]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/haifa-sched.c
RISC-V: Preserve arch version info during normalizing arch string
[thirdparty/gcc.git] / gcc / haifa-sched.c
1 /* Instruction scheduling pass.
2 Copyright (C) 1992-2020 Free Software Foundation, Inc.
3 Contributed by Michael Tiemann (tiemann@cygnus.com) Enhanced by,
4 and currently maintained by, Jim Wilson (wilson@cygnus.com)
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
12
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
21
22 /* Instruction scheduling pass. This file, along with sched-deps.c,
23 contains the generic parts. The actual entry point for
24 the normal instruction scheduling pass is found in sched-rgn.c.
25
26 We compute insn priorities based on data dependencies. Flow
27 analysis only creates a fraction of the data-dependencies we must
28 observe: namely, only those dependencies which the combiner can be
29 expected to use. For this pass, we must therefore create the
30 remaining dependencies we need to observe: register dependencies,
31 memory dependencies, dependencies to keep function calls in order,
32 and the dependence between a conditional branch and the setting of
33 condition codes are all dealt with here.
34
35 The scheduler first traverses the data flow graph, starting with
36 the last instruction, and proceeding to the first, assigning values
37 to insn_priority as it goes. This sorts the instructions
38 topologically by data dependence.
39
40 Once priorities have been established, we order the insns using
41 list scheduling. This works as follows: starting with a list of
42 all the ready insns, and sorted according to priority number, we
43 schedule the insn from the end of the list by placing its
44 predecessors in the list according to their priority order. We
45 consider this insn scheduled by setting the pointer to the "end" of
46 the list to point to the previous insn. When an insn has no
47 predecessors, we either queue it until sufficient time has elapsed
48 or add it to the ready list. As the instructions are scheduled or
49 when stalls are introduced, the queue advances and dumps insns into
50 the ready list. When all insns down to the lowest priority have
51 been scheduled, the critical path of the basic block has been made
52 as short as possible. The remaining insns are then scheduled in
53 remaining slots.
54
55 The following list shows the order in which we want to break ties
56 among insns in the ready list:
57
58 1. choose insn with the longest path to end of bb, ties
59 broken by
60 2. choose insn with least contribution to register pressure,
61 ties broken by
62 3. prefer in-block upon interblock motion, ties broken by
63 4. prefer useful upon speculative motion, ties broken by
64 5. choose insn with largest control flow probability, ties
65 broken by
66 6. choose insn with the least dependences upon the previously
67 scheduled insn, or finally
68 7 choose the insn which has the most insns dependent on it.
69 8. choose insn with lowest UID.
70
71 Memory references complicate matters. Only if we can be certain
72 that memory references are not part of the data dependency graph
73 (via true, anti, or output dependence), can we move operations past
74 memory references. To first approximation, reads can be done
75 independently, while writes introduce dependencies. Better
76 approximations will yield fewer dependencies.
77
78 Before reload, an extended analysis of interblock data dependences
79 is required for interblock scheduling. This is performed in
80 compute_block_dependences ().
81
82 Dependencies set up by memory references are treated in exactly the
83 same way as other dependencies, by using insn backward dependences
84 INSN_BACK_DEPS. INSN_BACK_DEPS are translated into forward dependences
85 INSN_FORW_DEPS for the purpose of forward list scheduling.
86
87 Having optimized the critical path, we may have also unduly
88 extended the lifetimes of some registers. If an operation requires
89 that constants be loaded into registers, it is certainly desirable
90 to load those constants as early as necessary, but no earlier.
91 I.e., it will not do to load up a bunch of registers at the
92 beginning of a basic block only to use them at the end, if they
93 could be loaded later, since this may result in excessive register
94 utilization.
95
96 Note that since branches are never in basic blocks, but only end
97 basic blocks, this pass will not move branches. But that is ok,
98 since we can use GNU's delayed branch scheduling pass to take care
99 of this case.
100
101 Also note that no further optimizations based on algebraic
102 identities are performed, so this pass would be a good one to
103 perform instruction splitting, such as breaking up a multiply
104 instruction into shifts and adds where that is profitable.
105
106 Given the memory aliasing analysis that this pass should perform,
107 it should be possible to remove redundant stores to memory, and to
108 load values from registers instead of hitting memory.
109
110 Before reload, speculative insns are moved only if a 'proof' exists
111 that no exception will be caused by this, and if no live registers
112 exist that inhibit the motion (live registers constraints are not
113 represented by data dependence edges).
114
115 This pass must update information that subsequent passes expect to
116 be correct. Namely: reg_n_refs, reg_n_sets, reg_n_deaths,
117 reg_n_calls_crossed, and reg_live_length. Also, BB_HEAD, BB_END.
118
119 The information in the line number notes is carefully retained by
120 this pass. Notes that refer to the starting and ending of
121 exception regions are also carefully retained by this pass. All
122 other NOTE insns are grouped in their same relative order at the
123 beginning of basic blocks and regions that have been scheduled. */
124 \f
125 #include "config.h"
126 #include "system.h"
127 #include "coretypes.h"
128 #include "backend.h"
129 #include "target.h"
130 #include "rtl.h"
131 #include "cfghooks.h"
132 #include "df.h"
133 #include "memmodel.h"
134 #include "tm_p.h"
135 #include "insn-config.h"
136 #include "regs.h"
137 #include "ira.h"
138 #include "recog.h"
139 #include "insn-attr.h"
140 #include "cfgrtl.h"
141 #include "cfgbuild.h"
142 #include "sched-int.h"
143 #include "common/common-target.h"
144 #include "dbgcnt.h"
145 #include "cfgloop.h"
146 #include "dumpfile.h"
147 #include "print-rtl.h"
148 #include "function-abi.h"
149
150 #ifdef INSN_SCHEDULING
151
152 /* True if we do register pressure relief through live-range
153 shrinkage. */
154 static bool live_range_shrinkage_p;
155
156 /* Switch on live range shrinkage. */
157 void
158 initialize_live_range_shrinkage (void)
159 {
160 live_range_shrinkage_p = true;
161 }
162
163 /* Switch off live range shrinkage. */
164 void
165 finish_live_range_shrinkage (void)
166 {
167 live_range_shrinkage_p = false;
168 }
169
170 /* issue_rate is the number of insns that can be scheduled in the same
171 machine cycle. It can be defined in the config/mach/mach.h file,
172 otherwise we set it to 1. */
173
174 int issue_rate;
175
176 /* This can be set to true by a backend if the scheduler should not
177 enable a DCE pass. */
178 bool sched_no_dce;
179
180 /* The current initiation interval used when modulo scheduling. */
181 static int modulo_ii;
182
183 /* The maximum number of stages we are prepared to handle. */
184 static int modulo_max_stages;
185
186 /* The number of insns that exist in each iteration of the loop. We use this
187 to detect when we've scheduled all insns from the first iteration. */
188 static int modulo_n_insns;
189
190 /* The current count of insns in the first iteration of the loop that have
191 already been scheduled. */
192 static int modulo_insns_scheduled;
193
194 /* The maximum uid of insns from the first iteration of the loop. */
195 static int modulo_iter0_max_uid;
196
197 /* The number of times we should attempt to backtrack when modulo scheduling.
198 Decreased each time we have to backtrack. */
199 static int modulo_backtracks_left;
200
201 /* The stage in which the last insn from the original loop was
202 scheduled. */
203 static int modulo_last_stage;
204
205 /* sched-verbose controls the amount of debugging output the
206 scheduler prints. It is controlled by -fsched-verbose=N:
207 N=0: no debugging output.
208 N=1: default value.
209 N=2: bb's probabilities, detailed ready list info, unit/insn info.
210 N=3: rtl at abort point, control-flow, regions info.
211 N=5: dependences info. */
212 int sched_verbose = 0;
213
214 /* Debugging file. All printouts are sent to dump. */
215 FILE *sched_dump = 0;
216
217 /* This is a placeholder for the scheduler parameters common
218 to all schedulers. */
219 struct common_sched_info_def *common_sched_info;
220
221 #define INSN_TICK(INSN) (HID (INSN)->tick)
222 #define INSN_EXACT_TICK(INSN) (HID (INSN)->exact_tick)
223 #define INSN_TICK_ESTIMATE(INSN) (HID (INSN)->tick_estimate)
224 #define INTER_TICK(INSN) (HID (INSN)->inter_tick)
225 #define FEEDS_BACKTRACK_INSN(INSN) (HID (INSN)->feeds_backtrack_insn)
226 #define SHADOW_P(INSN) (HID (INSN)->shadow_p)
227 #define MUST_RECOMPUTE_SPEC_P(INSN) (HID (INSN)->must_recompute_spec)
228 /* Cached cost of the instruction. Use insn_sched_cost to get cost of the
229 insn. -1 here means that the field is not initialized. */
230 #define INSN_COST(INSN) (HID (INSN)->cost)
231
232 /* If INSN_TICK of an instruction is equal to INVALID_TICK,
233 then it should be recalculated from scratch. */
234 #define INVALID_TICK (-(max_insn_queue_index + 1))
235 /* The minimal value of the INSN_TICK of an instruction. */
236 #define MIN_TICK (-max_insn_queue_index)
237
238 /* Original order of insns in the ready list.
239 Used to keep order of normal insns while separating DEBUG_INSNs. */
240 #define INSN_RFS_DEBUG_ORIG_ORDER(INSN) (HID (INSN)->rfs_debug_orig_order)
241
242 /* The deciding reason for INSN's place in the ready list. */
243 #define INSN_LAST_RFS_WIN(INSN) (HID (INSN)->last_rfs_win)
244
245 /* List of important notes we must keep around. This is a pointer to the
246 last element in the list. */
247 rtx_insn *note_list;
248
249 static struct spec_info_def spec_info_var;
250 /* Description of the speculative part of the scheduling.
251 If NULL - no speculation. */
252 spec_info_t spec_info = NULL;
253
254 /* True, if recovery block was added during scheduling of current block.
255 Used to determine, if we need to fix INSN_TICKs. */
256 static bool haifa_recovery_bb_recently_added_p;
257
258 /* True, if recovery block was added during this scheduling pass.
259 Used to determine if we should have empty memory pools of dependencies
260 after finishing current region. */
261 bool haifa_recovery_bb_ever_added_p;
262
263 /* Counters of different types of speculative instructions. */
264 static int nr_begin_data, nr_be_in_data, nr_begin_control, nr_be_in_control;
265
266 /* Array used in {unlink, restore}_bb_notes. */
267 static rtx_insn **bb_header = 0;
268
269 /* Basic block after which recovery blocks will be created. */
270 static basic_block before_recovery;
271
272 /* Basic block just before the EXIT_BLOCK and after recovery, if we have
273 created it. */
274 basic_block after_recovery;
275
276 /* FALSE if we add bb to another region, so we don't need to initialize it. */
277 bool adding_bb_to_current_region_p = true;
278
279 /* Queues, etc. */
280
281 /* An instruction is ready to be scheduled when all insns preceding it
282 have already been scheduled. It is important to ensure that all
283 insns which use its result will not be executed until its result
284 has been computed. An insn is maintained in one of four structures:
285
286 (P) the "Pending" set of insns which cannot be scheduled until
287 their dependencies have been satisfied.
288 (Q) the "Queued" set of insns that can be scheduled when sufficient
289 time has passed.
290 (R) the "Ready" list of unscheduled, uncommitted insns.
291 (S) the "Scheduled" list of insns.
292
293 Initially, all insns are either "Pending" or "Ready" depending on
294 whether their dependencies are satisfied.
295
296 Insns move from the "Ready" list to the "Scheduled" list as they
297 are committed to the schedule. As this occurs, the insns in the
298 "Pending" list have their dependencies satisfied and move to either
299 the "Ready" list or the "Queued" set depending on whether
300 sufficient time has passed to make them ready. As time passes,
301 insns move from the "Queued" set to the "Ready" list.
302
303 The "Pending" list (P) are the insns in the INSN_FORW_DEPS of the
304 unscheduled insns, i.e., those that are ready, queued, and pending.
305 The "Queued" set (Q) is implemented by the variable `insn_queue'.
306 The "Ready" list (R) is implemented by the variables `ready' and
307 `n_ready'.
308 The "Scheduled" list (S) is the new insn chain built by this pass.
309
310 The transition (R->S) is implemented in the scheduling loop in
311 `schedule_block' when the best insn to schedule is chosen.
312 The transitions (P->R and P->Q) are implemented in `schedule_insn' as
313 insns move from the ready list to the scheduled list.
314 The transition (Q->R) is implemented in 'queue_to_insn' as time
315 passes or stalls are introduced. */
316
317 /* Implement a circular buffer to delay instructions until sufficient
318 time has passed. For the new pipeline description interface,
319 MAX_INSN_QUEUE_INDEX is a power of two minus one which is not less
320 than maximal time of instruction execution computed by genattr.c on
321 the base maximal time of functional unit reservations and getting a
322 result. This is the longest time an insn may be queued. */
323
324 static rtx_insn_list **insn_queue;
325 static int q_ptr = 0;
326 static int q_size = 0;
327 #define NEXT_Q(X) (((X)+1) & max_insn_queue_index)
328 #define NEXT_Q_AFTER(X, C) (((X)+C) & max_insn_queue_index)
329
330 #define QUEUE_SCHEDULED (-3)
331 #define QUEUE_NOWHERE (-2)
332 #define QUEUE_READY (-1)
333 /* QUEUE_SCHEDULED - INSN is scheduled.
334 QUEUE_NOWHERE - INSN isn't scheduled yet and is neither in
335 queue or ready list.
336 QUEUE_READY - INSN is in ready list.
337 N >= 0 - INSN queued for X [where NEXT_Q_AFTER (q_ptr, X) == N] cycles. */
338
339 #define QUEUE_INDEX(INSN) (HID (INSN)->queue_index)
340
341 /* The following variable value refers for all current and future
342 reservations of the processor units. */
343 state_t curr_state;
344
345 /* The following variable value is size of memory representing all
346 current and future reservations of the processor units. */
347 size_t dfa_state_size;
348
349 /* The following array is used to find the best insn from ready when
350 the automaton pipeline interface is used. */
351 signed char *ready_try = NULL;
352
353 /* The ready list. */
354 struct ready_list ready = {NULL, 0, 0, 0, 0};
355
356 /* The pointer to the ready list (to be removed). */
357 static struct ready_list *readyp = &ready;
358
359 /* Scheduling clock. */
360 static int clock_var;
361
362 /* Clock at which the previous instruction was issued. */
363 static int last_clock_var;
364
365 /* Set to true if, when queuing a shadow insn, we discover that it would be
366 scheduled too late. */
367 static bool must_backtrack;
368
369 /* The following variable value is number of essential insns issued on
370 the current cycle. An insn is essential one if it changes the
371 processors state. */
372 int cycle_issued_insns;
373
374 /* This records the actual schedule. It is built up during the main phase
375 of schedule_block, and afterwards used to reorder the insns in the RTL. */
376 static vec<rtx_insn *> scheduled_insns;
377
378 static int may_trap_exp (const_rtx, int);
379
380 /* Nonzero iff the address is comprised from at most 1 register. */
381 #define CONST_BASED_ADDRESS_P(x) \
382 (REG_P (x) \
383 || ((GET_CODE (x) == PLUS || GET_CODE (x) == MINUS \
384 || (GET_CODE (x) == LO_SUM)) \
385 && (CONSTANT_P (XEXP (x, 0)) \
386 || CONSTANT_P (XEXP (x, 1)))))
387
388 /* Returns a class that insn with GET_DEST(insn)=x may belong to,
389 as found by analyzing insn's expression. */
390
391 \f
392 static int haifa_luid_for_non_insn (rtx x);
393
394 /* Haifa version of sched_info hooks common to all headers. */
395 const struct common_sched_info_def haifa_common_sched_info =
396 {
397 NULL, /* fix_recovery_cfg */
398 NULL, /* add_block */
399 NULL, /* estimate_number_of_insns */
400 haifa_luid_for_non_insn, /* luid_for_non_insn */
401 SCHED_PASS_UNKNOWN /* sched_pass_id */
402 };
403
404 /* Mapping from instruction UID to its Logical UID. */
405 vec<int> sched_luids;
406
407 /* Next LUID to assign to an instruction. */
408 int sched_max_luid = 1;
409
410 /* Haifa Instruction Data. */
411 vec<haifa_insn_data_def> h_i_d;
412
413 void (* sched_init_only_bb) (basic_block, basic_block);
414
415 /* Split block function. Different schedulers might use different functions
416 to handle their internal data consistent. */
417 basic_block (* sched_split_block) (basic_block, rtx);
418
419 /* Create empty basic block after the specified block. */
420 basic_block (* sched_create_empty_bb) (basic_block);
421
422 /* Return the number of cycles until INSN is expected to be ready.
423 Return zero if it already is. */
424 static int
425 insn_delay (rtx_insn *insn)
426 {
427 return MAX (INSN_TICK (insn) - clock_var, 0);
428 }
429
430 static int
431 may_trap_exp (const_rtx x, int is_store)
432 {
433 enum rtx_code code;
434
435 if (x == 0)
436 return TRAP_FREE;
437 code = GET_CODE (x);
438 if (is_store)
439 {
440 if (code == MEM && may_trap_p (x))
441 return TRAP_RISKY;
442 else
443 return TRAP_FREE;
444 }
445 if (code == MEM)
446 {
447 /* The insn uses memory: a volatile load. */
448 if (MEM_VOLATILE_P (x))
449 return IRISKY;
450 /* An exception-free load. */
451 if (!may_trap_p (x))
452 return IFREE;
453 /* A load with 1 base register, to be further checked. */
454 if (CONST_BASED_ADDRESS_P (XEXP (x, 0)))
455 return PFREE_CANDIDATE;
456 /* No info on the load, to be further checked. */
457 return PRISKY_CANDIDATE;
458 }
459 else
460 {
461 const char *fmt;
462 int i, insn_class = TRAP_FREE;
463
464 /* Neither store nor load, check if it may cause a trap. */
465 if (may_trap_p (x))
466 return TRAP_RISKY;
467 /* Recursive step: walk the insn... */
468 fmt = GET_RTX_FORMAT (code);
469 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
470 {
471 if (fmt[i] == 'e')
472 {
473 int tmp_class = may_trap_exp (XEXP (x, i), is_store);
474 insn_class = WORST_CLASS (insn_class, tmp_class);
475 }
476 else if (fmt[i] == 'E')
477 {
478 int j;
479 for (j = 0; j < XVECLEN (x, i); j++)
480 {
481 int tmp_class = may_trap_exp (XVECEXP (x, i, j), is_store);
482 insn_class = WORST_CLASS (insn_class, tmp_class);
483 if (insn_class == TRAP_RISKY || insn_class == IRISKY)
484 break;
485 }
486 }
487 if (insn_class == TRAP_RISKY || insn_class == IRISKY)
488 break;
489 }
490 return insn_class;
491 }
492 }
493
494 /* Classifies rtx X of an insn for the purpose of verifying that X can be
495 executed speculatively (and consequently the insn can be moved
496 speculatively), by examining X, returning:
497 TRAP_RISKY: store, or risky non-load insn (e.g. division by variable).
498 TRAP_FREE: non-load insn.
499 IFREE: load from a globally safe location.
500 IRISKY: volatile load.
501 PFREE_CANDIDATE, PRISKY_CANDIDATE: load that need to be checked for
502 being either PFREE or PRISKY. */
503
504 static int
505 haifa_classify_rtx (const_rtx x)
506 {
507 int tmp_class = TRAP_FREE;
508 int insn_class = TRAP_FREE;
509 enum rtx_code code;
510
511 if (GET_CODE (x) == PARALLEL)
512 {
513 int i, len = XVECLEN (x, 0);
514
515 for (i = len - 1; i >= 0; i--)
516 {
517 tmp_class = haifa_classify_rtx (XVECEXP (x, 0, i));
518 insn_class = WORST_CLASS (insn_class, tmp_class);
519 if (insn_class == TRAP_RISKY || insn_class == IRISKY)
520 break;
521 }
522 }
523 else
524 {
525 code = GET_CODE (x);
526 switch (code)
527 {
528 case CLOBBER:
529 /* Test if it is a 'store'. */
530 tmp_class = may_trap_exp (XEXP (x, 0), 1);
531 break;
532 case SET:
533 /* Test if it is a store. */
534 tmp_class = may_trap_exp (SET_DEST (x), 1);
535 if (tmp_class == TRAP_RISKY)
536 break;
537 /* Test if it is a load. */
538 tmp_class =
539 WORST_CLASS (tmp_class,
540 may_trap_exp (SET_SRC (x), 0));
541 break;
542 case COND_EXEC:
543 tmp_class = haifa_classify_rtx (COND_EXEC_CODE (x));
544 if (tmp_class == TRAP_RISKY)
545 break;
546 tmp_class = WORST_CLASS (tmp_class,
547 may_trap_exp (COND_EXEC_TEST (x), 0));
548 break;
549 case TRAP_IF:
550 tmp_class = TRAP_RISKY;
551 break;
552 default:;
553 }
554 insn_class = tmp_class;
555 }
556
557 return insn_class;
558 }
559
560 int
561 haifa_classify_insn (const_rtx insn)
562 {
563 return haifa_classify_rtx (PATTERN (insn));
564 }
565 \f
566 /* After the scheduler initialization function has been called, this function
567 can be called to enable modulo scheduling. II is the initiation interval
568 we should use, it affects the delays for delay_pairs that were recorded as
569 separated by a given number of stages.
570
571 MAX_STAGES provides us with a limit
572 after which we give up scheduling; the caller must have unrolled at least
573 as many copies of the loop body and recorded delay_pairs for them.
574
575 INSNS is the number of real (non-debug) insns in one iteration of
576 the loop. MAX_UID can be used to test whether an insn belongs to
577 the first iteration of the loop; all of them have a uid lower than
578 MAX_UID. */
579 void
580 set_modulo_params (int ii, int max_stages, int insns, int max_uid)
581 {
582 modulo_ii = ii;
583 modulo_max_stages = max_stages;
584 modulo_n_insns = insns;
585 modulo_iter0_max_uid = max_uid;
586 modulo_backtracks_left = param_max_modulo_backtrack_attempts;
587 }
588
589 /* A structure to record a pair of insns where the first one is a real
590 insn that has delay slots, and the second is its delayed shadow.
591 I1 is scheduled normally and will emit an assembly instruction,
592 while I2 describes the side effect that takes place at the
593 transition between cycles CYCLES and (CYCLES + 1) after I1. */
594 struct delay_pair
595 {
596 struct delay_pair *next_same_i1;
597 rtx_insn *i1, *i2;
598 int cycles;
599 /* When doing modulo scheduling, we a delay_pair can also be used to
600 show that I1 and I2 are the same insn in a different stage. If that
601 is the case, STAGES will be nonzero. */
602 int stages;
603 };
604
605 /* Helpers for delay hashing. */
606
607 struct delay_i1_hasher : nofree_ptr_hash <delay_pair>
608 {
609 typedef void *compare_type;
610 static inline hashval_t hash (const delay_pair *);
611 static inline bool equal (const delay_pair *, const void *);
612 };
613
614 /* Returns a hash value for X, based on hashing just I1. */
615
616 inline hashval_t
617 delay_i1_hasher::hash (const delay_pair *x)
618 {
619 return htab_hash_pointer (x->i1);
620 }
621
622 /* Return true if I1 of pair X is the same as that of pair Y. */
623
624 inline bool
625 delay_i1_hasher::equal (const delay_pair *x, const void *y)
626 {
627 return x->i1 == y;
628 }
629
630 struct delay_i2_hasher : free_ptr_hash <delay_pair>
631 {
632 typedef void *compare_type;
633 static inline hashval_t hash (const delay_pair *);
634 static inline bool equal (const delay_pair *, const void *);
635 };
636
637 /* Returns a hash value for X, based on hashing just I2. */
638
639 inline hashval_t
640 delay_i2_hasher::hash (const delay_pair *x)
641 {
642 return htab_hash_pointer (x->i2);
643 }
644
645 /* Return true if I2 of pair X is the same as that of pair Y. */
646
647 inline bool
648 delay_i2_hasher::equal (const delay_pair *x, const void *y)
649 {
650 return x->i2 == y;
651 }
652
653 /* Two hash tables to record delay_pairs, one indexed by I1 and the other
654 indexed by I2. */
655 static hash_table<delay_i1_hasher> *delay_htab;
656 static hash_table<delay_i2_hasher> *delay_htab_i2;
657
658 /* Called through htab_traverse. Walk the hashtable using I2 as
659 index, and delete all elements involving an UID higher than
660 that pointed to by *DATA. */
661 int
662 haifa_htab_i2_traverse (delay_pair **slot, int *data)
663 {
664 int maxuid = *data;
665 struct delay_pair *p = *slot;
666 if (INSN_UID (p->i2) >= maxuid || INSN_UID (p->i1) >= maxuid)
667 {
668 delay_htab_i2->clear_slot (slot);
669 }
670 return 1;
671 }
672
673 /* Called through htab_traverse. Walk the hashtable using I2 as
674 index, and delete all elements involving an UID higher than
675 that pointed to by *DATA. */
676 int
677 haifa_htab_i1_traverse (delay_pair **pslot, int *data)
678 {
679 int maxuid = *data;
680 struct delay_pair *p, *first, **pprev;
681
682 if (INSN_UID ((*pslot)->i1) >= maxuid)
683 {
684 delay_htab->clear_slot (pslot);
685 return 1;
686 }
687 pprev = &first;
688 for (p = *pslot; p; p = p->next_same_i1)
689 {
690 if (INSN_UID (p->i2) < maxuid)
691 {
692 *pprev = p;
693 pprev = &p->next_same_i1;
694 }
695 }
696 *pprev = NULL;
697 if (first == NULL)
698 delay_htab->clear_slot (pslot);
699 else
700 *pslot = first;
701 return 1;
702 }
703
704 /* Discard all delay pairs which involve an insn with an UID higher
705 than MAX_UID. */
706 void
707 discard_delay_pairs_above (int max_uid)
708 {
709 delay_htab->traverse <int *, haifa_htab_i1_traverse> (&max_uid);
710 delay_htab_i2->traverse <int *, haifa_htab_i2_traverse> (&max_uid);
711 }
712
713 /* This function can be called by a port just before it starts the final
714 scheduling pass. It records the fact that an instruction with delay
715 slots has been split into two insns, I1 and I2. The first one will be
716 scheduled normally and initiates the operation. The second one is a
717 shadow which must follow a specific number of cycles after I1; its only
718 purpose is to show the side effect that occurs at that cycle in the RTL.
719 If a JUMP_INSN or a CALL_INSN has been split, I1 should be a normal INSN,
720 while I2 retains the original insn type.
721
722 There are two ways in which the number of cycles can be specified,
723 involving the CYCLES and STAGES arguments to this function. If STAGES
724 is zero, we just use the value of CYCLES. Otherwise, STAGES is a factor
725 which is multiplied by MODULO_II to give the number of cycles. This is
726 only useful if the caller also calls set_modulo_params to enable modulo
727 scheduling. */
728
729 void
730 record_delay_slot_pair (rtx_insn *i1, rtx_insn *i2, int cycles, int stages)
731 {
732 struct delay_pair *p = XNEW (struct delay_pair);
733 struct delay_pair **slot;
734
735 p->i1 = i1;
736 p->i2 = i2;
737 p->cycles = cycles;
738 p->stages = stages;
739
740 if (!delay_htab)
741 {
742 delay_htab = new hash_table<delay_i1_hasher> (10);
743 delay_htab_i2 = new hash_table<delay_i2_hasher> (10);
744 }
745 slot = delay_htab->find_slot_with_hash (i1, htab_hash_pointer (i1), INSERT);
746 p->next_same_i1 = *slot;
747 *slot = p;
748 slot = delay_htab_i2->find_slot (p, INSERT);
749 *slot = p;
750 }
751
752 /* Examine the delay pair hashtable to see if INSN is a shadow for another,
753 and return the other insn if so. Return NULL otherwise. */
754 rtx_insn *
755 real_insn_for_shadow (rtx_insn *insn)
756 {
757 struct delay_pair *pair;
758
759 if (!delay_htab)
760 return NULL;
761
762 pair = delay_htab_i2->find_with_hash (insn, htab_hash_pointer (insn));
763 if (!pair || pair->stages > 0)
764 return NULL;
765 return pair->i1;
766 }
767
768 /* For a pair P of insns, return the fixed distance in cycles from the first
769 insn after which the second must be scheduled. */
770 static int
771 pair_delay (struct delay_pair *p)
772 {
773 if (p->stages == 0)
774 return p->cycles;
775 else
776 return p->stages * modulo_ii;
777 }
778
779 /* Given an insn INSN, add a dependence on its delayed shadow if it
780 has one. Also try to find situations where shadows depend on each other
781 and add dependencies to the real insns to limit the amount of backtracking
782 needed. */
783 void
784 add_delay_dependencies (rtx_insn *insn)
785 {
786 struct delay_pair *pair;
787 sd_iterator_def sd_it;
788 dep_t dep;
789
790 if (!delay_htab)
791 return;
792
793 pair = delay_htab_i2->find_with_hash (insn, htab_hash_pointer (insn));
794 if (!pair)
795 return;
796 add_dependence (insn, pair->i1, REG_DEP_ANTI);
797 if (pair->stages)
798 return;
799
800 FOR_EACH_DEP (pair->i2, SD_LIST_BACK, sd_it, dep)
801 {
802 rtx_insn *pro = DEP_PRO (dep);
803 struct delay_pair *other_pair
804 = delay_htab_i2->find_with_hash (pro, htab_hash_pointer (pro));
805 if (!other_pair || other_pair->stages)
806 continue;
807 if (pair_delay (other_pair) >= pair_delay (pair))
808 {
809 if (sched_verbose >= 4)
810 {
811 fprintf (sched_dump, ";;\tadding dependence %d <- %d\n",
812 INSN_UID (other_pair->i1),
813 INSN_UID (pair->i1));
814 fprintf (sched_dump, ";;\tpair1 %d <- %d, cost %d\n",
815 INSN_UID (pair->i1),
816 INSN_UID (pair->i2),
817 pair_delay (pair));
818 fprintf (sched_dump, ";;\tpair2 %d <- %d, cost %d\n",
819 INSN_UID (other_pair->i1),
820 INSN_UID (other_pair->i2),
821 pair_delay (other_pair));
822 }
823 add_dependence (pair->i1, other_pair->i1, REG_DEP_ANTI);
824 }
825 }
826 }
827 \f
828 /* Forward declarations. */
829
830 static int priority (rtx_insn *, bool force_recompute = false);
831 static int autopref_rank_for_schedule (const rtx_insn *, const rtx_insn *);
832 static int rank_for_schedule (const void *, const void *);
833 static void swap_sort (rtx_insn **, int);
834 static void queue_insn (rtx_insn *, int, const char *);
835 static int schedule_insn (rtx_insn *);
836 static void adjust_priority (rtx_insn *);
837 static void advance_one_cycle (void);
838 static void extend_h_i_d (void);
839
840
841 /* Notes handling mechanism:
842 =========================
843 Generally, NOTES are saved before scheduling and restored after scheduling.
844 The scheduler distinguishes between two types of notes:
845
846 (1) LOOP_BEGIN, LOOP_END, SETJMP, EHREGION_BEG, EHREGION_END notes:
847 Before scheduling a region, a pointer to the note is added to the insn
848 that follows or precedes it. (This happens as part of the data dependence
849 computation). After scheduling an insn, the pointer contained in it is
850 used for regenerating the corresponding note (in reemit_notes).
851
852 (2) All other notes (e.g. INSN_DELETED): Before scheduling a block,
853 these notes are put in a list (in rm_other_notes() and
854 unlink_other_notes ()). After scheduling the block, these notes are
855 inserted at the beginning of the block (in schedule_block()). */
856
857 static void ready_add (struct ready_list *, rtx_insn *, bool);
858 static rtx_insn *ready_remove_first (struct ready_list *);
859 static rtx_insn *ready_remove_first_dispatch (struct ready_list *ready);
860
861 static void queue_to_ready (struct ready_list *);
862 static int early_queue_to_ready (state_t, struct ready_list *);
863
864 /* The following functions are used to implement multi-pass scheduling
865 on the first cycle. */
866 static rtx_insn *ready_remove (struct ready_list *, int);
867 static void ready_remove_insn (rtx_insn *);
868
869 static void fix_inter_tick (rtx_insn *, rtx_insn *);
870 static int fix_tick_ready (rtx_insn *);
871 static void change_queue_index (rtx_insn *, int);
872
873 /* The following functions are used to implement scheduling of data/control
874 speculative instructions. */
875
876 static void extend_h_i_d (void);
877 static void init_h_i_d (rtx_insn *);
878 static int haifa_speculate_insn (rtx_insn *, ds_t, rtx *);
879 static void generate_recovery_code (rtx_insn *);
880 static void process_insn_forw_deps_be_in_spec (rtx_insn *, rtx_insn *, ds_t);
881 static void begin_speculative_block (rtx_insn *);
882 static void add_to_speculative_block (rtx_insn *);
883 static void init_before_recovery (basic_block *);
884 static void create_check_block_twin (rtx_insn *, bool);
885 static void fix_recovery_deps (basic_block);
886 static bool haifa_change_pattern (rtx_insn *, rtx);
887 static void dump_new_block_header (int, basic_block, rtx_insn *, rtx_insn *);
888 static void restore_bb_notes (basic_block);
889 static void fix_jump_move (rtx_insn *);
890 static void move_block_after_check (rtx_insn *);
891 static void move_succs (vec<edge, va_gc> **, basic_block);
892 static void sched_remove_insn (rtx_insn *);
893 static void clear_priorities (rtx_insn *, rtx_vec_t *);
894 static void calc_priorities (rtx_vec_t);
895 static void add_jump_dependencies (rtx_insn *, rtx_insn *);
896
897 #endif /* INSN_SCHEDULING */
898 \f
899 /* Point to state used for the current scheduling pass. */
900 struct haifa_sched_info *current_sched_info;
901 \f
902 #ifndef INSN_SCHEDULING
903 void
904 schedule_insns (void)
905 {
906 }
907 #else
908
909 /* Do register pressure sensitive insn scheduling if the flag is set
910 up. */
911 enum sched_pressure_algorithm sched_pressure;
912
913 /* Map regno -> its pressure class. The map defined only when
914 SCHED_PRESSURE != SCHED_PRESSURE_NONE. */
915 enum reg_class *sched_regno_pressure_class;
916
917 /* The current register pressure. Only elements corresponding pressure
918 classes are defined. */
919 static int curr_reg_pressure[N_REG_CLASSES];
920
921 /* Saved value of the previous array. */
922 static int saved_reg_pressure[N_REG_CLASSES];
923
924 /* Register living at given scheduling point. */
925 static bitmap curr_reg_live;
926
927 /* Saved value of the previous array. */
928 static bitmap saved_reg_live;
929
930 /* Registers mentioned in the current region. */
931 static bitmap region_ref_regs;
932
933 /* Temporary bitmap used for SCHED_PRESSURE_MODEL. */
934 static bitmap tmp_bitmap;
935
936 /* Effective number of available registers of a given class (see comment
937 in sched_pressure_start_bb). */
938 static int sched_class_regs_num[N_REG_CLASSES];
939 /* The number of registers that the function would need to save before it
940 uses them, and the number of fixed_regs. Helpers for calculating of
941 sched_class_regs_num. */
942 static int call_saved_regs_num[N_REG_CLASSES];
943 static int fixed_regs_num[N_REG_CLASSES];
944
945 /* Initiate register pressure relative info for scheduling the current
946 region. Currently it is only clearing register mentioned in the
947 current region. */
948 void
949 sched_init_region_reg_pressure_info (void)
950 {
951 bitmap_clear (region_ref_regs);
952 }
953
954 /* PRESSURE[CL] describes the pressure on register class CL. Update it
955 for the birth (if BIRTH_P) or death (if !BIRTH_P) of register REGNO.
956 LIVE tracks the set of live registers; if it is null, assume that
957 every birth or death is genuine. */
958 static inline void
959 mark_regno_birth_or_death (bitmap live, int *pressure, int regno, bool birth_p)
960 {
961 enum reg_class pressure_class;
962
963 pressure_class = sched_regno_pressure_class[regno];
964 if (regno >= FIRST_PSEUDO_REGISTER)
965 {
966 if (pressure_class != NO_REGS)
967 {
968 if (birth_p)
969 {
970 if (!live || bitmap_set_bit (live, regno))
971 pressure[pressure_class]
972 += (ira_reg_class_max_nregs
973 [pressure_class][PSEUDO_REGNO_MODE (regno)]);
974 }
975 else
976 {
977 if (!live || bitmap_clear_bit (live, regno))
978 pressure[pressure_class]
979 -= (ira_reg_class_max_nregs
980 [pressure_class][PSEUDO_REGNO_MODE (regno)]);
981 }
982 }
983 }
984 else if (pressure_class != NO_REGS
985 && ! TEST_HARD_REG_BIT (ira_no_alloc_regs, regno))
986 {
987 if (birth_p)
988 {
989 if (!live || bitmap_set_bit (live, regno))
990 pressure[pressure_class]++;
991 }
992 else
993 {
994 if (!live || bitmap_clear_bit (live, regno))
995 pressure[pressure_class]--;
996 }
997 }
998 }
999
1000 /* Initiate current register pressure related info from living
1001 registers given by LIVE. */
1002 static void
1003 initiate_reg_pressure_info (bitmap live)
1004 {
1005 int i;
1006 unsigned int j;
1007 bitmap_iterator bi;
1008
1009 for (i = 0; i < ira_pressure_classes_num; i++)
1010 curr_reg_pressure[ira_pressure_classes[i]] = 0;
1011 bitmap_clear (curr_reg_live);
1012 EXECUTE_IF_SET_IN_BITMAP (live, 0, j, bi)
1013 if (sched_pressure == SCHED_PRESSURE_MODEL
1014 || current_nr_blocks == 1
1015 || bitmap_bit_p (region_ref_regs, j))
1016 mark_regno_birth_or_death (curr_reg_live, curr_reg_pressure, j, true);
1017 }
1018
1019 /* Mark registers in X as mentioned in the current region. */
1020 static void
1021 setup_ref_regs (rtx x)
1022 {
1023 int i, j;
1024 const RTX_CODE code = GET_CODE (x);
1025 const char *fmt;
1026
1027 if (REG_P (x))
1028 {
1029 bitmap_set_range (region_ref_regs, REGNO (x), REG_NREGS (x));
1030 return;
1031 }
1032 fmt = GET_RTX_FORMAT (code);
1033 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1034 if (fmt[i] == 'e')
1035 setup_ref_regs (XEXP (x, i));
1036 else if (fmt[i] == 'E')
1037 {
1038 for (j = 0; j < XVECLEN (x, i); j++)
1039 setup_ref_regs (XVECEXP (x, i, j));
1040 }
1041 }
1042
1043 /* Initiate current register pressure related info at the start of
1044 basic block BB. */
1045 static void
1046 initiate_bb_reg_pressure_info (basic_block bb)
1047 {
1048 unsigned int i ATTRIBUTE_UNUSED;
1049 rtx_insn *insn;
1050
1051 if (current_nr_blocks > 1)
1052 FOR_BB_INSNS (bb, insn)
1053 if (NONDEBUG_INSN_P (insn))
1054 setup_ref_regs (PATTERN (insn));
1055 initiate_reg_pressure_info (df_get_live_in (bb));
1056 if (bb_has_eh_pred (bb))
1057 for (i = 0; ; ++i)
1058 {
1059 unsigned int regno = EH_RETURN_DATA_REGNO (i);
1060
1061 if (regno == INVALID_REGNUM)
1062 break;
1063 if (! bitmap_bit_p (df_get_live_in (bb), regno))
1064 mark_regno_birth_or_death (curr_reg_live, curr_reg_pressure,
1065 regno, true);
1066 }
1067 }
1068
1069 /* Save current register pressure related info. */
1070 static void
1071 save_reg_pressure (void)
1072 {
1073 int i;
1074
1075 for (i = 0; i < ira_pressure_classes_num; i++)
1076 saved_reg_pressure[ira_pressure_classes[i]]
1077 = curr_reg_pressure[ira_pressure_classes[i]];
1078 bitmap_copy (saved_reg_live, curr_reg_live);
1079 }
1080
1081 /* Restore saved register pressure related info. */
1082 static void
1083 restore_reg_pressure (void)
1084 {
1085 int i;
1086
1087 for (i = 0; i < ira_pressure_classes_num; i++)
1088 curr_reg_pressure[ira_pressure_classes[i]]
1089 = saved_reg_pressure[ira_pressure_classes[i]];
1090 bitmap_copy (curr_reg_live, saved_reg_live);
1091 }
1092
1093 /* Return TRUE if the register is dying after its USE. */
1094 static bool
1095 dying_use_p (struct reg_use_data *use)
1096 {
1097 struct reg_use_data *next;
1098
1099 for (next = use->next_regno_use; next != use; next = next->next_regno_use)
1100 if (NONDEBUG_INSN_P (next->insn)
1101 && QUEUE_INDEX (next->insn) != QUEUE_SCHEDULED)
1102 return false;
1103 return true;
1104 }
1105
1106 /* Print info about the current register pressure and its excess for
1107 each pressure class. */
1108 static void
1109 print_curr_reg_pressure (void)
1110 {
1111 int i;
1112 enum reg_class cl;
1113
1114 fprintf (sched_dump, ";;\t");
1115 for (i = 0; i < ira_pressure_classes_num; i++)
1116 {
1117 cl = ira_pressure_classes[i];
1118 gcc_assert (curr_reg_pressure[cl] >= 0);
1119 fprintf (sched_dump, " %s:%d(%d)", reg_class_names[cl],
1120 curr_reg_pressure[cl],
1121 curr_reg_pressure[cl] - sched_class_regs_num[cl]);
1122 }
1123 fprintf (sched_dump, "\n");
1124 }
1125 \f
1126 /* Determine if INSN has a condition that is clobbered if a register
1127 in SET_REGS is modified. */
1128 static bool
1129 cond_clobbered_p (rtx_insn *insn, HARD_REG_SET set_regs)
1130 {
1131 rtx pat = PATTERN (insn);
1132 gcc_assert (GET_CODE (pat) == COND_EXEC);
1133 if (TEST_HARD_REG_BIT (set_regs, REGNO (XEXP (COND_EXEC_TEST (pat), 0))))
1134 {
1135 sd_iterator_def sd_it;
1136 dep_t dep;
1137 haifa_change_pattern (insn, ORIG_PAT (insn));
1138 FOR_EACH_DEP (insn, SD_LIST_BACK, sd_it, dep)
1139 DEP_STATUS (dep) &= ~DEP_CANCELLED;
1140 TODO_SPEC (insn) = HARD_DEP;
1141 if (sched_verbose >= 2)
1142 fprintf (sched_dump,
1143 ";;\t\tdequeue insn %s because of clobbered condition\n",
1144 (*current_sched_info->print_insn) (insn, 0));
1145 return true;
1146 }
1147
1148 return false;
1149 }
1150
1151 /* This function should be called after modifying the pattern of INSN,
1152 to update scheduler data structures as needed. */
1153 static void
1154 update_insn_after_change (rtx_insn *insn)
1155 {
1156 sd_iterator_def sd_it;
1157 dep_t dep;
1158
1159 dfa_clear_single_insn_cache (insn);
1160
1161 sd_it = sd_iterator_start (insn,
1162 SD_LIST_FORW | SD_LIST_BACK | SD_LIST_RES_BACK);
1163 while (sd_iterator_cond (&sd_it, &dep))
1164 {
1165 DEP_COST (dep) = UNKNOWN_DEP_COST;
1166 sd_iterator_next (&sd_it);
1167 }
1168
1169 /* Invalidate INSN_COST, so it'll be recalculated. */
1170 INSN_COST (insn) = -1;
1171 /* Invalidate INSN_TICK, so it'll be recalculated. */
1172 INSN_TICK (insn) = INVALID_TICK;
1173
1174 /* Invalidate autoprefetch data entry. */
1175 INSN_AUTOPREF_MULTIPASS_DATA (insn)[0].status
1176 = AUTOPREF_MULTIPASS_DATA_UNINITIALIZED;
1177 INSN_AUTOPREF_MULTIPASS_DATA (insn)[1].status
1178 = AUTOPREF_MULTIPASS_DATA_UNINITIALIZED;
1179 }
1180
1181
1182 /* Two VECs, one to hold dependencies for which pattern replacements
1183 need to be applied or restored at the start of the next cycle, and
1184 another to hold an integer that is either one, to apply the
1185 corresponding replacement, or zero to restore it. */
1186 static vec<dep_t> next_cycle_replace_deps;
1187 static vec<int> next_cycle_apply;
1188
1189 static void apply_replacement (dep_t, bool);
1190 static void restore_pattern (dep_t, bool);
1191
1192 /* Look at the remaining dependencies for insn NEXT, and compute and return
1193 the TODO_SPEC value we should use for it. This is called after one of
1194 NEXT's dependencies has been resolved.
1195 We also perform pattern replacements for predication, and for broken
1196 replacement dependencies. The latter is only done if FOR_BACKTRACK is
1197 false. */
1198
1199 static ds_t
1200 recompute_todo_spec (rtx_insn *next, bool for_backtrack)
1201 {
1202 ds_t new_ds;
1203 sd_iterator_def sd_it;
1204 dep_t dep, modify_dep = NULL;
1205 int n_spec = 0;
1206 int n_control = 0;
1207 int n_replace = 0;
1208 bool first_p = true;
1209
1210 if (sd_lists_empty_p (next, SD_LIST_BACK))
1211 /* NEXT has all its dependencies resolved. */
1212 return 0;
1213
1214 if (!sd_lists_empty_p (next, SD_LIST_HARD_BACK))
1215 return HARD_DEP;
1216
1217 /* If NEXT is intended to sit adjacent to this instruction, we don't
1218 want to try to break any dependencies. Treat it as a HARD_DEP. */
1219 if (SCHED_GROUP_P (next))
1220 return HARD_DEP;
1221
1222 /* Now we've got NEXT with speculative deps only.
