]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/haifa-sched.c
PR target/33062
[thirdparty/gcc.git] / gcc / haifa-sched.c
1 /* Instruction scheduling pass.
2 Copyright (C) 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000,
3 2001, 2002, 2003, 2004, 2005, 2006, 2007 Free Software Foundation, Inc.
4 Contributed by Michael Tiemann (tiemann@cygnus.com) Enhanced by,
5 and currently maintained by, Jim Wilson (wilson@cygnus.com)
6
7 This file is part of GCC.
8
9 GCC is free software; you can redistribute it and/or modify it under
10 the terms of the GNU General Public License as published by the Free
11 Software Foundation; either version 3, or (at your option) any later
12 version.
13
14 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
15 WARRANTY; without even the implied warranty of MERCHANTABILITY or
16 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
17 for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with GCC; see the file COPYING3. If not see
21 <http://www.gnu.org/licenses/>. */
22
23 /* Instruction scheduling pass. This file, along with sched-deps.c,
24 contains the generic parts. The actual entry point is found for
25 the normal instruction scheduling pass is found in sched-rgn.c.
26
27 We compute insn priorities based on data dependencies. Flow
28 analysis only creates a fraction of the data-dependencies we must
29 observe: namely, only those dependencies which the combiner can be
30 expected to use. For this pass, we must therefore create the
31 remaining dependencies we need to observe: register dependencies,
32 memory dependencies, dependencies to keep function calls in order,
33 and the dependence between a conditional branch and the setting of
34 condition codes are all dealt with here.
35
36 The scheduler first traverses the data flow graph, starting with
37 the last instruction, and proceeding to the first, assigning values
38 to insn_priority as it goes. This sorts the instructions
39 topologically by data dependence.
40
41 Once priorities have been established, we order the insns using
42 list scheduling. This works as follows: starting with a list of
43 all the ready insns, and sorted according to priority number, we
44 schedule the insn from the end of the list by placing its
45 predecessors in the list according to their priority order. We
46 consider this insn scheduled by setting the pointer to the "end" of
47 the list to point to the previous insn. When an insn has no
48 predecessors, we either queue it until sufficient time has elapsed
49 or add it to the ready list. As the instructions are scheduled or
50 when stalls are introduced, the queue advances and dumps insns into
51 the ready list. When all insns down to the lowest priority have
52 been scheduled, the critical path of the basic block has been made
53 as short as possible. The remaining insns are then scheduled in
54 remaining slots.
55
56 The following list shows the order in which we want to break ties
57 among insns in the ready list:
58
59 1. choose insn with the longest path to end of bb, ties
60 broken by
61 2. choose insn with least contribution to register pressure,
62 ties broken by
63 3. prefer in-block upon interblock motion, ties broken by
64 4. prefer useful upon speculative motion, ties broken by
65 5. choose insn with largest control flow probability, ties
66 broken by
67 6. choose insn with the least dependences upon the previously
68 scheduled insn, or finally
69 7 choose the insn which has the most insns dependent on it.
70 8. choose insn with lowest UID.
71
72 Memory references complicate matters. Only if we can be certain
73 that memory references are not part of the data dependency graph
74 (via true, anti, or output dependence), can we move operations past
75 memory references. To first approximation, reads can be done
76 independently, while writes introduce dependencies. Better
77 approximations will yield fewer dependencies.
78
79 Before reload, an extended analysis of interblock data dependences
80 is required for interblock scheduling. This is performed in
81 compute_block_backward_dependences ().
82
83 Dependencies set up by memory references are treated in exactly the
84 same way as other dependencies, by using insn backward dependences
85 INSN_BACK_DEPS. INSN_BACK_DEPS are translated into forward dependences
86 INSN_FORW_DEPS the purpose of forward list scheduling.
87
88 Having optimized the critical path, we may have also unduly
89 extended the lifetimes of some registers. If an operation requires
90 that constants be loaded into registers, it is certainly desirable
91 to load those constants as early as necessary, but no earlier.
92 I.e., it will not do to load up a bunch of registers at the
93 beginning of a basic block only to use them at the end, if they
94 could be loaded later, since this may result in excessive register
95 utilization.
96
97 Note that since branches are never in basic blocks, but only end
98 basic blocks, this pass will not move branches. But that is ok,
99 since we can use GNU's delayed branch scheduling pass to take care
100 of this case.
101
102 Also note that no further optimizations based on algebraic
103 identities are performed, so this pass would be a good one to
104 perform instruction splitting, such as breaking up a multiply
105 instruction into shifts and adds where that is profitable.
106
107 Given the memory aliasing analysis that this pass should perform,
108 it should be possible to remove redundant stores to memory, and to
109 load values from registers instead of hitting memory.
110
111 Before reload, speculative insns are moved only if a 'proof' exists
112 that no exception will be caused by this, and if no live registers
113 exist that inhibit the motion (live registers constraints are not
114 represented by data dependence edges).
115
116 This pass must update information that subsequent passes expect to
117 be correct. Namely: reg_n_refs, reg_n_sets, reg_n_deaths,
118 reg_n_calls_crossed, and reg_live_length. Also, BB_HEAD, BB_END.
119
120 The information in the line number notes is carefully retained by
121 this pass. Notes that refer to the starting and ending of
122 exception regions are also carefully retained by this pass. All
123 other NOTE insns are grouped in their same relative order at the
124 beginning of basic blocks and regions that have been scheduled. */
125 \f
126 #include "config.h"
127 #include "system.h"
128 #include "coretypes.h"
129 #include "tm.h"
130 #include "toplev.h"
131 #include "rtl.h"
132 #include "tm_p.h"
133 #include "hard-reg-set.h"
134 #include "regs.h"
135 #include "function.h"
136 #include "flags.h"
137 #include "insn-config.h"
138 #include "insn-attr.h"
139 #include "except.h"
140 #include "toplev.h"
141 #include "recog.h"
142 #include "sched-int.h"
143 #include "target.h"
144 #include "output.h"
145 #include "params.h"
146 #include "dbgcnt.h"
147
148 #ifdef INSN_SCHEDULING
149
150 /* issue_rate is the number of insns that can be scheduled in the same
151 machine cycle. It can be defined in the config/mach/mach.h file,
152 otherwise we set it to 1. */
153
154 static int issue_rate;
155
156 /* sched-verbose controls the amount of debugging output the
157 scheduler prints. It is controlled by -fsched-verbose=N:
158 N>0 and no -DSR : the output is directed to stderr.
159 N>=10 will direct the printouts to stderr (regardless of -dSR).
160 N=1: same as -dSR.
161 N=2: bb's probabilities, detailed ready list info, unit/insn info.
162 N=3: rtl at abort point, control-flow, regions info.
163 N=5: dependences info. */
164
165 static int sched_verbose_param = 0;
166 int sched_verbose = 0;
167
168 /* Debugging file. All printouts are sent to dump, which is always set,
169 either to stderr, or to the dump listing file (-dRS). */
170 FILE *sched_dump = 0;
171
172 /* Highest uid before scheduling. */
173 static int old_max_uid;
174
175 /* fix_sched_param() is called from toplev.c upon detection
176 of the -fsched-verbose=N option. */
177
178 void
179 fix_sched_param (const char *param, const char *val)
180 {
181 if (!strcmp (param, "verbose"))
182 sched_verbose_param = atoi (val);
183 else
184 warning (0, "fix_sched_param: unknown param: %s", param);
185 }
186
187 struct haifa_insn_data *h_i_d;
188
189 #define INSN_TICK(INSN) (h_i_d[INSN_UID (INSN)].tick)
190 #define INTER_TICK(INSN) (h_i_d[INSN_UID (INSN)].inter_tick)
191
192 /* If INSN_TICK of an instruction is equal to INVALID_TICK,
193 then it should be recalculated from scratch. */
194 #define INVALID_TICK (-(max_insn_queue_index + 1))
195 /* The minimal value of the INSN_TICK of an instruction. */
196 #define MIN_TICK (-max_insn_queue_index)
197
198 /* Issue points are used to distinguish between instructions in max_issue ().
199 For now, all instructions are equally good. */
200 #define ISSUE_POINTS(INSN) 1
201
202 /* List of important notes we must keep around. This is a pointer to the
203 last element in the list. */
204 static rtx note_list;
205
206 static struct spec_info_def spec_info_var;
207 /* Description of the speculative part of the scheduling.
208 If NULL - no speculation. */
209 spec_info_t spec_info;
210
211 /* True, if recovery block was added during scheduling of current block.
212 Used to determine, if we need to fix INSN_TICKs. */
213 static bool haifa_recovery_bb_recently_added_p;
214
215 /* True, if recovery block was added during this scheduling pass.
216 Used to determine if we should have empty memory pools of dependencies
217 after finishing current region. */
218 bool haifa_recovery_bb_ever_added_p;
219
220 /* Counters of different types of speculative instructions. */
221 static int nr_begin_data, nr_be_in_data, nr_begin_control, nr_be_in_control;
222
223 /* Array used in {unlink, restore}_bb_notes. */
224 static rtx *bb_header = 0;
225
226 /* Number of basic_blocks. */
227 static int old_last_basic_block;
228
229 /* Basic block after which recovery blocks will be created. */
230 static basic_block before_recovery;
231
232 /* Queues, etc. */
233
234 /* An instruction is ready to be scheduled when all insns preceding it
235 have already been scheduled. It is important to ensure that all
236 insns which use its result will not be executed until its result
237 has been computed. An insn is maintained in one of four structures:
238
239 (P) the "Pending" set of insns which cannot be scheduled until
240 their dependencies have been satisfied.
241 (Q) the "Queued" set of insns that can be scheduled when sufficient
242 time has passed.
243 (R) the "Ready" list of unscheduled, uncommitted insns.
244 (S) the "Scheduled" list of insns.
245
246 Initially, all insns are either "Pending" or "Ready" depending on
247 whether their dependencies are satisfied.
248
249 Insns move from the "Ready" list to the "Scheduled" list as they
250 are committed to the schedule. As this occurs, the insns in the
251 "Pending" list have their dependencies satisfied and move to either
252 the "Ready" list or the "Queued" set depending on whether
253 sufficient time has passed to make them ready. As time passes,
254 insns move from the "Queued" set to the "Ready" list.
255
256 The "Pending" list (P) are the insns in the INSN_FORW_DEPS of the
257 unscheduled insns, i.e., those that are ready, queued, and pending.
258 The "Queued" set (Q) is implemented by the variable `insn_queue'.
259 The "Ready" list (R) is implemented by the variables `ready' and
260 `n_ready'.
261 The "Scheduled" list (S) is the new insn chain built by this pass.
262
263 The transition (R->S) is implemented in the scheduling loop in
264 `schedule_block' when the best insn to schedule is chosen.
265 The transitions (P->R and P->Q) are implemented in `schedule_insn' as
266 insns move from the ready list to the scheduled list.
267 The transition (Q->R) is implemented in 'queue_to_insn' as time
268 passes or stalls are introduced. */
269
270 /* Implement a circular buffer to delay instructions until sufficient
271 time has passed. For the new pipeline description interface,
272 MAX_INSN_QUEUE_INDEX is a power of two minus one which is not less
273 than maximal time of instruction execution computed by genattr.c on
274 the base maximal time of functional unit reservations and getting a
275 result. This is the longest time an insn may be queued. */
276
277 static rtx *insn_queue;
278 static int q_ptr = 0;
279 static int q_size = 0;
280 #define NEXT_Q(X) (((X)+1) & max_insn_queue_index)
281 #define NEXT_Q_AFTER(X, C) (((X)+C) & max_insn_queue_index)
282
283 #define QUEUE_SCHEDULED (-3)
284 #define QUEUE_NOWHERE (-2)
285 #define QUEUE_READY (-1)
286 /* QUEUE_SCHEDULED - INSN is scheduled.
287 QUEUE_NOWHERE - INSN isn't scheduled yet and is neither in
288 queue or ready list.
289 QUEUE_READY - INSN is in ready list.
290 N >= 0 - INSN queued for X [where NEXT_Q_AFTER (q_ptr, X) == N] cycles. */
291
292 #define QUEUE_INDEX(INSN) (h_i_d[INSN_UID (INSN)].queue_index)
293
294 /* The following variable value refers for all current and future
295 reservations of the processor units. */
296 state_t curr_state;
297
298 /* The following variable value is size of memory representing all
299 current and future reservations of the processor units. */
300 static size_t dfa_state_size;
301
302 /* The following array is used to find the best insn from ready when
303 the automaton pipeline interface is used. */
304 static char *ready_try;
305
306 /* Describe the ready list of the scheduler.
307 VEC holds space enough for all insns in the current region. VECLEN
308 says how many exactly.
309 FIRST is the index of the element with the highest priority; i.e. the
310 last one in the ready list, since elements are ordered by ascending
311 priority.
312 N_READY determines how many insns are on the ready list. */
313
314 struct ready_list
315 {
316 rtx *vec;
317 int veclen;
318 int first;
319 int n_ready;
320 };
321
322 /* The pointer to the ready list. */
323 static struct ready_list *readyp;
324
325 /* Scheduling clock. */
326 static int clock_var;
327
328 /* Number of instructions in current scheduling region. */
329 static int rgn_n_insns;
330
331 static int may_trap_exp (const_rtx, int);
332
333 /* Nonzero iff the address is comprised from at most 1 register. */
334 #define CONST_BASED_ADDRESS_P(x) \
335 (REG_P (x) \
336 || ((GET_CODE (x) == PLUS || GET_CODE (x) == MINUS \
337 || (GET_CODE (x) == LO_SUM)) \
338 && (CONSTANT_P (XEXP (x, 0)) \
339 || CONSTANT_P (XEXP (x, 1)))))
340
341 /* Returns a class that insn with GET_DEST(insn)=x may belong to,
342 as found by analyzing insn's expression. */
343
344 static int
345 may_trap_exp (const_rtx x, int is_store)
346 {
347 enum rtx_code code;
348
349 if (x == 0)
350 return TRAP_FREE;
351 code = GET_CODE (x);
352 if (is_store)
353 {
354 if (code == MEM && may_trap_p (x))
355 return TRAP_RISKY;
356 else
357 return TRAP_FREE;
358 }
359 if (code == MEM)
360 {
361 /* The insn uses memory: a volatile load. */
362 if (MEM_VOLATILE_P (x))
363 return IRISKY;
364 /* An exception-free load. */
365 if (!may_trap_p (x))
366 return IFREE;
367 /* A load with 1 base register, to be further checked. */
368 if (CONST_BASED_ADDRESS_P (XEXP (x, 0)))
369 return PFREE_CANDIDATE;
370 /* No info on the load, to be further checked. */
371 return PRISKY_CANDIDATE;
372 }
373 else
374 {
375 const char *fmt;
376 int i, insn_class = TRAP_FREE;
377
378 /* Neither store nor load, check if it may cause a trap. */
379 if (may_trap_p (x))
380 return TRAP_RISKY;
381 /* Recursive step: walk the insn... */
382 fmt = GET_RTX_FORMAT (code);
383 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
384 {
385 if (fmt[i] == 'e')
386 {
387 int tmp_class = may_trap_exp (XEXP (x, i), is_store);
388 insn_class = WORST_CLASS (insn_class, tmp_class);
389 }
390 else if (fmt[i] == 'E')
391 {
392 int j;
393 for (j = 0; j < XVECLEN (x, i); j++)
394 {
395 int tmp_class = may_trap_exp (XVECEXP (x, i, j), is_store);
396 insn_class = WORST_CLASS (insn_class, tmp_class);
397 if (insn_class == TRAP_RISKY || insn_class == IRISKY)
398 break;
399 }
400 }
401 if (insn_class == TRAP_RISKY || insn_class == IRISKY)
402 break;
403 }
404 return insn_class;
405 }
406 }
407
408 /* Classifies insn for the purpose of verifying that it can be
409 moved speculatively, by examining it's patterns, returning:
410 TRAP_RISKY: store, or risky non-load insn (e.g. division by variable).
411 TRAP_FREE: non-load insn.
412 IFREE: load from a globally safe location.
413 IRISKY: volatile load.
414 PFREE_CANDIDATE, PRISKY_CANDIDATE: load that need to be checked for
415 being either PFREE or PRISKY. */
416
417 int
418 haifa_classify_insn (const_rtx insn)
419 {
420 rtx pat = PATTERN (insn);
421 int tmp_class = TRAP_FREE;
422 int insn_class = TRAP_FREE;
423 enum rtx_code code;
424
425 if (GET_CODE (pat) == PARALLEL)
426 {
427 int i, len = XVECLEN (pat, 0);
428
429 for (i = len - 1; i >= 0; i--)
430 {
431 code = GET_CODE (XVECEXP (pat, 0, i));
432 switch (code)
433 {
434 case CLOBBER:
435 /* Test if it is a 'store'. */
436 tmp_class = may_trap_exp (XEXP (XVECEXP (pat, 0, i), 0), 1);
437 break;
438 case SET:
439 /* Test if it is a store. */
440 tmp_class = may_trap_exp (SET_DEST (XVECEXP (pat, 0, i)), 1);
441 if (tmp_class == TRAP_RISKY)
442 break;
443 /* Test if it is a load. */
444 tmp_class
445 = WORST_CLASS (tmp_class,
446 may_trap_exp (SET_SRC (XVECEXP (pat, 0, i)),
447 0));
448 break;
449 case COND_EXEC:
450 case TRAP_IF:
451 tmp_class = TRAP_RISKY;
452 break;
453 default:
454 ;
455 }
456 insn_class = WORST_CLASS (insn_class, tmp_class);
457 if (insn_class == TRAP_RISKY || insn_class == IRISKY)
458 break;
459 }
460 }
461 else
462 {
463 code = GET_CODE (pat);
464 switch (code)
465 {
466 case CLOBBER:
467 /* Test if it is a 'store'. */
468 tmp_class = may_trap_exp (XEXP (pat, 0), 1);
469 break;
470 case SET:
471 /* Test if it is a store. */
472 tmp_class = may_trap_exp (SET_DEST (pat), 1);
473 if (tmp_class == TRAP_RISKY)
474 break;
475 /* Test if it is a load. */
476 tmp_class =
477 WORST_CLASS (tmp_class,
478 may_trap_exp (SET_SRC (pat), 0));
479 break;
480 case COND_EXEC:
481 case TRAP_IF:
482 tmp_class = TRAP_RISKY;
483 break;
484 default:;
485 }
486 insn_class = tmp_class;
487 }
488
489 return insn_class;
490 }
491
492 /* A typedef for rtx vector. */
493 typedef VEC(rtx, heap) *rtx_vec_t;
494
495 /* Forward declarations. */
496
497 static int priority (rtx);
498 static int rank_for_schedule (const void *, const void *);
499 static void swap_sort (rtx *, int);
500 static void queue_insn (rtx, int);
501 static int schedule_insn (rtx);
502 static int find_set_reg_weight (const_rtx);
503 static void find_insn_reg_weight (basic_block);
504 static void find_insn_reg_weight1 (rtx);
505 static void adjust_priority (rtx);
506 static void advance_one_cycle (void);
507
508 /* Notes handling mechanism:
509 =========================
510 Generally, NOTES are saved before scheduling and restored after scheduling.
511 The scheduler distinguishes between two types of notes:
512
513 (1) LOOP_BEGIN, LOOP_END, SETJMP, EHREGION_BEG, EHREGION_END notes:
514 Before scheduling a region, a pointer to the note is added to the insn
515 that follows or precedes it. (This happens as part of the data dependence
516 computation). After scheduling an insn, the pointer contained in it is
517 used for regenerating the corresponding note (in reemit_notes).
