]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/haifa-sched.c
coretypes.h: Include machmode.h...
[thirdparty/gcc.git] / gcc / haifa-sched.c
1 /* Instruction scheduling pass.
2 Copyright (C) 1992-2015 Free Software Foundation, Inc.
3 Contributed by Michael Tiemann (tiemann@cygnus.com) Enhanced by,
4 and currently maintained by, Jim Wilson (wilson@cygnus.com)
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
12
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
21
22 /* Instruction scheduling pass. This file, along with sched-deps.c,
23 contains the generic parts. The actual entry point for
24 the normal instruction scheduling pass is found in sched-rgn.c.
25
26 We compute insn priorities based on data dependencies. Flow
27 analysis only creates a fraction of the data-dependencies we must
28 observe: namely, only those dependencies which the combiner can be
29 expected to use. For this pass, we must therefore create the
30 remaining dependencies we need to observe: register dependencies,
31 memory dependencies, dependencies to keep function calls in order,
32 and the dependence between a conditional branch and the setting of
33 condition codes are all dealt with here.
34
35 The scheduler first traverses the data flow graph, starting with
36 the last instruction, and proceeding to the first, assigning values
37 to insn_priority as it goes. This sorts the instructions
38 topologically by data dependence.
39
40 Once priorities have been established, we order the insns using
41 list scheduling. This works as follows: starting with a list of
42 all the ready insns, and sorted according to priority number, we
43 schedule the insn from the end of the list by placing its
44 predecessors in the list according to their priority order. We
45 consider this insn scheduled by setting the pointer to the "end" of
46 the list to point to the previous insn. When an insn has no
47 predecessors, we either queue it until sufficient time has elapsed
48 or add it to the ready list. As the instructions are scheduled or
49 when stalls are introduced, the queue advances and dumps insns into
50 the ready list. When all insns down to the lowest priority have
51 been scheduled, the critical path of the basic block has been made
52 as short as possible. The remaining insns are then scheduled in
53 remaining slots.
54
55 The following list shows the order in which we want to break ties
56 among insns in the ready list:
57
58 1. choose insn with the longest path to end of bb, ties
59 broken by
60 2. choose insn with least contribution to register pressure,
61 ties broken by
62 3. prefer in-block upon interblock motion, ties broken by
63 4. prefer useful upon speculative motion, ties broken by
64 5. choose insn with largest control flow probability, ties
65 broken by
66 6. choose insn with the least dependences upon the previously
67 scheduled insn, or finally
68 7 choose the insn which has the most insns dependent on it.
69 8. choose insn with lowest UID.
70
71 Memory references complicate matters. Only if we can be certain
72 that memory references are not part of the data dependency graph
73 (via true, anti, or output dependence), can we move operations past
74 memory references. To first approximation, reads can be done
75 independently, while writes introduce dependencies. Better
76 approximations will yield fewer dependencies.
77
78 Before reload, an extended analysis of interblock data dependences
79 is required for interblock scheduling. This is performed in
80 compute_block_dependences ().
81
82 Dependencies set up by memory references are treated in exactly the
83 same way as other dependencies, by using insn backward dependences
84 INSN_BACK_DEPS. INSN_BACK_DEPS are translated into forward dependences
85 INSN_FORW_DEPS for the purpose of forward list scheduling.
86
87 Having optimized the critical path, we may have also unduly
88 extended the lifetimes of some registers. If an operation requires
89 that constants be loaded into registers, it is certainly desirable
90 to load those constants as early as necessary, but no earlier.
91 I.e., it will not do to load up a bunch of registers at the
92 beginning of a basic block only to use them at the end, if they
93 could be loaded later, since this may result in excessive register
94 utilization.
95
96 Note that since branches are never in basic blocks, but only end
97 basic blocks, this pass will not move branches. But that is ok,
98 since we can use GNU's delayed branch scheduling pass to take care
99 of this case.
100
101 Also note that no further optimizations based on algebraic
102 identities are performed, so this pass would be a good one to
103 perform instruction splitting, such as breaking up a multiply
104 instruction into shifts and adds where that is profitable.
105
106 Given the memory aliasing analysis that this pass should perform,
107 it should be possible to remove redundant stores to memory, and to
108 load values from registers instead of hitting memory.
109
110 Before reload, speculative insns are moved only if a 'proof' exists
111 that no exception will be caused by this, and if no live registers
112 exist that inhibit the motion (live registers constraints are not
113 represented by data dependence edges).
114
115 This pass must update information that subsequent passes expect to
116 be correct. Namely: reg_n_refs, reg_n_sets, reg_n_deaths,
117 reg_n_calls_crossed, and reg_live_length. Also, BB_HEAD, BB_END.
118
119 The information in the line number notes is carefully retained by
120 this pass. Notes that refer to the starting and ending of
121 exception regions are also carefully retained by this pass. All
122 other NOTE insns are grouped in their same relative order at the
123 beginning of basic blocks and regions that have been scheduled. */
124 \f
125 #include "config.h"
126 #include "system.h"
127 #include "coretypes.h"
128 #include "tm.h"
129 #include "diagnostic-core.h"
130 #include "hard-reg-set.h"
131 #include "rtl.h"
132 #include "tm_p.h"
133 #include "regs.h"
134 #include "hashtab.h"
135 #include "hash-set.h"
136 #include "vec.h"
137 #include "input.h"
138 #include "function.h"
139 #include "flags.h"
140 #include "insn-config.h"
141 #include "insn-attr.h"
142 #include "except.h"
143 #include "recog.h"
144 #include "dominance.h"
145 #include "cfg.h"
146 #include "cfgrtl.h"
147 #include "cfgbuild.h"
148 #include "predict.h"
149 #include "basic-block.h"
150 #include "sched-int.h"
151 #include "target.h"
152 #include "common/common-target.h"
153 #include "params.h"
154 #include "dbgcnt.h"
155 #include "cfgloop.h"
156 #include "ira.h"
157 #include "emit-rtl.h" /* FIXME: Can go away once crtl is moved to rtl.h. */
158 #include "hash-table.h"
159 #include "dumpfile.h"
160
161 #ifdef INSN_SCHEDULING
162
163 /* True if we do register pressure relief through live-range
164 shrinkage. */
165 static bool live_range_shrinkage_p;
166
167 /* Switch on live range shrinkage. */
168 void
169 initialize_live_range_shrinkage (void)
170 {
171 live_range_shrinkage_p = true;
172 }
173
174 /* Switch off live range shrinkage. */
175 void
176 finish_live_range_shrinkage (void)
177 {
178 live_range_shrinkage_p = false;
179 }
180
181 /* issue_rate is the number of insns that can be scheduled in the same
182 machine cycle. It can be defined in the config/mach/mach.h file,
183 otherwise we set it to 1. */
184
185 int issue_rate;
186
187 /* This can be set to true by a backend if the scheduler should not
188 enable a DCE pass. */
189 bool sched_no_dce;
190
191 /* The current initiation interval used when modulo scheduling. */
192 static int modulo_ii;
193
194 /* The maximum number of stages we are prepared to handle. */
195 static int modulo_max_stages;
196
197 /* The number of insns that exist in each iteration of the loop. We use this
198 to detect when we've scheduled all insns from the first iteration. */
199 static int modulo_n_insns;
200
201 /* The current count of insns in the first iteration of the loop that have
202 already been scheduled. */
203 static int modulo_insns_scheduled;
204
205 /* The maximum uid of insns from the first iteration of the loop. */
206 static int modulo_iter0_max_uid;
207
208 /* The number of times we should attempt to backtrack when modulo scheduling.
209 Decreased each time we have to backtrack. */
210 static int modulo_backtracks_left;
211
212 /* The stage in which the last insn from the original loop was
213 scheduled. */
214 static int modulo_last_stage;
215
216 /* sched-verbose controls the amount of debugging output the
217 scheduler prints. It is controlled by -fsched-verbose=N:
218 N>0 and no -DSR : the output is directed to stderr.
219 N>=10 will direct the printouts to stderr (regardless of -dSR).
220 N=1: same as -dSR.
221 N=2: bb's probabilities, detailed ready list info, unit/insn info.
222 N=3: rtl at abort point, control-flow, regions info.
223 N=5: dependences info. */
224
225 int sched_verbose = 0;
226
227 /* Debugging file. All printouts are sent to dump, which is always set,
228 either to stderr, or to the dump listing file (-dRS). */
229 FILE *sched_dump = 0;
230
231 /* This is a placeholder for the scheduler parameters common
232 to all schedulers. */
233 struct common_sched_info_def *common_sched_info;
234
235 #define INSN_TICK(INSN) (HID (INSN)->tick)
236 #define INSN_EXACT_TICK(INSN) (HID (INSN)->exact_tick)
237 #define INSN_TICK_ESTIMATE(INSN) (HID (INSN)->tick_estimate)
238 #define INTER_TICK(INSN) (HID (INSN)->inter_tick)
239 #define FEEDS_BACKTRACK_INSN(INSN) (HID (INSN)->feeds_backtrack_insn)
240 #define SHADOW_P(INSN) (HID (INSN)->shadow_p)
241 #define MUST_RECOMPUTE_SPEC_P(INSN) (HID (INSN)->must_recompute_spec)
242 /* Cached cost of the instruction. Use insn_cost to get cost of the
243 insn. -1 here means that the field is not initialized. */
244 #define INSN_COST(INSN) (HID (INSN)->cost)
245
246 /* If INSN_TICK of an instruction is equal to INVALID_TICK,
247 then it should be recalculated from scratch. */
248 #define INVALID_TICK (-(max_insn_queue_index + 1))
249 /* The minimal value of the INSN_TICK of an instruction. */
250 #define MIN_TICK (-max_insn_queue_index)
251
252 /* Original order of insns in the ready list.
253 Used to keep order of normal insns while separating DEBUG_INSNs. */
254 #define INSN_RFS_DEBUG_ORIG_ORDER(INSN) (HID (INSN)->rfs_debug_orig_order)
255
256 /* The deciding reason for INSN's place in the ready list. */
257 #define INSN_LAST_RFS_WIN(INSN) (HID (INSN)->last_rfs_win)
258
259 /* List of important notes we must keep around. This is a pointer to the
260 last element in the list. */
261 rtx_insn *note_list;
262
263 static struct spec_info_def spec_info_var;
264 /* Description of the speculative part of the scheduling.
265 If NULL - no speculation. */
266 spec_info_t spec_info = NULL;
267
268 /* True, if recovery block was added during scheduling of current block.
269 Used to determine, if we need to fix INSN_TICKs. */
270 static bool haifa_recovery_bb_recently_added_p;
271
272 /* True, if recovery block was added during this scheduling pass.
273 Used to determine if we should have empty memory pools of dependencies
274 after finishing current region. */
275 bool haifa_recovery_bb_ever_added_p;
276
277 /* Counters of different types of speculative instructions. */
278 static int nr_begin_data, nr_be_in_data, nr_begin_control, nr_be_in_control;
279
280 /* Array used in {unlink, restore}_bb_notes. */
281 static rtx_insn **bb_header = 0;
282
283 /* Basic block after which recovery blocks will be created. */
284 static basic_block before_recovery;
285
286 /* Basic block just before the EXIT_BLOCK and after recovery, if we have
287 created it. */
288 basic_block after_recovery;
289
290 /* FALSE if we add bb to another region, so we don't need to initialize it. */
291 bool adding_bb_to_current_region_p = true;
292
293 /* Queues, etc. */
294
295 /* An instruction is ready to be scheduled when all insns preceding it
296 have already been scheduled. It is important to ensure that all
297 insns which use its result will not be executed until its result
298 has been computed. An insn is maintained in one of four structures:
299
300 (P) the "Pending" set of insns which cannot be scheduled until
301 their dependencies have been satisfied.
302 (Q) the "Queued" set of insns that can be scheduled when sufficient
303 time has passed.
304 (R) the "Ready" list of unscheduled, uncommitted insns.
305 (S) the "Scheduled" list of insns.
306
307 Initially, all insns are either "Pending" or "Ready" depending on
308 whether their dependencies are satisfied.
309
310 Insns move from the "Ready" list to the "Scheduled" list as they
311 are committed to the schedule. As this occurs, the insns in the
312 "Pending" list have their dependencies satisfied and move to either
313 the "Ready" list or the "Queued" set depending on whether
314 sufficient time has passed to make them ready. As time passes,
315 insns move from the "Queued" set to the "Ready" list.
316
317 The "Pending" list (P) are the insns in the INSN_FORW_DEPS of the
318 unscheduled insns, i.e., those that are ready, queued, and pending.
319 The "Queued" set (Q) is implemented by the variable `insn_queue'.
320 The "Ready" list (R) is implemented by the variables `ready' and
321 `n_ready'.
322 The "Scheduled" list (S) is the new insn chain built by this pass.
323
324 The transition (R->S) is implemented in the scheduling loop in
325 `schedule_block' when the best insn to schedule is chosen.
326 The transitions (P->R and P->Q) are implemented in `schedule_insn' as
327 insns move from the ready list to the scheduled list.
328 The transition (Q->R) is implemented in 'queue_to_insn' as time
329 passes or stalls are introduced. */
330
331 /* Implement a circular buffer to delay instructions until sufficient
332 time has passed. For the new pipeline description interface,
333 MAX_INSN_QUEUE_INDEX is a power of two minus one which is not less
334 than maximal time of instruction execution computed by genattr.c on
335 the base maximal time of functional unit reservations and getting a
336 result. This is the longest time an insn may be queued. */
337
338 static rtx_insn_list **insn_queue;
339 static int q_ptr = 0;
340 static int q_size = 0;
341 #define NEXT_Q(X) (((X)+1) & max_insn_queue_index)
342 #define NEXT_Q_AFTER(X, C) (((X)+C) & max_insn_queue_index)
343
344 #define QUEUE_SCHEDULED (-3)
345 #define QUEUE_NOWHERE (-2)
346 #define QUEUE_READY (-1)
347 /* QUEUE_SCHEDULED - INSN is scheduled.
348 QUEUE_NOWHERE - INSN isn't scheduled yet and is neither in
349 queue or ready list.
350 QUEUE_READY - INSN is in ready list.
351 N >= 0 - INSN queued for X [where NEXT_Q_AFTER (q_ptr, X) == N] cycles. */
352
353 #define QUEUE_INDEX(INSN) (HID (INSN)->queue_index)
354
355 /* The following variable value refers for all current and future
356 reservations of the processor units. */
357 state_t curr_state;
358
359 /* The following variable value is size of memory representing all
360 current and future reservations of the processor units. */
361 size_t dfa_state_size;
362
363 /* The following array is used to find the best insn from ready when
364 the automaton pipeline interface is used. */
365 signed char *ready_try = NULL;
366
367 /* The ready list. */
368 struct ready_list ready = {NULL, 0, 0, 0, 0};
369
370 /* The pointer to the ready list (to be removed). */
371 static struct ready_list *readyp = &ready;
372
373 /* Scheduling clock. */
374 static int clock_var;
375
376 /* Clock at which the previous instruction was issued. */
377 static int last_clock_var;
378
379 /* Set to true if, when queuing a shadow insn, we discover that it would be
380 scheduled too late. */
381 static bool must_backtrack;
382
383 /* The following variable value is number of essential insns issued on
384 the current cycle. An insn is essential one if it changes the
385 processors state. */
386 int cycle_issued_insns;
387
388 /* This records the actual schedule. It is built up during the main phase
389 of schedule_block, and afterwards used to reorder the insns in the RTL. */
390 static vec<rtx_insn *> scheduled_insns;
391
392 static int may_trap_exp (const_rtx, int);
393
394 /* Nonzero iff the address is comprised from at most 1 register. */
395 #define CONST_BASED_ADDRESS_P(x) \
396 (REG_P (x) \
397 || ((GET_CODE (x) == PLUS || GET_CODE (x) == MINUS \
398 || (GET_CODE (x) == LO_SUM)) \
399 && (CONSTANT_P (XEXP (x, 0)) \
400 || CONSTANT_P (XEXP (x, 1)))))
401
402 /* Returns a class that insn with GET_DEST(insn)=x may belong to,
403 as found by analyzing insn's expression. */
404
405 \f
406 static int haifa_luid_for_non_insn (rtx x);
407
408 /* Haifa version of sched_info hooks common to all headers. */
409 const struct common_sched_info_def haifa_common_sched_info =
410 {
411 NULL, /* fix_recovery_cfg */
412 NULL, /* add_block */
413 NULL, /* estimate_number_of_insns */
414 haifa_luid_for_non_insn, /* luid_for_non_insn */
415 SCHED_PASS_UNKNOWN /* sched_pass_id */
416 };
417
418 /* Mapping from instruction UID to its Logical UID. */
419 vec<int> sched_luids = vNULL;
420
421 /* Next LUID to assign to an instruction. */
422 int sched_max_luid = 1;
423
424 /* Haifa Instruction Data. */
425 vec<haifa_insn_data_def> h_i_d = vNULL;
426
427 void (* sched_init_only_bb) (basic_block, basic_block);
428
429 /* Split block function. Different schedulers might use different functions
430 to handle their internal data consistent. */
431 basic_block (* sched_split_block) (basic_block, rtx);
432
433 /* Create empty basic block after the specified block. */
434 basic_block (* sched_create_empty_bb) (basic_block);
435
436 /* Return the number of cycles until INSN is expected to be ready.
437 Return zero if it already is. */
438 static int
439 insn_delay (rtx_insn *insn)
440 {
441 return MAX (INSN_TICK (insn) - clock_var, 0);
442 }
443
444 static int
445 may_trap_exp (const_rtx x, int is_store)
446 {
447 enum rtx_code code;
448
449 if (x == 0)
450 return TRAP_FREE;
451 code = GET_CODE (x);
452 if (is_store)
453 {
454 if (code == MEM && may_trap_p (x))
455 return TRAP_RISKY;
456 else
457 return TRAP_FREE;
458 }
459 if (code == MEM)
460 {
461 /* The insn uses memory: a volatile load. */
462 if (MEM_VOLATILE_P (x))
463 return IRISKY;
464 /* An exception-free load. */
465 if (!may_trap_p (x))
466 return IFREE;
467 /* A load with 1 base register, to be further checked. */
468 if (CONST_BASED_ADDRESS_P (XEXP (x, 0)))
469 return PFREE_CANDIDATE;
470 /* No info on the load, to be further checked. */
471 return PRISKY_CANDIDATE;
472 }
473 else
474 {
475 const char *fmt;
476 int i, insn_class = TRAP_FREE;
477
478 /* Neither store nor load, check if it may cause a trap. */
479 if (may_trap_p (x))
480 return TRAP_RISKY;
481 /* Recursive step: walk the insn... */
482 fmt = GET_RTX_FORMAT (code);
483 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
484 {
485 if (fmt[i] == 'e')
486 {
487 int tmp_class = may_trap_exp (XEXP (x, i), is_store);
488 insn_class = WORST_CLASS (insn_class, tmp_class);
489 }
490 else if (fmt[i] == 'E')
491 {
492 int j;
493 for (j = 0; j < XVECLEN (x, i); j++)
494 {
495 int tmp_class = may_trap_exp (XVECEXP (x, i, j), is_store);
496 insn_class = WORST_CLASS (insn_class, tmp_class);
497 if (insn_class == TRAP_RISKY || insn_class == IRISKY)
498 break;
499 }
500 }
501 if (insn_class == TRAP_RISKY || insn_class == IRISKY)
502 break;
503 }
504 return insn_class;
505 }
506 }
507
508 /* Classifies rtx X of an insn for the purpose of verifying that X can be
509 executed speculatively (and consequently the insn can be moved
510 speculatively), by examining X, returning:
511 TRAP_RISKY: store, or risky non-load insn (e.g. division by variable).
512 TRAP_FREE: non-load insn.
513 IFREE: load from a globally safe location.
514 IRISKY: volatile load.
515 PFREE_CANDIDATE, PRISKY_CANDIDATE: load that need to be checked for
516 being either PFREE or PRISKY. */
517
518 static int
519 haifa_classify_rtx (const_rtx x)
520 {
521 int tmp_class = TRAP_FREE;
522 int insn_class = TRAP_FREE;
523 enum rtx_code code;
524
525 if (GET_CODE (x) == PARALLEL)
526 {
527 int i, len = XVECLEN (x, 0);
528
529 for (i = len - 1; i >= 0; i--)
530 {
531 tmp_class = haifa_classify_rtx (XVECEXP (x, 0, i));
532 insn_class = WORST_CLASS (insn_class, tmp_class);
533 if (insn_class == TRAP_RISKY || insn_class == IRISKY)
534 break;
535 }
536 }
537 else
538 {
539 code = GET_CODE (x);
540 switch (code)
541 {
542 case CLOBBER:
543 /* Test if it is a 'store'. */
544 tmp_class = may_trap_exp (XEXP (x, 0), 1);
545 break;
546 case SET:
547 /* Test if it is a store. */
548 tmp_class = may_trap_exp (SET_DEST (x), 1);
549 if (tmp_class == TRAP_RISKY)
550 break;
551 /* Test if it is a load. */
552 tmp_class =
553 WORST_CLASS (tmp_class,
554 may_trap_exp (SET_SRC (x), 0));
555 break;
556 case COND_EXEC:
557 tmp_class = haifa_classify_rtx (COND_EXEC_CODE (x));
558 if (tmp_class == TRAP_RISKY)
559 break;
560 tmp_class = WORST_CLASS (tmp_class,
561 may_trap_exp (COND_EXEC_TEST (x), 0));
562 break;
563 case TRAP_IF:
564 tmp_class = TRAP_RISKY;
565 break;
566 default:;
567 }
568 insn_class = tmp_class;
569 }
570
571 return insn_class;
572 }
573
574 int
575 haifa_classify_insn (const_rtx insn)
576 {
577 return haifa_classify_rtx (PATTERN (insn));
578 }
579 \f
580 /* After the scheduler initialization function has been called, this function
581 can be called to enable modulo scheduling. II is the initiation interval
582 we should use, it affects the delays for delay_pairs that were recorded as
583 separated by a given number of stages.
584
585 MAX_STAGES provides us with a limit
586 after which we give up scheduling; the caller must have unrolled at least
587 as many copies of the loop body and recorded delay_pairs for them.
588
589 INSNS is the number of real (non-debug) insns in one iteration of
590 the loop. MAX_UID can be used to test whether an insn belongs to
591 the first iteration of the loop; all of them have a uid lower than
592 MAX_UID. */
593 void
594 set_modulo_params (int ii, int max_stages, int insns, int max_uid)
595 {
596 modulo_ii = ii;
597 modulo_max_stages = max_stages;
598 modulo_n_insns = insns;
599 modulo_iter0_max_uid = max_uid;
600 modulo_backtracks_left = PARAM_VALUE (PARAM_MAX_MODULO_BACKTRACK_ATTEMPTS);
601 }
602
603 /* A structure to record a pair of insns where the first one is a real
604 insn that has delay slots, and the second is its delayed shadow.
605 I1 is scheduled normally and will emit an assembly instruction,
606 while I2 describes the side effect that takes place at the
607 transition between cycles CYCLES and (CYCLES + 1) after I1. */
608 struct delay_pair
609 {
610 struct delay_pair *next_same_i1;
611 rtx_insn *i1, *i2;
612 int cycles;
613 /* When doing modulo scheduling, we a delay_pair can also be used to
614 show that I1 and I2 are the same insn in a different stage. If that
615 is the case, STAGES will be nonzero. */
616 int stages;
617 };
618
619 /* Helpers for delay hashing. */
620
621 struct delay_i1_hasher : typed_noop_remove <delay_pair>
622 {
623 typedef delay_pair *value_type;
624 typedef void *compare_type;
625 static inline hashval_t hash (const delay_pair *);
626 static inline bool equal (const delay_pair *, const void *);
627 };
628
629 /* Returns a hash value for X, based on hashing just I1. */
630
631 inline hashval_t
632 delay_i1_hasher::hash (const delay_pair *x)
633 {
634 return htab_hash_pointer (x->i1);
635 }
636
637 /* Return true if I1 of pair X is the same as that of pair Y. */
638
639 inline bool
640 delay_i1_hasher::equal (const delay_pair *x, const void *y)
641 {
642 return x->i1 == y;
643 }
644
645 struct delay_i2_hasher : typed_free_remove <delay_pair>
646 {
647 typedef delay_pair *value_type;
648 typedef void *compare_type;
649 static inline hashval_t hash (const delay_pair *);
650 static inline bool equal (const delay_pair *, const void *);
651 };
652
653 /* Returns a hash value for X, based on hashing just I2. */
654
655 inline hashval_t
656 delay_i2_hasher::hash (const delay_pair *x)
657 {
658 return htab_hash_pointer (x->i2);
659 }
660
661 /* Return true if I2 of pair X is the same as that of pair Y. */
662
663 inline bool
664 delay_i2_hasher::equal (const delay_pair *x, const void *y)
665 {
666 return x->i2 == y;
667 }
668
669 /* Two hash tables to record delay_pairs, one indexed by I1 and the other
670 indexed by I2. */
671 static hash_table<delay_i1_hasher> *delay_htab;
672 static hash_table<delay_i2_hasher> *delay_htab_i2;
673
674 /* Called through htab_traverse. Walk the hashtable using I2 as
675 index, and delete all elements involving an UID higher than
676 that pointed to by *DATA. */
677 int
678 haifa_htab_i2_traverse (delay_pair **slot, int *data)
679 {
680 int maxuid = *data;
681 struct delay_pair *p = *slot;
682 if (INSN_UID (p->i2) >= maxuid || INSN_UID (p->i1) >= maxuid)
683 {
684 delay_htab_i2->clear_slot (slot);
685 }
686 return 1;
687 }
688
689 /* Called through htab_traverse. Walk the hashtable using I2 as
690 index, and delete all elements involving an UID higher than
691 that pointed to by *DATA. */
692 int
693 haifa_htab_i1_traverse (delay_pair **pslot, int *data)
694 {
695 int maxuid = *data;
696 struct delay_pair *p, *first, **pprev;
697
698 if (INSN_UID ((*pslot)->i1) >= maxuid)
699 {
700 delay_htab->clear_slot (pslot);
701 return 1;
702 }
703 pprev = &first;
704 for (p = *pslot; p; p = p->next_same_i1)
705 {
706 if (INSN_UID (p->i2) < maxuid)
707 {
708 *pprev = p;
709 pprev = &p->next_same_i1;
710 }
711 }
712 *pprev = NULL;
713 if (first == NULL)
714 delay_htab->clear_slot (pslot);
715 else
716 *pslot = first;
717 return 1;
718 }
719
720 /* Discard all delay pairs which involve an insn with an UID higher
721 than MAX_UID. */
722 void
723 discard_delay_pairs_above (int max_uid)
724 {
725 delay_htab->traverse <int *, haifa_htab_i1_traverse> (&max_uid);
726 delay_htab_i2->traverse <int *, haifa_htab_i2_traverse> (&max_uid);
727 }
728
729 /* This function can be called by a port just before it starts the final
730 scheduling pass. It records the fact that an instruction with delay
731 slots has been split into two insns, I1 and I2. The first one will be
732 scheduled normally and initiates the operation. The second one is a
733 shadow which must follow a specific number of cycles after I1; its only
734 purpose is to show the side effect that occurs at that cycle in the RTL.
735 If a JUMP_INSN or a CALL_INSN has been split, I1 should be a normal INSN,
736 while I2 retains the original insn type.
737
738 There are two ways in which the number of cycles can be specified,
739 involving the CYCLES and STAGES arguments to this function. If STAGES
740 is zero, we just use the value of CYCLES. Otherwise, STAGES is a factor
741 which is multiplied by MODULO_II to give the number of cycles. This is
742 only useful if the caller also calls set_modulo_params to enable modulo
743 scheduling. */
744
745 void
746 record_delay_slot_pair (rtx_insn *i1, rtx_insn *i2, int cycles, int stages)
747 {
748 struct delay_pair *p = XNEW (struct delay_pair);
749 struct delay_pair **slot;
750
751 p->i1 = i1;
752 p->i2 = i2;
753 p->cycles = cycles;
754 p->stages = stages;
755
756 if (!delay_htab)
757 {
758 delay_htab = new hash_table<delay_i1_hasher> (10);
759 delay_htab_i2 = new hash_table<delay_i2_hasher> (10);
760 }
761 slot = delay_htab->find_slot_with_hash (i1, htab_hash_pointer (i1), INSERT);
762 p->next_same_i1 = *slot;
763 *slot = p;
764 slot = delay_htab_i2->find_slot (p, INSERT);
765 *slot = p;
766 }
767
768 /* Examine the delay pair hashtable to see if INSN is a shadow for another,
769 and return the other insn if so. Return NULL otherwise. */
770 rtx_insn *
771 real_insn_for_shadow (rtx_insn *insn)
772 {
773 struct delay_pair *pair;
774
775 if (!delay_htab)
776 return NULL;
777
778 pair = delay_htab_i2->find_with_hash (insn, htab_hash_pointer (insn));
779 if (!pair || pair->stages > 0)
780 return NULL;
781 return pair->i1;
782 }
783
784 /* For a pair P of insns, return the fixed distance in cycles from the first
785 insn after which the second must be scheduled. */
786 static int
787 pair_delay (struct delay_pair *p)
788 {
789 if (p->stages == 0)
790 return p->cycles;
791 else
792 return p->stages * modulo_ii;
793 }
794
795 /* Given an insn INSN, add a dependence on its delayed shadow if it
796 has one. Also try to find situations where shadows depend on each other
797 and add dependencies to the real insns to limit the amount of backtracking
798 needed. */
799 void
800 add_delay_dependencies (rtx_insn *insn)
801 {
802 struct delay_pair *pair;
803 sd_iterator_def sd_it;
804 dep_t dep;
805
806 if (!delay_htab)
807 return;
808
809 pair = delay_htab_i2->find_with_hash (insn, htab_hash_pointer (insn));
810 if (!pair)
811 return;
812 add_dependence (insn, pair->i1, REG_DEP_ANTI);
813 if (pair->stages)
814 return;
815
816 FOR_EACH_DEP (pair->i2, SD_LIST_BACK, sd_it, dep)
817 {
818 rtx_insn *pro = DEP_PRO (dep);
819 struct delay_pair *other_pair
820 = delay_htab_i2->find_with_hash (pro, htab_hash_pointer (pro));
821 if (!other_pair || other_pair->stages)
822 continue;
823 if (pair_delay (other_pair) >= pair_delay (pair))
824 {
825 if (sched_verbose >= 4)
826 {
827 fprintf (sched_dump, ";;\tadding dependence %d <- %d\n",
828 INSN_UID (other_pair->i1),
829 INSN_UID (pair->i1));
830 fprintf (sched_dump, ";;\tpair1 %d <- %d, cost %d\n",
831 INSN_UID (pair->i1),
832 INSN_UID (pair->i2),
833 pair_delay (pair));
834 fprintf (sched_dump, ";;\tpair2 %d <- %d, cost %d\n",
835 INSN_UID (other_pair->i1),
836 INSN_UID (other_pair->i2),
837 pair_delay (other_pair));
838 }
839 add_dependence (pair->i1, other_pair->i1, REG_DEP_ANTI);
840 }
841 }
842 }
843 \f
844 /* Forward declarations. */
845
846 static int priority (rtx_insn *);
847 static int autopref_rank_for_schedule (const rtx_insn *, const rtx_insn *);
848 static int rank_for_schedule (const void *, const void *);
849 static void swap_sort (rtx_insn **, int);
850 static void queue_insn (rtx_insn *, int, const char *);
851 static int schedule_insn (rtx_insn *);
852 static void adjust_priority (rtx_insn *);
853 static void advance_one_cycle (void);
854 static void extend_h_i_d (void);
855
856
857 /* Notes handling mechanism:
858 =========================
859 Generally, NOTES are saved before scheduling and restored after scheduling.
860 The scheduler distinguishes between two types of notes:
861
862 (1) LOOP_BEGIN, LOOP_END, SETJMP, EHREGION_BEG, EHREGION_END notes:
863 Before scheduling a region, a pointer to the note is added to the insn
864 that follows or precedes it. (This happens as part of the data dependence
865 computation). After scheduling an insn, the pointer contained in it is
866 used for regenerating the corresponding note (in reemit_notes).