1223 1. Look at the deps to see what we have to do.
1224 2. Check if we can do 'todo'. */
1225 new_ds = 0;
1226
1227 FOR_EACH_DEP (next, SD_LIST_BACK, sd_it, dep)
1228 {
1229 rtx_insn *pro = DEP_PRO (dep);
1230 ds_t ds = DEP_STATUS (dep) & SPECULATIVE;
1231
1232 if (DEBUG_INSN_P (pro) && !DEBUG_INSN_P (next))
1233 continue;
1234
1235 if (ds)
1236 {
1237 n_spec++;
1238 if (first_p)
1239 {
1240 first_p = false;
1241
1242 new_ds = ds;
1243 }
1244 else
1245 new_ds = ds_merge (new_ds, ds);
1246 }
1247 else if (DEP_TYPE (dep) == REG_DEP_CONTROL)
1248 {
1249 if (QUEUE_INDEX (pro) != QUEUE_SCHEDULED)
1250 {
1251 n_control++;
1252 modify_dep = dep;
1253 }
1254 DEP_STATUS (dep) &= ~DEP_CANCELLED;
1255 }
1256 else if (DEP_REPLACE (dep) != NULL)
1257 {
1258 if (QUEUE_INDEX (pro) != QUEUE_SCHEDULED)
1259 {
1260 n_replace++;
1261 modify_dep = dep;
1262 }
1263 DEP_STATUS (dep) &= ~DEP_CANCELLED;
1264 }
1265 }
1266
1267 if (n_replace > 0 && n_control == 0 && n_spec == 0)
1268 {
1269 if (!dbg_cnt (sched_breakdep))
1270 return HARD_DEP;
1271 FOR_EACH_DEP (next, SD_LIST_BACK, sd_it, dep)
1272 {
1273 struct dep_replacement *desc = DEP_REPLACE (dep);
1274 if (desc != NULL)
1275 {
1276 if (desc->insn == next && !for_backtrack)
1277 {
1278 gcc_assert (n_replace == 1);
1279 apply_replacement (dep, true);
1280 }
1281 DEP_STATUS (dep) |= DEP_CANCELLED;
1282 }
1283 }
1284 return 0;
1285 }
1286
1287 else if (n_control == 1 && n_replace == 0 && n_spec == 0)
1288 {
1289 rtx_insn *pro, *other;
1290 rtx new_pat;
1291 rtx cond = NULL_RTX;
1292 bool success;
1293 rtx_insn *prev = NULL;
1294 int i;
1295 unsigned regno;
1296
1297 if ((current_sched_info->flags & DO_PREDICATION) == 0
1298 || (ORIG_PAT (next) != NULL_RTX
1299 && PREDICATED_PAT (next) == NULL_RTX))
1300 return HARD_DEP;
1301
1302 pro = DEP_PRO (modify_dep);
1303 other = real_insn_for_shadow (pro);
1304 if (other != NULL_RTX)
1305 pro = other;
1306
1307 cond = sched_get_reverse_condition_uncached (pro);
1308 regno = REGNO (XEXP (cond, 0));
1309
1310 /* Find the last scheduled insn that modifies the condition register.
1311 We can stop looking once we find the insn we depend on through the
1312 REG_DEP_CONTROL; if the condition register isn't modified after it,
1313 we know that it still has the right value. */
1314 if (QUEUE_INDEX (pro) == QUEUE_SCHEDULED)
1315 FOR_EACH_VEC_ELT_REVERSE (scheduled_insns, i, prev)
1316 {
1317 HARD_REG_SET t;
1318
1319 find_all_hard_reg_sets (prev, &t, true);
1320 if (TEST_HARD_REG_BIT (t, regno))
1321 return HARD_DEP;
1322 if (prev == pro)
1323 break;
1324 }
1325 if (ORIG_PAT (next) == NULL_RTX)
1326 {
1327 ORIG_PAT (next) = PATTERN (next);
1328
1329 new_pat = gen_rtx_COND_EXEC (VOIDmode, cond, PATTERN (next));
1330 success = haifa_change_pattern (next, new_pat);
1331 if (!success)
1332 return HARD_DEP;
1333 PREDICATED_PAT (next) = new_pat;
1334 }
1335 else if (PATTERN (next) != PREDICATED_PAT (next))
1336 {
1337 bool success = haifa_change_pattern (next,
1338 PREDICATED_PAT (next));
1339 gcc_assert (success);
1340 }
1341 DEP_STATUS (modify_dep) |= DEP_CANCELLED;
1342 return DEP_CONTROL;
1343 }
1344
1345 if (PREDICATED_PAT (next) != NULL_RTX)
1346 {
1347 int tick = INSN_TICK (next);
1348 bool success = haifa_change_pattern (next,
1349 ORIG_PAT (next));
1350 INSN_TICK (next) = tick;
1351 gcc_assert (success);
1352 }
1353
1354 /* We can't handle the case where there are both speculative and control
1355 dependencies, so we return HARD_DEP in such a case. Also fail if
1356 we have speculative dependencies with not enough points, or more than
1357 one control dependency. */
1358 if ((n_spec > 0 && (n_control > 0 || n_replace > 0))
1359 || (n_spec > 0
1360 /* Too few points? */
1361 && ds_weak (new_ds) < spec_info->data_weakness_cutoff)
1362 || n_control > 0
1363 || n_replace > 0)
1364 return HARD_DEP;
1365
1366 return new_ds;
1367 }
1368 \f
1369 /* Pointer to the last instruction scheduled. */
1370 static rtx_insn *last_scheduled_insn;
1371
1372 /* Pointer to the last nondebug instruction scheduled within the
1373 block, or the prev_head of the scheduling block. Used by
1374 rank_for_schedule, so that insns independent of the last scheduled
1375 insn will be preferred over dependent instructions. */
1376 static rtx_insn *last_nondebug_scheduled_insn;
1377
1378 /* Pointer that iterates through the list of unscheduled insns if we
1379 have a dbg_cnt enabled. It always points at an insn prior to the
1380 first unscheduled one. */
1381 static rtx_insn *nonscheduled_insns_begin;
1382
1383 /* Compute cost of executing INSN.
1384 This is the number of cycles between instruction issue and
1385 instruction results. */
1386 int
1387 insn_sched_cost (rtx_insn *insn)
1388 {
1389 int cost;
1390
1391 if (sched_fusion)
1392 return 0;
1393
1394 if (sel_sched_p ())
1395 {
1396 if (recog_memoized (insn) < 0)
1397 return 0;
1398
1399 cost = insn_default_latency (insn);
1400 if (cost < 0)
1401 cost = 0;
1402
1403 return cost;
1404 }
1405
1406 cost = INSN_COST (insn);
1407
1408 if (cost < 0)
1409 {
1410 /* A USE insn, or something else we don't need to
1411 understand. We can't pass these directly to
1412 result_ready_cost or insn_default_latency because it will
1413 trigger a fatal error for unrecognizable insns. */
1414 if (recog_memoized (insn) < 0)
1415 {
1416 INSN_COST (insn) = 0;
1417 return 0;
1418 }
1419 else
1420 {
1421 cost = insn_default_latency (insn);
1422 if (cost < 0)
1423 cost = 0;
1424
1425 INSN_COST (insn) = cost;
1426 }
1427 }
1428
1429 return cost;
1430 }
1431
1432 /* Compute cost of dependence LINK.
1433 This is the number of cycles between instruction issue and
1434 instruction results.
1435 ??? We also use this function to call recog_memoized on all insns. */
1436 int
1437 dep_cost_1 (dep_t link, dw_t dw)
1438 {
1439 rtx_insn *insn = DEP_PRO (link);
1440 rtx_insn *used = DEP_CON (link);
1441 int cost;
1442
1443 if (DEP_COST (link) != UNKNOWN_DEP_COST)
1444 return DEP_COST (link);
1445
1446 if (delay_htab)
1447 {
1448 struct delay_pair *delay_entry;
1449 delay_entry
1450 = delay_htab_i2->find_with_hash (used, htab_hash_pointer (used));
1451 if (delay_entry)
1452 {
1453 if (delay_entry->i1 == insn)
1454 {
1455 DEP_COST (link) = pair_delay (delay_entry);
1456 return DEP_COST (link);
1457 }
1458 }
1459 }
1460
1461 /* A USE insn should never require the value used to be computed.
1462 This allows the computation of a function's result and parameter
1463 values to overlap the return and call. We don't care about the
1464 dependence cost when only decreasing register pressure. */
1465 if (recog_memoized (used) < 0)
1466 {
1467 cost = 0;
1468 recog_memoized (insn);
1469 }
1470 else
1471 {
1472 enum reg_note dep_type = DEP_TYPE (link);
1473
1474 cost = insn_sched_cost (insn);
1475
1476 if (INSN_CODE (insn) >= 0)
1477 {
1478 if (dep_type == REG_DEP_ANTI)
1479 cost = 0;
1480 else if (dep_type == REG_DEP_OUTPUT)
1481 {
1482 cost = (insn_default_latency (insn)
1483 - insn_default_latency (used));
1484 if (cost <= 0)
1485 cost = 1;
1486 }
1487 else if (bypass_p (insn))
1488 cost = insn_latency (insn, used);
1489 }
1490
1491
1492 if (targetm.sched.adjust_cost)
1493 cost = targetm.sched.adjust_cost (used, (int) dep_type, insn, cost,
1494 dw);
1495
1496 if (cost < 0)
1497 cost = 0;
1498 }
1499
1500 DEP_COST (link) = cost;
1501 return cost;
1502 }
1503
1504 /* Compute cost of dependence LINK.
1505 This is the number of cycles between instruction issue and
1506 instruction results. */
1507 int
1508 dep_cost (dep_t link)
1509 {
1510 return dep_cost_1 (link, 0);
1511 }
1512
1513 /* Use this sel-sched.c friendly function in reorder2 instead of increasing
1514 INSN_PRIORITY explicitly. */
1515 void
1516 increase_insn_priority (rtx_insn *insn, int amount)
1517 {
1518 if (!sel_sched_p ())
1519 {
1520 /* We're dealing with haifa-sched.c INSN_PRIORITY. */
1521 if (INSN_PRIORITY_KNOWN (insn))
1522 INSN_PRIORITY (insn) += amount;
1523 }
1524 else
1525 {
1526 /* In sel-sched.c INSN_PRIORITY is not kept up to date.
1527 Use EXPR_PRIORITY instead. */
1528 sel_add_to_insn_priority (insn, amount);
1529 }
1530 }
1531
1532 /* Return 'true' if DEP should be included in priority calculations. */
1533 static bool
1534 contributes_to_priority_p (dep_t dep)
1535 {
1536 if (DEBUG_INSN_P (DEP_CON (dep))
1537 || DEBUG_INSN_P (DEP_PRO (dep)))
1538 return false;
1539
1540 /* Critical path is meaningful in block boundaries only. */
1541 if (!current_sched_info->contributes_to_priority (DEP_CON (dep),
1542 DEP_PRO (dep)))
1543 return false;
1544
1545 if (DEP_REPLACE (dep) != NULL)
1546 return false;
1547
1548 /* If flag COUNT_SPEC_IN_CRITICAL_PATH is set,
1549 then speculative instructions will less likely be
1550 scheduled. That is because the priority of
1551 their producers will increase, and, thus, the
1552 producers will more likely be scheduled, thus,
1553 resolving the dependence. */
1554 if (sched_deps_info->generate_spec_deps
1555 && !(spec_info->flags & COUNT_SPEC_IN_CRITICAL_PATH)
1556 && (DEP_STATUS (dep) & SPECULATIVE))
1557 return false;
1558
1559 return true;
1560 }
1561
1562 /* Compute the number of nondebug deps in list LIST for INSN. */
1563
1564 static int
1565 dep_list_size (rtx_insn *insn, sd_list_types_def list)
1566 {
1567 sd_iterator_def sd_it;
1568 dep_t dep;
1569 int dbgcount = 0, nodbgcount = 0;
1570
1571 if (!MAY_HAVE_DEBUG_INSNS)
1572 return sd_lists_size (insn, list);
1573
1574 FOR_EACH_DEP (insn, list, sd_it, dep)
1575 {
1576 if (DEBUG_INSN_P (DEP_CON (dep)))
1577 dbgcount++;
1578 else if (!DEBUG_INSN_P (DEP_PRO (dep)))
1579 nodbgcount++;
1580 }
1581
1582 gcc_assert (dbgcount + nodbgcount == sd_lists_size (insn, list));
1583
1584 return nodbgcount;
1585 }
1586
1587 bool sched_fusion;
1588
1589 /* Compute the priority number for INSN. */
1590 static int
1591 priority (rtx_insn *insn, bool force_recompute)
1592 {
1593 if (! INSN_P (insn))
1594 return 0;
1595
1596 /* We should not be interested in priority of an already scheduled insn. */
1597 gcc_assert (QUEUE_INDEX (insn) != QUEUE_SCHEDULED);
1598
1599 if (force_recompute || !INSN_PRIORITY_KNOWN (insn))
1600 {
1601 int this_priority = -1;
1602
1603 if (sched_fusion)
1604 {
1605 int this_fusion_priority;
1606
1607 targetm.sched.fusion_priority (insn, FUSION_MAX_PRIORITY,
1608 &this_fusion_priority, &this_priority);
1609 INSN_FUSION_PRIORITY (insn) = this_fusion_priority;
1610 }
1611 else if (dep_list_size (insn, SD_LIST_FORW) == 0)
1612 /* ??? We should set INSN_PRIORITY to insn_sched_cost when and insn
1613 has some forward deps but all of them are ignored by
1614 contributes_to_priority hook. At the moment we set priority of
1615 such insn to 0. */
1616 this_priority = insn_sched_cost (insn);
1617 else
1618 {
1619 rtx_insn *prev_first, *twin;
1620 basic_block rec;
1621
1622 /* For recovery check instructions we calculate priority slightly
1623 different than that of normal instructions. Instead of walking
1624 through INSN_FORW_DEPS (check) list, we walk through
1625 INSN_FORW_DEPS list of each instruction in the corresponding
1626 recovery block. */
1627
1628 /* Selective scheduling does not define RECOVERY_BLOCK macro. */
1629 rec = sel_sched_p () ? NULL : RECOVERY_BLOCK (insn);
1630 if (!rec || rec == EXIT_BLOCK_PTR_FOR_FN (cfun))
1631 {
1632 prev_first = PREV_INSN (insn);
1633 twin = insn;
1634 }
1635 else
1636 {
1637 prev_first = NEXT_INSN (BB_HEAD (rec));
1638 twin = PREV_INSN (BB_END (rec));
1639 }
1640
1641 do
1642 {
1643 sd_iterator_def sd_it;
1644 dep_t dep;
1645
1646 FOR_EACH_DEP (twin, SD_LIST_FORW, sd_it, dep)
1647 {
1648 rtx_insn *next;
1649 int next_priority;
1650
1651 next = DEP_CON (dep);
1652
1653 if (BLOCK_FOR_INSN (next) != rec)
1654 {
1655 int cost;
1656
1657 if (!contributes_to_priority_p (dep))
1658 continue;
1659
1660 if (twin == insn)
1661 cost = dep_cost (dep);
1662 else
1663 {
1664 struct _dep _dep1, *dep1 = &_dep1;
1665
1666 init_dep (dep1, insn, next, REG_DEP_ANTI);
1667
1668 cost = dep_cost (dep1);
1669 }
1670
1671 next_priority = cost + priority (next);
1672
1673 if (next_priority > this_priority)
1674 this_priority = next_priority;
1675 }
1676 }
1677
1678 twin = PREV_INSN (twin);
1679 }
1680 while (twin != prev_first);
1681 }
1682
1683 if (this_priority < 0)
1684 {
1685 gcc_assert (this_priority == -1);
1686
1687 this_priority = insn_sched_cost (insn);
1688 }
1689
1690 INSN_PRIORITY (insn) = this_priority;
1691 INSN_PRIORITY_STATUS (insn) = 1;
1692 }
1693
1694 return INSN_PRIORITY (insn);
1695 }
1696 \f
1697 /* Macros and functions for keeping the priority queue sorted, and
1698 dealing with queuing and dequeuing of instructions. */
1699
1700 /* For each pressure class CL, set DEATH[CL] to the number of registers
1701 in that class that die in INSN. */
1702
1703 static void
1704 calculate_reg_deaths (rtx_insn *insn, int *death)
1705 {
1706 int i;
1707 struct reg_use_data *use;
1708
1709 for (i = 0; i < ira_pressure_classes_num; i++)
1710 death[ira_pressure_classes[i]] = 0;
1711 for (use = INSN_REG_USE_LIST (insn); use != NULL; use = use->next_insn_use)
1712 if (dying_use_p (use))
1713 mark_regno_birth_or_death (0, death, use->regno, true);
1714 }
1715
1716 /* Setup info about the current register pressure impact of scheduling
1717 INSN at the current scheduling point. */
1718 static void
1719 setup_insn_reg_pressure_info (rtx_insn *insn)
1720 {
1721 int i, change, before, after, hard_regno;
1722 int excess_cost_change;
1723 machine_mode mode;
1724 enum reg_class cl;
1725 struct reg_pressure_data *pressure_info;
1726 int *max_reg_pressure;
1727 static int death[N_REG_CLASSES];
1728
1729 gcc_checking_assert (!DEBUG_INSN_P (insn));
1730
1731 excess_cost_change = 0;
1732 calculate_reg_deaths (insn, death);
1733 pressure_info = INSN_REG_PRESSURE (insn);
1734 max_reg_pressure = INSN_MAX_REG_PRESSURE (insn);
1735 gcc_assert (pressure_info != NULL && max_reg_pressure != NULL);
1736 for (i = 0; i < ira_pressure_classes_num; i++)
1737 {
1738 cl = ira_pressure_classes[i];
1739 gcc_assert (curr_reg_pressure[cl] >= 0);
1740 change = (int) pressure_info[i].set_increase - death[cl];
1741 before = MAX (0, max_reg_pressure[i] - sched_class_regs_num[cl]);
1742 after = MAX (0, max_reg_pressure[i] + change
1743 - sched_class_regs_num[cl]);
1744 hard_regno = ira_class_hard_regs[cl][0];
1745 gcc_assert (hard_regno >= 0);
1746 mode = reg_raw_mode[hard_regno];
1747 excess_cost_change += ((after - before)
1748 * (ira_memory_move_cost[mode][cl][0]
1749 + ira_memory_move_cost[mode][cl][1]));
1750 }
1751 INSN_REG_PRESSURE_EXCESS_COST_CHANGE (insn) = excess_cost_change;
1752 }
1753 \f
1754 /* This is the first page of code related to SCHED_PRESSURE_MODEL.
1755 It tries to make the scheduler take register pressure into account
1756 without introducing too many unnecessary stalls. It hooks into the
1757 main scheduling algorithm at several points:
1758
1759 - Before scheduling starts, model_start_schedule constructs a
1760 "model schedule" for the current block. This model schedule is
1761 chosen solely to keep register pressure down. It does not take the
1762 target's pipeline or the original instruction order into account,
1763 except as a tie-breaker. It also doesn't work to a particular
1764 pressure limit.
1765
1766 This model schedule gives us an idea of what pressure can be
1767 achieved for the block and gives us an example of a schedule that
1768 keeps to that pressure. It also makes the final schedule less
1769 dependent on the original instruction order. This is important
1770 because the original order can either be "wide" (many values live
1771 at once, such as in user-scheduled code) or "narrow" (few values
1772 live at once, such as after loop unrolling, where several
1773 iterations are executed sequentially).
1774
1775 We do not apply this model schedule to the rtx stream. We simply
1776 record it in model_schedule. We also compute the maximum pressure,
1777 MP, that was seen during this schedule.
1778
1779 - Instructions are added to the ready queue even if they require
1780 a stall. The length of the stall is instead computed as:
1781
1782 MAX (INSN_TICK (INSN) - clock_var, 0)
1783
1784 (= insn_delay). This allows rank_for_schedule to choose between
1785 introducing a deliberate stall or increasing pressure.
1786
1787 - Before sorting the ready queue, model_set_excess_costs assigns
1788 a pressure-based cost to each ready instruction in the queue.
1789 This is the instruction's INSN_REG_PRESSURE_EXCESS_COST_CHANGE
1790 (ECC for short) and is effectively measured in cycles.
1791
1792 - rank_for_schedule ranks instructions based on:
1793
1794 ECC (insn) + insn_delay (insn)
1795
1796 then as:
1797
1798 insn_delay (insn)
1799
1800 So, for example, an instruction X1 with an ECC of 1 that can issue
1801 now will win over an instruction X0 with an ECC of zero that would
1802 introduce a stall of one cycle. However, an instruction X2 with an
1803 ECC of 2 that can issue now will lose to both X0 and X1.
1804
1805 - When an instruction is scheduled, model_recompute updates the model
1806 schedule with the new pressures (some of which might now exceed the
1807 original maximum pressure MP). model_update_limit_points then searches
1808 for the new point of maximum pressure, if not already known. */
1809
1810 /* Used to separate high-verbosity debug information for SCHED_PRESSURE_MODEL
1811 from surrounding debug information. */
1812 #define MODEL_BAR \
1813 ";;\t\t+------------------------------------------------------\n"
1814
1815 /* Information about the pressure on a particular register class at a
1816 particular point of the model schedule. */
1817 struct model_pressure_data {
1818 /* The pressure at this point of the model schedule, or -1 if the
1819 point is associated with an instruction that has already been
1820 scheduled. */
1821 int ref_pressure;
1822
1823 /* The maximum pressure during or after this point of the model schedule. */
1824 int max_pressure;
1825 };
1826
1827 /* Per-instruction information that is used while building the model
1828 schedule. Here, "schedule" refers to the model schedule rather
1829 than the main schedule. */
1830 struct model_insn_info {
1831 /* The instruction itself. */
1832 rtx_insn *insn;
1833
1834 /* If this instruction is in model_worklist, these fields link to the
1835 previous (higher-priority) and next (lower-priority) instructions
1836 in the list. */
1837 struct model_insn_info *prev;
1838 struct model_insn_info *next;
1839
1840 /* While constructing the schedule, QUEUE_INDEX describes whether an
1841 instruction has already been added to the schedule (QUEUE_SCHEDULED),
1842 is in model_worklist (QUEUE_READY), or neither (QUEUE_NOWHERE).
1843 old_queue records the value that QUEUE_INDEX had before scheduling
1844 started, so that we can restore it once the schedule is complete. */
1845 int old_queue;
1846
1847 /* The relative importance of an unscheduled instruction. Higher
1848 values indicate greater importance. */
1849 unsigned int model_priority;
1850
1851 /* The length of the longest path of satisfied true dependencies
1852 that leads to this instruction. */
1853 unsigned int depth;
1854
1855 /* The length of the longest path of dependencies of any kind
1856 that leads from this instruction. */
1857 unsigned int alap;
1858
1859 /* The number of predecessor nodes that must still be scheduled. */
1860 int unscheduled_preds;
1861 };
1862
1863 /* Information about the pressure limit for a particular register class.
1864 This structure is used when applying a model schedule to the main
1865 schedule. */
1866 struct model_pressure_limit {
1867 /* The maximum register pressure seen in the original model schedule. */
1868 int orig_pressure;
1869
1870 /* The maximum register pressure seen in the current model schedule
1871 (which excludes instructions that have already been scheduled). */
1872 int pressure;
1873
1874 /* The point of the current model schedule at which PRESSURE is first
1875 reached. It is set to -1 if the value needs to be recomputed. */
1876 int point;
1877 };
1878
1879 /* Describes a particular way of measuring register pressure. */
1880 struct model_pressure_group {
1881 /* Index PCI describes the maximum pressure on ira_pressure_classes[PCI]. */
1882 struct model_pressure_limit limits[N_REG_CLASSES];
1883
1884 /* Index (POINT * ira_num_pressure_classes + PCI) describes the pressure
1885 on register class ira_pressure_classes[PCI] at point POINT of the
1886 current model schedule. A POINT of model_num_insns describes the
1887 pressure at the end of the schedule. */
1888 struct model_pressure_data *model;
1889 };
1890
1891 /* Index POINT gives the instruction at point POINT of the model schedule.
1892 This array doesn't change during main scheduling. */
1893 static vec<rtx_insn *> model_schedule;
1894
1895 /* The list of instructions in the model worklist, sorted in order of
1896 decreasing priority. */
1897 static struct model_insn_info *model_worklist;
1898
1899 /* Index I describes the instruction with INSN_LUID I. */
1900 static struct model_insn_info *model_insns;
1901
1902 /* The number of instructions in the model schedule. */
1903 static int model_num_insns;
1904
1905 /* The index of the first instruction in model_schedule that hasn't yet been
1906 added to the main schedule, or model_num_insns if all of them have. */
1907 static int model_curr_point;
1908
1909 /* Describes the pressure before each instruction in the model schedule. */
1910 static struct model_pressure_group model_before_pressure;
1911
1912 /* The first unused model_priority value (as used in model_insn_info). */
1913 static unsigned int model_next_priority;
1914
1915
1916 /* The model_pressure_data for ira_pressure_classes[PCI] in GROUP
1917 at point POINT of the model schedule. */
1918 #define MODEL_PRESSURE_DATA(GROUP, POINT, PCI) \
1919 (&(GROUP)->model[(POINT) * ira_pressure_classes_num + (PCI)])
1920
1921 /* The maximum pressure on ira_pressure_classes[PCI] in GROUP at or
1922 after point POINT of the model schedule. */
1923 #define MODEL_MAX_PRESSURE(GROUP, POINT, PCI) \
1924 (MODEL_PRESSURE_DATA (GROUP, POINT, PCI)->max_pressure)
1925
1926 /* The pressure on ira_pressure_classes[PCI] in GROUP at point POINT
1927 of the model schedule. */
1928 #define MODEL_REF_PRESSURE(GROUP, POINT, PCI) \
1929 (MODEL_PRESSURE_DATA (GROUP, POINT, PCI)->ref_pressure)
1930
1931 /* Information about INSN that is used when creating the model schedule. */
1932 #define MODEL_INSN_INFO(INSN) \
1933 (&model_insns[INSN_LUID (INSN)])
1934
1935 /* The instruction at point POINT of the model schedule. */
1936 #define MODEL_INSN(POINT) \
1937 (model_schedule[POINT])
1938
1939
1940 /* Return INSN's index in the model schedule, or model_num_insns if it
1941 doesn't belong to that schedule. */
1942
1943 static int
1944 model_index (rtx_insn *insn)
1945 {
1946 if (INSN_MODEL_INDEX (insn) == 0)
1947 return model_num_insns;
1948 return INSN_MODEL_INDEX (insn) - 1;
1949 }
1950
1951 /* Make sure that GROUP->limits is up-to-date for the current point
1952 of the model schedule. */
1953
1954 static void
1955 model_update_limit_points_in_group (struct model_pressure_group *group)
1956 {
1957 int pci, max_pressure, point;
1958
1959 for (pci = 0; pci < ira_pressure_classes_num; pci++)
1960 {
1961 /* We may have passed the final point at which the pressure in
1962 group->limits[pci].pressure was reached. Update the limit if so. */
1963 max_pressure = MODEL_MAX_PRESSURE (group, model_curr_point, pci);
1964 group->limits[pci].pressure = max_pressure;
1965
1966 /* Find the point at which MAX_PRESSURE is first reached. We need
1967 to search in three cases:
1968
1969 - We've already moved past the previous pressure point.
1970 In this case we search forward from model_curr_point.
1971
1972 - We scheduled the previous point of maximum pressure ahead of
1973 its position in the model schedule, but doing so didn't bring
1974 the pressure point earlier. In this case we search forward
1975 from that previous pressure point.
1976
1977 - Scheduling an instruction early caused the maximum pressure
1978 to decrease. In this case we will have set the pressure
1979 point to -1, and we search forward from model_curr_point. */
1980 point = MAX (group->limits[pci].point, model_curr_point);
1981 while (point < model_num_insns
1982 && MODEL_REF_PRESSURE (group, point, pci) < max_pressure)
1983 point++;
1984 group->limits[pci].point = point;
1985
1986 gcc_assert (MODEL_REF_PRESSURE (group, point, pci) == max_pressure);
1987 gcc_assert (MODEL_MAX_PRESSURE (group, point, pci) == max_pressure);
1988 }
1989 }
1990
1991 /* Make sure that all register-pressure limits are up-to-date for the
1992 current position in the model schedule. */
1993
1994 static void
1995 model_update_limit_points (void)
1996 {
1997 model_update_limit_points_in_group (&model_before_pressure);
1998 }
1999
2000 /* Return the model_index of the last unscheduled use in chain USE
2001 outside of USE's instruction. Return -1 if there are no other uses,
2002 or model_num_insns if the register is live at the end of the block. */
2003
2004 static int
2005 model_last_use_except (struct reg_use_data *use)
2006 {
2007 struct reg_use_data *next;
2008 int last, index;
2009
2010 last = -1;
2011 for (next = use->next_regno_use; next != use; next = next->next_regno_use)
2012 if (NONDEBUG_INSN_P (next->insn)
2013 && QUEUE_INDEX (next->insn) != QUEUE_SCHEDULED)
2014 {
2015 index = model_index (next->insn);
2016 if (index == model_num_insns)
2017 return model_num_insns;
2018 if (last < index)
2019 last = index;
2020 }
2021 return last;
2022 }
2023
2024 /* An instruction with model_index POINT has just been scheduled, and it
2025 adds DELTA to the pressure on ira_pressure_classes[PCI] after POINT - 1.
2026 Update MODEL_REF_PRESSURE (GROUP, POINT, PCI) and
2027 MODEL_MAX_PRESSURE (GROUP, POINT, PCI) accordingly. */
2028
2029 static void
2030 model_start_update_pressure (struct model_pressure_group *group,
2031 int point, int pci, int delta)
2032 {
2033 int next_max_pressure;
2034
2035 if (point == model_num_insns)
2036 {
2037 /* The instruction wasn't part of the model schedule; it was moved
2038 from a different block. Update the pressure for the end of
2039 the model schedule. */
2040 MODEL_REF_PRESSURE (group, point, pci) += delta;
2041 MODEL_MAX_PRESSURE (group, point, pci) += delta;
2042 }
2043 else
2044 {
2045 /* Record that this instruction has been scheduled. Nothing now
2046 changes between POINT and POINT + 1, so get the maximum pressure
2047 from the latter. If the maximum pressure decreases, the new
2048 pressure point may be before POINT. */
2049 MODEL_REF_PRESSURE (group, point, pci) = -1;
2050 next_max_pressure = MODEL_MAX_PRESSURE (group, point + 1, pci);
2051 if (MODEL_MAX_PRESSURE (group, point, pci) > next_max_pressure)
2052 {
2053 MODEL_MAX_PRESSURE (group, point, pci) = next_max_pressure;
2054 if (group->limits[pci].point == point)
2055 group->limits[pci].point = -1;
2056 }
2057 }
2058 }
2059
2060 /* Record that scheduling a later instruction has changed the pressure
2061 at point POINT of the model schedule by DELTA (which might be 0).
2062 Update GROUP accordingly. Return nonzero if these changes might
2063 trigger changes to previous points as well. */
2064
2065 static int
2066 model_update_pressure (struct model_pressure_group *group,
2067 int point, int pci, int delta)
2068 {
2069 int ref_pressure, max_pressure, next_max_pressure;
2070
2071 /* If POINT hasn't yet been scheduled, update its pressure. */
2072 ref_pressure = MODEL_REF_PRESSURE (group, point, pci);
2073 if (ref_pressure >= 0 && delta != 0)
2074 {
2075 ref_pressure += delta;
2076 MODEL_REF_PRESSURE (group, point, pci) = ref_pressure;
2077
2078 /* Check whether the maximum pressure in the overall schedule
2079 has increased. (This means that the MODEL_MAX_PRESSURE of
2080 every point <= POINT will need to increase too; see below.) */
2081 if (group->limits[pci].pressure < ref_pressure)
2082 group->limits[pci].pressure = ref_pressure;
2083
2084 /* If we are at maximum pressure, and the maximum pressure
2085 point was previously unknown or later than POINT,
2086 bring it forward. */
2087 if (group->limits[pci].pressure == ref_pressure
2088 && !IN_RANGE (group->limits[pci].point, 0, point))
2089 group->limits[pci].point = point;
2090
2091 /* If POINT used to be the point of maximum pressure, but isn't
2092 any longer, we need to recalculate it using a forward walk. */
2093 if (group->limits[pci].pressure > ref_pressure
2094 && group->limits[pci].point == point)
2095 group->limits[pci].point = -1;
2096 }
2097
2098 /* Update the maximum pressure at POINT. Changes here might also
2099 affect the maximum pressure at POINT - 1. */
2100 next_max_pressure = MODEL_MAX_PRESSURE (group, point + 1, pci);
2101 max_pressure = MAX (ref_pressure, next_max_pressure);
2102 if (MODEL_MAX_PRESSURE (group, point, pci) != max_pressure)
2103 {
2104 MODEL_MAX_PRESSURE (group, point, pci) = max_pressure;
2105 return 1;
2106 }
2107 return 0;
2108 }
2109
2110 /* INSN has just been scheduled. Update the model schedule accordingly. */
2111
2112 static void
2113 model_recompute (rtx_insn *insn)
2114 {
2115 struct {
2116 int last_use;
2117 int regno;
2118 } uses[FIRST_PSEUDO_REGISTER + MAX_RECOG_OPERANDS];
2119 struct reg_use_data *use;
2120 struct reg_pressure_data *reg_pressure;
2121 int delta[N_REG_CLASSES];
2122 int pci, point, mix, new_last, cl, ref_pressure, queue;
2123 unsigned int i, num_uses, num_pending_births;
2124 bool print_p;
2125
2126 /* The destinations of INSN were previously live from POINT onwards, but are
2127 now live from model_curr_point onwards. Set up DELTA accordingly. */
2128 point = model_index (insn);
2129 reg_pressure = INSN_REG_PRESSURE (insn);
2130 for (pci = 0; pci < ira_pressure_classes_num; pci++)
2131 {
2132 cl = ira_pressure_classes[pci];
2133 delta[cl] = reg_pressure[pci].set_increase;
2134 }
2135
2136 /* Record which registers previously died at POINT, but which now die
2137 before POINT. Adjust DELTA so that it represents the effect of
2138 this change after POINT - 1. Set NUM_PENDING_BIRTHS to the number of
2139 registers that will be born in the range [model_curr_point, POINT). */
2140 num_uses = 0;
2141 num_pending_births = 0;
2142 bitmap_clear (tmp_bitmap);
2143 for (use = INSN_REG_USE_LIST (insn); use != NULL; use = use->next_insn_use)
2144 {
2145 new_last = model_last_use_except (use);
2146 if (new_last < point && bitmap_set_bit (tmp_bitmap, use->regno))
2147 {
2148 gcc_assert (num_uses < ARRAY_SIZE (uses));
2149 uses[num_uses].last_use = new_last;
2150 uses[num_uses].regno = use->regno;
2151 /* This register is no longer live after POINT - 1. */
2152 mark_regno_birth_or_death (NULL, delta, use->regno, false);
2153 num_uses++;
2154 if (new_last >= 0)
2155 num_pending_births++;
2156 }
2157 }
2158
2159 /* Update the MODEL_REF_PRESSURE and MODEL_MAX_PRESSURE for POINT.
2160 Also set each group pressure limit for POINT. */
2161 for (pci = 0; pci < ira_pressure_classes_num; pci++)
2162 {
2163 cl = ira_pressure_classes[pci];
2164 model_start_update_pressure (&model_before_pressure,
2165 point, pci, delta[cl]);
2166 }
2167
2168 /* Walk the model schedule backwards, starting immediately before POINT. */
2169 print_p = false;
2170 if (point != model_curr_point)
2171 do
2172 {
2173 point--;
2174 insn = MODEL_INSN (point);
2175 queue = QUEUE_INDEX (insn);
2176
2177 if (queue != QUEUE_SCHEDULED)
2178 {
2179 /* DELTA describes the effect of the move on the register pressure
2180 after POINT. Make it describe the effect on the pressure
2181 before POINT. */
2182 i = 0;
2183 while (i < num_uses)
2184 {
2185 if (uses[i].last_use == point)
2186 {
2187 /* This register is now live again. */
2188 mark_regno_birth_or_death (NULL, delta,
2189 uses[i].regno, true);
2190
2191 /* Remove this use from the array. */
2192 uses[i] = uses[num_uses - 1];
2193 num_uses--;
2194 num_pending_births--;
2195 }
2196 else
2197 i++;
2198 }
2199
2200 if (sched_verbose >= 5)
2201 {
2202 if (!print_p)
2203 {
2204 fprintf (sched_dump, MODEL_BAR);
2205 fprintf (sched_dump, ";;\t\t| New pressure for model"
2206 " schedule\n");
2207 fprintf (sched_dump, MODEL_BAR);
2208 print_p = true;
2209 }
2210
2211 fprintf (sched_dump, ";;\t\t| %3d %4d %-30s ",
2212 point, INSN_UID (insn),
2213 str_pattern_slim (PATTERN (insn)));
2214 for (pci = 0; pci < ira_pressure_classes_num; pci++)
2215 {
2216 cl = ira_pressure_classes[pci];
2217 ref_pressure = MODEL_REF_PRESSURE (&model_before_pressure,
2218 point, pci);
2219 fprintf (sched_dump, " %s:[%d->%d]",
2220 reg_class_names[ira_pressure_classes[pci]],
2221 ref_pressure, ref_pressure + delta[cl]);
2222 }
2223 fprintf (sched_dump, "\n");
2224 }
2225 }
2226
2227 /* Adjust the pressure at POINT. Set MIX to nonzero if POINT - 1
2228 might have changed as well. */
2229 mix = num_pending_births;
2230 for (pci = 0; pci < ira_pressure_classes_num; pci++)
2231 {
2232 cl = ira_pressure_classes[pci];
2233 mix |= delta[cl];
2234 mix |= model_update_pressure (&model_before_pressure,
2235 point, pci, delta[cl]);
2236 }
2237 }
2238 while (mix && point > model_curr_point);
2239
2240 if (print_p)
2241 fprintf (sched_dump, MODEL_BAR);
2242 }
2243
2244 /* After DEP, which was cancelled, has been resolved for insn NEXT,
2245 check whether the insn's pattern needs restoring. */
2246 static bool
2247 must_restore_pattern_p (rtx_insn *next, dep_t dep)
2248 {
2249 if (QUEUE_INDEX (next) == QUEUE_SCHEDULED)
2250 return false;
2251
2252 if (DEP_TYPE (dep) == REG_DEP_CONTROL)
2253 {
2254 gcc_assert (ORIG_PAT (next) != NULL_RTX);
2255 gcc_assert (next == DEP_CON (dep));
2256 }
2257 else
2258 {
2259 struct dep_replacement *desc = DEP_REPLACE (dep);
2260 if (desc->insn != next)
2261 {
2262 gcc_assert (*desc->loc == desc->orig);
2263 return false;
2264 }
2265 }
2266 return true;
2267 }
2268 \f
2269 /* model_spill_cost (CL, P, P') returns the cost of increasing the
2270 pressure on CL from P to P'. We use this to calculate a "base ECC",
2271 baseECC (CL, X), for each pressure class CL and each instruction X.
2272 Supposing X changes the pressure on CL from P to P', and that the
2273 maximum pressure on CL in the current model schedule is MP', then:
2274
2275 * if X occurs before or at the next point of maximum pressure in
2276 the model schedule and P' > MP', then:
2277
2278 baseECC (CL, X) = model_spill_cost (CL, MP, P')
2279
2280 The idea is that the pressure after scheduling a fixed set of
2281 instructions -- in this case, the set up to and including the
2282 next maximum pressure point -- is going to be the same regardless
2283 of the order; we simply want to keep the intermediate pressure
2284 under control. Thus X has a cost of zero unless scheduling it
2285 now would exceed MP'.
2286
2287 If all increases in the set are by the same amount, no zero-cost
2288 instruction will ever cause the pressure to exceed MP'. However,
2289 if X is instead moved past an instruction X' with pressure in the
2290 range (MP' - (P' - P), MP'), the pressure at X' will increase
2291 beyond MP'. Since baseECC is very much a heuristic anyway,
2292 it doesn't seem worth the overhead of tracking cases like these.
2293
2294 The cost of exceeding MP' is always based on the original maximum
2295 pressure MP. This is so that going 2 registers over the original
2296 limit has the same cost regardless of whether it comes from two
2297 separate +1 deltas or from a single +2 delta.
2298
2299 * if X occurs after the next point of maximum pressure in the model
2300 schedule and P' > P, then:
2301
2302 baseECC (CL, X) = model_spill_cost (CL, MP, MP' + (P' - P))
2303
2304 That is, if we move X forward across a point of maximum pressure,
2305 and if X increases the pressure by P' - P, then we conservatively
2306 assume that scheduling X next would increase the maximum pressure
2307 by P' - P. Again, the cost of doing this is based on the original
2308 maximum pressure MP, for the same reason as above.