518
519 (2) All other notes (e.g. INSN_DELETED): Before scheduling a block,
520 these notes are put in a list (in rm_other_notes() and
521 unlink_other_notes ()). After scheduling the block, these notes are
522 inserted at the beginning of the block (in schedule_block()). */
523
524 static rtx unlink_other_notes (rtx, rtx);
525 static void reemit_notes (rtx);
526
527 static rtx *ready_lastpos (struct ready_list *);
528 static void ready_add (struct ready_list *, rtx, bool);
529 static void ready_sort (struct ready_list *);
530 static rtx ready_remove_first (struct ready_list *);
531
532 static void queue_to_ready (struct ready_list *);
533 static int early_queue_to_ready (state_t, struct ready_list *);
534
535 static void debug_ready_list (struct ready_list *);
536
537 static void move_insn (rtx);
538
539 /* The following functions are used to implement multi-pass scheduling
540 on the first cycle. */
541 static rtx ready_element (struct ready_list *, int);
542 static rtx ready_remove (struct ready_list *, int);
543 static void ready_remove_insn (rtx);
544 static int max_issue (struct ready_list *, int *, int);
545
546 static int choose_ready (struct ready_list *, rtx *);
547
548 static void fix_inter_tick (rtx, rtx);
549 static int fix_tick_ready (rtx);
550 static void change_queue_index (rtx, int);
551
552 /* The following functions are used to implement scheduling of data/control
553 speculative instructions. */
554
555 static void extend_h_i_d (void);
556 static void extend_ready (int);
557 static void extend_global (rtx);
558 static void extend_all (rtx);
559 static void init_h_i_d (rtx);
560 static void generate_recovery_code (rtx);
561 static void process_insn_forw_deps_be_in_spec (rtx, rtx, ds_t);
562 static void begin_speculative_block (rtx);
563 static void add_to_speculative_block (rtx);
564 static dw_t dep_weak (ds_t);
565 static edge find_fallthru_edge (basic_block);
566 static void init_before_recovery (void);
567 static basic_block create_recovery_block (void);
568 static void create_check_block_twin (rtx, bool);
569 static void fix_recovery_deps (basic_block);
570 static void change_pattern (rtx, rtx);
571 static int speculate_insn (rtx, ds_t, rtx *);
572 static void dump_new_block_header (int, basic_block, rtx, rtx);
573 static void restore_bb_notes (basic_block);
574 static void extend_bb (void);
575 static void fix_jump_move (rtx);
576 static void move_block_after_check (rtx);
577 static void move_succs (VEC(edge,gc) **, basic_block);
578 static void sched_remove_insn (rtx);
579 static void clear_priorities (rtx, rtx_vec_t *);
580 static void calc_priorities (rtx_vec_t);
581 static void add_jump_dependencies (rtx, rtx);
582 #ifdef ENABLE_CHECKING
583 static int has_edge_p (VEC(edge,gc) *, int);
584 static void check_cfg (rtx, rtx);
585 static void check_sched_flags (void);
586 #endif
587
588 #endif /* INSN_SCHEDULING */
589 \f
590 /* Point to state used for the current scheduling pass. */
591 struct sched_info *current_sched_info;
592 \f
593 #ifndef INSN_SCHEDULING
594 void
595 schedule_insns (void)
596 {
597 }
598 #else
599
600 /* Working copy of frontend's sched_info variable. */
601 static struct sched_info current_sched_info_var;
602
603 /* Pointer to the last instruction scheduled. Used by rank_for_schedule,
604 so that insns independent of the last scheduled insn will be preferred
605 over dependent instructions. */
606
607 static rtx last_scheduled_insn;
608
609 /* Cached cost of the instruction. Use below function to get cost of the
610 insn. -1 here means that the field is not initialized. */
611 #define INSN_COST(INSN) (h_i_d[INSN_UID (INSN)].cost)
612
613 /* Compute cost of executing INSN.
614 This is the number of cycles between instruction issue and
615 instruction results. */
616 HAIFA_INLINE int
617 insn_cost (rtx insn)
618 {
619 int cost = INSN_COST (insn);
620
621 if (cost < 0)
622 {
623 /* A USE insn, or something else we don't need to
624 understand. We can't pass these directly to
625 result_ready_cost or insn_default_latency because it will
626 trigger a fatal error for unrecognizable insns. */
627 if (recog_memoized (insn) < 0)
628 {
629 INSN_COST (insn) = 0;
630 return 0;
631 }
632 else
633 {
634 cost = insn_default_latency (insn);
635 if (cost < 0)
636 cost = 0;
637
638 INSN_COST (insn) = cost;
639 }
640 }
641
642 return cost;
643 }
644
645 /* Compute cost of dependence LINK.
646 This is the number of cycles between instruction issue and
647 instruction results. */
648 int
649 dep_cost (dep_t link)
650 {
651 rtx used = DEP_CON (link);
652 int cost;
653
654 /* A USE insn should never require the value used to be computed.
655 This allows the computation of a function's result and parameter
656 values to overlap the return and call. */
657 if (recog_memoized (used) < 0)
658 cost = 0;
659 else
660 {
661 rtx insn = DEP_PRO (link);
662 enum reg_note dep_type = DEP_TYPE (link);
663
664 cost = insn_cost (insn);
665
666 if (INSN_CODE (insn) >= 0)
667 {
668 if (dep_type == REG_DEP_ANTI)
669 cost = 0;
670 else if (dep_type == REG_DEP_OUTPUT)
671 {
672 cost = (insn_default_latency (insn)
673 - insn_default_latency (used));
674 if (cost <= 0)
675 cost = 1;
676 }
677 else if (bypass_p (insn))
678 cost = insn_latency (insn, used);
679 }
680
681 if (targetm.sched.adjust_cost != NULL)
682 {
683 /* This variable is used for backward compatibility with the
684 targets. */
685 rtx dep_cost_rtx_link = alloc_INSN_LIST (NULL_RTX, NULL_RTX);
686
687 /* Make it self-cycled, so that if some tries to walk over this
688 incomplete list he/she will be caught in an endless loop. */
689 XEXP (dep_cost_rtx_link, 1) = dep_cost_rtx_link;
690
691 /* Targets use only REG_NOTE_KIND of the link. */
692 PUT_REG_NOTE_KIND (dep_cost_rtx_link, DEP_TYPE (link));
693
694 cost = targetm.sched.adjust_cost (used, dep_cost_rtx_link,
695 insn, cost);
696
697 free_INSN_LIST_node (dep_cost_rtx_link);
698 }
699
700 if (cost < 0)
701 cost = 0;
702 }
703
704 return cost;
705 }
706
707 /* Return 'true' if DEP should be included in priority calculations. */
708 static bool
709 contributes_to_priority_p (dep_t dep)
710 {
711 /* Critical path is meaningful in block boundaries only. */
712 if (!current_sched_info->contributes_to_priority (DEP_CON (dep),
713 DEP_PRO (dep)))
714 return false;
715
716 /* If flag COUNT_SPEC_IN_CRITICAL_PATH is set,
717 then speculative instructions will less likely be
718 scheduled. That is because the priority of
719 their producers will increase, and, thus, the
720 producers will more likely be scheduled, thus,
721 resolving the dependence. */
722 if ((current_sched_info->flags & DO_SPECULATION)
723 && !(spec_info->flags & COUNT_SPEC_IN_CRITICAL_PATH)
724 && (DEP_STATUS (dep) & SPECULATIVE))
725 return false;
726
727 return true;
728 }
729
730 /* Compute the priority number for INSN. */
731 static int
732 priority (rtx insn)
733 {
734 if (! INSN_P (insn))
735 return 0;
736
737 /* We should not be interested in priority of an already scheduled insn. */
738 gcc_assert (QUEUE_INDEX (insn) != QUEUE_SCHEDULED);
739
740 if (!INSN_PRIORITY_KNOWN (insn))
741 {
742 int this_priority = 0;
743
744 if (sd_lists_empty_p (insn, SD_LIST_FORW))
745 /* ??? We should set INSN_PRIORITY to insn_cost when and insn has
746 some forward deps but all of them are ignored by
747 contributes_to_priority hook. At the moment we set priority of
748 such insn to 0. */
749 this_priority = insn_cost (insn);
750 else
751 {
752 rtx prev_first, twin;
753 basic_block rec;
754
755 /* For recovery check instructions we calculate priority slightly
756 different than that of normal instructions. Instead of walking
757 through INSN_FORW_DEPS (check) list, we walk through
758 INSN_FORW_DEPS list of each instruction in the corresponding
759 recovery block. */
760
761 rec = RECOVERY_BLOCK (insn);
762 if (!rec || rec == EXIT_BLOCK_PTR)
763 {
764 prev_first = PREV_INSN (insn);
765 twin = insn;
766 }
767 else
768 {
769 prev_first = NEXT_INSN (BB_HEAD (rec));
770 twin = PREV_INSN (BB_END (rec));
771 }
772
773 do
774 {
775 sd_iterator_def sd_it;
776 dep_t dep;
777
778 FOR_EACH_DEP (twin, SD_LIST_FORW, sd_it, dep)
779 {
780 rtx next;
781 int next_priority;
782
783 next = DEP_CON (dep);
784
785 if (BLOCK_FOR_INSN (next) != rec)
786 {
787 int cost;
788
789 if (!contributes_to_priority_p (dep))
790 continue;
791
792 if (twin == insn)
793 cost = dep_cost (dep);
794 else
795 {
796 struct _dep _dep1, *dep1 = &_dep1;
797
798 init_dep (dep1, insn, next, REG_DEP_ANTI);
799
800 cost = dep_cost (dep1);
801 }
802
803 next_priority = cost + priority (next);
804
805 if (next_priority > this_priority)
806 this_priority = next_priority;
807 }
808 }
809
810 twin = PREV_INSN (twin);
811 }
812 while (twin != prev_first);
813 }
814 INSN_PRIORITY (insn) = this_priority;
815 INSN_PRIORITY_STATUS (insn) = 1;
816 }
817
818 return INSN_PRIORITY (insn);
819 }
820 \f
821 /* Macros and functions for keeping the priority queue sorted, and
822 dealing with queuing and dequeuing of instructions. */
823
824 #define SCHED_SORT(READY, N_READY) \
825 do { if ((N_READY) == 2) \
826 swap_sort (READY, N_READY); \
827 else if ((N_READY) > 2) \
828 qsort (READY, N_READY, sizeof (rtx), rank_for_schedule); } \
829 while (0)
830
831 /* Returns a positive value if x is preferred; returns a negative value if
832 y is preferred. Should never return 0, since that will make the sort
833 unstable. */
834
835 static int
836 rank_for_schedule (const void *x, const void *y)
837 {
838 rtx tmp = *(const rtx *) y;
839 rtx tmp2 = *(const rtx *) x;
840 int tmp_class, tmp2_class;
841 int val, priority_val, weight_val, info_val;
842
843 /* The insn in a schedule group should be issued the first. */
844 if (SCHED_GROUP_P (tmp) != SCHED_GROUP_P (tmp2))
845 return SCHED_GROUP_P (tmp2) ? 1 : -1;
846
847 /* Make sure that priority of TMP and TMP2 are initialized. */
848 gcc_assert (INSN_PRIORITY_KNOWN (tmp) && INSN_PRIORITY_KNOWN (tmp2));
849
850 /* Prefer insn with higher priority. */
851 priority_val = INSN_PRIORITY (tmp2) - INSN_PRIORITY (tmp);
852
853 if (priority_val)
854 return priority_val;
855
856 /* Prefer speculative insn with greater dependencies weakness. */
857 if (spec_info)
858 {
859 ds_t ds1, ds2;
860 dw_t dw1, dw2;
861 int dw;
862
863 ds1 = TODO_SPEC (tmp) & SPECULATIVE;
864 if (ds1)
865 dw1 = dep_weak (ds1);
866 else
867 dw1 = NO_DEP_WEAK;
868
869 ds2 = TODO_SPEC (tmp2) & SPECULATIVE;
870 if (ds2)
871 dw2 = dep_weak (ds2);
872 else
873 dw2 = NO_DEP_WEAK;
874
875 dw = dw2 - dw1;
876 if (dw > (NO_DEP_WEAK / 8) || dw < -(NO_DEP_WEAK / 8))
877 return dw;
878 }
879
880 /* Prefer an insn with smaller contribution to registers-pressure. */
881 if (!reload_completed &&
882 (weight_val = INSN_REG_WEIGHT (tmp) - INSN_REG_WEIGHT (tmp2)))
883 return weight_val;
884
885 info_val = (*current_sched_info->rank) (tmp, tmp2);
886 if (info_val)
887 return info_val;
888
889 /* Compare insns based on their relation to the last-scheduled-insn. */
890 if (INSN_P (last_scheduled_insn))
891 {
892 dep_t dep1;
893 dep_t dep2;
894
895 /* Classify the instructions into three classes:
896 1) Data dependent on last schedule insn.
897 2) Anti/Output dependent on last scheduled insn.
898 3) Independent of last scheduled insn, or has latency of one.
899 Choose the insn from the highest numbered class if different. */
900 dep1 = sd_find_dep_between (last_scheduled_insn, tmp, true);
901
902 if (dep1 == NULL || dep_cost (dep1) == 1)
903 tmp_class = 3;
904 else if (/* Data dependence. */
905 DEP_TYPE (dep1) == REG_DEP_TRUE)
906 tmp_class = 1;
907 else
908 tmp_class = 2;
909
910 dep2 = sd_find_dep_between (last_scheduled_insn, tmp2, true);
911
912 if (dep2 == NULL || dep_cost (dep2) == 1)
913 tmp2_class = 3;
914 else if (/* Data dependence. */
915 DEP_TYPE (dep2) == REG_DEP_TRUE)
916 tmp2_class = 1;
917 else
918 tmp2_class = 2;
919
920 if ((val = tmp2_class - tmp_class))
921 return val;
922 }
923
924 /* Prefer the insn which has more later insns that depend on it.
925 This gives the scheduler more freedom when scheduling later
926 instructions at the expense of added register pressure. */
927
928 val = (sd_lists_size (tmp2, SD_LIST_FORW)
929 - sd_lists_size (tmp, SD_LIST_FORW));
930
931 if (val != 0)
932 return val;
933
934 /* If insns are equally good, sort by INSN_LUID (original insn order),
935 so that we make the sort stable. This minimizes instruction movement,
936 thus minimizing sched's effect on debugging and cross-jumping. */
937 return INSN_LUID (tmp) - INSN_LUID (tmp2);
938 }
939
940 /* Resort the array A in which only element at index N may be out of order. */
941
942 HAIFA_INLINE static void
943 swap_sort (rtx *a, int n)
944 {
945 rtx insn = a[n - 1];
946 int i = n - 2;
947
948 while (i >= 0 && rank_for_schedule (a + i, &insn) >= 0)
949 {
950 a[i + 1] = a[i];
951 i -= 1;
952 }
953 a[i + 1] = insn;
954 }
955
956 /* Add INSN to the insn queue so that it can be executed at least
957 N_CYCLES after the currently executing insn. Preserve insns
958 chain for debugging purposes. */
959
960 HAIFA_INLINE static void
961 queue_insn (rtx insn, int n_cycles)
962 {
963 int next_q = NEXT_Q_AFTER (q_ptr, n_cycles);
964 rtx link = alloc_INSN_LIST (insn, insn_queue[next_q]);
965
966 gcc_assert (n_cycles <= max_insn_queue_index);
967
968 insn_queue[next_q] = link;
969 q_size += 1;
970
971 if (sched_verbose >= 2)
972 {
973 fprintf (sched_dump, ";;\t\tReady-->Q: insn %s: ",
974 (*current_sched_info->print_insn) (insn, 0));
975
976 fprintf (sched_dump, "queued for %d cycles.\n", n_cycles);
977 }
978
979 QUEUE_INDEX (insn) = next_q;
980 }
981
982 /* Remove INSN from queue. */
983 static void
984 queue_remove (rtx insn)
985 {
986 gcc_assert (QUEUE_INDEX (insn) >= 0);
987 remove_free_INSN_LIST_elem (insn, &insn_queue[QUEUE_INDEX (insn)]);
988 q_size--;
989 QUEUE_INDEX (insn) = QUEUE_NOWHERE;
990 }
991
992 /* Return a pointer to the bottom of the ready list, i.e. the insn
993 with the lowest priority. */
994
995 HAIFA_INLINE static rtx *
996 ready_lastpos (struct ready_list *ready)
997 {
998 gcc_assert (ready->n_ready >= 1);
999 return ready->vec + ready->first - ready->n_ready + 1;
1000 }
1001
1002 /* Add an element INSN to the ready list so that it ends up with the
1003 lowest/highest priority depending on FIRST_P. */
1004
1005 HAIFA_INLINE static void
1006 ready_add (struct ready_list *ready, rtx insn, bool first_p)
1007 {
1008 if (!first_p)
1009 {
1010 if (ready->first == ready->n_ready)
1011 {
1012 memmove (ready->vec + ready->veclen - ready->n_ready,
1013 ready_lastpos (ready),
1014 ready->n_ready * sizeof (rtx));
1015 ready->first = ready->veclen - 1;
1016 }
1017 ready->vec[ready->first - ready->n_ready] = insn;
1018 }
1019 else
1020 {
1021 if (ready->first == ready->veclen - 1)
1022 {
1023 if (ready->n_ready)
1024 /* ready_lastpos() fails when called with (ready->n_ready == 0). */
1025 memmove (ready->vec + ready->veclen - ready->n_ready - 1,
1026 ready_lastpos (ready),
1027 ready->n_ready * sizeof (rtx));
1028 ready->first = ready->veclen - 2;
1029 }
1030 ready->vec[++(ready->first)] = insn;
1031 }
1032
1033 ready->n_ready++;
1034
1035 gcc_assert (QUEUE_INDEX (insn) != QUEUE_READY);
1036 QUEUE_INDEX (insn) = QUEUE_READY;
1037 }
1038
1039 /* Remove the element with the highest priority from the ready list and
1040 return it. */
1041
1042 HAIFA_INLINE static rtx
1043 ready_remove_first (struct ready_list *ready)
1044 {
1045 rtx t;
1046
1047 gcc_assert (ready->n_ready);
1048 t = ready->vec[ready->first--];
1049 ready->n_ready--;
1050 /* If the queue becomes empty, reset it. */
1051 if (ready->n_ready == 0)
1052 ready->first = ready->veclen - 1;
1053
1054 gcc_assert (QUEUE_INDEX (t) == QUEUE_READY);
1055 QUEUE_INDEX (t) = QUEUE_NOWHERE;
1056
1057 return t;
1058 }
1059
1060 /* The following code implements multi-pass scheduling for the first
1061 cycle. In other words, we will try to choose ready insn which
1062 permits to start maximum number of insns on the same cycle. */
1063
1064 /* Return a pointer to the element INDEX from the ready. INDEX for
1065 insn with the highest priority is 0, and the lowest priority has
1066 N_READY - 1. */
1067
1068 HAIFA_INLINE static rtx
1069 ready_element (struct ready_list *ready, int index)
1070 {
1071 gcc_assert (ready->n_ready && index < ready->n_ready);
1072
1073 return ready->vec[ready->first - index];
1074 }
1075
1076 /* Remove the element INDEX from the ready list and return it. INDEX
1077 for insn with the highest priority is 0, and the lowest priority
1078 has N_READY - 1. */
1079
1080 HAIFA_INLINE static rtx
1081 ready_remove (struct ready_list *ready, int index)
1082 {
1083 rtx t;
1084 int i;
1085
1086 if (index == 0)
1087 return ready_remove_first (ready);
1088 gcc_assert (ready->n_ready && index < ready->n_ready);
1089 t = ready->vec[ready->first - index];
1090 ready->n_ready--;
1091 for (i = index; i < ready->n_ready; i++)
1092 ready->vec[ready->first - i] = ready->vec[ready->first - i - 1];
1093 QUEUE_INDEX (t) = QUEUE_NOWHERE;
1094 return t;
1095 }
1096
1097 /* Remove INSN from the ready list. */
1098 static void
1099 ready_remove_insn (rtx insn)
1100 {
1101 int i;
1102
1103 for (i = 0; i < readyp->n_ready; i++)
1104 if (ready_element (readyp, i) == insn)
1105 {
1106 ready_remove (readyp, i);
1107 return;
1108 }
1109 gcc_unreachable ();
1110 }
1111
1112 /* Sort the ready list READY by ascending priority, using the SCHED_SORT
1113 macro. */
1114
1115 HAIFA_INLINE static void
1116 ready_sort (struct ready_list *ready)
1117 {
1118 rtx *first = ready_lastpos (ready);
1119 SCHED_SORT (first, ready->n_ready);
1120 }
1121
1122 /* PREV is an insn that is ready to execute. Adjust its priority if that
1123 will help shorten or lengthen register lifetimes as appropriate. Also
1124 provide a hook for the target to tweek itself. */
1125
1126 HAIFA_INLINE static void
1127 adjust_priority (rtx prev)
1128 {
1129 /* ??? There used to be code here to try and estimate how an insn
1130 affected register lifetimes, but it did it by looking at REG_DEAD
1131 notes, which we removed in schedule_region. Nor did it try to
1132 take into account register pressure or anything useful like that.