867
868 (2) All other notes (e.g. INSN_DELETED): Before scheduling a block,
869 these notes are put in a list (in rm_other_notes() and
870 unlink_other_notes ()). After scheduling the block, these notes are
871 inserted at the beginning of the block (in schedule_block()). */
872
873 static void ready_add (struct ready_list *, rtx_insn *, bool);
874 static rtx_insn *ready_remove_first (struct ready_list *);
875 static rtx_insn *ready_remove_first_dispatch (struct ready_list *ready);
876
877 static void queue_to_ready (struct ready_list *);
878 static int early_queue_to_ready (state_t, struct ready_list *);
879
880 /* The following functions are used to implement multi-pass scheduling
881 on the first cycle. */
882 static rtx_insn *ready_remove (struct ready_list *, int);
883 static void ready_remove_insn (rtx_insn *);
884
885 static void fix_inter_tick (rtx_insn *, rtx_insn *);
886 static int fix_tick_ready (rtx_insn *);
887 static void change_queue_index (rtx_insn *, int);
888
889 /* The following functions are used to implement scheduling of data/control
890 speculative instructions. */
891
892 static void extend_h_i_d (void);
893 static void init_h_i_d (rtx_insn *);
894 static int haifa_speculate_insn (rtx_insn *, ds_t, rtx *);
895 static void generate_recovery_code (rtx_insn *);
896 static void process_insn_forw_deps_be_in_spec (rtx_insn *, rtx_insn *, ds_t);
897 static void begin_speculative_block (rtx_insn *);
898 static void add_to_speculative_block (rtx_insn *);
899 static void init_before_recovery (basic_block *);
900 static void create_check_block_twin (rtx_insn *, bool);
901 static void fix_recovery_deps (basic_block);
902 static bool haifa_change_pattern (rtx_insn *, rtx);
903 static void dump_new_block_header (int, basic_block, rtx_insn *, rtx_insn *);
904 static void restore_bb_notes (basic_block);
905 static void fix_jump_move (rtx_insn *);
906 static void move_block_after_check (rtx_insn *);
907 static void move_succs (vec<edge, va_gc> **, basic_block);
908 static void sched_remove_insn (rtx_insn *);
909 static void clear_priorities (rtx_insn *, rtx_vec_t *);
910 static void calc_priorities (rtx_vec_t);
911 static void add_jump_dependencies (rtx_insn *, rtx_insn *);
912
913 #endif /* INSN_SCHEDULING */
914 \f
915 /* Point to state used for the current scheduling pass. */
916 struct haifa_sched_info *current_sched_info;
917 \f
918 #ifndef INSN_SCHEDULING
919 void
920 schedule_insns (void)
921 {
922 }
923 #else
924
925 /* Do register pressure sensitive insn scheduling if the flag is set
926 up. */
927 enum sched_pressure_algorithm sched_pressure;
928
929 /* Map regno -> its pressure class. The map defined only when
930 SCHED_PRESSURE != SCHED_PRESSURE_NONE. */
931 enum reg_class *sched_regno_pressure_class;
932
933 /* The current register pressure. Only elements corresponding pressure
934 classes are defined. */
935 static int curr_reg_pressure[N_REG_CLASSES];
936
937 /* Saved value of the previous array. */
938 static int saved_reg_pressure[N_REG_CLASSES];
939
940 /* Register living at given scheduling point. */
941 static bitmap curr_reg_live;
942
943 /* Saved value of the previous array. */
944 static bitmap saved_reg_live;
945
946 /* Registers mentioned in the current region. */
947 static bitmap region_ref_regs;
948
949 /* Effective number of available registers of a given class (see comment
950 in sched_pressure_start_bb). */
951 static int sched_class_regs_num[N_REG_CLASSES];
952 /* Number of call_used_regs. This is a helper for calculating of
953 sched_class_regs_num. */
954 static int call_used_regs_num[N_REG_CLASSES];
955
956 /* Initiate register pressure relative info for scheduling the current
957 region. Currently it is only clearing register mentioned in the
958 current region. */
959 void
960 sched_init_region_reg_pressure_info (void)
961 {
962 bitmap_clear (region_ref_regs);
963 }
964
965 /* PRESSURE[CL] describes the pressure on register class CL. Update it
966 for the birth (if BIRTH_P) or death (if !BIRTH_P) of register REGNO.
967 LIVE tracks the set of live registers; if it is null, assume that
968 every birth or death is genuine. */
969 static inline void
970 mark_regno_birth_or_death (bitmap live, int *pressure, int regno, bool birth_p)
971 {
972 enum reg_class pressure_class;
973
974 pressure_class = sched_regno_pressure_class[regno];
975 if (regno >= FIRST_PSEUDO_REGISTER)
976 {
977 if (pressure_class != NO_REGS)
978 {
979 if (birth_p)
980 {
981 if (!live || bitmap_set_bit (live, regno))
982 pressure[pressure_class]
983 += (ira_reg_class_max_nregs
984 [pressure_class][PSEUDO_REGNO_MODE (regno)]);
985 }
986 else
987 {
988 if (!live || bitmap_clear_bit (live, regno))
989 pressure[pressure_class]
990 -= (ira_reg_class_max_nregs
991 [pressure_class][PSEUDO_REGNO_MODE (regno)]);
992 }
993 }
994 }
995 else if (pressure_class != NO_REGS
996 && ! TEST_HARD_REG_BIT (ira_no_alloc_regs, regno))
997 {
998 if (birth_p)
999 {
1000 if (!live || bitmap_set_bit (live, regno))
1001 pressure[pressure_class]++;
1002 }
1003 else
1004 {
1005 if (!live || bitmap_clear_bit (live, regno))
1006 pressure[pressure_class]--;
1007 }
1008 }
1009 }
1010
1011 /* Initiate current register pressure related info from living
1012 registers given by LIVE. */
1013 static void
1014 initiate_reg_pressure_info (bitmap live)
1015 {
1016 int i;
1017 unsigned int j;
1018 bitmap_iterator bi;
1019
1020 for (i = 0; i < ira_pressure_classes_num; i++)
1021 curr_reg_pressure[ira_pressure_classes[i]] = 0;
1022 bitmap_clear (curr_reg_live);
1023 EXECUTE_IF_SET_IN_BITMAP (live, 0, j, bi)
1024 if (sched_pressure == SCHED_PRESSURE_MODEL
1025 || current_nr_blocks == 1
1026 || bitmap_bit_p (region_ref_regs, j))
1027 mark_regno_birth_or_death (curr_reg_live, curr_reg_pressure, j, true);
1028 }
1029
1030 /* Mark registers in X as mentioned in the current region. */
1031 static void
1032 setup_ref_regs (rtx x)
1033 {
1034 int i, j;
1035 const RTX_CODE code = GET_CODE (x);
1036 const char *fmt;
1037
1038 if (REG_P (x))
1039 {
1040 bitmap_set_range (region_ref_regs, REGNO (x), REG_NREGS (x));
1041 return;
1042 }
1043 fmt = GET_RTX_FORMAT (code);
1044 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1045 if (fmt[i] == 'e')
1046 setup_ref_regs (XEXP (x, i));
1047 else if (fmt[i] == 'E')
1048 {
1049 for (j = 0; j < XVECLEN (x, i); j++)
1050 setup_ref_regs (XVECEXP (x, i, j));
1051 }
1052 }
1053
1054 /* Initiate current register pressure related info at the start of
1055 basic block BB. */
1056 static void
1057 initiate_bb_reg_pressure_info (basic_block bb)
1058 {
1059 unsigned int i ATTRIBUTE_UNUSED;
1060 rtx_insn *insn;
1061
1062 if (current_nr_blocks > 1)
1063 FOR_BB_INSNS (bb, insn)
1064 if (NONDEBUG_INSN_P (insn))
1065 setup_ref_regs (PATTERN (insn));
1066 initiate_reg_pressure_info (df_get_live_in (bb));
1067 if (bb_has_eh_pred (bb))
1068 for (i = 0; ; ++i)
1069 {
1070 unsigned int regno = EH_RETURN_DATA_REGNO (i);
1071
1072 if (regno == INVALID_REGNUM)
1073 break;
1074 if (! bitmap_bit_p (df_get_live_in (bb), regno))
1075 mark_regno_birth_or_death (curr_reg_live, curr_reg_pressure,
1076 regno, true);
1077 }
1078 }
1079
1080 /* Save current register pressure related info. */
1081 static void
1082 save_reg_pressure (void)
1083 {
1084 int i;
1085
1086 for (i = 0; i < ira_pressure_classes_num; i++)
1087 saved_reg_pressure[ira_pressure_classes[i]]
1088 = curr_reg_pressure[ira_pressure_classes[i]];
1089 bitmap_copy (saved_reg_live, curr_reg_live);
1090 }
1091
1092 /* Restore saved register pressure related info. */
1093 static void
1094 restore_reg_pressure (void)
1095 {
1096 int i;
1097
1098 for (i = 0; i < ira_pressure_classes_num; i++)
1099 curr_reg_pressure[ira_pressure_classes[i]]
1100 = saved_reg_pressure[ira_pressure_classes[i]];
1101 bitmap_copy (curr_reg_live, saved_reg_live);
1102 }
1103
1104 /* Return TRUE if the register is dying after its USE. */
1105 static bool
1106 dying_use_p (struct reg_use_data *use)
1107 {
1108 struct reg_use_data *next;
1109
1110 for (next = use->next_regno_use; next != use; next = next->next_regno_use)
1111 if (NONDEBUG_INSN_P (next->insn)
1112 && QUEUE_INDEX (next->insn) != QUEUE_SCHEDULED)
1113 return false;
1114 return true;
1115 }
1116
1117 /* Print info about the current register pressure and its excess for
1118 each pressure class. */
1119 static void
1120 print_curr_reg_pressure (void)
1121 {
1122 int i;
1123 enum reg_class cl;
1124
1125 fprintf (sched_dump, ";;\t");
1126 for (i = 0; i < ira_pressure_classes_num; i++)
1127 {
1128 cl = ira_pressure_classes[i];
1129 gcc_assert (curr_reg_pressure[cl] >= 0);
1130 fprintf (sched_dump, " %s:%d(%d)", reg_class_names[cl],
1131 curr_reg_pressure[cl],
1132 curr_reg_pressure[cl] - sched_class_regs_num[cl]);
1133 }
1134 fprintf (sched_dump, "\n");
1135 }
1136 \f
1137 /* Determine if INSN has a condition that is clobbered if a register
1138 in SET_REGS is modified. */
1139 static bool
1140 cond_clobbered_p (rtx_insn *insn, HARD_REG_SET set_regs)
1141 {
1142 rtx pat = PATTERN (insn);
1143 gcc_assert (GET_CODE (pat) == COND_EXEC);
1144 if (TEST_HARD_REG_BIT (set_regs, REGNO (XEXP (COND_EXEC_TEST (pat), 0))))
1145 {
1146 sd_iterator_def sd_it;
1147 dep_t dep;
1148 haifa_change_pattern (insn, ORIG_PAT (insn));
1149 FOR_EACH_DEP (insn, SD_LIST_BACK, sd_it, dep)
1150 DEP_STATUS (dep) &= ~DEP_CANCELLED;
1151 TODO_SPEC (insn) = HARD_DEP;
1152 if (sched_verbose >= 2)
1153 fprintf (sched_dump,
1154 ";;\t\tdequeue insn %s because of clobbered condition\n",
1155 (*current_sched_info->print_insn) (insn, 0));
1156 return true;
1157 }
1158
1159 return false;
1160 }
1161
1162 /* This function should be called after modifying the pattern of INSN,
1163 to update scheduler data structures as needed. */
1164 static void
1165 update_insn_after_change (rtx_insn *insn)
1166 {
1167 sd_iterator_def sd_it;
1168 dep_t dep;
1169
1170 dfa_clear_single_insn_cache (insn);
1171
1172 sd_it = sd_iterator_start (insn,
1173 SD_LIST_FORW | SD_LIST_BACK | SD_LIST_RES_BACK);
1174 while (sd_iterator_cond (&sd_it, &dep))
1175 {
1176 DEP_COST (dep) = UNKNOWN_DEP_COST;
1177 sd_iterator_next (&sd_it);
1178 }
1179
1180 /* Invalidate INSN_COST, so it'll be recalculated. */
1181 INSN_COST (insn) = -1;
1182 /* Invalidate INSN_TICK, so it'll be recalculated. */
1183 INSN_TICK (insn) = INVALID_TICK;
1184
1185 /* Invalidate autoprefetch data entry. */
1186 INSN_AUTOPREF_MULTIPASS_DATA (insn)[0].status
1187 = AUTOPREF_MULTIPASS_DATA_UNINITIALIZED;
1188 INSN_AUTOPREF_MULTIPASS_DATA (insn)[1].status
1189 = AUTOPREF_MULTIPASS_DATA_UNINITIALIZED;
1190 }
1191
1192
1193 /* Two VECs, one to hold dependencies for which pattern replacements
1194 need to be applied or restored at the start of the next cycle, and
1195 another to hold an integer that is either one, to apply the
1196 corresponding replacement, or zero to restore it. */
1197 static vec<dep_t> next_cycle_replace_deps;
1198 static vec<int> next_cycle_apply;
1199
1200 static void apply_replacement (dep_t, bool);
1201 static void restore_pattern (dep_t, bool);
1202
1203 /* Look at the remaining dependencies for insn NEXT, and compute and return
1204 the TODO_SPEC value we should use for it. This is called after one of
1205 NEXT's dependencies has been resolved.
1206 We also perform pattern replacements for predication, and for broken
1207 replacement dependencies. The latter is only done if FOR_BACKTRACK is
1208 false. */
1209
1210 static ds_t
1211 recompute_todo_spec (rtx_insn *next, bool for_backtrack)
1212 {
1213 ds_t new_ds;
1214 sd_iterator_def sd_it;
1215 dep_t dep, modify_dep = NULL;
1216 int n_spec = 0;
1217 int n_control = 0;
1218 int n_replace = 0;
1219 bool first_p = true;
1220
1221 if (sd_lists_empty_p (next, SD_LIST_BACK))
1222 /* NEXT has all its dependencies resolved. */
1223 return 0;
1224
1225 if (!sd_lists_empty_p (next, SD_LIST_HARD_BACK))
1226 return HARD_DEP;
1227
1228 /* If NEXT is intended to sit adjacent to this instruction, we don't
1229 want to try to break any dependencies. Treat it as a HARD_DEP. */
1230 if (SCHED_GROUP_P (next))
1231 return HARD_DEP;
1232
1233 /* Now we've got NEXT with speculative deps only.
1234 1. Look at the deps to see what we have to do.
1235 2. Check if we can do 'todo'. */
1236 new_ds = 0;
1237
1238 FOR_EACH_DEP (next, SD_LIST_BACK, sd_it, dep)
1239 {
1240 rtx_insn *pro = DEP_PRO (dep);
1241 ds_t ds = DEP_STATUS (dep) & SPECULATIVE;
1242
1243 if (DEBUG_INSN_P (pro) && !DEBUG_INSN_P (next))
1244 continue;
1245
1246 if (ds)
1247 {
1248 n_spec++;
1249 if (first_p)
1250 {
1251 first_p = false;
1252
1253 new_ds = ds;
1254 }
1255 else
1256 new_ds = ds_merge (new_ds, ds);
1257 }
1258 else if (DEP_TYPE (dep) == REG_DEP_CONTROL)
1259 {
1260 if (QUEUE_INDEX (pro) != QUEUE_SCHEDULED)
1261 {
1262 n_control++;
1263 modify_dep = dep;
1264 }
1265 DEP_STATUS (dep) &= ~DEP_CANCELLED;
1266 }
1267 else if (DEP_REPLACE (dep) != NULL)
1268 {
1269 if (QUEUE_INDEX (pro) != QUEUE_SCHEDULED)
1270 {
1271 n_replace++;
1272 modify_dep = dep;
1273 }
1274 DEP_STATUS (dep) &= ~DEP_CANCELLED;
1275 }
1276 }
1277
1278 if (n_replace > 0 && n_control == 0 && n_spec == 0)
1279 {
1280 if (!dbg_cnt (sched_breakdep))
1281 return HARD_DEP;
1282 FOR_EACH_DEP (next, SD_LIST_BACK, sd_it, dep)
1283 {
1284 struct dep_replacement *desc = DEP_REPLACE (dep);
1285 if (desc != NULL)
1286 {
1287 if (desc->insn == next && !for_backtrack)
1288 {
1289 gcc_assert (n_replace == 1);
1290 apply_replacement (dep, true);
1291 }
1292 DEP_STATUS (dep) |= DEP_CANCELLED;
1293 }
1294 }
1295 return 0;
1296 }
1297
1298 else if (n_control == 1 && n_replace == 0 && n_spec == 0)
1299 {
1300 rtx_insn *pro, *other;
1301 rtx new_pat;
1302 rtx cond = NULL_RTX;
1303 bool success;
1304 rtx_insn *prev = NULL;
1305 int i;
1306 unsigned regno;
1307
1308 if ((current_sched_info->flags & DO_PREDICATION) == 0
1309 || (ORIG_PAT (next) != NULL_RTX
1310 && PREDICATED_PAT (next) == NULL_RTX))
1311 return HARD_DEP;
1312
1313 pro = DEP_PRO (modify_dep);
1314 other = real_insn_for_shadow (pro);
1315 if (other != NULL_RTX)
1316 pro = other;
1317
1318 cond = sched_get_reverse_condition_uncached (pro);
1319 regno = REGNO (XEXP (cond, 0));
1320
1321 /* Find the last scheduled insn that modifies the condition register.
1322 We can stop looking once we find the insn we depend on through the
1323 REG_DEP_CONTROL; if the condition register isn't modified after it,
1324 we know that it still has the right value. */
1325 if (QUEUE_INDEX (pro) == QUEUE_SCHEDULED)
1326 FOR_EACH_VEC_ELT_REVERSE (scheduled_insns, i, prev)
1327 {
1328 HARD_REG_SET t;
1329
1330 find_all_hard_reg_sets (prev, &t, true);
1331 if (TEST_HARD_REG_BIT (t, regno))
1332 return HARD_DEP;
1333 if (prev == pro)
1334 break;
1335 }
1336 if (ORIG_PAT (next) == NULL_RTX)
1337 {
1338 ORIG_PAT (next) = PATTERN (next);
1339
1340 new_pat = gen_rtx_COND_EXEC (VOIDmode, cond, PATTERN (next));
1341 success = haifa_change_pattern (next, new_pat);
1342 if (!success)
1343 return HARD_DEP;
1344 PREDICATED_PAT (next) = new_pat;
1345 }
1346 else if (PATTERN (next) != PREDICATED_PAT (next))
1347 {
1348 bool success = haifa_change_pattern (next,
1349 PREDICATED_PAT (next));
1350 gcc_assert (success);
1351 }
1352 DEP_STATUS (modify_dep) |= DEP_CANCELLED;
1353 return DEP_CONTROL;
1354 }
1355
1356 if (PREDICATED_PAT (next) != NULL_RTX)
1357 {
1358 int tick = INSN_TICK (next);
1359 bool success = haifa_change_pattern (next,
1360 ORIG_PAT (next));
1361 INSN_TICK (next) = tick;
1362 gcc_assert (success);
1363 }
1364
1365 /* We can't handle the case where there are both speculative and control
1366 dependencies, so we return HARD_DEP in such a case. Also fail if
1367 we have speculative dependencies with not enough points, or more than
1368 one control dependency. */
1369 if ((n_spec > 0 && (n_control > 0 || n_replace > 0))
1370 || (n_spec > 0
1371 /* Too few points? */
1372 && ds_weak (new_ds) < spec_info->data_weakness_cutoff)
1373 || n_control > 0
1374 || n_replace > 0)
1375 return HARD_DEP;
1376
1377 return new_ds;
1378 }
1379 \f
1380 /* Pointer to the last instruction scheduled. */
1381 static rtx_insn *last_scheduled_insn;
1382
1383 /* Pointer to the last nondebug instruction scheduled within the
1384 block, or the prev_head of the scheduling block. Used by
1385 rank_for_schedule, so that insns independent of the last scheduled
1386 insn will be preferred over dependent instructions. */
1387 static rtx_insn *last_nondebug_scheduled_insn;
1388
1389 /* Pointer that iterates through the list of unscheduled insns if we
1390 have a dbg_cnt enabled. It always points at an insn prior to the
1391 first unscheduled one. */
1392 static rtx_insn *nonscheduled_insns_begin;
1393
1394 /* Compute cost of executing INSN.
1395 This is the number of cycles between instruction issue and
1396 instruction results. */
1397 int
1398 insn_cost (rtx_insn *insn)
1399 {
1400 int cost;
1401
1402 if (sched_fusion)
1403 return 0;
1404
1405 if (sel_sched_p ())
1406 {
1407 if (recog_memoized (insn) < 0)
1408 return 0;
1409
1410 cost = insn_default_latency (insn);
1411 if (cost < 0)
1412 cost = 0;
1413
1414 return cost;
1415 }
1416
1417 cost = INSN_COST (insn);
1418
1419 if (cost < 0)
1420 {
1421 /* A USE insn, or something else we don't need to
1422 understand. We can't pass these directly to
1423 result_ready_cost or insn_default_latency because it will
1424 trigger a fatal error for unrecognizable insns. */
1425 if (recog_memoized (insn) < 0)
1426 {
1427 INSN_COST (insn) = 0;
1428 return 0;
1429 }
1430 else
1431 {
1432 cost = insn_default_latency (insn);
1433 if (cost < 0)
1434 cost = 0;
1435
1436 INSN_COST (insn) = cost;
1437 }
1438 }
1439
1440 return cost;
1441 }
1442
1443 /* Compute cost of dependence LINK.
1444 This is the number of cycles between instruction issue and
1445 instruction results.
1446 ??? We also use this function to call recog_memoized on all insns. */
1447 int
1448 dep_cost_1 (dep_t link, dw_t dw)
1449 {
1450 rtx_insn *insn = DEP_PRO (link);
1451 rtx_insn *used = DEP_CON (link);
1452 int cost;
1453
1454 if (DEP_COST (link) != UNKNOWN_DEP_COST)
1455 return DEP_COST (link);
1456
1457 if (delay_htab)
1458 {
1459 struct delay_pair *delay_entry;
1460 delay_entry
1461 = delay_htab_i2->find_with_hash (used, htab_hash_pointer (used));
1462 if (delay_entry)
1463 {
1464 if (delay_entry->i1 == insn)
1465 {
1466 DEP_COST (link) = pair_delay (delay_entry);
1467 return DEP_COST (link);
1468 }
1469 }
1470 }
1471
1472 /* A USE insn should never require the value used to be computed.
1473 This allows the computation of a function's result and parameter
1474 values to overlap the return and call. We don't care about the
1475 dependence cost when only decreasing register pressure. */
1476 if (recog_memoized (used) < 0)
1477 {
1478 cost = 0;
1479 recog_memoized (insn);
1480 }
1481 else
1482 {
1483 enum reg_note dep_type = DEP_TYPE (link);
1484
1485 cost = insn_cost (insn);
1486
1487 if (INSN_CODE (insn) >= 0)
1488 {
1489 if (dep_type == REG_DEP_ANTI)
1490 cost = 0;
1491 else if (dep_type == REG_DEP_OUTPUT)
1492 {
1493 cost = (insn_default_latency (insn)
1494 - insn_default_latency (used));
1495 if (cost <= 0)
1496 cost = 1;
1497 }
1498 else if (bypass_p (insn))
1499 cost = insn_latency (insn, used);
1500 }
1501
1502
1503 if (targetm.sched.adjust_cost_2)
1504 cost = targetm.sched.adjust_cost_2 (used, (int) dep_type, insn, cost,
1505 dw);
1506 else if (targetm.sched.adjust_cost != NULL)
1507 {
1508 /* This variable is used for backward compatibility with the
1509 targets. */
1510 rtx_insn_list *dep_cost_rtx_link =
1511 alloc_INSN_LIST (NULL_RTX, NULL);
1512
1513 /* Make it self-cycled, so that if some tries to walk over this
1514 incomplete list he/she will be caught in an endless loop. */
1515 XEXP (dep_cost_rtx_link, 1) = dep_cost_rtx_link;
1516
1517 /* Targets use only REG_NOTE_KIND of the link. */
1518 PUT_REG_NOTE_KIND (dep_cost_rtx_link, DEP_TYPE (link));
1519
1520 cost = targetm.sched.adjust_cost (used, dep_cost_rtx_link,
1521 insn, cost);
1522
1523 free_INSN_LIST_node (dep_cost_rtx_link);
1524 }
1525
1526 if (cost < 0)
1527 cost = 0;
1528 }
1529
1530 DEP_COST (link) = cost;
1531 return cost;
1532 }
1533
1534 /* Compute cost of dependence LINK.
1535 This is the number of cycles between instruction issue and
1536 instruction results. */
1537 int
1538 dep_cost (dep_t link)
1539 {
1540 return dep_cost_1 (link, 0);
1541 }
1542
1543 /* Use this sel-sched.c friendly function in reorder2 instead of increasing
1544 INSN_PRIORITY explicitly. */
1545 void
1546 increase_insn_priority (rtx_insn *insn, int amount)
1547 {
1548 if (!sel_sched_p ())
1549 {
1550 /* We're dealing with haifa-sched.c INSN_PRIORITY. */
1551 if (INSN_PRIORITY_KNOWN (insn))
1552 INSN_PRIORITY (insn) += amount;
1553 }
1554 else
1555 {
1556 /* In sel-sched.c INSN_PRIORITY is not kept up to date.