2309
2310 * if P' < P, P > MP, and X occurs at or after the next point of
2311 maximum pressure, then:
2312
2313 baseECC (CL, X) = -model_spill_cost (CL, MAX (MP, P'), P)
2314
2315 That is, if we have already exceeded the original maximum pressure MP,
2316 and if X might reduce the maximum pressure again -- or at least push
2317 it further back, and thus allow more scheduling freedom -- it is given
2318 a negative cost to reflect the improvement.
2319
2320 * otherwise,
2321
2322 baseECC (CL, X) = 0
2323
2324 In this case, X is not expected to affect the maximum pressure MP',
2325 so it has zero cost.
2326
2327 We then create a combined value baseECC (X) that is the sum of
2328 baseECC (CL, X) for each pressure class CL.
2329
2330 baseECC (X) could itself be used as the ECC value described above.
2331 However, this is often too conservative, in the sense that it
2332 tends to make high-priority instructions that increase pressure
2333 wait too long in cases where introducing a spill would be better.
2334 For this reason the final ECC is a priority-adjusted form of
2335 baseECC (X). Specifically, we calculate:
2336
2337 P (X) = INSN_PRIORITY (X) - insn_delay (X) - baseECC (X)
2338 baseP = MAX { P (X) | baseECC (X) <= 0 }
2339
2340 Then:
2341
2342 ECC (X) = MAX (MIN (baseP - P (X), baseECC (X)), 0)
2343
2344 Thus an instruction's effect on pressure is ignored if it has a high
2345 enough priority relative to the ones that don't increase pressure.
2346 Negative values of baseECC (X) do not increase the priority of X
2347 itself, but they do make it harder for other instructions to
2348 increase the pressure further.
2349
2350 This pressure cost is deliberately timid. The intention has been
2351 to choose a heuristic that rarely interferes with the normal list
2352 scheduler in cases where that scheduler would produce good code.
2353 We simply want to curb some of its worst excesses. */
2354
2355 /* Return the cost of increasing the pressure in class CL from FROM to TO.
2356
2357 Here we use the very simplistic cost model that every register above
2358 sched_class_regs_num[CL] has a spill cost of 1. We could use other
2359 measures instead, such as one based on MEMORY_MOVE_COST. However:
2360
2361 (1) In order for an instruction to be scheduled, the higher cost
2362 would need to be justified in a single saving of that many stalls.
2363 This is overly pessimistic, because the benefit of spilling is
2364 often to avoid a sequence of several short stalls rather than
2365 a single long one.
2366
2367 (2) The cost is still arbitrary. Because we are not allocating
2368 registers during scheduling, we have no way of knowing for
2369 sure how many memory accesses will be required by each spill,
2370 where the spills will be placed within the block, or even
2371 which block(s) will contain the spills.
2372
2373 So a higher cost than 1 is often too conservative in practice,
2374 forcing blocks to contain unnecessary stalls instead of spill code.
2375 The simple cost below seems to be the best compromise. It reduces
2376 the interference with the normal list scheduler, which helps make
2377 it more suitable for a default-on option. */
2378
2379 static int
2380 model_spill_cost (int cl, int from, int to)
2381 {
2382 from = MAX (from, sched_class_regs_num[cl]);
2383 return MAX (to, from) - from;
2384 }
2385
2386 /* Return baseECC (ira_pressure_classes[PCI], POINT), given that
2387 P = curr_reg_pressure[ira_pressure_classes[PCI]] and that
2388 P' = P + DELTA. */
2389
2390 static int
2391 model_excess_group_cost (struct model_pressure_group *group,
2392 int point, int pci, int delta)
2393 {
2394 int pressure, cl;
2395
2396 cl = ira_pressure_classes[pci];
2397 if (delta < 0 && point >= group->limits[pci].point)
2398 {
2399 pressure = MAX (group->limits[pci].orig_pressure,
2400 curr_reg_pressure[cl] + delta);
2401 return -model_spill_cost (cl, pressure, curr_reg_pressure[cl]);
2402 }
2403
2404 if (delta > 0)
2405 {
2406 if (point > group->limits[pci].point)
2407 pressure = group->limits[pci].pressure + delta;
2408 else
2409 pressure = curr_reg_pressure[cl] + delta;
2410
2411 if (pressure > group->limits[pci].pressure)
2412 return model_spill_cost (cl, group->limits[pci].orig_pressure,
2413 pressure);
2414 }
2415
2416 return 0;
2417 }
2418
2419 /* Return baseECC (MODEL_INSN (INSN)). Dump the costs to sched_dump
2420 if PRINT_P. */
2421
2422 static int
2423 model_excess_cost (rtx_insn *insn, bool print_p)
2424 {
2425 int point, pci, cl, cost, this_cost, delta;
2426 struct reg_pressure_data *insn_reg_pressure;
2427 int insn_death[N_REG_CLASSES];
2428
2429 calculate_reg_deaths (insn, insn_death);
2430 point = model_index (insn);
2431 insn_reg_pressure = INSN_REG_PRESSURE (insn);
2432 cost = 0;
2433
2434 if (print_p)
2435 fprintf (sched_dump, ";;\t\t| %3d %4d | %4d %+3d |", point,
2436 INSN_UID (insn), INSN_PRIORITY (insn), insn_delay (insn));
2437
2438 /* Sum up the individual costs for each register class. */
2439 for (pci = 0; pci < ira_pressure_classes_num; pci++)
2440 {
2441 cl = ira_pressure_classes[pci];
2442 delta = insn_reg_pressure[pci].set_increase - insn_death[cl];
2443 this_cost = model_excess_group_cost (&model_before_pressure,
2444 point, pci, delta);
2445 cost += this_cost;
2446 if (print_p)
2447 fprintf (sched_dump, " %s:[%d base cost %d]",
2448 reg_class_names[cl], delta, this_cost);
2449 }
2450
2451 if (print_p)
2452 fprintf (sched_dump, "\n");
2453
2454 return cost;
2455 }
2456
2457 /* Dump the next points of maximum pressure for GROUP. */
2458
2459 static void
2460 model_dump_pressure_points (struct model_pressure_group *group)
2461 {
2462 int pci, cl;
2463
2464 fprintf (sched_dump, ";;\t\t| pressure points");
2465 for (pci = 0; pci < ira_pressure_classes_num; pci++)
2466 {
2467 cl = ira_pressure_classes[pci];
2468 fprintf (sched_dump, " %s:[%d->%d at ", reg_class_names[cl],
2469 curr_reg_pressure[cl], group->limits[pci].pressure);
2470 if (group->limits[pci].point < model_num_insns)
2471 fprintf (sched_dump, "%d:%d]", group->limits[pci].point,
2472 INSN_UID (MODEL_INSN (group->limits[pci].point)));
2473 else
2474 fprintf (sched_dump, "end]");
2475 }
2476 fprintf (sched_dump, "\n");
2477 }
2478
2479 /* Set INSN_REG_PRESSURE_EXCESS_COST_CHANGE for INSNS[0...COUNT-1]. */
2480
2481 static void
2482 model_set_excess_costs (rtx_insn **insns, int count)
2483 {
2484 int i, cost, priority_base, priority;
2485 bool print_p;
2486
2487 /* Record the baseECC value for each instruction in the model schedule,
2488 except that negative costs are converted to zero ones now rather than
2489 later. Do not assign a cost to debug instructions, since they must
2490 not change code-generation decisions. Experiments suggest we also
2491 get better results by not assigning a cost to instructions from
2492 a different block.
2493
2494 Set PRIORITY_BASE to baseP in the block comment above. This is the
2495 maximum priority of the "cheap" instructions, which should always
2496 include the next model instruction. */
2497 priority_base = 0;
2498 print_p = false;
2499 for (i = 0; i < count; i++)
2500 if (INSN_MODEL_INDEX (insns[i]))
2501 {
2502 if (sched_verbose >= 6 && !print_p)
2503 {
2504 fprintf (sched_dump, MODEL_BAR);
2505 fprintf (sched_dump, ";;\t\t| Pressure costs for ready queue\n");
2506 model_dump_pressure_points (&model_before_pressure);
2507 fprintf (sched_dump, MODEL_BAR);
2508 print_p = true;
2509 }
2510 cost = model_excess_cost (insns[i], print_p);
2511 if (cost <= 0)
2512 {
2513 priority = INSN_PRIORITY (insns[i]) - insn_delay (insns[i]) - cost;
2514 priority_base = MAX (priority_base, priority);
2515 cost = 0;
2516 }
2517 INSN_REG_PRESSURE_EXCESS_COST_CHANGE (insns[i]) = cost;
2518 }
2519 if (print_p)
2520 fprintf (sched_dump, MODEL_BAR);
2521
2522 /* Use MAX (baseECC, 0) and baseP to calculcate ECC for each
2523 instruction. */
2524 for (i = 0; i < count; i++)
2525 {
2526 cost = INSN_REG_PRESSURE_EXCESS_COST_CHANGE (insns[i]);
2527 priority = INSN_PRIORITY (insns[i]) - insn_delay (insns[i]);
2528 if (cost > 0 && priority > priority_base)
2529 {
2530 cost += priority_base - priority;
2531 INSN_REG_PRESSURE_EXCESS_COST_CHANGE (insns[i]) = MAX (cost, 0);
2532 }
2533 }
2534 }
2535 \f
2536
2537 /* Enum of rank_for_schedule heuristic decisions. */
2538 enum rfs_decision {
2539 RFS_LIVE_RANGE_SHRINK1, RFS_LIVE_RANGE_SHRINK2,
2540 RFS_SCHED_GROUP, RFS_PRESSURE_DELAY, RFS_PRESSURE_TICK,
2541 RFS_FEEDS_BACKTRACK_INSN, RFS_PRIORITY, RFS_SPECULATION,
2542 RFS_SCHED_RANK, RFS_LAST_INSN, RFS_PRESSURE_INDEX,
2543 RFS_DEP_COUNT, RFS_TIE, RFS_FUSION, RFS_COST, RFS_N };
2544
2545 /* Corresponding strings for print outs. */
2546 static const char *rfs_str[RFS_N] = {
2547 "RFS_LIVE_RANGE_SHRINK1", "RFS_LIVE_RANGE_SHRINK2",
2548 "RFS_SCHED_GROUP", "RFS_PRESSURE_DELAY", "RFS_PRESSURE_TICK",
2549 "RFS_FEEDS_BACKTRACK_INSN", "RFS_PRIORITY", "RFS_SPECULATION",
2550 "RFS_SCHED_RANK", "RFS_LAST_INSN", "RFS_PRESSURE_INDEX",
2551 "RFS_DEP_COUNT", "RFS_TIE", "RFS_FUSION", "RFS_COST" };
2552
2553 /* Statistical breakdown of rank_for_schedule decisions. */
2554 struct rank_for_schedule_stats_t { unsigned stats[RFS_N]; };
2555 static rank_for_schedule_stats_t rank_for_schedule_stats;
2556
2557 /* Return the result of comparing insns TMP and TMP2 and update
2558 Rank_For_Schedule statistics. */
2559 static int
2560 rfs_result (enum rfs_decision decision, int result, rtx tmp, rtx tmp2)
2561 {
2562 ++rank_for_schedule_stats.stats[decision];
2563 if (result < 0)
2564 INSN_LAST_RFS_WIN (tmp) = decision;
2565 else if (result > 0)
2566 INSN_LAST_RFS_WIN (tmp2) = decision;
2567 else
2568 gcc_unreachable ();
2569 return result;
2570 }
2571
2572 /* Sorting predicate to move DEBUG_INSNs to the top of ready list, while
2573 keeping normal insns in original order. */
2574
2575 static int
2576 rank_for_schedule_debug (const void *x, const void *y)
2577 {
2578 rtx_insn *tmp = *(rtx_insn * const *) y;
2579 rtx_insn *tmp2 = *(rtx_insn * const *) x;
2580
2581 /* Schedule debug insns as early as possible. */
2582 if (DEBUG_INSN_P (tmp) && !DEBUG_INSN_P (tmp2))
2583 return -1;
2584 else if (!DEBUG_INSN_P (tmp) && DEBUG_INSN_P (tmp2))
2585 return 1;
2586 else if (DEBUG_INSN_P (tmp) && DEBUG_INSN_P (tmp2))
2587 return INSN_LUID (tmp) - INSN_LUID (tmp2);
2588 else
2589 return INSN_RFS_DEBUG_ORIG_ORDER (tmp2) - INSN_RFS_DEBUG_ORIG_ORDER (tmp);
2590 }
2591
2592 /* Returns a positive value if x is preferred; returns a negative value if
2593 y is preferred. Should never return 0, since that will make the sort
2594 unstable. */
2595
2596 static int
2597 rank_for_schedule (const void *x, const void *y)
2598 {
2599 rtx_insn *tmp = *(rtx_insn * const *) y;
2600 rtx_insn *tmp2 = *(rtx_insn * const *) x;
2601 int tmp_class, tmp2_class;
2602 int val, priority_val, info_val, diff;
2603
2604 if (live_range_shrinkage_p)
2605 {
2606 /* Don't use SCHED_PRESSURE_MODEL -- it results in much worse
2607 code. */
2608 gcc_assert (sched_pressure == SCHED_PRESSURE_WEIGHTED);
2609 if ((INSN_REG_PRESSURE_EXCESS_COST_CHANGE (tmp) < 0
2610 || INSN_REG_PRESSURE_EXCESS_COST_CHANGE (tmp2) < 0)
2611 && (diff = (INSN_REG_PRESSURE_EXCESS_COST_CHANGE (tmp)
2612 - INSN_REG_PRESSURE_EXCESS_COST_CHANGE (tmp2))) != 0)
2613 return rfs_result (RFS_LIVE_RANGE_SHRINK1, diff, tmp, tmp2);
2614 /* Sort by INSN_LUID (original insn order), so that we make the
2615 sort stable. This minimizes instruction movement, thus
2616 minimizing sched's effect on debugging and cross-jumping. */
2617 return rfs_result (RFS_LIVE_RANGE_SHRINK2,
2618 INSN_LUID (tmp) - INSN_LUID (tmp2), tmp, tmp2);
2619 }
2620
2621 /* The insn in a schedule group should be issued the first. */
2622 if (flag_sched_group_heuristic &&
2623 SCHED_GROUP_P (tmp) != SCHED_GROUP_P (tmp2))
2624 return rfs_result (RFS_SCHED_GROUP, SCHED_GROUP_P (tmp2) ? 1 : -1,
2625 tmp, tmp2);
2626
2627 /* Make sure that priority of TMP and TMP2 are initialized. */
2628 gcc_assert (INSN_PRIORITY_KNOWN (tmp) && INSN_PRIORITY_KNOWN (tmp2));
2629
2630 if (sched_fusion)
2631 {
2632 /* The instruction that has the same fusion priority as the last
2633 instruction is the instruction we picked next. If that is not
2634 the case, we sort ready list firstly by fusion priority, then
2635 by priority, and at last by INSN_LUID. */
2636 int a = INSN_FUSION_PRIORITY (tmp);
2637 int b = INSN_FUSION_PRIORITY (tmp2);
2638 int last = -1;
2639
2640 if (last_nondebug_scheduled_insn
2641 && !NOTE_P (last_nondebug_scheduled_insn)
2642 && BLOCK_FOR_INSN (tmp)
2643 == BLOCK_FOR_INSN (last_nondebug_scheduled_insn))
2644 last = INSN_FUSION_PRIORITY (last_nondebug_scheduled_insn);
2645
2646 if (a != last && b != last)
2647 {
2648 if (a == b)
2649 {
2650 a = INSN_PRIORITY (tmp);
2651 b = INSN_PRIORITY (tmp2);
2652 }
2653 if (a != b)
2654 return rfs_result (RFS_FUSION, b - a, tmp, tmp2);
2655 else
2656 return rfs_result (RFS_FUSION,
2657 INSN_LUID (tmp) - INSN_LUID (tmp2), tmp, tmp2);
2658 }
2659 else if (a == b)
2660 {
2661 gcc_assert (last_nondebug_scheduled_insn
2662 && !NOTE_P (last_nondebug_scheduled_insn));
2663 last = INSN_PRIORITY (last_nondebug_scheduled_insn);
2664
2665 a = abs (INSN_PRIORITY (tmp) - last);
2666 b = abs (INSN_PRIORITY (tmp2) - last);
2667 if (a != b)
2668 return rfs_result (RFS_FUSION, a - b, tmp, tmp2);
2669 else
2670 return rfs_result (RFS_FUSION,
2671 INSN_LUID (tmp) - INSN_LUID (tmp2), tmp, tmp2);
2672 }
2673 else if (a == last)
2674 return rfs_result (RFS_FUSION, -1, tmp, tmp2);
2675 else
2676 return rfs_result (RFS_FUSION, 1, tmp, tmp2);
2677 }
2678
2679 if (sched_pressure != SCHED_PRESSURE_NONE)
2680 {
2681 /* Prefer insn whose scheduling results in the smallest register
2682 pressure excess. */
2683 if ((diff = (INSN_REG_PRESSURE_EXCESS_COST_CHANGE (tmp)
2684 + insn_delay (tmp)
2685 - INSN_REG_PRESSURE_EXCESS_COST_CHANGE (tmp2)
2686 - insn_delay (tmp2))))
2687 return rfs_result (RFS_PRESSURE_DELAY, diff, tmp, tmp2);
2688 }
2689
2690 if (sched_pressure != SCHED_PRESSURE_NONE
2691 && (INSN_TICK (tmp2) > clock_var || INSN_TICK (tmp) > clock_var)
2692 && INSN_TICK (tmp2) != INSN_TICK (tmp))
2693 {
2694 diff = INSN_TICK (tmp) - INSN_TICK (tmp2);
2695 return rfs_result (RFS_PRESSURE_TICK, diff, tmp, tmp2);
2696 }
2697
2698 /* If we are doing backtracking in this schedule, prefer insns that
2699 have forward dependencies with negative cost against an insn that
2700 was already scheduled. */
2701 if (current_sched_info->flags & DO_BACKTRACKING)
2702 {
2703 priority_val = FEEDS_BACKTRACK_INSN (tmp2) - FEEDS_BACKTRACK_INSN (tmp);
2704 if (priority_val)
2705 return rfs_result (RFS_FEEDS_BACKTRACK_INSN, priority_val, tmp, tmp2);
2706 }
2707
2708 /* Prefer insn with higher priority. */
2709 priority_val = INSN_PRIORITY (tmp2) - INSN_PRIORITY (tmp);
2710
2711 if (flag_sched_critical_path_heuristic && priority_val)
2712 return rfs_result (RFS_PRIORITY, priority_val, tmp, tmp2);
2713
2714 if (param_sched_autopref_queue_depth >= 0)
2715 {
2716 int autopref = autopref_rank_for_schedule (tmp, tmp2);
2717 if (autopref != 0)
2718 return autopref;
2719 }
2720
2721 /* Prefer speculative insn with greater dependencies weakness. */
2722 if (flag_sched_spec_insn_heuristic && spec_info)
2723 {
2724 ds_t ds1, ds2;
2725 dw_t dw1, dw2;
2726 int dw;
2727
2728 ds1 = TODO_SPEC (tmp) & SPECULATIVE;
2729 if (ds1)
2730 dw1 = ds_weak (ds1);
2731 else
2732 dw1 = NO_DEP_WEAK;
2733
2734 ds2 = TODO_SPEC (tmp2) & SPECULATIVE;
2735 if (ds2)
2736 dw2 = ds_weak (ds2);
2737 else
2738 dw2 = NO_DEP_WEAK;
2739
2740 dw = dw2 - dw1;
2741 if (dw > (NO_DEP_WEAK / 8) || dw < -(NO_DEP_WEAK / 8))
2742 return rfs_result (RFS_SPECULATION, dw, tmp, tmp2);
2743 }
2744
2745 info_val = (*current_sched_info->rank) (tmp, tmp2);
2746 if (flag_sched_rank_heuristic && info_val)
2747 return rfs_result (RFS_SCHED_RANK, info_val, tmp, tmp2);
2748
2749 /* Compare insns based on their relation to the last scheduled
2750 non-debug insn. */
2751 if (flag_sched_last_insn_heuristic && last_nondebug_scheduled_insn)
2752 {
2753 dep_t dep1;
2754 dep_t dep2;
2755 rtx_insn *last = last_nondebug_scheduled_insn;
2756
2757 /* Classify the instructions into three classes:
2758 1) Data dependent on last schedule insn.
2759 2) Anti/Output dependent on last scheduled insn.
2760 3) Independent of last scheduled insn, or has latency of one.
2761 Choose the insn from the highest numbered class if different. */
2762 dep1 = sd_find_dep_between (last, tmp, true);
2763
2764 if (dep1 == NULL || dep_cost (dep1) == 1)
2765 tmp_class = 3;
2766 else if (/* Data dependence. */
2767 DEP_TYPE (dep1) == REG_DEP_TRUE)
2768 tmp_class = 1;
2769 else
2770 tmp_class = 2;
2771
2772 dep2 = sd_find_dep_between (last, tmp2, true);
2773
2774 if (dep2 == NULL || dep_cost (dep2) == 1)
2775 tmp2_class = 3;
2776 else if (/* Data dependence. */
2777 DEP_TYPE (dep2) == REG_DEP_TRUE)
2778 tmp2_class = 1;
2779 else
2780 tmp2_class = 2;
2781
2782 if ((val = tmp2_class - tmp_class))
2783 return rfs_result (RFS_LAST_INSN, val, tmp, tmp2);
2784 }
2785
2786 /* Prefer instructions that occur earlier in the model schedule. */
2787 if (sched_pressure == SCHED_PRESSURE_MODEL)
2788 {
2789 diff = model_index (tmp) - model_index (tmp2);
2790 if (diff != 0)
2791 return rfs_result (RFS_PRESSURE_INDEX, diff, tmp, tmp2);
2792 }
2793
2794 /* Prefer the insn which has more later insns that depend on it.
2795 This gives the scheduler more freedom when scheduling later
2796 instructions at the expense of added register pressure. */
2797
2798 val = (dep_list_size (tmp2, SD_LIST_FORW)
2799 - dep_list_size (tmp, SD_LIST_FORW));
2800
2801 if (flag_sched_dep_count_heuristic && val != 0)
2802 return rfs_result (RFS_DEP_COUNT, val, tmp, tmp2);
2803
2804 /* Sort by INSN_COST rather than INSN_LUID. This means that instructions
2805 which take longer to execute are prioritised and it leads to more
2806 dual-issue opportunities on in-order cores which have this feature. */
2807
2808 if (INSN_COST (tmp) != INSN_COST (tmp2))
2809 return rfs_result (RFS_COST, INSN_COST (tmp2) - INSN_COST (tmp),
2810 tmp, tmp2);
2811
2812 /* If insns are equally good, sort by INSN_LUID (original insn order),
2813 so that we make the sort stable. This minimizes instruction movement,
2814 thus minimizing sched's effect on debugging and cross-jumping. */
2815 return rfs_result (RFS_TIE, INSN_LUID (tmp) - INSN_LUID (tmp2), tmp, tmp2);
2816 }
2817
2818 /* Resort the array A in which only element at index N may be out of order. */
2819
2820 HAIFA_INLINE static void
2821 swap_sort (rtx_insn **a, int n)
2822 {
2823 rtx_insn *insn = a[n - 1];
2824 int i = n - 2;
2825
2826 while (i >= 0 && rank_for_schedule (a + i, &insn) >= 0)
2827 {
2828 a[i + 1] = a[i];
2829 i -= 1;
2830 }
2831 a[i + 1] = insn;
2832 }
2833
2834 /* Add INSN to the insn queue so that it can be executed at least
2835 N_CYCLES after the currently executing insn. Preserve insns
2836 chain for debugging purposes. REASON will be printed in debugging
2837 output. */
2838
2839 HAIFA_INLINE static void
2840 queue_insn (rtx_insn *insn, int n_cycles, const char *reason)
2841 {
2842 int next_q = NEXT_Q_AFTER (q_ptr, n_cycles);
2843 rtx_insn_list *link = alloc_INSN_LIST (insn, insn_queue[next_q]);
2844 int new_tick;
2845
2846 gcc_assert (n_cycles <= max_insn_queue_index);
2847 gcc_assert (!DEBUG_INSN_P (insn));
2848
2849 insn_queue[next_q] = link;
2850 q_size += 1;
2851
2852 if (sched_verbose >= 2)
2853 {
2854 fprintf (sched_dump, ";;\t\tReady-->Q: insn %s: ",
2855 (*current_sched_info->print_insn) (insn, 0));
2856
2857 fprintf (sched_dump, "queued for %d cycles (%s).\n", n_cycles, reason);
2858 }
2859
2860 QUEUE_INDEX (insn) = next_q;
2861
2862 if (current_sched_info->flags & DO_BACKTRACKING)
2863 {
2864 new_tick = clock_var + n_cycles;
2865 if (INSN_TICK (insn) == INVALID_TICK || INSN_TICK (insn) < new_tick)
2866 INSN_TICK (insn) = new_tick;
2867
2868 if (INSN_EXACT_TICK (insn) != INVALID_TICK
2869 && INSN_EXACT_TICK (insn) < clock_var + n_cycles)
2870 {
2871 must_backtrack = true;
2872 if (sched_verbose >= 2)
2873 fprintf (sched_dump, ";;\t\tcausing a backtrack.\n");
2874 }
2875 }
2876 }
2877
2878 /* Remove INSN from queue. */
2879 static void
2880 queue_remove (rtx_insn *insn)
2881 {
2882 gcc_assert (QUEUE_INDEX (insn) >= 0);
2883 remove_free_INSN_LIST_elem (insn, &insn_queue[QUEUE_INDEX (insn)]);
2884 q_size--;
2885 QUEUE_INDEX (insn) = QUEUE_NOWHERE;
2886 }
2887
2888 /* Return a pointer to the bottom of the ready list, i.e. the insn
2889 with the lowest priority. */
2890
2891 rtx_insn **
2892 ready_lastpos (struct ready_list *ready)
2893 {
2894 gcc_assert (ready->n_ready >= 1);
2895 return ready->vec + ready->first - ready->n_ready + 1;
2896 }
2897
2898 /* Add an element INSN to the ready list so that it ends up with the
2899 lowest/highest priority depending on FIRST_P. */
2900
2901 HAIFA_INLINE static void
2902 ready_add (struct ready_list *ready, rtx_insn *insn, bool first_p)
2903 {
2904 if (!first_p)
2905 {
2906 if (ready->first == ready->n_ready)
2907 {
2908 memmove (ready->vec + ready->veclen - ready->n_ready,
2909 ready_lastpos (ready),
2910 ready->n_ready * sizeof (rtx));
2911 ready->first = ready->veclen - 1;
2912 }
2913 ready->vec[ready->first - ready->n_ready] = insn;
2914 }
2915 else
2916 {
2917 if (ready->first == ready->veclen - 1)
2918 {
2919 if (ready->n_ready)
2920 /* ready_lastpos() fails when called with (ready->n_ready == 0). */
2921 memmove (ready->vec + ready->veclen - ready->n_ready - 1,
2922 ready_lastpos (ready),
2923 ready->n_ready * sizeof (rtx));
2924 ready->first = ready->veclen - 2;
2925 }
2926 ready->vec[++(ready->first)] = insn;
2927 }
2928
2929 ready->n_ready++;
2930 if (DEBUG_INSN_P (insn))
2931 ready->n_debug++;
2932
2933 gcc_assert (QUEUE_INDEX (insn) != QUEUE_READY);
2934 QUEUE_INDEX (insn) = QUEUE_READY;
2935
2936 if (INSN_EXACT_TICK (insn) != INVALID_TICK
2937 && INSN_EXACT_TICK (insn) < clock_var)
2938 {
2939 must_backtrack = true;
2940 }
2941 }
2942
2943 /* Remove the element with the highest priority from the ready list and
2944 return it. */
2945
2946 HAIFA_INLINE static rtx_insn *
2947 ready_remove_first (struct ready_list *ready)
2948 {
2949 rtx_insn *t;
2950
2951 gcc_assert (ready->n_ready);
2952 t = ready->vec[ready->first--];
2953 ready->n_ready--;
2954 if (DEBUG_INSN_P (t))
2955 ready->n_debug--;
2956 /* If the queue becomes empty, reset it. */
2957 if (ready->n_ready == 0)
2958 ready->first = ready->veclen - 1;
2959
2960 gcc_assert (QUEUE_INDEX (t) == QUEUE_READY);
2961 QUEUE_INDEX (t) = QUEUE_NOWHERE;
2962
2963 return t;
2964 }
2965
2966 /* The following code implements multi-pass scheduling for the first
2967 cycle. In other words, we will try to choose ready insn which
2968 permits to start maximum number of insns on the same cycle. */
2969
2970 /* Return a pointer to the element INDEX from the ready. INDEX for
2971 insn with the highest priority is 0, and the lowest priority has
2972 N_READY - 1. */
2973
2974 rtx_insn *
2975 ready_element (struct ready_list *ready, int index)
2976 {
2977 gcc_assert (ready->n_ready && index < ready->n_ready);
2978
2979 return ready->vec[ready->first - index];
2980 }
2981
2982 /* Remove the element INDEX from the ready list and return it. INDEX
2983 for insn with the highest priority is 0, and the lowest priority
2984 has N_READY - 1. */
2985
2986 HAIFA_INLINE static rtx_insn *
2987 ready_remove (struct ready_list *ready, int index)
2988 {
2989 rtx_insn *t;
2990 int i;
2991
2992 if (index == 0)
2993 return ready_remove_first (ready);
2994 gcc_assert (ready->n_ready && index < ready->n_ready);
2995 t = ready->vec[ready->first - index];
2996 ready->n_ready--;
2997 if (DEBUG_INSN_P (t))
2998 ready->n_debug--;
2999 for (i = index; i < ready->n_ready; i++)
3000 ready->vec[ready->first - i] = ready->vec[ready->first - i - 1];
3001 QUEUE_INDEX (t) = QUEUE_NOWHERE;
3002 return t;
3003 }
3004
3005 /* Remove INSN from the ready list. */
3006 static void
3007 ready_remove_insn (rtx_insn *insn)
3008 {
3009 int i;
3010
3011 for (i = 0; i < readyp->n_ready; i++)
3012 if (ready_element (readyp, i) == insn)
3013 {
3014 ready_remove (readyp, i);
3015 return;
3016 }
3017 gcc_unreachable ();
3018 }
3019
3020 /* Calculate difference of two statistics set WAS and NOW.
3021 Result returned in WAS. */
3022 static void
3023 rank_for_schedule_stats_diff (rank_for_schedule_stats_t *was,
3024 const rank_for_schedule_stats_t *now)
3025 {
3026 for (int i = 0; i < RFS_N; ++i)
3027 was->stats[i] = now->stats[i] - was->stats[i];
3028 }
3029
3030 /* Print rank_for_schedule statistics. */
3031 static void
3032 print_rank_for_schedule_stats (const char *prefix,
3033 const rank_for_schedule_stats_t *stats,
3034 struct ready_list *ready)
3035 {
3036 for (int i = 0; i < RFS_N; ++i)
3037 if (stats->stats[i])
3038 {
3039 fprintf (sched_dump, "%s%20s: %u", prefix, rfs_str[i], stats->stats[i]);
3040
3041 if (ready != NULL)
3042 /* Print out insns that won due to RFS_<I>. */
3043 {
3044 rtx_insn **p = ready_lastpos (ready);
3045
3046 fprintf (sched_dump, ":");
3047 /* Start with 1 since least-priority insn didn't have any wins. */
3048 for (int j = 1; j < ready->n_ready; ++j)
3049 if (INSN_LAST_RFS_WIN (p[j]) == i)
3050 fprintf (sched_dump, " %s",
3051 (*current_sched_info->print_insn) (p[j], 0));
3052 }
3053 fprintf (sched_dump, "\n");
3054 }
3055 }
3056
3057 /* Separate DEBUG_INSNS from normal insns. DEBUG_INSNs go to the end
3058 of array. */
3059 static void
3060 ready_sort_debug (struct ready_list *ready)
3061 {
3062 int i;
3063 rtx_insn **first = ready_lastpos (ready);
3064
3065 for (i = 0; i < ready->n_ready; ++i)
3066 if (!DEBUG_INSN_P (first[i]))
3067 INSN_RFS_DEBUG_ORIG_ORDER (first[i]) = i;
3068
3069 qsort (first, ready->n_ready, sizeof (rtx), rank_for_schedule_debug);
3070 }
3071
3072 /* Sort non-debug insns in the ready list READY by ascending priority.
3073 Assumes that all debug insns are separated from the real insns. */
3074 static void
3075 ready_sort_real (struct ready_list *ready)
3076 {
3077 int i;
3078 rtx_insn **first = ready_lastpos (ready);
3079 int n_ready_real = ready->n_ready - ready->n_debug;
3080
3081 if (sched_pressure == SCHED_PRESSURE_WEIGHTED)
3082 for (i = 0; i < n_ready_real; ++i)
3083 setup_insn_reg_pressure_info (first[i]);
3084 else if (sched_pressure == SCHED_PRESSURE_MODEL
3085 && model_curr_point < model_num_insns)
3086 model_set_excess_costs (first, n_ready_real);
3087
3088 rank_for_schedule_stats_t stats1;
3089 if (sched_verbose >= 4)
3090 stats1 = rank_for_schedule_stats;
3091
3092 if (n_ready_real == 2)
3093 swap_sort (first, n_ready_real);
3094 else if (n_ready_real > 2)
3095 qsort (first, n_ready_real, sizeof (rtx), rank_for_schedule);
3096
3097 if (sched_verbose >= 4)
3098 {
3099 rank_for_schedule_stats_diff (&stats1, &rank_for_schedule_stats);
3100 print_rank_for_schedule_stats (";;\t\t", &stats1, ready);
3101 }
3102 }
3103
3104 /* Sort the ready list READY by ascending priority. */
3105 static void
3106 ready_sort (struct ready_list *ready)
3107 {
3108 if (ready->n_debug > 0)
3109 ready_sort_debug (ready);
3110 else
3111 ready_sort_real (ready);
3112 }
3113
3114 /* PREV is an insn that is ready to execute. Adjust its priority if that
3115 will help shorten or lengthen register lifetimes as appropriate. Also
3116 provide a hook for the target to tweak itself. */
3117
3118 HAIFA_INLINE static void
3119 adjust_priority (rtx_insn *prev)
3120 {
3121 /* ??? There used to be code here to try and estimate how an insn
3122 affected register lifetimes, but it did it by looking at REG_DEAD
3123 notes, which we removed in schedule_region. Nor did it try to
3124 take into account register pressure or anything useful like that.
3125
3126 Revisit when we have a machine model to work with and not before. */
3127
3128 if (targetm.sched.adjust_priority)
3129 INSN_PRIORITY (prev) =
3130 targetm.sched.adjust_priority (prev, INSN_PRIORITY (prev));
3131 }
3132
3133 /* Advance DFA state STATE on one cycle. */
3134 void
3135 advance_state (state_t state)
3136 {
3137 if (targetm.sched.dfa_pre_advance_cycle)
3138 targetm.sched.dfa_pre_advance_cycle ();
3139
3140 if (targetm.sched.dfa_pre_cycle_insn)
3141 state_transition (state,
3142 targetm.sched.dfa_pre_cycle_insn ());
3143
3144 state_transition (state, NULL);
3145
3146 if (targetm.sched.dfa_post_cycle_insn)
3147 state_transition (state,
3148 targetm.sched.dfa_post_cycle_insn ());
3149
3150 if (targetm.sched.dfa_post_advance_cycle)
3151 targetm.sched.dfa_post_advance_cycle ();
3152 }
3153
3154 /* Advance time on one cycle. */
3155 HAIFA_INLINE static void
3156 advance_one_cycle (void)
3157 {
3158 advance_state (curr_state);
3159 if (sched_verbose >= 4)
3160 fprintf (sched_dump, ";;\tAdvance the current state.\n");
3161 }
3162
3163 /* Update register pressure after scheduling INSN. */
3164 static void
3165 update_register_pressure (rtx_insn *insn)
3166 {
3167 struct reg_use_data *use;
3168 struct reg_set_data *set;
3169
3170 gcc_checking_assert (!DEBUG_INSN_P (insn));
3171
3172 for (use = INSN_REG_USE_LIST (insn); use != NULL; use = use->next_insn_use)
3173 if (dying_use_p (use))
3174 mark_regno_birth_or_death (curr_reg_live, curr_reg_pressure,
3175 use->regno, false);
3176 for (set = INSN_REG_SET_LIST (insn); set != NULL; set = set->next_insn_set)
3177 mark_regno_birth_or_death (curr_reg_live, curr_reg_pressure,
3178 set->regno, true);
3179 }
3180
3181 /* Set up or update (if UPDATE_P) max register pressure (see its
3182 meaning in sched-int.h::_haifa_insn_data) for all current BB insns
3183 after insn AFTER. */
3184 static void
3185 setup_insn_max_reg_pressure (rtx_insn *after, bool update_p)
3186 {
3187 int i, p;
3188 bool eq_p;
3189 rtx_insn *insn;
3190 static int max_reg_pressure[N_REG_CLASSES];
3191
3192 save_reg_pressure ();
3193 for (i = 0; i < ira_pressure_classes_num; i++)
3194 max_reg_pressure[ira_pressure_classes[i]]
3195 = curr_reg_pressure[ira_pressure_classes[i]];
3196 for (insn = NEXT_INSN (after);
3197 insn != NULL_RTX && ! BARRIER_P (insn)
3198 && BLOCK_FOR_INSN (insn) == BLOCK_FOR_INSN (after);
3199 insn = NEXT_INSN (insn))
3200 if (NONDEBUG_INSN_P (insn))
3201 {
3202 eq_p = true;
3203 for (i = 0; i < ira_pressure_classes_num; i++)
3204 {
3205 p = max_reg_pressure[ira_pressure_classes[i]];
3206 if (INSN_MAX_REG_PRESSURE (insn)[i] != p)
3207 {
3208 eq_p = false;
3209 INSN_MAX_REG_PRESSURE (insn)[i]
3210 = max_reg_pressure[ira_pressure_classes[i]];
3211 }
3212 }
3213 if (update_p && eq_p)
3214 break;
3215 update_register_pressure (insn);
3216 for (i = 0; i < ira_pressure_classes_num; i++)
3217 if (max_reg_pressure[ira_pressure_classes[i]]
3218 < curr_reg_pressure[ira_pressure_classes[i]])
3219 max_reg_pressure[ira_pressure_classes[i]]
3220 = curr_reg_pressure[ira_pressure_classes[i]];
3221 }
3222 restore_reg_pressure ();
3223 }
3224
3225 /* Update the current register pressure after scheduling INSN. Update
3226 also max register pressure for unscheduled insns of the current
3227 BB. */
3228 static void
3229 update_reg_and_insn_max_reg_pressure (rtx_insn *insn)
3230 {
3231 int i;
3232 int before[N_REG_CLASSES];
3233
3234 for (i = 0; i < ira_pressure_classes_num; i++)
3235 before[i] = curr_reg_pressure[ira_pressure_classes[i]];
3236 update_register_pressure (insn);
3237 for (i = 0; i < ira_pressure_classes_num; i++)
3238 if (curr_reg_pressure[ira_pressure_classes[i]] != before[i])
3239 break;
3240 if (i < ira_pressure_classes_num)
3241 setup_insn_max_reg_pressure (insn, true);
3242 }
3243
3244 /* Set up register pressure at the beginning of basic block BB whose
3245 insns starting after insn AFTER. Set up also max register pressure
3246 for all insns of the basic block. */
3247 void
3248 sched_setup_bb_reg_pressure_info (basic_block bb, rtx_insn *after)
3249 {
3250 gcc_assert (sched_pressure == SCHED_PRESSURE_WEIGHTED);
3251 initiate_bb_reg_pressure_info (bb);
3252 setup_insn_max_reg_pressure (after, false);
3253 }
3254 \f
3255 /* If doing predication while scheduling, verify whether INSN, which
3256 has just been scheduled, clobbers the conditions of any
3257 instructions that must be predicated in order to break their
3258 dependencies. If so, remove them from the queues so that they will
3259 only be scheduled once their control dependency is resolved. */
3260
3261 static void
3262 check_clobbered_conditions (rtx_insn *insn)
3263 {
3264 HARD_REG_SET t;
3265 int i;
3266
3267 if ((current_sched_info->flags & DO_PREDICATION) == 0)
3268 return;
3269
3270 find_all_hard_reg_sets (insn, &t, true);
3271
3272 restart:
3273 for (i = 0; i < ready.n_ready; i++)
3274 {
3275 rtx_insn *x = ready_element (&ready, i);
3276 if (TODO_SPEC (x) == DEP_CONTROL && cond_clobbered_p (x, t))
3277 {
3278 ready_remove_insn (x);
3279 goto restart;
3280 }
3281 }
3282 for (i = 0; i <= max_insn_queue_index; i++)
3283 {
3284 rtx_insn_list *link;
3285 int q = NEXT_Q_AFTER (q_ptr, i);
3286
3287 restart_queue:
3288 for (link = insn_queue[q]; link; link = link->next ())
3289 {
3290 rtx_insn *x = link->insn ();
3291 if (TODO_SPEC (x) == DEP_CONTROL && cond_clobbered_p (x, t))
3292 {
3293 queue_remove (x);
3294 goto restart_queue;
3295 }
3296 }
3297 }
3298 }
3299 \f
3300 /* Return (in order):
3301
3302 - positive if INSN adversely affects the pressure on one
3303 register class
3304
3305 - negative if INSN reduces the pressure on one register class
3306
3307 - 0 if INSN doesn't affect the pressure on any register class. */
3308
3309 static int
3310 model_classify_pressure (struct model_insn_info *insn)
3311 {
3312 struct reg_pressure_data *reg_pressure;
3313 int death[N_REG_CLASSES];
3314 int pci, cl, sum;
3315
3316 calculate_reg_deaths (insn->insn, death);
3317 reg_pressure = INSN_REG_PRESSURE (insn->insn);
3318 sum = 0;
3319 for (pci = 0; pci < ira_pressure_classes_num; pci++)
3320 {
3321 cl = ira_pressure_classes[pci];
3322 if (death[cl] < reg_pressure[pci].set_increase)
3323 return 1;
3324 sum += reg_pressure[pci].set_increase - death[cl];
3325 }
3326 return sum;
3327 }
3328
3329 /* Return true if INSN1 should come before INSN2 in the model schedule. */
3330
3331 static int
3332 model_order_p (struct model_insn_info *insn1, struct model_insn_info *insn2)
3333 {
3334 unsigned int height1, height2;
3335 unsigned int priority1, priority2;
3336
3337 /* Prefer instructions with a higher model priority. */
3338 if (insn1->model_priority != insn2->model_priority)
3339 return insn1->model_priority > insn2->model_priority;
3340
3341 /* Combine the length of the longest path of satisfied true dependencies
3342 that leads to each instruction (depth) with the length of the longest
3343 path of any dependencies that leads from the instruction (alap).
3344 Prefer instructions with the greatest combined length. If the combined
3345 lengths are equal, prefer instructions with the greatest depth.
3346
3347 The idea is that, if we have a set S of "equal" instructions that each
3348 have ALAP value X, and we pick one such instruction I, any true-dependent
3349 successors of I that have ALAP value X - 1 should be preferred over S.