1133
1134 Revisit when we have a machine model to work with and not before. */
1135
1136 if (targetm.sched.adjust_priority)
1137 INSN_PRIORITY (prev) =
1138 targetm.sched.adjust_priority (prev, INSN_PRIORITY (prev));
1139 }
1140
1141 /* Advance time on one cycle. */
1142 HAIFA_INLINE static void
1143 advance_one_cycle (void)
1144 {
1145 if (targetm.sched.dfa_pre_advance_cycle)
1146 targetm.sched.dfa_pre_advance_cycle ();
1147
1148 if (targetm.sched.dfa_pre_cycle_insn)
1149 state_transition (curr_state,
1150 targetm.sched.dfa_pre_cycle_insn ());
1151
1152 state_transition (curr_state, NULL);
1153
1154 if (targetm.sched.dfa_post_cycle_insn)
1155 state_transition (curr_state,
1156 targetm.sched.dfa_post_cycle_insn ());
1157
1158 if (targetm.sched.dfa_post_advance_cycle)
1159 targetm.sched.dfa_post_advance_cycle ();
1160 }
1161
1162 /* Clock at which the previous instruction was issued. */
1163 static int last_clock_var;
1164
1165 /* INSN is the "currently executing insn". Launch each insn which was
1166 waiting on INSN. READY is the ready list which contains the insns
1167 that are ready to fire. CLOCK is the current cycle. The function
1168 returns necessary cycle advance after issuing the insn (it is not
1169 zero for insns in a schedule group). */
1170
1171 static int
1172 schedule_insn (rtx insn)
1173 {
1174 sd_iterator_def sd_it;
1175 dep_t dep;
1176 int advance = 0;
1177
1178 if (sched_verbose >= 1)
1179 {
1180 char buf[2048];
1181
1182 print_insn (buf, insn, 0);
1183 buf[40] = 0;
1184 fprintf (sched_dump, ";;\t%3i--> %-40s:", clock_var, buf);
1185
1186 if (recog_memoized (insn) < 0)
1187 fprintf (sched_dump, "nothing");
1188 else
1189 print_reservation (sched_dump, insn);
1190 fputc ('\n', sched_dump);
1191 }
1192
1193 /* Scheduling instruction should have all its dependencies resolved and
1194 should have been removed from the ready list. */
1195 gcc_assert (sd_lists_empty_p (insn, SD_LIST_BACK));
1196
1197 gcc_assert (QUEUE_INDEX (insn) == QUEUE_NOWHERE);
1198 QUEUE_INDEX (insn) = QUEUE_SCHEDULED;
1199
1200 gcc_assert (INSN_TICK (insn) >= MIN_TICK);
1201 if (INSN_TICK (insn) > clock_var)
1202 /* INSN has been prematurely moved from the queue to the ready list.
1203 This is possible only if following flag is set. */
1204 gcc_assert (flag_sched_stalled_insns);
1205
1206 /* ??? Probably, if INSN is scheduled prematurely, we should leave
1207 INSN_TICK untouched. This is a machine-dependent issue, actually. */
1208 INSN_TICK (insn) = clock_var;
1209
1210 /* Update dependent instructions. */
1211 for (sd_it = sd_iterator_start (insn, SD_LIST_FORW);
1212 sd_iterator_cond (&sd_it, &dep);)
1213 {
1214 rtx next = DEP_CON (dep);
1215
1216 /* Resolve the dependence between INSN and NEXT.
1217 sd_resolve_dep () moves current dep to another list thus
1218 advancing the iterator. */
1219 sd_resolve_dep (sd_it);
1220
1221 if (!IS_SPECULATION_BRANCHY_CHECK_P (insn))
1222 {
1223 int effective_cost;
1224
1225 effective_cost = try_ready (next);
1226
1227 if (effective_cost >= 0
1228 && SCHED_GROUP_P (next)
1229 && advance < effective_cost)
1230 advance = effective_cost;
1231 }
1232 else
1233 /* Check always has only one forward dependence (to the first insn in
1234 the recovery block), therefore, this will be executed only once. */
1235 {
1236 gcc_assert (sd_lists_empty_p (insn, SD_LIST_FORW));
1237 fix_recovery_deps (RECOVERY_BLOCK (insn));
1238 }
1239 }
1240
1241 /* This is the place where scheduler doesn't *basically* need backward and
1242 forward dependencies for INSN anymore. Nevertheless they are used in
1243 heuristics in rank_for_schedule (), early_queue_to_ready () and in
1244 some targets (e.g. rs6000). Thus the earliest place where we *can*
1245 remove dependencies is after targetm.sched.md_finish () call in
1246 schedule_block (). But, on the other side, the safest place to remove
1247 dependencies is when we are finishing scheduling entire region. As we
1248 don't generate [many] dependencies during scheduling itself, we won't
1249 need memory until beginning of next region.
1250 Bottom line: Dependencies are removed for all insns in the end of
1251 scheduling the region. */
1252
1253 /* Annotate the instruction with issue information -- TImode
1254 indicates that the instruction is expected not to be able
1255 to issue on the same cycle as the previous insn. A machine
1256 may use this information to decide how the instruction should
1257 be aligned. */
1258 if (issue_rate > 1
1259 && GET_CODE (PATTERN (insn)) != USE
1260 && GET_CODE (PATTERN (insn)) != CLOBBER)
1261 {
1262 if (reload_completed)
1263 PUT_MODE (insn, clock_var > last_clock_var ? TImode : VOIDmode);
1264 last_clock_var = clock_var;
1265 }
1266
1267 return advance;
1268 }
1269
1270 /* Functions for handling of notes. */
1271
1272 /* Delete notes beginning with INSN and put them in the chain
1273 of notes ended by NOTE_LIST.
1274 Returns the insn following the notes. */
1275
1276 static rtx
1277 unlink_other_notes (rtx insn, rtx tail)
1278 {
1279 rtx prev = PREV_INSN (insn);
1280
1281 while (insn != tail && NOTE_NOT_BB_P (insn))
1282 {
1283 rtx next = NEXT_INSN (insn);
1284 basic_block bb = BLOCK_FOR_INSN (insn);
1285
1286 /* Delete the note from its current position. */
1287 if (prev)
1288 NEXT_INSN (prev) = next;
1289 if (next)
1290 PREV_INSN (next) = prev;
1291
1292 if (bb)
1293 {
1294 /* Basic block can begin with either LABEL or
1295 NOTE_INSN_BASIC_BLOCK. */
1296 gcc_assert (BB_HEAD (bb) != insn);
1297
1298 /* Check if we are removing last insn in the BB. */
1299 if (BB_END (bb) == insn)
1300 BB_END (bb) = prev;
1301 }
1302
1303 /* See sched_analyze to see how these are handled. */
1304 if (NOTE_KIND (insn) != NOTE_INSN_EH_REGION_BEG
1305 && NOTE_KIND (insn) != NOTE_INSN_EH_REGION_END)
1306 {
1307 /* Insert the note at the end of the notes list. */
1308 PREV_INSN (insn) = note_list;
1309 if (note_list)
1310 NEXT_INSN (note_list) = insn;
1311 note_list = insn;
1312 }
1313
1314 insn = next;
1315 }
1316 return insn;
1317 }
1318
1319 /* Return the head and tail pointers of ebb starting at BEG and ending
1320 at END. */
1321
1322 void
1323 get_ebb_head_tail (basic_block beg, basic_block end, rtx *headp, rtx *tailp)
1324 {
1325 rtx beg_head = BB_HEAD (beg);
1326 rtx beg_tail = BB_END (beg);
1327 rtx end_head = BB_HEAD (end);
1328 rtx end_tail = BB_END (end);
1329
1330 /* Don't include any notes or labels at the beginning of the BEG
1331 basic block, or notes at the end of the END basic blocks. */
1332
1333 if (LABEL_P (beg_head))
1334 beg_head = NEXT_INSN (beg_head);
1335
1336 while (beg_head != beg_tail)
1337 if (NOTE_P (beg_head))
1338 beg_head = NEXT_INSN (beg_head);
1339 else
1340 break;
1341
1342 *headp = beg_head;
1343
1344 if (beg == end)
1345 end_head = beg_head;
1346 else if (LABEL_P (end_head))
1347 end_head = NEXT_INSN (end_head);
1348
1349 while (end_head != end_tail)
1350 if (NOTE_P (end_tail))
1351 end_tail = PREV_INSN (end_tail);
1352 else
1353 break;
1354
1355 *tailp = end_tail;
1356 }
1357
1358 /* Return nonzero if there are no real insns in the range [ HEAD, TAIL ]. */
1359
1360 int
1361 no_real_insns_p (const_rtx head, const_rtx tail)
1362 {
1363 while (head != NEXT_INSN (tail))
1364 {
1365 if (!NOTE_P (head) && !LABEL_P (head))
1366 return 0;
1367 head = NEXT_INSN (head);
1368 }
1369 return 1;
1370 }
1371
1372 /* Delete notes between HEAD and TAIL and put them in the chain
1373 of notes ended by NOTE_LIST. */
1374
1375 void
1376 rm_other_notes (rtx head, rtx tail)
1377 {
1378 rtx next_tail;
1379 rtx insn;
1380
1381 note_list = 0;
1382 if (head == tail && (! INSN_P (head)))
1383 return;
1384
1385 next_tail = NEXT_INSN (tail);
1386 for (insn = head; insn != next_tail; insn = NEXT_INSN (insn))
1387 {
1388 rtx prev;
1389
1390 /* Farm out notes, and maybe save them in NOTE_LIST.
1391 This is needed to keep the debugger from
1392 getting completely deranged. */
1393 if (NOTE_NOT_BB_P (insn))
1394 {
1395 prev = insn;
1396
1397 insn = unlink_other_notes (insn, next_tail);
1398
1399 gcc_assert (prev != tail && prev != head && insn != next_tail);
1400 }
1401 }
1402 }
1403
1404 /* Functions for computation of registers live/usage info. */
1405
1406 /* This function looks for a new register being defined.
1407 If the destination register is already used by the source,
1408 a new register is not needed. */
1409
1410 static int
1411 find_set_reg_weight (const_rtx x)
1412 {
1413 if (GET_CODE (x) == CLOBBER
1414 && register_operand (SET_DEST (x), VOIDmode))
1415 return 1;
1416 if (GET_CODE (x) == SET
1417 && register_operand (SET_DEST (x), VOIDmode))
1418 {
1419 if (REG_P (SET_DEST (x)))
1420 {
1421 if (!reg_mentioned_p (SET_DEST (x), SET_SRC (x)))
1422 return 1;
1423 else
1424 return 0;
1425 }
1426 return 1;
1427 }
1428 return 0;
1429 }
1430
1431 /* Calculate INSN_REG_WEIGHT for all insns of a block. */
1432
1433 static void
1434 find_insn_reg_weight (basic_block bb)
1435 {
1436 rtx insn, next_tail, head, tail;
1437
1438 get_ebb_head_tail (bb, bb, &head, &tail);
1439 next_tail = NEXT_INSN (tail);
1440
1441 for (insn = head; insn != next_tail; insn = NEXT_INSN (insn))
1442 find_insn_reg_weight1 (insn);
1443 }
1444
1445 /* Calculate INSN_REG_WEIGHT for single instruction.
1446 Separated from find_insn_reg_weight because of need
1447 to initialize new instruction in generate_recovery_code. */
1448 static void
1449 find_insn_reg_weight1 (rtx insn)
1450 {
1451 int reg_weight = 0;
1452 rtx x;
1453
1454 /* Handle register life information. */
1455 if (! INSN_P (insn))
1456 return;
1457
1458 /* Increment weight for each register born here. */
1459 x = PATTERN (insn);
1460 reg_weight += find_set_reg_weight (x);
1461 if (GET_CODE (x) == PARALLEL)
1462 {
1463 int j;
1464 for (j = XVECLEN (x, 0) - 1; j >= 0; j--)
1465 {
1466 x = XVECEXP (PATTERN (insn), 0, j);
1467 reg_weight += find_set_reg_weight (x);
1468 }
1469 }
1470 /* Decrement weight for each register that dies here. */
1471 for (x = REG_NOTES (insn); x; x = XEXP (x, 1))
1472 {
1473 if (REG_NOTE_KIND (x) == REG_DEAD
1474 || REG_NOTE_KIND (x) == REG_UNUSED)
1475 reg_weight--;
1476 }
1477
1478 INSN_REG_WEIGHT (insn) = reg_weight;
1479 }
1480
1481 /* Move insns that became ready to fire from queue to ready list. */
1482
1483 static void
1484 queue_to_ready (struct ready_list *ready)
1485 {
1486 rtx insn;
1487 rtx link;
1488 rtx skip_insn;
1489
1490 q_ptr = NEXT_Q (q_ptr);
1491
1492 if (dbg_cnt (sched_insn) == false)
1493 /* If debug counter is activated do not requeue insn next after
1494 last_scheduled_insn. */
1495 skip_insn = next_nonnote_insn (last_scheduled_insn);
1496 else
1497 skip_insn = NULL_RTX;
1498
1499 /* Add all pending insns that can be scheduled without stalls to the
1500 ready list. */
1501 for (link = insn_queue[q_ptr]; link; link = XEXP (link, 1))
1502 {
1503 insn = XEXP (link, 0);
1504 q_size -= 1;
1505
1506 if (sched_verbose >= 2)
1507 fprintf (sched_dump, ";;\t\tQ-->Ready: insn %s: ",
1508 (*current_sched_info->print_insn) (insn, 0));
1509
1510 /* If the ready list is full, delay the insn for 1 cycle.
1511 See the comment in schedule_block for the rationale. */
1512 if (!reload_completed
1513 && ready->n_ready > MAX_SCHED_READY_INSNS
1514 && !SCHED_GROUP_P (insn)
1515 && insn != skip_insn)
1516 {
1517 if (sched_verbose >= 2)
1518 fprintf (sched_dump, "requeued because ready full\n");
1519 queue_insn (insn, 1);
1520 }
1521 else
1522 {
1523 ready_add (ready, insn, false);
1524 if (sched_verbose >= 2)
1525 fprintf (sched_dump, "moving to ready without stalls\n");
1526 }
1527 }
1528 free_INSN_LIST_list (&insn_queue[q_ptr]);
1529
1530 /* If there are no ready insns, stall until one is ready and add all
1531 of the pending insns at that point to the ready list. */
1532 if (ready->n_ready == 0)
1533 {
1534 int stalls;
1535
1536 for (stalls = 1; stalls <= max_insn_queue_index; stalls++)
1537 {
1538 if ((link = insn_queue[NEXT_Q_AFTER (q_ptr, stalls)]))
1539 {
1540 for (; link; link = XEXP (link, 1))
1541 {
1542 insn = XEXP (link, 0);
1543 q_size -= 1;
1544
1545 if (sched_verbose >= 2)
1546 fprintf (sched_dump, ";;\t\tQ-->Ready: insn %s: ",
1547 (*current_sched_info->print_insn) (insn, 0));
1548
1549 ready_add (ready, insn, false);
1550 if (sched_verbose >= 2)
1551 fprintf (sched_dump, "moving to ready with %d stalls\n", stalls);
1552 }
1553 free_INSN_LIST_list (&insn_queue[NEXT_Q_AFTER (q_ptr, stalls)]);
1554
1555 advance_one_cycle ();
1556
1557 break;
1558 }
1559
1560 advance_one_cycle ();
1561 }
1562
1563 q_ptr = NEXT_Q_AFTER (q_ptr, stalls);
1564 clock_var += stalls;
1565 }
1566 }
1567
1568 /* Used by early_queue_to_ready. Determines whether it is "ok" to
1569 prematurely move INSN from the queue to the ready list. Currently,
1570 if a target defines the hook 'is_costly_dependence', this function
1571 uses the hook to check whether there exist any dependences which are
1572 considered costly by the target, between INSN and other insns that
1573 have already been scheduled. Dependences are checked up to Y cycles
1574 back, with default Y=1; The flag -fsched-stalled-insns-dep=Y allows
1575 controlling this value.
1576 (Other considerations could be taken into account instead (or in
1577 addition) depending on user flags and target hooks. */
1578
1579 static bool
1580 ok_for_early_queue_removal (rtx insn)
1581 {
1582 int n_cycles;
1583 rtx prev_insn = last_scheduled_insn;
1584
1585 if (targetm.sched.is_costly_dependence)
1586 {
1587 for (n_cycles = flag_sched_stalled_insns_dep; n_cycles; n_cycles--)
1588 {
1589 for ( ; prev_insn; prev_insn = PREV_INSN (prev_insn))
1590 {
1591 int cost;
1592
1593 if (!NOTE_P (prev_insn))
1594 {
1595 dep_t dep;
1596
1597 dep = sd_find_dep_between (prev_insn, insn, true);
1598
1599 if (dep != NULL)
1600 {
1601 cost = dep_cost (dep);
1602
1603 if (targetm.sched.is_costly_dependence (dep, cost,
1604 flag_sched_stalled_insns_dep - n_cycles))
1605 return false;
1606 }
1607 }
1608
1609 if (GET_MODE (prev_insn) == TImode) /* end of dispatch group */
1610 break;
1611 }
1612
1613 if (!prev_insn)
1614 break;
1615 prev_insn = PREV_INSN (prev_insn);
1616 }
1617 }
1618
1619 return true;
1620 }
1621
1622
1623 /* Remove insns from the queue, before they become "ready" with respect
1624 to FU latency considerations. */
1625
1626 static int
1627 early_queue_to_ready (state_t state, struct ready_list *ready)
1628 {
1629 rtx insn;
1630 rtx link;
1631 rtx next_link;
1632 rtx prev_link;
1633 bool move_to_ready;
1634 int cost;
1635 state_t temp_state = alloca (dfa_state_size);
1636 int stalls;
1637 int insns_removed = 0;
1638
1639 /*
1640 Flag '-fsched-stalled-insns=X' determines the aggressiveness of this
1641 function:
1642
1643 X == 0: There is no limit on how many queued insns can be removed
1644 prematurely. (flag_sched_stalled_insns = -1).
1645
1646 X >= 1: Only X queued insns can be removed prematurely in each
1647 invocation. (flag_sched_stalled_insns = X).