1557 Use EXPR_PRIORITY instead. */
1558 sel_add_to_insn_priority (insn, amount);
1559 }
1560 }
1561
1562 /* Return 'true' if DEP should be included in priority calculations. */
1563 static bool
1564 contributes_to_priority_p (dep_t dep)
1565 {
1566 if (DEBUG_INSN_P (DEP_CON (dep))
1567 || DEBUG_INSN_P (DEP_PRO (dep)))
1568 return false;
1569
1570 /* Critical path is meaningful in block boundaries only. */
1571 if (!current_sched_info->contributes_to_priority (DEP_CON (dep),
1572 DEP_PRO (dep)))
1573 return false;
1574
1575 if (DEP_REPLACE (dep) != NULL)
1576 return false;
1577
1578 /* If flag COUNT_SPEC_IN_CRITICAL_PATH is set,
1579 then speculative instructions will less likely be
1580 scheduled. That is because the priority of
1581 their producers will increase, and, thus, the
1582 producers will more likely be scheduled, thus,
1583 resolving the dependence. */
1584 if (sched_deps_info->generate_spec_deps
1585 && !(spec_info->flags & COUNT_SPEC_IN_CRITICAL_PATH)
1586 && (DEP_STATUS (dep) & SPECULATIVE))
1587 return false;
1588
1589 return true;
1590 }
1591
1592 /* Compute the number of nondebug deps in list LIST for INSN. */
1593
1594 static int
1595 dep_list_size (rtx_insn *insn, sd_list_types_def list)
1596 {
1597 sd_iterator_def sd_it;
1598 dep_t dep;
1599 int dbgcount = 0, nodbgcount = 0;
1600
1601 if (!MAY_HAVE_DEBUG_INSNS)
1602 return sd_lists_size (insn, list);
1603
1604 FOR_EACH_DEP (insn, list, sd_it, dep)
1605 {
1606 if (DEBUG_INSN_P (DEP_CON (dep)))
1607 dbgcount++;
1608 else if (!DEBUG_INSN_P (DEP_PRO (dep)))
1609 nodbgcount++;
1610 }
1611
1612 gcc_assert (dbgcount + nodbgcount == sd_lists_size (insn, list));
1613
1614 return nodbgcount;
1615 }
1616
1617 bool sched_fusion;
1618
1619 /* Compute the priority number for INSN. */
1620 static int
1621 priority (rtx_insn *insn)
1622 {
1623 if (! INSN_P (insn))
1624 return 0;
1625
1626 /* We should not be interested in priority of an already scheduled insn. */
1627 gcc_assert (QUEUE_INDEX (insn) != QUEUE_SCHEDULED);
1628
1629 if (!INSN_PRIORITY_KNOWN (insn))
1630 {
1631 int this_priority = -1;
1632
1633 if (sched_fusion)
1634 {
1635 int this_fusion_priority;
1636
1637 targetm.sched.fusion_priority (insn, FUSION_MAX_PRIORITY,
1638 &this_fusion_priority, &this_priority);
1639 INSN_FUSION_PRIORITY (insn) = this_fusion_priority;
1640 }
1641 else if (dep_list_size (insn, SD_LIST_FORW) == 0)
1642 /* ??? We should set INSN_PRIORITY to insn_cost when and insn has
1643 some forward deps but all of them are ignored by
1644 contributes_to_priority hook. At the moment we set priority of
1645 such insn to 0. */
1646 this_priority = insn_cost (insn);
1647 else
1648 {
1649 rtx_insn *prev_first, *twin;
1650 basic_block rec;
1651
1652 /* For recovery check instructions we calculate priority slightly
1653 different than that of normal instructions. Instead of walking
1654 through INSN_FORW_DEPS (check) list, we walk through
1655 INSN_FORW_DEPS list of each instruction in the corresponding
1656 recovery block. */
1657
1658 /* Selective scheduling does not define RECOVERY_BLOCK macro. */
1659 rec = sel_sched_p () ? NULL : RECOVERY_BLOCK (insn);
1660 if (!rec || rec == EXIT_BLOCK_PTR_FOR_FN (cfun))
1661 {
1662 prev_first = PREV_INSN (insn);
1663 twin = insn;
1664 }
1665 else
1666 {
1667 prev_first = NEXT_INSN (BB_HEAD (rec));
1668 twin = PREV_INSN (BB_END (rec));
1669 }
1670
1671 do
1672 {
1673 sd_iterator_def sd_it;
1674 dep_t dep;
1675
1676 FOR_EACH_DEP (twin, SD_LIST_FORW, sd_it, dep)
1677 {
1678 rtx_insn *next;
1679 int next_priority;
1680
1681 next = DEP_CON (dep);
1682
1683 if (BLOCK_FOR_INSN (next) != rec)
1684 {
1685 int cost;
1686
1687 if (!contributes_to_priority_p (dep))
1688 continue;
1689
1690 if (twin == insn)
1691 cost = dep_cost (dep);
1692 else
1693 {
1694 struct _dep _dep1, *dep1 = &_dep1;
1695
1696 init_dep (dep1, insn, next, REG_DEP_ANTI);
1697
1698 cost = dep_cost (dep1);
1699 }
1700
1701 next_priority = cost + priority (next);
1702
1703 if (next_priority > this_priority)
1704 this_priority = next_priority;
1705 }
1706 }
1707
1708 twin = PREV_INSN (twin);
1709 }
1710 while (twin != prev_first);
1711 }
1712
1713 if (this_priority < 0)
1714 {
1715 gcc_assert (this_priority == -1);
1716
1717 this_priority = insn_cost (insn);
1718 }
1719
1720 INSN_PRIORITY (insn) = this_priority;
1721 INSN_PRIORITY_STATUS (insn) = 1;
1722 }
1723
1724 return INSN_PRIORITY (insn);
1725 }
1726 \f
1727 /* Macros and functions for keeping the priority queue sorted, and
1728 dealing with queuing and dequeuing of instructions. */
1729
1730 /* For each pressure class CL, set DEATH[CL] to the number of registers
1731 in that class that die in INSN. */
1732
1733 static void
1734 calculate_reg_deaths (rtx_insn *insn, int *death)
1735 {
1736 int i;
1737 struct reg_use_data *use;
1738
1739 for (i = 0; i < ira_pressure_classes_num; i++)
1740 death[ira_pressure_classes[i]] = 0;
1741 for (use = INSN_REG_USE_LIST (insn); use != NULL; use = use->next_insn_use)
1742 if (dying_use_p (use))
1743 mark_regno_birth_or_death (0, death, use->regno, true);
1744 }
1745
1746 /* Setup info about the current register pressure impact of scheduling
1747 INSN at the current scheduling point. */
1748 static void
1749 setup_insn_reg_pressure_info (rtx_insn *insn)
1750 {
1751 int i, change, before, after, hard_regno;
1752 int excess_cost_change;
1753 machine_mode mode;
1754 enum reg_class cl;
1755 struct reg_pressure_data *pressure_info;
1756 int *max_reg_pressure;
1757 static int death[N_REG_CLASSES];
1758
1759 gcc_checking_assert (!DEBUG_INSN_P (insn));
1760
1761 excess_cost_change = 0;
1762 calculate_reg_deaths (insn, death);
1763 pressure_info = INSN_REG_PRESSURE (insn);
1764 max_reg_pressure = INSN_MAX_REG_PRESSURE (insn);
1765 gcc_assert (pressure_info != NULL && max_reg_pressure != NULL);
1766 for (i = 0; i < ira_pressure_classes_num; i++)
1767 {
1768 cl = ira_pressure_classes[i];
1769 gcc_assert (curr_reg_pressure[cl] >= 0);
1770 change = (int) pressure_info[i].set_increase - death[cl];
1771 before = MAX (0, max_reg_pressure[i] - sched_class_regs_num[cl]);
1772 after = MAX (0, max_reg_pressure[i] + change
1773 - sched_class_regs_num[cl]);
1774 hard_regno = ira_class_hard_regs[cl][0];
1775 gcc_assert (hard_regno >= 0);
1776 mode = reg_raw_mode[hard_regno];
1777 excess_cost_change += ((after - before)
1778 * (ira_memory_move_cost[mode][cl][0]
1779 + ira_memory_move_cost[mode][cl][1]));
1780 }
1781 INSN_REG_PRESSURE_EXCESS_COST_CHANGE (insn) = excess_cost_change;
1782 }
1783 \f
1784 /* This is the first page of code related to SCHED_PRESSURE_MODEL.
1785 It tries to make the scheduler take register pressure into account
1786 without introducing too many unnecessary stalls. It hooks into the
1787 main scheduling algorithm at several points:
1788
1789 - Before scheduling starts, model_start_schedule constructs a
1790 "model schedule" for the current block. This model schedule is
1791 chosen solely to keep register pressure down. It does not take the
1792 target's pipeline or the original instruction order into account,
1793 except as a tie-breaker. It also doesn't work to a particular
1794 pressure limit.
1795
1796 This model schedule gives us an idea of what pressure can be
1797 achieved for the block and gives us an example of a schedule that
1798 keeps to that pressure. It also makes the final schedule less
1799 dependent on the original instruction order. This is important
1800 because the original order can either be "wide" (many values live
1801 at once, such as in user-scheduled code) or "narrow" (few values
1802 live at once, such as after loop unrolling, where several
1803 iterations are executed sequentially).
1804
1805 We do not apply this model schedule to the rtx stream. We simply
1806 record it in model_schedule. We also compute the maximum pressure,
1807 MP, that was seen during this schedule.
1808
1809 - Instructions are added to the ready queue even if they require
1810 a stall. The length of the stall is instead computed as:
1811
1812 MAX (INSN_TICK (INSN) - clock_var, 0)
1813
1814 (= insn_delay). This allows rank_for_schedule to choose between
1815 introducing a deliberate stall or increasing pressure.
1816
1817 - Before sorting the ready queue, model_set_excess_costs assigns
1818 a pressure-based cost to each ready instruction in the queue.
1819 This is the instruction's INSN_REG_PRESSURE_EXCESS_COST_CHANGE
1820 (ECC for short) and is effectively measured in cycles.
1821
1822 - rank_for_schedule ranks instructions based on:
1823
1824 ECC (insn) + insn_delay (insn)
1825
1826 then as:
1827
1828 insn_delay (insn)
1829
1830 So, for example, an instruction X1 with an ECC of 1 that can issue
1831 now will win over an instruction X0 with an ECC of zero that would
1832 introduce a stall of one cycle. However, an instruction X2 with an
1833 ECC of 2 that can issue now will lose to both X0 and X1.
1834
1835 - When an instruction is scheduled, model_recompute updates the model
1836 schedule with the new pressures (some of which might now exceed the
1837 original maximum pressure MP). model_update_limit_points then searches
1838 for the new point of maximum pressure, if not already known. */
1839
1840 /* Used to separate high-verbosity debug information for SCHED_PRESSURE_MODEL
1841 from surrounding debug information. */
1842 #define MODEL_BAR \
1843 ";;\t\t+------------------------------------------------------\n"
1844
1845 /* Information about the pressure on a particular register class at a
1846 particular point of the model schedule. */
1847 struct model_pressure_data {
1848 /* The pressure at this point of the model schedule, or -1 if the
1849 point is associated with an instruction that has already been
1850 scheduled. */
1851 int ref_pressure;
1852
1853 /* The maximum pressure during or after this point of the model schedule. */
1854 int max_pressure;
1855 };
1856
1857 /* Per-instruction information that is used while building the model
1858 schedule. Here, "schedule" refers to the model schedule rather
1859 than the main schedule. */
1860 struct model_insn_info {
1861 /* The instruction itself. */
1862 rtx_insn *insn;
1863
1864 /* If this instruction is in model_worklist, these fields link to the
1865 previous (higher-priority) and next (lower-priority) instructions
1866 in the list. */
1867 struct model_insn_info *prev;
1868 struct model_insn_info *next;
1869
1870 /* While constructing the schedule, QUEUE_INDEX describes whether an
1871 instruction has already been added to the schedule (QUEUE_SCHEDULED),
1872 is in model_worklist (QUEUE_READY), or neither (QUEUE_NOWHERE).
1873 old_queue records the value that QUEUE_INDEX had before scheduling
1874 started, so that we can restore it once the schedule is complete. */
1875 int old_queue;
1876
1877 /* The relative importance of an unscheduled instruction. Higher
1878 values indicate greater importance. */
1879 unsigned int model_priority;
1880
1881 /* The length of the longest path of satisfied true dependencies
1882 that leads to this instruction. */
1883 unsigned int depth;
1884
1885 /* The length of the longest path of dependencies of any kind
1886 that leads from this instruction. */
1887 unsigned int alap;
1888
1889 /* The number of predecessor nodes that must still be scheduled. */
1890 int unscheduled_preds;
1891 };
1892
1893 /* Information about the pressure limit for a particular register class.
1894 This structure is used when applying a model schedule to the main
1895 schedule. */
1896 struct model_pressure_limit {
1897 /* The maximum register pressure seen in the original model schedule. */
1898 int orig_pressure;
1899
1900 /* The maximum register pressure seen in the current model schedule
1901 (which excludes instructions that have already been scheduled). */
1902 int pressure;
1903
1904 /* The point of the current model schedule at which PRESSURE is first
1905 reached. It is set to -1 if the value needs to be recomputed. */
1906 int point;
1907 };
1908
1909 /* Describes a particular way of measuring register pressure. */
1910 struct model_pressure_group {
1911 /* Index PCI describes the maximum pressure on ira_pressure_classes[PCI]. */
1912 struct model_pressure_limit limits[N_REG_CLASSES];
1913
1914 /* Index (POINT * ira_num_pressure_classes + PCI) describes the pressure
1915 on register class ira_pressure_classes[PCI] at point POINT of the
1916 current model schedule. A POINT of model_num_insns describes the
1917 pressure at the end of the schedule. */
1918 struct model_pressure_data *model;
1919 };
1920
1921 /* Index POINT gives the instruction at point POINT of the model schedule.
1922 This array doesn't change during main scheduling. */
1923 static vec<rtx_insn *> model_schedule;
1924
1925 /* The list of instructions in the model worklist, sorted in order of
1926 decreasing priority. */
1927 static struct model_insn_info *model_worklist;
1928
1929 /* Index I describes the instruction with INSN_LUID I. */
1930 static struct model_insn_info *model_insns;
1931
1932 /* The number of instructions in the model schedule. */
1933 static int model_num_insns;
1934
1935 /* The index of the first instruction in model_schedule that hasn't yet been
1936 added to the main schedule, or model_num_insns if all of them have. */
1937 static int model_curr_point;
1938
1939 /* Describes the pressure before each instruction in the model schedule. */
1940 static struct model_pressure_group model_before_pressure;
1941
1942 /* The first unused model_priority value (as used in model_insn_info). */
1943 static unsigned int model_next_priority;
1944
1945
1946 /* The model_pressure_data for ira_pressure_classes[PCI] in GROUP
1947 at point POINT of the model schedule. */
1948 #define MODEL_PRESSURE_DATA(GROUP, POINT, PCI) \
1949 (&(GROUP)->model[(POINT) * ira_pressure_classes_num + (PCI)])
1950
1951 /* The maximum pressure on ira_pressure_classes[PCI] in GROUP at or
1952 after point POINT of the model schedule. */
1953 #define MODEL_MAX_PRESSURE(GROUP, POINT, PCI) \
1954 (MODEL_PRESSURE_DATA (GROUP, POINT, PCI)->max_pressure)
1955
1956 /* The pressure on ira_pressure_classes[PCI] in GROUP at point POINT
1957 of the model schedule. */
1958 #define MODEL_REF_PRESSURE(GROUP, POINT, PCI) \
1959 (MODEL_PRESSURE_DATA (GROUP, POINT, PCI)->ref_pressure)
1960
1961 /* Information about INSN that is used when creating the model schedule. */
1962 #define MODEL_INSN_INFO(INSN) \
1963 (&model_insns[INSN_LUID (INSN)])
1964
1965 /* The instruction at point POINT of the model schedule. */
1966 #define MODEL_INSN(POINT) \
1967 (model_schedule[POINT])
1968
1969
1970 /* Return INSN's index in the model schedule, or model_num_insns if it
1971 doesn't belong to that schedule. */
1972
1973 static int
1974 model_index (rtx_insn *insn)
1975 {
1976 if (INSN_MODEL_INDEX (insn) == 0)
1977 return model_num_insns;
1978 return INSN_MODEL_INDEX (insn) - 1;
1979 }
1980
1981 /* Make sure that GROUP->limits is up-to-date for the current point
1982 of the model schedule. */
1983
1984 static void
1985 model_update_limit_points_in_group (struct model_pressure_group *group)
1986 {
1987 int pci, max_pressure, point;
1988
1989 for (pci = 0; pci < ira_pressure_classes_num; pci++)
1990 {
1991 /* We may have passed the final point at which the pressure in
1992 group->limits[pci].pressure was reached. Update the limit if so. */
1993 max_pressure = MODEL_MAX_PRESSURE (group, model_curr_point, pci);
1994 group->limits[pci].pressure = max_pressure;
1995
1996 /* Find the point at which MAX_PRESSURE is first reached. We need
1997 to search in three cases:
1998
1999 - We've already moved past the previous pressure point.
2000 In this case we search forward from model_curr_point.
2001
2002 - We scheduled the previous point of maximum pressure ahead of
2003 its position in the model schedule, but doing so didn't bring
2004 the pressure point earlier. In this case we search forward
2005 from that previous pressure point.
2006
2007 - Scheduling an instruction early caused the maximum pressure
2008 to decrease. In this case we will have set the pressure
2009 point to -1, and we search forward from model_curr_point. */
2010 point = MAX (group->limits[pci].point, model_curr_point);
2011 while (point < model_num_insns
2012 && MODEL_REF_PRESSURE (group, point, pci) < max_pressure)
2013 point++;
2014 group->limits[pci].point = point;
2015
2016 gcc_assert (MODEL_REF_PRESSURE (group, point, pci) == max_pressure);
2017 gcc_assert (MODEL_MAX_PRESSURE (group, point, pci) == max_pressure);
2018 }
2019 }
2020
2021 /* Make sure that all register-pressure limits are up-to-date for the
2022 current position in the model schedule. */
2023
2024 static void
2025 model_update_limit_points (void)
2026 {
2027 model_update_limit_points_in_group (&model_before_pressure);
2028 }
2029
2030 /* Return the model_index of the last unscheduled use in chain USE
2031 outside of USE's instruction. Return -1 if there are no other uses,
2032 or model_num_insns if the register is live at the end of the block. */
2033
2034 static int
2035 model_last_use_except (struct reg_use_data *use)
2036 {
2037 struct reg_use_data *next;
2038 int last, index;
2039
2040 last = -1;
2041 for (next = use->next_regno_use; next != use; next = next->next_regno_use)
2042 if (NONDEBUG_INSN_P (next->insn)
2043 && QUEUE_INDEX (next->insn) != QUEUE_SCHEDULED)
2044 {
2045 index = model_index (next->insn);
2046 if (index == model_num_insns)
2047 return model_num_insns;
2048 if (last < index)
2049 last = index;
2050 }
2051 return last;
2052 }
2053
2054 /* An instruction with model_index POINT has just been scheduled, and it
2055 adds DELTA to the pressure on ira_pressure_classes[PCI] after POINT - 1.
2056 Update MODEL_REF_PRESSURE (GROUP, POINT, PCI) and
2057 MODEL_MAX_PRESSURE (GROUP, POINT, PCI) accordingly. */
2058
2059 static void
2060 model_start_update_pressure (struct model_pressure_group *group,
2061 int point, int pci, int delta)
2062 {
2063 int next_max_pressure;
2064
2065 if (point == model_num_insns)
2066 {
2067 /* The instruction wasn't part of the model schedule; it was moved
2068 from a different block. Update the pressure for the end of
2069 the model schedule. */
2070 MODEL_REF_PRESSURE (group, point, pci) += delta;
2071 MODEL_MAX_PRESSURE (group, point, pci) += delta;
2072 }
2073 else
2074 {
2075 /* Record that this instruction has been scheduled. Nothing now
2076 changes between POINT and POINT + 1, so get the maximum pressure
2077 from the latter. If the maximum pressure decreases, the new
2078 pressure point may be before POINT. */
2079 MODEL_REF_PRESSURE (group, point, pci) = -1;
2080 next_max_pressure = MODEL_MAX_PRESSURE (group, point + 1, pci);
2081 if (MODEL_MAX_PRESSURE (group, point, pci) > next_max_pressure)
2082 {
2083 MODEL_MAX_PRESSURE (group, point, pci) = next_max_pressure;
2084 if (group->limits[pci].point == point)
2085 group->limits[pci].point = -1;
2086 }
2087 }
2088 }
2089
2090 /* Record that scheduling a later instruction has changed the pressure
2091 at point POINT of the model schedule by DELTA (which might be 0).
2092 Update GROUP accordingly. Return nonzero if these changes might
2093 trigger changes to previous points as well. */
2094
2095 static int
2096 model_update_pressure (struct model_pressure_group *group,
2097 int point, int pci, int delta)
2098 {
2099 int ref_pressure, max_pressure, next_max_pressure;
2100
2101 /* If POINT hasn't yet been scheduled, update its pressure. */
2102 ref_pressure = MODEL_REF_PRESSURE (group, point, pci);
2103 if (ref_pressure >= 0 && delta != 0)
2104 {
2105 ref_pressure += delta;
2106 MODEL_REF_PRESSURE (group, point, pci) = ref_pressure;
2107
2108 /* Check whether the maximum pressure in the overall schedule
2109 has increased. (This means that the MODEL_MAX_PRESSURE of
2110 every point <= POINT will need to increase too; see below.) */
2111 if (group->limits[pci].pressure < ref_pressure)
2112 group->limits[pci].pressure = ref_pressure;
2113
2114 /* If we are at maximum pressure, and the maximum pressure
2115 point was previously unknown or later than POINT,
2116 bring it forward. */
2117 if (group->limits[pci].pressure == ref_pressure
2118 && !IN_RANGE (group->limits[pci].point, 0, point))
2119 group->limits[pci].point = point;
2120
2121 /* If POINT used to be the point of maximum pressure, but isn't
2122 any longer, we need to recalculate it using a forward walk. */
2123 if (group->limits[pci].pressure > ref_pressure
2124 && group->limits[pci].point == point)
2125 group->limits[pci].point = -1;
2126 }
2127
2128 /* Update the maximum pressure at POINT. Changes here might also
2129 affect the maximum pressure at POINT - 1. */
2130 next_max_pressure = MODEL_MAX_PRESSURE (group, point + 1, pci);
2131 max_pressure = MAX (ref_pressure, next_max_pressure);
2132 if (MODEL_MAX_PRESSURE (group, point, pci) != max_pressure)
2133 {
2134 MODEL_MAX_PRESSURE (group, point, pci) = max_pressure;
2135 return 1;
2136 }
2137 return 0;
2138 }
2139
2140 /* INSN has just been scheduled. Update the model schedule accordingly. */
2141
2142 static void
2143 model_recompute (rtx_insn *insn)
2144 {
2145 struct {
2146 int last_use;
2147 int regno;
2148 } uses[FIRST_PSEUDO_REGISTER + MAX_RECOG_OPERANDS];
2149 struct reg_use_data *use;
2150 struct reg_pressure_data *reg_pressure;
2151 int delta[N_REG_CLASSES];
2152 int pci, point, mix, new_last, cl, ref_pressure, queue;
2153 unsigned int i, num_uses, num_pending_births;
2154 bool print_p;
2155
2156 /* The destinations of INSN were previously live from POINT onwards, but are
2157 now live from model_curr_point onwards. Set up DELTA accordingly. */
2158 point = model_index (insn);
2159 reg_pressure = INSN_REG_PRESSURE (insn);
2160 for (pci = 0; pci < ira_pressure_classes_num; pci++)
2161 {
2162 cl = ira_pressure_classes[pci];
2163 delta[cl] = reg_pressure[pci].set_increase;
2164 }
2165
2166 /* Record which registers previously died at POINT, but which now die
2167 before POINT. Adjust DELTA so that it represents the effect of
2168 this change after POINT - 1. Set NUM_PENDING_BIRTHS to the number of
2169 registers that will be born in the range [model_curr_point, POINT). */
2170 num_uses = 0;
2171 num_pending_births = 0;
2172 for (use = INSN_REG_USE_LIST (insn); use != NULL; use = use->next_insn_use)
2173 {
2174 new_last = model_last_use_except (use);
2175 if (new_last < point)
2176 {
2177 gcc_assert (num_uses < ARRAY_SIZE (uses));
2178 uses[num_uses].last_use = new_last;
2179 uses[num_uses].regno = use->regno;
2180 /* This register is no longer live after POINT - 1. */
2181 mark_regno_birth_or_death (NULL, delta, use->regno, false);
2182 num_uses++;
2183 if (new_last >= 0)
2184 num_pending_births++;
2185 }
2186 }
2187
2188 /* Update the MODEL_REF_PRESSURE and MODEL_MAX_PRESSURE for POINT.
2189 Also set each group pressure limit for POINT. */
2190 for (pci = 0; pci < ira_pressure_classes_num; pci++)
2191 {
2192 cl = ira_pressure_classes[pci];
2193 model_start_update_pressure (&model_before_pressure,
2194 point, pci, delta[cl]);
2195 }
2196
2197 /* Walk the model schedule backwards, starting immediately before POINT. */
2198 print_p = false;
2199 if (point != model_curr_point)
2200 do
2201 {
2202 point--;
2203 insn = MODEL_INSN (point);
2204 queue = QUEUE_INDEX (insn);
2205
2206 if (queue != QUEUE_SCHEDULED)
2207 {
2208 /* DELTA describes the effect of the move on the register pressure
2209 after POINT. Make it describe the effect on the pressure
2210 before POINT. */
2211 i = 0;
2212 while (i < num_uses)
2213 {
2214 if (uses[i].last_use == point)
2215 {
2216 /* This register is now live again. */
2217 mark_regno_birth_or_death (NULL, delta,
2218 uses[i].regno, true);
2219
2220 /* Remove this use from the array. */
2221 uses[i] = uses[num_uses - 1];
2222 num_uses--;
2223 num_pending_births--;
2224 }
2225 else
2226 i++;
2227 }
2228
2229 if (sched_verbose >= 5)
2230 {
2231 if (!print_p)
2232 {
2233 fprintf (sched_dump, MODEL_BAR);
2234 fprintf (sched_dump, ";;\t\t| New pressure for model"
2235 " schedule\n");
2236 fprintf (sched_dump, MODEL_BAR);
2237 print_p = true;
2238 }
2239
2240 fprintf (sched_dump, ";;\t\t| %3d %4d %-30s ",
2241 point, INSN_UID (insn),
2242 str_pattern_slim (PATTERN (insn)));
2243 for (pci = 0; pci < ira_pressure_classes_num; pci++)
2244 {
2245 cl = ira_pressure_classes[pci];
2246 ref_pressure = MODEL_REF_PRESSURE (&model_before_pressure,
2247 point, pci);
2248 fprintf (sched_dump, " %s:[%d->%d]",
2249 reg_class_names[ira_pressure_classes[pci]],
2250 ref_pressure, ref_pressure + delta[cl]);
2251 }
2252 fprintf (sched_dump, "\n");
2253 }
2254 }
2255
2256 /* Adjust the pressure at POINT. Set MIX to nonzero if POINT - 1
2257 might have changed as well. */
2258 mix = num_pending_births;
2259 for (pci = 0; pci < ira_pressure_classes_num; pci++)
2260 {
2261 cl = ira_pressure_classes[pci];
2262 mix |= delta[cl];
2263 mix |= model_update_pressure (&model_before_pressure,
2264 point, pci, delta[cl]);
2265 }
2266 }
2267 while (mix && point > model_curr_point);
2268
2269 if (print_p)
2270 fprintf (sched_dump, MODEL_BAR);
2271 }
2272
2273 /* After DEP, which was cancelled, has been resolved for insn NEXT,
2274 check whether the insn's pattern needs restoring. */
2275 static bool
2276 must_restore_pattern_p (rtx_insn *next, dep_t dep)
2277 {
2278 if (QUEUE_INDEX (next) == QUEUE_SCHEDULED)
2279 return false;
2280
2281 if (DEP_TYPE (dep) == REG_DEP_CONTROL)
2282 {
2283 gcc_assert (ORIG_PAT (next) != NULL_RTX);
2284 gcc_assert (next == DEP_CON (dep));
2285 }
2286 else
2287 {
2288 struct dep_replacement *desc = DEP_REPLACE (dep);
2289 if (desc->insn != next)
2290 {
2291 gcc_assert (*desc->loc == desc->orig);
2292 return false;
2293 }
2294 }
2295 return true;
2296 }
2297 \f
2298 /* model_spill_cost (CL, P, P') returns the cost of increasing the
2299 pressure on CL from P to P'. We use this to calculate a "base ECC",
2300 baseECC (CL, X), for each pressure class CL and each instruction X.
2301 Supposing X changes the pressure on CL from P to P', and that the
2302 maximum pressure on CL in the current model schedule is MP', then:
2303
2304 * if X occurs before or at the next point of maximum pressure in
2305 the model schedule and P' > MP', then:
2306
2307 baseECC (CL, X) = model_spill_cost (CL, MP, P')
2308
2309 The idea is that the pressure after scheduling a fixed set of
2310 instructions -- in this case, the set up to and including the
2311 next maximum pressure point -- is going to be the same regardless
2312 of the order; we simply want to keep the intermediate pressure
2313 under control. Thus X has a cost of zero unless scheduling it
2314 now would exceed MP'.
2315
2316 If all increases in the set are by the same amount, no zero-cost
2317 instruction will ever cause the pressure to exceed MP'. However,
2318 if X is instead moved past an instruction X' with pressure in the
2319 range (MP' - (P' - P), MP'), the pressure at X' will increase
2320 beyond MP'. Since baseECC is very much a heuristic anyway,
2321 it doesn't seem worth the overhead of tracking cases like these.
2322
2323 The cost of exceeding MP' is always based on the original maximum
2324 pressure MP. This is so that going 2 registers over the original
2325 limit has the same cost regardless of whether it comes from two
2326 separate +1 deltas or from a single +2 delta.
2327
2328 * if X occurs after the next point of maximum pressure in the model
2329 schedule and P' > P, then:
2330
2331 baseECC (CL, X) = model_spill_cost (CL, MP, MP' + (P' - P))
2332
2333 That is, if we move X forward across a point of maximum pressure,
2334 and if X increases the pressure by P' - P, then we conservatively
2335 assume that scheduling X next would increase the maximum pressure
2336 by P' - P. Again, the cost of doing this is based on the original
2337 maximum pressure MP, for the same reason as above.
2338
2339 * if P' < P, P > MP, and X occurs at or after the next point of
2340 maximum pressure, then:
2341
2342 baseECC (CL, X) = -model_spill_cost (CL, MAX (MP, P'), P)
2343
2344 That is, if we have already exceeded the original maximum pressure MP,
2345 and if X might reduce the maximum pressure again -- or at least push
2346 it further back, and thus allow more scheduling freedom -- it is given
2347 a negative cost to reflect the improvement.
2348
2349 * otherwise,
2350
2351 baseECC (CL, X) = 0
2352
2353 In this case, X is not expected to affect the maximum pressure MP',
2354 so it has zero cost.
2355
2356 We then create a combined value baseECC (X) that is the sum of
2357 baseECC (CL, X) for each pressure class CL.
2358
2359 baseECC (X) could itself be used as the ECC value described above.
2360 However, this is often too conservative, in the sense that it
2361 tends to make high-priority instructions that increase pressure
2362 wait too long in cases where introducing a spill would be better.
2363 For this reason the final ECC is a priority-adjusted form of
2364 baseECC (X). Specifically, we calculate:
2365
2366 P (X) = INSN_PRIORITY (X) - insn_delay (X) - baseECC (X)
2367 baseP = MAX { P (X) | baseECC (X) <= 0 }
2368
2369 Then:
2370
2371 ECC (X) = MAX (MIN (baseP - P (X), baseECC (X)), 0)
2372
2373 Thus an instruction's effect on pressure is ignored if it has a high
2374 enough priority relative to the ones that don't increase pressure.
2375 Negative values of baseECC (X) do not increase the priority of X
2376 itself, but they do make it harder for other instructions to
2377 increase the pressure further.
2378
2379 This pressure cost is deliberately timid. The intention has been
2380 to choose a heuristic that rarely interferes with the normal list
2381 scheduler in cases where that scheduler would produce good code.