3350 This encourages the schedule to be "narrow" rather than "wide".
3351 However, if I is a low-priority instruction that we decided to
3352 schedule because of its model_classify_pressure, and if there
3353 is a set of higher-priority instructions T, the aforementioned
3354 successors of I should not have the edge over T. */
3355 height1 = insn1->depth + insn1->alap;
3356 height2 = insn2->depth + insn2->alap;
3357 if (height1 != height2)
3358 return height1 > height2;
3359 if (insn1->depth != insn2->depth)
3360 return insn1->depth > insn2->depth;
3361
3362 /* We have no real preference between INSN1 an INSN2 as far as attempts
3363 to reduce pressure go. Prefer instructions with higher priorities. */
3364 priority1 = INSN_PRIORITY (insn1->insn);
3365 priority2 = INSN_PRIORITY (insn2->insn);
3366 if (priority1 != priority2)
3367 return priority1 > priority2;
3368
3369 /* Use the original rtl sequence as a tie-breaker. */
3370 return insn1 < insn2;
3371 }
3372
3373 /* Add INSN to the model worklist immediately after PREV. Add it to the
3374 beginning of the list if PREV is null. */
3375
3376 static void
3377 model_add_to_worklist_at (struct model_insn_info *insn,
3378 struct model_insn_info *prev)
3379 {
3380 gcc_assert (QUEUE_INDEX (insn->insn) == QUEUE_NOWHERE);
3381 QUEUE_INDEX (insn->insn) = QUEUE_READY;
3382
3383 insn->prev = prev;
3384 if (prev)
3385 {
3386 insn->next = prev->next;
3387 prev->next = insn;
3388 }
3389 else
3390 {
3391 insn->next = model_worklist;
3392 model_worklist = insn;
3393 }
3394 if (insn->next)
3395 insn->next->prev = insn;
3396 }
3397
3398 /* Remove INSN from the model worklist. */
3399
3400 static void
3401 model_remove_from_worklist (struct model_insn_info *insn)
3402 {
3403 gcc_assert (QUEUE_INDEX (insn->insn) == QUEUE_READY);
3404 QUEUE_INDEX (insn->insn) = QUEUE_NOWHERE;
3405
3406 if (insn->prev)
3407 insn->prev->next = insn->next;
3408 else
3409 model_worklist = insn->next;
3410 if (insn->next)
3411 insn->next->prev = insn->prev;
3412 }
3413
3414 /* Add INSN to the model worklist. Start looking for a suitable position
3415 between neighbors PREV and NEXT, testing at most param_max_sched_ready_insns
3416 insns either side. A null PREV indicates the beginning of the list and
3417 a null NEXT indicates the end. */
3418
3419 static void
3420 model_add_to_worklist (struct model_insn_info *insn,
3421 struct model_insn_info *prev,
3422 struct model_insn_info *next)
3423 {
3424 int count;
3425
3426 count = param_max_sched_ready_insns;
3427 if (count > 0 && prev && model_order_p (insn, prev))
3428 do
3429 {
3430 count--;
3431 prev = prev->prev;
3432 }
3433 while (count > 0 && prev && model_order_p (insn, prev));
3434 else
3435 while (count > 0 && next && model_order_p (next, insn))
3436 {
3437 count--;
3438 prev = next;
3439 next = next->next;
3440 }
3441 model_add_to_worklist_at (insn, prev);
3442 }
3443
3444 /* INSN may now have a higher priority (in the model_order_p sense)
3445 than before. Move it up the worklist if necessary. */
3446
3447 static void
3448 model_promote_insn (struct model_insn_info *insn)
3449 {
3450 struct model_insn_info *prev;
3451 int count;
3452
3453 prev = insn->prev;
3454 count = param_max_sched_ready_insns;
3455 while (count > 0 && prev && model_order_p (insn, prev))
3456 {
3457 count--;
3458 prev = prev->prev;
3459 }
3460 if (prev != insn->prev)
3461 {
3462 model_remove_from_worklist (insn);
3463 model_add_to_worklist_at (insn, prev);
3464 }
3465 }
3466
3467 /* Add INSN to the end of the model schedule. */
3468
3469 static void
3470 model_add_to_schedule (rtx_insn *insn)
3471 {
3472 unsigned int point;
3473
3474 gcc_assert (QUEUE_INDEX (insn) == QUEUE_NOWHERE);
3475 QUEUE_INDEX (insn) = QUEUE_SCHEDULED;
3476
3477 point = model_schedule.length ();
3478 model_schedule.quick_push (insn);
3479 INSN_MODEL_INDEX (insn) = point + 1;
3480 }
3481
3482 /* Analyze the instructions that are to be scheduled, setting up
3483 MODEL_INSN_INFO (...) and model_num_insns accordingly. Add ready
3484 instructions to model_worklist. */
3485
3486 static void
3487 model_analyze_insns (void)
3488 {
3489 rtx_insn *start, *end, *iter;
3490 sd_iterator_def sd_it;
3491 dep_t dep;
3492 struct model_insn_info *insn, *con;
3493
3494 model_num_insns = 0;
3495 start = PREV_INSN (current_sched_info->next_tail);
3496 end = current_sched_info->prev_head;
3497 for (iter = start; iter != end; iter = PREV_INSN (iter))
3498 if (NONDEBUG_INSN_P (iter))
3499 {
3500 insn = MODEL_INSN_INFO (iter);
3501 insn->insn = iter;
3502 FOR_EACH_DEP (iter, SD_LIST_FORW, sd_it, dep)
3503 {
3504 con = MODEL_INSN_INFO (DEP_CON (dep));
3505 if (con->insn && insn->alap < con->alap + 1)
3506 insn->alap = con->alap + 1;
3507 }
3508
3509 insn->old_queue = QUEUE_INDEX (iter);
3510 QUEUE_INDEX (iter) = QUEUE_NOWHERE;
3511
3512 insn->unscheduled_preds = dep_list_size (iter, SD_LIST_HARD_BACK);
3513 if (insn->unscheduled_preds == 0)
3514 model_add_to_worklist (insn, NULL, model_worklist);
3515
3516 model_num_insns++;
3517 }
3518 }
3519
3520 /* The global state describes the register pressure at the start of the
3521 model schedule. Initialize GROUP accordingly. */
3522
3523 static void
3524 model_init_pressure_group (struct model_pressure_group *group)
3525 {
3526 int pci, cl;
3527
3528 for (pci = 0; pci < ira_pressure_classes_num; pci++)
3529 {
3530 cl = ira_pressure_classes[pci];
3531 group->limits[pci].pressure = curr_reg_pressure[cl];
3532 group->limits[pci].point = 0;
3533 }
3534 /* Use index model_num_insns to record the state after the last
3535 instruction in the model schedule. */
3536 group->model = XNEWVEC (struct model_pressure_data,
3537 (model_num_insns + 1) * ira_pressure_classes_num);
3538 }
3539
3540 /* Record that MODEL_REF_PRESSURE (GROUP, POINT, PCI) is PRESSURE.
3541 Update the maximum pressure for the whole schedule. */
3542
3543 static void
3544 model_record_pressure (struct model_pressure_group *group,
3545 int point, int pci, int pressure)
3546 {
3547 MODEL_REF_PRESSURE (group, point, pci) = pressure;
3548 if (group->limits[pci].pressure < pressure)
3549 {
3550 group->limits[pci].pressure = pressure;
3551 group->limits[pci].point = point;
3552 }
3553 }
3554
3555 /* INSN has just been added to the end of the model schedule. Record its
3556 register-pressure information. */
3557
3558 static void
3559 model_record_pressures (struct model_insn_info *insn)
3560 {
3561 struct reg_pressure_data *reg_pressure;
3562 int point, pci, cl, delta;
3563 int death[N_REG_CLASSES];
3564
3565 point = model_index (insn->insn);
3566 if (sched_verbose >= 2)
3567 {
3568 if (point == 0)
3569 {
3570 fprintf (sched_dump, "\n;;\tModel schedule:\n;;\n");
3571 fprintf (sched_dump, ";;\t| idx insn | mpri hght dpth prio |\n");
3572 }
3573 fprintf (sched_dump, ";;\t| %3d %4d | %4d %4d %4d %4d | %-30s ",
3574 point, INSN_UID (insn->insn), insn->model_priority,
3575 insn->depth + insn->alap, insn->depth,
3576 INSN_PRIORITY (insn->insn),
3577 str_pattern_slim (PATTERN (insn->insn)));
3578 }
3579 calculate_reg_deaths (insn->insn, death);
3580 reg_pressure = INSN_REG_PRESSURE (insn->insn);
3581 for (pci = 0; pci < ira_pressure_classes_num; pci++)
3582 {
3583 cl = ira_pressure_classes[pci];
3584 delta = reg_pressure[pci].set_increase - death[cl];
3585 if (sched_verbose >= 2)
3586 fprintf (sched_dump, " %s:[%d,%+d]", reg_class_names[cl],
3587 curr_reg_pressure[cl], delta);
3588 model_record_pressure (&model_before_pressure, point, pci,
3589 curr_reg_pressure[cl]);
3590 }
3591 if (sched_verbose >= 2)
3592 fprintf (sched_dump, "\n");
3593 }
3594
3595 /* All instructions have been added to the model schedule. Record the
3596 final register pressure in GROUP and set up all MODEL_MAX_PRESSUREs. */
3597
3598 static void
3599 model_record_final_pressures (struct model_pressure_group *group)
3600 {
3601 int point, pci, max_pressure, ref_pressure, cl;
3602
3603 for (pci = 0; pci < ira_pressure_classes_num; pci++)
3604 {
3605 /* Record the final pressure for this class. */
3606 cl = ira_pressure_classes[pci];
3607 point = model_num_insns;
3608 ref_pressure = curr_reg_pressure[cl];
3609 model_record_pressure (group, point, pci, ref_pressure);
3610
3611 /* Record the original maximum pressure. */
3612 group->limits[pci].orig_pressure = group->limits[pci].pressure;
3613
3614 /* Update the MODEL_MAX_PRESSURE for every point of the schedule. */
3615 max_pressure = ref_pressure;
3616 MODEL_MAX_PRESSURE (group, point, pci) = max_pressure;
3617 while (point > 0)
3618 {
3619 point--;
3620 ref_pressure = MODEL_REF_PRESSURE (group, point, pci);
3621 max_pressure = MAX (max_pressure, ref_pressure);
3622 MODEL_MAX_PRESSURE (group, point, pci) = max_pressure;
3623 }
3624 }
3625 }
3626
3627 /* Update all successors of INSN, given that INSN has just been scheduled. */
3628
3629 static void
3630 model_add_successors_to_worklist (struct model_insn_info *insn)
3631 {
3632 sd_iterator_def sd_it;
3633 struct model_insn_info *con;
3634 dep_t dep;
3635
3636 FOR_EACH_DEP (insn->insn, SD_LIST_FORW, sd_it, dep)
3637 {
3638 con = MODEL_INSN_INFO (DEP_CON (dep));
3639 /* Ignore debug instructions, and instructions from other blocks. */
3640 if (con->insn)
3641 {
3642 con->unscheduled_preds--;
3643
3644 /* Update the depth field of each true-dependent successor.
3645 Increasing the depth gives them a higher priority than
3646 before. */
3647 if (DEP_TYPE (dep) == REG_DEP_TRUE && con->depth < insn->depth + 1)
3648 {
3649 con->depth = insn->depth + 1;
3650 if (QUEUE_INDEX (con->insn) == QUEUE_READY)
3651 model_promote_insn (con);
3652 }
3653
3654 /* If this is a true dependency, or if there are no remaining
3655 dependencies for CON (meaning that CON only had non-true
3656 dependencies), make sure that CON is on the worklist.
3657 We don't bother otherwise because it would tend to fill the
3658 worklist with a lot of low-priority instructions that are not
3659 yet ready to issue. */
3660 if ((con->depth > 0 || con->unscheduled_preds == 0)
3661 && QUEUE_INDEX (con->insn) == QUEUE_NOWHERE)
3662 model_add_to_worklist (con, insn, insn->next);
3663 }
3664 }
3665 }
3666
3667 /* Give INSN a higher priority than any current instruction, then give
3668 unscheduled predecessors of INSN a higher priority still. If any of
3669 those predecessors are not on the model worklist, do the same for its
3670 predecessors, and so on. */
3671
3672 static void
3673 model_promote_predecessors (struct model_insn_info *insn)
3674 {
3675 struct model_insn_info *pro, *first;
3676 sd_iterator_def sd_it;
3677 dep_t dep;
3678
3679 if (sched_verbose >= 7)
3680 fprintf (sched_dump, ";;\t+--- priority of %d = %d, priority of",
3681 INSN_UID (insn->insn), model_next_priority);
3682 insn->model_priority = model_next_priority++;
3683 model_remove_from_worklist (insn);
3684 model_add_to_worklist_at (insn, NULL);
3685
3686 first = NULL;
3687 for (;;)
3688 {
3689 FOR_EACH_DEP (insn->insn, SD_LIST_HARD_BACK, sd_it, dep)
3690 {
3691 pro = MODEL_INSN_INFO (DEP_PRO (dep));
3692 /* The first test is to ignore debug instructions, and instructions
3693 from other blocks. */
3694 if (pro->insn
3695 && pro->model_priority != model_next_priority
3696 && QUEUE_INDEX (pro->insn) != QUEUE_SCHEDULED)
3697 {
3698 pro->model_priority = model_next_priority;
3699 if (sched_verbose >= 7)
3700 fprintf (sched_dump, " %d", INSN_UID (pro->insn));
3701 if (QUEUE_INDEX (pro->insn) == QUEUE_READY)
3702 {
3703 /* PRO is already in the worklist, but it now has
3704 a higher priority than before. Move it at the
3705 appropriate place. */
3706 model_remove_from_worklist (pro);
3707 model_add_to_worklist (pro, NULL, model_worklist);
3708 }
3709 else
3710 {
3711 /* PRO isn't in the worklist. Recursively process
3712 its predecessors until we find one that is. */
3713 pro->next = first;
3714 first = pro;
3715 }
3716 }
3717 }
3718 if (!first)
3719 break;
3720 insn = first;
3721 first = insn->next;
3722 }
3723 if (sched_verbose >= 7)
3724 fprintf (sched_dump, " = %d\n", model_next_priority);
3725 model_next_priority++;
3726 }
3727
3728 /* Pick one instruction from model_worklist and process it. */
3729
3730 static void
3731 model_choose_insn (void)
3732 {
3733 struct model_insn_info *insn, *fallback;
3734 int count;
3735
3736 if (sched_verbose >= 7)
3737 {
3738 fprintf (sched_dump, ";;\t+--- worklist:\n");
3739 insn = model_worklist;
3740 count = param_max_sched_ready_insns;
3741 while (count > 0 && insn)
3742 {
3743 fprintf (sched_dump, ";;\t+--- %d [%d, %d, %d, %d]\n",
3744 INSN_UID (insn->insn), insn->model_priority,
3745 insn->depth + insn->alap, insn->depth,
3746 INSN_PRIORITY (insn->insn));
3747 count--;
3748 insn = insn->next;
3749 }
3750 }
3751
3752 /* Look for a ready instruction whose model_classify_priority is zero
3753 or negative, picking the highest-priority one. Adding such an
3754 instruction to the schedule now should do no harm, and may actually
3755 do some good.
3756
3757 Failing that, see whether there is an instruction with the highest
3758 extant model_priority that is not yet ready, but which would reduce
3759 pressure if it became ready. This is designed to catch cases like:
3760
3761 (set (mem (reg R1)) (reg R2))
3762
3763 where the instruction is the last remaining use of R1 and where the
3764 value of R2 is not yet available (or vice versa). The death of R1
3765 means that this instruction already reduces pressure. It is of
3766 course possible that the computation of R2 involves other registers
3767 that are hard to kill, but such cases are rare enough for this
3768 heuristic to be a win in general.
3769
3770 Failing that, just pick the highest-priority instruction in the
3771 worklist. */
3772 count = param_max_sched_ready_insns;
3773 insn = model_worklist;
3774 fallback = 0;
3775 for (;;)
3776 {
3777 if (count == 0 || !insn)
3778 {
3779 insn = fallback ? fallback : model_worklist;
3780 break;
3781 }
3782 if (insn->unscheduled_preds)
3783 {
3784 if (model_worklist->model_priority == insn->model_priority
3785 && !fallback
3786 && model_classify_pressure (insn) < 0)
3787 fallback = insn;
3788 }
3789 else
3790 {
3791 if (model_classify_pressure (insn) <= 0)
3792 break;
3793 }
3794 count--;
3795 insn = insn->next;
3796 }
3797
3798 if (sched_verbose >= 7 && insn != model_worklist)
3799 {
3800 if (insn->unscheduled_preds)
3801 fprintf (sched_dump, ";;\t+--- promoting insn %d, with dependencies\n",
3802 INSN_UID (insn->insn));
3803 else
3804 fprintf (sched_dump, ";;\t+--- promoting insn %d, which is ready\n",
3805 INSN_UID (insn->insn));
3806 }
3807 if (insn->unscheduled_preds)
3808 /* INSN isn't yet ready to issue. Give all its predecessors the
3809 highest priority. */
3810 model_promote_predecessors (insn);
3811 else
3812 {
3813 /* INSN is ready. Add it to the end of model_schedule and
3814 process its successors. */
3815 model_add_successors_to_worklist (insn);
3816 model_remove_from_worklist (insn);
3817 model_add_to_schedule (insn->insn);
3818 model_record_pressures (insn);
3819 update_register_pressure (insn->insn);
3820 }
3821 }
3822
3823 /* Restore all QUEUE_INDEXs to the values that they had before
3824 model_start_schedule was called. */
3825
3826 static void
3827 model_reset_queue_indices (void)
3828 {
3829 unsigned int i;
3830 rtx_insn *insn;
3831
3832 FOR_EACH_VEC_ELT (model_schedule, i, insn)
3833 QUEUE_INDEX (insn) = MODEL_INSN_INFO (insn)->old_queue;
3834 }
3835
3836 /* We have calculated the model schedule and spill costs. Print a summary
3837 to sched_dump. */
3838
3839 static void
3840 model_dump_pressure_summary (void)
3841 {
3842 int pci, cl;
3843
3844 fprintf (sched_dump, ";; Pressure summary:");
3845 for (pci = 0; pci < ira_pressure_classes_num; pci++)
3846 {
3847 cl = ira_pressure_classes[pci];
3848 fprintf (sched_dump, " %s:%d", reg_class_names[cl],
3849 model_before_pressure.limits[pci].pressure);
3850 }
3851 fprintf (sched_dump, "\n\n");
3852 }
3853
3854 /* Initialize the SCHED_PRESSURE_MODEL information for the current
3855 scheduling region. */
3856
3857 static void
3858 model_start_schedule (basic_block bb)
3859 {
3860 model_next_priority = 1;
3861 model_schedule.create (sched_max_luid);
3862 model_insns = XCNEWVEC (struct model_insn_info, sched_max_luid);
3863
3864 gcc_assert (bb == BLOCK_FOR_INSN (NEXT_INSN (current_sched_info->prev_head)));
3865 initiate_reg_pressure_info (df_get_live_in (bb));
3866
3867 model_analyze_insns ();
3868 model_init_pressure_group (&model_before_pressure);
3869 while (model_worklist)
3870 model_choose_insn ();
3871 gcc_assert (model_num_insns == (int) model_schedule.length ());
3872 if (sched_verbose >= 2)
3873 fprintf (sched_dump, "\n");
3874
3875 model_record_final_pressures (&model_before_pressure);
3876 model_reset_queue_indices ();
3877
3878 XDELETEVEC (model_insns);
3879
3880 model_curr_point = 0;
3881 initiate_reg_pressure_info (df_get_live_in (bb));
3882 if (sched_verbose >= 1)
3883 model_dump_pressure_summary ();
3884 }
3885
3886 /* Free the information associated with GROUP. */
3887
3888 static void
3889 model_finalize_pressure_group (struct model_pressure_group *group)
3890 {
3891 XDELETEVEC (group->model);
3892 }
3893
3894 /* Free the information created by model_start_schedule. */
3895
3896 static void
3897 model_end_schedule (void)
3898 {
3899 model_finalize_pressure_group (&model_before_pressure);
3900 model_schedule.release ();
3901 }
3902
3903 /* Prepare reg pressure scheduling for basic block BB. */
3904 static void
3905 sched_pressure_start_bb (basic_block bb)
3906 {
3907 /* Set the number of available registers for each class taking into account
3908 relative probability of current basic block versus function prologue and
3909 epilogue.
3910 * If the basic block executes much more often than the prologue/epilogue
3911 (e.g., inside a hot loop), then cost of spill in the prologue is close to
3912 nil, so the effective number of available registers is
3913 (ira_class_hard_regs_num[cl] - fixed_regs_num[cl] - 0).
3914 * If the basic block executes as often as the prologue/epilogue,
3915 then spill in the block is as costly as in the prologue, so the effective
3916 number of available registers is
3917 (ira_class_hard_regs_num[cl] - fixed_regs_num[cl]
3918 - call_saved_regs_num[cl]).
3919 Note that all-else-equal, we prefer to spill in the prologue, since that
3920 allows "extra" registers for other basic blocks of the function.
3921 * If the basic block is on the cold path of the function and executes
3922 rarely, then we should always prefer to spill in the block, rather than
3923 in the prologue/epilogue. The effective number of available register is
3924 (ira_class_hard_regs_num[cl] - fixed_regs_num[cl]
3925 - call_saved_regs_num[cl]). */
3926 {
3927 int i;
3928 int entry_freq = ENTRY_BLOCK_PTR_FOR_FN (cfun)->count.to_frequency (cfun);
3929 int bb_freq = bb->count.to_frequency (cfun);
3930
3931 if (bb_freq == 0)
3932 {
3933 if (entry_freq == 0)
3934 entry_freq = bb_freq = 1;
3935 }
3936 if (bb_freq < entry_freq)
3937 bb_freq = entry_freq;
3938
3939 for (i = 0; i < ira_pressure_classes_num; ++i)
3940 {
3941 enum reg_class cl = ira_pressure_classes[i];
3942 sched_class_regs_num[cl] = ira_class_hard_regs_num[cl]
3943 - fixed_regs_num[cl];
3944 sched_class_regs_num[cl]
3945 -= (call_saved_regs_num[cl] * entry_freq) / bb_freq;
3946 }
3947 }
3948
3949 if (sched_pressure == SCHED_PRESSURE_MODEL)
3950 model_start_schedule (bb);
3951 }
3952 \f
3953 /* A structure that holds local state for the loop in schedule_block. */
3954 struct sched_block_state
3955 {
3956 /* True if no real insns have been scheduled in the current cycle. */
3957 bool first_cycle_insn_p;
3958 /* True if a shadow insn has been scheduled in the current cycle, which
3959 means that no more normal insns can be issued. */
3960 bool shadows_only_p;
3961 /* True if we're winding down a modulo schedule, which means that we only
3962 issue insns with INSN_EXACT_TICK set. */
3963 bool modulo_epilogue;
3964 /* Initialized with the machine's issue rate every cycle, and updated
3965 by calls to the variable_issue hook. */
3966 int can_issue_more;
3967 };
3968
3969 /* INSN is the "currently executing insn". Launch each insn which was
3970 waiting on INSN. READY is the ready list which contains the insns
3971 that are ready to fire. CLOCK is the current cycle. The function
3972 returns necessary cycle advance after issuing the insn (it is not
3973 zero for insns in a schedule group). */
3974
3975 static int
3976 schedule_insn (rtx_insn *insn)
3977 {
3978 sd_iterator_def sd_it;
3979 dep_t dep;
3980 int i;
3981 int advance = 0;
3982
3983 if (sched_verbose >= 1)
3984 {
3985 struct reg_pressure_data *pressure_info;
3986 fprintf (sched_dump, ";;\t%3i--> %s %-40s:",
3987 clock_var, (*current_sched_info->print_insn) (insn, 1),
3988 str_pattern_slim (PATTERN (insn)));
3989
3990 if (recog_memoized (insn) < 0)
3991 fprintf (sched_dump, "nothing");
3992 else
3993 print_reservation (sched_dump, insn);
3994 pressure_info = INSN_REG_PRESSURE (insn);
3995 if (pressure_info != NULL)
3996 {
3997 fputc (':', sched_dump);
3998 for (i = 0; i < ira_pressure_classes_num; i++)
3999 fprintf (sched_dump, "%s%s%+d(%d)",
4000 scheduled_insns.length () > 1
4001 && INSN_LUID (insn)
4002 < INSN_LUID (scheduled_insns[scheduled_insns.length () - 2]) ? "@" : "",
4003 reg_class_names[ira_pressure_classes[i]],
4004 pressure_info[i].set_increase, pressure_info[i].change);
4005 }
4006 if (sched_pressure == SCHED_PRESSURE_MODEL
4007 && model_curr_point < model_num_insns
4008 && model_index (insn) == model_curr_point)
4009 fprintf (sched_dump, ":model %d", model_curr_point);
4010 fputc ('\n', sched_dump);
4011 }
4012
4013 if (sched_pressure == SCHED_PRESSURE_WEIGHTED && !DEBUG_INSN_P (insn))
4014 update_reg_and_insn_max_reg_pressure (insn);
4015
4016 /* Scheduling instruction should have all its dependencies resolved and
4017 should have been removed from the ready list. */
4018 gcc_assert (sd_lists_empty_p (insn, SD_LIST_HARD_BACK));
4019
4020 /* Reset debug insns invalidated by moving this insn. */
4021 if (MAY_HAVE_DEBUG_BIND_INSNS && !DEBUG_INSN_P (insn))
4022 for (sd_it = sd_iterator_start (insn, SD_LIST_BACK);
4023 sd_iterator_cond (&sd_it, &dep);)
4024 {
4025 rtx_insn *dbg = DEP_PRO (dep);
4026 struct reg_use_data *use, *next;
4027
4028 if (DEP_STATUS (dep) & DEP_CANCELLED)
4029 {
4030 sd_iterator_next (&sd_it);
4031 continue;
4032 }
4033
4034 gcc_assert (DEBUG_BIND_INSN_P (dbg));
4035
4036 if (sched_verbose >= 6)
4037 fprintf (sched_dump, ";;\t\tresetting: debug insn %d\n",
4038 INSN_UID (dbg));
4039
4040 /* ??? Rather than resetting the debug insn, we might be able
4041 to emit a debug temp before the just-scheduled insn, but
4042 this would involve checking that the expression at the
4043 point of the debug insn is equivalent to the expression
4044 before the just-scheduled insn. They might not be: the
4045 expression in the debug insn may depend on other insns not
4046 yet scheduled that set MEMs, REGs or even other debug
4047 insns. It's not clear that attempting to preserve debug
4048 information in these cases is worth the effort, given how
4049 uncommon these resets are and the likelihood that the debug
4050 temps introduced won't survive the schedule change. */
4051 INSN_VAR_LOCATION_LOC (dbg) = gen_rtx_UNKNOWN_VAR_LOC ();
4052 df_insn_rescan (dbg);
4053
4054 /* Unknown location doesn't use any registers. */
4055 for (use = INSN_REG_USE_LIST (dbg); use != NULL; use = next)
4056 {
4057 struct reg_use_data *prev = use;
4058
4059 /* Remove use from the cyclic next_regno_use chain first. */
4060 while (prev->next_regno_use != use)
4061 prev = prev->next_regno_use;
4062 prev->next_regno_use = use->next_regno_use;
4063 next = use->next_insn_use;
4064 free (use);
4065 }
4066 INSN_REG_USE_LIST (dbg) = NULL;
4067
4068 /* We delete rather than resolve these deps, otherwise we
4069 crash in sched_free_deps(), because forward deps are
4070 expected to be released before backward deps. */
4071 sd_delete_dep (sd_it);
4072 }
4073
4074 gcc_assert (QUEUE_INDEX (insn) == QUEUE_NOWHERE);
4075 QUEUE_INDEX (insn) = QUEUE_SCHEDULED;
4076
4077 if (sched_pressure == SCHED_PRESSURE_MODEL
4078 && model_curr_point < model_num_insns
4079 && NONDEBUG_INSN_P (insn))
4080 {
4081 if (model_index (insn) == model_curr_point)
4082 do
4083 model_curr_point++;
4084 while (model_curr_point < model_num_insns
4085 && (QUEUE_INDEX (MODEL_INSN (model_curr_point))
4086 == QUEUE_SCHEDULED));
4087 else
4088 model_recompute (insn);
4089 model_update_limit_points ();
4090 update_register_pressure (insn);
4091 if (sched_verbose >= 2)
4092 print_curr_reg_pressure ();
4093 }
4094
4095 gcc_assert (INSN_TICK (insn) >= MIN_TICK);
4096 if (INSN_TICK (insn) > clock_var)
4097 /* INSN has been prematurely moved from the queue to the ready list.
4098 This is possible only if following flags are set. */
4099 gcc_assert (flag_sched_stalled_insns || sched_fusion);
4100
4101 /* ??? Probably, if INSN is scheduled prematurely, we should leave
4102 INSN_TICK untouched. This is a machine-dependent issue, actually. */
4103 INSN_TICK (insn) = clock_var;
4104
4105 check_clobbered_conditions (insn);
4106
4107 /* Update dependent instructions. First, see if by scheduling this insn
4108 now we broke a dependence in a way that requires us to change another
4109 insn. */
4110 for (sd_it = sd_iterator_start (insn, SD_LIST_SPEC_BACK);
4111 sd_iterator_cond (&sd_it, &dep); sd_iterator_next (&sd_it))
4112 {
4113 struct dep_replacement *desc = DEP_REPLACE (dep);
4114 rtx_insn *pro = DEP_PRO (dep);
4115 if (QUEUE_INDEX (pro) != QUEUE_SCHEDULED
4116 && desc != NULL && desc->insn == pro)
4117 apply_replacement (dep, false);
4118 }
4119
4120 /* Go through and resolve forward dependencies. */
4121 for (sd_it = sd_iterator_start (insn, SD_LIST_FORW);
4122 sd_iterator_cond (&sd_it, &dep);)
4123 {
4124 rtx_insn *next = DEP_CON (dep);
4125 bool cancelled = (DEP_STATUS (dep) & DEP_CANCELLED) != 0;
4126
4127 /* Resolve the dependence between INSN and NEXT.
4128 sd_resolve_dep () moves current dep to another list thus
4129 advancing the iterator. */
4130 sd_resolve_dep (sd_it);
4131
4132 if (cancelled)
4133 {
4134 if (must_restore_pattern_p (next, dep))
4135 restore_pattern (dep, false);
4136 continue;
4137 }
4138
4139 /* Don't bother trying to mark next as ready if insn is a debug
4140 insn. If insn is the last hard dependency, it will have
4141 already been discounted. */
4142 if (DEBUG_INSN_P (insn) && !DEBUG_INSN_P (next))
4143 continue;
4144
4145 if (!IS_SPECULATION_BRANCHY_CHECK_P (insn))
4146 {
4147 int effective_cost;
4148
4149 effective_cost = try_ready (next);
4150
4151 if (effective_cost >= 0
4152 && SCHED_GROUP_P (next)
4153 && advance < effective_cost)
4154 advance = effective_cost;
4155 }
4156 else
4157 /* Check always has only one forward dependence (to the first insn in
4158 the recovery block), therefore, this will be executed only once. */
4159 {
4160 gcc_assert (sd_lists_empty_p (insn, SD_LIST_FORW));
4161 fix_recovery_deps (RECOVERY_BLOCK (insn));
4162 }
4163 }
4164
4165 /* Annotate the instruction with issue information -- TImode
4166 indicates that the instruction is expected not to be able
4167 to issue on the same cycle as the previous insn. A machine
4168 may use this information to decide how the instruction should
4169 be aligned. */
4170 if (issue_rate > 1
4171 && GET_CODE (PATTERN (insn)) != USE
4172 && GET_CODE (PATTERN (insn)) != CLOBBER
4173 && !DEBUG_INSN_P (insn))
4174 {
4175 if (reload_completed)
4176 PUT_MODE (insn, clock_var > last_clock_var ? TImode : VOIDmode);
4177 last_clock_var = clock_var;
4178 }
4179
4180 if (nonscheduled_insns_begin != NULL_RTX)
4181 /* Indicate to debug counters that INSN is scheduled. */
4182 nonscheduled_insns_begin = insn;
4183
4184 return advance;
4185 }
4186
4187 /* Functions for handling of notes. */
4188
4189 /* Add note list that ends on FROM_END to the end of TO_ENDP. */
4190 void
4191 concat_note_lists (rtx_insn *from_end, rtx_insn **to_endp)
4192 {
4193 rtx_insn *from_start;
4194
4195 /* It's easy when have nothing to concat. */
4196 if (from_end == NULL)
4197 return;
4198
4199 /* It's also easy when destination is empty. */
4200 if (*to_endp == NULL)
4201 {
4202 *to_endp = from_end;
4203 return;
4204 }
4205
4206 from_start = from_end;
4207 while (PREV_INSN (from_start) != NULL)
4208 from_start = PREV_INSN (from_start);
4209
4210 SET_PREV_INSN (from_start) = *to_endp;
4211 SET_NEXT_INSN (*to_endp) = from_start;
4212 *to_endp = from_end;
4213 }
4214
4215 /* Delete notes between HEAD and TAIL and put them in the chain
4216 of notes ended by NOTE_LIST. */
4217 void
4218 remove_notes (rtx_insn *head, rtx_insn *tail)
4219 {
4220 rtx_insn *next_tail, *insn, *next;
4221
4222 note_list = 0;
4223 if (head == tail && !INSN_P (head))
4224 return;
4225
4226 next_tail = NEXT_INSN (tail);
4227 for (insn = head; insn != next_tail; insn = next)
4228 {
4229 next = NEXT_INSN (insn);
4230 if (!NOTE_P (insn))
4231 continue;
4232
4233 switch (NOTE_KIND (insn))
4234 {
4235 case NOTE_INSN_BASIC_BLOCK:
4236 continue;
4237
4238 case NOTE_INSN_EPILOGUE_BEG:
4239 if (insn != tail)
4240 {
4241 remove_insn (insn);
4242 /* If an insn was split just before the EPILOGUE_BEG note and
4243 that split created new basic blocks, we could have a
4244 BASIC_BLOCK note here. Safely advance over it in that case
4245 and assert that we land on a real insn. */
4246 if (NOTE_P (next)
4247 && NOTE_KIND (next) == NOTE_INSN_BASIC_BLOCK
4248 && next != next_tail)
4249 next = NEXT_INSN (next);
4250 gcc_assert (INSN_P (next));
4251 add_reg_note (next, REG_SAVE_NOTE,
4252 GEN_INT (NOTE_INSN_EPILOGUE_BEG));
4253 break;
4254 }
4255 /* FALLTHRU */
4256
4257 default:
4258 remove_insn (insn);
4259
4260 /* Add the note to list that ends at NOTE_LIST. */
4261 SET_PREV_INSN (insn) = note_list;
4262 SET_NEXT_INSN (insn) = NULL_RTX;
4263 if (note_list)
4264 SET_NEXT_INSN (note_list) = insn;
4265 note_list = insn;
4266 break;
4267 }
4268
4269 gcc_assert ((sel_sched_p () || insn != tail) && insn != head);
4270 }
4271 }
4272
4273 /* A structure to record enough data to allow us to backtrack the scheduler to
4274 a previous state. */
4275 struct haifa_saved_data
4276 {
4277 /* Next entry on the list. */
4278 struct haifa_saved_data *next;
4279
4280 /* Backtracking is associated with scheduling insns that have delay slots.
4281 DELAY_PAIR points to the structure that contains the insns involved, and
4282 the number of cycles between them. */
4283 struct delay_pair *delay_pair;
4284
4285 /* Data used by the frontend (e.g. sched-ebb or sched-rgn). */
4286 void *fe_saved_data;
4287 /* Data used by the backend. */
4288 void *be_saved_data;
4289
4290 /* Copies of global state. */
4291 int clock_var, last_clock_var;
4292 struct ready_list ready;
4293 state_t curr_state;
4294
4295 rtx_insn *last_scheduled_insn;
4296 rtx_insn *last_nondebug_scheduled_insn;
4297 rtx_insn *nonscheduled_insns_begin;
4298 int cycle_issued_insns;
4299
4300 /* Copies of state used in the inner loop of schedule_block. */
4301 struct sched_block_state sched_block;
4302
4303 /* We don't need to save q_ptr, as its value is arbitrary and we can set it
4304 to 0 when restoring. */
4305 int q_size;
4306 rtx_insn_list **insn_queue;
4307
4308 /* Describe pattern replacements that occurred since this backtrack point
4309 was queued. */
4310 vec<dep_t> replacement_deps;
4311 vec<int> replace_apply;
4312
4313 /* A copy of the next-cycle replacement vectors at the time of the backtrack
4314 point. */
4315 vec<dep_t> next_cycle_deps;
4316 vec<int> next_cycle_apply;
4317 };
4318
4319 /* A record, in reverse order, of all scheduled insns which have delay slots
4320 and may require backtracking. */
4321 static struct haifa_saved_data *backtrack_queue;
4322
4323 /* For every dependency of INSN, set the FEEDS_BACKTRACK_INSN bit according
4324 to SET_P. */
4325 static void
4326 mark_backtrack_feeds (rtx_insn *insn, int set_p)
4327 {
4328 sd_iterator_def sd_it;
4329 dep_t dep;
4330 FOR_EACH_DEP (insn, SD_LIST_HARD_BACK, sd_it, dep)
4331 {
4332 FEEDS_BACKTRACK_INSN (DEP_PRO (dep)) = set_p;
4333 }
4334 }
4335
4336 /* Save the current scheduler state so that we can backtrack to it
4337 later if necessary. PAIR gives the insns that make it necessary to
4338 save this point. SCHED_BLOCK is the local state of schedule_block
4339 that need to be saved. */
4340 static void
4341 save_backtrack_point (struct delay_pair *pair,
4342 struct sched_block_state sched_block)
4343 {
4344 int i;
4345 struct haifa_saved_data *save = XNEW (struct haifa_saved_data);
4346
4347 save->curr_state = xmalloc (dfa_state_size);
4348 memcpy (save->curr_state, curr_state, dfa_state_size);
4349
4350 save->ready.first = ready.first;
4351 save->ready.n_ready = ready.n_ready;
4352 save->ready.n_debug = ready.n_debug;
4353 save->ready.veclen = ready.veclen;
4354 save->ready.vec = XNEWVEC (rtx_insn *, ready.veclen);
4355 memcpy (save->ready.vec, ready.vec, ready.veclen * sizeof (rtx));
4356
4357 save->insn_queue = XNEWVEC (rtx_insn_list *, max_insn_queue_index + 1);
4358 save->q_size = q_size;
4359 for (i = 0; i <= max_insn_queue_index; i++)
4360 {
4361 int q = NEXT_Q_AFTER (q_ptr, i);
4362 save->insn_queue[i] = copy_INSN_LIST (insn_queue[q]);
4363 }
4364
4365 save->clock_var = clock_var;
4366 save->last_clock_var = last_clock_var;
4367 save->cycle_issued_insns = cycle_issued_insns;
4368 save->last_scheduled_insn = last_scheduled_insn;
4369 save->last_nondebug_scheduled_insn = last_nondebug_scheduled_insn;
4370 save->nonscheduled_insns_begin = nonscheduled_insns_begin;
4371
4372 save->sched_block = sched_block;
4373
4374 save->replacement_deps.create (0);
4375 save->replace_apply.create (0);
4376 save->next_cycle_deps = next_cycle_replace_deps.copy ();
4377 save->next_cycle_apply = next_cycle_apply.copy ();
4378
4379 if (current_sched_info->save_state)
4380 save->fe_saved_data = (*current_sched_info->save_state) ();
4381
4382 if (targetm.sched.alloc_sched_context)
4383 {
4384 save->be_saved_data = targetm.sched.alloc_sched_context ();
4385 targetm.sched.init_sched_context (save->be_saved_data, false);
4386 }
4387 else
4388 save->be_saved_data = NULL;
4389
4390 save->delay_pair = pair;
4391
4392 save->next = backtrack_queue;
4393 backtrack_queue = save;
4394
4395 while (pair)
4396 {
4397 mark_backtrack_feeds (pair->i2, 1);
4398 INSN_TICK (pair->i2) = INVALID_TICK;
4399 INSN_EXACT_TICK (pair->i2) = clock_var + pair_delay (pair);
4400 SHADOW_P (pair->i2) = pair->stages == 0;
4401 pair = pair->next_same_i1;
4402 }
4403 }
4404
4405 /* Walk the ready list and all queues. If any insns have unresolved backwards
4406 dependencies, these must be cancelled deps, broken by predication. Set or
4407 clear (depending on SET) the DEP_CANCELLED bit in DEP_STATUS. */
4408
4409 static void
4410 toggle_cancelled_flags (bool set)
4411 {
4412 int i;
4413 sd_iterator_def sd_it;
4414 dep_t dep;
4415
4416 if (ready.n_ready > 0)
4417 {
4418 rtx_insn **first = ready_lastpos (&ready);
4419 for (i = 0; i < ready.n_ready; i++)
4420 FOR_EACH_DEP (first[i], SD_LIST_BACK, sd_it, dep)
4421 if (!DEBUG_INSN_P (DEP_PRO (dep)))
4422 {
4423 if (set)
4424 DEP_STATUS (dep) |= DEP_CANCELLED;
4425 else
4426 DEP_STATUS (dep) &= ~DEP_CANCELLED;
4427 }
4428 }
4429 for (i = 0; i <= max_insn_queue_index; i++)
4430 {
4431 int q = NEXT_Q_AFTER (q_ptr, i);
4432 rtx_insn_list *link;
4433 for (link = insn_queue[q]; link; link = link->next ())
4434 {
4435 rtx_insn *insn = link->insn ();
4436 FOR_EACH_DEP (insn, SD_LIST_BACK, sd_it, dep)
4437 if (!DEBUG_INSN_P (DEP_PRO (dep)))
4438 {
4439 if (set)
4440 DEP_STATUS (dep) |= DEP_CANCELLED;
4441 else
4442 DEP_STATUS (dep) &= ~DEP_CANCELLED;
4443 }
4444 }
4445 }
4446 }
4447
4448 /* Undo the replacements that have occurred after backtrack point SAVE
4449 was placed. */
4450 static void
4451 undo_replacements_for_backtrack (struct haifa_saved_data *save)
4452 {
4453 while (!save->replacement_deps.is_empty ())
4454 {
4455 dep_t dep = save->replacement_deps.pop ();
4456 int apply_p = save->replace_apply.pop ();
4457
4458 if (apply_p)
4459 restore_pattern (dep, true);
4460 else
4461 apply_replacement (dep, true);
4462 }
4463 save->replacement_deps.release ();
4464 save->replace_apply.release ();
4465 }
4466
4467 /* Pop entries from the SCHEDULED_INSNS vector up to and including INSN.