1648
1649 Otherwise: Early queue removal is disabled.
1650 (flag_sched_stalled_insns = 0)
1651 */
1652
1653 if (! flag_sched_stalled_insns)
1654 return 0;
1655
1656 for (stalls = 0; stalls <= max_insn_queue_index; stalls++)
1657 {
1658 if ((link = insn_queue[NEXT_Q_AFTER (q_ptr, stalls)]))
1659 {
1660 if (sched_verbose > 6)
1661 fprintf (sched_dump, ";; look at index %d + %d\n", q_ptr, stalls);
1662
1663 prev_link = 0;
1664 while (link)
1665 {
1666 next_link = XEXP (link, 1);
1667 insn = XEXP (link, 0);
1668 if (insn && sched_verbose > 6)
1669 print_rtl_single (sched_dump, insn);
1670
1671 memcpy (temp_state, state, dfa_state_size);
1672 if (recog_memoized (insn) < 0)
1673 /* non-negative to indicate that it's not ready
1674 to avoid infinite Q->R->Q->R... */
1675 cost = 0;
1676 else
1677 cost = state_transition (temp_state, insn);
1678
1679 if (sched_verbose >= 6)
1680 fprintf (sched_dump, "transition cost = %d\n", cost);
1681
1682 move_to_ready = false;
1683 if (cost < 0)
1684 {
1685 move_to_ready = ok_for_early_queue_removal (insn);
1686 if (move_to_ready == true)
1687 {
1688 /* move from Q to R */
1689 q_size -= 1;
1690 ready_add (ready, insn, false);
1691
1692 if (prev_link)
1693 XEXP (prev_link, 1) = next_link;
1694 else
1695 insn_queue[NEXT_Q_AFTER (q_ptr, stalls)] = next_link;
1696
1697 free_INSN_LIST_node (link);
1698
1699 if (sched_verbose >= 2)
1700 fprintf (sched_dump, ";;\t\tEarly Q-->Ready: insn %s\n",
1701 (*current_sched_info->print_insn) (insn, 0));
1702
1703 insns_removed++;
1704 if (insns_removed == flag_sched_stalled_insns)
1705 /* Remove no more than flag_sched_stalled_insns insns
1706 from Q at a time. */
1707 return insns_removed;
1708 }
1709 }
1710
1711 if (move_to_ready == false)
1712 prev_link = link;
1713
1714 link = next_link;
1715 } /* while link */
1716 } /* if link */
1717
1718 } /* for stalls.. */
1719
1720 return insns_removed;
1721 }
1722
1723
1724 /* Print the ready list for debugging purposes. Callable from debugger. */
1725
1726 static void
1727 debug_ready_list (struct ready_list *ready)
1728 {
1729 rtx *p;
1730 int i;
1731
1732 if (ready->n_ready == 0)
1733 {
1734 fprintf (sched_dump, "\n");
1735 return;
1736 }
1737
1738 p = ready_lastpos (ready);
1739 for (i = 0; i < ready->n_ready; i++)
1740 fprintf (sched_dump, " %s", (*current_sched_info->print_insn) (p[i], 0));
1741 fprintf (sched_dump, "\n");
1742 }
1743
1744 /* Search INSN for REG_SAVE_NOTE note pairs for
1745 NOTE_INSN_EHREGION_{BEG,END}; and convert them back into
1746 NOTEs. The REG_SAVE_NOTE note following first one is contains the
1747 saved value for NOTE_BLOCK_NUMBER which is useful for
1748 NOTE_INSN_EH_REGION_{BEG,END} NOTEs. */
1749
1750 static void
1751 reemit_notes (rtx insn)
1752 {
1753 rtx note, last = insn;
1754
1755 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
1756 {
1757 if (REG_NOTE_KIND (note) == REG_SAVE_NOTE)
1758 {
1759 enum insn_note note_type = INTVAL (XEXP (note, 0));
1760
1761 last = emit_note_before (note_type, last);
1762 remove_note (insn, note);
1763 }
1764 }
1765 }
1766
1767 /* Move INSN. Reemit notes if needed. Update CFG, if needed. */
1768 static void
1769 move_insn (rtx insn)
1770 {
1771 rtx last = last_scheduled_insn;
1772
1773 if (PREV_INSN (insn) != last)
1774 {
1775 basic_block bb;
1776 rtx note;
1777 int jump_p = 0;
1778
1779 bb = BLOCK_FOR_INSN (insn);
1780
1781 /* BB_HEAD is either LABEL or NOTE. */
1782 gcc_assert (BB_HEAD (bb) != insn);
1783
1784 if (BB_END (bb) == insn)
1785 /* If this is last instruction in BB, move end marker one
1786 instruction up. */
1787 {
1788 /* Jumps are always placed at the end of basic block. */
1789 jump_p = control_flow_insn_p (insn);
1790
1791 gcc_assert (!jump_p
1792 || ((current_sched_info->flags & SCHED_RGN)
1793 && IS_SPECULATION_BRANCHY_CHECK_P (insn))
1794 || (current_sched_info->flags & SCHED_EBB));
1795
1796 gcc_assert (BLOCK_FOR_INSN (PREV_INSN (insn)) == bb);
1797
1798 BB_END (bb) = PREV_INSN (insn);
1799 }
1800
1801 gcc_assert (BB_END (bb) != last);
1802
1803 if (jump_p)
1804 /* We move the block note along with jump. */
1805 {
1806 /* NT is needed for assertion below. */
1807 rtx nt = current_sched_info->next_tail;
1808
1809 note = NEXT_INSN (insn);
1810 while (NOTE_NOT_BB_P (note) && note != nt)
1811 note = NEXT_INSN (note);
1812
1813 if (note != nt
1814 && (LABEL_P (note)
1815 || BARRIER_P (note)))
1816 note = NEXT_INSN (note);
1817
1818 gcc_assert (NOTE_INSN_BASIC_BLOCK_P (note));
1819 }
1820 else
1821 note = insn;
1822
1823 NEXT_INSN (PREV_INSN (insn)) = NEXT_INSN (note);
1824 PREV_INSN (NEXT_INSN (note)) = PREV_INSN (insn);
1825
1826 NEXT_INSN (note) = NEXT_INSN (last);
1827 PREV_INSN (NEXT_INSN (last)) = note;
1828
1829 NEXT_INSN (last) = insn;
1830 PREV_INSN (insn) = last;
1831
1832 bb = BLOCK_FOR_INSN (last);
1833
1834 if (jump_p)
1835 {
1836 fix_jump_move (insn);
1837
1838 if (BLOCK_FOR_INSN (insn) != bb)
1839 move_block_after_check (insn);
1840
1841 gcc_assert (BB_END (bb) == last);
1842 }
1843
1844 set_block_for_insn (insn, bb);
1845 df_insn_change_bb (insn);
1846
1847 /* Update BB_END, if needed. */
1848 if (BB_END (bb) == last)
1849 BB_END (bb) = insn;
1850 }
1851
1852 reemit_notes (insn);
1853
1854 SCHED_GROUP_P (insn) = 0;
1855 }
1856
1857 /* The following structure describe an entry of the stack of choices. */
1858 struct choice_entry
1859 {
1860 /* Ordinal number of the issued insn in the ready queue. */
1861 int index;
1862 /* The number of the rest insns whose issues we should try. */
1863 int rest;
1864 /* The number of issued essential insns. */
1865 int n;
1866 /* State after issuing the insn. */
1867 state_t state;
1868 };
1869
1870 /* The following array is used to implement a stack of choices used in
1871 function max_issue. */
1872 static struct choice_entry *choice_stack;
1873
1874 /* The following variable value is number of essential insns issued on
1875 the current cycle. An insn is essential one if it changes the
1876 processors state. */
1877 static int cycle_issued_insns;
1878
1879 /* The following variable value is maximal number of tries of issuing
1880 insns for the first cycle multipass insn scheduling. We define
1881 this value as constant*(DFA_LOOKAHEAD**ISSUE_RATE). We would not
1882 need this constraint if all real insns (with non-negative codes)
1883 had reservations because in this case the algorithm complexity is
1884 O(DFA_LOOKAHEAD**ISSUE_RATE). Unfortunately, the dfa descriptions
1885 might be incomplete and such insn might occur. For such
1886 descriptions, the complexity of algorithm (without the constraint)
1887 could achieve DFA_LOOKAHEAD ** N , where N is the queue length. */
1888 static int max_lookahead_tries;
1889
1890 /* The following value is value of hook
1891 `first_cycle_multipass_dfa_lookahead' at the last call of
1892 `max_issue'. */
1893 static int cached_first_cycle_multipass_dfa_lookahead = 0;
1894
1895 /* The following value is value of `issue_rate' at the last call of
1896 `sched_init'. */
1897 static int cached_issue_rate = 0;
1898
1899 /* The following function returns maximal (or close to maximal) number
1900 of insns which can be issued on the same cycle and one of which
1901 insns is insns with the best rank (the first insn in READY). To
1902 make this function tries different samples of ready insns. READY
1903 is current queue `ready'. Global array READY_TRY reflects what
1904 insns are already issued in this try. MAX_POINTS is the sum of points
1905 of all instructions in READY. The function stops immediately,
1906 if it reached the such a solution, that all instruction can be issued.
1907 INDEX will contain index of the best insn in READY. The following
1908 function is used only for first cycle multipass scheduling. */
1909 static int
1910 max_issue (struct ready_list *ready, int *index, int max_points)
1911 {
1912 int n, i, all, n_ready, best, delay, tries_num, points = -1;
1913 struct choice_entry *top;
1914 rtx insn;
1915
1916 best = 0;
1917 memcpy (choice_stack->state, curr_state, dfa_state_size);
1918 top = choice_stack;
1919 top->rest = cached_first_cycle_multipass_dfa_lookahead;
1920 top->n = 0;
1921 n_ready = ready->n_ready;
1922 for (all = i = 0; i < n_ready; i++)
1923 if (!ready_try [i])
1924 all++;
1925 i = 0;
1926 tries_num = 0;
1927 for (;;)
1928 {
1929 if (top->rest == 0 || i >= n_ready)
1930 {
1931 if (top == choice_stack)
1932 break;
1933 if (best < top - choice_stack && ready_try [0])
1934 {
1935 best = top - choice_stack;
1936 *index = choice_stack [1].index;
1937 points = top->n;
1938 if (top->n == max_points || best == all)
1939 break;
1940 }
1941 i = top->index;
1942 ready_try [i] = 0;
1943 top--;
1944 memcpy (curr_state, top->state, dfa_state_size);
1945 }
1946 else if (!ready_try [i])
1947 {
1948 tries_num++;
1949 if (tries_num > max_lookahead_tries)
1950 break;
1951 insn = ready_element (ready, i);
1952 delay = state_transition (curr_state, insn);
1953 if (delay < 0)
1954 {
1955 if (state_dead_lock_p (curr_state))
1956 top->rest = 0;
1957 else
1958 top->rest--;
1959 n = top->n;
1960 if (memcmp (top->state, curr_state, dfa_state_size) != 0)
1961 n += ISSUE_POINTS (insn);
1962 top++;
1963 top->rest = cached_first_cycle_multipass_dfa_lookahead;
1964 top->index = i;
1965 top->n = n;
1966 memcpy (top->state, curr_state, dfa_state_size);
1967 ready_try [i] = 1;
1968 i = -1;
1969 }
1970 }
1971 i++;
1972 }
1973 while (top != choice_stack)
1974 {
1975 ready_try [top->index] = 0;
1976 top--;
1977 }
1978 memcpy (curr_state, choice_stack->state, dfa_state_size);
1979
1980 if (sched_verbose >= 4)
1981 fprintf (sched_dump, ";;\t\tChoosed insn : %s; points: %d/%d\n",
1982 (*current_sched_info->print_insn) (ready_element (ready, *index),
1983 0),
1984 points, max_points);
1985
1986 return best;
1987 }
1988
1989 /* The following function chooses insn from READY and modifies
1990 *N_READY and READY. The following function is used only for first
1991 cycle multipass scheduling.
1992 Return:
1993 -1 if cycle should be advanced,
1994 0 if INSN_PTR is set to point to the desirable insn,
1995 1 if choose_ready () should be restarted without advancing the cycle. */
1996 static int
1997 choose_ready (struct ready_list *ready, rtx *insn_ptr)
1998 {
1999 int lookahead;
2000
2001 if (dbg_cnt (sched_insn) == false)
2002 {
2003 rtx insn;
2004
2005 insn = next_nonnote_insn (last_scheduled_insn);
2006
2007 if (QUEUE_INDEX (insn) == QUEUE_READY)
2008 /* INSN is in the ready_list. */
2009 {
2010 ready_remove_insn (insn);
2011 *insn_ptr = insn;
2012 return 0;
2013 }
2014
2015 /* INSN is in the queue. Advance cycle to move it to the ready list. */
2016 return -1;
2017 }
2018
2019 lookahead = 0;
2020
2021 if (targetm.sched.first_cycle_multipass_dfa_lookahead)
2022 lookahead = targetm.sched.first_cycle_multipass_dfa_lookahead ();
2023 if (lookahead <= 0 || SCHED_GROUP_P (ready_element (ready, 0)))
2024 {
2025 *insn_ptr = ready_remove_first (ready);
2026 return 0;
2027 }
2028 else
2029 {
2030 /* Try to choose the better insn. */
2031 int index = 0, i, n;
2032 rtx insn;
2033 int more_issue, max_points, try_data = 1, try_control = 1;
2034
2035 if (cached_first_cycle_multipass_dfa_lookahead != lookahead)
2036 {
2037 cached_first_cycle_multipass_dfa_lookahead = lookahead;
2038 max_lookahead_tries = 100;
2039 for (i = 0; i < issue_rate; i++)
2040 max_lookahead_tries *= lookahead;
2041 }
2042 insn = ready_element (ready, 0);
2043 if (INSN_CODE (insn) < 0)
2044 {
2045 *insn_ptr = ready_remove_first (ready);
2046 return 0;
2047 }
2048
2049 if (spec_info
2050 && spec_info->flags & (PREFER_NON_DATA_SPEC
2051 | PREFER_NON_CONTROL_SPEC))
2052 {
2053 for (i = 0, n = ready->n_ready; i < n; i++)
2054 {
2055 rtx x;
2056 ds_t s;
2057
2058 x = ready_element (ready, i);
2059 s = TODO_SPEC (x);
2060
2061 if (spec_info->flags & PREFER_NON_DATA_SPEC
2062 && !(s & DATA_SPEC))
2063 {
2064 try_data = 0;
2065 if (!(spec_info->flags & PREFER_NON_CONTROL_SPEC)
2066 || !try_control)
2067 break;
2068 }
2069
2070 if (spec_info->flags & PREFER_NON_CONTROL_SPEC
2071 && !(s & CONTROL_SPEC))
2072 {
2073 try_control = 0;
2074 if (!(spec_info->flags & PREFER_NON_DATA_SPEC) || !try_data)
2075 break;
2076 }
2077 }
2078 }
2079
2080 if ((!try_data && (TODO_SPEC (insn) & DATA_SPEC))
2081 || (!try_control && (TODO_SPEC (insn) & CONTROL_SPEC))
2082 || (targetm.sched.first_cycle_multipass_dfa_lookahead_guard_spec
2083 && !targetm.sched.first_cycle_multipass_dfa_lookahead_guard_spec
2084 (insn)))
2085 /* Discard speculative instruction that stands first in the ready
2086 list. */
2087 {
2088 change_queue_index (insn, 1);
2089 return 1;
2090 }
2091
2092 max_points = ISSUE_POINTS (insn);
2093 more_issue = issue_rate - cycle_issued_insns - 1;
2094
2095 for (i = 1; i < ready->n_ready; i++)
2096 {
2097 insn = ready_element (ready, i);
2098 ready_try [i]
2099 = (INSN_CODE (insn) < 0
2100 || (!try_data && (TODO_SPEC (insn) & DATA_SPEC))
2101 || (!try_control && (TODO_SPEC (insn) & CONTROL_SPEC))
2102 || (targetm.sched.first_cycle_multipass_dfa_lookahead_guard
2103 && !targetm.sched.first_cycle_multipass_dfa_lookahead_guard
2104 (insn)));
2105
2106 if (!ready_try [i] && more_issue-- > 0)
2107 max_points += ISSUE_POINTS (insn);
2108 }
2109
2110 if (max_issue (ready, &index, max_points) == 0)
2111 {
2112 *insn_ptr = ready_remove_first (ready);
2113 return 0;
2114 }
2115 else
2116 {
2117 *insn_ptr = ready_remove (ready, index);
2118 return 0;
2119 }
2120 }
2121 }
2122
2123 /* Use forward list scheduling to rearrange insns of block pointed to by
2124 TARGET_BB, possibly bringing insns from subsequent blocks in the same
2125 region. */
2126
2127 void
2128 schedule_block (basic_block *target_bb, int rgn_n_insns1)
2129 {
2130 struct ready_list ready;
2131 int i, first_cycle_insn_p;
2132 int can_issue_more;
2133 state_t temp_state = NULL; /* It is used for multipass scheduling. */
2134 int sort_p, advance, start_clock_var;
2135
2136 /* Head/tail info for this block. */
2137 rtx prev_head = current_sched_info->prev_head;
2138 rtx next_tail = current_sched_info->next_tail;
2139 rtx head = NEXT_INSN (prev_head);
2140 rtx tail = PREV_INSN (next_tail);
2141
2142 /* We used to have code to avoid getting parameters moved from hard
2143 argument registers into pseudos.
2144
2145 However, it was removed when it proved to be of marginal benefit
2146 and caused problems because schedule_block and compute_forward_dependences
2147 had different notions of what the "head" insn was. */
2148
2149 gcc_assert (head != tail || INSN_P (head));
2150
2151 haifa_recovery_bb_recently_added_p = false;
2152
2153 /* Debug info. */
2154 if (sched_verbose)
2155 dump_new_block_header (0, *target_bb, head, tail);
2156
2157 state_reset (curr_state);
2158
2159 /* Allocate the ready list. */
2160 readyp = &ready;
2161 ready.vec = NULL;
2162 ready_try = NULL;
2163 choice_stack = NULL;
2164
2165 rgn_n_insns = -1;
2166 extend_ready (rgn_n_insns1 + 1);
2167
2168 ready.first = ready.veclen - 1;
2169 ready.n_ready = 0;
2170
2171 /* It is used for first cycle multipass scheduling. */
2172 temp_state = alloca (dfa_state_size);
2173
2174 if (targetm.sched.md_init)
2175 targetm.sched.md_init (sched_dump, sched_verbose, ready.veclen);
2176
2177 /* We start inserting insns after PREV_HEAD. */
2178 last_scheduled_insn = prev_head;
2179
2180 gcc_assert (NOTE_P (last_scheduled_insn)
2181 && BLOCK_FOR_INSN (last_scheduled_insn) == *target_bb);
2182
2183 /* Initialize INSN_QUEUE. Q_SIZE is the total number of insns in the
2184 queue. */
2185 q_ptr = 0;
2186 q_size = 0;
2187
2188 insn_queue = alloca ((max_insn_queue_index + 1) * sizeof (rtx));
2189 memset (insn_queue, 0, (max_insn_queue_index + 1) * sizeof (rtx));
2190
2191 /* Start just before the beginning of time. */
2192 clock_var = -1;
2193
2194 /* We need queue and ready lists and clock_var be initialized
2195 in try_ready () (which is called through init_ready_list ()). */
2196 (*current_sched_info->init_ready_list) ();
2197
2198 /* The algorithm is O(n^2) in the number of ready insns at any given
2199 time in the worst case. Before reload we are more likely to have
2200 big lists so truncate them to a reasonable size. */
2201 if (!reload_completed && ready.n_ready > MAX_SCHED_READY_INSNS)
2202 {
2203 ready_sort (&ready);
2204
2205 /* Find first free-standing insn past MAX_SCHED_READY_INSNS. */
2206 for (i = MAX_SCHED_READY_INSNS; i < ready.n_ready; i++)
2207 if (!SCHED_GROUP_P (ready_element (&ready, i)))
2208 break;
2209
2210 if (sched_verbose >= 2)
2211 {
2212 fprintf (sched_dump,
2213 ";;\t\tReady list on entry: %d insns\n", ready.n_ready);
2214 fprintf (sched_dump,
2215 ";;\t\t before reload => truncated to %d insns\n", i);
2216 }
2217
2218 /* Delay all insns past it for 1 cycle. If debug counter is
2219 activated make an exception for the insn right after
2220 last_scheduled_insn. */
2221 {
2222 rtx skip_insn;
2223
2224 if (dbg_cnt (sched_insn) == false)
2225 skip_insn = next_nonnote_insn (last_scheduled_insn);
2226 else
2227 skip_insn = NULL_RTX;
2228
2229 while (i < ready.n_ready)
2230 {
2231 rtx insn;
2232
2233 insn = ready_remove (&ready, i);
2234
2235 if (insn != skip_insn)
2236 queue_insn (insn, 1);
2237 }
2238 }
2239 }
2240
2241 /* Now we can restore basic block notes and maintain precise cfg. */
2242 restore_bb_notes (*target_bb);
2243
2244 last_clock_var = -1;
2245
2246 advance = 0;
2247
2248 sort_p = TRUE;
2249 /* Loop until all the insns in BB are scheduled. */
2250 while ((*current_sched_info->schedule_more_p) ())
2251 {
2252 do
2253 {
2254 start_clock_var = clock_var;
2255
2256 clock_var++;
2257
2258 advance_one_cycle ();
2259
2260 /* Add to the ready list all pending insns that can be issued now.