2382 We simply want to curb some of its worst excesses. */
2383
2384 /* Return the cost of increasing the pressure in class CL from FROM to TO.
2385
2386 Here we use the very simplistic cost model that every register above
2387 sched_class_regs_num[CL] has a spill cost of 1. We could use other
2388 measures instead, such as one based on MEMORY_MOVE_COST. However:
2389
2390 (1) In order for an instruction to be scheduled, the higher cost
2391 would need to be justified in a single saving of that many stalls.
2392 This is overly pessimistic, because the benefit of spilling is
2393 often to avoid a sequence of several short stalls rather than
2394 a single long one.
2395
2396 (2) The cost is still arbitrary. Because we are not allocating
2397 registers during scheduling, we have no way of knowing for
2398 sure how many memory accesses will be required by each spill,
2399 where the spills will be placed within the block, or even
2400 which block(s) will contain the spills.
2401
2402 So a higher cost than 1 is often too conservative in practice,
2403 forcing blocks to contain unnecessary stalls instead of spill code.
2404 The simple cost below seems to be the best compromise. It reduces
2405 the interference with the normal list scheduler, which helps make
2406 it more suitable for a default-on option. */
2407
2408 static int
2409 model_spill_cost (int cl, int from, int to)
2410 {
2411 from = MAX (from, sched_class_regs_num[cl]);
2412 return MAX (to, from) - from;
2413 }
2414
2415 /* Return baseECC (ira_pressure_classes[PCI], POINT), given that
2416 P = curr_reg_pressure[ira_pressure_classes[PCI]] and that
2417 P' = P + DELTA. */
2418
2419 static int
2420 model_excess_group_cost (struct model_pressure_group *group,
2421 int point, int pci, int delta)
2422 {
2423 int pressure, cl;
2424
2425 cl = ira_pressure_classes[pci];
2426 if (delta < 0 && point >= group->limits[pci].point)
2427 {
2428 pressure = MAX (group->limits[pci].orig_pressure,
2429 curr_reg_pressure[cl] + delta);
2430 return -model_spill_cost (cl, pressure, curr_reg_pressure[cl]);
2431 }
2432
2433 if (delta > 0)
2434 {
2435 if (point > group->limits[pci].point)
2436 pressure = group->limits[pci].pressure + delta;
2437 else
2438 pressure = curr_reg_pressure[cl] + delta;
2439
2440 if (pressure > group->limits[pci].pressure)
2441 return model_spill_cost (cl, group->limits[pci].orig_pressure,
2442 pressure);
2443 }
2444
2445 return 0;
2446 }
2447
2448 /* Return baseECC (MODEL_INSN (INSN)). Dump the costs to sched_dump
2449 if PRINT_P. */
2450
2451 static int
2452 model_excess_cost (rtx_insn *insn, bool print_p)
2453 {
2454 int point, pci, cl, cost, this_cost, delta;
2455 struct reg_pressure_data *insn_reg_pressure;
2456 int insn_death[N_REG_CLASSES];
2457
2458 calculate_reg_deaths (insn, insn_death);
2459 point = model_index (insn);
2460 insn_reg_pressure = INSN_REG_PRESSURE (insn);
2461 cost = 0;
2462
2463 if (print_p)
2464 fprintf (sched_dump, ";;\t\t| %3d %4d | %4d %+3d |", point,
2465 INSN_UID (insn), INSN_PRIORITY (insn), insn_delay (insn));
2466
2467 /* Sum up the individual costs for each register class. */
2468 for (pci = 0; pci < ira_pressure_classes_num; pci++)
2469 {
2470 cl = ira_pressure_classes[pci];
2471 delta = insn_reg_pressure[pci].set_increase - insn_death[cl];
2472 this_cost = model_excess_group_cost (&model_before_pressure,
2473 point, pci, delta);
2474 cost += this_cost;
2475 if (print_p)
2476 fprintf (sched_dump, " %s:[%d base cost %d]",
2477 reg_class_names[cl], delta, this_cost);
2478 }
2479
2480 if (print_p)
2481 fprintf (sched_dump, "\n");
2482
2483 return cost;
2484 }
2485
2486 /* Dump the next points of maximum pressure for GROUP. */
2487
2488 static void
2489 model_dump_pressure_points (struct model_pressure_group *group)
2490 {
2491 int pci, cl;
2492
2493 fprintf (sched_dump, ";;\t\t| pressure points");
2494 for (pci = 0; pci < ira_pressure_classes_num; pci++)
2495 {
2496 cl = ira_pressure_classes[pci];
2497 fprintf (sched_dump, " %s:[%d->%d at ", reg_class_names[cl],
2498 curr_reg_pressure[cl], group->limits[pci].pressure);
2499 if (group->limits[pci].point < model_num_insns)
2500 fprintf (sched_dump, "%d:%d]", group->limits[pci].point,
2501 INSN_UID (MODEL_INSN (group->limits[pci].point)));
2502 else
2503 fprintf (sched_dump, "end]");
2504 }
2505 fprintf (sched_dump, "\n");
2506 }
2507
2508 /* Set INSN_REG_PRESSURE_EXCESS_COST_CHANGE for INSNS[0...COUNT-1]. */
2509
2510 static void
2511 model_set_excess_costs (rtx_insn **insns, int count)
2512 {
2513 int i, cost, priority_base, priority;
2514 bool print_p;
2515
2516 /* Record the baseECC value for each instruction in the model schedule,
2517 except that negative costs are converted to zero ones now rather than
2518 later. Do not assign a cost to debug instructions, since they must
2519 not change code-generation decisions. Experiments suggest we also
2520 get better results by not assigning a cost to instructions from
2521 a different block.
2522
2523 Set PRIORITY_BASE to baseP in the block comment above. This is the
2524 maximum priority of the "cheap" instructions, which should always
2525 include the next model instruction. */
2526 priority_base = 0;
2527 print_p = false;
2528 for (i = 0; i < count; i++)
2529 if (INSN_MODEL_INDEX (insns[i]))
2530 {
2531 if (sched_verbose >= 6 && !print_p)
2532 {
2533 fprintf (sched_dump, MODEL_BAR);
2534 fprintf (sched_dump, ";;\t\t| Pressure costs for ready queue\n");
2535 model_dump_pressure_points (&model_before_pressure);
2536 fprintf (sched_dump, MODEL_BAR);
2537 print_p = true;
2538 }
2539 cost = model_excess_cost (insns[i], print_p);
2540 if (cost <= 0)
2541 {
2542 priority = INSN_PRIORITY (insns[i]) - insn_delay (insns[i]) - cost;
2543 priority_base = MAX (priority_base, priority);
2544 cost = 0;
2545 }
2546 INSN_REG_PRESSURE_EXCESS_COST_CHANGE (insns[i]) = cost;
2547 }
2548 if (print_p)
2549 fprintf (sched_dump, MODEL_BAR);
2550
2551 /* Use MAX (baseECC, 0) and baseP to calculcate ECC for each
2552 instruction. */
2553 for (i = 0; i < count; i++)
2554 {
2555 cost = INSN_REG_PRESSURE_EXCESS_COST_CHANGE (insns[i]);
2556 priority = INSN_PRIORITY (insns[i]) - insn_delay (insns[i]);
2557 if (cost > 0 && priority > priority_base)
2558 {
2559 cost += priority_base - priority;
2560 INSN_REG_PRESSURE_EXCESS_COST_CHANGE (insns[i]) = MAX (cost, 0);
2561 }
2562 }
2563 }
2564 \f
2565
2566 /* Enum of rank_for_schedule heuristic decisions. */
2567 enum rfs_decision {
2568 RFS_LIVE_RANGE_SHRINK1, RFS_LIVE_RANGE_SHRINK2,
2569 RFS_SCHED_GROUP, RFS_PRESSURE_DELAY, RFS_PRESSURE_TICK,
2570 RFS_FEEDS_BACKTRACK_INSN, RFS_PRIORITY, RFS_SPECULATION,
2571 RFS_SCHED_RANK, RFS_LAST_INSN, RFS_PRESSURE_INDEX,
2572 RFS_DEP_COUNT, RFS_TIE, RFS_FUSION, RFS_N };
2573
2574 /* Corresponding strings for print outs. */
2575 static const char *rfs_str[RFS_N] = {
2576 "RFS_LIVE_RANGE_SHRINK1", "RFS_LIVE_RANGE_SHRINK2",
2577 "RFS_SCHED_GROUP", "RFS_PRESSURE_DELAY", "RFS_PRESSURE_TICK",
2578 "RFS_FEEDS_BACKTRACK_INSN", "RFS_PRIORITY", "RFS_SPECULATION",
2579 "RFS_SCHED_RANK", "RFS_LAST_INSN", "RFS_PRESSURE_INDEX",
2580 "RFS_DEP_COUNT", "RFS_TIE", "RFS_FUSION" };
2581
2582 /* Statistical breakdown of rank_for_schedule decisions. */
2583 typedef struct { unsigned stats[RFS_N]; } rank_for_schedule_stats_t;
2584 static rank_for_schedule_stats_t rank_for_schedule_stats;
2585
2586 /* Return the result of comparing insns TMP and TMP2 and update
2587 Rank_For_Schedule statistics. */
2588 static int
2589 rfs_result (enum rfs_decision decision, int result, rtx tmp, rtx tmp2)
2590 {
2591 ++rank_for_schedule_stats.stats[decision];
2592 if (result < 0)
2593 INSN_LAST_RFS_WIN (tmp) = decision;
2594 else if (result > 0)
2595 INSN_LAST_RFS_WIN (tmp2) = decision;
2596 else
2597 gcc_unreachable ();
2598 return result;
2599 }
2600
2601 /* Sorting predicate to move DEBUG_INSNs to the top of ready list, while
2602 keeping normal insns in original order. */
2603
2604 static int
2605 rank_for_schedule_debug (const void *x, const void *y)
2606 {
2607 rtx_insn *tmp = *(rtx_insn * const *) y;
2608 rtx_insn *tmp2 = *(rtx_insn * const *) x;
2609
2610 /* Schedule debug insns as early as possible. */
2611 if (DEBUG_INSN_P (tmp) && !DEBUG_INSN_P (tmp2))
2612 return -1;
2613 else if (!DEBUG_INSN_P (tmp) && DEBUG_INSN_P (tmp2))
2614 return 1;
2615 else if (DEBUG_INSN_P (tmp) && DEBUG_INSN_P (tmp2))
2616 return INSN_LUID (tmp) - INSN_LUID (tmp2);
2617 else
2618 return INSN_RFS_DEBUG_ORIG_ORDER (tmp2) - INSN_RFS_DEBUG_ORIG_ORDER (tmp);
2619 }
2620
2621 /* Returns a positive value if x is preferred; returns a negative value if
2622 y is preferred. Should never return 0, since that will make the sort
2623 unstable. */
2624
2625 static int
2626 rank_for_schedule (const void *x, const void *y)
2627 {
2628 rtx_insn *tmp = *(rtx_insn * const *) y;
2629 rtx_insn *tmp2 = *(rtx_insn * const *) x;
2630 int tmp_class, tmp2_class;
2631 int val, priority_val, info_val, diff;
2632
2633 if (live_range_shrinkage_p)
2634 {
2635 /* Don't use SCHED_PRESSURE_MODEL -- it results in much worse
2636 code. */
2637 gcc_assert (sched_pressure == SCHED_PRESSURE_WEIGHTED);
2638 if ((INSN_REG_PRESSURE_EXCESS_COST_CHANGE (tmp) < 0
2639 || INSN_REG_PRESSURE_EXCESS_COST_CHANGE (tmp2) < 0)
2640 && (diff = (INSN_REG_PRESSURE_EXCESS_COST_CHANGE (tmp)
2641 - INSN_REG_PRESSURE_EXCESS_COST_CHANGE (tmp2))) != 0)
2642 return rfs_result (RFS_LIVE_RANGE_SHRINK1, diff, tmp, tmp2);
2643 /* Sort by INSN_LUID (original insn order), so that we make the
2644 sort stable. This minimizes instruction movement, thus
2645 minimizing sched's effect on debugging and cross-jumping. */
2646 return rfs_result (RFS_LIVE_RANGE_SHRINK2,
2647 INSN_LUID (tmp) - INSN_LUID (tmp2), tmp, tmp2);
2648 }
2649
2650 /* The insn in a schedule group should be issued the first. */
2651 if (flag_sched_group_heuristic &&
2652 SCHED_GROUP_P (tmp) != SCHED_GROUP_P (tmp2))
2653 return rfs_result (RFS_SCHED_GROUP, SCHED_GROUP_P (tmp2) ? 1 : -1,
2654 tmp, tmp2);
2655
2656 /* Make sure that priority of TMP and TMP2 are initialized. */
2657 gcc_assert (INSN_PRIORITY_KNOWN (tmp) && INSN_PRIORITY_KNOWN (tmp2));
2658
2659 if (sched_fusion)
2660 {
2661 /* The instruction that has the same fusion priority as the last
2662 instruction is the instruction we picked next. If that is not
2663 the case, we sort ready list firstly by fusion priority, then
2664 by priority, and at last by INSN_LUID. */
2665 int a = INSN_FUSION_PRIORITY (tmp);
2666 int b = INSN_FUSION_PRIORITY (tmp2);
2667 int last = -1;
2668
2669 if (last_nondebug_scheduled_insn
2670 && !NOTE_P (last_nondebug_scheduled_insn)
2671 && BLOCK_FOR_INSN (tmp)
2672 == BLOCK_FOR_INSN (last_nondebug_scheduled_insn))
2673 last = INSN_FUSION_PRIORITY (last_nondebug_scheduled_insn);
2674
2675 if (a != last && b != last)
2676 {
2677 if (a == b)
2678 {
2679 a = INSN_PRIORITY (tmp);
2680 b = INSN_PRIORITY (tmp2);
2681 }
2682 if (a != b)
2683 return rfs_result (RFS_FUSION, b - a, tmp, tmp2);
2684 else
2685 return rfs_result (RFS_FUSION,
2686 INSN_LUID (tmp) - INSN_LUID (tmp2), tmp, tmp2);
2687 }
2688 else if (a == b)
2689 {
2690 gcc_assert (last_nondebug_scheduled_insn
2691 && !NOTE_P (last_nondebug_scheduled_insn));
2692 last = INSN_PRIORITY (last_nondebug_scheduled_insn);
2693
2694 a = abs (INSN_PRIORITY (tmp) - last);
2695 b = abs (INSN_PRIORITY (tmp2) - last);
2696 if (a != b)
2697 return rfs_result (RFS_FUSION, a - b, tmp, tmp2);
2698 else
2699 return rfs_result (RFS_FUSION,
2700 INSN_LUID (tmp) - INSN_LUID (tmp2), tmp, tmp2);
2701 }
2702 else if (a == last)
2703 return rfs_result (RFS_FUSION, -1, tmp, tmp2);
2704 else
2705 return rfs_result (RFS_FUSION, 1, tmp, tmp2);
2706 }
2707
2708 if (sched_pressure != SCHED_PRESSURE_NONE)
2709 {
2710 /* Prefer insn whose scheduling results in the smallest register
2711 pressure excess. */
2712 if ((diff = (INSN_REG_PRESSURE_EXCESS_COST_CHANGE (tmp)
2713 + insn_delay (tmp)
2714 - INSN_REG_PRESSURE_EXCESS_COST_CHANGE (tmp2)
2715 - insn_delay (tmp2))))
2716 return rfs_result (RFS_PRESSURE_DELAY, diff, tmp, tmp2);
2717 }
2718
2719 if (sched_pressure != SCHED_PRESSURE_NONE
2720 && (INSN_TICK (tmp2) > clock_var || INSN_TICK (tmp) > clock_var)
2721 && INSN_TICK (tmp2) != INSN_TICK (tmp))
2722 {
2723 diff = INSN_TICK (tmp) - INSN_TICK (tmp2);
2724 return rfs_result (RFS_PRESSURE_TICK, diff, tmp, tmp2);
2725 }
2726
2727 /* If we are doing backtracking in this schedule, prefer insns that
2728 have forward dependencies with negative cost against an insn that
2729 was already scheduled. */
2730 if (current_sched_info->flags & DO_BACKTRACKING)
2731 {
2732 priority_val = FEEDS_BACKTRACK_INSN (tmp2) - FEEDS_BACKTRACK_INSN (tmp);
2733 if (priority_val)
2734 return rfs_result (RFS_FEEDS_BACKTRACK_INSN, priority_val, tmp, tmp2);
2735 }
2736
2737 /* Prefer insn with higher priority. */
2738 priority_val = INSN_PRIORITY (tmp2) - INSN_PRIORITY (tmp);
2739
2740 if (flag_sched_critical_path_heuristic && priority_val)
2741 return rfs_result (RFS_PRIORITY, priority_val, tmp, tmp2);
2742
2743 if (PARAM_VALUE (PARAM_SCHED_AUTOPREF_QUEUE_DEPTH) >= 0)
2744 {
2745 int autopref = autopref_rank_for_schedule (tmp, tmp2);
2746 if (autopref != 0)
2747 return autopref;
2748 }
2749
2750 /* Prefer speculative insn with greater dependencies weakness. */
2751 if (flag_sched_spec_insn_heuristic && spec_info)
2752 {
2753 ds_t ds1, ds2;
2754 dw_t dw1, dw2;
2755 int dw;
2756
2757 ds1 = TODO_SPEC (tmp) & SPECULATIVE;
2758 if (ds1)
2759 dw1 = ds_weak (ds1);
2760 else
2761 dw1 = NO_DEP_WEAK;
2762
2763 ds2 = TODO_SPEC (tmp2) & SPECULATIVE;
2764 if (ds2)
2765 dw2 = ds_weak (ds2);
2766 else
2767 dw2 = NO_DEP_WEAK;
2768
2769 dw = dw2 - dw1;
2770 if (dw > (NO_DEP_WEAK / 8) || dw < -(NO_DEP_WEAK / 8))
2771 return rfs_result (RFS_SPECULATION, dw, tmp, tmp2);
2772 }
2773
2774 info_val = (*current_sched_info->rank) (tmp, tmp2);
2775 if (flag_sched_rank_heuristic && info_val)
2776 return rfs_result (RFS_SCHED_RANK, info_val, tmp, tmp2);
2777
2778 /* Compare insns based on their relation to the last scheduled
2779 non-debug insn. */
2780 if (flag_sched_last_insn_heuristic && last_nondebug_scheduled_insn)
2781 {
2782 dep_t dep1;
2783 dep_t dep2;
2784 rtx_insn *last = last_nondebug_scheduled_insn;
2785
2786 /* Classify the instructions into three classes:
2787 1) Data dependent on last schedule insn.
2788 2) Anti/Output dependent on last scheduled insn.
2789 3) Independent of last scheduled insn, or has latency of one.
2790 Choose the insn from the highest numbered class if different. */
2791 dep1 = sd_find_dep_between (last, tmp, true);
2792
2793 if (dep1 == NULL || dep_cost (dep1) == 1)
2794 tmp_class = 3;
2795 else if (/* Data dependence. */
2796 DEP_TYPE (dep1) == REG_DEP_TRUE)
2797 tmp_class = 1;
2798 else
2799 tmp_class = 2;
2800
2801 dep2 = sd_find_dep_between (last, tmp2, true);
2802
2803 if (dep2 == NULL || dep_cost (dep2) == 1)
2804 tmp2_class = 3;
2805 else if (/* Data dependence. */
2806 DEP_TYPE (dep2) == REG_DEP_TRUE)
2807 tmp2_class = 1;
2808 else
2809 tmp2_class = 2;
2810
2811 if ((val = tmp2_class - tmp_class))
2812 return rfs_result (RFS_LAST_INSN, val, tmp, tmp2);
2813 }
2814
2815 /* Prefer instructions that occur earlier in the model schedule. */
2816 if (sched_pressure == SCHED_PRESSURE_MODEL
2817 && INSN_BB (tmp) == target_bb && INSN_BB (tmp2) == target_bb)
2818 {
2819 diff = model_index (tmp) - model_index (tmp2);
2820 gcc_assert (diff != 0);
2821 return rfs_result (RFS_PRESSURE_INDEX, diff, tmp, tmp2);
2822 }
2823
2824 /* Prefer the insn which has more later insns that depend on it.
2825 This gives the scheduler more freedom when scheduling later
2826 instructions at the expense of added register pressure. */
2827
2828 val = (dep_list_size (tmp2, SD_LIST_FORW)
2829 - dep_list_size (tmp, SD_LIST_FORW));
2830
2831 if (flag_sched_dep_count_heuristic && val != 0)
2832 return rfs_result (RFS_DEP_COUNT, val, tmp, tmp2);
2833
2834 /* If insns are equally good, sort by INSN_LUID (original insn order),
2835 so that we make the sort stable. This minimizes instruction movement,
2836 thus minimizing sched's effect on debugging and cross-jumping. */
2837 return rfs_result (RFS_TIE, INSN_LUID (tmp) - INSN_LUID (tmp2), tmp, tmp2);
2838 }
2839
2840 /* Resort the array A in which only element at index N may be out of order. */
2841
2842 HAIFA_INLINE static void
2843 swap_sort (rtx_insn **a, int n)
2844 {
2845 rtx_insn *insn = a[n - 1];
2846 int i = n - 2;
2847
2848 while (i >= 0 && rank_for_schedule (a + i, &insn) >= 0)
2849 {
2850 a[i + 1] = a[i];
2851 i -= 1;
2852 }
2853 a[i + 1] = insn;
2854 }
2855
2856 /* Add INSN to the insn queue so that it can be executed at least
2857 N_CYCLES after the currently executing insn. Preserve insns
2858 chain for debugging purposes. REASON will be printed in debugging
2859 output. */
2860
2861 HAIFA_INLINE static void
2862 queue_insn (rtx_insn *insn, int n_cycles, const char *reason)
2863 {
2864 int next_q = NEXT_Q_AFTER (q_ptr, n_cycles);
2865 rtx_insn_list *link = alloc_INSN_LIST (insn, insn_queue[next_q]);
2866 int new_tick;
2867
2868 gcc_assert (n_cycles <= max_insn_queue_index);
2869 gcc_assert (!DEBUG_INSN_P (insn));
2870
2871 insn_queue[next_q] = link;
2872 q_size += 1;
2873
2874 if (sched_verbose >= 2)
2875 {
2876 fprintf (sched_dump, ";;\t\tReady-->Q: insn %s: ",
2877 (*current_sched_info->print_insn) (insn, 0));
2878
2879 fprintf (sched_dump, "queued for %d cycles (%s).\n", n_cycles, reason);
2880 }
2881
2882 QUEUE_INDEX (insn) = next_q;
2883
2884 if (current_sched_info->flags & DO_BACKTRACKING)
2885 {
2886 new_tick = clock_var + n_cycles;
2887 if (INSN_TICK (insn) == INVALID_TICK || INSN_TICK (insn) < new_tick)
2888 INSN_TICK (insn) = new_tick;
2889
2890 if (INSN_EXACT_TICK (insn) != INVALID_TICK
2891 && INSN_EXACT_TICK (insn) < clock_var + n_cycles)
2892 {
2893 must_backtrack = true;
2894 if (sched_verbose >= 2)
2895 fprintf (sched_dump, ";;\t\tcausing a backtrack.\n");
2896 }
2897 }
2898 }
2899
2900 /* Remove INSN from queue. */
2901 static void
2902 queue_remove (rtx_insn *insn)
2903 {
2904 gcc_assert (QUEUE_INDEX (insn) >= 0);
2905 remove_free_INSN_LIST_elem (insn, &insn_queue[QUEUE_INDEX (insn)]);
2906 q_size--;
2907 QUEUE_INDEX (insn) = QUEUE_NOWHERE;
2908 }
2909
2910 /* Return a pointer to the bottom of the ready list, i.e. the insn
2911 with the lowest priority. */
2912
2913 rtx_insn **
2914 ready_lastpos (struct ready_list *ready)
2915 {
2916 gcc_assert (ready->n_ready >= 1);
2917 return ready->vec + ready->first - ready->n_ready + 1;
2918 }
2919
2920 /* Add an element INSN to the ready list so that it ends up with the
2921 lowest/highest priority depending on FIRST_P. */
2922
2923 HAIFA_INLINE static void
2924 ready_add (struct ready_list *ready, rtx_insn *insn, bool first_p)
2925 {
2926 if (!first_p)
2927 {
2928 if (ready->first == ready->n_ready)
2929 {
2930 memmove (ready->vec + ready->veclen - ready->n_ready,
2931 ready_lastpos (ready),
2932 ready->n_ready * sizeof (rtx));
2933 ready->first = ready->veclen - 1;
2934 }
2935 ready->vec[ready->first - ready->n_ready] = insn;
2936 }
2937 else
2938 {
2939 if (ready->first == ready->veclen - 1)
2940 {
2941 if (ready->n_ready)
2942 /* ready_lastpos() fails when called with (ready->n_ready == 0). */
2943 memmove (ready->vec + ready->veclen - ready->n_ready - 1,
2944 ready_lastpos (ready),
2945 ready->n_ready * sizeof (rtx));
2946 ready->first = ready->veclen - 2;
2947 }
2948 ready->vec[++(ready->first)] = insn;
2949 }
2950
2951 ready->n_ready++;
2952 if (DEBUG_INSN_P (insn))
2953 ready->n_debug++;
2954
2955 gcc_assert (QUEUE_INDEX (insn) != QUEUE_READY);
2956 QUEUE_INDEX (insn) = QUEUE_READY;
2957
2958 if (INSN_EXACT_TICK (insn) != INVALID_TICK
2959 && INSN_EXACT_TICK (insn) < clock_var)
2960 {
2961 must_backtrack = true;
2962 }
2963 }
2964
2965 /* Remove the element with the highest priority from the ready list and
2966 return it. */
2967
2968 HAIFA_INLINE static rtx_insn *
2969 ready_remove_first (struct ready_list *ready)
2970 {
2971 rtx_insn *t;
2972
2973 gcc_assert (ready->n_ready);
2974 t = ready->vec[ready->first--];
2975 ready->n_ready--;
2976 if (DEBUG_INSN_P (t))
2977 ready->n_debug--;
2978 /* If the queue becomes empty, reset it. */
2979 if (ready->n_ready == 0)
2980 ready->first = ready->veclen - 1;
2981
2982 gcc_assert (QUEUE_INDEX (t) == QUEUE_READY);
2983 QUEUE_INDEX (t) = QUEUE_NOWHERE;
2984
2985 return t;
2986 }
2987
2988 /* The following code implements multi-pass scheduling for the first
2989 cycle. In other words, we will try to choose ready insn which
2990 permits to start maximum number of insns on the same cycle. */
2991
2992 /* Return a pointer to the element INDEX from the ready. INDEX for
2993 insn with the highest priority is 0, and the lowest priority has
2994 N_READY - 1. */
2995
2996 rtx_insn *
2997 ready_element (struct ready_list *ready, int index)
2998 {
2999 gcc_assert (ready->n_ready && index < ready->n_ready);
3000
3001 return ready->vec[ready->first - index];
3002 }
3003
3004 /* Remove the element INDEX from the ready list and return it. INDEX
3005 for insn with the highest priority is 0, and the lowest priority
3006 has N_READY - 1. */
3007
3008 HAIFA_INLINE static rtx_insn *
3009 ready_remove (struct ready_list *ready, int index)
3010 {
3011 rtx_insn *t;
3012 int i;
3013
3014 if (index == 0)
3015 return ready_remove_first (ready);
3016 gcc_assert (ready->n_ready && index < ready->n_ready);
3017 t = ready->vec[ready->first - index];
3018 ready->n_ready--;
3019 if (DEBUG_INSN_P (t))
3020 ready->n_debug--;
3021 for (i = index; i < ready->n_ready; i++)
3022 ready->vec[ready->first - i] = ready->vec[ready->first - i - 1];
3023 QUEUE_INDEX (t) = QUEUE_NOWHERE;
3024 return t;
3025 }
3026
3027 /* Remove INSN from the ready list. */
3028 static void
3029 ready_remove_insn (rtx_insn *insn)
3030 {
3031 int i;
3032
3033 for (i = 0; i < readyp->n_ready; i++)
3034 if (ready_element (readyp, i) == insn)
3035 {
3036 ready_remove (readyp, i);
3037 return;
3038 }
3039 gcc_unreachable ();
3040 }
3041
3042 /* Calculate difference of two statistics set WAS and NOW.
3043 Result returned in WAS. */
3044 static void
3045 rank_for_schedule_stats_diff (rank_for_schedule_stats_t *was,
3046 const rank_for_schedule_stats_t *now)
3047 {
3048 for (int i = 0; i < RFS_N; ++i)
3049 was->stats[i] = now->stats[i] - was->stats[i];
3050 }
3051
3052 /* Print rank_for_schedule statistics. */
3053 static void
3054 print_rank_for_schedule_stats (const char *prefix,
3055 const rank_for_schedule_stats_t *stats,
3056 struct ready_list *ready)
3057 {
3058 for (int i = 0; i < RFS_N; ++i)
3059 if (stats->stats[i])
3060 {
3061 fprintf (sched_dump, "%s%20s: %u", prefix, rfs_str[i], stats->stats[i]);
3062
3063 if (ready != NULL)
3064 /* Print out insns that won due to RFS_<I>. */
3065 {
3066 rtx_insn **p = ready_lastpos (ready);
3067
3068 fprintf (sched_dump, ":");
3069 /* Start with 1 since least-priority insn didn't have any wins. */
3070 for (int j = 1; j < ready->n_ready; ++j)
3071 if (INSN_LAST_RFS_WIN (p[j]) == i)
3072 fprintf (sched_dump, " %s",
3073 (*current_sched_info->print_insn) (p[j], 0));
3074 }
3075 fprintf (sched_dump, "\n");
3076 }
3077 }
3078
3079 /* Separate DEBUG_INSNS from normal insns. DEBUG_INSNs go to the end
3080 of array. */
3081 static void
3082 ready_sort_debug (struct ready_list *ready)
3083 {
3084 int i;
3085 rtx_insn **first = ready_lastpos (ready);
3086
3087 for (i = 0; i < ready->n_ready; ++i)
3088 if (!DEBUG_INSN_P (first[i]))
3089 INSN_RFS_DEBUG_ORIG_ORDER (first[i]) = i;
3090
3091 qsort (first, ready->n_ready, sizeof (rtx), rank_for_schedule_debug);
3092 }
3093
3094 /* Sort non-debug insns in the ready list READY by ascending priority.