4468 Restore their dependencies to an unresolved state, and mark them as
4469 queued nowhere. */
4470
4471 static void
4472 unschedule_insns_until (rtx_insn *insn)
4473 {
4474 auto_vec<rtx_insn *> recompute_vec;
4475
4476 /* Make two passes over the insns to be unscheduled. First, we clear out
4477 dependencies and other trivial bookkeeping. */
4478 for (;;)
4479 {
4480 rtx_insn *last;
4481 sd_iterator_def sd_it;
4482 dep_t dep;
4483
4484 last = scheduled_insns.pop ();
4485
4486 /* This will be changed by restore_backtrack_point if the insn is in
4487 any queue. */
4488 QUEUE_INDEX (last) = QUEUE_NOWHERE;
4489 if (last != insn)
4490 INSN_TICK (last) = INVALID_TICK;
4491
4492 if (modulo_ii > 0 && INSN_UID (last) < modulo_iter0_max_uid)
4493 modulo_insns_scheduled--;
4494
4495 for (sd_it = sd_iterator_start (last, SD_LIST_RES_FORW);
4496 sd_iterator_cond (&sd_it, &dep);)
4497 {
4498 rtx_insn *con = DEP_CON (dep);
4499 sd_unresolve_dep (sd_it);
4500 if (!MUST_RECOMPUTE_SPEC_P (con))
4501 {
4502 MUST_RECOMPUTE_SPEC_P (con) = 1;
4503 recompute_vec.safe_push (con);
4504 }
4505 }
4506
4507 if (last == insn)
4508 break;
4509 }
4510
4511 /* A second pass, to update ready and speculation status for insns
4512 depending on the unscheduled ones. The first pass must have
4513 popped the scheduled_insns vector up to the point where we
4514 restart scheduling, as recompute_todo_spec requires it to be
4515 up-to-date. */
4516 while (!recompute_vec.is_empty ())
4517 {
4518 rtx_insn *con;
4519
4520 con = recompute_vec.pop ();
4521 MUST_RECOMPUTE_SPEC_P (con) = 0;
4522 if (!sd_lists_empty_p (con, SD_LIST_HARD_BACK))
4523 {
4524 TODO_SPEC (con) = HARD_DEP;
4525 INSN_TICK (con) = INVALID_TICK;
4526 if (PREDICATED_PAT (con) != NULL_RTX)
4527 haifa_change_pattern (con, ORIG_PAT (con));
4528 }
4529 else if (QUEUE_INDEX (con) != QUEUE_SCHEDULED)
4530 TODO_SPEC (con) = recompute_todo_spec (con, true);
4531 }
4532 }
4533
4534 /* Restore scheduler state from the topmost entry on the backtracking queue.
4535 PSCHED_BLOCK_P points to the local data of schedule_block that we must
4536 overwrite with the saved data.
4537 The caller must already have called unschedule_insns_until. */
4538
4539 static void
4540 restore_last_backtrack_point (struct sched_block_state *psched_block)
4541 {
4542 int i;
4543 struct haifa_saved_data *save = backtrack_queue;
4544
4545 backtrack_queue = save->next;
4546
4547 if (current_sched_info->restore_state)
4548 (*current_sched_info->restore_state) (save->fe_saved_data);
4549
4550 if (targetm.sched.alloc_sched_context)
4551 {
4552 targetm.sched.set_sched_context (save->be_saved_data);
4553 targetm.sched.free_sched_context (save->be_saved_data);
4554 }
4555
4556 /* Do this first since it clobbers INSN_TICK of the involved
4557 instructions. */
4558 undo_replacements_for_backtrack (save);
4559
4560 /* Clear the QUEUE_INDEX of everything in the ready list or one
4561 of the queues. */
4562 if (ready.n_ready > 0)
4563 {
4564 rtx_insn **first = ready_lastpos (&ready);
4565 for (i = 0; i < ready.n_ready; i++)
4566 {
4567 rtx_insn *insn = first[i];
4568 QUEUE_INDEX (insn) = QUEUE_NOWHERE;
4569 INSN_TICK (insn) = INVALID_TICK;
4570 }
4571 }
4572 for (i = 0; i <= max_insn_queue_index; i++)
4573 {
4574 int q = NEXT_Q_AFTER (q_ptr, i);
4575
4576 for (rtx_insn_list *link = insn_queue[q]; link; link = link->next ())
4577 {
4578 rtx_insn *x = link->insn ();
4579 QUEUE_INDEX (x) = QUEUE_NOWHERE;
4580 INSN_TICK (x) = INVALID_TICK;
4581 }
4582 free_INSN_LIST_list (&insn_queue[q]);
4583 }
4584
4585 free (ready.vec);
4586 ready = save->ready;
4587
4588 if (ready.n_ready > 0)
4589 {
4590 rtx_insn **first = ready_lastpos (&ready);
4591 for (i = 0; i < ready.n_ready; i++)
4592 {
4593 rtx_insn *insn = first[i];
4594 QUEUE_INDEX (insn) = QUEUE_READY;
4595 TODO_SPEC (insn) = recompute_todo_spec (insn, true);
4596 INSN_TICK (insn) = save->clock_var;
4597 }
4598 }
4599
4600 q_ptr = 0;
4601 q_size = save->q_size;
4602 for (i = 0; i <= max_insn_queue_index; i++)
4603 {
4604 int q = NEXT_Q_AFTER (q_ptr, i);
4605
4606 insn_queue[q] = save->insn_queue[q];
4607
4608 for (rtx_insn_list *link = insn_queue[q]; link; link = link->next ())
4609 {
4610 rtx_insn *x = link->insn ();
4611 QUEUE_INDEX (x) = i;
4612 TODO_SPEC (x) = recompute_todo_spec (x, true);
4613 INSN_TICK (x) = save->clock_var + i;
4614 }
4615 }
4616 free (save->insn_queue);
4617
4618 toggle_cancelled_flags (true);
4619
4620 clock_var = save->clock_var;
4621 last_clock_var = save->last_clock_var;
4622 cycle_issued_insns = save->cycle_issued_insns;
4623 last_scheduled_insn = save->last_scheduled_insn;
4624 last_nondebug_scheduled_insn = save->last_nondebug_scheduled_insn;
4625 nonscheduled_insns_begin = save->nonscheduled_insns_begin;
4626
4627 *psched_block = save->sched_block;
4628
4629 memcpy (curr_state, save->curr_state, dfa_state_size);
4630 free (save->curr_state);
4631
4632 mark_backtrack_feeds (save->delay_pair->i2, 0);
4633
4634 gcc_assert (next_cycle_replace_deps.is_empty ());
4635 next_cycle_replace_deps = save->next_cycle_deps.copy ();
4636 next_cycle_apply = save->next_cycle_apply.copy ();
4637
4638 free (save);
4639
4640 for (save = backtrack_queue; save; save = save->next)
4641 {
4642 mark_backtrack_feeds (save->delay_pair->i2, 1);
4643 }
4644 }
4645
4646 /* Discard all data associated with the topmost entry in the backtrack
4647 queue. If RESET_TICK is false, we just want to free the data. If true,
4648 we are doing this because we discovered a reason to backtrack. In the
4649 latter case, also reset the INSN_TICK for the shadow insn. */
4650 static void
4651 free_topmost_backtrack_point (bool reset_tick)
4652 {
4653 struct haifa_saved_data *save = backtrack_queue;
4654 int i;
4655
4656 backtrack_queue = save->next;
4657
4658 if (reset_tick)
4659 {
4660 struct delay_pair *pair = save->delay_pair;
4661 while (pair)
4662 {
4663 INSN_TICK (pair->i2) = INVALID_TICK;
4664 INSN_EXACT_TICK (pair->i2) = INVALID_TICK;
4665 pair = pair->next_same_i1;
4666 }
4667 undo_replacements_for_backtrack (save);
4668 }
4669 else
4670 {
4671 save->replacement_deps.release ();
4672 save->replace_apply.release ();
4673 }
4674
4675 if (targetm.sched.free_sched_context)
4676 targetm.sched.free_sched_context (save->be_saved_data);
4677 if (current_sched_info->restore_state)
4678 free (save->fe_saved_data);
4679 for (i = 0; i <= max_insn_queue_index; i++)
4680 free_INSN_LIST_list (&save->insn_queue[i]);
4681 free (save->insn_queue);
4682 free (save->curr_state);
4683 free (save->ready.vec);
4684 free (save);
4685 }
4686
4687 /* Free the entire backtrack queue. */
4688 static void
4689 free_backtrack_queue (void)
4690 {
4691 while (backtrack_queue)
4692 free_topmost_backtrack_point (false);
4693 }
4694
4695 /* Apply a replacement described by DESC. If IMMEDIATELY is false, we
4696 may have to postpone the replacement until the start of the next cycle,
4697 at which point we will be called again with IMMEDIATELY true. This is
4698 only done for machines which have instruction packets with explicit
4699 parallelism however. */
4700 static void
4701 apply_replacement (dep_t dep, bool immediately)
4702 {
4703 struct dep_replacement *desc = DEP_REPLACE (dep);
4704 if (!immediately && targetm.sched.exposed_pipeline && reload_completed)
4705 {
4706 next_cycle_replace_deps.safe_push (dep);
4707 next_cycle_apply.safe_push (1);
4708 }
4709 else
4710 {
4711 bool success;
4712
4713 if (QUEUE_INDEX (desc->insn) == QUEUE_SCHEDULED)
4714 return;
4715
4716 if (sched_verbose >= 5)
4717 fprintf (sched_dump, "applying replacement for insn %d\n",
4718 INSN_UID (desc->insn));
4719
4720 success = validate_change (desc->insn, desc->loc, desc->newval, 0);
4721 gcc_assert (success);
4722
4723 rtx_insn *insn = DEP_PRO (dep);
4724
4725 /* Recompute priority since dependent priorities may have changed. */
4726 priority (insn, true);
4727 update_insn_after_change (desc->insn);
4728
4729 if ((TODO_SPEC (desc->insn) & (HARD_DEP | DEP_POSTPONED)) == 0)
4730 fix_tick_ready (desc->insn);
4731
4732 if (backtrack_queue != NULL)
4733 {
4734 backtrack_queue->replacement_deps.safe_push (dep);
4735 backtrack_queue->replace_apply.safe_push (1);
4736 }
4737 }
4738 }
4739
4740 /* We have determined that a pattern involved in DEP must be restored.
4741 If IMMEDIATELY is false, we may have to postpone the replacement
4742 until the start of the next cycle, at which point we will be called
4743 again with IMMEDIATELY true. */
4744 static void
4745 restore_pattern (dep_t dep, bool immediately)
4746 {
4747 rtx_insn *next = DEP_CON (dep);
4748 int tick = INSN_TICK (next);
4749
4750 /* If we already scheduled the insn, the modified version is
4751 correct. */
4752 if (QUEUE_INDEX (next) == QUEUE_SCHEDULED)
4753 return;
4754
4755 if (!immediately && targetm.sched.exposed_pipeline && reload_completed)
4756 {
4757 next_cycle_replace_deps.safe_push (dep);
4758 next_cycle_apply.safe_push (0);
4759 return;
4760 }
4761
4762
4763 if (DEP_TYPE (dep) == REG_DEP_CONTROL)
4764 {
4765 if (sched_verbose >= 5)
4766 fprintf (sched_dump, "restoring pattern for insn %d\n",
4767 INSN_UID (next));
4768 haifa_change_pattern (next, ORIG_PAT (next));
4769 }
4770 else
4771 {
4772 struct dep_replacement *desc = DEP_REPLACE (dep);
4773 bool success;
4774
4775 if (sched_verbose >= 5)
4776 fprintf (sched_dump, "restoring pattern for insn %d\n",
4777 INSN_UID (desc->insn));
4778 tick = INSN_TICK (desc->insn);
4779
4780 success = validate_change (desc->insn, desc->loc, desc->orig, 0);
4781 gcc_assert (success);
4782
4783 rtx_insn *insn = DEP_PRO (dep);
4784
4785 if (QUEUE_INDEX (insn) != QUEUE_SCHEDULED)
4786 {
4787 /* Recompute priority since dependent priorities may have changed. */
4788 priority (insn, true);
4789 }
4790
4791 update_insn_after_change (desc->insn);
4792
4793 if (backtrack_queue != NULL)
4794 {
4795 backtrack_queue->replacement_deps.safe_push (dep);
4796 backtrack_queue->replace_apply.safe_push (0);
4797 }
4798 }
4799 INSN_TICK (next) = tick;
4800 if (TODO_SPEC (next) == DEP_POSTPONED)
4801 return;
4802
4803 if (sd_lists_empty_p (next, SD_LIST_BACK))
4804 TODO_SPEC (next) = 0;
4805 else if (!sd_lists_empty_p (next, SD_LIST_HARD_BACK))
4806 TODO_SPEC (next) = HARD_DEP;
4807 }
4808
4809 /* Perform pattern replacements that were queued up until the next
4810 cycle. */
4811 static void
4812 perform_replacements_new_cycle (void)
4813 {
4814 int i;
4815 dep_t dep;
4816 FOR_EACH_VEC_ELT (next_cycle_replace_deps, i, dep)
4817 {
4818 int apply_p = next_cycle_apply[i];
4819 if (apply_p)
4820 apply_replacement (dep, true);
4821 else
4822 restore_pattern (dep, true);
4823 }
4824 next_cycle_replace_deps.truncate (0);
4825 next_cycle_apply.truncate (0);
4826 }
4827
4828 /* Compute INSN_TICK_ESTIMATE for INSN. PROCESSED is a bitmap of
4829 instructions we've previously encountered, a set bit prevents
4830 recursion. BUDGET is a limit on how far ahead we look, it is
4831 reduced on recursive calls. Return true if we produced a good
4832 estimate, or false if we exceeded the budget. */
4833 static bool
4834 estimate_insn_tick (bitmap processed, rtx_insn *insn, int budget)
4835 {
4836 sd_iterator_def sd_it;
4837 dep_t dep;
4838 int earliest = INSN_TICK (insn);
4839
4840 FOR_EACH_DEP (insn, SD_LIST_BACK, sd_it, dep)
4841 {
4842 rtx_insn *pro = DEP_PRO (dep);
4843 int t;
4844
4845 if (DEP_STATUS (dep) & DEP_CANCELLED)
4846 continue;
4847
4848 if (QUEUE_INDEX (pro) == QUEUE_SCHEDULED)
4849 gcc_assert (INSN_TICK (pro) + dep_cost (dep) <= INSN_TICK (insn));
4850 else
4851 {
4852 int cost = dep_cost (dep);
4853 if (cost >= budget)
4854 return false;
4855 if (!bitmap_bit_p (processed, INSN_LUID (pro)))
4856 {
4857 if (!estimate_insn_tick (processed, pro, budget - cost))
4858 return false;
4859 }
4860 gcc_assert (INSN_TICK_ESTIMATE (pro) != INVALID_TICK);
4861 t = INSN_TICK_ESTIMATE (pro) + cost;
4862 if (earliest == INVALID_TICK || t > earliest)
4863 earliest = t;
4864 }
4865 }
4866 bitmap_set_bit (processed, INSN_LUID (insn));
4867 INSN_TICK_ESTIMATE (insn) = earliest;
4868 return true;
4869 }
4870
4871 /* Examine the pair of insns in P, and estimate (optimistically, assuming
4872 infinite resources) the cycle in which the delayed shadow can be issued.
4873 Return the number of cycles that must pass before the real insn can be
4874 issued in order to meet this constraint. */
4875 static int
4876 estimate_shadow_tick (struct delay_pair *p)
4877 {
4878 auto_bitmap processed;
4879 int t;
4880 bool cutoff;
4881
4882 cutoff = !estimate_insn_tick (processed, p->i2,
4883 max_insn_queue_index + pair_delay (p));
4884 if (cutoff)
4885 return max_insn_queue_index;
4886 t = INSN_TICK_ESTIMATE (p->i2) - (clock_var + pair_delay (p) + 1);
4887 if (t > 0)
4888 return t;
4889 return 0;
4890 }
4891
4892 /* If INSN has no unresolved backwards dependencies, add it to the schedule and
4893 recursively resolve all its forward dependencies. */
4894 static void
4895 resolve_dependencies (rtx_insn *insn)
4896 {
4897 sd_iterator_def sd_it;
4898 dep_t dep;
4899
4900 /* Don't use sd_lists_empty_p; it ignores debug insns. */
4901 if (DEPS_LIST_FIRST (INSN_HARD_BACK_DEPS (insn)) != NULL
4902 || DEPS_LIST_FIRST (INSN_SPEC_BACK_DEPS (insn)) != NULL)
4903 return;
4904
4905 if (sched_verbose >= 4)
4906 fprintf (sched_dump, ";;\tquickly resolving %d\n", INSN_UID (insn));
4907
4908 if (QUEUE_INDEX (insn) >= 0)
4909 queue_remove (insn);
4910
4911 scheduled_insns.safe_push (insn);
4912
4913 /* Update dependent instructions. */
4914 for (sd_it = sd_iterator_start (insn, SD_LIST_FORW);
4915 sd_iterator_cond (&sd_it, &dep);)
4916 {
4917 rtx_insn *next = DEP_CON (dep);
4918
4919 if (sched_verbose >= 4)
4920 fprintf (sched_dump, ";;\t\tdep %d against %d\n", INSN_UID (insn),
4921 INSN_UID (next));
4922
4923 /* Resolve the dependence between INSN and NEXT.
4924 sd_resolve_dep () moves current dep to another list thus
4925 advancing the iterator. */
4926 sd_resolve_dep (sd_it);
4927
4928 if (!IS_SPECULATION_BRANCHY_CHECK_P (insn))
4929 {
4930 resolve_dependencies (next);
4931 }
4932 else
4933 /* Check always has only one forward dependence (to the first insn in
4934 the recovery block), therefore, this will be executed only once. */
4935 {
4936 gcc_assert (sd_lists_empty_p (insn, SD_LIST_FORW));
4937 }
4938 }
4939 }
4940
4941
4942 /* Return the head and tail pointers of ebb starting at BEG and ending
4943 at END. */
4944 void
4945 get_ebb_head_tail (basic_block beg, basic_block end,
4946 rtx_insn **headp, rtx_insn **tailp)
4947 {
4948 rtx_insn *beg_head = BB_HEAD (beg);
4949 rtx_insn * beg_tail = BB_END (beg);
4950 rtx_insn * end_head = BB_HEAD (end);
4951 rtx_insn * end_tail = BB_END (end);
4952
4953 /* Don't include any notes or labels at the beginning of the BEG
4954 basic block, or notes at the end of the END basic blocks. */
4955
4956 if (LABEL_P (beg_head))
4957 beg_head = NEXT_INSN (beg_head);
4958
4959 while (beg_head != beg_tail)
4960 if (NOTE_P (beg_head))
4961 beg_head = NEXT_INSN (beg_head);
4962 else if (DEBUG_INSN_P (beg_head))
4963 {
4964 rtx_insn * note, *next;
4965
4966 for (note = NEXT_INSN (beg_head);
4967 note != beg_tail;
4968 note = next)
4969 {
4970 next = NEXT_INSN (note);
4971 if (NOTE_P (note))
4972 {
4973 if (sched_verbose >= 9)
4974 fprintf (sched_dump, "reorder %i\n", INSN_UID (note));
4975
4976 reorder_insns_nobb (note, note, PREV_INSN (beg_head));
4977
4978 if (BLOCK_FOR_INSN (note) != beg)
4979 df_insn_change_bb (note, beg);
4980 }
4981 else if (!DEBUG_INSN_P (note))
4982 break;
4983 }
4984
4985 break;
4986 }
4987 else
4988 break;
4989
4990 *headp = beg_head;
4991
4992 if (beg == end)
4993 end_head = beg_head;
4994 else if (LABEL_P (end_head))
4995 end_head = NEXT_INSN (end_head);
4996
4997 while (end_head != end_tail)
4998 if (NOTE_P (end_tail))
4999 end_tail = PREV_INSN (end_tail);
5000 else if (DEBUG_INSN_P (end_tail))
5001 {
5002 rtx_insn * note, *prev;
5003
5004 for (note = PREV_INSN (end_tail);
5005 note != end_head;
5006 note = prev)
5007 {
5008 prev = PREV_INSN (note);
5009 if (NOTE_P (note))
5010 {
5011 if (sched_verbose >= 9)
5012 fprintf (sched_dump, "reorder %i\n", INSN_UID (note));
5013
5014 reorder_insns_nobb (note, note, end_tail);
5015
5016 if (end_tail == BB_END (end))
5017 BB_END (end) = note;
5018
5019 if (BLOCK_FOR_INSN (note) != end)
5020 df_insn_change_bb (note, end);
5021 }
5022 else if (!DEBUG_INSN_P (note))
5023 break;
5024 }
5025
5026 break;
5027 }
5028 else
5029 break;
5030
5031 *tailp = end_tail;
5032 }
5033
5034 /* Return nonzero if there are no real insns in the range [ HEAD, TAIL ]. */
5035
5036 int
5037 no_real_insns_p (const rtx_insn *head, const rtx_insn *tail)
5038 {
5039 while (head != NEXT_INSN (tail))
5040 {
5041 if (!NOTE_P (head) && !LABEL_P (head))
5042 return 0;
5043 head = NEXT_INSN (head);
5044 }
5045 return 1;
5046 }
5047
5048 /* Restore-other-notes: NOTE_LIST is the end of a chain of notes
5049 previously found among the insns. Insert them just before HEAD. */
5050 rtx_insn *
5051 restore_other_notes (rtx_insn *head, basic_block head_bb)
5052 {
5053 if (note_list != 0)
5054 {
5055 rtx_insn *note_head = note_list;
5056
5057 if (head)
5058 head_bb = BLOCK_FOR_INSN (head);
5059 else
5060 head = NEXT_INSN (bb_note (head_bb));
5061
5062 while (PREV_INSN (note_head))
5063 {
5064 set_block_for_insn (note_head, head_bb);
5065 note_head = PREV_INSN (note_head);
5066 }
5067 /* In the above cycle we've missed this note. */
5068 set_block_for_insn (note_head, head_bb);
5069
5070 SET_PREV_INSN (note_head) = PREV_INSN (head);
5071 SET_NEXT_INSN (PREV_INSN (head)) = note_head;
5072 SET_PREV_INSN (head) = note_list;
5073 SET_NEXT_INSN (note_list) = head;
5074
5075 if (BLOCK_FOR_INSN (head) != head_bb)
5076 BB_END (head_bb) = note_list;
5077
5078 head = note_head;
5079 }
5080
5081 return head;
5082 }
5083
5084 /* When we know we are going to discard the schedule due to a failed attempt
5085 at modulo scheduling, undo all replacements. */
5086 static void
5087 undo_all_replacements (void)
5088 {
5089 rtx_insn *insn;
5090 int i;
5091
5092 FOR_EACH_VEC_ELT (scheduled_insns, i, insn)
5093 {
5094 sd_iterator_def sd_it;
5095 dep_t dep;
5096
5097 /* See if we must undo a replacement. */
5098 for (sd_it = sd_iterator_start (insn, SD_LIST_RES_FORW);
5099 sd_iterator_cond (&sd_it, &dep); sd_iterator_next (&sd_it))
5100 {
5101 struct dep_replacement *desc = DEP_REPLACE (dep);
5102 if (desc != NULL)
5103 validate_change (desc->insn, desc->loc, desc->orig, 0);
5104 }
5105 }
5106 }
5107
5108 /* Return first non-scheduled insn in the current scheduling block.
5109 This is mostly used for debug-counter purposes. */
5110 static rtx_insn *
5111 first_nonscheduled_insn (void)
5112 {
5113 rtx_insn *insn = (nonscheduled_insns_begin != NULL_RTX
5114 ? nonscheduled_insns_begin
5115 : current_sched_info->prev_head);
5116
5117 do
5118 {
5119 insn = next_nonnote_nondebug_insn (insn);
5120 }
5121 while (QUEUE_INDEX (insn) == QUEUE_SCHEDULED);
5122
5123 return insn;
5124 }
5125
5126 /* Move insns that became ready to fire from queue to ready list. */
5127
5128 static void
5129 queue_to_ready (struct ready_list *ready)
5130 {
5131 rtx_insn *insn;
5132 rtx_insn_list *link;
5133 rtx_insn *skip_insn;
5134
5135 q_ptr = NEXT_Q (q_ptr);
5136
5137 if (dbg_cnt (sched_insn) == false)
5138 /* If debug counter is activated do not requeue the first
5139 nonscheduled insn. */
5140 skip_insn = first_nonscheduled_insn ();
5141 else
5142 skip_insn = NULL;
5143
5144 /* Add all pending insns that can be scheduled without stalls to the
5145 ready list. */
5146 for (link = insn_queue[q_ptr]; link; link = link->next ())
5147 {
5148 insn = link->insn ();
5149 q_size -= 1;
5150
5151 if (sched_verbose >= 2)
5152 fprintf (sched_dump, ";;\t\tQ-->Ready: insn %s: ",
5153 (*current_sched_info->print_insn) (insn, 0));
5154
5155 /* If the ready list is full, delay the insn for 1 cycle.
5156 See the comment in schedule_block for the rationale. */
5157 if (!reload_completed
5158 && (ready->n_ready - ready->n_debug > param_max_sched_ready_insns
5159 || (sched_pressure == SCHED_PRESSURE_MODEL
5160 /* Limit pressure recalculations to
5161 param_max_sched_ready_insns instructions too. */
5162 && model_index (insn) > (model_curr_point
5163 + param_max_sched_ready_insns)))
5164 && !(sched_pressure == SCHED_PRESSURE_MODEL
5165 && model_curr_point < model_num_insns
5166 /* Always allow the next model instruction to issue. */
5167 && model_index (insn) == model_curr_point)
5168 && !SCHED_GROUP_P (insn)
5169 && insn != skip_insn)
5170 {
5171 if (sched_verbose >= 2)
5172 fprintf (sched_dump, "keeping in queue, ready full\n");
5173 queue_insn (insn, 1, "ready full");
5174 }
5175 else
5176 {
5177 ready_add (ready, insn, false);
5178 if (sched_verbose >= 2)
5179 fprintf (sched_dump, "moving to ready without stalls\n");
5180 }
5181 }
5182 free_INSN_LIST_list (&insn_queue[q_ptr]);
5183
5184 /* If there are no ready insns, stall until one is ready and add all
5185 of the pending insns at that point to the ready list. */
5186 if (ready->n_ready == 0)
5187 {
5188 int stalls;
5189
5190 for (stalls = 1; stalls <= max_insn_queue_index; stalls++)
5191 {
5192 if ((link = insn_queue[NEXT_Q_AFTER (q_ptr, stalls)]))
5193 {
5194 for (; link; link = link->next ())
5195 {
5196 insn = link->insn ();
5197 q_size -= 1;
5198
5199 if (sched_verbose >= 2)
5200 fprintf (sched_dump, ";;\t\tQ-->Ready: insn %s: ",
5201 (*current_sched_info->print_insn) (insn, 0));
5202
5203 ready_add (ready, insn, false);
5204 if (sched_verbose >= 2)
5205 fprintf (sched_dump, "moving to ready with %d stalls\n", stalls);
5206 }
5207 free_INSN_LIST_list (&insn_queue[NEXT_Q_AFTER (q_ptr, stalls)]);
5208
5209 advance_one_cycle ();
5210
5211 break;
5212 }
5213
5214 advance_one_cycle ();
5215 }
5216
5217 q_ptr = NEXT_Q_AFTER (q_ptr, stalls);
5218 clock_var += stalls;
5219 if (sched_verbose >= 2)
5220 fprintf (sched_dump, ";;\tAdvancing clock by %d cycle[s] to %d\n",
5221 stalls, clock_var);
5222 }
5223 }
5224
5225 /* Used by early_queue_to_ready. Determines whether it is "ok" to
5226 prematurely move INSN from the queue to the ready list. Currently,
5227 if a target defines the hook 'is_costly_dependence', this function
5228 uses the hook to check whether there exist any dependences which are
5229 considered costly by the target, between INSN and other insns that
5230 have already been scheduled. Dependences are checked up to Y cycles
5231 back, with default Y=1; The flag -fsched-stalled-insns-dep=Y allows
5232 controlling this value.
5233 (Other considerations could be taken into account instead (or in
5234 addition) depending on user flags and target hooks. */
5235
5236 static bool
5237 ok_for_early_queue_removal (rtx_insn *insn)
5238 {
5239 if (targetm.sched.is_costly_dependence)
5240 {
5241 int n_cycles;
5242 int i = scheduled_insns.length ();
5243 for (n_cycles = flag_sched_stalled_insns_dep; n_cycles; n_cycles--)
5244 {
5245 while (i-- > 0)
5246 {
5247 int cost;
5248
5249 rtx_insn *prev_insn = scheduled_insns[i];
5250
5251 if (!NOTE_P (prev_insn))
5252 {
5253 dep_t dep;
5254
5255 dep = sd_find_dep_between (prev_insn, insn, true);
5256
5257 if (dep != NULL)
5258 {
5259 cost = dep_cost (dep);
5260
5261 if (targetm.sched.is_costly_dependence (dep, cost,
5262 flag_sched_stalled_insns_dep - n_cycles))
5263 return false;
5264 }
5265 }
5266
5267 if (GET_MODE (prev_insn) == TImode) /* end of dispatch group */
5268 break;
5269 }
5270
5271 if (i == 0)
5272 break;
5273 }
5274 }
5275
5276 return true;
5277 }
5278
5279
5280 /* Remove insns from the queue, before they become "ready" with respect
5281 to FU latency considerations. */
5282
5283 static int
5284 early_queue_to_ready (state_t state, struct ready_list *ready)
5285 {
5286 rtx_insn *insn;
5287 rtx_insn_list *link;
5288 rtx_insn_list *next_link;
5289 rtx_insn_list *prev_link;
5290 bool move_to_ready;
5291 int cost;
5292 state_t temp_state = alloca (dfa_state_size);
5293 int stalls;
5294 int insns_removed = 0;
5295
5296 /*
5297 Flag '-fsched-stalled-insns=X' determines the aggressiveness of this
5298 function:
5299
5300 X == 0: There is no limit on how many queued insns can be removed
5301 prematurely. (flag_sched_stalled_insns = -1).
5302
5303 X >= 1: Only X queued insns can be removed prematurely in each
5304 invocation. (flag_sched_stalled_insns = X).
5305
5306 Otherwise: Early queue removal is disabled.
5307 (flag_sched_stalled_insns = 0)
5308 */
5309
5310 if (! flag_sched_stalled_insns)
5311 return 0;
5312
5313 for (stalls = 0; stalls <= max_insn_queue_index; stalls++)
5314 {
5315 if ((link = insn_queue[NEXT_Q_AFTER (q_ptr, stalls)]))
5316 {
5317 if (sched_verbose > 6)
5318 fprintf (sched_dump, ";; look at index %d + %d\n", q_ptr, stalls);
5319
5320 prev_link = 0;
5321 while (link)
5322 {
5323 next_link = link->next ();
5324 insn = link->insn ();
5325 if (insn && sched_verbose > 6)
5326 print_rtl_single (sched_dump, insn);
5327
5328 memcpy (temp_state, state, dfa_state_size);
5329 if (recog_memoized (insn) < 0)
5330 /* non-negative to indicate that it's not ready
5331 to avoid infinite Q->R->Q->R... */
5332 cost = 0;
5333 else
5334 cost = state_transition (temp_state, insn);
5335
5336 if (sched_verbose >= 6)
5337 fprintf (sched_dump, "transition cost = %d\n", cost);
5338
5339 move_to_ready = false;
5340 if (cost < 0)
5341 {
5342 move_to_ready = ok_for_early_queue_removal (insn);
5343 if (move_to_ready == true)
5344 {
5345 /* move from Q to R */
5346 q_size -= 1;
5347 ready_add (ready, insn, false);
5348
5349 if (prev_link)
5350 XEXP (prev_link, 1) = next_link;
5351 else
5352 insn_queue[NEXT_Q_AFTER (q_ptr, stalls)] = next_link;
5353
5354 free_INSN_LIST_node (link);
5355
5356 if (sched_verbose >= 2)
5357 fprintf (sched_dump, ";;\t\tEarly Q-->Ready: insn %s\n",
5358 (*current_sched_info->print_insn) (insn, 0));
5359
5360 insns_removed++;
5361 if (insns_removed == flag_sched_stalled_insns)
5362 /* Remove no more than flag_sched_stalled_insns insns
5363 from Q at a time. */
5364 return insns_removed;
5365 }
5366 }
5367
5368 if (move_to_ready == false)
5369 prev_link = link;
5370
5371 link = next_link;
5372 } /* while link */
5373 } /* if link */
5374
5375 } /* for stalls.. */
5376
5377 return insns_removed;
5378 }
5379
5380
5381 /* Print the ready list for debugging purposes.
5382 If READY_TRY is non-zero then only print insns that max_issue
5383 will consider. */
5384 static void
5385 debug_ready_list_1 (struct ready_list *ready, signed char *ready_try)
5386 {
5387 rtx_insn **p;
5388 int i;
5389
5390 if (ready->n_ready == 0)
5391 {
5392 fprintf (sched_dump, "\n");
5393 return;
5394 }
5395
5396 p = ready_lastpos (ready);
5397 for (i = 0; i < ready->n_ready; i++)
5398 {
5399 if (ready_try != NULL && ready_try[ready->n_ready - i - 1])
5400 continue;
5401
5402 fprintf (sched_dump, " %s:%d",
5403 (*current_sched_info->print_insn) (p[i], 0),
5404 INSN_LUID (p[i]));
5405 if (sched_pressure != SCHED_PRESSURE_NONE)
5406 fprintf (sched_dump, "(cost=%d",
5407 INSN_REG_PRESSURE_EXCESS_COST_CHANGE (p[i]));
5408 fprintf (sched_dump, ":prio=%d", INSN_PRIORITY (p[i]));
5409 if (INSN_TICK (p[i]) > clock_var)
5410 fprintf (sched_dump, ":delay=%d", INSN_TICK (p[i]) - clock_var);
5411 if (sched_pressure == SCHED_PRESSURE_MODEL)
5412 fprintf (sched_dump, ":idx=%d",
5413 model_index (p[i]));
5414 if (sched_pressure != SCHED_PRESSURE_NONE)
5415 fprintf (sched_dump, ")");
5416 }
5417 fprintf (sched_dump, "\n");
5418 }
5419
5420 /* Print the ready list. Callable from debugger. */
5421 static void
5422 debug_ready_list (struct ready_list *ready)
5423 {
5424 debug_ready_list_1 (ready, NULL);
5425 }
5426
5427 /* Search INSN for REG_SAVE_NOTE notes and convert them back into insn
5428 NOTEs. This is used for NOTE_INSN_EPILOGUE_BEG, so that sched-ebb
5429 replaces the epilogue note in the correct basic block. */
5430 void
5431 reemit_notes (rtx_insn *insn)
5432 {
5433 rtx note;
5434 rtx_insn *last = insn;
5435
5436 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
5437 {
5438 if (REG_NOTE_KIND (note) == REG_SAVE_NOTE)
5439 {
5440 enum insn_note note_type = (enum insn_note) INTVAL (XEXP (note, 0));
5441
5442 last = emit_note_before (note_type, last);
5443 remove_note (insn, note);
5444 df_insn_create_insn_record (last);
5445 }
5446 }
5447 }
5448
5449 /* Move INSN. Reemit notes if needed. Update CFG, if needed. */
5450 static void
5451 move_insn (rtx_insn *insn, rtx_insn *last, rtx nt)
5452 {
5453 if (PREV_INSN (insn) != last)
5454 {
5455 basic_block bb;
5456 rtx_insn *note;
5457 int jump_p = 0;
5458
5459 bb = BLOCK_FOR_INSN (insn);
5460
5461 /* BB_HEAD is either LABEL or NOTE. */
5462 gcc_assert (BB_HEAD (bb) != insn);
5463
5464 if (BB_END (bb) == insn)
5465 /* If this is last instruction in BB, move end marker one
5466 instruction up. */
5467 {
5468 /* Jumps are always placed at the end of basic block. */
5469 jump_p = control_flow_insn_p (insn);
5470
5471 gcc_assert (!jump_p
5472 || ((common_sched_info->sched_pass_id == SCHED_RGN_PASS)
5473 && IS_SPECULATION_BRANCHY_CHECK_P (insn))
5474 || (common_sched_info->sched_pass_id
5475 == SCHED_EBB_PASS));
5476
5477 gcc_assert (BLOCK_FOR_INSN (PREV_INSN (insn)) == bb);
5478
5479 BB_END (bb) = PREV_INSN (insn);
5480 }
5481
5482 gcc_assert (BB_END (bb) != last);
5483
5484 if (jump_p)
5485 /* We move the block note along with jump. */
5486 {
5487 gcc_assert (nt);
5488
5489 note = NEXT_INSN (insn);
5490 while (NOTE_NOT_BB_P (note) && note != nt)
5491 note = NEXT_INSN (note);
5492
5493 if (note != nt
5494 && (LABEL_P (note)
5495 || BARRIER_P (note)))
5496 note = NEXT_INSN (note);
5497
5498 gcc_assert (NOTE_INSN_BASIC_BLOCK_P (note));
5499 }
5500 else
5501 note = insn;
5502
5503 SET_NEXT_INSN (PREV_INSN (insn)) = NEXT_INSN (note);
5504 SET_PREV_INSN (NEXT_INSN (note)) = PREV_INSN (insn);
5505
5506 SET_NEXT_INSN (note) = NEXT_INSN (last);
5507 SET_PREV_INSN (NEXT_INSN (last)) = note;
5508
5509 SET_NEXT_INSN (last) = insn;
5510 SET_PREV_INSN (insn) = last;
5511
5512 bb = BLOCK_FOR_INSN (last);
5513
5514 if (jump_p)
5515 {
5516 fix_jump_move (insn);
5517
5518 if (BLOCK_FOR_INSN (insn) != bb)
5519 move_block_after_check (insn);
5520
5521 gcc_assert (BB_END (bb) == last);
5522 }
5523
5524 df_insn_change_bb (insn, bb);
5525
5526 /* Update BB_END, if needed. */
5527 if (BB_END (bb) == last)
5528 BB_END (bb) = insn;
5529 }
5530
5531 SCHED_GROUP_P (insn) = 0;
5532 }
5533
5534 /* Return true if scheduling INSN will finish current clock cycle. */
5535 static bool
5536 insn_finishes_cycle_p (rtx_insn *insn)
5537 {
5538 if (SCHED_GROUP_P (insn))
5539 /* After issuing INSN, rest of the sched_group will be forced to issue
5540 in order. Don't make any plans for the rest of cycle. */
5541 return true;
5542
5543 /* Finishing the block will, apparently, finish the cycle. */
5544 if (current_sched_info->insn_finishes_block_p
5545 && current_sched_info->insn_finishes_block_p (insn))
5546 return true;
5547
5548 return false;
5549 }
5550
5551 /* Helper for autopref_multipass_init. Given a SET in PAT and whether
5552 we're expecting a memory WRITE or not, check that the insn is relevant to
5553 the autoprefetcher modelling code. Return true iff that is the case.
5554 If it is relevant, record the base register of the memory op in BASE and
5555 the offset in OFFSET. */
5556
5557 static bool
5558 analyze_set_insn_for_autopref (rtx pat, bool write, rtx *base, int *offset)
5559 {
5560 if (GET_CODE (pat) != SET)
5561 return false;
5562
5563 rtx mem = write ? SET_DEST (pat) : SET_SRC (pat);
5564 if (!MEM_P (mem))
5565 return false;
5566
5567 struct address_info info;
5568 decompose_mem_address (&info, mem);
5569
5570 /* TODO: Currently only (base+const) addressing is supported. */
5571 if (info.base == NULL || !REG_P (*info.base)
5572 || (info.disp != NULL && !CONST_INT_P (*info.disp)))
5573 return false;
5574
5575 *base = *info.base;
5576 *offset = info.disp ? INTVAL (*info.disp) : 0;
5577 return true;
5578 }
5579
5580 /* Functions to model cache auto-prefetcher.
5581
5582 Some of the CPUs have cache auto-prefetcher, which /seems/ to initiate
5583 memory prefetches if it sees instructions with consequitive memory accesses
5584 in the instruction stream. Details of such hardware units are not published,
5585 so we can only guess what exactly is going on there.
5586 In the scheduler, we model abstract auto-prefetcher. If there are memory
5587 insns in the ready list (or the queue) that have same memory base, but
5588 different offsets, then we delay the insns with larger offsets until insns
5589 with smaller offsets get scheduled. If PARAM_SCHED_AUTOPREF_QUEUE_DEPTH
5590 is "1", then we look at the ready list; if it is N>1, then we also look
5591 through N-1 queue entries.
5592 If the param is N>=0, then rank_for_schedule will consider auto-prefetching
5593 among its heuristics.
5594 Param value of "-1" disables modelling of the auto-prefetcher. */
5595
5596 /* Initialize autoprefetcher model data for INSN. */
5597 static void
5598 autopref_multipass_init (const rtx_insn *insn, int write)
5599 {
5600 autopref_multipass_data_t data = &INSN_AUTOPREF_MULTIPASS_DATA (insn)[write];
5601
5602 gcc_assert (data->status == AUTOPREF_MULTIPASS_DATA_UNINITIALIZED);
5603 data->base = NULL_RTX;
5604 data->offset = 0;
5605 /* Set insn entry initialized, but not relevant for auto-prefetcher. */
5606 data->status = AUTOPREF_MULTIPASS_DATA_IRRELEVANT;
5607
5608 rtx pat = PATTERN (insn);
5609
5610 /* We have a multi-set insn like a load-multiple or store-multiple.
5611 We care about these as long as all the memory ops inside the PARALLEL
5612 have the same base register. We care about the minimum and maximum
5613 offsets from that base but don't check for the order of those offsets
5614 within the PARALLEL insn itself. */
5615 if (GET_CODE (pat) == PARALLEL)
5616 {
5617 int n_elems = XVECLEN (pat, 0);
5618
5619 int i, offset;
5620 rtx base, prev_base = NULL_RTX;
5621 int min_offset = INT_MAX;
5622
5623 for (i = 0; i < n_elems; i++)
5624 {
5625 rtx set = XVECEXP (pat, 0, i);
5626 if (GET_CODE (set) != SET)
5627 return;
5628
5629 if (!analyze_set_insn_for_autopref (set, write, &base, &offset))
5630 return;
5631
5632 /* Ensure that all memory operations in the PARALLEL use the same
5633 base register. */
5634 if (i > 0 && REGNO (base) != REGNO (prev_base))
5635 return;
5636 prev_base = base;
5637 min_offset = MIN (min_offset, offset);
5638 }
5639
5640 /* If we reached here then we have a valid PARALLEL of multiple memory ops
5641 with prev_base as the base and min_offset containing the offset. */
5642 gcc_assert (prev_base);
5643 data->base = prev_base;
5644 data->offset = min_offset;
5645 data->status = AUTOPREF_MULTIPASS_DATA_NORMAL;
5646 return;
5647 }
5648
5649 /* Otherwise this is a single set memory operation. */
5650 rtx set = single_set (insn);
5651 if (set == NULL_RTX)
5652 return;
5653
5654 if (!analyze_set_insn_for_autopref (set, write, &data->base,
5655 &data->offset))
5656 return;
5657
5658 /* This insn is relevant for the auto-prefetcher.