2261 If there are no ready insns, increment clock until one
2262 is ready and add all pending insns at that point to the ready
2263 list. */
2264 queue_to_ready (&ready);
2265
2266 gcc_assert (ready.n_ready);
2267
2268 if (sched_verbose >= 2)
2269 {
2270 fprintf (sched_dump, ";;\t\tReady list after queue_to_ready: ");
2271 debug_ready_list (&ready);
2272 }
2273 advance -= clock_var - start_clock_var;
2274 }
2275 while (advance > 0);
2276
2277 if (sort_p)
2278 {
2279 /* Sort the ready list based on priority. */
2280 ready_sort (&ready);
2281
2282 if (sched_verbose >= 2)
2283 {
2284 fprintf (sched_dump, ";;\t\tReady list after ready_sort: ");
2285 debug_ready_list (&ready);
2286 }
2287 }
2288
2289 /* Allow the target to reorder the list, typically for
2290 better instruction bundling. */
2291 if (sort_p && targetm.sched.reorder
2292 && (ready.n_ready == 0
2293 || !SCHED_GROUP_P (ready_element (&ready, 0))))
2294 can_issue_more =
2295 targetm.sched.reorder (sched_dump, sched_verbose,
2296 ready_lastpos (&ready),
2297 &ready.n_ready, clock_var);
2298 else
2299 can_issue_more = issue_rate;
2300
2301 first_cycle_insn_p = 1;
2302 cycle_issued_insns = 0;
2303 for (;;)
2304 {
2305 rtx insn;
2306 int cost;
2307 bool asm_p = false;
2308
2309 if (sched_verbose >= 2)
2310 {
2311 fprintf (sched_dump, ";;\tReady list (t = %3d): ",
2312 clock_var);
2313 debug_ready_list (&ready);
2314 }
2315
2316 if (ready.n_ready == 0
2317 && can_issue_more
2318 && reload_completed)
2319 {
2320 /* Allow scheduling insns directly from the queue in case
2321 there's nothing better to do (ready list is empty) but
2322 there are still vacant dispatch slots in the current cycle. */
2323 if (sched_verbose >= 6)
2324 fprintf (sched_dump,";;\t\tSecond chance\n");
2325 memcpy (temp_state, curr_state, dfa_state_size);
2326 if (early_queue_to_ready (temp_state, &ready))
2327 ready_sort (&ready);
2328 }
2329
2330 if (ready.n_ready == 0 || !can_issue_more
2331 || state_dead_lock_p (curr_state)
2332 || !(*current_sched_info->schedule_more_p) ())
2333 break;
2334
2335 /* Select and remove the insn from the ready list. */
2336 if (sort_p)
2337 {
2338 int res;
2339
2340 insn = NULL_RTX;
2341 res = choose_ready (&ready, &insn);
2342
2343 if (res < 0)
2344 /* Finish cycle. */
2345 break;
2346 if (res > 0)
2347 /* Restart choose_ready (). */
2348 continue;
2349
2350 gcc_assert (insn != NULL_RTX);
2351 }
2352 else
2353 insn = ready_remove_first (&ready);
2354
2355 if (targetm.sched.dfa_new_cycle
2356 && targetm.sched.dfa_new_cycle (sched_dump, sched_verbose,
2357 insn, last_clock_var,
2358 clock_var, &sort_p))
2359 /* SORT_P is used by the target to override sorting
2360 of the ready list. This is needed when the target
2361 has modified its internal structures expecting that
2362 the insn will be issued next. As we need the insn
2363 to have the highest priority (so it will be returned by
2364 the ready_remove_first call above), we invoke
2365 ready_add (&ready, insn, true).
2366 But, still, there is one issue: INSN can be later
2367 discarded by scheduler's front end through
2368 current_sched_info->can_schedule_ready_p, hence, won't
2369 be issued next. */
2370 {
2371 ready_add (&ready, insn, true);
2372 break;
2373 }
2374
2375 sort_p = TRUE;
2376 memcpy (temp_state, curr_state, dfa_state_size);
2377 if (recog_memoized (insn) < 0)
2378 {
2379 asm_p = (GET_CODE (PATTERN (insn)) == ASM_INPUT
2380 || asm_noperands (PATTERN (insn)) >= 0);
2381 if (!first_cycle_insn_p && asm_p)
2382 /* This is asm insn which is tryed to be issued on the
2383 cycle not first. Issue it on the next cycle. */
2384 cost = 1;
2385 else
2386 /* A USE insn, or something else we don't need to
2387 understand. We can't pass these directly to
2388 state_transition because it will trigger a
2389 fatal error for unrecognizable insns. */
2390 cost = 0;
2391 }
2392 else
2393 {
2394 cost = state_transition (temp_state, insn);
2395 if (cost < 0)
2396 cost = 0;
2397 else if (cost == 0)
2398 cost = 1;
2399 }
2400
2401 if (cost >= 1)
2402 {
2403 queue_insn (insn, cost);
2404 if (SCHED_GROUP_P (insn))
2405 {
2406 advance = cost;
2407 break;
2408 }
2409
2410 continue;
2411 }
2412
2413 if (current_sched_info->can_schedule_ready_p
2414 && ! (*current_sched_info->can_schedule_ready_p) (insn))
2415 /* We normally get here only if we don't want to move
2416 insn from the split block. */
2417 {
2418 TODO_SPEC (insn) = (TODO_SPEC (insn) & ~SPECULATIVE) | HARD_DEP;
2419 continue;
2420 }
2421
2422 /* DECISION is made. */
2423
2424 if (TODO_SPEC (insn) & SPECULATIVE)
2425 generate_recovery_code (insn);
2426
2427 if (control_flow_insn_p (last_scheduled_insn)
2428 /* This is used to switch basic blocks by request
2429 from scheduler front-end (actually, sched-ebb.c only).
2430 This is used to process blocks with single fallthru
2431 edge. If succeeding block has jump, it [jump] will try
2432 move at the end of current bb, thus corrupting CFG. */
2433 || current_sched_info->advance_target_bb (*target_bb, insn))
2434 {
2435 *target_bb = current_sched_info->advance_target_bb
2436 (*target_bb, 0);
2437
2438 if (sched_verbose)
2439 {
2440 rtx x;
2441
2442 x = next_real_insn (last_scheduled_insn);
2443 gcc_assert (x);
2444 dump_new_block_header (1, *target_bb, x, tail);
2445 }
2446
2447 last_scheduled_insn = bb_note (*target_bb);
2448 }
2449
2450 /* Update counters, etc in the scheduler's front end. */
2451 (*current_sched_info->begin_schedule_ready) (insn,
2452 last_scheduled_insn);
2453
2454 move_insn (insn);
2455 last_scheduled_insn = insn;
2456
2457 if (memcmp (curr_state, temp_state, dfa_state_size) != 0)
2458 {
2459 cycle_issued_insns++;
2460 memcpy (curr_state, temp_state, dfa_state_size);
2461 }
2462
2463 if (targetm.sched.variable_issue)
2464 can_issue_more =
2465 targetm.sched.variable_issue (sched_dump, sched_verbose,
2466 insn, can_issue_more);
2467 /* A naked CLOBBER or USE generates no instruction, so do
2468 not count them against the issue rate. */
2469 else if (GET_CODE (PATTERN (insn)) != USE
2470 && GET_CODE (PATTERN (insn)) != CLOBBER)
2471 can_issue_more--;
2472
2473 advance = schedule_insn (insn);
2474
2475 /* After issuing an asm insn we should start a new cycle. */
2476 if (advance == 0 && asm_p)
2477 advance = 1;
2478 if (advance != 0)
2479 break;
2480
2481 first_cycle_insn_p = 0;
2482
2483 /* Sort the ready list based on priority. This must be
2484 redone here, as schedule_insn may have readied additional
2485 insns that will not be sorted correctly. */
2486 if (ready.n_ready > 0)
2487 ready_sort (&ready);
2488
2489 if (targetm.sched.reorder2
2490 && (ready.n_ready == 0
2491 || !SCHED_GROUP_P (ready_element (&ready, 0))))
2492 {
2493 can_issue_more =
2494 targetm.sched.reorder2 (sched_dump, sched_verbose,
2495 ready.n_ready
2496 ? ready_lastpos (&ready) : NULL,
2497 &ready.n_ready, clock_var);
2498 }
2499 }
2500 }
2501
2502 /* Debug info. */
2503 if (sched_verbose)
2504 {
2505 fprintf (sched_dump, ";;\tReady list (final): ");
2506 debug_ready_list (&ready);
2507 }
2508
2509 if (current_sched_info->queue_must_finish_empty)
2510 /* Sanity check -- queue must be empty now. Meaningless if region has
2511 multiple bbs. */
2512 gcc_assert (!q_size && !ready.n_ready);
2513 else
2514 {
2515 /* We must maintain QUEUE_INDEX between blocks in region. */
2516 for (i = ready.n_ready - 1; i >= 0; i--)
2517 {
2518 rtx x;
2519
2520 x = ready_element (&ready, i);
2521 QUEUE_INDEX (x) = QUEUE_NOWHERE;
2522 TODO_SPEC (x) = (TODO_SPEC (x) & ~SPECULATIVE) | HARD_DEP;
2523 }
2524
2525 if (q_size)
2526 for (i = 0; i <= max_insn_queue_index; i++)
2527 {
2528 rtx link;
2529 for (link = insn_queue[i]; link; link = XEXP (link, 1))
2530 {
2531 rtx x;
2532
2533 x = XEXP (link, 0);
2534 QUEUE_INDEX (x) = QUEUE_NOWHERE;
2535 TODO_SPEC (x) = (TODO_SPEC (x) & ~SPECULATIVE) | HARD_DEP;
2536 }
2537 free_INSN_LIST_list (&insn_queue[i]);
2538 }
2539 }
2540
2541 if (!current_sched_info->queue_must_finish_empty
2542 || haifa_recovery_bb_recently_added_p)
2543 {
2544 /* INSN_TICK (minimum clock tick at which the insn becomes
2545 ready) may be not correct for the insn in the subsequent
2546 blocks of the region. We should use a correct value of
2547 `clock_var' or modify INSN_TICK. It is better to keep
2548 clock_var value equal to 0 at the start of a basic block.
2549 Therefore we modify INSN_TICK here. */
2550 fix_inter_tick (NEXT_INSN (prev_head), last_scheduled_insn);
2551 }
2552
2553 if (targetm.sched.md_finish)
2554 {
2555 targetm.sched.md_finish (sched_dump, sched_verbose);
2556
2557 /* Target might have added some instructions to the scheduled block.
2558 in its md_finish () hook. These new insns don't have any data
2559 initialized and to identify them we extend h_i_d so that they'll
2560 get zero luids.*/
2561 extend_h_i_d ();
2562 }
2563
2564 /* Update head/tail boundaries. */
2565 head = NEXT_INSN (prev_head);
2566 tail = last_scheduled_insn;
2567
2568 /* Restore-other-notes: NOTE_LIST is the end of a chain of notes
2569 previously found among the insns. Insert them at the beginning
2570 of the insns. */
2571 if (note_list != 0)
2572 {
2573 basic_block head_bb = BLOCK_FOR_INSN (head);
2574 rtx note_head = note_list;
2575
2576 while (PREV_INSN (note_head))
2577 {
2578 set_block_for_insn (note_head, head_bb);
2579 note_head = PREV_INSN (note_head);
2580 }
2581 /* In the above cycle we've missed this note: */
2582 set_block_for_insn (note_head, head_bb);
2583
2584 PREV_INSN (note_head) = PREV_INSN (head);
2585 NEXT_INSN (PREV_INSN (head)) = note_head;
2586 PREV_INSN (head) = note_list;
2587 NEXT_INSN (note_list) = head;
2588 head = note_head;
2589 }
2590
2591 /* Debugging. */
2592 if (sched_verbose)
2593 {
2594 fprintf (sched_dump, ";; total time = %d\n;; new head = %d\n",
2595 clock_var, INSN_UID (head));
2596 fprintf (sched_dump, ";; new tail = %d\n\n",
2597 INSN_UID (tail));
2598 }
2599
2600 current_sched_info->head = head;
2601 current_sched_info->tail = tail;
2602
2603 free (ready.vec);
2604
2605 free (ready_try);
2606 for (i = 0; i <= rgn_n_insns; i++)
2607 free (choice_stack [i].state);
2608 free (choice_stack);
2609 }
2610 \f
2611 /* Set_priorities: compute priority of each insn in the block. */
2612
2613 int
2614 set_priorities (rtx head, rtx tail)
2615 {
2616 rtx insn;
2617 int n_insn;
2618 int sched_max_insns_priority =
2619 current_sched_info->sched_max_insns_priority;
2620 rtx prev_head;
2621
2622 if (head == tail && (! INSN_P (head)))
2623 return 0;
2624
2625 n_insn = 0;
2626
2627 prev_head = PREV_INSN (head);
2628 for (insn = tail; insn != prev_head; insn = PREV_INSN (insn))
2629 {
2630 if (!INSN_P (insn))
2631 continue;
2632
2633 n_insn++;
2634 (void) priority (insn);
2635
2636 gcc_assert (INSN_PRIORITY_KNOWN (insn));
2637
2638 sched_max_insns_priority = MAX (sched_max_insns_priority,
2639 INSN_PRIORITY (insn));
2640 }
2641
2642 current_sched_info->sched_max_insns_priority = sched_max_insns_priority;
2643
2644 return n_insn;
2645 }
2646
2647 /* Next LUID to assign to an instruction. */
2648 static int luid;
2649
2650 /* Initialize some global state for the scheduler. */
2651
2652 void
2653 sched_init (void)
2654 {
2655 basic_block b;
2656 rtx insn;
2657 int i;
2658
2659 /* Switch to working copy of sched_info. */
2660 memcpy (&current_sched_info_var, current_sched_info,
2661 sizeof (current_sched_info_var));
2662 current_sched_info = &current_sched_info_var;
2663
2664 /* Disable speculative loads in their presence if cc0 defined. */
2665 #ifdef HAVE_cc0
2666 flag_schedule_speculative_load = 0;
2667 #endif
2668
2669 /* Set dump and sched_verbose for the desired debugging output. If no
2670 dump-file was specified, but -fsched-verbose=N (any N), print to stderr.
2671 For -fsched-verbose=N, N>=10, print everything to stderr. */
2672 sched_verbose = sched_verbose_param;
2673 if (sched_verbose_param == 0 && dump_file)
2674 sched_verbose = 1;
2675 sched_dump = ((sched_verbose_param >= 10 || !dump_file)
2676 ? stderr : dump_file);
2677
2678 /* Initialize SPEC_INFO. */
2679 if (targetm.sched.set_sched_flags)
2680 {
2681 spec_info = &spec_info_var;
2682 targetm.sched.set_sched_flags (spec_info);
2683 if (current_sched_info->flags & DO_SPECULATION)
2684 spec_info->weakness_cutoff =
2685 (PARAM_VALUE (PARAM_SCHED_SPEC_PROB_CUTOFF) * MAX_DEP_WEAK) / 100;
2686 else
2687 /* So we won't read anything accidentally. */
2688 spec_info = 0;
2689 #ifdef ENABLE_CHECKING
2690 check_sched_flags ();
2691 #endif
2692 }
2693 else
2694 /* So we won't read anything accidentally. */
2695 spec_info = 0;
2696
2697 /* Initialize issue_rate. */
2698 if (targetm.sched.issue_rate)
2699 issue_rate = targetm.sched.issue_rate ();
2700 else
2701 issue_rate = 1;
2702
2703 if (cached_issue_rate != issue_rate)
2704 {
2705 cached_issue_rate = issue_rate;
2706 /* To invalidate max_lookahead_tries: */
2707 cached_first_cycle_multipass_dfa_lookahead = 0;
2708 }
2709
2710 old_max_uid = 0;
2711 h_i_d = 0;
2712 extend_h_i_d ();
2713
2714 for (i = 0; i < old_max_uid; i++)
2715 {
2716 h_i_d[i].cost = -1;
2717 h_i_d[i].todo_spec = HARD_DEP;
2718 h_i_d[i].queue_index = QUEUE_NOWHERE;
2719 h_i_d[i].tick = INVALID_TICK;
2720 h_i_d[i].inter_tick = INVALID_TICK;
2721 }
2722
2723 if (targetm.sched.init_dfa_pre_cycle_insn)
2724 targetm.sched.init_dfa_pre_cycle_insn ();
2725
2726 if (targetm.sched.init_dfa_post_cycle_insn)
2727 targetm.sched.init_dfa_post_cycle_insn ();
2728
2729 dfa_start ();
2730 dfa_state_size = state_size ();
2731 curr_state = xmalloc (dfa_state_size);
2732
2733 h_i_d[0].luid = 0;
2734 luid = 1;
2735 FOR_EACH_BB (b)
2736 for (insn = BB_HEAD (b); ; insn = NEXT_INSN (insn))
2737 {
2738 INSN_LUID (insn) = luid;
2739
2740 /* Increment the next luid, unless this is a note. We don't
2741 really need separate IDs for notes and we don't want to
2742 schedule differently depending on whether or not there are
2743 line-number notes, i.e., depending on whether or not we're
2744 generating debugging information. */
2745 if (!NOTE_P (insn))
2746 ++luid;
2747
2748 if (insn == BB_END (b))
2749 break;
2750 }
2751
2752 init_dependency_caches (luid);
2753
2754 init_alias_analysis ();
2755
2756 old_last_basic_block = 0;
2757 extend_bb ();
2758
2759 /* Compute INSN_REG_WEIGHT for all blocks. We must do this before
2760 removing death notes. */
2761 FOR_EACH_BB_REVERSE (b)
2762 find_insn_reg_weight (b);
2763
2764 if (targetm.sched.md_init_global)
2765 targetm.sched.md_init_global (sched_dump, sched_verbose, old_max_uid);
2766
2767 nr_begin_data = nr_begin_control = nr_be_in_data = nr_be_in_control = 0;
2768 before_recovery = 0;
2769
2770 haifa_recovery_bb_ever_added_p = false;
2771
2772 #ifdef ENABLE_CHECKING
2773 /* This is used preferably for finding bugs in check_cfg () itself. */
2774 check_cfg (0, 0);
2775 #endif
2776 }
2777
2778 /* Free global data used during insn scheduling. */
2779
2780 void
2781 sched_finish (void)
2782 {
2783 free (h_i_d);
2784 free (curr_state);
2785 dfa_finish ();
2786 free_dependency_caches ();
2787 end_alias_analysis ();
2788
2789 if (targetm.sched.md_finish_global)
2790 targetm.sched.md_finish_global (sched_dump, sched_verbose);
2791
2792 if (spec_info && spec_info->dump)
2793 {
2794 char c = reload_completed ? 'a' : 'b';
2795
2796 fprintf (spec_info->dump,
2797 ";; %s:\n", current_function_name ());
2798
2799 fprintf (spec_info->dump,
2800 ";; Procedure %cr-begin-data-spec motions == %d\n",
2801 c, nr_begin_data);
2802 fprintf (spec_info->dump,
2803 ";; Procedure %cr-be-in-data-spec motions == %d\n",
2804 c, nr_be_in_data);
2805 fprintf (spec_info->dump,
2806 ";; Procedure %cr-begin-control-spec motions == %d\n",
2807 c, nr_begin_control);
2808 fprintf (spec_info->dump,
2809 ";; Procedure %cr-be-in-control-spec motions == %d\n",
2810 c, nr_be_in_control);
2811 }
2812
2813 #ifdef ENABLE_CHECKING
2814 /* After reload ia64 backend clobbers CFG, so can't check anything. */
2815 if (!reload_completed)
2816 check_cfg (0, 0);
2817 #endif
2818
2819 current_sched_info = NULL;
2820 }
2821
2822 /* Fix INSN_TICKs of the instructions in the current block as well as
2823 INSN_TICKs of their dependents.
2824 HEAD and TAIL are the begin and the end of the current scheduled block. */
2825 static void
2826 fix_inter_tick (rtx head, rtx tail)
2827 {
2828 /* Set of instructions with corrected INSN_TICK. */
2829 bitmap_head processed;
2830 /* ??? It is doubtful if we should assume that cycle advance happens on
2831 basic block boundaries. Basically insns that are unconditionally ready
2832 on the start of the block are more preferable then those which have
2833 a one cycle dependency over insn from the previous block. */
2834 int next_clock = clock_var + 1;
2835
2836 bitmap_initialize (&processed, 0);
2837
2838 /* Iterates over scheduled instructions and fix their INSN_TICKs and
2839 INSN_TICKs of dependent instructions, so that INSN_TICKs are consistent
2840 across different blocks. */
2841 for (tail = NEXT_INSN (tail); head != tail; head = NEXT_INSN (head))
2842 {
2843 if (INSN_P (head))
2844 {
2845 int tick;
2846 sd_iterator_def sd_it;
2847 dep_t dep;
2848
2849 tick = INSN_TICK (head);
2850 gcc_assert (tick >= MIN_TICK);
2851
2852 /* Fix INSN_TICK of instruction from just scheduled block. */
2853 if (!bitmap_bit_p (&processed, INSN_LUID (head)))
2854 {
2855 bitmap_set_bit (&processed, INSN_LUID (head));
2856 tick -= next_clock;
2857
2858 if (tick < MIN_TICK)
2859 tick = MIN_TICK;
2860
2861 INSN_TICK (head) = tick;
2862 }
2863
2864 FOR_EACH_DEP (head, SD_LIST_RES_FORW, sd_it, dep)
2865 {
2866 rtx next;
2867
2868 next = DEP_CON (dep);
2869 tick = INSN_TICK (next);
2870
2871 if (tick != INVALID_TICK
2872 /* If NEXT has its INSN_TICK calculated, fix it.