3095 Assumes that all debug insns are separated from the real insns. */
3096 static void
3097 ready_sort_real (struct ready_list *ready)
3098 {
3099 int i;
3100 rtx_insn **first = ready_lastpos (ready);
3101 int n_ready_real = ready->n_ready - ready->n_debug;
3102
3103 if (sched_pressure == SCHED_PRESSURE_WEIGHTED)
3104 for (i = 0; i < n_ready_real; ++i)
3105 setup_insn_reg_pressure_info (first[i]);
3106 else if (sched_pressure == SCHED_PRESSURE_MODEL
3107 && model_curr_point < model_num_insns)
3108 model_set_excess_costs (first, n_ready_real);
3109
3110 rank_for_schedule_stats_t stats1;
3111 if (sched_verbose >= 4)
3112 stats1 = rank_for_schedule_stats;
3113
3114 if (n_ready_real == 2)
3115 swap_sort (first, n_ready_real);
3116 else if (n_ready_real > 2)
3117 qsort (first, n_ready_real, sizeof (rtx), rank_for_schedule);
3118
3119 if (sched_verbose >= 4)
3120 {
3121 rank_for_schedule_stats_diff (&stats1, &rank_for_schedule_stats);
3122 print_rank_for_schedule_stats (";;\t\t", &stats1, ready);
3123 }
3124 }
3125
3126 /* Sort the ready list READY by ascending priority. */
3127 static void
3128 ready_sort (struct ready_list *ready)
3129 {
3130 if (ready->n_debug > 0)
3131 ready_sort_debug (ready);
3132 else
3133 ready_sort_real (ready);
3134 }
3135
3136 /* PREV is an insn that is ready to execute. Adjust its priority if that
3137 will help shorten or lengthen register lifetimes as appropriate. Also
3138 provide a hook for the target to tweak itself. */
3139
3140 HAIFA_INLINE static void
3141 adjust_priority (rtx_insn *prev)
3142 {
3143 /* ??? There used to be code here to try and estimate how an insn
3144 affected register lifetimes, but it did it by looking at REG_DEAD
3145 notes, which we removed in schedule_region. Nor did it try to
3146 take into account register pressure or anything useful like that.
3147
3148 Revisit when we have a machine model to work with and not before. */
3149
3150 if (targetm.sched.adjust_priority)
3151 INSN_PRIORITY (prev) =
3152 targetm.sched.adjust_priority (prev, INSN_PRIORITY (prev));
3153 }
3154
3155 /* Advance DFA state STATE on one cycle. */
3156 void
3157 advance_state (state_t state)
3158 {
3159 if (targetm.sched.dfa_pre_advance_cycle)
3160 targetm.sched.dfa_pre_advance_cycle ();
3161
3162 if (targetm.sched.dfa_pre_cycle_insn)
3163 state_transition (state,
3164 targetm.sched.dfa_pre_cycle_insn ());
3165
3166 state_transition (state, NULL);
3167
3168 if (targetm.sched.dfa_post_cycle_insn)
3169 state_transition (state,
3170 targetm.sched.dfa_post_cycle_insn ());
3171
3172 if (targetm.sched.dfa_post_advance_cycle)
3173 targetm.sched.dfa_post_advance_cycle ();
3174 }
3175
3176 /* Advance time on one cycle. */
3177 HAIFA_INLINE static void
3178 advance_one_cycle (void)
3179 {
3180 advance_state (curr_state);
3181 if (sched_verbose >= 4)
3182 fprintf (sched_dump, ";;\tAdvance the current state.\n");
3183 }
3184
3185 /* Update register pressure after scheduling INSN. */
3186 static void
3187 update_register_pressure (rtx_insn *insn)
3188 {
3189 struct reg_use_data *use;
3190 struct reg_set_data *set;
3191
3192 gcc_checking_assert (!DEBUG_INSN_P (insn));
3193
3194 for (use = INSN_REG_USE_LIST (insn); use != NULL; use = use->next_insn_use)
3195 if (dying_use_p (use))
3196 mark_regno_birth_or_death (curr_reg_live, curr_reg_pressure,
3197 use->regno, false);
3198 for (set = INSN_REG_SET_LIST (insn); set != NULL; set = set->next_insn_set)
3199 mark_regno_birth_or_death (curr_reg_live, curr_reg_pressure,
3200 set->regno, true);
3201 }
3202
3203 /* Set up or update (if UPDATE_P) max register pressure (see its
3204 meaning in sched-int.h::_haifa_insn_data) for all current BB insns
3205 after insn AFTER. */
3206 static void
3207 setup_insn_max_reg_pressure (rtx_insn *after, bool update_p)
3208 {
3209 int i, p;
3210 bool eq_p;
3211 rtx_insn *insn;
3212 static int max_reg_pressure[N_REG_CLASSES];
3213
3214 save_reg_pressure ();
3215 for (i = 0; i < ira_pressure_classes_num; i++)
3216 max_reg_pressure[ira_pressure_classes[i]]
3217 = curr_reg_pressure[ira_pressure_classes[i]];
3218 for (insn = NEXT_INSN (after);
3219 insn != NULL_RTX && ! BARRIER_P (insn)
3220 && BLOCK_FOR_INSN (insn) == BLOCK_FOR_INSN (after);
3221 insn = NEXT_INSN (insn))
3222 if (NONDEBUG_INSN_P (insn))
3223 {
3224 eq_p = true;
3225 for (i = 0; i < ira_pressure_classes_num; i++)
3226 {
3227 p = max_reg_pressure[ira_pressure_classes[i]];
3228 if (INSN_MAX_REG_PRESSURE (insn)[i] != p)
3229 {
3230 eq_p = false;
3231 INSN_MAX_REG_PRESSURE (insn)[i]
3232 = max_reg_pressure[ira_pressure_classes[i]];
3233 }
3234 }
3235 if (update_p && eq_p)
3236 break;
3237 update_register_pressure (insn);
3238 for (i = 0; i < ira_pressure_classes_num; i++)
3239 if (max_reg_pressure[ira_pressure_classes[i]]
3240 < curr_reg_pressure[ira_pressure_classes[i]])
3241 max_reg_pressure[ira_pressure_classes[i]]
3242 = curr_reg_pressure[ira_pressure_classes[i]];
3243 }
3244 restore_reg_pressure ();
3245 }
3246
3247 /* Update the current register pressure after scheduling INSN. Update
3248 also max register pressure for unscheduled insns of the current
3249 BB. */
3250 static void
3251 update_reg_and_insn_max_reg_pressure (rtx_insn *insn)
3252 {
3253 int i;
3254 int before[N_REG_CLASSES];
3255
3256 for (i = 0; i < ira_pressure_classes_num; i++)
3257 before[i] = curr_reg_pressure[ira_pressure_classes[i]];
3258 update_register_pressure (insn);
3259 for (i = 0; i < ira_pressure_classes_num; i++)
3260 if (curr_reg_pressure[ira_pressure_classes[i]] != before[i])
3261 break;
3262 if (i < ira_pressure_classes_num)
3263 setup_insn_max_reg_pressure (insn, true);
3264 }
3265
3266 /* Set up register pressure at the beginning of basic block BB whose
3267 insns starting after insn AFTER. Set up also max register pressure
3268 for all insns of the basic block. */
3269 void
3270 sched_setup_bb_reg_pressure_info (basic_block bb, rtx_insn *after)
3271 {
3272 gcc_assert (sched_pressure == SCHED_PRESSURE_WEIGHTED);
3273 initiate_bb_reg_pressure_info (bb);
3274 setup_insn_max_reg_pressure (after, false);
3275 }
3276 \f
3277 /* If doing predication while scheduling, verify whether INSN, which
3278 has just been scheduled, clobbers the conditions of any
3279 instructions that must be predicated in order to break their
3280 dependencies. If so, remove them from the queues so that they will
3281 only be scheduled once their control dependency is resolved. */
3282
3283 static void
3284 check_clobbered_conditions (rtx_insn *insn)
3285 {
3286 HARD_REG_SET t;
3287 int i;
3288
3289 if ((current_sched_info->flags & DO_PREDICATION) == 0)
3290 return;
3291
3292 find_all_hard_reg_sets (insn, &t, true);
3293
3294 restart:
3295 for (i = 0; i < ready.n_ready; i++)
3296 {
3297 rtx_insn *x = ready_element (&ready, i);
3298 if (TODO_SPEC (x) == DEP_CONTROL && cond_clobbered_p (x, t))
3299 {
3300 ready_remove_insn (x);
3301 goto restart;
3302 }
3303 }
3304 for (i = 0; i <= max_insn_queue_index; i++)
3305 {
3306 rtx_insn_list *link;
3307 int q = NEXT_Q_AFTER (q_ptr, i);
3308
3309 restart_queue:
3310 for (link = insn_queue[q]; link; link = link->next ())
3311 {
3312 rtx_insn *x = link->insn ();
3313 if (TODO_SPEC (x) == DEP_CONTROL && cond_clobbered_p (x, t))
3314 {
3315 queue_remove (x);
3316 goto restart_queue;
3317 }
3318 }
3319 }
3320 }
3321 \f
3322 /* Return (in order):
3323
3324 - positive if INSN adversely affects the pressure on one
3325 register class
3326
3327 - negative if INSN reduces the pressure on one register class
3328
3329 - 0 if INSN doesn't affect the pressure on any register class. */
3330
3331 static int
3332 model_classify_pressure (struct model_insn_info *insn)
3333 {
3334 struct reg_pressure_data *reg_pressure;
3335 int death[N_REG_CLASSES];
3336 int pci, cl, sum;
3337
3338 calculate_reg_deaths (insn->insn, death);
3339 reg_pressure = INSN_REG_PRESSURE (insn->insn);
3340 sum = 0;
3341 for (pci = 0; pci < ira_pressure_classes_num; pci++)
3342 {
3343 cl = ira_pressure_classes[pci];
3344 if (death[cl] < reg_pressure[pci].set_increase)
3345 return 1;
3346 sum += reg_pressure[pci].set_increase - death[cl];
3347 }
3348 return sum;
3349 }
3350
3351 /* Return true if INSN1 should come before INSN2 in the model schedule. */
3352
3353 static int
3354 model_order_p (struct model_insn_info *insn1, struct model_insn_info *insn2)
3355 {
3356 unsigned int height1, height2;
3357 unsigned int priority1, priority2;
3358
3359 /* Prefer instructions with a higher model priority. */
3360 if (insn1->model_priority != insn2->model_priority)
3361 return insn1->model_priority > insn2->model_priority;
3362
3363 /* Combine the length of the longest path of satisfied true dependencies
3364 that leads to each instruction (depth) with the length of the longest
3365 path of any dependencies that leads from the instruction (alap).
3366 Prefer instructions with the greatest combined length. If the combined
3367 lengths are equal, prefer instructions with the greatest depth.
3368
3369 The idea is that, if we have a set S of "equal" instructions that each
3370 have ALAP value X, and we pick one such instruction I, any true-dependent
3371 successors of I that have ALAP value X - 1 should be preferred over S.
3372 This encourages the schedule to be "narrow" rather than "wide".
3373 However, if I is a low-priority instruction that we decided to
3374 schedule because of its model_classify_pressure, and if there
3375 is a set of higher-priority instructions T, the aforementioned
3376 successors of I should not have the edge over T. */
3377 height1 = insn1->depth + insn1->alap;
3378 height2 = insn2->depth + insn2->alap;
3379 if (height1 != height2)
3380 return height1 > height2;
3381 if (insn1->depth != insn2->depth)
3382 return insn1->depth > insn2->depth;
3383
3384 /* We have no real preference between INSN1 an INSN2 as far as attempts
3385 to reduce pressure go. Prefer instructions with higher priorities. */
3386 priority1 = INSN_PRIORITY (insn1->insn);
3387 priority2 = INSN_PRIORITY (insn2->insn);
3388 if (priority1 != priority2)
3389 return priority1 > priority2;
3390
3391 /* Use the original rtl sequence as a tie-breaker. */
3392 return insn1 < insn2;
3393 }
3394
3395 /* Add INSN to the model worklist immediately after PREV. Add it to the
3396 beginning of the list if PREV is null. */
3397
3398 static void
3399 model_add_to_worklist_at (struct model_insn_info *insn,
3400 struct model_insn_info *prev)
3401 {
3402 gcc_assert (QUEUE_INDEX (insn->insn) == QUEUE_NOWHERE);
3403 QUEUE_INDEX (insn->insn) = QUEUE_READY;
3404
3405 insn->prev = prev;
3406 if (prev)
3407 {
3408 insn->next = prev->next;
3409 prev->next = insn;
3410 }
3411 else
3412 {
3413 insn->next = model_worklist;
3414 model_worklist = insn;
3415 }
3416 if (insn->next)
3417 insn->next->prev = insn;
3418 }
3419
3420 /* Remove INSN from the model worklist. */
3421
3422 static void
3423 model_remove_from_worklist (struct model_insn_info *insn)
3424 {
3425 gcc_assert (QUEUE_INDEX (insn->insn) == QUEUE_READY);
3426 QUEUE_INDEX (insn->insn) = QUEUE_NOWHERE;
3427
3428 if (insn->prev)
3429 insn->prev->next = insn->next;
3430 else
3431 model_worklist = insn->next;
3432 if (insn->next)
3433 insn->next->prev = insn->prev;
3434 }
3435
3436 /* Add INSN to the model worklist. Start looking for a suitable position
3437 between neighbors PREV and NEXT, testing at most MAX_SCHED_READY_INSNS
3438 insns either side. A null PREV indicates the beginning of the list and
3439 a null NEXT indicates the end. */
3440
3441 static void
3442 model_add_to_worklist (struct model_insn_info *insn,
3443 struct model_insn_info *prev,
3444 struct model_insn_info *next)
3445 {
3446 int count;
3447
3448 count = MAX_SCHED_READY_INSNS;
3449 if (count > 0 && prev && model_order_p (insn, prev))
3450 do
3451 {
3452 count--;
3453 prev = prev->prev;
3454 }
3455 while (count > 0 && prev && model_order_p (insn, prev));
3456 else
3457 while (count > 0 && next && model_order_p (next, insn))
3458 {
3459 count--;
3460 prev = next;
3461 next = next->next;
3462 }
3463 model_add_to_worklist_at (insn, prev);
3464 }
3465
3466 /* INSN may now have a higher priority (in the model_order_p sense)
3467 than before. Move it up the worklist if necessary. */
3468
3469 static void
3470 model_promote_insn (struct model_insn_info *insn)
3471 {
3472 struct model_insn_info *prev;
3473 int count;
3474
3475 prev = insn->prev;
3476 count = MAX_SCHED_READY_INSNS;
3477 while (count > 0 && prev && model_order_p (insn, prev))
3478 {
3479 count--;
3480 prev = prev->prev;
3481 }
3482 if (prev != insn->prev)
3483 {
3484 model_remove_from_worklist (insn);
3485 model_add_to_worklist_at (insn, prev);
3486 }
3487 }
3488
3489 /* Add INSN to the end of the model schedule. */
3490
3491 static void
3492 model_add_to_schedule (rtx_insn *insn)
3493 {
3494 unsigned int point;
3495
3496 gcc_assert (QUEUE_INDEX (insn) == QUEUE_NOWHERE);
3497 QUEUE_INDEX (insn) = QUEUE_SCHEDULED;
3498
3499 point = model_schedule.length ();
3500 model_schedule.quick_push (insn);
3501 INSN_MODEL_INDEX (insn) = point + 1;
3502 }
3503
3504 /* Analyze the instructions that are to be scheduled, setting up
3505 MODEL_INSN_INFO (...) and model_num_insns accordingly. Add ready
3506 instructions to model_worklist. */
3507
3508 static void
3509 model_analyze_insns (void)
3510 {
3511 rtx_insn *start, *end, *iter;
3512 sd_iterator_def sd_it;
3513 dep_t dep;
3514 struct model_insn_info *insn, *con;
3515
3516 model_num_insns = 0;
3517 start = PREV_INSN (current_sched_info->next_tail);
3518 end = current_sched_info->prev_head;
3519 for (iter = start; iter != end; iter = PREV_INSN (iter))
3520 if (NONDEBUG_INSN_P (iter))
3521 {
3522 insn = MODEL_INSN_INFO (iter);
3523 insn->insn = iter;
3524 FOR_EACH_DEP (iter, SD_LIST_FORW, sd_it, dep)
3525 {
3526 con = MODEL_INSN_INFO (DEP_CON (dep));
3527 if (con->insn && insn->alap < con->alap + 1)
3528 insn->alap = con->alap + 1;
3529 }
3530
3531 insn->old_queue = QUEUE_INDEX (iter);
3532 QUEUE_INDEX (iter) = QUEUE_NOWHERE;
3533
3534 insn->unscheduled_preds = dep_list_size (iter, SD_LIST_HARD_BACK);
3535 if (insn->unscheduled_preds == 0)
3536 model_add_to_worklist (insn, NULL, model_worklist);
3537
3538 model_num_insns++;
3539 }
3540 }
3541
3542 /* The global state describes the register pressure at the start of the
3543 model schedule. Initialize GROUP accordingly. */
3544
3545 static void
3546 model_init_pressure_group (struct model_pressure_group *group)
3547 {
3548 int pci, cl;
3549
3550 for (pci = 0; pci < ira_pressure_classes_num; pci++)
3551 {
3552 cl = ira_pressure_classes[pci];
3553 group->limits[pci].pressure = curr_reg_pressure[cl];
3554 group->limits[pci].point = 0;
3555 }
3556 /* Use index model_num_insns to record the state after the last
3557 instruction in the model schedule. */
3558 group->model = XNEWVEC (struct model_pressure_data,
3559 (model_num_insns + 1) * ira_pressure_classes_num);
3560 }
3561
3562 /* Record that MODEL_REF_PRESSURE (GROUP, POINT, PCI) is PRESSURE.
3563 Update the maximum pressure for the whole schedule. */
3564
3565 static void
3566 model_record_pressure (struct model_pressure_group *group,
3567 int point, int pci, int pressure)
3568 {
3569 MODEL_REF_PRESSURE (group, point, pci) = pressure;
3570 if (group->limits[pci].pressure < pressure)
3571 {
3572 group->limits[pci].pressure = pressure;
3573 group->limits[pci].point = point;
3574 }
3575 }
3576
3577 /* INSN has just been added to the end of the model schedule. Record its
3578 register-pressure information. */
3579
3580 static void
3581 model_record_pressures (struct model_insn_info *insn)
3582 {
3583 struct reg_pressure_data *reg_pressure;
3584 int point, pci, cl, delta;
3585 int death[N_REG_CLASSES];
3586
3587 point = model_index (insn->insn);
3588 if (sched_verbose >= 2)
3589 {
3590 if (point == 0)
3591 {
3592 fprintf (sched_dump, "\n;;\tModel schedule:\n;;\n");
3593 fprintf (sched_dump, ";;\t| idx insn | mpri hght dpth prio |\n");
3594 }
3595 fprintf (sched_dump, ";;\t| %3d %4d | %4d %4d %4d %4d | %-30s ",
3596 point, INSN_UID (insn->insn), insn->model_priority,
3597 insn->depth + insn->alap, insn->depth,
3598 INSN_PRIORITY (insn->insn),
3599 str_pattern_slim (PATTERN (insn->insn)));
3600 }
3601 calculate_reg_deaths (insn->insn, death);
3602 reg_pressure = INSN_REG_PRESSURE (insn->insn);
3603 for (pci = 0; pci < ira_pressure_classes_num; pci++)
3604 {
3605 cl = ira_pressure_classes[pci];
3606 delta = reg_pressure[pci].set_increase - death[cl];
3607 if (sched_verbose >= 2)
3608 fprintf (sched_dump, " %s:[%d,%+d]", reg_class_names[cl],
3609 curr_reg_pressure[cl], delta);
3610 model_record_pressure (&model_before_pressure, point, pci,
3611 curr_reg_pressure[cl]);
3612 }
3613 if (sched_verbose >= 2)
3614 fprintf (sched_dump, "\n");
3615 }
3616
3617 /* All instructions have been added to the model schedule. Record the
3618 final register pressure in GROUP and set up all MODEL_MAX_PRESSUREs. */
3619
3620 static void
3621 model_record_final_pressures (struct model_pressure_group *group)
3622 {
3623 int point, pci, max_pressure, ref_pressure, cl;
3624
3625 for (pci = 0; pci < ira_pressure_classes_num; pci++)
3626 {
3627 /* Record the final pressure for this class. */
3628 cl = ira_pressure_classes[pci];
3629 point = model_num_insns;
3630 ref_pressure = curr_reg_pressure[cl];
3631 model_record_pressure (group, point, pci, ref_pressure);
3632
3633 /* Record the original maximum pressure. */
3634 group->limits[pci].orig_pressure = group->limits[pci].pressure;
3635
3636 /* Update the MODEL_MAX_PRESSURE for every point of the schedule. */
3637 max_pressure = ref_pressure;
3638 MODEL_MAX_PRESSURE (group, point, pci) = max_pressure;
3639 while (point > 0)
3640 {
3641 point--;
3642 ref_pressure = MODEL_REF_PRESSURE (group, point, pci);
3643 max_pressure = MAX (max_pressure, ref_pressure);
3644 MODEL_MAX_PRESSURE (group, point, pci) = max_pressure;
3645 }
3646 }
3647 }
3648
3649 /* Update all successors of INSN, given that INSN has just been scheduled. */
3650
3651 static void
3652 model_add_successors_to_worklist (struct model_insn_info *insn)
3653 {
3654 sd_iterator_def sd_it;
3655 struct model_insn_info *con;
3656 dep_t dep;
3657
3658 FOR_EACH_DEP (insn->insn, SD_LIST_FORW, sd_it, dep)
3659 {
3660 con = MODEL_INSN_INFO (DEP_CON (dep));
3661 /* Ignore debug instructions, and instructions from other blocks. */
3662 if (con->insn)
3663 {
3664 con->unscheduled_preds--;
3665
3666 /* Update the depth field of each true-dependent successor.
3667 Increasing the depth gives them a higher priority than
3668 before. */
3669 if (DEP_TYPE (dep) == REG_DEP_TRUE && con->depth < insn->depth + 1)
3670 {
3671 con->depth = insn->depth + 1;
3672 if (QUEUE_INDEX (con->insn) == QUEUE_READY)
3673 model_promote_insn (con);
3674 }
3675
3676 /* If this is a true dependency, or if there are no remaining
3677 dependencies for CON (meaning that CON only had non-true
3678 dependencies), make sure that CON is on the worklist.
3679 We don't bother otherwise because it would tend to fill the
3680 worklist with a lot of low-priority instructions that are not
3681 yet ready to issue. */
3682 if ((con->depth > 0 || con->unscheduled_preds == 0)
3683 && QUEUE_INDEX (con->insn) == QUEUE_NOWHERE)
3684 model_add_to_worklist (con, insn, insn->next);
3685 }
3686 }
3687 }
3688
3689 /* Give INSN a higher priority than any current instruction, then give
3690 unscheduled predecessors of INSN a higher priority still. If any of
3691 those predecessors are not on the model worklist, do the same for its
3692 predecessors, and so on. */
3693
3694 static void
3695 model_promote_predecessors (struct model_insn_info *insn)
3696 {
3697 struct model_insn_info *pro, *first;
3698 sd_iterator_def sd_it;
3699 dep_t dep;
3700
3701 if (sched_verbose >= 7)
3702 fprintf (sched_dump, ";;\t+--- priority of %d = %d, priority of",
3703 INSN_UID (insn->insn), model_next_priority);
3704 insn->model_priority = model_next_priority++;
3705 model_remove_from_worklist (insn);
3706 model_add_to_worklist_at (insn, NULL);
3707
3708 first = NULL;
3709 for (;;)
3710 {
3711 FOR_EACH_DEP (insn->insn, SD_LIST_HARD_BACK, sd_it, dep)
3712 {
3713 pro = MODEL_INSN_INFO (DEP_PRO (dep));
3714 /* The first test is to ignore debug instructions, and instructions
3715 from other blocks. */
3716 if (pro->insn
3717 && pro->model_priority != model_next_priority
3718 && QUEUE_INDEX (pro->insn) != QUEUE_SCHEDULED)
3719 {
3720 pro->model_priority = model_next_priority;
3721 if (sched_verbose >= 7)
3722 fprintf (sched_dump, " %d", INSN_UID (pro->insn));
3723 if (QUEUE_INDEX (pro->insn) == QUEUE_READY)
3724 {
3725 /* PRO is already in the worklist, but it now has
3726 a higher priority than before. Move it at the
3727 appropriate place. */
3728 model_remove_from_worklist (pro);
3729 model_add_to_worklist (pro, NULL, model_worklist);
3730 }
3731 else
3732 {
3733 /* PRO isn't in the worklist. Recursively process
3734 its predecessors until we find one that is. */
3735 pro->next = first;
3736 first = pro;
3737 }
3738 }
3739 }
3740 if (!first)
3741 break;
3742 insn = first;
3743 first = insn->next;
3744 }
3745 if (sched_verbose >= 7)
3746 fprintf (sched_dump, " = %d\n", model_next_priority);
3747 model_next_priority++;
3748 }
3749
3750 /* Pick one instruction from model_worklist and process it. */
3751
3752 static void
3753 model_choose_insn (void)
3754 {
3755 struct model_insn_info *insn, *fallback;
3756 int count;
3757
3758 if (sched_verbose >= 7)
3759 {
3760 fprintf (sched_dump, ";;\t+--- worklist:\n");
3761 insn = model_worklist;
3762 count = MAX_SCHED_READY_INSNS;
3763 while (count > 0 && insn)
3764 {
3765 fprintf (sched_dump, ";;\t+--- %d [%d, %d, %d, %d]\n",
3766 INSN_UID (insn->insn), insn->model_priority,
3767 insn->depth + insn->alap, insn->depth,
3768 INSN_PRIORITY (insn->insn));
3769 count--;
3770 insn = insn->next;
3771 }
3772 }
3773
3774 /* Look for a ready instruction whose model_classify_priority is zero
3775 or negative, picking the highest-priority one. Adding such an
3776 instruction to the schedule now should do no harm, and may actually
3777 do some good.
3778
3779 Failing that, see whether there is an instruction with the highest
3780 extant model_priority that is not yet ready, but which would reduce
3781 pressure if it became ready. This is designed to catch cases like:
3782
3783 (set (mem (reg R1)) (reg R2))
3784
3785 where the instruction is the last remaining use of R1 and where the
3786 value of R2 is not yet available (or vice versa). The death of R1
3787 means that this instruction already reduces pressure. It is of
3788 course possible that the computation of R2 involves other registers
3789 that are hard to kill, but such cases are rare enough for this
3790 heuristic to be a win in general.
3791
3792 Failing that, just pick the highest-priority instruction in the
3793 worklist. */
3794 count = MAX_SCHED_READY_INSNS;
3795 insn = model_worklist;
3796 fallback = 0;
3797 for (;;)
3798 {
3799 if (count == 0 || !insn)
3800 {
3801 insn = fallback ? fallback : model_worklist;
3802 break;
3803 }
3804 if (insn->unscheduled_preds)
3805 {
3806 if (model_worklist->model_priority == insn->model_priority
3807 && !fallback
3808 && model_classify_pressure (insn) < 0)
3809 fallback = insn;
3810 }
3811 else
3812 {
3813 if (model_classify_pressure (insn) <= 0)
3814 break;
3815 }
3816 count--;
3817 insn = insn->next;
3818 }
3819
3820 if (sched_verbose >= 7 && insn != model_worklist)
3821 {
3822 if (insn->unscheduled_preds)
3823 fprintf (sched_dump, ";;\t+--- promoting insn %d, with dependencies\n",
3824 INSN_UID (insn->insn));
3825 else
3826 fprintf (sched_dump, ";;\t+--- promoting insn %d, which is ready\n",
3827 INSN_UID (insn->insn));
3828 }
3829 if (insn->unscheduled_preds)
3830 /* INSN isn't yet ready to issue. Give all its predecessors the
3831 highest priority. */
3832 model_promote_predecessors (insn);
3833 else
3834 {
3835 /* INSN is ready. Add it to the end of model_schedule and
3836 process its successors. */
3837 model_add_successors_to_worklist (insn);
3838 model_remove_from_worklist (insn);
3839 model_add_to_schedule (insn->insn);
3840 model_record_pressures (insn);
3841 update_register_pressure (insn->insn);
3842 }
3843 }
3844
3845 /* Restore all QUEUE_INDEXs to the values that they had before
3846 model_start_schedule was called. */
3847
3848 static void
3849 model_reset_queue_indices (void)
3850 {
3851 unsigned int i;
3852 rtx_insn *insn;
3853
3854 FOR_EACH_VEC_ELT (model_schedule, i, insn)
3855 QUEUE_INDEX (insn) = MODEL_INSN_INFO (insn)->old_queue;
3856 }
3857
3858 /* We have calculated the model schedule and spill costs. Print a summary
3859 to sched_dump. */
3860
3861 static void
3862 model_dump_pressure_summary (void)
3863 {
3864 int pci, cl;
3865
3866 fprintf (sched_dump, ";; Pressure summary:");
3867 for (pci = 0; pci < ira_pressure_classes_num; pci++)
3868 {
3869 cl = ira_pressure_classes[pci];
3870 fprintf (sched_dump, " %s:%d", reg_class_names[cl],
3871 model_before_pressure.limits[pci].pressure);
3872 }
3873 fprintf (sched_dump, "\n\n");
3874 }
3875
3876 /* Initialize the SCHED_PRESSURE_MODEL information for the current
3877 scheduling region. */
3878
3879 static void
3880 model_start_schedule (basic_block bb)
3881 {
3882 model_next_priority = 1;
3883 model_schedule.create (sched_max_luid);
3884 model_insns = XCNEWVEC (struct model_insn_info, sched_max_luid);
3885
3886 gcc_assert (bb == BLOCK_FOR_INSN (NEXT_INSN (current_sched_info->prev_head)));
3887 initiate_reg_pressure_info (df_get_live_in (bb));
3888
3889 model_analyze_insns ();
3890 model_init_pressure_group (&model_before_pressure);
3891 while (model_worklist)
3892 model_choose_insn ();
3893 gcc_assert (model_num_insns == (int) model_schedule.length ());
3894 if (sched_verbose >= 2)
3895 fprintf (sched_dump, "\n");
3896
3897 model_record_final_pressures (&model_before_pressure);
3898 model_reset_queue_indices ();
3899
3900 XDELETEVEC (model_insns);
3901
3902 model_curr_point = 0;
3903 initiate_reg_pressure_info (df_get_live_in (bb));
3904 if (sched_verbose >= 1)
3905 model_dump_pressure_summary ();
3906 }
3907
3908 /* Free the information associated with GROUP. */
3909
3910 static void
3911 model_finalize_pressure_group (struct model_pressure_group *group)
3912 {
3913 XDELETEVEC (group->model);
3914 }
3915
3916 /* Free the information created by model_start_schedule. */
3917
3918 static void
3919 model_end_schedule (void)
3920 {
3921 model_finalize_pressure_group (&model_before_pressure);
3922 model_schedule.release ();
3923 }
3924
3925 /* Prepare reg pressure scheduling for basic block BB. */
3926 static void
3927 sched_pressure_start_bb (basic_block bb)
3928 {
3929 /* Set the number of available registers for each class taking into account
3930 relative probability of current basic block versus function prologue and
3931 epilogue.