5659 The base and offset fields will have been filled in the
5660 analyze_set_insn_for_autopref call above. */
5661 data->status = AUTOPREF_MULTIPASS_DATA_NORMAL;
5662 }
5663
5664 /* Helper function for rank_for_schedule sorting. */
5665 static int
5666 autopref_rank_for_schedule (const rtx_insn *insn1, const rtx_insn *insn2)
5667 {
5668 int r = 0;
5669 for (int write = 0; write < 2 && !r; ++write)
5670 {
5671 autopref_multipass_data_t data1
5672 = &INSN_AUTOPREF_MULTIPASS_DATA (insn1)[write];
5673 autopref_multipass_data_t data2
5674 = &INSN_AUTOPREF_MULTIPASS_DATA (insn2)[write];
5675
5676 if (data1->status == AUTOPREF_MULTIPASS_DATA_UNINITIALIZED)
5677 autopref_multipass_init (insn1, write);
5678
5679 if (data2->status == AUTOPREF_MULTIPASS_DATA_UNINITIALIZED)
5680 autopref_multipass_init (insn2, write);
5681
5682 int irrel1 = data1->status == AUTOPREF_MULTIPASS_DATA_IRRELEVANT;
5683 int irrel2 = data2->status == AUTOPREF_MULTIPASS_DATA_IRRELEVANT;
5684
5685 if (!irrel1 && !irrel2)
5686 r = data1->offset - data2->offset;
5687 else
5688 r = irrel2 - irrel1;
5689 }
5690
5691 return r;
5692 }
5693
5694 /* True if header of debug dump was printed. */
5695 static bool autopref_multipass_dfa_lookahead_guard_started_dump_p;
5696
5697 /* Helper for autopref_multipass_dfa_lookahead_guard.
5698 Return "1" if INSN1 should be delayed in favor of INSN2. */
5699 static int
5700 autopref_multipass_dfa_lookahead_guard_1 (const rtx_insn *insn1,
5701 const rtx_insn *insn2, int write)
5702 {
5703 autopref_multipass_data_t data1
5704 = &INSN_AUTOPREF_MULTIPASS_DATA (insn1)[write];
5705 autopref_multipass_data_t data2
5706 = &INSN_AUTOPREF_MULTIPASS_DATA (insn2)[write];
5707
5708 if (data2->status == AUTOPREF_MULTIPASS_DATA_UNINITIALIZED)
5709 autopref_multipass_init (insn2, write);
5710 if (data2->status == AUTOPREF_MULTIPASS_DATA_IRRELEVANT)
5711 return 0;
5712
5713 if (rtx_equal_p (data1->base, data2->base)
5714 && data1->offset > data2->offset)
5715 {
5716 if (sched_verbose >= 2)
5717 {
5718 if (!autopref_multipass_dfa_lookahead_guard_started_dump_p)
5719 {
5720 fprintf (sched_dump,
5721 ";;\t\tnot trying in max_issue due to autoprefetch "
5722 "model: ");
5723 autopref_multipass_dfa_lookahead_guard_started_dump_p = true;
5724 }
5725
5726 fprintf (sched_dump, " %d(%d)", INSN_UID (insn1), INSN_UID (insn2));
5727 }
5728
5729 return 1;
5730 }
5731
5732 return 0;
5733 }
5734
5735 /* General note:
5736
5737 We could have also hooked autoprefetcher model into
5738 first_cycle_multipass_backtrack / first_cycle_multipass_issue hooks
5739 to enable intelligent selection of "[r1+0]=r2; [r1+4]=r3" on the same cycle
5740 (e.g., once "[r1+0]=r2" is issued in max_issue(), "[r1+4]=r3" gets
5741 unblocked). We don't bother about this yet because target of interest
5742 (ARM Cortex-A15) can issue only 1 memory operation per cycle. */
5743
5744 /* Implementation of first_cycle_multipass_dfa_lookahead_guard hook.
5745 Return "1" if INSN1 should not be considered in max_issue due to
5746 auto-prefetcher considerations. */
5747 int
5748 autopref_multipass_dfa_lookahead_guard (rtx_insn *insn1, int ready_index)
5749 {
5750 int r = 0;
5751
5752 /* Exit early if the param forbids this or if we're not entering here through
5753 normal haifa scheduling. This can happen if selective scheduling is
5754 explicitly enabled. */
5755 if (!insn_queue || param_sched_autopref_queue_depth <= 0)
5756 return 0;
5757
5758 if (sched_verbose >= 2 && ready_index == 0)
5759 autopref_multipass_dfa_lookahead_guard_started_dump_p = false;
5760
5761 for (int write = 0; write < 2; ++write)
5762 {
5763 autopref_multipass_data_t data1
5764 = &INSN_AUTOPREF_MULTIPASS_DATA (insn1)[write];
5765
5766 if (data1->status == AUTOPREF_MULTIPASS_DATA_UNINITIALIZED)
5767 autopref_multipass_init (insn1, write);
5768 if (data1->status == AUTOPREF_MULTIPASS_DATA_IRRELEVANT)
5769 continue;
5770
5771 if (ready_index == 0
5772 && data1->status == AUTOPREF_MULTIPASS_DATA_DONT_DELAY)
5773 /* We allow only a single delay on priviledged instructions.
5774 Doing otherwise would cause infinite loop. */
5775 {
5776 if (sched_verbose >= 2)
5777 {
5778 if (!autopref_multipass_dfa_lookahead_guard_started_dump_p)
5779 {
5780 fprintf (sched_dump,
5781 ";;\t\tnot trying in max_issue due to autoprefetch "
5782 "model: ");
5783 autopref_multipass_dfa_lookahead_guard_started_dump_p = true;
5784 }
5785
5786 fprintf (sched_dump, " *%d*", INSN_UID (insn1));
5787 }
5788 continue;
5789 }
5790
5791 for (int i2 = 0; i2 < ready.n_ready; ++i2)
5792 {
5793 rtx_insn *insn2 = get_ready_element (i2);
5794 if (insn1 == insn2)
5795 continue;
5796 r = autopref_multipass_dfa_lookahead_guard_1 (insn1, insn2, write);
5797 if (r)
5798 {
5799 if (ready_index == 0)
5800 {
5801 r = -1;
5802 data1->status = AUTOPREF_MULTIPASS_DATA_DONT_DELAY;
5803 }
5804 goto finish;
5805 }
5806 }
5807
5808 if (param_sched_autopref_queue_depth == 1)
5809 continue;
5810
5811 /* Everything from the current queue slot should have been moved to
5812 the ready list. */
5813 gcc_assert (insn_queue[NEXT_Q_AFTER (q_ptr, 0)] == NULL_RTX);
5814
5815 int n_stalls = param_sched_autopref_queue_depth - 1;
5816 if (n_stalls > max_insn_queue_index)
5817 n_stalls = max_insn_queue_index;
5818
5819 for (int stalls = 1; stalls <= n_stalls; ++stalls)
5820 {
5821 for (rtx_insn_list *link = insn_queue[NEXT_Q_AFTER (q_ptr, stalls)];
5822 link != NULL_RTX;
5823 link = link->next ())
5824 {
5825 rtx_insn *insn2 = link->insn ();
5826 r = autopref_multipass_dfa_lookahead_guard_1 (insn1, insn2,
5827 write);
5828 if (r)
5829 {
5830 /* Queue INSN1 until INSN2 can issue. */
5831 r = -stalls;
5832 if (ready_index == 0)
5833 data1->status = AUTOPREF_MULTIPASS_DATA_DONT_DELAY;
5834 goto finish;
5835 }
5836 }
5837 }
5838 }
5839
5840 finish:
5841 if (sched_verbose >= 2
5842 && autopref_multipass_dfa_lookahead_guard_started_dump_p
5843 && (ready_index == ready.n_ready - 1 || r < 0))
5844 /* This does not /always/ trigger. We don't output EOL if the last
5845 insn is not recognized (INSN_CODE < 0) and lookahead_guard is not
5846 called. We can live with this. */
5847 fprintf (sched_dump, "\n");
5848
5849 return r;
5850 }
5851
5852 /* Define type for target data used in multipass scheduling. */
5853 #ifndef TARGET_SCHED_FIRST_CYCLE_MULTIPASS_DATA_T
5854 # define TARGET_SCHED_FIRST_CYCLE_MULTIPASS_DATA_T int
5855 #endif
5856 typedef TARGET_SCHED_FIRST_CYCLE_MULTIPASS_DATA_T first_cycle_multipass_data_t;
5857
5858 /* The following structure describe an entry of the stack of choices. */
5859 struct choice_entry
5860 {
5861 /* Ordinal number of the issued insn in the ready queue. */
5862 int index;
5863 /* The number of the rest insns whose issues we should try. */
5864 int rest;
5865 /* The number of issued essential insns. */
5866 int n;
5867 /* State after issuing the insn. */
5868 state_t state;
5869 /* Target-specific data. */
5870 first_cycle_multipass_data_t target_data;
5871 };
5872
5873 /* The following array is used to implement a stack of choices used in
5874 function max_issue. */
5875 static struct choice_entry *choice_stack;
5876
5877 /* This holds the value of the target dfa_lookahead hook. */
5878 int dfa_lookahead;
5879
5880 /* The following variable value is maximal number of tries of issuing
5881 insns for the first cycle multipass insn scheduling. We define
5882 this value as constant*(DFA_LOOKAHEAD**ISSUE_RATE). We would not
5883 need this constraint if all real insns (with non-negative codes)
5884 had reservations because in this case the algorithm complexity is
5885 O(DFA_LOOKAHEAD**ISSUE_RATE). Unfortunately, the dfa descriptions
5886 might be incomplete and such insn might occur. For such
5887 descriptions, the complexity of algorithm (without the constraint)
5888 could achieve DFA_LOOKAHEAD ** N , where N is the queue length. */
5889 static int max_lookahead_tries;
5890
5891 /* The following function returns maximal (or close to maximal) number
5892 of insns which can be issued on the same cycle and one of which
5893 insns is insns with the best rank (the first insn in READY). To
5894 make this function tries different samples of ready insns. READY
5895 is current queue `ready'. Global array READY_TRY reflects what
5896 insns are already issued in this try. The function stops immediately,
5897 if it reached the such a solution, that all instruction can be issued.
5898 INDEX will contain index of the best insn in READY. The following
5899 function is used only for first cycle multipass scheduling.
5900
5901 PRIVILEGED_N >= 0
5902
5903 This function expects recognized insns only. All USEs,
5904 CLOBBERs, etc must be filtered elsewhere. */
5905 int
5906 max_issue (struct ready_list *ready, int privileged_n, state_t state,
5907 bool first_cycle_insn_p, int *index)
5908 {
5909 int n, i, all, n_ready, best, delay, tries_num;
5910 int more_issue;
5911 struct choice_entry *top;
5912 rtx_insn *insn;
5913
5914 if (sched_fusion)
5915 return 0;
5916
5917 n_ready = ready->n_ready;
5918 gcc_assert (dfa_lookahead >= 1 && privileged_n >= 0
5919 && privileged_n <= n_ready);
5920
5921 /* Init MAX_LOOKAHEAD_TRIES. */
5922 if (max_lookahead_tries == 0)
5923 {
5924 max_lookahead_tries = 100;
5925 for (i = 0; i < issue_rate; i++)
5926 max_lookahead_tries *= dfa_lookahead;
5927 }
5928
5929 /* Init max_points. */
5930 more_issue = issue_rate - cycle_issued_insns;
5931 gcc_assert (more_issue >= 0);
5932
5933 /* The number of the issued insns in the best solution. */
5934 best = 0;
5935
5936 top = choice_stack;
5937
5938 /* Set initial state of the search. */
5939 memcpy (top->state, state, dfa_state_size);
5940 top->rest = dfa_lookahead;
5941 top->n = 0;
5942 if (targetm.sched.first_cycle_multipass_begin)
5943 targetm.sched.first_cycle_multipass_begin (&top->target_data,
5944 ready_try, n_ready,
5945 first_cycle_insn_p);
5946
5947 /* Count the number of the insns to search among. */
5948 for (all = i = 0; i < n_ready; i++)
5949 if (!ready_try [i])
5950 all++;
5951
5952 if (sched_verbose >= 2)
5953 {
5954 fprintf (sched_dump, ";;\t\tmax_issue among %d insns:", all);
5955 debug_ready_list_1 (ready, ready_try);
5956 }
5957
5958 /* I is the index of the insn to try next. */
5959 i = 0;
5960 tries_num = 0;
5961 for (;;)
5962 {
5963 if (/* If we've reached a dead end or searched enough of what we have
5964 been asked... */
5965 top->rest == 0
5966 /* or have nothing else to try... */
5967 || i >= n_ready
5968 /* or should not issue more. */
5969 || top->n >= more_issue)
5970 {
5971 /* ??? (... || i == n_ready). */
5972 gcc_assert (i <= n_ready);
5973
5974 /* We should not issue more than issue_rate instructions. */
5975 gcc_assert (top->n <= more_issue);
5976
5977 if (top == choice_stack)
5978 break;
5979
5980 if (best < top - choice_stack)
5981 {
5982 if (privileged_n)
5983 {
5984 n = privileged_n;
5985 /* Try to find issued privileged insn. */
5986 while (n && !ready_try[--n])
5987 ;
5988 }
5989
5990 if (/* If all insns are equally good... */
5991 privileged_n == 0
5992 /* Or a privileged insn will be issued. */
5993 || ready_try[n])
5994 /* Then we have a solution. */
5995 {
5996 best = top - choice_stack;
5997 /* This is the index of the insn issued first in this
5998 solution. */
5999 *index = choice_stack [1].index;
6000 if (top->n == more_issue || best == all)
6001 break;
6002 }
6003 }
6004
6005 /* Set ready-list index to point to the last insn
6006 ('i++' below will advance it to the next insn). */
6007 i = top->index;
6008
6009 /* Backtrack. */
6010 ready_try [i] = 0;
6011
6012 if (targetm.sched.first_cycle_multipass_backtrack)
6013 targetm.sched.first_cycle_multipass_backtrack (&top->target_data,
6014 ready_try, n_ready);
6015
6016 top--;
6017 memcpy (state, top->state, dfa_state_size);
6018 }
6019 else if (!ready_try [i])
6020 {
6021 tries_num++;
6022 if (tries_num > max_lookahead_tries)
6023 break;
6024 insn = ready_element (ready, i);
6025 delay = state_transition (state, insn);
6026 if (delay < 0)
6027 {
6028 if (state_dead_lock_p (state)
6029 || insn_finishes_cycle_p (insn))
6030 /* We won't issue any more instructions in the next
6031 choice_state. */
6032 top->rest = 0;
6033 else
6034 top->rest--;
6035
6036 n = top->n;
6037 if (memcmp (top->state, state, dfa_state_size) != 0)
6038 n++;
6039
6040 /* Advance to the next choice_entry. */
6041 top++;
6042 /* Initialize it. */
6043 top->rest = dfa_lookahead;
6044 top->index = i;
6045 top->n = n;
6046 memcpy (top->state, state, dfa_state_size);
6047 ready_try [i] = 1;
6048
6049 if (targetm.sched.first_cycle_multipass_issue)
6050 targetm.sched.first_cycle_multipass_issue (&top->target_data,
6051 ready_try, n_ready,
6052 insn,
6053 &((top - 1)
6054 ->target_data));
6055
6056 i = -1;
6057 }
6058 }
6059
6060 /* Increase ready-list index. */
6061 i++;
6062 }
6063
6064 if (targetm.sched.first_cycle_multipass_end)
6065 targetm.sched.first_cycle_multipass_end (best != 0
6066 ? &choice_stack[1].target_data
6067 : NULL);
6068
6069 /* Restore the original state of the DFA. */
6070 memcpy (state, choice_stack->state, dfa_state_size);
6071
6072 return best;
6073 }
6074
6075 /* The following function chooses insn from READY and modifies
6076 READY. The following function is used only for first
6077 cycle multipass scheduling.
6078 Return:
6079 -1 if cycle should be advanced,
6080 0 if INSN_PTR is set to point to the desirable insn,
6081 1 if choose_ready () should be restarted without advancing the cycle. */
6082 static int
6083 choose_ready (struct ready_list *ready, bool first_cycle_insn_p,
6084 rtx_insn **insn_ptr)
6085 {
6086 if (dbg_cnt (sched_insn) == false)
6087 {
6088 if (nonscheduled_insns_begin == NULL_RTX)
6089 nonscheduled_insns_begin = current_sched_info->prev_head;
6090
6091 rtx_insn *insn = first_nonscheduled_insn ();
6092
6093 if (QUEUE_INDEX (insn) == QUEUE_READY)
6094 /* INSN is in the ready_list. */
6095 {
6096 ready_remove_insn (insn);
6097 *insn_ptr = insn;
6098 return 0;
6099 }
6100
6101 /* INSN is in the queue. Advance cycle to move it to the ready list. */
6102 gcc_assert (QUEUE_INDEX (insn) >= 0);
6103 return -1;
6104 }
6105
6106 if (dfa_lookahead <= 0 || SCHED_GROUP_P (ready_element (ready, 0))
6107 || DEBUG_INSN_P (ready_element (ready, 0)))
6108 {
6109 if (targetm.sched.dispatch (NULL, IS_DISPATCH_ON))
6110 *insn_ptr = ready_remove_first_dispatch (ready);
6111 else
6112 *insn_ptr = ready_remove_first (ready);
6113
6114 return 0;
6115 }
6116 else
6117 {
6118 /* Try to choose the best insn. */
6119 int index = 0, i;
6120 rtx_insn *insn;
6121
6122 insn = ready_element (ready, 0);
6123 if (INSN_CODE (insn) < 0)
6124 {
6125 *insn_ptr = ready_remove_first (ready);
6126 return 0;
6127 }
6128
6129 /* Filter the search space. */
6130 for (i = 0; i < ready->n_ready; i++)
6131 {
6132 ready_try[i] = 0;
6133
6134 insn = ready_element (ready, i);
6135
6136 /* If this insn is recognizable we should have already
6137 recognized it earlier.
6138 ??? Not very clear where this is supposed to be done.
6139 See dep_cost_1. */
6140 gcc_checking_assert (INSN_CODE (insn) >= 0
6141 || recog_memoized (insn) < 0);
6142 if (INSN_CODE (insn) < 0)
6143 {
6144 /* Non-recognized insns at position 0 are handled above. */
6145 gcc_assert (i > 0);
6146 ready_try[i] = 1;
6147 continue;
6148 }
6149
6150 if (targetm.sched.first_cycle_multipass_dfa_lookahead_guard)
6151 {
6152 ready_try[i]
6153 = (targetm.sched.first_cycle_multipass_dfa_lookahead_guard
6154 (insn, i));
6155
6156 if (ready_try[i] < 0)
6157 /* Queue instruction for several cycles.
6158 We need to restart choose_ready as we have changed
6159 the ready list. */
6160 {
6161 change_queue_index (insn, -ready_try[i]);
6162 return 1;
6163 }
6164
6165 /* Make sure that we didn't end up with 0'th insn filtered out.
6166 Don't be tempted to make life easier for backends and just
6167 requeue 0'th insn if (ready_try[0] == 0) and restart
6168 choose_ready. Backends should be very considerate about
6169 requeueing instructions -- especially the highest priority
6170 one at position 0. */
6171 gcc_assert (ready_try[i] == 0 || i > 0);
6172 if (ready_try[i])
6173 continue;
6174 }
6175
6176 gcc_assert (ready_try[i] == 0);
6177 /* INSN made it through the scrutiny of filters! */
6178 }
6179
6180 if (max_issue (ready, 1, curr_state, first_cycle_insn_p, &index) == 0)
6181 {
6182 *insn_ptr = ready_remove_first (ready);
6183 if (sched_verbose >= 4)
6184 fprintf (sched_dump, ";;\t\tChosen insn (but can't issue) : %s \n",
6185 (*current_sched_info->print_insn) (*insn_ptr, 0));
6186 return 0;
6187 }
6188 else
6189 {
6190 if (sched_verbose >= 4)
6191 fprintf (sched_dump, ";;\t\tChosen insn : %s\n",
6192 (*current_sched_info->print_insn)
6193 (ready_element (ready, index), 0));
6194
6195 *insn_ptr = ready_remove (ready, index);
6196 return 0;
6197 }
6198 }
6199 }
6200
6201 /* This function is called when we have successfully scheduled a
6202 block. It uses the schedule stored in the scheduled_insns vector
6203 to rearrange the RTL. PREV_HEAD is used as the anchor to which we
6204 append the scheduled insns; TAIL is the insn after the scheduled
6205 block. TARGET_BB is the argument passed to schedule_block. */
6206
6207 static void
6208 commit_schedule (rtx_insn *prev_head, rtx_insn *tail, basic_block *target_bb)
6209 {
6210 unsigned int i;
6211 rtx_insn *insn;
6212
6213 last_scheduled_insn = prev_head;
6214 for (i = 0;
6215 scheduled_insns.iterate (i, &insn);
6216 i++)
6217 {
6218 if (control_flow_insn_p (last_scheduled_insn)
6219 || current_sched_info->advance_target_bb (*target_bb, insn))
6220 {
6221 *target_bb = current_sched_info->advance_target_bb (*target_bb, 0);
6222
6223 if (sched_verbose)
6224 {
6225 rtx_insn *x;
6226
6227 x = next_real_insn (last_scheduled_insn);
6228 gcc_assert (x);
6229 dump_new_block_header (1, *target_bb, x, tail);
6230 }
6231
6232 last_scheduled_insn = bb_note (*target_bb);
6233 }
6234
6235 if (current_sched_info->begin_move_insn)
6236 (*current_sched_info->begin_move_insn) (insn, last_scheduled_insn);
6237 move_insn (insn, last_scheduled_insn,
6238 current_sched_info->next_tail);
6239 if (!DEBUG_INSN_P (insn))
6240 reemit_notes (insn);
6241 last_scheduled_insn = insn;
6242 }
6243
6244 scheduled_insns.truncate (0);
6245 }
6246
6247 /* Examine all insns on the ready list and queue those which can't be
6248 issued in this cycle. TEMP_STATE is temporary scheduler state we
6249 can use as scratch space. If FIRST_CYCLE_INSN_P is true, no insns
6250 have been issued for the current cycle, which means it is valid to
6251 issue an asm statement.
6252
6253 If SHADOWS_ONLY_P is true, we eliminate all real insns and only
6254 leave those for which SHADOW_P is true. If MODULO_EPILOGUE is true,
6255 we only leave insns which have an INSN_EXACT_TICK. */
6256
6257 static void
6258 prune_ready_list (state_t temp_state, bool first_cycle_insn_p,
6259 bool shadows_only_p, bool modulo_epilogue_p)
6260 {
6261 int i, pass;
6262 bool sched_group_found = false;
6263 int min_cost_group = 0;
6264
6265 if (sched_fusion)
6266 return;
6267
6268 for (i = 0; i < ready.n_ready; i++)
6269 {
6270 rtx_insn *insn = ready_element (&ready, i);
6271 if (SCHED_GROUP_P (insn))
6272 {
6273 sched_group_found = true;
6274 break;
6275 }
6276 }
6277
6278 /* Make two passes if there's a SCHED_GROUP_P insn; make sure to handle
6279 such an insn first and note its cost. If at least one SCHED_GROUP_P insn
6280 gets queued, then all other insns get queued for one cycle later. */
6281 for (pass = sched_group_found ? 0 : 1; pass < 2; )
6282 {
6283 int n = ready.n_ready;
6284 for (i = 0; i < n; i++)
6285 {
6286 rtx_insn *insn = ready_element (&ready, i);
6287 int cost = 0;
6288 const char *reason = "resource conflict";
6289
6290 if (DEBUG_INSN_P (insn))
6291 continue;
6292
6293 if (sched_group_found && !SCHED_GROUP_P (insn)
6294 && ((pass == 0) || (min_cost_group >= 1)))
6295 {
6296 if (pass == 0)
6297 continue;
6298 cost = min_cost_group;
6299 reason = "not in sched group";
6300 }
6301 else if (modulo_epilogue_p
6302 && INSN_EXACT_TICK (insn) == INVALID_TICK)
6303 {
6304 cost = max_insn_queue_index;
6305 reason = "not an epilogue insn";
6306 }
6307 else if (shadows_only_p && !SHADOW_P (insn))
6308 {
6309 cost = 1;
6310 reason = "not a shadow";
6311 }
6312 else if (recog_memoized (insn) < 0)
6313 {
6314 if (!first_cycle_insn_p
6315 && (GET_CODE (PATTERN (insn)) == ASM_INPUT
6316 || asm_noperands (PATTERN (insn)) >= 0))
6317 cost = 1;
6318 reason = "asm";
6319 }
6320 else if (sched_pressure != SCHED_PRESSURE_NONE)
6321 {
6322 if (sched_pressure == SCHED_PRESSURE_MODEL
6323 && INSN_TICK (insn) <= clock_var)
6324 {
6325 memcpy (temp_state, curr_state, dfa_state_size);
6326 if (state_transition (temp_state, insn) >= 0)
6327 INSN_TICK (insn) = clock_var + 1;
6328 }
6329 cost = 0;
6330 }
6331 else
6332 {
6333 int delay_cost = 0;
6334
6335 if (delay_htab)
6336 {
6337 struct delay_pair *delay_entry;
6338 delay_entry
6339 = delay_htab->find_with_hash (insn,
6340 htab_hash_pointer (insn));
6341 while (delay_entry && delay_cost == 0)
6342 {
6343 delay_cost = estimate_shadow_tick (delay_entry);
6344 if (delay_cost > max_insn_queue_index)
6345 delay_cost = max_insn_queue_index;
6346 delay_entry = delay_entry->next_same_i1;
6347 }
6348 }
6349
6350 memcpy (temp_state, curr_state, dfa_state_size);
6351 cost = state_transition (temp_state, insn);
6352 if (cost < 0)
6353 cost = 0;
6354 else if (cost == 0)
6355 cost = 1;
6356 if (cost < delay_cost)
6357 {
6358 cost = delay_cost;
6359 reason = "shadow tick";
6360 }
6361 }
6362 if (cost >= 1)
6363 {
6364 if (SCHED_GROUP_P (insn) && cost > min_cost_group)
6365 min_cost_group = cost;
6366 ready_remove (&ready, i);
6367 /* Normally we'd want to queue INSN for COST cycles. However,
6368 if SCHED_GROUP_P is set, then we must ensure that nothing
6369 else comes between INSN and its predecessor. If there is
6370 some other insn ready to fire on the next cycle, then that
6371 invariant would be broken.
6372
6373 So when SCHED_GROUP_P is set, just queue this insn for a
6374 single cycle. */
6375 queue_insn (insn, SCHED_GROUP_P (insn) ? 1 : cost, reason);
6376 if (i + 1 < n)
6377 break;
6378 }
6379 }
6380 if (i == n)
6381 pass++;
6382 }
6383 }
6384
6385 /* Called when we detect that the schedule is impossible. We examine the
6386 backtrack queue to find the earliest insn that caused this condition. */
6387
6388 static struct haifa_saved_data *
6389 verify_shadows (void)
6390 {
6391 struct haifa_saved_data *save, *earliest_fail = NULL;
6392 for (save = backtrack_queue; save; save = save->next)
6393 {
6394 int t;
6395 struct delay_pair *pair = save->delay_pair;
6396 rtx_insn *i1 = pair->i1;
6397
6398 for (; pair; pair = pair->next_same_i1)
6399 {
6400 rtx_insn *i2 = pair->i2;
6401
6402 if (QUEUE_INDEX (i2) == QUEUE_SCHEDULED)
6403 continue;
6404
6405 t = INSN_TICK (i1) + pair_delay (pair);
6406 if (t < clock_var)
6407 {
6408 if (sched_verbose >= 2)
6409 fprintf (sched_dump,
6410 ";;\t\tfailed delay requirements for %d/%d (%d->%d)"
6411 ", not ready\n",
6412 INSN_UID (pair->i1), INSN_UID (pair->i2),
6413 INSN_TICK (pair->i1), INSN_EXACT_TICK (pair->i2));
6414 earliest_fail = save;
6415 break;
6416 }
6417 if (QUEUE_INDEX (i2) >= 0)
6418 {
6419 int queued_for = INSN_TICK (i2);
6420
6421 if (t < queued_for)
6422 {
6423 if (sched_verbose >= 2)
6424 fprintf (sched_dump,
6425 ";;\t\tfailed delay requirements for %d/%d"
6426 " (%d->%d), queued too late\n",
6427 INSN_UID (pair->i1), INSN_UID (pair->i2),
6428 INSN_TICK (pair->i1), INSN_EXACT_TICK (pair->i2));
6429 earliest_fail = save;
6430 break;
6431 }
6432 }
6433 }
6434 }
6435
6436 return earliest_fail;
6437 }
6438
6439 /* Print instructions together with useful scheduling information between
6440 HEAD and TAIL (inclusive). */
6441 static void
6442 dump_insn_stream (rtx_insn *head, rtx_insn *tail)
6443 {
6444 fprintf (sched_dump, ";;\t| insn | prio |\n");
6445
6446 rtx_insn *next_tail = NEXT_INSN (tail);
6447 for (rtx_insn *insn = head; insn != next_tail; insn = NEXT_INSN (insn))
6448 {
6449 int priority = NOTE_P (insn) ? 0 : INSN_PRIORITY (insn);
6450 const char *pattern = (NOTE_P (insn)
6451 ? "note"
6452 : str_pattern_slim (PATTERN (insn)));
6453
6454 fprintf (sched_dump, ";;\t| %4d | %4d | %-30s ",
6455 INSN_UID (insn), priority, pattern);
6456
6457 if (sched_verbose >= 4)
6458 {
6459 if (NOTE_P (insn) || LABEL_P (insn) || recog_memoized (insn) < 0)
6460 fprintf (sched_dump, "nothing");
6461 else
6462 print_reservation (sched_dump, insn);
6463 }
6464 fprintf (sched_dump, "\n");
6465 }
6466 }
6467
6468 /* Use forward list scheduling to rearrange insns of block pointed to by
6469 TARGET_BB, possibly bringing insns from subsequent blocks in the same
6470 region. */
6471
6472 bool
6473 schedule_block (basic_block *target_bb, state_t init_state)
6474 {
6475 int i;
6476 bool success = modulo_ii == 0;
6477 struct sched_block_state ls;
6478 state_t temp_state = NULL; /* It is used for multipass scheduling. */
6479 int sort_p, advance, start_clock_var;
6480
6481 /* Head/tail info for this block. */
6482 rtx_insn *prev_head = current_sched_info->prev_head;
6483 rtx_insn *next_tail = current_sched_info->next_tail;
6484 rtx_insn *head = NEXT_INSN (prev_head);
6485 rtx_insn *tail = PREV_INSN (next_tail);
6486
6487 if ((current_sched_info->flags & DONT_BREAK_DEPENDENCIES) == 0
6488 && sched_pressure != SCHED_PRESSURE_MODEL && !sched_fusion)
6489 find_modifiable_mems (head, tail);
6490
6491 /* We used to have code to avoid getting parameters moved from hard
6492 argument registers into pseudos.
6493
6494 However, it was removed when it proved to be of marginal benefit
6495 and caused problems because schedule_block and compute_forward_dependences
6496 had different notions of what the "head" insn was. */
6497
6498 gcc_assert (head != tail || INSN_P (head));
6499
6500 haifa_recovery_bb_recently_added_p = false;
6501
6502 backtrack_queue = NULL;
6503
6504 /* Debug info. */
6505 if (sched_verbose)
6506 {
6507 dump_new_block_header (0, *target_bb, head, tail);
6508
6509 if (sched_verbose >= 2)
6510 {
6511 dump_insn_stream (head, tail);
6512 memset (&rank_for_schedule_stats, 0,
6513 sizeof (rank_for_schedule_stats));
6514 }
6515 }
6516
6517 if (init_state == NULL)
6518 state_reset (curr_state);
6519 else
6520 memcpy (curr_state, init_state, dfa_state_size);
6521
6522 /* Clear the ready list. */
6523 ready.first = ready.veclen - 1;
6524 ready.n_ready = 0;
6525 ready.n_debug = 0;
6526
6527 /* It is used for first cycle multipass scheduling. */
6528 temp_state = alloca (dfa_state_size);
6529
6530 if (targetm.sched.init)
6531 targetm.sched.init (sched_dump, sched_verbose, ready.veclen);
6532
6533 /* We start inserting insns after PREV_HEAD. */
6534 last_scheduled_insn = prev_head;
6535 last_nondebug_scheduled_insn = NULL;
6536 nonscheduled_insns_begin = NULL;
6537
6538 gcc_assert ((NOTE_P (last_scheduled_insn)
6539 || DEBUG_INSN_P (last_scheduled_insn))
6540 && BLOCK_FOR_INSN (last_scheduled_insn) == *target_bb);
6541
6542 /* Initialize INSN_QUEUE. Q_SIZE is the total number of insns in the
6543 queue. */
6544 q_ptr = 0;
6545 q_size = 0;
6546
6547 insn_queue = XALLOCAVEC (rtx_insn_list *, max_insn_queue_index + 1);
6548 memset (insn_queue, 0, (max_insn_queue_index + 1) * sizeof (rtx));
6549
6550 /* Start just before the beginning of time. */
6551 clock_var = -1;
6552
6553 /* We need queue and ready lists and clock_var be initialized
6554 in try_ready () (which is called through init_ready_list ()). */
6555 (*current_sched_info->init_ready_list) ();
6556
6557 if (sched_pressure)
6558 sched_pressure_start_bb (*target_bb);
6559
6560 /* The algorithm is O(n^2) in the number of ready insns at any given
6561 time in the worst case. Before reload we are more likely to have
6562 big lists so truncate them to a reasonable size. */
6563 if (!reload_completed
6564 && ready.n_ready - ready.n_debug > param_max_sched_ready_insns)
6565 {
6566 ready_sort_debug (&ready);
6567 ready_sort_real (&ready);
6568
6569 /* Find first free-standing insn past param_max_sched_ready_insns.
6570 If there are debug insns, we know they're first. */
6571 for (i = param_max_sched_ready_insns + ready.n_debug; i < ready.n_ready;
6572 i++)
6573 if (!SCHED_GROUP_P (ready_element (&ready, i)))
6574 break;
6575
6576 if (sched_verbose >= 2)
6577 {
6578 fprintf (sched_dump,
6579 ";;\t\tReady list on entry: %d insns: ", ready.n_ready);
6580 debug_ready_list (&ready);
6581 fprintf (sched_dump,
6582 ";;\t\t before reload => truncated to %d insns\n", i);
6583 }
6584
6585 /* Delay all insns past it for 1 cycle. If debug counter is
6586 activated make an exception for the insn right after
6587 nonscheduled_insns_begin. */
6588 {
6589 rtx_insn *skip_insn;
6590
6591 if (dbg_cnt (sched_insn) == false)
6592 skip_insn = first_nonscheduled_insn ();
6593 else
6594 skip_insn = NULL;
6595
6596 while (i < ready.n_ready)
6597 {
6598 rtx_insn *insn;
6599
6600 insn = ready_remove (&ready, i);
6601
6602 if (insn != skip_insn)
6603 queue_insn (insn, 1, "list truncated");
6604 }
6605 if (skip_insn)
6606 ready_add (&ready, skip_insn, true);
6607 }
6608 }
6609
6610 /* Now we can restore basic block notes and maintain precise cfg. */
6611 restore_bb_notes (*target_bb);
6612
6613 last_clock_var = -1;
6614
6615 advance = 0;
6616
6617 gcc_assert (scheduled_insns.length () == 0);
6618 sort_p = TRUE;
6619 must_backtrack = false;
6620 modulo_insns_scheduled = 0;
6621
6622 ls.modulo_epilogue = false;
6623 ls.first_cycle_insn_p = true;
6624
6625 /* Loop until all the insns in BB are scheduled. */
6626 while ((*current_sched_info->schedule_more_p) ())
6627 {
6628 perform_replacements_new_cycle ();
6629 do
6630 {
6631 start_clock_var = clock_var;
6632
6633 clock_var++;
6634
6635 advance_one_cycle ();
6636
6637 /* Add to the ready list all pending insns that can be issued now.
6638 If there are no ready insns, increment clock until one
6639 is ready and add all pending insns at that point to the ready
6640 list. */
6641 queue_to_ready (&ready);
6642
6643 gcc_assert (ready.n_ready);
6644
6645 if (sched_verbose >= 2)
6646 {
6647 fprintf (sched_dump, ";;\t\tReady list after queue_to_ready:");
6648 debug_ready_list (&ready);
6649 }
6650 advance -= clock_var - start_clock_var;
6651 }
6652 while (advance > 0);
6653
6654 if (ls.modulo_epilogue)
6655 {
6656 int stage = clock_var / modulo_ii;
6657 if (stage > modulo_last_stage * 2 + 2)
6658 {
6659 if (sched_verbose >= 2)
6660 fprintf (sched_dump,
6661 ";;\t\tmodulo scheduled succeeded at II %d\n",
6662 modulo_ii);
6663 success = true;
6664 goto end_schedule;
6665 }
6666 }
6667 else if (modulo_ii > 0)
6668 {
6669 int stage = clock_var / modulo_ii;
6670 if (stage > modulo_max_stages)
6671 {
6672 if (sched_verbose >= 2)
6673 fprintf (sched_dump,
6674 ";;\t\tfailing schedule due to excessive stages\n");
6675 goto end_schedule;
6676 }
6677 if (modulo_n_insns == modulo_insns_scheduled
6678 && stage > modulo_last_stage)
6679 {
6680 if (sched_verbose >= 2)
6681 fprintf (sched_dump,
6682 ";;\t\tfound kernel after %d stages, II %d\n",
6683 stage, modulo_ii);
6684 ls.modulo_epilogue = true;
6685 }
6686 }
6687
6688 prune_ready_list (temp_state, true, false, ls.modulo_epilogue);
6689 if (ready.n_ready == 0)
6690 continue;
6691 if (must_backtrack)
6692 goto do_backtrack;
6693
6694 ls.shadows_only_p = false;
6695 cycle_issued_insns = 0;
6696 ls.can_issue_more = issue_rate;
6697 for (;;)
6698 {
6699 rtx_insn *insn;
6700 int cost;
6701 bool asm_p;
6702
6703 if (sort_p && ready.n_ready > 0)
6704 {
6705 /* Sort the ready list based on priority. This must be
6706 done every iteration through the loop, as schedule_insn
6707 may have readied additional insns that will not be
6708 sorted correctly. */
6709 ready_sort (&ready);
6710
6711 if (sched_verbose >= 2)
6712 {
6713 fprintf (sched_dump,
6714 ";;\t\tReady list after ready_sort: ");
6715 debug_ready_list (&ready);
6716 }
6717 }
6718
6719 /* We don't want md sched reorder to even see debug isns, so put
6720 them out right away. */
6721 if (ready.n_ready && DEBUG_INSN_P (ready_element (&ready, 0))
6722 && (*current_sched_info->schedule_more_p) ())
6723 {
6724 while (ready.n_ready && DEBUG_INSN_P (ready_element (&ready, 0)))
6725 {
6726 rtx_insn *insn = ready_remove_first (&ready);
6727 gcc_assert (DEBUG_INSN_P (insn));
6728 (*current_sched_info->begin_schedule_ready) (insn);
6729 scheduled_insns.safe_push (insn);
6730 last_scheduled_insn = insn;
6731 advance = schedule_insn (insn);
6732 gcc_assert (advance == 0);
6733 if (ready.n_ready > 0)
6734 ready_sort (&ready);
6735 }
6736 }
6737
6738 if (ls.first_cycle_insn_p && !ready.n_ready)
6739 break;
6740
6741 resume_after_backtrack:
6742 /* Allow the target to reorder the list, typically for
6743 better instruction bundling. */
6744 if (sort_p
6745 && (ready.n_ready == 0
6746 || !SCHED_GROUP_P (ready_element (&ready, 0))))
6747 {
6748 if (ls.first_cycle_insn_p && targetm.sched.reorder)
6749 ls.can_issue_more
6750 = targetm.sched.reorder (sched_dump, sched_verbose,
6751 ready_lastpos (&ready),
6752 &ready.n_ready, clock_var);
6753 else if (!ls.first_cycle_insn_p && targetm.sched.reorder2)
6754 ls.can_issue_more
6755 = targetm.sched.reorder2 (sched_dump, sched_verbose,
6756 ready.n_ready
6757 ? ready_lastpos (&ready) : NULL,
6758 &ready.n_ready, clock_var);
6759 }
6760
6761 restart_choose_ready:
6762 if (sched_verbose >= 2)
6763 {
6764 fprintf (sched_dump, ";;\tReady list (t = %3d): ",
6765 clock_var);
6766 debug_ready_list (&ready);
6767 if (sched_pressure == SCHED_PRESSURE_WEIGHTED)
6768 print_curr_reg_pressure ();
6769 }
6770
6771 if (ready.n_ready == 0
6772 && ls.can_issue_more
6773 && reload_completed)
6774 {
6775 /* Allow scheduling insns directly from the queue in case
6776 there's nothing better to do (ready list is empty) but
6777 there are still vacant dispatch slots in the current cycle. */
6778 if (sched_verbose >= 6)
6779 fprintf (sched_dump,";;\t\tSecond chance\n");
6780 memcpy (temp_state, curr_state, dfa_state_size);
6781 if (early_queue_to_ready (temp_state, &ready))
6782 ready_sort (&ready);
6783 }
6784
6785 if (ready.n_ready == 0
6786 || !ls.can_issue_more
6787 || state_dead_lock_p (curr_state)
6788 || !(*current_sched_info->schedule_more_p) ())
6789 break;
6790
6791 /* Select and remove the insn from the ready list. */
6792 if (sort_p)
6793 {
6794 int res;
6795
6796 insn = NULL;
6797 res = choose_ready (&ready, ls.first_cycle_insn_p, &insn);
6798
6799 if (res < 0)
6800 /* Finish cycle. */
6801 break;
6802 if (res > 0)
6803 goto restart_choose_ready;
6804
6805 gcc_assert (insn != NULL_RTX);
6806 }
6807 else
6808 insn = ready_remove_first (&ready);
6809
6810 if (sched_pressure != SCHED_PRESSURE_NONE
6811 && INSN_TICK (insn) > clock_var)
6812 {
6813 ready_add (&ready, insn, true);
6814 advance = 1;
6815 break;
6816 }
6817
6818 if (targetm.sched.dfa_new_cycle
6819 && targetm.sched.dfa_new_cycle (sched_dump, sched_verbose,
6820 insn, last_clock_var,
6821 clock_var, &sort_p))
6822 /* SORT_P is used by the target to override sorting
6823 of the ready list. This is needed when the target
6824 has modified its internal structures expecting that
6825 the insn will be issued next. As we need the insn
6826 to have the highest priority (so it will be returned by
6827 the ready_remove_first call above), we invoke
6828 ready_add (&ready, insn, true).
