 if (contributes_to_priority_p (dep))
8958 insn_is_root_p = false;
8959
8960 INSN_PRIORITY_STATUS (pro) = -1;
8961 clear_priorities (pro, roots_ptr);
8962 }
8963 }
8964
8965 if (insn_is_root_p)
8966 roots_ptr->safe_push (insn);
8967 }
8968
8969 /* Recompute priorities of instructions, whose priorities might have been
8970 changed. ROOTS is a vector of instructions whose priority computation will
8971 trigger initialization of all cleared priorities. */
8972 static void
8973 calc_priorities (rtx_vec_t roots)
8974 {
8975 int i;
8976 rtx_insn *insn;
8977
8978 FOR_EACH_VEC_ELT (roots, i, insn)
8979 priority (insn);
8980 }
8981
8982
8983 /* Add dependences between JUMP and other instructions in the recovery
8984 block. INSN is the first insn the recovery block. */
8985 static void
8986 add_jump_dependencies (rtx_insn *insn, rtx_insn *jump)
8987 {
8988 do
8989 {
8990 insn = NEXT_INSN (insn);
8991 if (insn == jump)
8992 break;
8993
8994 if (dep_list_size (insn, SD_LIST_FORW) == 0)
8995 {
8996 dep_def _new_dep, *new_dep = &_new_dep;
8997
8998 init_dep (new_dep, insn, jump, REG_DEP_ANTI);
8999 sd_add_dep (new_dep, false);
9000 }
9001 }
9002 while (1);
9003
9004 gcc_assert (!sd_lists_empty_p (jump, SD_LIST_BACK));
9005 }
9006
9007 /* Extend data structures for logical insn UID. */
9008 void
9009 sched_extend_luids (void)
9010 {
9011 int new_luids_max_uid = get_max_uid () + 1;
9012
9013 sched_luids.safe_grow_cleared (new_luids_max_uid);
9014 }
9015
9016 /* Initialize LUID for INSN. */
9017 void
9018 sched_init_insn_luid (rtx_insn *insn)
9019 {
9020 int i = INSN_P (insn) ? 1 : common_sched_info->luid_for_non_insn (insn);
9021 int luid;
9022
9023 if (i >= 0)
9024 {
9025 luid = sched_max_luid;
9026 sched_max_luid += i;
9027 }
9028 else
9029 luid = -1;
9030
9031 SET_INSN_LUID (insn, luid);
9032 }
9033
9034 /* Initialize luids for BBS.
9035 The hook common_sched_info->luid_for_non_insn () is used to determine
9036 if notes, labels, etc. need luids. */
9037 void
9038 sched_init_luids (bb_vec_t bbs)
9039 {
9040 int i;
9041 basic_block bb;
9042
9043 sched_extend_luids ();
9044 FOR_EACH_VEC_ELT (bbs, i, bb)
9045 {
9046 rtx_insn *insn;
9047
9048 FOR_BB_INSNS (bb, insn)
9049 sched_init_insn_luid (insn);
9050 }
9051 }
9052
9053 /* Free LUIDs. */
9054 void
9055 sched_finish_luids (void)
9056 {
9057 sched_luids.release ();
9058 sched_max_luid = 1;
9059 }
9060
9061 /* Return logical uid of INSN. Helpful while debugging. */
9062 int
9063 insn_luid (rtx_insn *insn)
9064 {
9065 return INSN_LUID (insn);
9066 }
9067
9068 /* Extend per insn data in the target. */
9069 void
9070 sched_extend_target (void)
9071 {
9072 if (targetm.sched.h_i_d_extended)
9073 targetm.sched.h_i_d_extended ();
9074 }
9075
9076 /* Extend global scheduler structures (those, that live across calls to
9077 schedule_block) to include information about just emitted INSN. */
9078 static void
9079 extend_h_i_d (void)
9080 {
9081 int reserve = (get_max_uid () + 1 - h_i_d.length ());
9082 if (reserve > 0
9083 && ! h_i_d.space (reserve))
9084 {
9085 h_i_d.safe_grow_cleared (3 * get_max_uid () / 2);
9086 sched_extend_target ();
9087 }
9088 }
9089
9090 /* Initialize h_i_d entry of the INSN with default values.