3932 * If the basic block executes much more often than the prologue/epilogue
3933 (e.g., inside a hot loop), then cost of spill in the prologue is close to
3934 nil, so the effective number of available registers is
3935 (ira_class_hard_regs_num[cl] - 0).
3936 * If the basic block executes as often as the prologue/epilogue,
3937 then spill in the block is as costly as in the prologue, so the effective
3938 number of available registers is
3939 (ira_class_hard_regs_num[cl] - call_used_regs_num[cl]).
3940 Note that all-else-equal, we prefer to spill in the prologue, since that
3941 allows "extra" registers for other basic blocks of the function.
3942 * If the basic block is on the cold path of the function and executes
3943 rarely, then we should always prefer to spill in the block, rather than
3944 in the prologue/epilogue. The effective number of available register is
3945 (ira_class_hard_regs_num[cl] - call_used_regs_num[cl]). */
3946 {
3947 int i;
3948 int entry_freq = ENTRY_BLOCK_PTR_FOR_FN (cfun)->frequency;
3949 int bb_freq = bb->frequency;
3950
3951 if (bb_freq == 0)
3952 {
3953 if (entry_freq == 0)
3954 entry_freq = bb_freq = 1;
3955 }
3956 if (bb_freq < entry_freq)
3957 bb_freq = entry_freq;
3958
3959 for (i = 0; i < ira_pressure_classes_num; ++i)
3960 {
3961 enum reg_class cl = ira_pressure_classes[i];
3962 sched_class_regs_num[cl] = ira_class_hard_regs_num[cl];
3963 sched_class_regs_num[cl]
3964 -= (call_used_regs_num[cl] * entry_freq) / bb_freq;
3965 }
3966 }
3967
3968 if (sched_pressure == SCHED_PRESSURE_MODEL)
3969 model_start_schedule (bb);
3970 }
3971 \f
3972 /* A structure that holds local state for the loop in schedule_block. */
3973 struct sched_block_state
3974 {
3975 /* True if no real insns have been scheduled in the current cycle. */
3976 bool first_cycle_insn_p;
3977 /* True if a shadow insn has been scheduled in the current cycle, which
3978 means that no more normal insns can be issued. */
3979 bool shadows_only_p;
3980 /* True if we're winding down a modulo schedule, which means that we only
3981 issue insns with INSN_EXACT_TICK set. */
3982 bool modulo_epilogue;
3983 /* Initialized with the machine's issue rate every cycle, and updated
3984 by calls to the variable_issue hook. */
3985 int can_issue_more;
3986 };
3987
3988 /* INSN is the "currently executing insn". Launch each insn which was
3989 waiting on INSN. READY is the ready list which contains the insns
3990 that are ready to fire. CLOCK is the current cycle. The function
3991 returns necessary cycle advance after issuing the insn (it is not
3992 zero for insns in a schedule group). */
3993
3994 static int
3995 schedule_insn (rtx_insn *insn)
3996 {
3997 sd_iterator_def sd_it;
3998 dep_t dep;
3999 int i;
4000 int advance = 0;
4001
4002 if (sched_verbose >= 1)
4003 {
4004 struct reg_pressure_data *pressure_info;
4005 fprintf (sched_dump, ";;\t%3i--> %s %-40s:",
4006 clock_var, (*current_sched_info->print_insn) (insn, 1),
4007 str_pattern_slim (PATTERN (insn)));
4008
4009 if (recog_memoized (insn) < 0)
4010 fprintf (sched_dump, "nothing");
4011 else
4012 print_reservation (sched_dump, insn);
4013 pressure_info = INSN_REG_PRESSURE (insn);
4014 if (pressure_info != NULL)
4015 {
4016 fputc (':', sched_dump);
4017 for (i = 0; i < ira_pressure_classes_num; i++)
4018 fprintf (sched_dump, "%s%s%+d(%d)",
4019 scheduled_insns.length () > 1
4020 && INSN_LUID (insn)
4021 < INSN_LUID (scheduled_insns[scheduled_insns.length () - 2]) ? "@" : "",
4022 reg_class_names[ira_pressure_classes[i]],
4023 pressure_info[i].set_increase, pressure_info[i].change);
4024 }
4025 if (sched_pressure == SCHED_PRESSURE_MODEL
4026 && model_curr_point < model_num_insns
4027 && model_index (insn) == model_curr_point)
4028 fprintf (sched_dump, ":model %d", model_curr_point);
4029 fputc ('\n', sched_dump);
4030 }
4031
4032 if (sched_pressure == SCHED_PRESSURE_WEIGHTED && !DEBUG_INSN_P (insn))
4033 update_reg_and_insn_max_reg_pressure (insn);
4034
4035 /* Scheduling instruction should have all its dependencies resolved and
4036 should have been removed from the ready list. */
4037 gcc_assert (sd_lists_empty_p (insn, SD_LIST_HARD_BACK));
4038
4039 /* Reset debug insns invalidated by moving this insn. */
4040 if (MAY_HAVE_DEBUG_INSNS && !DEBUG_INSN_P (insn))
4041 for (sd_it = sd_iterator_start (insn, SD_LIST_BACK);
4042 sd_iterator_cond (&sd_it, &dep);)
4043 {
4044 rtx_insn *dbg = DEP_PRO (dep);
4045 struct reg_use_data *use, *next;
4046
4047 if (DEP_STATUS (dep) & DEP_CANCELLED)
4048 {
4049 sd_iterator_next (&sd_it);
4050 continue;
4051 }
4052
4053 gcc_assert (DEBUG_INSN_P (dbg));
4054
4055 if (sched_verbose >= 6)
4056 fprintf (sched_dump, ";;\t\tresetting: debug insn %d\n",
4057 INSN_UID (dbg));
4058
4059 /* ??? Rather than resetting the debug insn, we might be able
4060 to emit a debug temp before the just-scheduled insn, but
4061 this would involve checking that the expression at the
4062 point of the debug insn is equivalent to the expression
4063 before the just-scheduled insn. They might not be: the
4064 expression in the debug insn may depend on other insns not
4065 yet scheduled that set MEMs, REGs or even other debug
4066 insns. It's not clear that attempting to preserve debug
4067 information in these cases is worth the effort, given how
4068 uncommon these resets are and the likelihood that the debug
4069 temps introduced won't survive the schedule change. */
4070 INSN_VAR_LOCATION_LOC (dbg) = gen_rtx_UNKNOWN_VAR_LOC ();
4071 df_insn_rescan (dbg);
4072
4073 /* Unknown location doesn't use any registers. */
4074 for (use = INSN_REG_USE_LIST (dbg); use != NULL; use = next)
4075 {
4076 struct reg_use_data *prev = use;
4077
4078 /* Remove use from the cyclic next_regno_use chain first. */
4079 while (prev->next_regno_use != use)
4080 prev = prev->next_regno_use;
4081 prev->next_regno_use = use->next_regno_use;
4082 next = use->next_insn_use;
4083 free (use);
4084 }
4085 INSN_REG_USE_LIST (dbg) = NULL;
4086
4087 /* We delete rather than resolve these deps, otherwise we
4088 crash in sched_free_deps(), because forward deps are
4089 expected to be released before backward deps. */
4090 sd_delete_dep (sd_it);
4091 }
4092
4093 gcc_assert (QUEUE_INDEX (insn) == QUEUE_NOWHERE);
4094 QUEUE_INDEX (insn) = QUEUE_SCHEDULED;
4095
4096 if (sched_pressure == SCHED_PRESSURE_MODEL
4097 && model_curr_point < model_num_insns
4098 && NONDEBUG_INSN_P (insn))
4099 {
4100 if (model_index (insn) == model_curr_point)
4101 do
4102 model_curr_point++;
4103 while (model_curr_point < model_num_insns
4104 && (QUEUE_INDEX (MODEL_INSN (model_curr_point))
4105 == QUEUE_SCHEDULED));
4106 else
4107 model_recompute (insn);
4108 model_update_limit_points ();
4109 update_register_pressure (insn);
4110 if (sched_verbose >= 2)
4111 print_curr_reg_pressure ();
4112 }
4113
4114 gcc_assert (INSN_TICK (insn) >= MIN_TICK);
4115 if (INSN_TICK (insn) > clock_var)
4116 /* INSN has been prematurely moved from the queue to the ready list.
4117 This is possible only if following flags are set. */
4118 gcc_assert (flag_sched_stalled_insns || sched_fusion);
4119
4120 /* ??? Probably, if INSN is scheduled prematurely, we should leave
4121 INSN_TICK untouched. This is a machine-dependent issue, actually. */
4122 INSN_TICK (insn) = clock_var;
4123
4124 check_clobbered_conditions (insn);
4125
4126 /* Update dependent instructions. First, see if by scheduling this insn
4127 now we broke a dependence in a way that requires us to change another
4128 insn. */
4129 for (sd_it = sd_iterator_start (insn, SD_LIST_SPEC_BACK);
4130 sd_iterator_cond (&sd_it, &dep); sd_iterator_next (&sd_it))
4131 {
4132 struct dep_replacement *desc = DEP_REPLACE (dep);
4133 rtx_insn *pro = DEP_PRO (dep);
4134 if (QUEUE_INDEX (pro) != QUEUE_SCHEDULED
4135 && desc != NULL && desc->insn == pro)
4136 apply_replacement (dep, false);
4137 }
4138
4139 /* Go through and resolve forward dependencies. */
4140 for (sd_it = sd_iterator_start (insn, SD_LIST_FORW);
4141 sd_iterator_cond (&sd_it, &dep);)
4142 {
4143 rtx_insn *next = DEP_CON (dep);
4144 bool cancelled = (DEP_STATUS (dep) & DEP_CANCELLED) != 0;
4145
4146 /* Resolve the dependence between INSN and NEXT.
4147 sd_resolve_dep () moves current dep to another list thus
4148 advancing the iterator. */
4149 sd_resolve_dep (sd_it);
4150
4151 if (cancelled)
4152 {
4153 if (must_restore_pattern_p (next, dep))
4154 restore_pattern (dep, false);
4155 continue;
4156 }
4157
4158 /* Don't bother trying to mark next as ready if insn is a debug
4159 insn. If insn is the last hard dependency, it will have
4160 already been discounted. */
4161 if (DEBUG_INSN_P (insn) && !DEBUG_INSN_P (next))
4162 continue;
4163
4164 if (!IS_SPECULATION_BRANCHY_CHECK_P (insn))
4165 {
4166 int effective_cost;
4167
4168 effective_cost = try_ready (next);
4169
4170 if (effective_cost >= 0
4171 && SCHED_GROUP_P (next)
4172 && advance < effective_cost)
4173 advance = effective_cost;
4174 }
4175 else
4176 /* Check always has only one forward dependence (to the first insn in
4177 the recovery block), therefore, this will be executed only once. */
4178 {
4179 gcc_assert (sd_lists_empty_p (insn, SD_LIST_FORW));
4180 fix_recovery_deps (RECOVERY_BLOCK (insn));
4181 }
4182 }
4183
4184 /* Annotate the instruction with issue information -- TImode
4185 indicates that the instruction is expected not to be able
4186 to issue on the same cycle as the previous insn. A machine
4187 may use this information to decide how the instruction should
4188 be aligned. */
4189 if (issue_rate > 1
4190 && GET_CODE (PATTERN (insn)) != USE
4191 && GET_CODE (PATTERN (insn)) != CLOBBER
4192 && !DEBUG_INSN_P (insn))
4193 {
4194 if (reload_completed)
4195 PUT_MODE (insn, clock_var > last_clock_var ? TImode : VOIDmode);
4196 last_clock_var = clock_var;
4197 }
4198
4199 if (nonscheduled_insns_begin != NULL_RTX)
4200 /* Indicate to debug counters that INSN is scheduled. */
4201 nonscheduled_insns_begin = insn;
4202
4203 return advance;
4204 }
4205
4206 /* Functions for handling of notes. */
4207
4208 /* Add note list that ends on FROM_END to the end of TO_ENDP. */
4209 void
4210 concat_note_lists (rtx_insn *from_end, rtx_insn **to_endp)
4211 {
4212 rtx_insn *from_start;
4213
4214 /* It's easy when have nothing to concat. */
4215 if (from_end == NULL)
4216 return;
4217
4218 /* It's also easy when destination is empty. */
4219 if (*to_endp == NULL)
4220 {
4221 *to_endp = from_end;
4222 return;
4223 }
4224
4225 from_start = from_end;
4226 while (PREV_INSN (from_start) != NULL)
4227 from_start = PREV_INSN (from_start);
4228
4229 SET_PREV_INSN (from_start) = *to_endp;
4230 SET_NEXT_INSN (*to_endp) = from_start;
4231 *to_endp = from_end;
4232 }
4233
4234 /* Delete notes between HEAD and TAIL and put them in the chain
4235 of notes ended by NOTE_LIST. */
4236 void
4237 remove_notes (rtx_insn *head, rtx_insn *tail)
4238 {
4239 rtx_insn *next_tail, *insn, *next;
4240
4241 note_list = 0;
4242 if (head == tail && !INSN_P (head))
4243 return;
4244
4245 next_tail = NEXT_INSN (tail);
4246 for (insn = head; insn != next_tail; insn = next)
4247 {
4248 next = NEXT_INSN (insn);
4249 if (!NOTE_P (insn))
4250 continue;
4251
4252 switch (NOTE_KIND (insn))
4253 {
4254 case NOTE_INSN_BASIC_BLOCK:
4255 continue;
4256
4257 case NOTE_INSN_EPILOGUE_BEG:
4258 if (insn != tail)
4259 {
4260 remove_insn (insn);
4261 add_reg_note (next, REG_SAVE_NOTE,
4262 GEN_INT (NOTE_INSN_EPILOGUE_BEG));
4263 break;
4264 }
4265 /* FALLTHRU */
4266
4267 default:
4268 remove_insn (insn);
4269
4270 /* Add the note to list that ends at NOTE_LIST. */
4271 SET_PREV_INSN (insn) = note_list;
4272 SET_NEXT_INSN (insn) = NULL_RTX;
4273 if (note_list)
4274 SET_NEXT_INSN (note_list) = insn;
4275 note_list = insn;
4276 break;
4277 }
4278
4279 gcc_assert ((sel_sched_p () || insn != tail) && insn != head);
4280 }
4281 }
4282
4283 /* A structure to record enough data to allow us to backtrack the scheduler to
4284 a previous state. */
4285 struct haifa_saved_data
4286 {
4287 /* Next entry on the list. */
4288 struct haifa_saved_data *next;
4289
4290 /* Backtracking is associated with scheduling insns that have delay slots.
4291 DELAY_PAIR points to the structure that contains the insns involved, and
4292 the number of cycles between them. */
4293 struct delay_pair *delay_pair;
4294
4295 /* Data used by the frontend (e.g. sched-ebb or sched-rgn). */
4296 void *fe_saved_data;
4297 /* Data used by the backend. */
4298 void *be_saved_data;
4299
4300 /* Copies of global state. */
4301 int clock_var, last_clock_var;
4302 struct ready_list ready;
4303 state_t curr_state;
4304
4305 rtx_insn *last_scheduled_insn;
4306 rtx_insn *last_nondebug_scheduled_insn;
4307 rtx_insn *nonscheduled_insns_begin;
4308 int cycle_issued_insns;
4309
4310 /* Copies of state used in the inner loop of schedule_block. */
4311 struct sched_block_state sched_block;
4312
4313 /* We don't need to save q_ptr, as its value is arbitrary and we can set it
4314 to 0 when restoring. */
4315 int q_size;
4316 rtx_insn_list **insn_queue;
4317
4318 /* Describe pattern replacements that occurred since this backtrack point
4319 was queued. */
4320 vec<dep_t> replacement_deps;
4321 vec<int> replace_apply;
4322
4323 /* A copy of the next-cycle replacement vectors at the time of the backtrack
4324 point. */
4325 vec<dep_t> next_cycle_deps;
4326 vec<int> next_cycle_apply;
4327 };
4328
4329 /* A record, in reverse order, of all scheduled insns which have delay slots
4330 and may require backtracking. */
4331 static struct haifa_saved_data *backtrack_queue;
4332
4333 /* For every dependency of INSN, set the FEEDS_BACKTRACK_INSN bit according
4334 to SET_P. */
4335 static void
4336 mark_backtrack_feeds (rtx_insn *insn, int set_p)
4337 {
4338 sd_iterator_def sd_it;
4339 dep_t dep;
4340 FOR_EACH_DEP (insn, SD_LIST_HARD_BACK, sd_it, dep)
4341 {
4342 FEEDS_BACKTRACK_INSN (DEP_PRO (dep)) = set_p;
4343 }
4344 }
4345
4346 /* Save the current scheduler state so that we can backtrack to it
4347 later if necessary. PAIR gives the insns that make it necessary to
4348 save this point. SCHED_BLOCK is the local state of schedule_block
4349 that need to be saved. */
4350 static void
4351 save_backtrack_point (struct delay_pair *pair,
4352 struct sched_block_state sched_block)
4353 {
4354 int i;
4355 struct haifa_saved_data *save = XNEW (struct haifa_saved_data);
4356
4357 save->curr_state = xmalloc (dfa_state_size);
4358 memcpy (save->curr_state, curr_state, dfa_state_size);
4359
4360 save->ready.first = ready.first;
4361 save->ready.n_ready = ready.n_ready;
4362 save->ready.n_debug = ready.n_debug;
4363 save->ready.veclen = ready.veclen;
4364 save->ready.vec = XNEWVEC (rtx_insn *, ready.veclen);
4365 memcpy (save->ready.vec, ready.vec, ready.veclen * sizeof (rtx));
4366
4367 save->insn_queue = XNEWVEC (rtx_insn_list *, max_insn_queue_index + 1);
4368 save->q_size = q_size;
4369 for (i = 0; i <= max_insn_queue_index; i++)
4370 {
4371 int q = NEXT_Q_AFTER (q_ptr, i);
4372 save->insn_queue[i] = copy_INSN_LIST (insn_queue[q]);
4373 }
4374
4375 save->clock_var = clock_var;
4376 save->last_clock_var = last_clock_var;
4377 save->cycle_issued_insns = cycle_issued_insns;
4378 save->last_scheduled_insn = last_scheduled_insn;
4379 save->last_nondebug_scheduled_insn = last_nondebug_scheduled_insn;
4380 save->nonscheduled_insns_begin = nonscheduled_insns_begin;
4381
4382 save->sched_block = sched_block;
4383
4384 save->replacement_deps.create (0);
4385 save->replace_apply.create (0);
4386 save->next_cycle_deps = next_cycle_replace_deps.copy ();
4387 save->next_cycle_apply = next_cycle_apply.copy ();
4388
4389 if (current_sched_info->save_state)
4390 save->fe_saved_data = (*current_sched_info->save_state) ();
4391
4392 if (targetm.sched.alloc_sched_context)
4393 {
4394 save->be_saved_data = targetm.sched.alloc_sched_context ();
4395 targetm.sched.init_sched_context (save->be_saved_data, false);
4396 }
4397 else
4398 save->be_saved_data = NULL;
4399
4400 save->delay_pair = pair;
4401
4402 save->next = backtrack_queue;
4403 backtrack_queue = save;
4404
4405 while (pair)
4406 {
4407 mark_backtrack_feeds (pair->i2, 1);
4408 INSN_TICK (pair->i2) = INVALID_TICK;
4409 INSN_EXACT_TICK (pair->i2) = clock_var + pair_delay (pair);
4410 SHADOW_P (pair->i2) = pair->stages == 0;
4411 pair = pair->next_same_i1;
4412 }
4413 }
4414
4415 /* Walk the ready list and all queues. If any insns have unresolved backwards
4416 dependencies, these must be cancelled deps, broken by predication. Set or
4417 clear (depending on SET) the DEP_CANCELLED bit in DEP_STATUS. */
4418
4419 static void
4420 toggle_cancelled_flags (bool set)
4421 {
4422 int i;
4423 sd_iterator_def sd_it;
4424 dep_t dep;
4425
4426 if (ready.n_ready > 0)
4427 {
4428 rtx_insn **first = ready_lastpos (&ready);
4429 for (i = 0; i < ready.n_ready; i++)
4430 FOR_EACH_DEP (first[i], SD_LIST_BACK, sd_it, dep)
4431 if (!DEBUG_INSN_P (DEP_PRO (dep)))
4432 {
4433 if (set)
4434 DEP_STATUS (dep) |= DEP_CANCELLED;
4435 else
4436 DEP_STATUS (dep) &= ~DEP_CANCELLED;
4437 }
4438 }
4439 for (i = 0; i <= max_insn_queue_index; i++)
4440 {
4441 int q = NEXT_Q_AFTER (q_ptr, i);
4442 rtx_insn_list *link;
4443 for (link = insn_queue[q]; link; link = link->next ())
4444 {
4445 rtx_insn *insn = link->insn ();
4446 FOR_EACH_DEP (insn, SD_LIST_BACK, sd_it, dep)
4447 if (!DEBUG_INSN_P (DEP_PRO (dep)))
4448 {
4449 if (set)
4450 DEP_STATUS (dep) |= DEP_CANCELLED;
4451 else
4452 DEP_STATUS (dep) &= ~DEP_CANCELLED;
4453 }
4454 }
4455 }
4456 }
4457
4458 /* Undo the replacements that have occurred after backtrack point SAVE
4459 was placed. */
4460 static void
4461 undo_replacements_for_backtrack (struct haifa_saved_data *save)
4462 {
4463 while (!save->replacement_deps.is_empty ())
4464 {
4465 dep_t dep = save->replacement_deps.pop ();
4466 int apply_p = save->replace_apply.pop ();
4467
4468 if (apply_p)
4469 restore_pattern (dep, true);
4470 else
4471 apply_replacement (dep, true);
4472 }
4473 save->replacement_deps.release ();
4474 save->replace_apply.release ();
4475 }
4476
4477 /* Pop entries from the SCHEDULED_INSNS vector up to and including INSN.
4478 Restore their dependencies to an unresolved state, and mark them as
4479 queued nowhere. */
4480
4481 static void
4482 unschedule_insns_until (rtx_insn *insn)
4483 {
4484 auto_vec<rtx_insn *> recompute_vec;
4485
4486 /* Make two passes over the insns to be unscheduled. First, we clear out
4487 dependencies and other trivial bookkeeping. */
4488 for (;;)
4489 {
4490 rtx_insn *last;
4491 sd_iterator_def sd_it;
4492 dep_t dep;
4493
4494 last = scheduled_insns.pop ();
4495
4496 /* This will be changed by restore_backtrack_point if the insn is in
4497 any queue. */
4498 QUEUE_INDEX (last) = QUEUE_NOWHERE;
4499 if (last != insn)
4500 INSN_TICK (last) = INVALID_TICK;
4501
4502 if (modulo_ii > 0 && INSN_UID (last) < modulo_iter0_max_uid)
4503 modulo_insns_scheduled--;
4504
4505 for (sd_it = sd_iterator_start (last, SD_LIST_RES_FORW);
4506 sd_iterator_cond (&sd_it, &dep);)
4507 {
4508 rtx_insn *con = DEP_CON (dep);
4509 sd_unresolve_dep (sd_it);
4510 if (!MUST_RECOMPUTE_SPEC_P (con))
4511 {
4512 MUST_RECOMPUTE_SPEC_P (con) = 1;
4513 recompute_vec.safe_push (con);
4514 }
4515 }
4516
4517 if (last == insn)
4518 break;
4519 }
4520
4521 /* A second pass, to update ready and speculation status for insns
4522 depending on the unscheduled ones. The first pass must have
4523 popped the scheduled_insns vector up to the point where we
4524 restart scheduling, as recompute_todo_spec requires it to be
4525 up-to-date. */
4526 while (!recompute_vec.is_empty ())
4527 {
4528 rtx_insn *con;
4529
4530 con = recompute_vec.pop ();
4531 MUST_RECOMPUTE_SPEC_P (con) = 0;
4532 if (!sd_lists_empty_p (con, SD_LIST_HARD_BACK))
4533 {
4534 TODO_SPEC (con) = HARD_DEP;
4535 INSN_TICK (con) = INVALID_TICK;
4536 if (PREDICATED_PAT (con) != NULL_RTX)
4537 haifa_change_pattern (con, ORIG_PAT (con));
4538 }
4539 else if (QUEUE_INDEX (con) != QUEUE_SCHEDULED)
4540 TODO_SPEC (con) = recompute_todo_spec (con, true);
4541 }
4542 }
4543
4544 /* Restore scheduler state from the topmost entry on the backtracking queue.
4545 PSCHED_BLOCK_P points to the local data of schedule_block that we must
4546 overwrite with the saved data.
4547 The caller must already have called unschedule_insns_until. */
4548
4549 static void
4550 restore_last_backtrack_point (struct sched_block_state *psched_block)
4551 {
4552 int i;
4553 struct haifa_saved_data *save = backtrack_queue;
4554
4555 backtrack_queue = save->next;
4556
4557 if (current_sched_info->restore_state)
4558 (*current_sched_info->restore_state) (save->fe_saved_data);
4559
4560 if (targetm.sched.alloc_sched_context)
4561 {
4562 targetm.sched.set_sched_context (save->be_saved_data);
4563 targetm.sched.free_sched_context (save->be_saved_data);
4564 }
4565
4566 /* Do this first since it clobbers INSN_TICK of the involved
4567 instructions. */
4568 undo_replacements_for_backtrack (save);
4569
4570 /* Clear the QUEUE_INDEX of everything in the ready list or one
4571 of the queues. */
4572 if (ready.n_ready > 0)
4573 {
4574 rtx_insn **first = ready_lastpos (&ready);
4575 for (i = 0; i < ready.n_ready; i++)
4576 {
4577 rtx_insn *insn = first[i];
4578 QUEUE_INDEX (insn) = QUEUE_NOWHERE;
4579 INSN_TICK (insn) = INVALID_TICK;
4580 }
4581 }
4582 for (i = 0; i <= max_insn_queue_index; i++)
4583 {
4584 int q = NEXT_Q_AFTER (q_ptr, i);
4585
4586 for (rtx_insn_list *link = insn_queue[q]; link; link = link->next ())
4587 {
4588 rtx_insn *x = link->insn ();
4589 QUEUE_INDEX (x) = QUEUE_NOWHERE;
4590 INSN_TICK (x) = INVALID_TICK;
4591 }
4592 free_INSN_LIST_list (&insn_queue[q]);
4593 }
4594
4595 free (ready.vec);
4596 ready = save->ready;
4597
4598 if (ready.n_ready > 0)
4599 {
4600 rtx_insn **first = ready_lastpos (&ready);
4601 for (i = 0; i < ready.n_ready; i++)
4602 {
4603 rtx_insn *insn = first[i];
4604 QUEUE_INDEX (insn) = QUEUE_READY;
4605 TODO_SPEC (insn) = recompute_todo_spec (insn, true);
4606 INSN_TICK (insn) = save->clock_var;
4607 }
4608 }
4609
4610 q_ptr = 0;
4611 q_size = save->q_size;
4612 for (i = 0; i <= max_insn_queue_index; i++)
4613 {
4614 int q = NEXT_Q_AFTER (q_ptr, i);
4615
4616 insn_queue[q] = save->insn_queue[q];
4617
4618 for (rtx_insn_list *link = insn_queue[q]; link; link = link->next ())
4619 {
4620 rtx_insn *x = link->insn ();
4621 QUEUE_INDEX (x) = i;
4622 TODO_SPEC (x) = recompute_todo_spec (x, true);
4623 INSN_TICK (x) = save->clock_var + i;
4624 }
4625 }
4626 free (save->insn_queue);
4627
4628 toggle_cancelled_flags (true);
4629
4630 clock_var = save->clock_var;
4631 last_clock_var = save->last_clock_var;
4632 cycle_issued_insns = save->cycle_issued_insns;
4633 last_scheduled_insn = save->last_scheduled_insn;
4634 last_nondebug_scheduled_insn = save->last_nondebug_scheduled_insn;
4635 nonscheduled_insns_begin = save->nonscheduled_insns_begin;
4636
4637 *psched_block = save->sched_block;
4638
4639 memcpy (curr_state, save->curr_state, dfa_state_size);
4640 free (save->curr_state);
4641
4642 mark_backtrack_feeds (save->delay_pair->i2, 0);
4643
4644 gcc_assert (next_cycle_replace_deps.is_empty ());
4645 next_cycle_replace_deps = save->next_cycle_deps.copy ();
4646 next_cycle_apply = save->next_cycle_apply.copy ();
4647
4648 free (save);
4649
4650 for (save = backtrack_queue; save; save = save->next)
4651 {
4652 mark_backtrack_feeds (save->delay_pair->i2, 1);
4653 }
4654 }
4655
4656 /* Discard all data associated with the topmost entry in the backtrack
4657 queue. If RESET_TICK is false, we just want to free the data. If true,
4658 we are doing this because we discovered a reason to backtrack. In the
4659 latter case, also reset the INSN_TICK for the shadow insn. */
4660 static void
4661 free_topmost_backtrack_point (bool reset_tick)
4662 {
4663 struct haifa_saved_data *save = backtrack_queue;
4664 int i;
4665
4666 backtrack_queue = save->next;
4667
4668 if (reset_tick)
4669 {
4670 struct delay_pair *pair = save->delay_pair;
4671 while (pair)
4672 {
4673 INSN_TICK (pair->i2) = INVALID_TICK;
4674 INSN_EXACT_TICK (pair->i2) = INVALID_TICK;
4675 pair = pair->next_same_i1;
4676 }
4677 undo_replacements_for_backtrack (save);
4678 }
4679 else
4680 {
4681 save->replacement_deps.release ();
4682 save->replace_apply.release ();
4683 }
4684
4685 if (targetm.sched.free_sched_context)
4686 targetm.sched.free_sched_context (save->be_saved_data);
4687 if (current_sched_info->restore_state)
4688 free (save->fe_saved_data);
4689 for (i = 0; i <= max_insn_queue_index; i++)
4690 free_INSN_LIST_list (&save->insn_queue[i]);
4691 free (save->insn_queue);
4692 free (save->curr_state);
4693 free (save->ready.vec);
4694 free (save);
4695 }
4696
4697 /* Free the entire backtrack queue. */
4698 static void
4699 free_backtrack_queue (void)
4700 {
4701 while (backtrack_queue)
4702 free_topmost_backtrack_point (false);
4703 }
4704
4705 /* Apply a replacement described by DESC. If IMMEDIATELY is false, we
4706 may have to postpone the replacement until the start of the next cycle,
4707 at which point we will be called again with IMMEDIATELY true. This is
4708 only done for machines which have instruction packets with explicit
4709 parallelism however. */
4710 static void
4711 apply_replacement (dep_t dep, bool immediately)
4712 {
4713 struct dep_replacement *desc = DEP_REPLACE (dep);
4714 if (!immediately && targetm.sched.exposed_pipeline && reload_completed)
4715 {
4716 next_cycle_replace_deps.safe_push (dep);
4717 next_cycle_apply.safe_push (1);
4718 }
4719 else
4720 {
4721 bool success;
4722
4723 if (QUEUE_INDEX (desc->insn) == QUEUE_SCHEDULED)
4724 return;
4725
4726 if (sched_verbose >= 5)
4727 fprintf (sched_dump, "applying replacement for insn %d\n",
4728 INSN_UID (desc->insn));
4729
4730 success = validate_change (desc->insn, desc->loc, desc->newval, 0);
4731 gcc_assert (success);
4732
4733 update_insn_after_change (desc->insn);
4734 if ((TODO_SPEC (desc->insn) & (HARD_DEP | DEP_POSTPONED)) == 0)
4735 fix_tick_ready (desc->insn);
4736
4737 if (backtrack_queue != NULL)
4738 {
4739 backtrack_queue->replacement_deps.safe_push (dep);
4740 backtrack_queue->replace_apply.safe_push (1);
4741 }
4742 }
4743 }
4744
4745 /* We have determined that a pattern involved in DEP must be restored.