2873 If not - it will be properly calculated from
2874 scratch later in fix_tick_ready. */
2875 && !bitmap_bit_p (&processed, INSN_LUID (next)))
2876 {
2877 bitmap_set_bit (&processed, INSN_LUID (next));
2878 tick -= next_clock;
2879
2880 if (tick < MIN_TICK)
2881 tick = MIN_TICK;
2882
2883 if (tick > INTER_TICK (next))
2884 INTER_TICK (next) = tick;
2885 else
2886 tick = INTER_TICK (next);
2887
2888 INSN_TICK (next) = tick;
2889 }
2890 }
2891 }
2892 }
2893 bitmap_clear (&processed);
2894 }
2895
2896 /* Check if NEXT is ready to be added to the ready or queue list.
2897 If "yes", add it to the proper list.
2898 Returns:
2899 -1 - is not ready yet,
2900 0 - added to the ready list,
2901 0 < N - queued for N cycles. */
2902 int
2903 try_ready (rtx next)
2904 {
2905 ds_t old_ts, *ts;
2906
2907 ts = &TODO_SPEC (next);
2908 old_ts = *ts;
2909
2910 gcc_assert (!(old_ts & ~(SPECULATIVE | HARD_DEP))
2911 && ((old_ts & HARD_DEP)
2912 || (old_ts & SPECULATIVE)));
2913
2914 if (sd_lists_empty_p (next, SD_LIST_BACK))
2915 /* NEXT has all its dependencies resolved. */
2916 {
2917 /* Remove HARD_DEP bit from NEXT's status. */
2918 *ts &= ~HARD_DEP;
2919
2920 if (current_sched_info->flags & DO_SPECULATION)
2921 /* Remove all speculative bits from NEXT's status. */
2922 *ts &= ~SPECULATIVE;
2923 }
2924 else
2925 {
2926 /* One of the NEXT's dependencies has been resolved.
2927 Recalculate NEXT's status. */
2928
2929 *ts &= ~SPECULATIVE & ~HARD_DEP;
2930
2931 if (sd_lists_empty_p (next, SD_LIST_HARD_BACK))
2932 /* Now we've got NEXT with speculative deps only.
2933 1. Look at the deps to see what we have to do.
2934 2. Check if we can do 'todo'. */
2935 {
2936 sd_iterator_def sd_it;
2937 dep_t dep;
2938 bool first_p = true;
2939
2940 FOR_EACH_DEP (next, SD_LIST_BACK, sd_it, dep)
2941 {
2942 ds_t ds = DEP_STATUS (dep) & SPECULATIVE;
2943
2944 if (first_p)
2945 {
2946 first_p = false;
2947
2948 *ts = ds;
2949 }
2950 else
2951 *ts = ds_merge (*ts, ds);
2952 }
2953
2954 if (dep_weak (*ts) < spec_info->weakness_cutoff)
2955 /* Too few points. */
2956 *ts = (*ts & ~SPECULATIVE) | HARD_DEP;
2957 }
2958 else
2959 *ts |= HARD_DEP;
2960 }
2961
2962 if (*ts & HARD_DEP)
2963 gcc_assert (*ts == old_ts
2964 && QUEUE_INDEX (next) == QUEUE_NOWHERE);
2965 else if (current_sched_info->new_ready)
2966 *ts = current_sched_info->new_ready (next, *ts);
2967
2968 /* * if !(old_ts & SPECULATIVE) (e.g. HARD_DEP or 0), then insn might
2969 have its original pattern or changed (speculative) one. This is due
2970 to changing ebb in region scheduling.
2971 * But if (old_ts & SPECULATIVE), then we are pretty sure that insn
2972 has speculative pattern.
2973
2974 We can't assert (!(*ts & HARD_DEP) || *ts == old_ts) here because
2975 control-speculative NEXT could have been discarded by sched-rgn.c
2976 (the same case as when discarded by can_schedule_ready_p ()). */
2977
2978 if ((*ts & SPECULATIVE)
2979 /* If (old_ts == *ts), then (old_ts & SPECULATIVE) and we don't
2980 need to change anything. */
2981 && *ts != old_ts)
2982 {
2983 int res;
2984 rtx new_pat;
2985
2986 gcc_assert ((*ts & SPECULATIVE) && !(*ts & ~SPECULATIVE));
2987
2988 res = speculate_insn (next, *ts, &new_pat);
2989
2990 switch (res)
2991 {
2992 case -1:
2993 /* It would be nice to change DEP_STATUS of all dependences,
2994 which have ((DEP_STATUS & SPECULATIVE) == *ts) to HARD_DEP,
2995 so we won't reanalyze anything. */
2996 *ts = (*ts & ~SPECULATIVE) | HARD_DEP;
2997 break;
2998
2999 case 0:
3000 /* We follow the rule, that every speculative insn
3001 has non-null ORIG_PAT. */
3002 if (!ORIG_PAT (next))
3003 ORIG_PAT (next) = PATTERN (next);
3004 break;
3005
3006 case 1:
3007 if (!ORIG_PAT (next))
3008 /* If we gonna to overwrite the original pattern of insn,
3009 save it. */
3010 ORIG_PAT (next) = PATTERN (next);
3011
3012 change_pattern (next, new_pat);
3013 break;
3014
3015 default:
3016 gcc_unreachable ();
3017 }
3018 }
3019
3020 /* We need to restore pattern only if (*ts == 0), because otherwise it is
3021 either correct (*ts & SPECULATIVE),
3022 or we simply don't care (*ts & HARD_DEP). */
3023
3024 gcc_assert (!ORIG_PAT (next)
3025 || !IS_SPECULATION_BRANCHY_CHECK_P (next));
3026
3027 if (*ts & HARD_DEP)
3028 {
3029 /* We can't assert (QUEUE_INDEX (next) == QUEUE_NOWHERE) here because
3030 control-speculative NEXT could have been discarded by sched-rgn.c
3031 (the same case as when discarded by can_schedule_ready_p ()). */
3032 /*gcc_assert (QUEUE_INDEX (next) == QUEUE_NOWHERE);*/
3033
3034 change_queue_index (next, QUEUE_NOWHERE);
3035 return -1;
3036 }
3037 else if (!(*ts & BEGIN_SPEC) && ORIG_PAT (next) && !IS_SPECULATION_CHECK_P (next))
3038 /* We should change pattern of every previously speculative
3039 instruction - and we determine if NEXT was speculative by using
3040 ORIG_PAT field. Except one case - speculation checks have ORIG_PAT
3041 pat too, so skip them. */
3042 {
3043 change_pattern (next, ORIG_PAT (next));
3044 ORIG_PAT (next) = 0;
3045 }
3046
3047 if (sched_verbose >= 2)
3048 {
3049 int s = TODO_SPEC (next);
3050
3051 fprintf (sched_dump, ";;\t\tdependencies resolved: insn %s",
3052 (*current_sched_info->print_insn) (next, 0));
3053
3054 if (spec_info && spec_info->dump)
3055 {
3056 if (s & BEGIN_DATA)
3057 fprintf (spec_info->dump, "; data-spec;");
3058 if (s & BEGIN_CONTROL)
3059 fprintf (spec_info->dump, "; control-spec;");
3060 if (s & BE_IN_CONTROL)
3061 fprintf (spec_info->dump, "; in-control-spec;");
3062 }
3063
3064 fprintf (sched_dump, "\n");
3065 }
3066
3067 adjust_priority (next);
3068
3069 return fix_tick_ready (next);
3070 }
3071
3072 /* Calculate INSN_TICK of NEXT and add it to either ready or queue list. */
3073 static int
3074 fix_tick_ready (rtx next)
3075 {
3076 int tick, delay;
3077
3078 if (!sd_lists_empty_p (next, SD_LIST_RES_BACK))
3079 {
3080 int full_p;
3081 sd_iterator_def sd_it;
3082 dep_t dep;
3083
3084 tick = INSN_TICK (next);
3085 /* if tick is not equal to INVALID_TICK, then update
3086 INSN_TICK of NEXT with the most recent resolved dependence
3087 cost. Otherwise, recalculate from scratch. */
3088 full_p = (tick == INVALID_TICK);
3089
3090 FOR_EACH_DEP (next, SD_LIST_RES_BACK, sd_it, dep)
3091 {
3092 rtx pro = DEP_PRO (dep);
3093 int tick1;
3094
3095 gcc_assert (INSN_TICK (pro) >= MIN_TICK);
3096
3097 tick1 = INSN_TICK (pro) + dep_cost (dep);
3098 if (tick1 > tick)
3099 tick = tick1;
3100
3101 if (!full_p)
3102 break;
3103 }
3104 }
3105 else
3106 tick = -1;
3107
3108 INSN_TICK (next) = tick;
3109
3110 delay = tick - clock_var;
3111 if (delay <= 0)
3112 delay = QUEUE_READY;
3113
3114 change_queue_index (next, delay);
3115
3116 return delay;
3117 }
3118
3119 /* Move NEXT to the proper queue list with (DELAY >= 1),
3120 or add it to the ready list (DELAY == QUEUE_READY),
3121 or remove it from ready and queue lists at all (DELAY == QUEUE_NOWHERE). */
3122 static void
3123 change_queue_index (rtx next, int delay)
3124 {
3125 int i = QUEUE_INDEX (next);
3126
3127 gcc_assert (QUEUE_NOWHERE <= delay && delay <= max_insn_queue_index
3128 && delay != 0);
3129 gcc_assert (i != QUEUE_SCHEDULED);
3130
3131 if ((delay > 0 && NEXT_Q_AFTER (q_ptr, delay) == i)
3132 || (delay < 0 && delay == i))
3133 /* We have nothing to do. */
3134 return;
3135
3136 /* Remove NEXT from wherever it is now. */
3137 if (i == QUEUE_READY)
3138 ready_remove_insn (next);
3139 else if (i >= 0)
3140 queue_remove (next);
3141
3142 /* Add it to the proper place. */
3143 if (delay == QUEUE_READY)
3144 ready_add (readyp, next, false);
3145 else if (delay >= 1)
3146 queue_insn (next, delay);
3147
3148 if (sched_verbose >= 2)
3149 {
3150 fprintf (sched_dump, ";;\t\ttick updated: insn %s",
3151 (*current_sched_info->print_insn) (next, 0));
3152
3153 if (delay == QUEUE_READY)
3154 fprintf (sched_dump, " into ready\n");
3155 else if (delay >= 1)
3156 fprintf (sched_dump, " into queue with cost=%d\n", delay);
3157 else
3158 fprintf (sched_dump, " removed from ready or queue lists\n");
3159 }
3160 }
3161
3162 /* Extend H_I_D data. */
3163 static void
3164 extend_h_i_d (void)
3165 {
3166 /* We use LUID 0 for the fake insn (UID 0) which holds dependencies for
3167 pseudos which do not cross calls. */
3168 int new_max_uid = get_max_uid () + 1;
3169
3170 h_i_d = xrecalloc (h_i_d, new_max_uid, old_max_uid, sizeof (*h_i_d));
3171 old_max_uid = new_max_uid;
3172
3173 if (targetm.sched.h_i_d_extended)
3174 targetm.sched.h_i_d_extended ();
3175 }
3176
3177 /* Extend READY, READY_TRY and CHOICE_STACK arrays.
3178 N_NEW_INSNS is the number of additional elements to allocate. */
3179 static void
3180 extend_ready (int n_new_insns)
3181 {
3182 int i;
3183
3184 readyp->veclen = rgn_n_insns + n_new_insns + 1 + issue_rate;
3185 readyp->vec = XRESIZEVEC (rtx, readyp->vec, readyp->veclen);
3186
3187 ready_try = xrecalloc (ready_try, rgn_n_insns + n_new_insns + 1,
3188 rgn_n_insns + 1, sizeof (char));
3189
3190 rgn_n_insns += n_new_insns;
3191
3192 choice_stack = XRESIZEVEC (struct choice_entry, choice_stack,
3193 rgn_n_insns + 1);
3194
3195 for (i = rgn_n_insns; n_new_insns--; i--)
3196 choice_stack[i].state = xmalloc (dfa_state_size);
3197 }
3198
3199 /* Extend global scheduler structures (those, that live across calls to
3200 schedule_block) to include information about just emitted INSN. */
3201 static void
3202 extend_global (rtx insn)
3203 {
3204 gcc_assert (INSN_P (insn));
3205
3206 /* These structures have scheduler scope. */
3207
3208 /* Init h_i_d. */
3209 extend_h_i_d ();
3210 init_h_i_d (insn);
3211
3212 /* Init data handled in sched-deps.c. */
3213 sd_init_insn (insn);
3214
3215 /* Extend dependency caches by one element. */
3216 extend_dependency_caches (1, false);
3217 }
3218
3219 /* Extends global and local scheduler structures to include information
3220 about just emitted INSN. */
3221 static void
3222 extend_all (rtx insn)
3223 {
3224 extend_global (insn);
3225
3226 /* These structures have block scope. */
3227 extend_ready (1);
3228
3229 (*current_sched_info->add_remove_insn) (insn, 0);
3230 }
3231
3232 /* Initialize h_i_d entry of the new INSN with default values.
3233 Values, that are not explicitly initialized here, hold zero. */
3234 static void
3235 init_h_i_d (rtx insn)
3236 {
3237 INSN_LUID (insn) = luid++;
3238 INSN_COST (insn) = -1;
3239 TODO_SPEC (insn) = HARD_DEP;
3240 QUEUE_INDEX (insn) = QUEUE_NOWHERE;
3241 INSN_TICK (insn) = INVALID_TICK;
3242 INTER_TICK (insn) = INVALID_TICK;
3243 find_insn_reg_weight1 (insn);
3244 }
3245
3246 /* Generates recovery code for INSN. */
3247 static void
3248 generate_recovery_code (rtx insn)
3249 {
3250 if (TODO_SPEC (insn) & BEGIN_SPEC)
3251 begin_speculative_block (insn);
3252
3253 /* Here we have insn with no dependencies to
3254 instructions other then CHECK_SPEC ones. */
3255
3256 if (TODO_SPEC (insn) & BE_IN_SPEC)
3257 add_to_speculative_block (insn);
3258 }
3259
3260 /* Helper function.
3261 Tries to add speculative dependencies of type FS between instructions
3262 in deps_list L and TWIN. */
3263 static void
3264 process_insn_forw_deps_be_in_spec (rtx insn, rtx twin, ds_t fs)
3265 {
3266 sd_iterator_def sd_it;
3267 dep_t dep;
3268
3269 FOR_EACH_DEP (insn, SD_LIST_FORW, sd_it, dep)
3270 {
3271 ds_t ds;
3272 rtx consumer;
3273
3274 consumer = DEP_CON (dep);
3275
3276 ds = DEP_STATUS (dep);
3277
3278 if (/* If we want to create speculative dep. */
3279 fs
3280 /* And we can do that because this is a true dep. */
3281 && (ds & DEP_TYPES) == DEP_TRUE)
3282 {
3283 gcc_assert (!(ds & BE_IN_SPEC));
3284
3285 if (/* If this dep can be overcome with 'begin speculation'. */
3286 ds & BEGIN_SPEC)
3287 /* Then we have a choice: keep the dep 'begin speculative'
3288 or transform it into 'be in speculative'. */
3289 {
3290 if (/* In try_ready we assert that if insn once became ready
3291 it can be removed from the ready (or queue) list only
3292 due to backend decision. Hence we can't let the
3293 probability of the speculative dep to decrease. */
3294 dep_weak (ds) <= dep_weak (fs))
3295 /* Transform it to be in speculative. */
3296 ds = (ds & ~BEGIN_SPEC) | fs;
3297 }
3298 else
3299 /* Mark the dep as 'be in speculative'. */
3300 ds |= fs;
3301 }
3302
3303 {
3304 dep_def _new_dep, *new_dep = &_new_dep;
3305
3306 init_dep_1 (new_dep, twin, consumer, DEP_TYPE (dep), ds);
3307 sd_add_dep (new_dep, false);
3308 }
3309 }
3310 }
3311
3312 /* Generates recovery code for BEGIN speculative INSN. */
3313 static void
3314 begin_speculative_block (rtx insn)
3315 {
3316 if (TODO_SPEC (insn) & BEGIN_DATA)
3317 nr_begin_data++;
3318 if (TODO_SPEC (insn) & BEGIN_CONTROL)
3319 nr_begin_control++;
3320
3321 create_check_block_twin (insn, false);
3322
3323 TODO_SPEC (insn) &= ~BEGIN_SPEC;
3324 }
3325
3326 /* Generates recovery code for BE_IN speculative INSN. */
3327 static void
3328 add_to_speculative_block (rtx insn)
3329 {
3330 ds_t ts;
3331 sd_iterator_def sd_it;
3332 dep_t dep;
3333 rtx twins = NULL;
3334 rtx_vec_t priorities_roots;
3335
3336 ts = TODO_SPEC (insn);
3337 gcc_assert (!(ts & ~BE_IN_SPEC));
3338
3339 if (ts & BE_IN_DATA)
3340 nr_be_in_data++;
3341 if (ts & BE_IN_CONTROL)
3342 nr_be_in_control++;
3343
3344 TODO_SPEC (insn) &= ~BE_IN_SPEC;
3345 gcc_assert (!TODO_SPEC (insn));
3346
3347 DONE_SPEC (insn) |= ts;
3348
3349 /* First we convert all simple checks to branchy. */
3350 for (sd_it = sd_iterator_start (insn, SD_LIST_SPEC_BACK);
3351 sd_iterator_cond (&sd_it, &dep);)
3352 {
3353 rtx check = DEP_PRO (dep);
3354
3355 if (IS_SPECULATION_SIMPLE_CHECK_P (check))
3356 {
3357 create_check_block_twin (check, true);
3358
3359 /* Restart search. */
3360 sd_it = sd_iterator_start (insn, SD_LIST_SPEC_BACK);
3361 }
3362 else
3363 /* Continue search. */
3364 sd_iterator_next (&sd_it);
3365 }
3366
3367 priorities_roots = NULL;
3368 clear_priorities (insn, &priorities_roots);
3369
3370 while (1)
3371 {
3372 rtx check, twin;
3373 basic_block rec;
3374
3375 /* Get the first backward dependency of INSN. */
3376 sd_it = sd_iterator_start (insn, SD_LIST_SPEC_BACK);
3377 if (!sd_iterator_cond (&sd_it, &dep))
3378 /* INSN has no backward dependencies left. */
3379 break;
3380
3381 gcc_assert ((DEP_STATUS (dep) & BEGIN_SPEC) == 0
3382 && (DEP_STATUS (dep) & BE_IN_SPEC) != 0
3383 && (DEP_STATUS (dep) & DEP_TYPES) == DEP_TRUE);
3384
3385 check = DEP_PRO (dep);
3386
3387 gcc_assert (!IS_SPECULATION_CHECK_P (check) && !ORIG_PAT (check)
3388 && QUEUE_INDEX (check) == QUEUE_NOWHERE);
3389
3390 rec = BLOCK_FOR_INSN (check);
3391
3392 twin = emit_insn_before (copy_insn (PATTERN (insn)), BB_END (rec));
3393 extend_global (twin);
3394
3395 sd_copy_back_deps (twin, insn, true);
3396
3397 if (sched_verbose && spec_info->dump)
3398 /* INSN_BB (insn) isn't determined for twin insns yet.