9091 Values, that are not explicitly initialized here, hold zero. */
9092 static void
9093 init_h_i_d (rtx_insn *insn)
9094 {
9095 if (INSN_LUID (insn) > 0)
9096 {
9097 INSN_COST (insn) = -1;
9098 QUEUE_INDEX (insn) = QUEUE_NOWHERE;
9099 INSN_TICK (insn) = INVALID_TICK;
9100 INSN_EXACT_TICK (insn) = INVALID_TICK;
9101 INTER_TICK (insn) = INVALID_TICK;
9102 TODO_SPEC (insn) = HARD_DEP;
9103 INSN_AUTOPREF_MULTIPASS_DATA (insn)[0].status
9104 = AUTOPREF_MULTIPASS_DATA_UNINITIALIZED;
9105 INSN_AUTOPREF_MULTIPASS_DATA (insn)[1].status
9106 = AUTOPREF_MULTIPASS_DATA_UNINITIALIZED;
9107 }
9108 }
9109
9110 /* Initialize haifa_insn_data for BBS. */
9111 void
9112 haifa_init_h_i_d (bb_vec_t bbs)
9113 {
9114 int i;
9115 basic_block bb;
9116
9117 extend_h_i_d ();
9118 FOR_EACH_VEC_ELT (bbs, i, bb)
9119 {
9120 rtx_insn *insn;
9121
9122 FOR_BB_INSNS (bb, insn)
9123 init_h_i_d (insn);
9124 }
9125 }
9126
9127 /* Finalize haifa_insn_data. */
9128 void
9129 haifa_finish_h_i_d (void)
9130 {
9131 int i;
9132 haifa_insn_data_t data;
9133 reg_use_data *use, *next_use;
9134 reg_set_data *set, *next_set;
9135
9136 FOR_EACH_VEC_ELT (h_i_d, i, data)
9137 {
9138 free (data->max_reg_pressure);
9139 free (data->reg_pressure);
9140 for (use = data->reg_use_list; use != NULL; use = next_use)
9141 {
9142 next_use = use->next_insn_use;
9143 free (use);
9144 }
9145 for (set = data->reg_set_list; set != NULL; set = next_set)
9146 {
9147 next_set = set->next_insn_set;
9148 free (set);
9149 }
9150
9151 }
9152 h_i_d.release ();
9153 }
9154
9155 /* Init data for the new insn INSN. */
9156 static void
9157 haifa_init_insn (rtx_insn *insn)
9158 {
9159 gcc_assert (insn != NULL);
9160
9161 sched_extend_luids ();
9162 sched_init_insn_luid (insn);
9163 sched_extend_target ();
9164 sched_deps_init (false);
9165 extend_h_i_d ();
9166 init_h_i_d (insn);
9167
9168 if (adding_bb_to_current_region_p)
9169 {
9170 sd_init_insn (insn);
9171
9172 /* Extend dependency caches by one element. */
9173 extend_dependency_caches (1, false);
9174 }
9175 if (sched_pressure != SCHED_PRESSURE_NONE)
9176 init_insn_reg_pressure_info (insn);
9177 }
9178
9179 /* Init data for the new basic block BB which comes after AFTER. */
9180 static void
9181 haifa_init_only_bb (basic_block bb, basic_block after)
9182 {
9183 gcc_assert (bb != NULL);
9184
9185 sched_init_bbs ();
9186
9187 if (common_sched_info->add_block)
9188 /* This changes only data structures of the front-end. */
9189 common_sched_info->add_block (bb, after);
9190 }
9191
9192 /* A generic version of sched_split_block (). */
9193 basic_block
9194 sched_split_block_1 (basic_block first_bb, rtx after)
9195 {
9196 edge e;
9197
9198 e = split_block (first_bb, after);
9199 gcc_assert (e->src == first_bb);
9200
9201 /* sched_split_block emits note if *check == BB_END. Probably it
9202 is better to rip that note off. */
9203
9204 return e->dest;
9205 }
9206
9207 /* A generic version of sched_create_empty_bb (). */
9208 basic_block
9209 sched_create_empty_bb_1 (basic_block after)
9210 {
9211 return create_empty_bb (after);
9212 }
9213
9214 /* Insert PAT as an INSN into the schedule and update the necessary data
9215 structures to account for it. */
9216 rtx_insn *
9217 sched_emit_insn (rtx pat)
9218 {
9219 rtx_insn *insn = emit_insn_before (pat, first_nonscheduled_insn ());
9220 haifa_init_insn (insn);
9221
9222 if (current_sched_info->add_remove_insn)
9223 current_sched_info->add_remove_insn (insn, 0);
9224
9225 (*current_sched_info->begin_schedule_ready) (insn);
9226 scheduled_insns.safe_push (insn);
9227
9228 last_scheduled_insn = insn;
9229 return insn;
9230 }
9231
9232 /* This function returns a candidate satisfying dispatch constraints from
9233 the ready list. */
9234
9235 static rtx_insn *
9236 ready_remove_first_dispatch (struct ready_list *ready)
9237 {
9238 int i;
9239 rtx_insn *insn = ready_element (ready, 0);
9240
9241 if (ready->n_ready == 1
9242 || !INSN_P (insn)
9243 || INSN_CODE (insn) < 0
9244 || !active_insn_p (insn)
9245 || targetm.sched.dispatch (insn, FITS_DISPATCH_WINDOW))
9246 return ready_remove_first (ready);
9247
9248 for (i = 1; i < ready->n_ready; i++)
9249 {
9250 insn = ready_element (ready, i);
9251
9252 if (!INSN_P (insn)
9253 || INSN_CODE (insn) < 0
9254 || !active_insn_p (insn))
9255 continue;
9256
9257 if (targetm.sched.dispatch (insn, FITS_DISPATCH_WINDOW))
9258 {
9259 /* Return ith element of ready. */
9260 insn = ready_remove (ready, i);
9261 return insn;
9262 }
9263 }
9264
9265 if (targetm.sched.dispatch (NULL, DISPATCH_VIOLATION))
9266 return ready_remove_first (ready);
9267
9268 for (i = 1; i < ready->n_ready; i++)
9269 {
9270 insn = ready_element (ready, i);
9271
9272 if (!INSN_P (insn)
9273 || INSN_CODE (insn) < 0
9274 || !active_insn_p (insn))
9275 continue;
9276
9277 /* Return i-th element of ready. */
9278 if (targetm.sched.dispatch (insn, IS_CMP))
9279 return ready_remove (ready, i);
9280 }
9281
9282 return ready_remove_first (ready);
9283 }
9284
9285 /* Get number of ready insn in the ready list. */
9286
9287 int
9288 number_in_ready (void)
9289 {
9290 return ready.n_ready;
9291 }
9292
9293 /* Get number of ready's in the ready list. */
9294
9295 rtx_insn *
9296 get_ready_element (int i)
9297 {
9298 return ready_element (&ready, i);
9299 }
9300
9301 #endif /* INSN_SCHEDULING */