4746 If IMMEDIATELY is false, we may have to postpone the replacement
4747 until the start of the next cycle, at which point we will be called
4748 again with IMMEDIATELY true. */
4749 static void
4750 restore_pattern (dep_t dep, bool immediately)
4751 {
4752 rtx_insn *next = DEP_CON (dep);
4753 int tick = INSN_TICK (next);
4754
4755 /* If we already scheduled the insn, the modified version is
4756 correct. */
4757 if (QUEUE_INDEX (next) == QUEUE_SCHEDULED)
4758 return;
4759
4760 if (!immediately && targetm.sched.exposed_pipeline && reload_completed)
4761 {
4762 next_cycle_replace_deps.safe_push (dep);
4763 next_cycle_apply.safe_push (0);
4764 return;
4765 }
4766
4767
4768 if (DEP_TYPE (dep) == REG_DEP_CONTROL)
4769 {
4770 if (sched_verbose >= 5)
4771 fprintf (sched_dump, "restoring pattern for insn %d\n",
4772 INSN_UID (next));
4773 haifa_change_pattern (next, ORIG_PAT (next));
4774 }
4775 else
4776 {
4777 struct dep_replacement *desc = DEP_REPLACE (dep);
4778 bool success;
4779
4780 if (sched_verbose >= 5)
4781 fprintf (sched_dump, "restoring pattern for insn %d\n",
4782 INSN_UID (desc->insn));
4783 tick = INSN_TICK (desc->insn);
4784
4785 success = validate_change (desc->insn, desc->loc, desc->orig, 0);
4786 gcc_assert (success);
4787 update_insn_after_change (desc->insn);
4788 if (backtrack_queue != NULL)
4789 {
4790 backtrack_queue->replacement_deps.safe_push (dep);
4791 backtrack_queue->replace_apply.safe_push (0);
4792 }
4793 }
4794 INSN_TICK (next) = tick;
4795 if (TODO_SPEC (next) == DEP_POSTPONED)
4796 return;
4797
4798 if (sd_lists_empty_p (next, SD_LIST_BACK))
4799 TODO_SPEC (next) = 0;
4800 else if (!sd_lists_empty_p (next, SD_LIST_HARD_BACK))
4801 TODO_SPEC (next) = HARD_DEP;
4802 }
4803
4804 /* Perform pattern replacements that were queued up until the next
4805 cycle. */
4806 static void
4807 perform_replacements_new_cycle (void)
4808 {
4809 int i;
4810 dep_t dep;
4811 FOR_EACH_VEC_ELT (next_cycle_replace_deps, i, dep)
4812 {
4813 int apply_p = next_cycle_apply[i];
4814 if (apply_p)
4815 apply_replacement (dep, true);
4816 else
4817 restore_pattern (dep, true);
4818 }
4819 next_cycle_replace_deps.truncate (0);
4820 next_cycle_apply.truncate (0);
4821 }
4822
4823 /* Compute INSN_TICK_ESTIMATE for INSN. PROCESSED is a bitmap of
4824 instructions we've previously encountered, a set bit prevents
4825 recursion. BUDGET is a limit on how far ahead we look, it is
4826 reduced on recursive calls. Return true if we produced a good
4827 estimate, or false if we exceeded the budget. */
4828 static bool
4829 estimate_insn_tick (bitmap processed, rtx_insn *insn, int budget)
4830 {
4831 sd_iterator_def sd_it;
4832 dep_t dep;
4833 int earliest = INSN_TICK (insn);
4834
4835 FOR_EACH_DEP (insn, SD_LIST_BACK, sd_it, dep)
4836 {
4837 rtx_insn *pro = DEP_PRO (dep);
4838 int t;
4839
4840 if (DEP_STATUS (dep) & DEP_CANCELLED)
4841 continue;
4842
4843 if (QUEUE_INDEX (pro) == QUEUE_SCHEDULED)
4844 gcc_assert (INSN_TICK (pro) + dep_cost (dep) <= INSN_TICK (insn));
4845 else
4846 {
4847 int cost = dep_cost (dep);
4848 if (cost >= budget)
4849 return false;
4850 if (!bitmap_bit_p (processed, INSN_LUID (pro)))
4851 {
4852 if (!estimate_insn_tick (processed, pro, budget - cost))
4853 return false;
4854 }
4855 gcc_assert (INSN_TICK_ESTIMATE (pro) != INVALID_TICK);
4856 t = INSN_TICK_ESTIMATE (pro) + cost;
4857 if (earliest == INVALID_TICK || t > earliest)
4858 earliest = t;
4859 }
4860 }
4861 bitmap_set_bit (processed, INSN_LUID (insn));
4862 INSN_TICK_ESTIMATE (insn) = earliest;
4863 return true;
4864 }
4865
4866 /* Examine the pair of insns in P, and estimate (optimistically, assuming
4867 infinite resources) the cycle in which the delayed shadow can be issued.
4868 Return the number of cycles that must pass before the real insn can be
4869 issued in order to meet this constraint. */
4870 static int
4871 estimate_shadow_tick (struct delay_pair *p)
4872 {
4873 bitmap_head processed;
4874 int t;
4875 bool cutoff;
4876 bitmap_initialize (&processed, 0);
4877
4878 cutoff = !estimate_insn_tick (&processed, p->i2,
4879 max_insn_queue_index + pair_delay (p));
4880 bitmap_clear (&processed);
4881 if (cutoff)
4882 return max_insn_queue_index;
4883 t = INSN_TICK_ESTIMATE (p->i2) - (clock_var + pair_delay (p) + 1);
4884 if (t > 0)
4885 return t;
4886 return 0;
4887 }
4888
4889 /* If INSN has no unresolved backwards dependencies, add it to the schedule and
4890 recursively resolve all its forward dependencies. */
4891 static void
4892 resolve_dependencies (rtx_insn *insn)
4893 {
4894 sd_iterator_def sd_it;
4895 dep_t dep;
4896
4897 /* Don't use sd_lists_empty_p; it ignores debug insns. */
4898 if (DEPS_LIST_FIRST (INSN_HARD_BACK_DEPS (insn)) != NULL
4899 || DEPS_LIST_FIRST (INSN_SPEC_BACK_DEPS (insn)) != NULL)
4900 return;
4901
4902 if (sched_verbose >= 4)
4903 fprintf (sched_dump, ";;\tquickly resolving %d\n", INSN_UID (insn));
4904
4905 if (QUEUE_INDEX (insn) >= 0)
4906 queue_remove (insn);
4907
4908 scheduled_insns.safe_push (insn);
4909
4910 /* Update dependent instructions. */
4911 for (sd_it = sd_iterator_start (insn, SD_LIST_FORW);
4912 sd_iterator_cond (&sd_it, &dep);)
4913 {
4914 rtx_insn *next = DEP_CON (dep);
4915
4916 if (sched_verbose >= 4)
4917 fprintf (sched_dump, ";;\t\tdep %d against %d\n", INSN_UID (insn),
4918 INSN_UID (next));
4919
4920 /* Resolve the dependence between INSN and NEXT.
4921 sd_resolve_dep () moves current dep to another list thus
4922 advancing the iterator. */
4923 sd_resolve_dep (sd_it);
4924
4925 if (!IS_SPECULATION_BRANCHY_CHECK_P (insn))
4926 {
4927 resolve_dependencies (next);
4928 }
4929 else
4930 /* Check always has only one forward dependence (to the first insn in
4931 the recovery block), therefore, this will be executed only once. */
4932 {
4933 gcc_assert (sd_lists_empty_p (insn, SD_LIST_FORW));
4934 }
4935 }
4936 }
4937
4938
4939 /* Return the head and tail pointers of ebb starting at BEG and ending
4940 at END. */
4941 void
4942 get_ebb_head_tail (basic_block beg, basic_block end,
4943 rtx_insn **headp, rtx_insn **tailp)
4944 {
4945 rtx_insn *beg_head = BB_HEAD (beg);
4946 rtx_insn * beg_tail = BB_END (beg);
4947 rtx_insn * end_head = BB_HEAD (end);
4948 rtx_insn * end_tail = BB_END (end);
4949
4950 /* Don't include any notes or labels at the beginning of the BEG
4951 basic block, or notes at the end of the END basic blocks. */
4952
4953 if (LABEL_P (beg_head))
4954 beg_head = NEXT_INSN (beg_head);
4955
4956 while (beg_head != beg_tail)
4957 if (NOTE_P (beg_head))
4958 beg_head = NEXT_INSN (beg_head);
4959 else if (DEBUG_INSN_P (beg_head))
4960 {
4961 rtx_insn * note, *next;
4962
4963 for (note = NEXT_INSN (beg_head);
4964 note != beg_tail;
4965 note = next)
4966 {
4967 next = NEXT_INSN (note);
4968 if (NOTE_P (note))
4969 {
4970 if (sched_verbose >= 9)
4971 fprintf (sched_dump, "reorder %i\n", INSN_UID (note));
4972
4973 reorder_insns_nobb (note, note, PREV_INSN (beg_head));
4974
4975 if (BLOCK_FOR_INSN (note) != beg)
4976 df_insn_change_bb (note, beg);
4977 }
4978 else if (!DEBUG_INSN_P (note))
4979 break;
4980 }
4981
4982 break;
4983 }
4984 else
4985 break;
4986
4987 *headp = beg_head;
4988
4989 if (beg == end)
4990 end_head = beg_head;
4991 else if (LABEL_P (end_head))
4992 end_head = NEXT_INSN (end_head);
4993
4994 while (end_head != end_tail)
4995 if (NOTE_P (end_tail))
4996 end_tail = PREV_INSN (end_tail);
4997 else if (DEBUG_INSN_P (end_tail))
4998 {
4999 rtx_insn * note, *prev;
5000
5001 for (note = PREV_INSN (end_tail);
5002 note != end_head;
5003 note = prev)
5004 {
5005 prev = PREV_INSN (note);
5006 if (NOTE_P (note))
5007 {
5008 if (sched_verbose >= 9)
5009 fprintf (sched_dump, "reorder %i\n", INSN_UID (note));
5010
5011 reorder_insns_nobb (note, note, end_tail);
5012
5013 if (end_tail == BB_END (end))
5014 BB_END (end) = note;
5015
5016 if (BLOCK_FOR_INSN (note) != end)
5017 df_insn_change_bb (note, end);
5018 }
5019 else if (!DEBUG_INSN_P (note))
5020 break;
5021 }
5022
5023 break;
5024 }
5025 else
5026 break;
5027
5028 *tailp = end_tail;
5029 }
5030
5031 /* Return nonzero if there are no real insns in the range [ HEAD, TAIL ]. */
5032
5033 int
5034 no_real_insns_p (const rtx_insn *head, const rtx_insn *tail)
5035 {
5036 while (head != NEXT_INSN (tail))
5037 {
5038 if (!NOTE_P (head) && !LABEL_P (head))
5039 return 0;
5040 head = NEXT_INSN (head);
5041 }
5042 return 1;
5043 }
5044
5045 /* Restore-other-notes: NOTE_LIST is the end of a chain of notes
5046 previously found among the insns. Insert them just before HEAD. */
5047 rtx_insn *
5048 restore_other_notes (rtx_insn *head, basic_block head_bb)
5049 {
5050 if (note_list != 0)
5051 {
5052 rtx_insn *note_head = note_list;
5053
5054 if (head)
5055 head_bb = BLOCK_FOR_INSN (head);
5056 else
5057 head = NEXT_INSN (bb_note (head_bb));
5058
5059 while (PREV_INSN (note_head))
5060 {
5061 set_block_for_insn (note_head, head_bb);
5062 note_head = PREV_INSN (note_head);
5063 }
5064 /* In the above cycle we've missed this note. */
5065 set_block_for_insn (note_head, head_bb);
5066
5067 SET_PREV_INSN (note_head) = PREV_INSN (head);
5068 SET_NEXT_INSN (PREV_INSN (head)) = note_head;
5069 SET_PREV_INSN (head) = note_list;
5070 SET_NEXT_INSN (note_list) = head;
5071
5072 if (BLOCK_FOR_INSN (head) != head_bb)
5073 BB_END (head_bb) = note_list;
5074
5075 head = note_head;
5076 }
5077
5078 return head;
5079 }
5080
5081 /* When we know we are going to discard the schedule due to a failed attempt
5082 at modulo scheduling, undo all replacements. */
5083 static void
5084 undo_all_replacements (void)
5085 {
5086 rtx_insn *insn;
5087 int i;
5088
5089 FOR_EACH_VEC_ELT (scheduled_insns, i, insn)
5090 {
5091 sd_iterator_def sd_it;
5092 dep_t dep;
5093
5094 /* See if we must undo a replacement. */
5095 for (sd_it = sd_iterator_start (insn, SD_LIST_RES_FORW);
5096 sd_iterator_cond (&sd_it, &dep); sd_iterator_next (&sd_it))
5097 {
5098 struct dep_replacement *desc = DEP_REPLACE (dep);
5099 if (desc != NULL)
5100 validate_change (desc->insn, desc->loc, desc->orig, 0);
5101 }
5102 }
5103 }
5104
5105 /* Return first non-scheduled insn in the current scheduling block.
5106 This is mostly used for debug-counter purposes. */
5107 static rtx_insn *
5108 first_nonscheduled_insn (void)
5109 {
5110 rtx_insn *insn = (nonscheduled_insns_begin != NULL_RTX
5111 ? nonscheduled_insns_begin
5112 : current_sched_info->prev_head);
5113
5114 do
5115 {
5116 insn = next_nonnote_nondebug_insn (insn);
5117 }
5118 while (QUEUE_INDEX (insn) == QUEUE_SCHEDULED);
5119
5120 return insn;
5121 }
5122
5123 /* Move insns that became ready to fire from queue to ready list. */
5124
5125 static void
5126 queue_to_ready (struct ready_list *ready)
5127 {
5128 rtx_insn *insn;
5129 rtx_insn_list *link;
5130 rtx_insn *skip_insn;
5131
5132 q_ptr = NEXT_Q (q_ptr);
5133
5134 if (dbg_cnt (sched_insn) == false)
5135 /* If debug counter is activated do not requeue the first
5136 nonscheduled insn. */
5137 skip_insn = first_nonscheduled_insn ();
5138 else
5139 skip_insn = NULL;
5140
5141 /* Add all pending insns that can be scheduled without stalls to the
5142 ready list. */
5143 for (link = insn_queue[q_ptr]; link; link = link->next ())
5144 {
5145 insn = link->insn ();
5146 q_size -= 1;
5147
5148 if (sched_verbose >= 2)
5149 fprintf (sched_dump, ";;\t\tQ-->Ready: insn %s: ",
5150 (*current_sched_info->print_insn) (insn, 0));
5151
5152 /* If the ready list is full, delay the insn for 1 cycle.
5153 See the comment in schedule_block for the rationale. */
5154 if (!reload_completed
5155 && (ready->n_ready - ready->n_debug > MAX_SCHED_READY_INSNS
5156 || (sched_pressure == SCHED_PRESSURE_MODEL
5157 /* Limit pressure recalculations to MAX_SCHED_READY_INSNS
5158 instructions too. */
5159 && model_index (insn) > (model_curr_point
5160 + MAX_SCHED_READY_INSNS)))
5161 && !(sched_pressure == SCHED_PRESSURE_MODEL
5162 && model_curr_point < model_num_insns
5163 /* Always allow the next model instruction to issue. */
5164 && model_index (insn) == model_curr_point)
5165 && !SCHED_GROUP_P (insn)
5166 && insn != skip_insn)
5167 {
5168 if (sched_verbose >= 2)
5169 fprintf (sched_dump, "keeping in queue, ready full\n");
5170 queue_insn (insn, 1, "ready full");
5171 }
5172 else
5173 {
5174 ready_add (ready, insn, false);
5175 if (sched_verbose >= 2)
5176 fprintf (sched_dump, "moving to ready without stalls\n");
5177 }
5178 }
5179 free_INSN_LIST_list (&insn_queue[q_ptr]);
5180
5181 /* If there are no ready insns, stall until one is ready and add all
5182 of the pending insns at that point to the ready list. */
5183 if (ready->n_ready == 0)
5184 {
5185 int stalls;
5186
5187 for (stalls = 1; stalls <= max_insn_queue_index; stalls++)
5188 {
5189 if ((link = insn_queue[NEXT_Q_AFTER (q_ptr, stalls)]))
5190 {
5191 for (; link; link = link->next ())
5192 {
5193 insn = link->insn ();
5194 q_size -= 1;
5195
5196 if (sched_verbose >= 2)
5197 fprintf (sched_dump, ";;\t\tQ-->Ready: insn %s: ",
5198 (*current_sched_info->print_insn) (insn, 0));
5199
5200 ready_add (ready, insn, false);
5201 if (sched_verbose >= 2)
5202 fprintf (sched_dump, "moving to ready with %d stalls\n", stalls);
5203 }
5204 free_INSN_LIST_list (&insn_queue[NEXT_Q_AFTER (q_ptr, stalls)]);
5205
5206 advance_one_cycle ();
5207
5208 break;
5209 }
5210
5211 advance_one_cycle ();
5212 }
5213
5214 q_ptr = NEXT_Q_AFTER (q_ptr, stalls);
5215 clock_var += stalls;
5216 if (sched_verbose >= 2)
5217 fprintf (sched_dump, ";;\tAdvancing clock by %d cycle[s] to %d\n",
5218 stalls, clock_var);
5219 }
5220 }
5221
5222 /* Used by early_queue_to_ready. Determines whether it is "ok" to
5223 prematurely move INSN from the queue to the ready list. Currently,
5224 if a target defines the hook 'is_costly_dependence', this function
5225 uses the hook to check whether there exist any dependences which are
5226 considered costly by the target, between INSN and other insns that
5227 have already been scheduled. Dependences are checked up to Y cycles
5228 back, with default Y=1; The flag -fsched-stalled-insns-dep=Y allows
5229 controlling this value.
5230 (Other considerations could be taken into account instead (or in
5231 addition) depending on user flags and target hooks. */
5232
5233 static bool
5234 ok_for_early_queue_removal (rtx_insn *insn)
5235 {
5236 if (targetm.sched.is_costly_dependence)
5237 {
5238 int n_cycles;
5239 int i = scheduled_insns.length ();
5240 for (n_cycles = flag_sched_stalled_insns_dep; n_cycles; n_cycles--)
5241 {
5242 while (i-- > 0)
5243 {
5244 int cost;
5245
5246 rtx_insn *prev_insn = scheduled_insns[i];
5247
5248 if (!NOTE_P (prev_insn))
5249 {
5250 dep_t dep;
5251
5252 dep = sd_find_dep_between (prev_insn, insn, true);
5253
5254 if (dep != NULL)
5255 {
5256 cost = dep_cost (dep);
5257
5258 if (targetm.sched.is_costly_dependence (dep, cost,
5259 flag_sched_stalled_insns_dep - n_cycles))
5260 return false;
5261 }
5262 }
5263
5264 if (GET_MODE (prev_insn) == TImode) /* end of dispatch group */
5265 break;
5266 }
5267
5268 if (i == 0)
5269 break;
5270 }
5271 }
5272
5273 return true;
5274 }
5275
5276
5277 /* Remove insns from the queue, before they become "ready" with respect
5278 to FU latency considerations. */
5279
5280 static int
5281 early_queue_to_ready (state_t state, struct ready_list *ready)
5282 {
5283 rtx_insn *insn;
5284 rtx_insn_list *link;
5285 rtx_insn_list *next_link;
5286 rtx_insn_list *prev_link;
5287 bool move_to_ready;
5288 int cost;
5289 state_t temp_state = alloca (dfa_state_size);
5290 int stalls;
5291 int insns_removed = 0;
5292
5293 /*
5294 Flag '-fsched-stalled-insns=X' determines the aggressiveness of this
5295 function:
5296
5297 X == 0: There is no limit on how many queued insns can be removed
5298 prematurely. (flag_sched_stalled_insns = -1).
5299
5300 X >= 1: Only X queued insns can be removed prematurely in each
5301 invocation. (flag_sched_stalled_insns = X).
5302
5303 Otherwise: Early queue removal is disabled.
5304 (flag_sched_stalled_insns = 0)
5305 */
5306
5307 if (! flag_sched_stalled_insns)
5308 return 0;
5309
5310 for (stalls = 0; stalls <= max_insn_queue_index; stalls++)
5311 {
5312 if ((link = insn_queue[NEXT_Q_AFTER (q_ptr, stalls)]))
5313 {
5314 if (sched_verbose > 6)
5315 fprintf (sched_dump, ";; look at index %d + %d\n", q_ptr, stalls);
5316
5317 prev_link = 0;
5318 while (link)
5319 {
5320 next_link = link->next ();
5321 insn = link->insn ();
5322 if (insn && sched_verbose > 6)
5323 print_rtl_single (sched_dump, insn);
5324
5325 memcpy (temp_state, state, dfa_state_size);
5326 if (recog_memoized (insn) < 0)
5327 /* non-negative to indicate that it's not ready
5328 to avoid infinite Q->R->Q->R... */
5329 cost = 0;
5330 else
5331 cost = state_transition (temp_state, insn);
5332
5333 if (sched_verbose >= 6)
5334 fprintf (sched_dump, "transition cost = %d\n", cost);
5335
5336 move_to_ready = false;
5337 if (cost < 0)
5338 {
5339 move_to_ready = ok_for_early_queue_removal (insn);
5340 if (move_to_ready == true)
5341 {
5342 /* move from Q to R */
5343 q_size -= 1;
5344 ready_add (ready, insn, false);
5345
5346 if (prev_link)
5347 XEXP (prev_link, 1) = next_link;
5348 else
5349 insn_queue[NEXT_Q_AFTER (q_ptr, stalls)] = next_link;
5350
5351 free_INSN_LIST_node (link);
5352
5353 if (sched_verbose >= 2)
5354 fprintf (sched_dump, ";;\t\tEarly Q-->Ready: insn %s\n",
5355 (*current_sched_info->print_insn) (insn, 0));
5356
5357 insns_removed++;
5358 if (insns_removed == flag_sched_stalled_insns)
5359 /* Remove no more than flag_sched_stalled_insns insns
5360 from Q at a time. */
5361 return insns_removed;
5362 }
5363 }
5364
5365 if (move_to_ready == false)
5366 prev_link = link;
5367
5368 link = next_link;
5369 } /* while link */
5370 } /* if link */
5371
5372 } /* for stalls.. */
5373
5374 return insns_removed;
5375 }
5376
5377
5378 /* Print the ready list for debugging purposes.
5379 If READY_TRY is non-zero then only print insns that max_issue
5380 will consider. */
5381 static void
5382 debug_ready_list_1 (struct ready_list *ready, signed char *ready_try)
5383 {
5384 rtx_insn **p;
5385 int i;
5386
5387 if (ready->n_ready == 0)
5388 {
5389 fprintf (sched_dump, "\n");
5390 return;
5391 }
5392
5393 p = ready_lastpos (ready);
5394 for (i = 0; i < ready->n_ready; i++)
5395 {
5396 if (ready_try != NULL && ready_try[ready->n_ready - i - 1])
5397 continue;
5398
5399 fprintf (sched_dump, " %s:%d",
5400 (*current_sched_info->print_insn) (p[i], 0),
5401 INSN_LUID (p[i]));
5402 if (sched_pressure != SCHED_PRESSURE_NONE)
5403 fprintf (sched_dump, "(cost=%d",
5404 INSN_REG_PRESSURE_EXCESS_COST_CHANGE (p[i]));
5405 fprintf (sched_dump, ":prio=%d", INSN_PRIORITY (p[i]));
5406 if (INSN_TICK (p[i]) > clock_var)
5407 fprintf (sched_dump, ":delay=%d", INSN_TICK (p[i]) - clock_var);
5408 if (sched_pressure == SCHED_PRESSURE_MODEL)
5409 fprintf (sched_dump, ":idx=%d",
5410 model_index (p[i]));
5411 if (sched_pressure != SCHED_PRESSURE_NONE)
5412 fprintf (sched_dump, ")");
5413 }
5414 fprintf (sched_dump, "\n");
5415 }
5416
5417 /* Print the ready list. Callable from debugger. */
5418 static void
5419 debug_ready_list (struct ready_list *ready)
5420 {
5421 debug_ready_list_1 (ready, NULL);
5422 }
5423
5424 /* Search INSN for REG_SAVE_NOTE notes and convert them back into insn
5425 NOTEs. This is used for NOTE_INSN_EPILOGUE_BEG, so that sched-ebb
5426 replaces the epilogue note in the correct basic block. */
5427 void
5428 reemit_notes (rtx_insn *insn)
5429 {
5430 rtx note;
5431 rtx_insn *last = insn;
5432
5433 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
5434 {
5435 if (REG_NOTE_KIND (note) == REG_SAVE_NOTE)
5436 {
5437 enum insn_note note_type = (enum insn_note) INTVAL (XEXP (note, 0));
5438
5439 last = emit_note_before (note_type, last);
5440 remove_note (insn, note);
5441 }
5442 }
5443 }
5444
5445 /* Move INSN. Reemit notes if needed. Update CFG, if needed. */
5446 static void
5447 move_insn (rtx_insn *insn, rtx_insn *last, rtx nt)
5448 {
5449 if (PREV_INSN (insn) != last)
5450 {
5451 basic_block bb;
5452 rtx_insn *note;
5453 int jump_p = 0;
5454
5455 bb = BLOCK_FOR_INSN (insn);
5456
5457 /* BB_HEAD is either LABEL or NOTE. */
5458 gcc_assert (BB_HEAD (bb) != insn);
5459
5460 if (BB_END (bb) == insn)
5461 /* If this is last instruction in BB, move end marker one
5462 instruction up. */
5463 {
5464 /* Jumps are always placed at the end of basic block. */
5465 jump_p = control_flow_insn_p (insn);
5466
5467 gcc_assert (!jump_p
5468 || ((common_sched_info->sched_pass_id == SCHED_RGN_PASS)
5469 && IS_SPECULATION_BRANCHY_CHECK_P (insn))
5470 || (common_sched_info->sched_pass_id
5471 == SCHED_EBB_PASS));
5472
5473 gcc_assert (BLOCK_FOR_INSN (PREV_INSN (insn)) == bb);
5474
5475 BB_END (bb) = PREV_INSN (insn);
5476 }
5477
5478 gcc_assert (BB_END (bb) != last);
5479
5480 if (jump_p)
5481 /* We move the block note along with jump. */
5482 {
5483 gcc_assert (nt);
5484
5485 note = NEXT_INSN (insn);
5486 while (NOTE_NOT_BB_P (note) && note != nt)
5487 note = NEXT_INSN (note);
5488
5489 if (note != nt
5490 && (LABEL_P (note)
5491 || BARRIER_P (note)))
5492 note = NEXT_INSN (note);
5493
5494 gcc_assert (NOTE_INSN_BASIC_BLOCK_P (note));
5495 }
5496 else
5497 note = insn;
5498
5499 SET_NEXT_INSN (PREV_INSN (insn)) = NEXT_INSN (note);
5500 SET_PREV_INSN (NEXT_INSN (note)) = PREV_INSN (insn);
5501
5502 SET_NEXT_INSN (note) = NEXT_INSN (last);
5503 SET_PREV_INSN (NEXT_INSN (last)) = note;
5504
5505 SET_NEXT_INSN (last) = insn;
5506 SET_PREV_INSN (insn) = last;
5507
5508 bb = BLOCK_FOR_INSN (last);
5509
5510 if (jump_p)
5511 {
5512 fix_jump_move (insn);
5513
5514 if (BLOCK_FOR_INSN (insn) != bb)
5515 move_block_after_check (insn);
5516
5517 gcc_assert (BB_END (bb) == last);
5518 }
5519
5520 df_insn_change_bb (insn, bb);
5521
5522 /* Update BB_END, if needed. */
5523 if (BB_END (bb) == last)
5524 BB_END (bb) = insn;
5525 }
5526
5527 SCHED_GROUP_P (insn) = 0;
5528 }
5529
5530 /* Return true if scheduling INSN will finish current clock cycle. */
5531 static bool
5532 insn_finishes_cycle_p (rtx_insn *insn)
5533 {
5534 if (SCHED_GROUP_P (insn))
5535 /* After issuing INSN, rest of the sched_group will be forced to issue
5536 in order. Don't make any plans for the rest of cycle. */
5537 return true;
5538
5539 /* Finishing the block will, apparently, finish the cycle. */
5540 if (current_sched_info->insn_finishes_block_p
5541 && current_sched_info->insn_finishes_block_p (insn))
5542 return true;
5543
5544 return false;
5545 }
5546
5547 /* Functions to model cache auto-prefetcher.