3399 So we can't use current_sched_info->print_insn. */
3400 fprintf (spec_info->dump, ";;\t\tGenerated twin insn : %d/rec%d\n",
3401 INSN_UID (twin), rec->index);
3402
3403 twins = alloc_INSN_LIST (twin, twins);
3404
3405 /* Add dependences between TWIN and all appropriate
3406 instructions from REC. */
3407 FOR_EACH_DEP (insn, SD_LIST_SPEC_BACK, sd_it, dep)
3408 {
3409 rtx pro = DEP_PRO (dep);
3410
3411 gcc_assert (DEP_TYPE (dep) == REG_DEP_TRUE);
3412
3413 /* INSN might have dependencies from the instructions from
3414 several recovery blocks. At this iteration we process those
3415 producers that reside in REC. */
3416 if (BLOCK_FOR_INSN (pro) == rec)
3417 {
3418 dep_def _new_dep, *new_dep = &_new_dep;
3419
3420 init_dep (new_dep, pro, twin, REG_DEP_TRUE);
3421 sd_add_dep (new_dep, false);
3422 }
3423 }
3424
3425 process_insn_forw_deps_be_in_spec (insn, twin, ts);
3426
3427 /* Remove all dependencies between INSN and insns in REC. */
3428 for (sd_it = sd_iterator_start (insn, SD_LIST_SPEC_BACK);
3429 sd_iterator_cond (&sd_it, &dep);)
3430 {
3431 rtx pro = DEP_PRO (dep);
3432
3433 if (BLOCK_FOR_INSN (pro) == rec)
3434 sd_delete_dep (sd_it);
3435 else
3436 sd_iterator_next (&sd_it);
3437 }
3438 }
3439
3440 /* We couldn't have added the dependencies between INSN and TWINS earlier
3441 because that would make TWINS appear in the INSN_BACK_DEPS (INSN). */
3442 while (twins)
3443 {
3444 rtx twin;
3445
3446 twin = XEXP (twins, 0);
3447
3448 {
3449 dep_def _new_dep, *new_dep = &_new_dep;
3450
3451 init_dep (new_dep, insn, twin, REG_DEP_OUTPUT);
3452 sd_add_dep (new_dep, false);
3453 }
3454
3455 twin = XEXP (twins, 1);
3456 free_INSN_LIST_node (twins);
3457 twins = twin;
3458 }
3459
3460 calc_priorities (priorities_roots);
3461 VEC_free (rtx, heap, priorities_roots);
3462 }
3463
3464 /* Extends and fills with zeros (only the new part) array pointed to by P. */
3465 void *
3466 xrecalloc (void *p, size_t new_nmemb, size_t old_nmemb, size_t size)
3467 {
3468 gcc_assert (new_nmemb >= old_nmemb);
3469 p = XRESIZEVAR (void, p, new_nmemb * size);
3470 memset (((char *) p) + old_nmemb * size, 0, (new_nmemb - old_nmemb) * size);
3471 return p;
3472 }
3473
3474 /* Return the probability of speculation success for the speculation
3475 status DS. */
3476 static dw_t
3477 dep_weak (ds_t ds)
3478 {
3479 ds_t res = 1, dt;
3480 int n = 0;
3481
3482 dt = FIRST_SPEC_TYPE;
3483 do
3484 {
3485 if (ds & dt)
3486 {
3487 res *= (ds_t) get_dep_weak (ds, dt);
3488 n++;
3489 }
3490
3491 if (dt == LAST_SPEC_TYPE)
3492 break;
3493 dt <<= SPEC_TYPE_SHIFT;
3494 }
3495 while (1);
3496
3497 gcc_assert (n);
3498 while (--n)
3499 res /= MAX_DEP_WEAK;
3500
3501 if (res < MIN_DEP_WEAK)
3502 res = MIN_DEP_WEAK;
3503
3504 gcc_assert (res <= MAX_DEP_WEAK);
3505
3506 return (dw_t) res;
3507 }
3508
3509 /* Helper function.
3510 Find fallthru edge from PRED. */
3511 static edge
3512 find_fallthru_edge (basic_block pred)
3513 {
3514 edge e;
3515 edge_iterator ei;
3516 basic_block succ;
3517
3518 succ = pred->next_bb;
3519 gcc_assert (succ->prev_bb == pred);
3520
3521 if (EDGE_COUNT (pred->succs) <= EDGE_COUNT (succ->preds))
3522 {
3523 FOR_EACH_EDGE (e, ei, pred->succs)
3524 if (e->flags & EDGE_FALLTHRU)
3525 {
3526 gcc_assert (e->dest == succ);
3527 return e;
3528 }
3529 }
3530 else
3531 {
3532 FOR_EACH_EDGE (e, ei, succ->preds)
3533 if (e->flags & EDGE_FALLTHRU)
3534 {
3535 gcc_assert (e->src == pred);
3536 return e;
3537 }
3538 }
3539
3540 return NULL;
3541 }
3542
3543 /* Initialize BEFORE_RECOVERY variable. */
3544 static void
3545 init_before_recovery (void)
3546 {
3547 basic_block last;
3548 edge e;
3549
3550 last = EXIT_BLOCK_PTR->prev_bb;
3551 e = find_fallthru_edge (last);
3552
3553 if (e)
3554 {
3555 /* We create two basic blocks:
3556 1. Single instruction block is inserted right after E->SRC
3557 and has jump to
3558 2. Empty block right before EXIT_BLOCK.
3559 Between these two blocks recovery blocks will be emitted. */
3560
3561 basic_block single, empty;
3562 rtx x, label;
3563
3564 single = create_empty_bb (last);
3565 empty = create_empty_bb (single);
3566
3567 single->count = last->count;
3568 empty->count = last->count;
3569 single->frequency = last->frequency;
3570 empty->frequency = last->frequency;
3571 BB_COPY_PARTITION (single, last);
3572 BB_COPY_PARTITION (empty, last);
3573
3574 redirect_edge_succ (e, single);
3575 make_single_succ_edge (single, empty, 0);
3576 make_single_succ_edge (empty, EXIT_BLOCK_PTR,
3577 EDGE_FALLTHRU | EDGE_CAN_FALLTHRU);
3578
3579 label = block_label (empty);
3580 x = emit_jump_insn_after (gen_jump (label), BB_END (single));
3581 JUMP_LABEL (x) = label;
3582 LABEL_NUSES (label)++;
3583 extend_global (x);
3584
3585 emit_barrier_after (x);
3586
3587 add_block (empty, 0);
3588 add_block (single, 0);
3589
3590 before_recovery = single;
3591
3592 if (sched_verbose >= 2 && spec_info->dump)
3593 fprintf (spec_info->dump,
3594 ";;\t\tFixed fallthru to EXIT : %d->>%d->%d->>EXIT\n",
3595 last->index, single->index, empty->index);
3596 }
3597 else
3598 before_recovery = last;
3599 }
3600
3601 /* Returns new recovery block. */
3602 static basic_block
3603 create_recovery_block (void)
3604 {
3605 rtx label;
3606 rtx barrier;
3607 basic_block rec;
3608
3609 haifa_recovery_bb_recently_added_p = true;
3610 haifa_recovery_bb_ever_added_p = true;
3611
3612 if (!before_recovery)
3613 init_before_recovery ();
3614
3615 barrier = get_last_bb_insn (before_recovery);
3616 gcc_assert (BARRIER_P (barrier));
3617
3618 label = emit_label_after (gen_label_rtx (), barrier);
3619
3620 rec = create_basic_block (label, label, before_recovery);
3621
3622 /* Recovery block always end with an unconditional jump. */
3623 emit_barrier_after (BB_END (rec));
3624
3625 if (BB_PARTITION (before_recovery) != BB_UNPARTITIONED)
3626 BB_SET_PARTITION (rec, BB_COLD_PARTITION);
3627
3628 if (sched_verbose && spec_info->dump)
3629 fprintf (spec_info->dump, ";;\t\tGenerated recovery block rec%d\n",
3630 rec->index);
3631
3632 before_recovery = rec;
3633
3634 return rec;
3635 }
3636
3637 /* This function creates recovery code for INSN. If MUTATE_P is nonzero,
3638 INSN is a simple check, that should be converted to branchy one. */
3639 static void
3640 create_check_block_twin (rtx insn, bool mutate_p)
3641 {
3642 basic_block rec;
3643 rtx label, check, twin;
3644 ds_t fs;
3645 sd_iterator_def sd_it;
3646 dep_t dep;
3647 dep_def _new_dep, *new_dep = &_new_dep;
3648
3649 gcc_assert (ORIG_PAT (insn)
3650 && (!mutate_p
3651 || (IS_SPECULATION_SIMPLE_CHECK_P (insn)
3652 && !(TODO_SPEC (insn) & SPECULATIVE))));
3653
3654 /* Create recovery block. */
3655 if (mutate_p || targetm.sched.needs_block_p (insn))
3656 {
3657 rec = create_recovery_block ();
3658 label = BB_HEAD (rec);
3659 }
3660 else
3661 {
3662 rec = EXIT_BLOCK_PTR;
3663 label = 0;
3664 }
3665
3666 /* Emit CHECK. */
3667 check = targetm.sched.gen_check (insn, label, mutate_p);
3668
3669 if (rec != EXIT_BLOCK_PTR)
3670 {
3671 /* To have mem_reg alive at the beginning of second_bb,
3672 we emit check BEFORE insn, so insn after splitting
3673 insn will be at the beginning of second_bb, which will
3674 provide us with the correct life information. */
3675 check = emit_jump_insn_before (check, insn);
3676 JUMP_LABEL (check) = label;
3677 LABEL_NUSES (label)++;
3678 }
3679 else
3680 check = emit_insn_before (check, insn);
3681
3682 /* Extend data structures. */
3683 extend_all (check);
3684 RECOVERY_BLOCK (check) = rec;
3685
3686 if (sched_verbose && spec_info->dump)
3687 fprintf (spec_info->dump, ";;\t\tGenerated check insn : %s\n",
3688 (*current_sched_info->print_insn) (check, 0));
3689
3690 gcc_assert (ORIG_PAT (insn));
3691
3692 /* Initialize TWIN (twin is a duplicate of original instruction
3693 in the recovery block). */
3694 if (rec != EXIT_BLOCK_PTR)
3695 {
3696 sd_iterator_def sd_it;
3697 dep_t dep;
3698
3699 FOR_EACH_DEP (insn, SD_LIST_RES_BACK, sd_it, dep)
3700 if ((DEP_STATUS (dep) & DEP_OUTPUT) != 0)
3701 {
3702 struct _dep _dep2, *dep2 = &_dep2;
3703
3704 init_dep (dep2, DEP_PRO (dep), check, REG_DEP_TRUE);
3705
3706 sd_add_dep (dep2, true);
3707 }
3708
3709 twin = emit_insn_after (ORIG_PAT (insn), BB_END (rec));
3710 extend_global (twin);
3711
3712 if (sched_verbose && spec_info->dump)
3713 /* INSN_BB (insn) isn't determined for twin insns yet.
3714 So we can't use current_sched_info->print_insn. */
3715 fprintf (spec_info->dump, ";;\t\tGenerated twin insn : %d/rec%d\n",
3716 INSN_UID (twin), rec->index);
3717 }
3718 else
3719 {
3720 ORIG_PAT (check) = ORIG_PAT (insn);
3721 HAS_INTERNAL_DEP (check) = 1;
3722 twin = check;
3723 /* ??? We probably should change all OUTPUT dependencies to
3724 (TRUE | OUTPUT). */
3725 }
3726
3727 /* Copy all resolved back dependencies of INSN to TWIN. This will
3728 provide correct value for INSN_TICK (TWIN). */
3729 sd_copy_back_deps (twin, insn, true);
3730
3731 if (rec != EXIT_BLOCK_PTR)
3732 /* In case of branchy check, fix CFG. */
3733 {
3734 basic_block first_bb, second_bb;
3735 rtx jump;
3736 edge e;
3737 int edge_flags;
3738
3739 first_bb = BLOCK_FOR_INSN (check);
3740 e = split_block (first_bb, check);
3741 /* split_block emits note if *check == BB_END. Probably it
3742 is better to rip that note off. */
3743 gcc_assert (e->src == first_bb);
3744 second_bb = e->dest;
3745
3746 /* This is fixing of incoming edge. */
3747 /* ??? Which other flags should be specified? */
3748 if (BB_PARTITION (first_bb) != BB_PARTITION (rec))
3749 /* Partition type is the same, if it is "unpartitioned". */
3750 edge_flags = EDGE_CROSSING;
3751 else
3752 edge_flags = 0;
3753
3754 e = make_edge (first_bb, rec, edge_flags);
3755
3756 add_block (second_bb, first_bb);
3757
3758 gcc_assert (NOTE_INSN_BASIC_BLOCK_P (BB_HEAD (second_bb)));
3759 label = block_label (second_bb);
3760 jump = emit_jump_insn_after (gen_jump (label), BB_END (rec));
3761 JUMP_LABEL (jump) = label;
3762 LABEL_NUSES (label)++;
3763 extend_global (jump);
3764
3765 if (BB_PARTITION (second_bb) != BB_PARTITION (rec))
3766 /* Partition type is the same, if it is "unpartitioned". */
3767 {
3768 /* Rewritten from cfgrtl.c. */
3769 if (flag_reorder_blocks_and_partition
3770 && targetm.have_named_sections
3771 /*&& !any_condjump_p (jump)*/)
3772 /* any_condjump_p (jump) == false.
3773 We don't need the same note for the check because
3774 any_condjump_p (check) == true. */
3775 {
3776 REG_NOTES (jump) = gen_rtx_EXPR_LIST (REG_CROSSING_JUMP,
3777 NULL_RTX,
3778 REG_NOTES (jump));
3779 }
3780 edge_flags = EDGE_CROSSING;
3781 }
3782 else
3783 edge_flags = 0;
3784
3785 make_single_succ_edge (rec, second_bb, edge_flags);
3786
3787 add_block (rec, EXIT_BLOCK_PTR);
3788 }
3789
3790 /* Move backward dependences from INSN to CHECK and
3791 move forward dependences from INSN to TWIN. */
3792
3793 /* First, create dependencies between INSN's producers and CHECK & TWIN. */
3794 FOR_EACH_DEP (insn, SD_LIST_BACK, sd_it, dep)
3795 {
3796 rtx pro = DEP_PRO (dep);
3797 ds_t ds;
3798
3799 /* If BEGIN_DATA: [insn ~~TRUE~~> producer]:
3800 check --TRUE--> producer ??? or ANTI ???
3801 twin --TRUE--> producer
3802 twin --ANTI--> check
3803
3804 If BEGIN_CONTROL: [insn ~~ANTI~~> producer]:
3805 check --ANTI--> producer
3806 twin --ANTI--> producer
3807 twin --ANTI--> check
3808
3809 If BE_IN_SPEC: [insn ~~TRUE~~> producer]:
3810 check ~~TRUE~~> producer
3811 twin ~~TRUE~~> producer
3812 twin --ANTI--> check */
3813
3814 ds = DEP_STATUS (dep);
3815
3816 if (ds & BEGIN_SPEC)
3817 {
3818 gcc_assert (!mutate_p);
3819 ds &= ~BEGIN_SPEC;
3820 }
3821
3822 init_dep_1 (new_dep, pro, check, DEP_TYPE (dep), ds);
3823 sd_add_dep (new_dep, false);
3824
3825 if (rec != EXIT_BLOCK_PTR)
3826 {
3827 DEP_CON (new_dep) = twin;
3828 sd_add_dep (new_dep, false);
3829 }
3830 }
3831
3832 /* Second, remove backward dependencies of INSN. */
3833 for (sd_it = sd_iterator_start (insn, SD_LIST_SPEC_BACK);
3834 sd_iterator_cond (&sd_it, &dep);)
3835 {
3836 if ((DEP_STATUS (dep) & BEGIN_SPEC)
3837 || mutate_p)
3838 /* We can delete this dep because we overcome it with
3839 BEGIN_SPECULATION. */
3840 sd_delete_dep (sd_it);
3841 else
3842 sd_iterator_next (&sd_it);
3843 }
3844
3845 /* Future Speculations. Determine what BE_IN speculations will be like. */
3846 fs = 0;
3847
3848 /* Fields (DONE_SPEC (x) & BEGIN_SPEC) and CHECK_SPEC (x) are set only
3849 here. */
3850
3851 gcc_assert (!DONE_SPEC (insn));
3852
3853 if (!mutate_p)
3854 {
3855 ds_t ts = TODO_SPEC (insn);
3856
3857 DONE_SPEC (insn) = ts & BEGIN_SPEC;
3858 CHECK_SPEC (check) = ts & BEGIN_SPEC;
3859
3860 /* Luckiness of future speculations solely depends upon initial
3861 BEGIN speculation. */
3862 if (ts & BEGIN_DATA)
3863 fs = set_dep_weak (fs, BE_IN_DATA, get_dep_weak (ts, BEGIN_DATA));
3864 if (ts & BEGIN_CONTROL)
3865 fs = set_dep_weak (fs, BE_IN_CONTROL,
3866 get_dep_weak (ts, BEGIN_CONTROL));
3867 }
3868 else
3869 CHECK_SPEC (check) = CHECK_SPEC (insn);
3870
3871 /* Future speculations: call the helper. */
3872 process_insn_forw_deps_be_in_spec (insn, twin, fs);
3873
3874 if (rec != EXIT_BLOCK_PTR)
3875 {
3876 /* Which types of dependencies should we use here is,
3877 generally, machine-dependent question... But, for now,
3878 it is not. */
3879
3880 if (!mutate_p)
3881 {
3882 init_dep (new_dep, insn, check, REG_DEP_TRUE);
3883 sd_add_dep (new_dep, false);
3884
3885 init_dep (new_dep, insn, twin, REG_DEP_OUTPUT);
3886 sd_add_dep (new_dep, false);
3887 }
3888 else
3889 {
3890 if (spec_info->dump)
3891 fprintf (spec_info->dump, ";;\t\tRemoved simple check : %s\n",
3892 (*current_sched_info->print_insn) (insn, 0));
3893
3894 /* Remove all dependencies of the INSN. */
3895 {
3896 sd_it = sd_iterator_start (insn, (SD_LIST_FORW
3897 | SD_LIST_BACK
3898 | SD_LIST_RES_BACK));
3899 while (sd_iterator_cond (&sd_it, &dep))
3900 sd_delete_dep (sd_it);
3901 }
3902
3903 /* If former check (INSN) already was moved to the ready (or queue)
3904 list, add new check (CHECK) there too. */
3905 if (QUEUE_INDEX (insn) != QUEUE_NOWHERE)
3906 try_ready (check);
3907
3908 /* Remove old check from instruction stream and free its
3909 data. */
3910 sched_remove_insn (insn);
3911 }
3912
3913 init_dep (new_dep, check, twin, REG_DEP_ANTI);
3914 sd_add_dep (new_dep, false);
3915 }
3916 else
3917 {
3918 init_dep_1 (new_dep, insn, check, REG_DEP_TRUE, DEP_TRUE | DEP_OUTPUT);
3919 sd_add_dep (new_dep, false);
3920 }
3921
3922 if (!mutate_p)
3923 /* Fix priorities. If MUTATE_P is nonzero, this is not necessary,
3924 because it'll be done later in add_to_speculative_block. */
3925 {
3926 rtx_vec_t priorities_roots = NULL;
3927
3928 clear_priorities (twin, &priorities_roots);
3929 calc_priorities (priorities_roots);
3930 VEC_free (rtx, heap, priorities_roots);
3931 }
3932 }
3933
3934 /* Removes dependency between instructions in the recovery block REC
3935 and usual region instructions. It keeps inner dependences so it
3936 won't be necessary to recompute them. */
3937 static void
3938 fix_recovery_deps (basic_block rec)
3939 {
3940 rtx note, insn, jump, ready_list = 0;
3941 bitmap_head in_ready;
3942 rtx link;
3943
3944 bitmap_initialize (&in_ready, 0);
3945
3946 /* NOTE - a basic block note. */
3947 note = NEXT_INSN (BB_HEAD (rec));
3948 gcc_assert (NOTE_INSN_BASIC_BLOCK_P (note));
3949 insn = BB_END (rec);
3950 gcc_assert (JUMP_P (insn));
3951 insn = PREV_INSN (insn);
3952
3953 do
3954 {
3955 sd_iterator_def sd_it;
3956 dep_t dep;
3957
3958 for (sd_it = sd_iterator_start (insn, SD_LIST_FORW);
3959 sd_iterator_cond (&sd_it, &dep);)
3960 {
3961 rtx consumer = DEP_CON (dep);
3962
3963 if (BLOCK_FOR_INSN (consumer) != rec)
3964 {
3965 sd_delete_dep (sd_it);
3966
3967 if (!bitmap_bit_p (&in_ready, INSN_LUID (consumer)))
3968 {
3969 ready_list = alloc_INSN_LIST (consumer, ready_list);
3970 bitmap_set_bit (&in_ready, INSN_LUID (consumer));
3971 }
3972 }
3973 else
3974 {
3975 gcc_assert ((DEP_STATUS (dep) & DEP_TYPES) == DEP_TRUE);
3976
3977 sd_iterator_next (&sd_it);
3978 }
3979 }
3980
3981 insn = PREV_INSN (insn);
3982 }
3983 while (insn != note);
3984
3985 bitmap_clear (&in_ready);
3986
3987 /* Try to add instructions to the ready or queue list. */
3988 for (link = ready_list; link; link = XEXP (link, 1))
3989 try_ready (XEXP (link, 0));
3990 free_INSN_LIST_list (&ready_list);
3991
3992 /* Fixing jump's dependences. */
3993 insn = BB_HEAD (rec);
3994 jump = BB_END (rec);
3995
3996 gcc_assert (LABEL_P (insn));
3997 insn = NEXT_INSN (insn);
3998
3999 gcc_assert (NOTE_INSN_BASIC_BLOCK_P (insn));
4000 add_jump_dependencies (insn, jump);
4001 }
4002
4003 /* Changes pattern of the INSN to NEW_PAT. */
4004 static void
4005 change_pattern (rtx insn, rtx new_pat)
4006 {
4007 int t;
4008
4009 t = validate_change (insn, &PATTERN (insn), new_pat, 0);
4010 gcc_assert (t);
4011 /* Invalidate INSN_COST, so it'll be recalculated. */
4012 INSN_COST (insn) = -1;
4013 /* Invalidate INSN_TICK, so it'll be recalculated. */
4014 INSN_TICK (insn) = INVALID_TICK;
4015 dfa_clear_single_insn_cache (insn);
4016 }
4017
4018 /* Return true if INSN can potentially be speculated with type DS. */
4019 bool
4020 sched_insn_is_legitimate_for_speculation_p (const_rtx insn, ds_t ds)
4021 {
4022 if (HAS_INTERNAL_DEP (insn))
4023 return false;
4024
4025 if (!NONJUMP_INSN_P (insn))
4026 return false;
4027
4028 if (SCHED_GROUP_P (insn))
4029 return false;
4030
4031 if (IS_SPECULATION_CHECK_P (insn))
4032 return false;
4033
4034 if (side_effects_p (PATTERN (insn)))
4035 return false;
4036
4037 if ((ds & BE_IN_SPEC)
4038 && may_trap_p (PATTERN (insn)))
4039 return false;
4040
4041 return true;
4042 }
4043
4044 /* -1 - can't speculate,
4045 0 - for speculation with REQUEST mode it is OK to use
4046 current instruction pattern,
4047 1 - need to change pattern for *NEW_PAT to be speculative. */
4048 static int
4049 speculate_insn (rtx insn, ds_t request, rtx *new_pat)
4050 {
4051 gcc_assert (current_sched_info->flags & DO_SPECULATION
4052 && (request & SPECULATIVE)
4053 && sched_insn_is_legitimate_for_speculation_p (insn, request));
4054
4055 if ((request & spec_info->mask) != request)
4056 return -1;
4057
4058 if (request & BE_IN_SPEC
4059 && !(request & BEGIN_SPEC))
4060 return 0;
4061
4062 return targetm.sched.speculate_insn (insn, request & BEGIN_SPEC, new_pat);
4063 }
4064
4065 /* Print some information about block BB, which starts with HEAD and
4066 ends with TAIL, before scheduling it.