6829 But, still, there is one issue: INSN can be later
6830 discarded by scheduler's front end through
6831 current_sched_info->can_schedule_ready_p, hence, won't
6832 be issued next. */
6833 {
6834 ready_add (&ready, insn, true);
6835 break;
6836 }
6837
6838 sort_p = TRUE;
6839
6840 if (current_sched_info->can_schedule_ready_p
6841 && ! (*current_sched_info->can_schedule_ready_p) (insn))
6842 /* We normally get here only if we don't want to move
6843 insn from the split block. */
6844 {
6845 TODO_SPEC (insn) = DEP_POSTPONED;
6846 goto restart_choose_ready;
6847 }
6848
6849 if (delay_htab)
6850 {
6851 /* If this insn is the first part of a delay-slot pair, record a
6852 backtrack point. */
6853 struct delay_pair *delay_entry;
6854 delay_entry
6855 = delay_htab->find_with_hash (insn, htab_hash_pointer (insn));
6856 if (delay_entry)
6857 {
6858 save_backtrack_point (delay_entry, ls);
6859 if (sched_verbose >= 2)
6860 fprintf (sched_dump, ";;\t\tsaving backtrack point\n");
6861 }
6862 }
6863
6864 /* DECISION is made. */
6865
6866 if (modulo_ii > 0 && INSN_UID (insn) < modulo_iter0_max_uid)
6867 {
6868 modulo_insns_scheduled++;
6869 modulo_last_stage = clock_var / modulo_ii;
6870 }
6871 if (TODO_SPEC (insn) & SPECULATIVE)
6872 generate_recovery_code (insn);
6873
6874 if (targetm.sched.dispatch (NULL, IS_DISPATCH_ON))
6875 targetm.sched.dispatch_do (insn, ADD_TO_DISPATCH_WINDOW);
6876
6877 /* Update counters, etc in the scheduler's front end. */
6878 (*current_sched_info->begin_schedule_ready) (insn);
6879 scheduled_insns.safe_push (insn);
6880 gcc_assert (NONDEBUG_INSN_P (insn));
6881 last_nondebug_scheduled_insn = last_scheduled_insn = insn;
6882
6883 if (recog_memoized (insn) >= 0)
6884 {
6885 memcpy (temp_state, curr_state, dfa_state_size);
6886 cost = state_transition (curr_state, insn);
6887 if (sched_pressure != SCHED_PRESSURE_WEIGHTED && !sched_fusion)
6888 gcc_assert (cost < 0);
6889 if (memcmp (temp_state, curr_state, dfa_state_size) != 0)
6890 cycle_issued_insns++;
6891 asm_p = false;
6892 }
6893 else
6894 asm_p = (GET_CODE (PATTERN (insn)) == ASM_INPUT
6895 || asm_noperands (PATTERN (insn)) >= 0);
6896
6897 if (targetm.sched.variable_issue)
6898 ls.can_issue_more =
6899 targetm.sched.variable_issue (sched_dump, sched_verbose,
6900 insn, ls.can_issue_more);
6901 /* A naked CLOBBER or USE generates no instruction, so do
6902 not count them against the issue rate. */
6903 else if (GET_CODE (PATTERN (insn)) != USE
6904 && GET_CODE (PATTERN (insn)) != CLOBBER)
6905 ls.can_issue_more--;
6906 advance = schedule_insn (insn);
6907
6908 if (SHADOW_P (insn))
6909 ls.shadows_only_p = true;
6910
6911 /* After issuing an asm insn we should start a new cycle. */
6912 if (advance == 0 && asm_p)
6913 advance = 1;
6914
6915 if (must_backtrack)
6916 break;
6917
6918 if (advance != 0)
6919 break;
6920
6921 ls.first_cycle_insn_p = false;
6922 if (ready.n_ready > 0)
6923 prune_ready_list (temp_state, false, ls.shadows_only_p,
6924 ls.modulo_epilogue);
6925 }
6926
6927 do_backtrack:
6928 if (!must_backtrack)
6929 for (i = 0; i < ready.n_ready; i++)
6930 {
6931 rtx_insn *insn = ready_element (&ready, i);
6932 if (INSN_EXACT_TICK (insn) == clock_var)
6933 {
6934 must_backtrack = true;
6935 clock_var++;
6936 break;
6937 }
6938 }
6939 if (must_backtrack && modulo_ii > 0)
6940 {
6941 if (modulo_backtracks_left == 0)
6942 goto end_schedule;
6943 modulo_backtracks_left--;
6944 }
6945 while (must_backtrack)
6946 {
6947 struct haifa_saved_data *failed;
6948 rtx_insn *failed_insn;
6949
6950 must_backtrack = false;
6951 failed = verify_shadows ();
6952 gcc_assert (failed);
6953
6954 failed_insn = failed->delay_pair->i1;
6955 /* Clear these queues. */
6956 perform_replacements_new_cycle ();
6957 toggle_cancelled_flags (false);
6958 unschedule_insns_until (failed_insn);
6959 while (failed != backtrack_queue)
6960 free_topmost_backtrack_point (true);
6961 restore_last_backtrack_point (&ls);
6962 if (sched_verbose >= 2)
6963 fprintf (sched_dump, ";;\t\trewind to cycle %d\n", clock_var);
6964 /* Delay by at least a cycle. This could cause additional
6965 backtracking. */
6966 queue_insn (failed_insn, 1, "backtracked");
6967 advance = 0;
6968 if (must_backtrack)
6969 continue;
6970 if (ready.n_ready > 0)
6971 goto resume_after_backtrack;
6972 else
6973 {
6974 if (clock_var == 0 && ls.first_cycle_insn_p)
6975 goto end_schedule;
6976 advance = 1;
6977 break;
6978 }
6979 }
6980 ls.first_cycle_insn_p = true;
6981 }
6982 if (ls.modulo_epilogue)
6983 success = true;
6984 end_schedule:
6985 if (!ls.first_cycle_insn_p || advance)
6986 advance_one_cycle ();
6987 perform_replacements_new_cycle ();
6988 if (modulo_ii > 0)
6989 {
6990 /* Once again, debug insn suckiness: they can be on the ready list
6991 even if they have unresolved dependencies. To make our view
6992 of the world consistent, remove such "ready" insns. */
6993 restart_debug_insn_loop:
6994 for (i = ready.n_ready - 1; i >= 0; i--)
6995 {
6996 rtx_insn *x;
6997
6998 x = ready_element (&ready, i);
6999 if (DEPS_LIST_FIRST (INSN_HARD_BACK_DEPS (x)) != NULL
7000 || DEPS_LIST_FIRST (INSN_SPEC_BACK_DEPS (x)) != NULL)
7001 {
7002 ready_remove (&ready, i);
7003 goto restart_debug_insn_loop;
7004 }
7005 }
7006 for (i = ready.n_ready - 1; i >= 0; i--)
7007 {
7008 rtx_insn *x;
7009
7010 x = ready_element (&ready, i);
7011 resolve_dependencies (x);
7012 }
7013 for (i = 0; i <= max_insn_queue_index; i++)
7014 {
7015 rtx_insn_list *link;
7016 while ((link = insn_queue[i]) != NULL)
7017 {
7018 rtx_insn *x = link->insn ();
7019 insn_queue[i] = link->next ();
7020 QUEUE_INDEX (x) = QUEUE_NOWHERE;
7021 free_INSN_LIST_node (link);
7022 resolve_dependencies (x);
7023 }
7024 }
7025 }
7026
7027 if (!success)
7028 undo_all_replacements ();
7029
7030 /* Debug info. */
7031 if (sched_verbose)
7032 {
7033 fprintf (sched_dump, ";;\tReady list (final): ");
7034 debug_ready_list (&ready);
7035 }
7036
7037 if (modulo_ii == 0 && current_sched_info->queue_must_finish_empty)
7038 /* Sanity check -- queue must be empty now. Meaningless if region has
7039 multiple bbs. */
7040 gcc_assert (!q_size && !ready.n_ready && !ready.n_debug);
7041 else if (modulo_ii == 0)
7042 {
7043 /* We must maintain QUEUE_INDEX between blocks in region. */
7044 for (i = ready.n_ready - 1; i >= 0; i--)
7045 {
7046 rtx_insn *x;
7047
7048 x = ready_element (&ready, i);
7049 QUEUE_INDEX (x) = QUEUE_NOWHERE;
7050 TODO_SPEC (x) = HARD_DEP;
7051 }
7052
7053 if (q_size)
7054 for (i = 0; i <= max_insn_queue_index; i++)
7055 {
7056 rtx_insn_list *link;
7057 for (link = insn_queue[i]; link; link = link->next ())
7058 {
7059 rtx_insn *x;
7060
7061 x = link->insn ();
7062 QUEUE_INDEX (x) = QUEUE_NOWHERE;
7063 TODO_SPEC (x) = HARD_DEP;
7064 }
7065 free_INSN_LIST_list (&insn_queue[i]);
7066 }
7067 }
7068
7069 if (sched_pressure == SCHED_PRESSURE_MODEL)
7070 model_end_schedule ();
7071
7072 if (success)
7073 {
7074 commit_schedule (prev_head, tail, target_bb);
7075 if (sched_verbose)
7076 fprintf (sched_dump, ";; total time = %d\n", clock_var);
7077 }
7078 else
7079 last_scheduled_insn = tail;
7080
7081 scheduled_insns.truncate (0);
7082
7083 if (!current_sched_info->queue_must_finish_empty
7084 || haifa_recovery_bb_recently_added_p)
7085 {
7086 /* INSN_TICK (minimum clock tick at which the insn becomes
7087 ready) may be not correct for the insn in the subsequent
7088 blocks of the region. We should use a correct value of
7089 `clock_var' or modify INSN_TICK. It is better to keep
7090 clock_var value equal to 0 at the start of a basic block.
7091 Therefore we modify INSN_TICK here. */
7092 fix_inter_tick (NEXT_INSN (prev_head), last_scheduled_insn);
7093 }
7094
7095 if (targetm.sched.finish)
7096 {
7097 targetm.sched.finish (sched_dump, sched_verbose);
7098 /* Target might have added some instructions to the scheduled block
7099 in its md_finish () hook. These new insns don't have any data
7100 initialized and to identify them we extend h_i_d so that they'll
7101 get zero luids. */
7102 sched_extend_luids ();
7103 }
7104
7105 /* Update head/tail boundaries. */
7106 head = NEXT_INSN (prev_head);
7107 tail = last_scheduled_insn;
7108
7109 if (sched_verbose)
7110 {
7111 fprintf (sched_dump, ";; new head = %d\n;; new tail = %d\n",
7112 INSN_UID (head), INSN_UID (tail));
7113
7114 if (sched_verbose >= 2)
7115 {
7116 dump_insn_stream (head, tail);
7117 print_rank_for_schedule_stats (";; TOTAL ", &rank_for_schedule_stats,
7118 NULL);
7119 }
7120
7121 fprintf (sched_dump, "\n");
7122 }
7123
7124 head = restore_other_notes (head, NULL);
7125
7126 current_sched_info->head = head;
7127 current_sched_info->tail = tail;
7128
7129 free_backtrack_queue ();
7130
7131 return success;
7132 }
7133 \f
7134 /* Set_priorities: compute priority of each insn in the block. */
7135
7136 int
7137 set_priorities (rtx_insn *head, rtx_insn *tail)
7138 {
7139 rtx_insn *insn;
7140 int n_insn;
7141 int sched_max_insns_priority =
7142 current_sched_info->sched_max_insns_priority;
7143 rtx_insn *prev_head;
7144
7145 if (head == tail && ! INSN_P (head))
7146 gcc_unreachable ();
7147
7148 n_insn = 0;
7149
7150 prev_head = PREV_INSN (head);
7151 for (insn = tail; insn != prev_head; insn = PREV_INSN (insn))
7152 {
7153 if (!INSN_P (insn))
7154 continue;
7155
7156 n_insn++;
7157 (void) priority (insn);
7158
7159 gcc_assert (INSN_PRIORITY_KNOWN (insn));
7160
7161 sched_max_insns_priority = MAX (sched_max_insns_priority,
7162 INSN_PRIORITY (insn));
7163 }
7164
7165 current_sched_info->sched_max_insns_priority = sched_max_insns_priority;
7166
7167 return n_insn;
7168 }
7169
7170 /* Set sched_dump and sched_verbose for the desired debugging output. */
7171 void
7172 setup_sched_dump (void)
7173 {
7174 sched_verbose = sched_verbose_param;
7175 sched_dump = dump_file;
7176 if (!dump_file)
7177 sched_verbose = 0;
7178 }
7179
7180 /* Allocate data for register pressure sensitive scheduling. */
7181 static void
7182 alloc_global_sched_pressure_data (void)
7183 {
7184 if (sched_pressure != SCHED_PRESSURE_NONE)
7185 {
7186 int i, max_regno = max_reg_num ();
7187
7188 if (sched_dump != NULL)
7189 /* We need info about pseudos for rtl dumps about pseudo
7190 classes and costs. */
7191 regstat_init_n_sets_and_refs ();
7192 ira_set_pseudo_classes (true, sched_verbose ? sched_dump : NULL);
7193 sched_regno_pressure_class
7194 = (enum reg_class *) xmalloc (max_regno * sizeof (enum reg_class));
7195 for (i = 0; i < max_regno; i++)
7196 sched_regno_pressure_class[i]
7197 = (i < FIRST_PSEUDO_REGISTER
7198 ? ira_pressure_class_translate[REGNO_REG_CLASS (i)]
7199 : ira_pressure_class_translate[reg_allocno_class (i)]);
7200 curr_reg_live = BITMAP_ALLOC (NULL);
7201 if (sched_pressure == SCHED_PRESSURE_WEIGHTED)
7202 {
7203 saved_reg_live = BITMAP_ALLOC (NULL);
7204 region_ref_regs = BITMAP_ALLOC (NULL);
7205 }
7206 if (sched_pressure == SCHED_PRESSURE_MODEL)
7207 tmp_bitmap = BITMAP_ALLOC (NULL);
7208
7209 /* Calculate number of CALL_SAVED_REGS and FIXED_REGS in register classes
7210 that we calculate register pressure for. */
7211 for (int c = 0; c < ira_pressure_classes_num; ++c)
7212 {
7213 enum reg_class cl = ira_pressure_classes[c];
7214
7215 call_saved_regs_num[cl] = 0;
7216 fixed_regs_num[cl] = 0;
7217
7218 for (int i = 0; i < ira_class_hard_regs_num[cl]; ++i)
7219 {
7220 unsigned int regno = ira_class_hard_regs[cl][i];
7221 if (fixed_regs[regno])
7222 ++fixed_regs_num[cl];
7223 else if (!crtl->abi->clobbers_full_reg_p (regno))
7224 ++call_saved_regs_num[cl];
7225 }
7226 }
7227 }
7228 }
7229
7230 /* Free data for register pressure sensitive scheduling. Also called
7231 from schedule_region when stopping sched-pressure early. */
7232 void
7233 free_global_sched_pressure_data (void)
7234 {
7235 if (sched_pressure != SCHED_PRESSURE_NONE)
7236 {
7237 if (regstat_n_sets_and_refs != NULL)
7238 regstat_free_n_sets_and_refs ();
7239 if (sched_pressure == SCHED_PRESSURE_WEIGHTED)
7240 {
7241 BITMAP_FREE (region_ref_regs);
7242 BITMAP_FREE (saved_reg_live);
7243 }
7244 if (sched_pressure == SCHED_PRESSURE_MODEL)
7245 BITMAP_FREE (tmp_bitmap);
7246 BITMAP_FREE (curr_reg_live);
7247 free (sched_regno_pressure_class);
7248 }
7249 }
7250
7251 /* Initialize some global state for the scheduler. This function works
7252 with the common data shared between all the schedulers. It is called
7253 from the scheduler specific initialization routine. */
7254
7255 void
7256 sched_init (void)
7257 {
7258 /* Disable speculative loads in their presence if cc0 defined. */
7259 if (HAVE_cc0)
7260 flag_schedule_speculative_load = 0;
7261
7262 if (targetm.sched.dispatch (NULL, IS_DISPATCH_ON))
7263 targetm.sched.dispatch_do (NULL, DISPATCH_INIT);
7264
7265 if (live_range_shrinkage_p)
7266 sched_pressure = SCHED_PRESSURE_WEIGHTED;
7267 else if (flag_sched_pressure
7268 && !reload_completed
7269 && common_sched_info->sched_pass_id == SCHED_RGN_PASS)
7270 sched_pressure = ((enum sched_pressure_algorithm)
7271 param_sched_pressure_algorithm);
7272 else
7273 sched_pressure = SCHED_PRESSURE_NONE;
7274
7275 if (sched_pressure != SCHED_PRESSURE_NONE)
7276 ira_setup_eliminable_regset ();
7277
7278 /* Initialize SPEC_INFO. */
7279 if (targetm.sched.set_sched_flags)
7280 {
7281 spec_info = &spec_info_var;
7282 targetm.sched.set_sched_flags (spec_info);
7283
7284 if (spec_info->mask != 0)
7285 {
7286 spec_info->data_weakness_cutoff
7287 = (param_sched_spec_prob_cutoff * MAX_DEP_WEAK) / 100;
7288 spec_info->control_weakness_cutoff
7289 = (param_sched_spec_prob_cutoff * REG_BR_PROB_BASE) / 100;
7290 }
7291 else
7292 /* So we won't read anything accidentally. */
7293 spec_info = NULL;
7294
7295 }
7296 else
7297 /* So we won't read anything accidentally. */
7298 spec_info = 0;
7299
7300 /* Initialize issue_rate. */
7301 if (targetm.sched.issue_rate)
7302 issue_rate = targetm.sched.issue_rate ();
7303 else
7304 issue_rate = 1;
7305
7306 if (targetm.sched.first_cycle_multipass_dfa_lookahead
7307 /* Don't use max_issue with reg_pressure scheduling. Multipass
7308 scheduling and reg_pressure scheduling undo each other's decisions. */
7309 && sched_pressure == SCHED_PRESSURE_NONE)
7310 dfa_lookahead = targetm.sched.first_cycle_multipass_dfa_lookahead ();
7311 else
7312 dfa_lookahead = 0;
7313
7314 /* Set to "0" so that we recalculate. */
7315 max_lookahead_tries = 0;
7316
7317 if (targetm.sched.init_dfa_pre_cycle_insn)
7318 targetm.sched.init_dfa_pre_cycle_insn ();
7319
7320 if (targetm.sched.init_dfa_post_cycle_insn)
7321 targetm.sched.init_dfa_post_cycle_insn ();
7322
7323 dfa_start ();
7324 dfa_state_size = state_size ();
7325
7326 init_alias_analysis ();
7327
7328 if (!sched_no_dce)
7329 df_set_flags (DF_LR_RUN_DCE);
7330 df_note_add_problem ();
7331
7332 /* More problems needed for interloop dep calculation in SMS. */
7333 if (common_sched_info->sched_pass_id == SCHED_SMS_PASS)
7334 {
7335 df_rd_add_problem ();
7336 df_chain_add_problem (DF_DU_CHAIN + DF_UD_CHAIN);
7337 }
7338
7339 df_analyze ();
7340
7341 /* Do not run DCE after reload, as this can kill nops inserted
7342 by bundling. */
7343 if (reload_completed)
7344 df_clear_flags (DF_LR_RUN_DCE);
7345
7346 regstat_compute_calls_crossed ();
7347
7348 if (targetm.sched.init_global)
7349 targetm.sched.init_global (sched_dump, sched_verbose, get_max_uid () + 1);
7350
7351 alloc_global_sched_pressure_data ();
7352
7353 curr_state = xmalloc (dfa_state_size);
7354 }
7355
7356 static void haifa_init_only_bb (basic_block, basic_block);
7357
7358 /* Initialize data structures specific to the Haifa scheduler. */
7359 void
7360 haifa_sched_init (void)
7361 {
7362 setup_sched_dump ();
7363 sched_init ();
7364
7365 scheduled_insns.create (0);
7366
7367 if (spec_info != NULL)
7368 {
7369 sched_deps_info->use_deps_list = 1;
7370 sched_deps_info->generate_spec_deps = 1;
7371 }
7372
7373 /* Initialize luids, dependency caches, target and h_i_d for the
7374 whole function. */
7375 {
7376 sched_init_bbs ();
7377
7378 auto_vec<basic_block> bbs (n_basic_blocks_for_fn (cfun));
7379 basic_block bb;
7380 FOR_EACH_BB_FN (bb, cfun)
7381 bbs.quick_push (bb);
7382 sched_init_luids (bbs);
7383 sched_deps_init (true);
7384 sched_extend_target ();
7385 haifa_init_h_i_d (bbs);
7386 }
7387
7388 sched_init_only_bb = haifa_init_only_bb;
7389 sched_split_block = sched_split_block_1;
7390 sched_create_empty_bb = sched_create_empty_bb_1;
7391 haifa_recovery_bb_ever_added_p = false;
7392
7393 nr_begin_data = nr_begin_control = nr_be_in_data = nr_be_in_control = 0;
7394 before_recovery = 0;
7395 after_recovery = 0;
7396
7397 modulo_ii = 0;
7398 }
7399
7400 /* Finish work with the data specific to the Haifa scheduler. */
7401 void
7402 haifa_sched_finish (void)
7403 {
7404 sched_create_empty_bb = NULL;
7405 sched_split_block = NULL;
7406 sched_init_only_bb = NULL;
7407
7408 if (spec_info && spec_info->dump)
7409 {
7410 char c = reload_completed ? 'a' : 'b';
7411
7412 fprintf (spec_info->dump,
7413 ";; %s:\n", current_function_name ());
7414
7415 fprintf (spec_info->dump,
7416 ";; Procedure %cr-begin-data-spec motions == %d\n",
7417 c, nr_begin_data);
7418 fprintf (spec_info->dump,
7419 ";; Procedure %cr-be-in-data-spec motions == %d\n",
7420 c, nr_be_in_data);
7421 fprintf (spec_info->dump,
7422 ";; Procedure %cr-begin-control-spec motions == %d\n",
7423 c, nr_begin_control);
7424 fprintf (spec_info->dump,
7425 ";; Procedure %cr-be-in-control-spec motions == %d\n",
7426 c, nr_be_in_control);
7427 }
7428
7429 scheduled_insns.release ();
7430
7431 /* Finalize h_i_d, dependency caches, and luids for the whole
7432 function. Target will be finalized in md_global_finish (). */
7433 sched_deps_finish ();
7434 sched_finish_luids ();
7435 current_sched_info = NULL;
7436 insn_queue = NULL;
7437 sched_finish ();
7438 }
7439
7440 /* Free global data used during insn scheduling. This function works with
7441 the common data shared between the schedulers. */
7442
7443 void
7444 sched_finish (void)
7445 {
7446 haifa_finish_h_i_d ();
7447 free_global_sched_pressure_data ();
7448 free (curr_state);
7449
7450 if (targetm.sched.finish_global)
7451 targetm.sched.finish_global (sched_dump, sched_verbose);
7452
7453 end_alias_analysis ();
7454
7455 regstat_free_calls_crossed ();
7456
7457 dfa_finish ();
7458 }
7459
7460 /* Free all delay_pair structures that were recorded. */
7461 void
7462 free_delay_pairs (void)
7463 {
7464 if (delay_htab)
7465 {
7466 delay_htab->empty ();
7467 delay_htab_i2->empty ();
7468 }
7469 }
7470
7471 /* Fix INSN_TICKs of the instructions in the current block as well as
7472 INSN_TICKs of their dependents.
7473 HEAD and TAIL are the begin and the end of the current scheduled block. */
7474 static void
7475 fix_inter_tick (rtx_insn *head, rtx_insn *tail)
7476 {
7477 /* Set of instructions with corrected INSN_TICK. */
7478 auto_bitmap processed;
7479 /* ??? It is doubtful if we should assume that cycle advance happens on
7480 basic block boundaries. Basically insns that are unconditionally ready
7481 on the start of the block are more preferable then those which have
7482 a one cycle dependency over insn from the previous block. */
7483 int next_clock = clock_var + 1;
7484
7485 /* Iterates over scheduled instructions and fix their INSN_TICKs and
7486 INSN_TICKs of dependent instructions, so that INSN_TICKs are consistent
7487 across different blocks. */
7488 for (tail = NEXT_INSN (tail); head != tail; head = NEXT_INSN (head))
7489 {
7490 if (INSN_P (head))
7491 {
7492 int tick;
7493 sd_iterator_def sd_it;
7494 dep_t dep;
7495
7496 tick = INSN_TICK (head);
7497 gcc_assert (tick >= MIN_TICK);
7498
7499 /* Fix INSN_TICK of instruction from just scheduled block. */
7500 if (bitmap_set_bit (processed, INSN_LUID (head)))
7501 {
7502 tick -= next_clock;
7503
7504 if (tick < MIN_TICK)
7505 tick = MIN_TICK;
7506
7507 INSN_TICK (head) = tick;
7508 }
7509
7510 if (DEBUG_INSN_P (head))
7511 continue;
7512
7513 FOR_EACH_DEP (head, SD_LIST_RES_FORW, sd_it, dep)
7514 {
7515 rtx_insn *next;
7516
7517 next = DEP_CON (dep);
7518 tick = INSN_TICK (next);
7519
7520 if (tick != INVALID_TICK
7521 /* If NEXT has its INSN_TICK calculated, fix it.
7522 If not - it will be properly calculated from
7523 scratch later in fix_tick_ready. */
7524 && bitmap_set_bit (processed, INSN_LUID (next)))
7525 {
7526 tick -= next_clock;
7527
7528 if (tick < MIN_TICK)
7529 tick = MIN_TICK;
7530
7531 if (tick > INTER_TICK (next))
7532 INTER_TICK (next) = tick;
7533 else
7534 tick = INTER_TICK (next);
7535
7536 INSN_TICK (next) = tick;
7537 }
7538 }
7539 }
7540 }
7541 }
7542
7543 /* Check if NEXT is ready to be added to the ready or queue list.
7544 If "yes", add it to the proper list.
7545 Returns:
7546 -1 - is not ready yet,
7547 0 - added to the ready list,
7548 0 < N - queued for N cycles. */
7549 int
7550 try_ready (rtx_insn *next)
7551 {
7552 ds_t old_ts, new_ts;
7553
7554 old_ts = TODO_SPEC (next);
7555
7556 gcc_assert (!(old_ts & ~(SPECULATIVE | HARD_DEP | DEP_CONTROL | DEP_POSTPONED))
7557 && (old_ts == HARD_DEP
7558 || old_ts == DEP_POSTPONED
7559 || (old_ts & SPECULATIVE)
7560 || old_ts == DEP_CONTROL));
7561
7562 new_ts = recompute_todo_spec (next, false);
7563
7564 if (new_ts & (HARD_DEP | DEP_POSTPONED))
7565 gcc_assert (new_ts == old_ts
7566 && QUEUE_INDEX (next) == QUEUE_NOWHERE);
7567 else if (current_sched_info->new_ready)
7568 new_ts = current_sched_info->new_ready (next, new_ts);
7569
7570 /* * if !(old_ts & SPECULATIVE) (e.g. HARD_DEP or 0), then insn might
7571 have its original pattern or changed (speculative) one. This is due
7572 to changing ebb in region scheduling.
7573 * But if (old_ts & SPECULATIVE), then we are pretty sure that insn
7574 has speculative pattern.
7575
7576 We can't assert (!(new_ts & HARD_DEP) || new_ts == old_ts) here because
7577 control-speculative NEXT could have been discarded by sched-rgn.c
7578 (the same case as when discarded by can_schedule_ready_p ()). */
7579
7580 if ((new_ts & SPECULATIVE)
7581 /* If (old_ts == new_ts), then (old_ts & SPECULATIVE) and we don't
7582 need to change anything. */
7583 && new_ts != old_ts)
7584 {
7585 int res;
7586 rtx new_pat;
7587
7588 gcc_assert ((new_ts & SPECULATIVE) && !(new_ts & ~SPECULATIVE));
7589
7590 res = haifa_speculate_insn (next, new_ts, &new_pat);
7591
7592 switch (res)
7593 {
7594 case -1:
7595 /* It would be nice to change DEP_STATUS of all dependences,
7596 which have ((DEP_STATUS & SPECULATIVE) == new_ts) to HARD_DEP,
7597 so we won't reanalyze anything. */
7598 new_ts = HARD_DEP;
7599 break;
7600
7601 case 0:
7602 /* We follow the rule, that every speculative insn
7603 has non-null ORIG_PAT. */
7604 if (!ORIG_PAT (next))
7605 ORIG_PAT (next) = PATTERN (next);
7606 break;
7607
7608 case 1:
7609 if (!ORIG_PAT (next))
7610 /* If we gonna to overwrite the original pattern of insn,
7611 save it. */
7612 ORIG_PAT (next) = PATTERN (next);
7613
7614 res = haifa_change_pattern (next, new_pat);
7615 gcc_assert (res);
7616 break;
7617
7618 default:
7619 gcc_unreachable ();
7620 }
7621 }
7622
7623 /* We need to restore pattern only if (new_ts == 0), because otherwise it is
7624 either correct (new_ts & SPECULATIVE),
7625 or we simply don't care (new_ts & HARD_DEP). */
7626
7627 gcc_assert (!ORIG_PAT (next)
7628 || !IS_SPECULATION_BRANCHY_CHECK_P (next));
7629
7630 TODO_SPEC (next) = new_ts;
7631
7632 if (new_ts & (HARD_DEP | DEP_POSTPONED))
7633 {
7634 /* We can't assert (QUEUE_INDEX (next) == QUEUE_NOWHERE) here because
7635 control-speculative NEXT could have been discarded by sched-rgn.c
7636 (the same case as when discarded by can_schedule_ready_p ()). */
7637 /*gcc_assert (QUEUE_INDEX (next) == QUEUE_NOWHERE);*/
7638
7639 change_queue_index (next, QUEUE_NOWHERE);
7640
7641 return -1;
7642 }
7643 else if (!(new_ts & BEGIN_SPEC)
7644 && ORIG_PAT (next) && PREDICATED_PAT (next) == NULL_RTX
7645 && !IS_SPECULATION_CHECK_P (next))
7646 /* We should change pattern of every previously speculative
7647 instruction - and we determine if NEXT was speculative by using
7648 ORIG_PAT field. Except one case - speculation checks have ORIG_PAT
7649 pat too, so skip them. */
7650 {
7651 bool success = haifa_change_pattern (next, ORIG_PAT (next));
7652 gcc_assert (success);
7653 ORIG_PAT (next) = 0;
7654 }
7655
7656 if (sched_verbose >= 2)
7657 {
7658 fprintf (sched_dump, ";;\t\tdependencies resolved: insn %s",
7659 (*current_sched_info->print_insn) (next, 0));
7660
7661 if (spec_info && spec_info->dump)
7662 {
7663 if (new_ts & BEGIN_DATA)
7664 fprintf (spec_info->dump, "; data-spec;");
7665 if (new_ts & BEGIN_CONTROL)
7666 fprintf (spec_info->dump, "; control-spec;");
7667 if (new_ts & BE_IN_CONTROL)
7668 fprintf (spec_info->dump, "; in-control-spec;");
7669 }
7670 if (TODO_SPEC (next) & DEP_CONTROL)
7671 fprintf (sched_dump, " predicated");
7672 fprintf (sched_dump, "\n");
7673 }
7674
7675 adjust_priority (next);
7676
7677 return fix_tick_ready (next);
7678 }
7679
7680 /* Calculate INSN_TICK of NEXT and add it to either ready or queue list. */
7681 static int
7682 fix_tick_ready (rtx_insn *next)
7683 {
7684 int tick, delay;
7685
7686 if (!DEBUG_INSN_P (next) && !sd_lists_empty_p (next, SD_LIST_RES_BACK))
7687 {
7688 int full_p;
7689 sd_iterator_def sd_it;
7690 dep_t dep;
7691
7692 tick = INSN_TICK (next);
7693 /* if tick is not equal to INVALID_TICK, then update
7694 INSN_TICK of NEXT with the most recent resolved dependence
7695 cost. Otherwise, recalculate from scratch. */
7696 full_p = (tick == INVALID_TICK);
7697
7698 FOR_EACH_DEP (next, SD_LIST_RES_BACK, sd_it, dep)
7699 {
7700 rtx_insn *pro = DEP_PRO (dep);
7701 int tick1;
7702
7703 gcc_assert (INSN_TICK (pro) >= MIN_TICK);
7704
7705 tick1 = INSN_TICK (pro) + dep_cost (dep);
7706 if (tick1 > tick)
7707 tick = tick1;
7708
7709 if (!full_p)
7710 break;
7711 }
7712 }
7713 else
7714 tick = -1;
7715
7716 INSN_TICK (next) = tick;
7717
7718 delay = tick - clock_var;
7719 if (delay <= 0 || sched_pressure != SCHED_PRESSURE_NONE || sched_fusion)
7720 delay = QUEUE_READY;
7721
7722 change_queue_index (next, delay);
7723
7724 return delay;
7725 }
7726
7727 /* Move NEXT to the proper queue list with (DELAY >= 1),
7728 or add it to the ready list (DELAY == QUEUE_READY),
7729 or remove it from ready and queue lists at all (DELAY == QUEUE_NOWHERE). */
7730 static void
7731 change_queue_index (rtx_insn *next, int delay)
7732 {
7733 int i = QUEUE_INDEX (next);
7734
7735 gcc_assert (QUEUE_NOWHERE <= delay && delay <= max_insn_queue_index
7736 && delay != 0);
7737 gcc_assert (i != QUEUE_SCHEDULED);
7738
7739 if ((delay > 0 && NEXT_Q_AFTER (q_ptr, delay) == i)
7740 || (delay < 0 && delay == i))
7741 /* We have nothing to do. */
7742 return;
7743
7744 /* Remove NEXT from wherever it is now. */
7745 if (i == QUEUE_READY)
7746 ready_remove_insn (next);
7747 else if (i >= 0)
7748 queue_remove (next);
7749
7750 /* Add it to the proper place. */
7751 if (delay == QUEUE_READY)
7752 ready_add (readyp, next, false);
7753 else if (delay >= 1)
7754 queue_insn (next, delay, "change queue index");
7755
7756 if (sched_verbose >= 2)
7757 {
7758 fprintf (sched_dump, ";;\t\ttick updated: insn %s",
7759 (*current_sched_info->print_insn) (next, 0));
7760
7761 if (delay == QUEUE_READY)
7762 fprintf (sched_dump, " into ready\n");
7763 else if (delay >= 1)
7764 fprintf (sched_dump, " into queue with cost=%d\n", delay);
7765 else
7766 fprintf (sched_dump, " removed from ready or queue lists\n");
7767 }
7768 }
7769
7770 static int sched_ready_n_insns = -1;
7771
7772 /* Initialize per region data structures. */
7773 void
7774 sched_extend_ready_list (int new_sched_ready_n_insns)
7775 {
7776 int i;
7777
7778 if (sched_ready_n_insns == -1)
7779 /* At the first call we need to initialize one more choice_stack
7780 entry. */
7781 {
7782 i = 0;
7783 sched_ready_n_insns = 0;
7784 scheduled_insns.reserve (new_sched_ready_n_insns);
7785 }
7786 else
7787 i = sched_ready_n_insns + 1;
7788
7789 ready.veclen = new_sched_ready_n_insns + issue_rate;
7790 ready.vec = XRESIZEVEC (rtx_insn *, ready.vec, ready.veclen);
7791
7792 gcc_assert (new_sched_ready_n_insns >= sched_ready_n_insns);
7793
7794 ready_try = (signed char *) xrecalloc (ready_try, new_sched_ready_n_insns,
7795 sched_ready_n_insns,
7796 sizeof (*ready_try));
7797
7798 /* We allocate +1 element to save initial state in the choice_stack[0]
7799 entry. */
7800 choice_stack = XRESIZEVEC (struct choice_entry, choice_stack,
7801 new_sched_ready_n_insns + 1);
7802
7803 for (; i <= new_sched_ready_n_insns; i++)
7804 {
7805 choice_stack[i].state = xmalloc (dfa_state_size);
7806
7807 if (targetm.sched.first_cycle_multipass_init)
7808 targetm.sched.first_cycle_multipass_init (&(choice_stack[i]
7809 .target_data));
7810 }
7811
7812 sched_ready_n_insns = new_sched_ready_n_insns;
7813 }
7814
7815 /* Free per region data structures. */
7816 void
7817 sched_finish_ready_list (void)
7818 {
7819 int i;
7820
7821 free (ready.vec);
7822 ready.vec = NULL;
7823 ready.veclen = 0;
7824
7825 free (ready_try);
7826 ready_try = NULL;
7827
7828 for (i = 0; i <= sched_ready_n_insns; i++)
7829 {
7830 if (targetm.sched.first_cycle_multipass_fini)
7831 targetm.sched.first_cycle_multipass_fini (&(choice_stack[i]
7832 .target_data));
7833
7834 free (choice_stack [i].state);
7835 }
7836 free (choice_stack);
7837 choice_stack = NULL;
7838
7839 sched_ready_n_insns = -1;
7840 }
7841
7842 static int
7843 haifa_luid_for_non_insn (rtx x)
7844 {
7845 gcc_assert (NOTE_P (x) || LABEL_P (x));
7846
7847 return 0;
7848 }
7849
7850 /* Generates recovery code for INSN. */
7851 static void
7852 generate_recovery_code (rtx_insn *insn)
7853 {
7854 if (TODO_SPEC (insn) & BEGIN_SPEC)
7855 begin_speculative_block (insn);
7856
7857 /* Here we have insn with no dependencies to
7858 instructions other then CHECK_SPEC ones. */
7859
7860 if (TODO_SPEC (insn) & BE_IN_SPEC)
7861 add_to_speculative_block (insn);
7862 }
7863
7864 /* Helper function.
7865 Tries to add speculative dependencies of type FS between instructions
7866 in deps_list L and TWIN. */
7867 static void
7868 process_insn_forw_deps_be_in_spec (rtx_insn *insn, rtx_insn *twin, ds_t fs)
7869 {
7870 sd_iterator_def sd_it;
7871 dep_t dep;
7872
7873 FOR_EACH_DEP (insn, SD_LIST_FORW, sd_it, dep)
7874 {
7875 ds_t ds;
7876 rtx_insn *consumer;
7877
7878 consumer = DEP_CON (dep);
7879
7880 ds = DEP_STATUS (dep);
7881
7882 if (/* If we want to create speculative dep. */
7883 fs
7884 /* And we can do that because this is a true dep. */
7885 && (ds & DEP_TYPES) == DEP_TRUE)
7886 {
7887 gcc_assert (!(ds & BE_IN_SPEC));
7888
7889 if (/* If this dep can be overcome with 'begin speculation'. */
7890 ds & BEGIN_SPEC)
7891 /* Then we have a choice: keep the dep 'begin speculative'
7892 or transform it into 'be in speculative'. */
7893 {
7894 if (/* In try_ready we assert that if insn once became ready
7895 it can be removed from the ready (or queue) list only
7896 due to backend decision. Hence we can't let the
7897 probability of the speculative dep to decrease. */
7898 ds_weak (ds) <= ds_weak (fs))
7899 {
7900 ds_t new_ds;
7901
7902 new_ds = (ds & ~BEGIN_SPEC) | fs;
7903
7904 if (/* consumer can 'be in speculative'. */
7905 sched_insn_is_legitimate_for_speculation_p (consumer,
7906 new_ds))
7907 /* Transform it to be in speculative. */
7908 ds = new_ds;
7909 }
7910 }
7911 else
7912 /* Mark the dep as 'be in speculative'. */
7913 ds |= fs;
7914 }
7915
7916 {
7917 dep_def _new_dep, *new_dep = &_new_dep;
7918
7919 init_dep_1 (new_dep, twin, consumer, DEP_TYPE (dep), ds);
7920 sd_add_dep (new_dep, false);
7921 }
7922 }
7923 }
7924
7925 /* Generates recovery code for BEGIN speculative INSN. */
7926 static void
7927 begin_speculative_block (rtx_insn *insn)
7928 {
7929 if (TODO_SPEC (insn) & BEGIN_DATA)
7930 nr_begin_data++;
7931 if (TODO_SPEC (insn) & BEGIN_CONTROL)
7932 nr_begin_control++;
7933
7934 create_check_block_twin (insn, false);
7935
7936 TODO_SPEC (insn) &= ~BEGIN_SPEC;
7937 }
7938
7939 static void haifa_init_insn (rtx_insn *);
7940
7941 /* Generates recovery code for BE_IN speculative INSN. */
7942 static void
7943 add_to_speculative_block (rtx_insn *insn)
7944 {
7945 ds_t ts;
7946 sd_iterator_def sd_it;
7947 dep_t dep;
7948 auto_vec<rtx_insn *, 10> twins;
7949
7950 ts = TODO_SPEC (insn);
7951 gcc_assert (!(ts & ~BE_IN_SPEC));
7952
7953 if (ts & BE_IN_DATA)
7954 nr_be_in_data++;
7955 if (ts & BE_IN_CONTROL)
7956 nr_be_in_control++;
7957
7958 TODO_SPEC (insn) &= ~BE_IN_SPEC;
7959 gcc_assert (!TODO_SPEC (insn));
7960
7961 DONE_SPEC (insn) |= ts;
7962
7963 /* First we convert all simple checks to branchy. */
7964 for (sd_it = sd_iterator_start (insn, SD_LIST_SPEC_BACK);
7965 sd_iterator_cond (&sd_it, &dep);)
7966 {
7967 rtx_insn *check = DEP_PRO (dep);
7968
7969 if (IS_SPECULATION_SIMPLE_CHECK_P (check))
7970 {
7971 create_check_block_twin (check, true);
7972
7973 /* Restart search. */
7974 sd_it = sd_iterator_start (insn, SD_LIST_SPEC_BACK);
7975 }
7976 else
7977 /* Continue search. */
7978 sd_iterator_next (&sd_it);
7979 }
7980
7981 auto_vec<rtx_insn *> priorities_roots;
7982 clear_priorities (insn, &priorities_roots);
7983
7984 while (1)
7985 {
7986 rtx_insn *check, *twin;
7987 basic_block rec;
7988
7989 /* Get the first backward dependency of INSN. */
7990 sd_it = sd_iterator_start (insn, SD_LIST_SPEC_BACK);
7991 if (!sd_iterator_cond (&sd_it, &dep))
7992 /* INSN has no backward dependencies left. */
7993 break;
7994
7995 gcc_assert ((DEP_STATUS (dep) & BEGIN_SPEC) == 0
7996 && (DEP_STATUS (dep) & BE_IN_SPEC) != 0
7997 && (DEP_STATUS (dep) & DEP_TYPES) == DEP_TRUE);
7998
7999 check = DEP_PRO (dep);
8000
8001 gcc_assert (!IS_SPECULATION_CHECK_P (check) && !ORIG_PAT (check)
8002 && QUEUE_INDEX (check) == QUEUE_NOWHERE);
8003
8004 rec = BLOCK_FOR_INSN (check);
8005
8006 twin = emit_insn_before (copy_insn (PATTERN (insn)), BB_END (rec));
8007 haifa_init_insn (twin);
8008
8009 sd_copy_back_deps (twin, insn, true);
8010
8011 if (sched_verbose && spec_info->dump)
8012 /* INSN_BB (insn) isn't determined for twin insns yet.