4067 I is zero, if scheduler is about to start with the fresh ebb. */
4068 static void
4069 dump_new_block_header (int i, basic_block bb, rtx head, rtx tail)
4070 {
4071 if (!i)
4072 fprintf (sched_dump,
4073 ";; ======================================================\n");
4074 else
4075 fprintf (sched_dump,
4076 ";; =====================ADVANCING TO=====================\n");
4077 fprintf (sched_dump,
4078 ";; -- basic block %d from %d to %d -- %s reload\n",
4079 bb->index, INSN_UID (head), INSN_UID (tail),
4080 (reload_completed ? "after" : "before"));
4081 fprintf (sched_dump,
4082 ";; ======================================================\n");
4083 fprintf (sched_dump, "\n");
4084 }
4085
4086 /* Unlink basic block notes and labels and saves them, so they
4087 can be easily restored. We unlink basic block notes in EBB to
4088 provide back-compatibility with the previous code, as target backends
4089 assume, that there'll be only instructions between
4090 current_sched_info->{head and tail}. We restore these notes as soon
4091 as we can.
4092 FIRST (LAST) is the first (last) basic block in the ebb.
4093 NB: In usual case (FIRST == LAST) nothing is really done. */
4094 void
4095 unlink_bb_notes (basic_block first, basic_block last)
4096 {
4097 /* We DON'T unlink basic block notes of the first block in the ebb. */
4098 if (first == last)
4099 return;
4100
4101 bb_header = xmalloc (last_basic_block * sizeof (*bb_header));
4102
4103 /* Make a sentinel. */
4104 if (last->next_bb != EXIT_BLOCK_PTR)
4105 bb_header[last->next_bb->index] = 0;
4106
4107 first = first->next_bb;
4108 do
4109 {
4110 rtx prev, label, note, next;
4111
4112 label = BB_HEAD (last);
4113 if (LABEL_P (label))
4114 note = NEXT_INSN (label);
4115 else
4116 note = label;
4117 gcc_assert (NOTE_INSN_BASIC_BLOCK_P (note));
4118
4119 prev = PREV_INSN (label);
4120 next = NEXT_INSN (note);
4121 gcc_assert (prev && next);
4122
4123 NEXT_INSN (prev) = next;
4124 PREV_INSN (next) = prev;
4125
4126 bb_header[last->index] = label;
4127
4128 if (last == first)
4129 break;
4130
4131 last = last->prev_bb;
4132 }
4133 while (1);
4134 }
4135
4136 /* Restore basic block notes.
4137 FIRST is the first basic block in the ebb. */
4138 static void
4139 restore_bb_notes (basic_block first)
4140 {
4141 if (!bb_header)
4142 return;
4143
4144 /* We DON'T unlink basic block notes of the first block in the ebb. */
4145 first = first->next_bb;
4146 /* Remember: FIRST is actually a second basic block in the ebb. */
4147
4148 while (first != EXIT_BLOCK_PTR
4149 && bb_header[first->index])
4150 {
4151 rtx prev, label, note, next;
4152
4153 label = bb_header[first->index];
4154 prev = PREV_INSN (label);
4155 next = NEXT_INSN (prev);
4156
4157 if (LABEL_P (label))
4158 note = NEXT_INSN (label);
4159 else
4160 note = label;
4161 gcc_assert (NOTE_INSN_BASIC_BLOCK_P (note));
4162
4163 bb_header[first->index] = 0;
4164
4165 NEXT_INSN (prev) = label;
4166 NEXT_INSN (note) = next;
4167 PREV_INSN (next) = note;
4168
4169 first = first->next_bb;
4170 }
4171
4172 free (bb_header);
4173 bb_header = 0;
4174 }
4175
4176 /* Extend per basic block data structures of the scheduler.
4177 If BB is NULL, initialize structures for the whole CFG.
4178 Otherwise, initialize them for the just created BB. */
4179 static void
4180 extend_bb (void)
4181 {
4182 rtx insn;
4183
4184 old_last_basic_block = last_basic_block;
4185
4186 /* The following is done to keep current_sched_info->next_tail non null. */
4187
4188 insn = BB_END (EXIT_BLOCK_PTR->prev_bb);
4189 if (NEXT_INSN (insn) == 0
4190 || (!NOTE_P (insn)
4191 && !LABEL_P (insn)
4192 /* Don't emit a NOTE if it would end up before a BARRIER. */
4193 && !BARRIER_P (NEXT_INSN (insn))))
4194 {
4195 rtx note = emit_note_after (NOTE_INSN_DELETED, insn);
4196 /* Make insn appear outside BB. */
4197 set_block_for_insn (note, NULL);
4198 BB_END (EXIT_BLOCK_PTR->prev_bb) = insn;
4199 }
4200 }
4201
4202 /* Add a basic block BB to extended basic block EBB.
4203 If EBB is EXIT_BLOCK_PTR, then BB is recovery block.
4204 If EBB is NULL, then BB should be a new region. */
4205 void
4206 add_block (basic_block bb, basic_block ebb)
4207 {
4208 gcc_assert (current_sched_info->flags & NEW_BBS);
4209
4210 extend_bb ();
4211
4212 if (current_sched_info->add_block)
4213 /* This changes only data structures of the front-end. */
4214 current_sched_info->add_block (bb, ebb);
4215 }
4216
4217 /* Helper function.
4218 Fix CFG after both in- and inter-block movement of
4219 control_flow_insn_p JUMP. */
4220 static void
4221 fix_jump_move (rtx jump)
4222 {
4223 basic_block bb, jump_bb, jump_bb_next;
4224
4225 bb = BLOCK_FOR_INSN (PREV_INSN (jump));
4226 jump_bb = BLOCK_FOR_INSN (jump);
4227 jump_bb_next = jump_bb->next_bb;
4228
4229 gcc_assert (current_sched_info->flags & SCHED_EBB
4230 || IS_SPECULATION_BRANCHY_CHECK_P (jump));
4231
4232 if (!NOTE_INSN_BASIC_BLOCK_P (BB_END (jump_bb_next)))
4233 /* if jump_bb_next is not empty. */
4234 BB_END (jump_bb) = BB_END (jump_bb_next);
4235
4236 if (BB_END (bb) != PREV_INSN (jump))
4237 /* Then there are instruction after jump that should be placed
4238 to jump_bb_next. */
4239 BB_END (jump_bb_next) = BB_END (bb);
4240 else
4241 /* Otherwise jump_bb_next is empty. */
4242 BB_END (jump_bb_next) = NEXT_INSN (BB_HEAD (jump_bb_next));
4243
4244 /* To make assertion in move_insn happy. */
4245 BB_END (bb) = PREV_INSN (jump);
4246
4247 update_bb_for_insn (jump_bb_next);
4248 }
4249
4250 /* Fix CFG after interblock movement of control_flow_insn_p JUMP. */
4251 static void
4252 move_block_after_check (rtx jump)
4253 {
4254 basic_block bb, jump_bb, jump_bb_next;
4255 VEC(edge,gc) *t;
4256
4257 bb = BLOCK_FOR_INSN (PREV_INSN (jump));
4258 jump_bb = BLOCK_FOR_INSN (jump);
4259 jump_bb_next = jump_bb->next_bb;
4260
4261 update_bb_for_insn (jump_bb);
4262
4263 gcc_assert (IS_SPECULATION_CHECK_P (jump)
4264 || IS_SPECULATION_CHECK_P (BB_END (jump_bb_next)));
4265
4266 unlink_block (jump_bb_next);
4267 link_block (jump_bb_next, bb);
4268
4269 t = bb->succs;
4270 bb->succs = 0;
4271 move_succs (&(jump_bb->succs), bb);
4272 move_succs (&(jump_bb_next->succs), jump_bb);
4273 move_succs (&t, jump_bb_next);
4274
4275 df_mark_solutions_dirty ();
4276
4277 if (current_sched_info->fix_recovery_cfg)
4278 current_sched_info->fix_recovery_cfg
4279 (bb->index, jump_bb->index, jump_bb_next->index);
4280 }
4281
4282 /* Helper function for move_block_after_check.
4283 This functions attaches edge vector pointed to by SUCCSP to
4284 block TO. */
4285 static void
4286 move_succs (VEC(edge,gc) **succsp, basic_block to)
4287 {
4288 edge e;
4289 edge_iterator ei;
4290
4291 gcc_assert (to->succs == 0);
4292
4293 to->succs = *succsp;
4294
4295 FOR_EACH_EDGE (e, ei, to->succs)
4296 e->src = to;
4297
4298 *succsp = 0;
4299 }
4300
4301 /* Remove INSN from the instruction stream.
4302 INSN should have any dependencies. */
4303 static void
4304 sched_remove_insn (rtx insn)
4305 {
4306 sd_finish_insn (insn);
4307
4308 change_queue_index (insn, QUEUE_NOWHERE);
4309 current_sched_info->add_remove_insn (insn, 1);
4310 remove_insn (insn);
4311 }
4312
4313 /* Clear priorities of all instructions, that are forward dependent on INSN.
4314 Store in vector pointed to by ROOTS_PTR insns on which priority () should
4315 be invoked to initialize all cleared priorities. */
4316 static void
4317 clear_priorities (rtx insn, rtx_vec_t *roots_ptr)
4318 {
4319 sd_iterator_def sd_it;
4320 dep_t dep;
4321 bool insn_is_root_p = true;
4322
4323 gcc_assert (QUEUE_INDEX (insn) != QUEUE_SCHEDULED);
4324
4325 FOR_EACH_DEP (insn, SD_LIST_BACK, sd_it, dep)
4326 {
4327 rtx pro = DEP_PRO (dep);
4328
4329 if (INSN_PRIORITY_STATUS (pro) >= 0
4330 && QUEUE_INDEX (insn) != QUEUE_SCHEDULED)
4331 {
4332 /* If DEP doesn't contribute to priority then INSN itself should
4333 be added to priority roots. */
4334 if (contributes_to_priority_p (dep))
4335 insn_is_root_p = false;
4336
4337 INSN_PRIORITY_STATUS (pro) = -1;
4338 clear_priorities (pro, roots_ptr);
4339 }
4340 }
4341
4342 if (insn_is_root_p)
4343 VEC_safe_push (rtx, heap, *roots_ptr, insn);
4344 }
4345
4346 /* Recompute priorities of instructions, whose priorities might have been
4347 changed. ROOTS is a vector of instructions whose priority computation will
4348 trigger initialization of all cleared priorities. */
4349 static void
4350 calc_priorities (rtx_vec_t roots)
4351 {
4352 int i;
4353 rtx insn;
4354
4355 for (i = 0; VEC_iterate (rtx, roots, i, insn); i++)
4356 priority (insn);
4357 }
4358
4359
4360 /* Add dependences between JUMP and other instructions in the recovery
4361 block. INSN is the first insn the recovery block. */
4362 static void
4363 add_jump_dependencies (rtx insn, rtx jump)
4364 {
4365 do
4366 {
4367 insn = NEXT_INSN (insn);
4368 if (insn == jump)
4369 break;
4370
4371 if (sd_lists_empty_p (insn, SD_LIST_FORW))
4372 {
4373 dep_def _new_dep, *new_dep = &_new_dep;
4374
4375 init_dep (new_dep, insn, jump, REG_DEP_ANTI);
4376 sd_add_dep (new_dep, false);
4377 }
4378 }
4379 while (1);
4380
4381 gcc_assert (!sd_lists_empty_p (jump, SD_LIST_BACK));
4382 }
4383
4384 /* Return the NOTE_INSN_BASIC_BLOCK of BB. */
4385 rtx
4386 bb_note (basic_block bb)
4387 {
4388 rtx note;
4389
4390 note = BB_HEAD (bb);
4391 if (LABEL_P (note))
4392 note = NEXT_INSN (note);
4393
4394 gcc_assert (NOTE_INSN_BASIC_BLOCK_P (note));
4395 return note;
4396 }
4397
4398 #ifdef ENABLE_CHECKING
4399 /* Helper function for check_cfg.
4400 Return nonzero, if edge vector pointed to by EL has edge with TYPE in
4401 its flags. */
4402 static int
4403 has_edge_p (VEC(edge,gc) *el, int type)
4404 {
4405 edge e;
4406 edge_iterator ei;
4407
4408 FOR_EACH_EDGE (e, ei, el)
4409 if (e->flags & type)
4410 return 1;
4411 return 0;
4412 }
4413
4414 /* Check few properties of CFG between HEAD and TAIL.
4415 If HEAD (TAIL) is NULL check from the beginning (till the end) of the
4416 instruction stream. */
4417 static void
4418 check_cfg (rtx head, rtx tail)
4419 {
4420 rtx next_tail;
4421 basic_block bb = 0;
4422 int not_first = 0, not_last;
4423
4424 if (head == NULL)
4425 head = get_insns ();
4426 if (tail == NULL)
4427 tail = get_last_insn ();
4428 next_tail = NEXT_INSN (tail);
4429
4430 do
4431 {
4432 not_last = head != tail;
4433
4434 if (not_first)
4435 gcc_assert (NEXT_INSN (PREV_INSN (head)) == head);
4436 if (not_last)
4437 gcc_assert (PREV_INSN (NEXT_INSN (head)) == head);
4438
4439 if (LABEL_P (head)
4440 || (NOTE_INSN_BASIC_BLOCK_P (head)
4441 && (!not_first
4442 || (not_first && !LABEL_P (PREV_INSN (head))))))
4443 {
4444 gcc_assert (bb == 0);
4445 bb = BLOCK_FOR_INSN (head);
4446 if (bb != 0)
4447 gcc_assert (BB_HEAD (bb) == head);
4448 else
4449 /* This is the case of jump table. See inside_basic_block_p (). */
4450 gcc_assert (LABEL_P (head) && !inside_basic_block_p (head));
4451 }
4452
4453 if (bb == 0)
4454 {
4455 gcc_assert (!inside_basic_block_p (head));
4456 head = NEXT_INSN (head);
4457 }
4458 else
4459 {
4460 gcc_assert (inside_basic_block_p (head)
4461 || NOTE_P (head));
4462 gcc_assert (BLOCK_FOR_INSN (head) == bb);
4463
4464 if (LABEL_P (head))
4465 {
4466 head = NEXT_INSN (head);
4467 gcc_assert (NOTE_INSN_BASIC_BLOCK_P (head));
4468 }
4469 else
4470 {
4471 if (control_flow_insn_p (head))
4472 {
4473 gcc_assert (BB_END (bb) == head);
4474
4475 if (any_uncondjump_p (head))
4476 gcc_assert (EDGE_COUNT (bb->succs) == 1
4477 && BARRIER_P (NEXT_INSN (head)));
4478 else if (any_condjump_p (head))
4479 gcc_assert (/* Usual case. */
4480 (EDGE_COUNT (bb->succs) > 1
4481 && !BARRIER_P (NEXT_INSN (head)))
4482 /* Or jump to the next instruction. */
4483 || (EDGE_COUNT (bb->succs) == 1
4484 && (BB_HEAD (EDGE_I (bb->succs, 0)->dest)
4485 == JUMP_LABEL (head))));
4486 }
4487 if (BB_END (bb) == head)
4488 {
4489 if (EDGE_COUNT (bb->succs) > 1)
4490 gcc_assert (control_flow_insn_p (head)
4491 || has_edge_p (bb->succs, EDGE_COMPLEX));
4492 bb = 0;
4493 }
4494
4495 head = NEXT_INSN (head);
4496 }
4497 }
4498
4499 not_first = 1;
4500 }
4501 while (head != next_tail);
4502
4503 gcc_assert (bb == 0);
4504 }
4505
4506 /* Perform a few consistency checks of flags in different data structures. */
4507 static void
4508 check_sched_flags (void)
4509 {
4510 unsigned int f = current_sched_info->flags;
4511
4512 if (flag_sched_stalled_insns)
4513 gcc_assert (!(f & DO_SPECULATION));
4514 if (f & DO_SPECULATION)
4515 gcc_assert (!flag_sched_stalled_insns
4516 && spec_info
4517 && spec_info->mask);
4518 }
4519 #endif /* ENABLE_CHECKING */
4520
4521 #endif /* INSN_SCHEDULING */