8013 So we can't use current_sched_info->print_insn. */
8014 fprintf (spec_info->dump, ";;\t\tGenerated twin insn : %d/rec%d\n",
8015 INSN_UID (twin), rec->index);
8016
8017 twins.safe_push (twin);
8018
8019 /* Add dependences between TWIN and all appropriate
8020 instructions from REC. */
8021 FOR_EACH_DEP (insn, SD_LIST_SPEC_BACK, sd_it, dep)
8022 {
8023 rtx_insn *pro = DEP_PRO (dep);
8024
8025 gcc_assert (DEP_TYPE (dep) == REG_DEP_TRUE);
8026
8027 /* INSN might have dependencies from the instructions from
8028 several recovery blocks. At this iteration we process those
8029 producers that reside in REC. */
8030 if (BLOCK_FOR_INSN (pro) == rec)
8031 {
8032 dep_def _new_dep, *new_dep = &_new_dep;
8033
8034 init_dep (new_dep, pro, twin, REG_DEP_TRUE);
8035 sd_add_dep (new_dep, false);
8036 }
8037 }
8038
8039 process_insn_forw_deps_be_in_spec (insn, twin, ts);
8040
8041 /* Remove all dependencies between INSN and insns in REC. */
8042 for (sd_it = sd_iterator_start (insn, SD_LIST_SPEC_BACK);
8043 sd_iterator_cond (&sd_it, &dep);)
8044 {
8045 rtx_insn *pro = DEP_PRO (dep);
8046
8047 if (BLOCK_FOR_INSN (pro) == rec)
8048 sd_delete_dep (sd_it);
8049 else
8050 sd_iterator_next (&sd_it);
8051 }
8052 }
8053
8054 /* We couldn't have added the dependencies between INSN and TWINS earlier
8055 because that would make TWINS appear in the INSN_BACK_DEPS (INSN). */
8056 unsigned int i;
8057 rtx_insn *twin;
8058 FOR_EACH_VEC_ELT_REVERSE (twins, i, twin)
8059 {
8060 dep_def _new_dep, *new_dep = &_new_dep;
8061
8062 init_dep (new_dep, insn, twin, REG_DEP_OUTPUT);
8063 sd_add_dep (new_dep, false);
8064 }
8065
8066 calc_priorities (priorities_roots);
8067 }
8068
8069 /* Extends and fills with zeros (only the new part) array pointed to by P. */
8070 void *
8071 xrecalloc (void *p, size_t new_nmemb, size_t old_nmemb, size_t size)
8072 {
8073 gcc_assert (new_nmemb >= old_nmemb);
8074 p = XRESIZEVAR (void, p, new_nmemb * size);
8075 memset (((char *) p) + old_nmemb * size, 0, (new_nmemb - old_nmemb) * size);
8076 return p;
8077 }
8078
8079 /* Helper function.
8080 Find fallthru edge from PRED. */
8081 edge
8082 find_fallthru_edge_from (basic_block pred)
8083 {
8084 edge e;
8085 basic_block succ;
8086
8087 succ = pred->next_bb;
8088 gcc_assert (succ->prev_bb == pred);
8089
8090 if (EDGE_COUNT (pred->succs) <= EDGE_COUNT (succ->preds))
8091 {
8092 e = find_fallthru_edge (pred->succs);
8093
8094 if (e)
8095 {
8096 gcc_assert (e->dest == succ || e->dest->index == EXIT_BLOCK);
8097 return e;
8098 }
8099 }
8100 else
8101 {
8102 e = find_fallthru_edge (succ->preds);
8103
8104 if (e)
8105 {
8106 gcc_assert (e->src == pred);
8107 return e;
8108 }
8109 }
8110
8111 return NULL;
8112 }
8113
8114 /* Extend per basic block data structures. */
8115 static void
8116 sched_extend_bb (void)
8117 {
8118 /* The following is done to keep current_sched_info->next_tail non null. */
8119 rtx_insn *end = BB_END (EXIT_BLOCK_PTR_FOR_FN (cfun)->prev_bb);
8120 rtx_insn *insn = DEBUG_INSN_P (end) ? prev_nondebug_insn (end) : end;
8121 if (NEXT_INSN (end) == 0
8122 || (!NOTE_P (insn)
8123 && !LABEL_P (insn)
8124 /* Don't emit a NOTE if it would end up before a BARRIER. */
8125 && !BARRIER_P (next_nondebug_insn (end))))
8126 {
8127 rtx_note *note = emit_note_after (NOTE_INSN_DELETED, end);
8128 /* Make note appear outside BB. */
8129 set_block_for_insn (note, NULL);
8130 BB_END (EXIT_BLOCK_PTR_FOR_FN (cfun)->prev_bb) = end;
8131 }
8132 }
8133
8134 /* Init per basic block data structures. */
8135 void
8136 sched_init_bbs (void)
8137 {
8138 sched_extend_bb ();
8139 }
8140
8141 /* Initialize BEFORE_RECOVERY variable. */
8142 static void
8143 init_before_recovery (basic_block *before_recovery_ptr)
8144 {
8145 basic_block last;
8146 edge e;
8147
8148 last = EXIT_BLOCK_PTR_FOR_FN (cfun)->prev_bb;
8149 e = find_fallthru_edge_from (last);
8150
8151 if (e)
8152 {
8153 /* We create two basic blocks:
8154 1. Single instruction block is inserted right after E->SRC
8155 and has jump to
8156 2. Empty block right before EXIT_BLOCK.
8157 Between these two blocks recovery blocks will be emitted. */
8158
8159 basic_block single, empty;
8160
8161 /* If the fallthrough edge to exit we've found is from the block we've
8162 created before, don't do anything more. */
8163 if (last == after_recovery)
8164 return;
8165
8166 adding_bb_to_current_region_p = false;
8167
8168 single = sched_create_empty_bb (last);
8169 empty = sched_create_empty_bb (single);
8170
8171 /* Add new blocks to the root loop. */
8172 if (current_loops != NULL)
8173 {
8174 add_bb_to_loop (single, (*current_loops->larray)[0]);
8175 add_bb_to_loop (empty, (*current_loops->larray)[0]);
8176 }
8177
8178 single->count = last->count;
8179 empty->count = last->count;
8180 BB_COPY_PARTITION (single, last);
8181 BB_COPY_PARTITION (empty, last);
8182
8183 redirect_edge_succ (e, single);
8184 make_single_succ_edge (single, empty, 0);
8185 make_single_succ_edge (empty, EXIT_BLOCK_PTR_FOR_FN (cfun),
8186 EDGE_FALLTHRU);
8187
8188 rtx_code_label *label = block_label (empty);
8189 rtx_jump_insn *x = emit_jump_insn_after (targetm.gen_jump (label),
8190 BB_END (single));
8191 JUMP_LABEL (x) = label;
8192 LABEL_NUSES (label)++;
8193 haifa_init_insn (x);
8194
8195 emit_barrier_after (x);
8196
8197 sched_init_only_bb (empty, NULL);
8198 sched_init_only_bb (single, NULL);
8199 sched_extend_bb ();
8200
8201 adding_bb_to_current_region_p = true;
8202 before_recovery = single;
8203 after_recovery = empty;
8204
8205 if (before_recovery_ptr)
8206 *before_recovery_ptr = before_recovery;
8207
8208 if (sched_verbose >= 2 && spec_info->dump)
8209 fprintf (spec_info->dump,
8210 ";;\t\tFixed fallthru to EXIT : %d->>%d->%d->>EXIT\n",
8211 last->index, single->index, empty->index);
8212 }
8213 else
8214 before_recovery = last;
8215 }
8216
8217 /* Returns new recovery block. */
8218 basic_block
8219 sched_create_recovery_block (basic_block *before_recovery_ptr)
8220 {
8221 rtx_insn *barrier;
8222 basic_block rec;
8223
8224 haifa_recovery_bb_recently_added_p = true;
8225 haifa_recovery_bb_ever_added_p = true;
8226
8227 init_before_recovery (before_recovery_ptr);
8228
8229 barrier = get_last_bb_insn (before_recovery);
8230 gcc_assert (BARRIER_P (barrier));
8231
8232 rtx_insn *label = emit_label_after (gen_label_rtx (), barrier);
8233
8234 rec = create_basic_block (label, label, before_recovery);
8235
8236 /* A recovery block always ends with an unconditional jump. */
8237 emit_barrier_after (BB_END (rec));
8238
8239 if (BB_PARTITION (before_recovery) != BB_UNPARTITIONED)
8240 BB_SET_PARTITION (rec, BB_COLD_PARTITION);
8241
8242 if (sched_verbose && spec_info->dump)
8243 fprintf (spec_info->dump, ";;\t\tGenerated recovery block rec%d\n",
8244 rec->index);
8245
8246 return rec;
8247 }
8248
8249 /* Create edges: FIRST_BB -> REC; FIRST_BB -> SECOND_BB; REC -> SECOND_BB
8250 and emit necessary jumps. */
8251 void
8252 sched_create_recovery_edges (basic_block first_bb, basic_block rec,
8253 basic_block second_bb)
8254 {
8255 int edge_flags;
8256
8257 /* This is fixing of incoming edge. */
8258 /* ??? Which other flags should be specified? */
8259 if (BB_PARTITION (first_bb) != BB_PARTITION (rec))
8260 /* Partition type is the same, if it is "unpartitioned". */
8261 edge_flags = EDGE_CROSSING;
8262 else
8263 edge_flags = 0;
8264
8265 edge e2 = single_succ_edge (first_bb);
8266 edge e = make_edge (first_bb, rec, edge_flags);
8267
8268 /* TODO: The actual probability can be determined and is computed as
8269 'todo_spec' variable in create_check_block_twin and
8270 in sel-sched.c `check_ds' in create_speculation_check. */
8271 e->probability = profile_probability::very_unlikely ();
8272 rec->count = e->count ();
8273 e2->probability = e->probability.invert ();
8274
8275 rtx_code_label *label = block_label (second_bb);
8276 rtx_jump_insn *jump = emit_jump_insn_after (targetm.gen_jump (label),
8277 BB_END (rec));
8278 JUMP_LABEL (jump) = label;
8279 LABEL_NUSES (label)++;
8280
8281 if (BB_PARTITION (second_bb) != BB_PARTITION (rec))
8282 /* Partition type is the same, if it is "unpartitioned". */
8283 {
8284 /* Rewritten from cfgrtl.c. */
8285 if (crtl->has_bb_partition && targetm_common.have_named_sections)
8286 {
8287 /* We don't need the same note for the check because
8288 any_condjump_p (check) == true. */
8289 CROSSING_JUMP_P (jump) = 1;
8290 }
8291 edge_flags = EDGE_CROSSING;
8292 }
8293 else
8294 edge_flags = 0;
8295
8296 make_single_succ_edge (rec, second_bb, edge_flags);
8297 if (dom_info_available_p (CDI_DOMINATORS))
8298 set_immediate_dominator (CDI_DOMINATORS, rec, first_bb);
8299 }
8300
8301 /* This function creates recovery code for INSN. If MUTATE_P is nonzero,
8302 INSN is a simple check, that should be converted to branchy one. */
8303 static void
8304 create_check_block_twin (rtx_insn *insn, bool mutate_p)
8305 {
8306 basic_block rec;
8307 rtx_insn *label, *check, *twin;
8308 rtx check_pat;
8309 ds_t fs;
8310 sd_iterator_def sd_it;
8311 dep_t dep;
8312 dep_def _new_dep, *new_dep = &_new_dep;
8313 ds_t todo_spec;
8314
8315 gcc_assert (ORIG_PAT (insn) != NULL_RTX);
8316
8317 if (!mutate_p)
8318 todo_spec = TODO_SPEC (insn);
8319 else
8320 {
8321 gcc_assert (IS_SPECULATION_SIMPLE_CHECK_P (insn)
8322 && (TODO_SPEC (insn) & SPECULATIVE) == 0);
8323
8324 todo_spec = CHECK_SPEC (insn);
8325 }
8326
8327 todo_spec &= SPECULATIVE;
8328
8329 /* Create recovery block. */
8330 if (mutate_p || targetm.sched.needs_block_p (todo_spec))
8331 {
8332 rec = sched_create_recovery_block (NULL);
8333 label = BB_HEAD (rec);
8334 }
8335 else
8336 {
8337 rec = EXIT_BLOCK_PTR_FOR_FN (cfun);
8338 label = NULL;
8339 }
8340
8341 /* Emit CHECK. */
8342 check_pat = targetm.sched.gen_spec_check (insn, label, todo_spec);
8343
8344 if (rec != EXIT_BLOCK_PTR_FOR_FN (cfun))
8345 {
8346 /* To have mem_reg alive at the beginning of second_bb,
8347 we emit check BEFORE insn, so insn after splitting
8348 insn will be at the beginning of second_bb, which will
8349 provide us with the correct life information. */
8350 check = emit_jump_insn_before (check_pat, insn);
8351 JUMP_LABEL (check) = label;
8352 LABEL_NUSES (label)++;
8353 }
8354 else
8355 check = emit_insn_before (check_pat, insn);
8356
8357 /* Extend data structures. */
8358 haifa_init_insn (check);
8359
8360 /* CHECK is being added to current region. Extend ready list. */
8361 gcc_assert (sched_ready_n_insns != -1);
8362 sched_extend_ready_list (sched_ready_n_insns + 1);
8363
8364 if (current_sched_info->add_remove_insn)
8365 current_sched_info->add_remove_insn (insn, 0);
8366
8367 RECOVERY_BLOCK (check) = rec;
8368
8369 if (sched_verbose && spec_info->dump)
8370 fprintf (spec_info->dump, ";;\t\tGenerated check insn : %s\n",
8371 (*current_sched_info->print_insn) (check, 0));
8372
8373 gcc_assert (ORIG_PAT (insn));
8374
8375 /* Initialize TWIN (twin is a duplicate of original instruction
8376 in the recovery block). */
8377 if (rec != EXIT_BLOCK_PTR_FOR_FN (cfun))
8378 {
8379 sd_iterator_def sd_it;
8380 dep_t dep;
8381
8382 FOR_EACH_DEP (insn, SD_LIST_RES_BACK, sd_it, dep)
8383 if ((DEP_STATUS (dep) & DEP_OUTPUT) != 0)
8384 {
8385 struct _dep _dep2, *dep2 = &_dep2;
8386
8387 init_dep (dep2, DEP_PRO (dep), check, REG_DEP_TRUE);
8388
8389 sd_add_dep (dep2, true);
8390 }
8391
8392 twin = emit_insn_after (ORIG_PAT (insn), BB_END (rec));
8393 haifa_init_insn (twin);
8394
8395 if (sched_verbose && spec_info->dump)
8396 /* INSN_BB (insn) isn't determined for twin insns yet.
8397 So we can't use current_sched_info->print_insn. */
8398 fprintf (spec_info->dump, ";;\t\tGenerated twin insn : %d/rec%d\n",
8399 INSN_UID (twin), rec->index);
8400 }
8401 else
8402 {
8403 ORIG_PAT (check) = ORIG_PAT (insn);
8404 HAS_INTERNAL_DEP (check) = 1;
8405 twin = check;
8406 /* ??? We probably should change all OUTPUT dependencies to
8407 (TRUE | OUTPUT). */
8408 }
8409
8410 /* Copy all resolved back dependencies of INSN to TWIN. This will
8411 provide correct value for INSN_TICK (TWIN). */
8412 sd_copy_back_deps (twin, insn, true);
8413
8414 if (rec != EXIT_BLOCK_PTR_FOR_FN (cfun))
8415 /* In case of branchy check, fix CFG. */
8416 {
8417 basic_block first_bb, second_bb;
8418 rtx_insn *jump;
8419
8420 first_bb = BLOCK_FOR_INSN (check);
8421 second_bb = sched_split_block (first_bb, check);
8422
8423 sched_create_recovery_edges (first_bb, rec, second_bb);
8424
8425 sched_init_only_bb (second_bb, first_bb);
8426 sched_init_only_bb (rec, EXIT_BLOCK_PTR_FOR_FN (cfun));
8427
8428 jump = BB_END (rec);
8429 haifa_init_insn (jump);
8430 }
8431
8432 /* Move backward dependences from INSN to CHECK and
8433 move forward dependences from INSN to TWIN. */
8434
8435 /* First, create dependencies between INSN's producers and CHECK & TWIN. */
8436 FOR_EACH_DEP (insn, SD_LIST_BACK, sd_it, dep)
8437 {
8438 rtx_insn *pro = DEP_PRO (dep);
8439 ds_t ds;
8440
8441 /* If BEGIN_DATA: [insn ~~TRUE~~> producer]:
8442 check --TRUE--> producer ??? or ANTI ???
8443 twin --TRUE--> producer
8444 twin --ANTI--> check
8445
8446 If BEGIN_CONTROL: [insn ~~ANTI~~> producer]:
8447 check --ANTI--> producer
8448 twin --ANTI--> producer
8449 twin --ANTI--> check
8450
8451 If BE_IN_SPEC: [insn ~~TRUE~~> producer]:
8452 check ~~TRUE~~> producer
8453 twin ~~TRUE~~> producer
8454 twin --ANTI--> check */
8455
8456 ds = DEP_STATUS (dep);
8457
8458 if (ds & BEGIN_SPEC)
8459 {
8460 gcc_assert (!mutate_p);
8461 ds &= ~BEGIN_SPEC;
8462 }
8463
8464 init_dep_1 (new_dep, pro, check, DEP_TYPE (dep), ds);
8465 sd_add_dep (new_dep, false);
8466
8467 if (rec != EXIT_BLOCK_PTR_FOR_FN (cfun))
8468 {
8469 DEP_CON (new_dep) = twin;
8470 sd_add_dep (new_dep, false);
8471 }
8472 }
8473
8474 /* Second, remove backward dependencies of INSN. */
8475 for (sd_it = sd_iterator_start (insn, SD_LIST_SPEC_BACK);
8476 sd_iterator_cond (&sd_it, &dep);)
8477 {
8478 if ((DEP_STATUS (dep) & BEGIN_SPEC)
8479 || mutate_p)
8480 /* We can delete this dep because we overcome it with
8481 BEGIN_SPECULATION. */
8482 sd_delete_dep (sd_it);
8483 else
8484 sd_iterator_next (&sd_it);
8485 }
8486
8487 /* Future Speculations. Determine what BE_IN speculations will be like. */
8488 fs = 0;
8489
8490 /* Fields (DONE_SPEC (x) & BEGIN_SPEC) and CHECK_SPEC (x) are set only
8491 here. */
8492
8493 gcc_assert (!DONE_SPEC (insn));
8494
8495 if (!mutate_p)
8496 {
8497 ds_t ts = TODO_SPEC (insn);
8498
8499 DONE_SPEC (insn) = ts & BEGIN_SPEC;
8500 CHECK_SPEC (check) = ts & BEGIN_SPEC;
8501
8502 /* Luckiness of future speculations solely depends upon initial
8503 BEGIN speculation. */
8504 if (ts & BEGIN_DATA)
8505 fs = set_dep_weak (fs, BE_IN_DATA, get_dep_weak (ts, BEGIN_DATA));
8506 if (ts & BEGIN_CONTROL)
8507 fs = set_dep_weak (fs, BE_IN_CONTROL,
8508 get_dep_weak (ts, BEGIN_CONTROL));
8509 }
8510 else
8511 CHECK_SPEC (check) = CHECK_SPEC (insn);
8512
8513 /* Future speculations: call the helper. */
8514 process_insn_forw_deps_be_in_spec (insn, twin, fs);
8515
8516 if (rec != EXIT_BLOCK_PTR_FOR_FN (cfun))
8517 {
8518 /* Which types of dependencies should we use here is,
8519 generally, machine-dependent question... But, for now,
8520 it is not. */
8521
8522 if (!mutate_p)
8523 {
8524 init_dep (new_dep, insn, check, REG_DEP_TRUE);
8525 sd_add_dep (new_dep, false);
8526
8527 init_dep (new_dep, insn, twin, REG_DEP_OUTPUT);
8528 sd_add_dep (new_dep, false);
8529 }
8530 else
8531 {
8532 if (spec_info->dump)
8533 fprintf (spec_info->dump, ";;\t\tRemoved simple check : %s\n",
8534 (*current_sched_info->print_insn) (insn, 0));
8535
8536 /* Remove all dependencies of the INSN. */
8537 {
8538 sd_it = sd_iterator_start (insn, (SD_LIST_FORW
8539 | SD_LIST_BACK
8540 | SD_LIST_RES_BACK));
8541 while (sd_iterator_cond (&sd_it, &dep))
8542 sd_delete_dep (sd_it);
8543 }
8544
8545 /* If former check (INSN) already was moved to the ready (or queue)
8546 list, add new check (CHECK) there too. */
8547 if (QUEUE_INDEX (insn) != QUEUE_NOWHERE)
8548 try_ready (check);
8549
8550 /* Remove old check from instruction stream and free its
8551 data. */
8552 sched_remove_insn (insn);
8553 }
8554
8555 init_dep (new_dep, check, twin, REG_DEP_ANTI);
8556 sd_add_dep (new_dep, false);
8557 }
8558 else
8559 {
8560 init_dep_1 (new_dep, insn, check, REG_DEP_TRUE, DEP_TRUE | DEP_OUTPUT);
8561 sd_add_dep (new_dep, false);
8562 }
8563
8564 if (!mutate_p)
8565 /* Fix priorities. If MUTATE_P is nonzero, this is not necessary,
8566 because it'll be done later in add_to_speculative_block. */
8567 {
8568 auto_vec<rtx_insn *> priorities_roots;
8569
8570 clear_priorities (twin, &priorities_roots);
8571 calc_priorities (priorities_roots);
8572 }
8573 }
8574
8575 /* Removes dependency between instructions in the recovery block REC
8576 and usual region instructions. It keeps inner dependences so it
8577 won't be necessary to recompute them. */
8578 static void
8579 fix_recovery_deps (basic_block rec)
8580 {
8581 rtx_insn *note, *insn, *jump;
8582 auto_vec<rtx_insn *, 10> ready_list;
8583 auto_bitmap in_ready;
8584
8585 /* NOTE - a basic block note. */
8586 note = NEXT_INSN (BB_HEAD (rec));
8587 gcc_assert (NOTE_INSN_BASIC_BLOCK_P (note));
8588 insn = BB_END (rec);
8589 gcc_assert (JUMP_P (insn));
8590 insn = PREV_INSN (insn);
8591
8592 do
8593 {
8594 sd_iterator_def sd_it;
8595 dep_t dep;
8596
8597 for (sd_it = sd_iterator_start (insn, SD_LIST_FORW);
8598 sd_iterator_cond (&sd_it, &dep);)
8599 {
8600 rtx_insn *consumer = DEP_CON (dep);
8601
8602 if (BLOCK_FOR_INSN (consumer) != rec)
8603 {
8604 sd_delete_dep (sd_it);
8605
8606 if (bitmap_set_bit (in_ready, INSN_LUID (consumer)))
8607 ready_list.safe_push (consumer);
8608 }
8609 else
8610 {
8611 gcc_assert ((DEP_STATUS (dep) & DEP_TYPES) == DEP_TRUE);
8612
8613 sd_iterator_next (&sd_it);
8614 }
8615 }
8616
8617 insn = PREV_INSN (insn);
8618 }
8619 while (insn != note);
8620
8621 /* Try to add instructions to the ready or queue list. */
8622 unsigned int i;
8623 rtx_insn *temp;
8624 FOR_EACH_VEC_ELT_REVERSE (ready_list, i, temp)
8625 try_ready (temp);
8626
8627 /* Fixing jump's dependences. */
8628 insn = BB_HEAD (rec);
8629 jump = BB_END (rec);
8630
8631 gcc_assert (LABEL_P (insn));
8632 insn = NEXT_INSN (insn);
8633
8634 gcc_assert (NOTE_INSN_BASIC_BLOCK_P (insn));
8635 add_jump_dependencies (insn, jump);
8636 }
8637
8638 /* Change pattern of INSN to NEW_PAT. Invalidate cached haifa
8639 instruction data. */
8640 static bool
8641 haifa_change_pattern (rtx_insn *insn, rtx new_pat)
8642 {
8643 int t;
8644
8645 t = validate_change (insn, &PATTERN (insn), new_pat, 0);
8646 if (!t)
8647 return false;
8648
8649 update_insn_after_change (insn);
8650 return true;
8651 }
8652
8653 /* -1 - can't speculate,
8654 0 - for speculation with REQUEST mode it is OK to use
8655 current instruction pattern,
8656 1 - need to change pattern for *NEW_PAT to be speculative. */
8657 int
8658 sched_speculate_insn (rtx_insn *insn, ds_t request, rtx *new_pat)
8659 {
8660 gcc_assert (current_sched_info->flags & DO_SPECULATION
8661 && (request & SPECULATIVE)
8662 && sched_insn_is_legitimate_for_speculation_p (insn, request));
8663
8664 if ((request & spec_info->mask) != request)
8665 return -1;
8666
8667 if (request & BE_IN_SPEC
8668 && !(request & BEGIN_SPEC))
8669 return 0;
8670
8671 return targetm.sched.speculate_insn (insn, request, new_pat);
8672 }
8673
8674 static int
8675 haifa_speculate_insn (rtx_insn *insn, ds_t request, rtx *new_pat)
8676 {
8677 gcc_assert (sched_deps_info->generate_spec_deps
8678 && !IS_SPECULATION_CHECK_P (insn));
8679
8680 if (HAS_INTERNAL_DEP (insn)
8681 || SCHED_GROUP_P (insn))
8682 return -1;
8683
8684 return sched_speculate_insn (insn, request, new_pat);
8685 }
8686
8687 /* Print some information about block BB, which starts with HEAD and
8688 ends with TAIL, before scheduling it.
8689 I is zero, if scheduler is about to start with the fresh ebb. */
8690 static void
8691 dump_new_block_header (int i, basic_block bb, rtx_insn *head, rtx_insn *tail)
8692 {
8693 if (!i)
8694 fprintf (sched_dump,
8695 ";; ======================================================\n");
8696 else
8697 fprintf (sched_dump,
8698 ";; =====================ADVANCING TO=====================\n");
8699 fprintf (sched_dump,
8700 ";; -- basic block %d from %d to %d -- %s reload\n",
8701 bb->index, INSN_UID (head), INSN_UID (tail),
8702 (reload_completed ? "after" : "before"));
8703 fprintf (sched_dump,
8704 ";; ======================================================\n");
8705 fprintf (sched_dump, "\n");
8706 }
8707
8708 /* Unlink basic block notes and labels and saves them, so they
8709 can be easily restored. We unlink basic block notes in EBB to
8710 provide back-compatibility with the previous code, as target backends
8711 assume, that there'll be only instructions between
8712 current_sched_info->{head and tail}. We restore these notes as soon
8713 as we can.
8714 FIRST (LAST) is the first (last) basic block in the ebb.
8715 NB: In usual case (FIRST == LAST) nothing is really done. */
8716 void
8717 unlink_bb_notes (basic_block first, basic_block last)
8718 {
8719 /* We DON'T unlink basic block notes of the first block in the ebb. */
8720 if (first == last)
8721 return;
8722
8723 bb_header = XNEWVEC (rtx_insn *, last_basic_block_for_fn (cfun));
8724
8725 /* Make a sentinel. */
8726 if (last->next_bb != EXIT_BLOCK_PTR_FOR_FN (cfun))
8727 bb_header[last->next_bb->index] = 0;
8728
8729 first = first->next_bb;
8730 do
8731 {
8732 rtx_insn *prev, *label, *note, *next;
8733
8734 label = BB_HEAD (last);
8735 if (LABEL_P (label))
8736 note = NEXT_INSN (label);
8737 else
8738 note = label;
8739 gcc_assert (NOTE_INSN_BASIC_BLOCK_P (note));
8740
8741 prev = PREV_INSN (label);
8742 next = NEXT_INSN (note);
8743 gcc_assert (prev && next);
8744
8745 SET_NEXT_INSN (prev) = next;
8746 SET_PREV_INSN (next) = prev;
8747
8748 bb_header[last->index] = label;
8749
8750 if (last == first)
8751 break;
8752
8753 last = last->prev_bb;
8754 }
8755 while (1);
8756 }
8757
8758 /* Restore basic block notes.
8759 FIRST is the first basic block in the ebb. */
8760 static void
8761 restore_bb_notes (basic_block first)
8762 {
8763 if (!bb_header)
8764 return;
8765
8766 /* We DON'T unlink basic block notes of the first block in the ebb. */
8767 first = first->next_bb;
8768 /* Remember: FIRST is actually a second basic block in the ebb. */
8769
8770 while (first != EXIT_BLOCK_PTR_FOR_FN (cfun)
8771 && bb_header[first->index])
8772 {
8773 rtx_insn *prev, *label, *note, *next;
8774
8775 label = bb_header[first->index];
8776 prev = PREV_INSN (label);
8777 next = NEXT_INSN (prev);
8778
8779 if (LABEL_P (label))
8780 note = NEXT_INSN (label);
8781 else
8782 note = label;
8783 gcc_assert (NOTE_INSN_BASIC_BLOCK_P (note));
8784
8785 bb_header[first->index] = 0;
8786
8787 SET_NEXT_INSN (prev) = label;
8788 SET_NEXT_INSN (note) = next;
8789 SET_PREV_INSN (next) = note;
8790
8791 first = first->next_bb;
8792 }
8793
8794 free (bb_header);
8795 bb_header = 0;
8796 }
8797
8798 /* Helper function.
8799 Fix CFG after both in- and inter-block movement of
8800 control_flow_insn_p JUMP. */
8801 static void
8802 fix_jump_move (rtx_insn *jump)
8803 {
8804 basic_block bb, jump_bb, jump_bb_next;
8805
8806 bb = BLOCK_FOR_INSN (PREV_INSN (jump));
8807 jump_bb = BLOCK_FOR_INSN (jump);
8808 jump_bb_next = jump_bb->next_bb;
8809
8810 gcc_assert (common_sched_info->sched_pass_id == SCHED_EBB_PASS
8811 || IS_SPECULATION_BRANCHY_CHECK_P (jump));
8812
8813 if (!NOTE_INSN_BASIC_BLOCK_P (BB_END (jump_bb_next)))
8814 /* if jump_bb_next is not empty. */
8815 BB_END (jump_bb) = BB_END (jump_bb_next);
8816
8817 if (BB_END (bb) != PREV_INSN (jump))
8818 /* Then there are instruction after jump that should be placed
8819 to jump_bb_next. */
8820 BB_END (jump_bb_next) = BB_END (bb);
8821 else
8822 /* Otherwise jump_bb_next is empty. */
8823 BB_END (jump_bb_next) = NEXT_INSN (BB_HEAD (jump_bb_next));
8824
8825 /* To make assertion in move_insn happy. */
8826 BB_END (bb) = PREV_INSN (jump);
8827
8828 update_bb_for_insn (jump_bb_next);
8829 }
8830
8831 /* Fix CFG after interblock movement of control_flow_insn_p JUMP. */
8832 static void
8833 move_block_after_check (rtx_insn *jump)
8834 {
8835 basic_block bb, jump_bb, jump_bb_next;
8836 vec<edge, va_gc> *t;
8837
8838 bb = BLOCK_FOR_INSN (PREV_INSN (jump));
8839 jump_bb = BLOCK_FOR_INSN (jump);
8840 jump_bb_next = jump_bb->next_bb;
8841
8842 update_bb_for_insn (jump_bb);
8843
8844 gcc_assert (IS_SPECULATION_CHECK_P (jump)
8845 || IS_SPECULATION_CHECK_P (BB_END (jump_bb_next)));
8846
8847 unlink_block (jump_bb_next);
8848 link_block (jump_bb_next, bb);
8849
8850 t = bb->succs;
8851 bb->succs = 0;
8852 move_succs (&(jump_bb->succs), bb);
8853 move_succs (&(jump_bb_next->succs), jump_bb);
8854 move_succs (&t, jump_bb_next);
8855
8856 df_mark_solutions_dirty ();
8857
8858 common_sched_info->fix_recovery_cfg
8859 (bb->index, jump_bb->index, jump_bb_next->index);
8860 }
8861
8862 /* Helper function for move_block_after_check.
8863 This functions attaches edge vector pointed to by SUCCSP to
8864 block TO. */
8865 static void
8866 move_succs (vec<edge, va_gc> **succsp, basic_block to)
8867 {
8868 edge e;
8869 edge_iterator ei;
8870
8871 gcc_assert (to->succs == 0);
8872
8873 to->succs = *succsp;
8874
8875 FOR_EACH_EDGE (e, ei, to->succs)
8876 e->src = to;
8877
8878 *succsp = 0;
8879 }
8880
8881 /* Remove INSN from the instruction stream.
8882 INSN should have any dependencies. */
8883 static void
8884 sched_remove_insn (rtx_insn *insn)
8885 {
8886 sd_finish_insn (insn);
8887
8888 change_queue_index (insn, QUEUE_NOWHERE);
8889 current_sched_info->add_remove_insn (insn, 1);
8890 delete_insn (insn);
8891 }
8892
8893 /* Clear priorities of all instructions, that are forward dependent on INSN.
8894 Store in vector pointed to by ROOTS_PTR insns on which priority () should
8895 be invoked to initialize all cleared priorities. */
8896 static void
8897 clear_priorities (rtx_insn *insn, rtx_vec_t *roots_ptr)
8898 {
8899 sd_iterator_def sd_it;
8900 dep_t dep;
8901 bool insn_is_root_p = true;
8902
8903 gcc_assert (QUEUE_INDEX (insn) != QUEUE_SCHEDULED);
8904
8905 FOR_EACH_DEP (insn, SD_LIST_BACK, sd_it, dep)
8906 {
8907 rtx_insn *pro = DEP_PRO (dep);
8908
8909 if (INSN_PRIORITY_STATUS (pro) >= 0
8910 && QUEUE_INDEX (insn) != QUEUE_SCHEDULED)
8911 {
8912 /* If DEP doesn't contribute to priority then INSN itself should
8913 be added to priority roots. */
8914 if (contributes_to_priority_p (dep))
8915 insn_is_root_p = false;
8916
8917 INSN_PRIORITY_STATUS (pro) = -1;
8918 clear_priorities (pro, roots_ptr);
8919 }
8920 }
8921
8922 if (insn_is_root_p)
8923 roots_ptr->safe_push (insn);
8924 }
8925
8926 /* Recompute priorities of instructions, whose priorities might have been
8927 changed. ROOTS is a vector of instructions whose priority computation will
8928 trigger initialization of all cleared priorities. */
8929 static void
8930 calc_priorities (rtx_vec_t roots)
8931 {
8932 int i;
8933 rtx_insn *insn;
8934
8935 FOR_EACH_VEC_ELT (roots, i, insn)
8936 priority (insn);
8937 }
8938
8939
8940 /* Add dependences between JUMP and other instructions in the recovery
8941 block. INSN is the first insn the recovery block. */
8942 static void
8943 add_jump_dependencies (rtx_insn *insn, rtx_insn *jump)
8944 {
8945 do
8946 {
8947 insn = NEXT_INSN (insn);
8948 if (insn == jump)
8949 break;
8950
8951 if (dep_list_size (insn, SD_LIST_FORW) == 0)
8952 {
8953 dep_def _new_dep, *new_dep = &_new_dep;
8954
8955 init_dep (new_dep, insn, jump, REG_DEP_ANTI);
8956 sd_add_dep (new_dep, false);
8957 }
8958 }
8959 while (1);
8960
8961 gcc_assert (!sd_lists_empty_p (jump, SD_LIST_BACK));
8962 }
8963
8964 /* Extend data structures for logical insn UID. */
8965 void
8966 sched_extend_luids (void)
8967 {
8968 int new_luids_max_uid = get_max_uid () + 1;
8969
8970 sched_luids.safe_grow_cleared (new_luids_max_uid);
8971 }
8972
8973 /* Initialize LUID for INSN. */
8974 void
8975 sched_init_insn_luid (rtx_insn *insn)
8976 {
8977 int i = INSN_P (insn) ? 1 : common_sched_info->luid_for_non_insn (insn);
8978 int luid;
8979
8980 if (i >= 0)
8981 {
8982 luid = sched_max_luid;
8983 sched_max_luid += i;
8984 }
8985 else
8986 luid = -1;
8987
8988 SET_INSN_LUID (insn, luid);
8989 }
8990
8991 /* Initialize luids for BBS.
8992 The hook common_sched_info->luid_for_non_insn () is used to determine
8993 if notes, labels, etc. need luids. */
8994 void
8995 sched_init_luids (bb_vec_t bbs)
8996 {
8997 int i;
8998 basic_block bb;
8999
9000 sched_extend_luids ();
9001 FOR_EACH_VEC_ELT (bbs, i, bb)
9002 {
9003 rtx_insn *insn;
9004
9005 FOR_BB_INSNS (bb, insn)
9006 sched_init_insn_luid (insn);
9007 }
9008 }
9009
9010 /* Free LUIDs. */
9011 void
9012 sched_finish_luids (void)
9013 {
9014 sched_luids.release ();
9015 sched_max_luid = 1;
9016 }
9017
9018 /* Return logical uid of INSN. Helpful while debugging. */
9019 int
9020 insn_luid (rtx_insn *insn)
9021 {
9022 return INSN_LUID (insn);
9023 }
9024
9025 /* Extend per insn data in the target. */
9026 void
9027 sched_extend_target (void)
9028 {
9029 if (targetm.sched.h_i_d_extended)
9030 targetm.sched.h_i_d_extended ();
9031 }
9032
9033 /* Extend global scheduler structures (those, that live across calls to
9034 schedule_block) to include information about just emitted INSN. */
9035 static void
9036 extend_h_i_d (void)
9037 {
9038 int reserve = (get_max_uid () + 1 - h_i_d.length ());
9039 if (reserve > 0
9040 && ! h_i_d.space (reserve))
9041 {
9042 h_i_d.safe_grow_cleared (3 * get_max_uid () / 2);
9043 sched_extend_target ();
9044 }
9045 }
9046
9047 /* Initialize h_i_d entry of the INSN with default values.
9048 Values, that are not explicitly initialized here, hold zero. */
9049 static void
9050 init_h_i_d (rtx_insn *insn)
9051 {
9052 if (INSN_LUID (insn) > 0)
9053 {
9054 INSN_COST (insn) = -1;
9055 QUEUE_INDEX (insn) = QUEUE_NOWHERE;
9056 INSN_TICK (insn) = INVALID_TICK;
9057 INSN_EXACT_TICK (insn) = INVALID_TICK;
9058 INTER_TICK (insn) = INVALID_TICK;
9059 TODO_SPEC (insn) = HARD_DEP;
9060 INSN_AUTOPREF_MULTIPASS_DATA (insn)[0].status
9061 = AUTOPREF_MULTIPASS_DATA_UNINITIALIZED;
9062 INSN_AUTOPREF_MULTIPASS_DATA (insn)[1].status
9063 = AUTOPREF_MULTIPASS_DATA_UNINITIALIZED;
9064 }
9065 }
9066
9067 /* Initialize haifa_insn_data for BBS. */
9068 void
9069 haifa_init_h_i_d (bb_vec_t bbs)
9070 {
9071 int i;
9072 basic_block bb;
9073
9074 extend_h_i_d ();
9075 FOR_EACH_VEC_ELT (bbs, i, bb)
9076 {
9077 rtx_insn *insn;
9078
9079 FOR_BB_INSNS (bb, insn)
9080 init_h_i_d (insn);
9081 }
9082 }
9083
9084 /* Finalize haifa_insn_data. */
9085 void
9086 haifa_finish_h_i_d (void)
9087 {
9088 int i;
9089 haifa_insn_data_t data;
9090 reg_use_data *use, *next_use;
9091 reg_set_data *set, *next_set;
9092
9093 FOR_EACH_VEC_ELT (h_i_d, i, data)
9094 {
9095 free (data->max_reg_pressure);
9096 free (data->reg_pressure);
9097 for (use = data->reg_use_list; use != NULL; use = next_use)
9098 {
9099 next_use = use->next_insn_use;
9100 free (use);
9101 }
9102 for (set = data->reg_set_list; set != NULL; set = next_set)
9103 {
9104 next_set = set->next_insn_set;
9105 free (set);
9106 }
9107
9108 }
9109 h_i_d.release ();
9110 }
9111
9112 /* Init data for the new insn INSN. */
9113 static void
9114 haifa_init_insn (rtx_insn *insn)
9115 {
9116 gcc_assert (insn != NULL);
9117
9118 sched_extend_luids ();
9119 sched_init_insn_luid (insn);
9120 sched_extend_target ();
9121 sched_deps_init (false);
9122 extend_h_i_d ();
9123 init_h_i_d (insn);
9124
9125 if (adding_bb_to_current_region_p)
9126 {
9127 sd_init_insn (insn);
9128
9129 /* Extend dependency caches by one element. */
9130 extend_dependency_caches (1, false);
9131 }
9132 if (sched_pressure != SCHED_PRESSURE_NONE)
9133 init_insn_reg_pressure_info (insn);
9134 }
9135
9136 /* Init data for the new basic block BB which comes after AFTER. */
9137 static void
9138 haifa_init_only_bb (basic_block bb, basic_block after)
9139 {
9140 gcc_assert (bb != NULL);
9141
9142 sched_init_bbs ();
9143
9144 if (common_sched_info->add_block)
9145 /* This changes only data structures of the front-end. */
9146 common_sched_info->add_block (bb, after);
9147 }
9148
9149 /* A generic version of sched_split_block (). */
9150 basic_block
9151 sched_split_block_1 (basic_block first_bb, rtx after)
9152 {
9153 edge e;
9154
9155 e = split_block (first_bb, after);
9156 gcc_assert (e->src == first_bb);
9157
9158 /* sched_split_block emits note if *check == BB_END. Probably it
9159 is better to rip that note off. */
9160
9161 return e->dest;
9162 }
9163
9164 /* A generic version of sched_create_empty_bb (). */
9165 basic_block
9166 sched_create_empty_bb_1 (basic_block after)
9167 {
9168 return create_empty_bb (after);
9169 }
9170
9171 /* Insert PAT as an INSN into the schedule and update the necessary data
9172 structures to account for it. */
9173 rtx_insn *
9174 sched_emit_insn (rtx pat)
9175 {
9176 rtx_insn *insn = emit_insn_before (pat, first_nonscheduled_insn ());
9177 haifa_init_insn (insn);
9178
9179 if (current_sched_info->add_remove_insn)
9180 current_sched_info->add_remove_insn (insn, 0);
9181
9182 (*current_sched_info->begin_schedule_ready) (insn);
9183 scheduled_insns.safe_push (insn);
9184
9185 last_scheduled_insn = insn;
9186 return insn;
9187 }
9188
9189 /* This function returns a candidate satisfying dispatch constraints from
9190 the ready list. */
9191
9192 static rtx_insn *
9193 ready_remove_first_dispatch (struct ready_list *ready)
9194 {
9195 int i;
9196 rtx_insn *insn = ready_element (ready, 0);
9197
9198 if (ready->n_ready == 1
9199 || !INSN_P (insn)
9200 || INSN_CODE (insn) < 0
9201 || !active_insn_p (insn)
9202 || targetm.sched.dispatch (insn, FITS_DISPATCH_WINDOW))
9203 return ready_remove_first (ready);
9204
9205 for (i = 1; i < ready->n_ready; i++)
9206 {
9207 insn = ready_element (ready, i);
9208
9209 if (!INSN_P (insn)
9210 || INSN_CODE (insn) < 0
9211 || !active_insn_p (insn))
9212 continue;
9213
9214 if (targetm.sched.dispatch (insn, FITS_DISPATCH_WINDOW))
9215 {
9216 /* Return ith element of ready. */
9217 insn = ready_remove (ready, i);
9218 return insn;
9219 }
9220 }
9221
9222 if (targetm.sched.dispatch (NULL, DISPATCH_VIOLATION))
9223 return ready_remove_first (ready);
9224
9225 for (i = 1; i < ready->n_ready; i++)
9226 {
9227 insn = ready_element (ready, i);
9228
9229 if (!INSN_P (insn)
9230 || INSN_CODE (insn) < 0
9231 || !active_insn_p (insn))
9232 continue;
9233
9234 /* Return i-th element of ready. */
9235 if (targetm.sched.dispatch (insn, IS_CMP))
9236 return ready_remove (ready, i);
9237 }
9238
9239 return ready_remove_first (ready);
9240 }
9241
9242 /* Get number of ready insn in the ready list. */
9243
9244 int
9245 number_in_ready (void)
9246 {
9247 return ready.n_ready;
9248 }
9249
9250 /* Get number of ready's in the ready list. */
9251
9252 rtx_insn *
9253 get_ready_element (int i)
9254 {
9255 return ready_element (&ready, i);
9256 }
9257
9258 #endif /* INSN_SCHEDULING */