5548
5549 Some of the CPUs have cache auto-prefetcher, which /seems/ to initiate
5550 memory prefetches if it sees instructions with consequitive memory accesses
5551 in the instruction stream. Details of such hardware units are not published,
5552 so we can only guess what exactly is going on there.
5553 In the scheduler, we model abstract auto-prefetcher. If there are memory
5554 insns in the ready list (or the queue) that have same memory base, but
5555 different offsets, then we delay the insns with larger offsets until insns
5556 with smaller offsets get scheduled. If PARAM_SCHED_AUTOPREF_QUEUE_DEPTH
5557 is "1", then we look at the ready list; if it is N>1, then we also look
5558 through N-1 queue entries.
5559 If the param is N>=0, then rank_for_schedule will consider auto-prefetching
5560 among its heuristics.
5561 Param value of "-1" disables modelling of the auto-prefetcher. */
5562
5563 /* Initialize autoprefetcher model data for INSN. */
5564 static void
5565 autopref_multipass_init (const rtx_insn *insn, int write)
5566 {
5567 autopref_multipass_data_t data = &INSN_AUTOPREF_MULTIPASS_DATA (insn)[write];
5568
5569 gcc_assert (data->status == AUTOPREF_MULTIPASS_DATA_UNINITIALIZED);
5570 data->base = NULL_RTX;
5571 data->offset = 0;
5572 /* Set insn entry initialized, but not relevant for auto-prefetcher. */
5573 data->status = AUTOPREF_MULTIPASS_DATA_IRRELEVANT;
5574
5575 rtx set = single_set (insn);
5576 if (set == NULL_RTX)
5577 return;
5578
5579 rtx mem = write ? SET_DEST (set) : SET_SRC (set);
5580 if (!MEM_P (mem))
5581 return;
5582
5583 struct address_info info;
5584 decompose_mem_address (&info, mem);
5585
5586 /* TODO: Currently only (base+const) addressing is supported. */
5587 if (info.base == NULL || !REG_P (*info.base)
5588 || (info.disp != NULL && !CONST_INT_P (*info.disp)))
5589 return;
5590
5591 /* This insn is relevant for auto-prefetcher. */
5592 data->base = *info.base;
5593 data->offset = info.disp ? INTVAL (*info.disp) : 0;
5594 data->status = AUTOPREF_MULTIPASS_DATA_NORMAL;
5595 }
5596
5597 /* Helper function for rank_for_schedule sorting. */
5598 static int
5599 autopref_rank_for_schedule (const rtx_insn *insn1, const rtx_insn *insn2)
5600 {
5601 for (int write = 0; write < 2; ++write)
5602 {
5603 autopref_multipass_data_t data1
5604 = &INSN_AUTOPREF_MULTIPASS_DATA (insn1)[write];
5605 autopref_multipass_data_t data2
5606 = &INSN_AUTOPREF_MULTIPASS_DATA (insn2)[write];
5607
5608 if (data1->status == AUTOPREF_MULTIPASS_DATA_UNINITIALIZED)
5609 autopref_multipass_init (insn1, write);
5610 if (data1->status == AUTOPREF_MULTIPASS_DATA_IRRELEVANT)
5611 continue;
5612
5613 if (data2->status == AUTOPREF_MULTIPASS_DATA_UNINITIALIZED)
5614 autopref_multipass_init (insn2, write);
5615 if (data2->status == AUTOPREF_MULTIPASS_DATA_IRRELEVANT)
5616 continue;
5617
5618 if (!rtx_equal_p (data1->base, data2->base))
5619 continue;
5620
5621 return data1->offset - data2->offset;
5622 }
5623
5624 return 0;
5625 }
5626
5627 /* True if header of debug dump was printed. */
5628 static bool autopref_multipass_dfa_lookahead_guard_started_dump_p;
5629
5630 /* Helper for autopref_multipass_dfa_lookahead_guard.
5631 Return "1" if INSN1 should be delayed in favor of INSN2. */
5632 static int
5633 autopref_multipass_dfa_lookahead_guard_1 (const rtx_insn *insn1,
5634 const rtx_insn *insn2, int write)
5635 {
5636 autopref_multipass_data_t data1
5637 = &INSN_AUTOPREF_MULTIPASS_DATA (insn1)[write];
5638 autopref_multipass_data_t data2
5639 = &INSN_AUTOPREF_MULTIPASS_DATA (insn2)[write];
5640
5641 if (data2->status == AUTOPREF_MULTIPASS_DATA_UNINITIALIZED)
5642 autopref_multipass_init (insn2, write);
5643 if (data2->status == AUTOPREF_MULTIPASS_DATA_IRRELEVANT)
5644 return 0;
5645
5646 if (rtx_equal_p (data1->base, data2->base)
5647 && data1->offset > data2->offset)
5648 {
5649 if (sched_verbose >= 2)
5650 {
5651 if (!autopref_multipass_dfa_lookahead_guard_started_dump_p)
5652 {
5653 fprintf (sched_dump,
5654 ";;\t\tnot trying in max_issue due to autoprefetch "
5655 "model: ");
5656 autopref_multipass_dfa_lookahead_guard_started_dump_p = true;
5657 }
5658
5659 fprintf (sched_dump, " %d(%d)", INSN_UID (insn1), INSN_UID (insn2));
5660 }
5661
5662 return 1;
5663 }
5664
5665 return 0;
5666 }
5667
5668 /* General note:
5669
5670 We could have also hooked autoprefetcher model into
5671 first_cycle_multipass_backtrack / first_cycle_multipass_issue hooks
5672 to enable intelligent selection of "[r1+0]=r2; [r1+4]=r3" on the same cycle
5673 (e.g., once "[r1+0]=r2" is issued in max_issue(), "[r1+4]=r3" gets
5674 unblocked). We don't bother about this yet because target of interest
5675 (ARM Cortex-A15) can issue only 1 memory operation per cycle. */
5676
5677 /* Implementation of first_cycle_multipass_dfa_lookahead_guard hook.
5678 Return "1" if INSN1 should not be considered in max_issue due to
5679 auto-prefetcher considerations. */
5680 int
5681 autopref_multipass_dfa_lookahead_guard (rtx_insn *insn1, int ready_index)
5682 {
5683 int r = 0;
5684
5685 if (PARAM_VALUE (PARAM_SCHED_AUTOPREF_QUEUE_DEPTH) <= 0)
5686 return 0;
5687
5688 if (sched_verbose >= 2 && ready_index == 0)
5689 autopref_multipass_dfa_lookahead_guard_started_dump_p = false;
5690
5691 for (int write = 0; write < 2; ++write)
5692 {
5693 autopref_multipass_data_t data1
5694 = &INSN_AUTOPREF_MULTIPASS_DATA (insn1)[write];
5695
5696 if (data1->status == AUTOPREF_MULTIPASS_DATA_UNINITIALIZED)
5697 autopref_multipass_init (insn1, write);
5698 if (data1->status == AUTOPREF_MULTIPASS_DATA_IRRELEVANT)
5699 continue;
5700
5701 if (ready_index == 0
5702 && data1->status == AUTOPREF_MULTIPASS_DATA_DONT_DELAY)
5703 /* We allow only a single delay on priviledged instructions.
5704 Doing otherwise would cause infinite loop. */
5705 {
5706 if (sched_verbose >= 2)
5707 {
5708 if (!autopref_multipass_dfa_lookahead_guard_started_dump_p)
5709 {
5710 fprintf (sched_dump,
5711 ";;\t\tnot trying in max_issue due to autoprefetch "
5712 "model: ");
5713 autopref_multipass_dfa_lookahead_guard_started_dump_p = true;
5714 }
5715
5716 fprintf (sched_dump, " *%d*", INSN_UID (insn1));
5717 }
5718 continue;
5719 }
5720
5721 for (int i2 = 0; i2 < ready.n_ready; ++i2)
5722 {
5723 rtx_insn *insn2 = get_ready_element (i2);
5724 if (insn1 == insn2)
5725 continue;
5726 r = autopref_multipass_dfa_lookahead_guard_1 (insn1, insn2, write);
5727 if (r)
5728 {
5729 if (ready_index == 0)
5730 {
5731 r = -1;
5732 data1->status = AUTOPREF_MULTIPASS_DATA_DONT_DELAY;
5733 }
5734 goto finish;
5735 }
5736 }
5737
5738 if (PARAM_VALUE (PARAM_SCHED_AUTOPREF_QUEUE_DEPTH) == 1)
5739 continue;
5740
5741 /* Everything from the current queue slot should have been moved to
5742 the ready list. */
5743 gcc_assert (insn_queue[NEXT_Q_AFTER (q_ptr, 0)] == NULL_RTX);
5744
5745 int n_stalls = PARAM_VALUE (PARAM_SCHED_AUTOPREF_QUEUE_DEPTH) - 1;
5746 if (n_stalls > max_insn_queue_index)
5747 n_stalls = max_insn_queue_index;
5748
5749 for (int stalls = 1; stalls <= n_stalls; ++stalls)
5750 {
5751 for (rtx_insn_list *link = insn_queue[NEXT_Q_AFTER (q_ptr, stalls)];
5752 link != NULL_RTX;
5753 link = link->next ())
5754 {
5755 rtx_insn *insn2 = link->insn ();
5756 r = autopref_multipass_dfa_lookahead_guard_1 (insn1, insn2,
5757 write);
5758 if (r)
5759 {
5760 /* Queue INSN1 until INSN2 can issue. */
5761 r = -stalls;
5762 if (ready_index == 0)
5763 data1->status = AUTOPREF_MULTIPASS_DATA_DONT_DELAY;
5764 goto finish;
5765 }
5766 }
5767 }
5768 }
5769
5770 finish:
5771 if (sched_verbose >= 2
5772 && autopref_multipass_dfa_lookahead_guard_started_dump_p
5773 && (ready_index == ready.n_ready - 1 || r < 0))
5774 /* This does not /always/ trigger. We don't output EOL if the last
5775 insn is not recognized (INSN_CODE < 0) and lookahead_guard is not
5776 called. We can live with this. */
5777 fprintf (sched_dump, "\n");
5778
5779 return r;
5780 }
5781
5782 /* Define type for target data used in multipass scheduling. */
5783 #ifndef TARGET_SCHED_FIRST_CYCLE_MULTIPASS_DATA_T
5784 # define TARGET_SCHED_FIRST_CYCLE_MULTIPASS_DATA_T int
5785 #endif
5786 typedef TARGET_SCHED_FIRST_CYCLE_MULTIPASS_DATA_T first_cycle_multipass_data_t;
5787
5788 /* The following structure describe an entry of the stack of choices. */
5789 struct choice_entry
5790 {
5791 /* Ordinal number of the issued insn in the ready queue. */
5792 int index;
5793 /* The number of the rest insns whose issues we should try. */
5794 int rest;
5795 /* The number of issued essential insns. */
5796 int n;
5797 /* State after issuing the insn. */
5798 state_t state;
5799 /* Target-specific data. */
5800 first_cycle_multipass_data_t target_data;
5801 };
5802
5803 /* The following array is used to implement a stack of choices used in
5804 function max_issue. */
5805 static struct choice_entry *choice_stack;
5806
5807 /* This holds the value of the target dfa_lookahead hook. */
5808 int dfa_lookahead;
5809
5810 /* The following variable value is maximal number of tries of issuing
5811 insns for the first cycle multipass insn scheduling. We define
5812 this value as constant*(DFA_LOOKAHEAD**ISSUE_RATE). We would not
5813 need this constraint if all real insns (with non-negative codes)
5814 had reservations because in this case the algorithm complexity is
5815 O(DFA_LOOKAHEAD**ISSUE_RATE). Unfortunately, the dfa descriptions
5816 might be incomplete and such insn might occur. For such
5817 descriptions, the complexity of algorithm (without the constraint)
5818 could achieve DFA_LOOKAHEAD ** N , where N is the queue length. */
5819 static int max_lookahead_tries;
5820
5821 /* The following function returns maximal (or close to maximal) number
5822 of insns which can be issued on the same cycle and one of which
5823 insns is insns with the best rank (the first insn in READY). To
5824 make this function tries different samples of ready insns. READY
5825 is current queue `ready'. Global array READY_TRY reflects what
5826 insns are already issued in this try. The function stops immediately,
5827 if it reached the such a solution, that all instruction can be issued.
5828 INDEX will contain index of the best insn in READY. The following
5829 function is used only for first cycle multipass scheduling.
5830
5831 PRIVILEGED_N >= 0
5832
5833 This function expects recognized insns only. All USEs,
5834 CLOBBERs, etc must be filtered elsewhere. */
5835 int
5836 max_issue (struct ready_list *ready, int privileged_n, state_t state,
5837 bool first_cycle_insn_p, int *index)
5838 {
5839 int n, i, all, n_ready, best, delay, tries_num;
5840 int more_issue;
5841 struct choice_entry *top;
5842 rtx_insn *insn;
5843
5844 if (sched_fusion)
5845 return 0;
5846
5847 n_ready = ready->n_ready;
5848 gcc_assert (dfa_lookahead >= 1 && privileged_n >= 0
5849 && privileged_n <= n_ready);
5850
5851 /* Init MAX_LOOKAHEAD_TRIES. */
5852 if (max_lookahead_tries == 0)
5853 {
5854 max_lookahead_tries = 100;
5855 for (i = 0; i < issue_rate; i++)
5856 max_lookahead_tries *= dfa_lookahead;
5857 }
5858
5859 /* Init max_points. */
5860 more_issue = issue_rate - cycle_issued_insns;
5861 gcc_assert (more_issue >= 0);
5862
5863 /* The number of the issued insns in the best solution. */
5864 best = 0;
5865
5866 top = choice_stack;
5867
5868 /* Set initial state of the search. */
5869 memcpy (top->state, state, dfa_state_size);
5870 top->rest = dfa_lookahead;
5871 top->n = 0;
5872 if (targetm.sched.first_cycle_multipass_begin)
5873 targetm.sched.first_cycle_multipass_begin (&top->target_data,
5874 ready_try, n_ready,
5875 first_cycle_insn_p);
5876
5877 /* Count the number of the insns to search among. */
5878 for (all = i = 0; i < n_ready; i++)
5879 if (!ready_try [i])
5880 all++;
5881
5882 if (sched_verbose >= 2)
5883 {
5884 fprintf (sched_dump, ";;\t\tmax_issue among %d insns:", all);
5885 debug_ready_list_1 (ready, ready_try);
5886 }
5887
5888 /* I is the index of the insn to try next. */
5889 i = 0;
5890 tries_num = 0;
5891 for (;;)
5892 {
5893 if (/* If we've reached a dead end or searched enough of what we have
5894 been asked... */
5895 top->rest == 0
5896 /* or have nothing else to try... */
5897 || i >= n_ready
5898 /* or should not issue more. */
5899 || top->n >= more_issue)
5900 {
5901 /* ??? (... || i == n_ready). */
5902 gcc_assert (i <= n_ready);
5903
5904 /* We should not issue more than issue_rate instructions. */
5905 gcc_assert (top->n <= more_issue);
5906
5907 if (top == choice_stack)
5908 break;
5909
5910 if (best < top - choice_stack)
5911 {
5912 if (privileged_n)
5913 {
5914 n = privileged_n;
5915 /* Try to find issued privileged insn. */
5916 while (n && !ready_try[--n])
5917 ;
5918 }
5919
5920 if (/* If all insns are equally good... */
5921 privileged_n == 0
5922 /* Or a privileged insn will be issued. */
5923 || ready_try[n])
5924 /* Then we have a solution. */
5925 {
5926 best = top - choice_stack;
5927 /* This is the index of the insn issued first in this
5928 solution. */
5929 *index = choice_stack [1].index;
5930 if (top->n == more_issue || best == all)
5931 break;
5932 }
5933 }
5934
5935 /* Set ready-list index to point to the last insn
5936 ('i++' below will advance it to the next insn). */
5937 i = top->index;
5938
5939 /* Backtrack. */
5940 ready_try [i] = 0;
5941
5942 if (targetm.sched.first_cycle_multipass_backtrack)
5943 targetm.sched.first_cycle_multipass_backtrack (&top->target_data,
5944 ready_try, n_ready);
5945
5946 top--;
5947 memcpy (state, top->state, dfa_state_size);
5948 }
5949 else if (!ready_try [i])
5950 {
5951 tries_num++;
5952 if (tries_num > max_lookahead_tries)
5953 break;
5954 insn = ready_element (ready, i);
5955 delay = state_transition (state, insn);
5956 if (delay < 0)
5957 {
5958 if (state_dead_lock_p (state)
5959 || insn_finishes_cycle_p (insn))
5960 /* We won't issue any more instructions in the next
5961 choice_state. */
5962 top->rest = 0;
5963 else
5964 top->rest--;
5965
5966 n = top->n;
5967 if (memcmp (top->state, state, dfa_state_size) != 0)
5968 n++;
5969
5970 /* Advance to the next choice_entry. */
5971 top++;
5972 /* Initialize it. */
5973 top->rest = dfa_lookahead;
5974 top->index = i;
5975 top->n = n;
5976 memcpy (top->state, state, dfa_state_size);
5977 ready_try [i] = 1;
5978
5979 if (targetm.sched.first_cycle_multipass_issue)
5980 targetm.sched.first_cycle_multipass_issue (&top->target_data,
5981 ready_try, n_ready,
5982 insn,
5983 &((top - 1)
5984 ->target_data));
5985
5986 i = -1;
5987 }
5988 }
5989
5990 /* Increase ready-list index. */
5991 i++;
5992 }
5993
5994 if (targetm.sched.first_cycle_multipass_end)
5995 targetm.sched.first_cycle_multipass_end (best != 0
5996 ? &choice_stack[1].target_data
5997 : NULL);
5998
5999 /* Restore the original state of the DFA. */
6000 memcpy (state, choice_stack->state, dfa_state_size);
6001
6002 return best;
6003 }
6004
6005 /* The following function chooses insn from READY and modifies
6006 READY. The following function is used only for first
6007 cycle multipass scheduling.
6008 Return:
6009 -1 if cycle should be advanced,
6010 0 if INSN_PTR is set to point to the desirable insn,
6011 1 if choose_ready () should be restarted without advancing the cycle. */
6012 static int
6013 choose_ready (struct ready_list *ready, bool first_cycle_insn_p,
6014 rtx_insn **insn_ptr)
6015 {
6016 if (dbg_cnt (sched_insn) == false)
6017 {
6018 if (nonscheduled_insns_begin == NULL_RTX)
6019 nonscheduled_insns_begin = current_sched_info->prev_head;
6020
6021 rtx_insn *insn = first_nonscheduled_insn ();
6022
6023 if (QUEUE_INDEX (insn) == QUEUE_READY)
6024 /* INSN is in the ready_list. */
6025 {
6026 ready_remove_insn (insn);
6027 *insn_ptr = insn;
6028 return 0;
6029 }
6030
6031 /* INSN is in the queue. Advance cycle to move it to the ready list. */
6032 gcc_assert (QUEUE_INDEX (insn) >= 0);
6033 return -1;
6034 }
6035
6036 if (dfa_lookahead <= 0 || SCHED_GROUP_P (ready_element (ready, 0))
6037 || DEBUG_INSN_P (ready_element (ready, 0)))
6038 {
6039 if (targetm.sched.dispatch (NULL, IS_DISPATCH_ON))
6040 *insn_ptr = ready_remove_first_dispatch (ready);
6041 else
6042 *insn_ptr = ready_remove_first (ready);
6043
6044 return 0;
6045 }
6046 else
6047 {
6048 /* Try to choose the best insn. */
6049 int index = 0, i;
6050 rtx_insn *insn;
6051
6052 insn = ready_element (ready, 0);
6053 if (INSN_CODE (insn) < 0)
6054 {
6055 *insn_ptr = ready_remove_first (ready);
6056 return 0;
6057 }
6058
6059 /* Filter the search space. */
6060 for (i = 0; i < ready->n_ready; i++)
6061 {
6062 ready_try[i] = 0;
6063
6064 insn = ready_element (ready, i);
6065
6066 /* If this insn is recognizable we should have already
6067 recognized it earlier.
6068 ??? Not very clear where this is supposed to be done.
6069 See dep_cost_1. */
6070 gcc_checking_assert (INSN_CODE (insn) >= 0
6071 || recog_memoized (insn) < 0);
6072 if (INSN_CODE (insn) < 0)
6073 {
6074 /* Non-recognized insns at position 0 are handled above. */
6075 gcc_assert (i > 0);
6076 ready_try[i] = 1;
6077 continue;
6078 }
6079
6080 if (targetm.sched.first_cycle_multipass_dfa_lookahead_guard)
6081 {
6082 ready_try[i]
6083 = (targetm.sched.first_cycle_multipass_dfa_lookahead_guard
6084 (insn, i));
6085
6086 if (ready_try[i] < 0)
6087 /* Queue instruction for several cycles.
6088 We need to restart choose_ready as we have changed
6089 the ready list. */
6090 {
6091 change_queue_index (insn, -ready_try[i]);
6092 return 1;
6093 }
6094
6095 /* Make sure that we didn't end up with 0'th insn filtered out.
6096 Don't be tempted to make life easier for backends and just
6097 requeue 0'th insn if (ready_try[0] == 0) and restart
6098 choose_ready. Backends should be very considerate about
6099 requeueing instructions -- especially the highest priority
6100 one at position 0. */
6101 gcc_assert (ready_try[i] == 0 || i > 0);
6102 if (ready_try[i])
6103 continue;
6104 }
6105
6106 gcc_assert (ready_try[i] == 0);
6107 /* INSN made it through the scrutiny of filters! */
6108 }
6109
6110 if (max_issue (ready, 1, curr_state, first_cycle_insn_p, &index) == 0)
6111 {
6112 *insn_ptr = ready_remove_first (ready);
6113 if (sched_verbose >= 4)
6114 fprintf (sched_dump, ";;\t\tChosen insn (but can't issue) : %s \n",
6115 (*current_sched_info->print_insn) (*insn_ptr, 0));
6116 return 0;
6117 }
6118 else
6119 {
6120 if (sched_verbose >= 4)
6121 fprintf (sched_dump, ";;\t\tChosen insn : %s\n",
6122 (*current_sched_info->print_insn)
6123 (ready_element (ready, index), 0));
6124
6125 *insn_ptr = ready_remove (ready, index);
6126 return 0;
6127 }
6128 }
6129 }
6130
6131 /* This function is called when we have successfully scheduled a
6132 block. It uses the schedule stored in the scheduled_insns vector
6133 to rearrange the RTL. PREV_HEAD is used as the anchor to which we
6134 append the scheduled insns; TAIL is the insn after the scheduled
6135 block. TARGET_BB is the argument passed to schedule_block. */
6136
6137 static void
6138 commit_schedule (rtx_insn *prev_head, rtx_insn *tail, basic_block *target_bb)
6139 {
6140 unsigned int i;
6141 rtx_insn *insn;
6142
6143 last_scheduled_insn = prev_head;
6144 for (i = 0;
6145 scheduled_insns.iterate (i, &insn);
6146 i++)
6147 {
6148 if (control_flow_insn_p (last_scheduled_insn)
6149 || current_sched_info->advance_target_bb (*target_bb, insn))
6150 {
6151 *target_bb = current_sched_info->advance_target_bb (*target_bb, 0);
6152
6153 if (sched_verbose)
6154 {
6155 rtx_insn *x;
6156
6157 x = next_real_insn (last_scheduled_insn);
6158 gcc_assert (x);
6159 dump_new_block_header (1, *target_bb, x, tail);
6160 }
6161
6162 last_scheduled_insn = bb_note (*target_bb);
6163 }
6164
6165 if (current_sched_info->begin_move_insn)
6166 (*current_sched_info->begin_move_insn) (insn, last_scheduled_insn);
6167 move_insn (insn, last_scheduled_insn,
6168 current_sched_info->next_tail);
6169 if (!DEBUG_INSN_P (insn))
6170 reemit_notes (insn);
6171 last_scheduled_insn = insn;
6172 }
6173
6174 scheduled_insns.truncate (0);
6175 }
6176
6177 /* Examine all insns on the ready list and queue those which can't be
6178 issued in this cycle. TEMP_STATE is temporary scheduler state we
6179 can use as scratch space. If FIRST_CYCLE_INSN_P is true, no insns
6180 have been issued for the current cycle, which means it is valid to
6181 issue an asm statement.
6182
6183 If SHADOWS_ONLY_P is true, we eliminate all real insns and only
6184 leave those for which SHADOW_P is true. If MODULO_EPILOGUE is true,
6185 we only leave insns which have an INSN_EXACT_TICK. */
6186
6187 static void
6188 prune_ready_list (state_t temp_state, bool first_cycle_insn_p,
6189 bool shadows_only_p, bool modulo_epilogue_p)
6190 {
6191 int i, pass;
6192 bool sched_group_found = false;
6193 int min_cost_group = 1;
6194
6195 if (sched_fusion)
6196 return;
6197
6198 for (i = 0; i < ready.n_ready; i++)
6199 {
6200 rtx_insn *insn = ready_element (&ready, i);
6201 if (SCHED_GROUP_P (insn))
6202 {
6203 sched_group_found = true;
6204 break;
6205 }
6206 }
6207
6208 /* Make two passes if there's a SCHED_GROUP_P insn; make sure to handle
6209 such an insn first and note its cost, then schedule all other insns
6210 for one cycle later. */
6211 for (pass = sched_group_found ? 0 : 1; pass < 2; )
6212 {
6213 int n = ready.n_ready;
6214 for (i = 0; i < n; i++)
6215 {
6216 rtx_insn *insn = ready_element (&ready, i);
6217 int cost = 0;
6218 const char *reason = "resource conflict";
6219
6220 if (DEBUG_INSN_P (insn))
6221 continue;
6222
6223 if (sched_group_found && !SCHED_GROUP_P (insn))
6224 {
6225 if (pass == 0)
6226 continue;
6227 cost = min_cost_group;
6228 reason = "not in sched group";
6229 }
6230 else if (modulo_epilogue_p
6231 && INSN_EXACT_TICK (insn) == INVALID_TICK)
6232 {
6233 cost = max_insn_queue_index;
6234 reason = "not an epilogue insn";
6235 }
6236 else if (shadows_only_p && !SHADOW_P (insn))
6237 {
6238 cost = 1;
6239 reason = "not a shadow";
6240 }
6241 else if (recog_memoized (insn) < 0)
6242 {
6243 if (!first_cycle_insn_p
6244 && (GET_CODE (PATTERN (insn)) == ASM_INPUT
6245 || asm_noperands (PATTERN (insn)) >= 0))
6246 cost = 1;
6247 reason = "asm";
6248 }
6249 else if (sched_pressure != SCHED_PRESSURE_NONE)
6250 {
6251 if (sched_pressure == SCHED_PRESSURE_MODEL
6252 && INSN_TICK (insn) <= clock_var)
6253 {
6254 memcpy (temp_state, curr_state, dfa_state_size);
6255 if (state_transition (temp_state, insn) >= 0)
6256 INSN_TICK (insn) = clock_var + 1;
6257 }
6258 cost = 0;
6259 }
6260 else
6261 {
6262 int delay_cost = 0;
6263
6264 if (delay_htab)
6265 {
6266 struct delay_pair *delay_entry;
6267 delay_entry
6268 = delay_htab->find_with_hash (insn,
6269 htab_hash_pointer (insn));
6270 while (delay_entry && delay_cost == 0)
6271 {
6272 delay_cost = estimate_shadow_tick (delay_entry);
6273 if (delay_cost > max_insn_queue_index)
6274 delay_cost = max_insn_queue_index;
6275 delay_entry = delay_entry->next_same_i1;
6276 }
6277 }
6278
6279 memcpy (temp_state, curr_state, dfa_state_size);
6280 cost = state_transition (temp_state, insn);
6281 if (cost < 0)
6282 cost = 0;
6283 else if (cost == 0)
6284 cost = 1;
6285 if (cost < delay_cost)
6286 {
6287 cost = delay_cost;
6288 reason = "shadow tick";
6289 }
6290 }
6291 if (cost >= 1)
6292 {
6293 if (SCHED_GROUP_P (insn) && cost > min_cost_group)
6294 min_cost_group = cost;
6295 ready_remove (&ready, i);
6296 /* Normally we'd want to queue INSN for COST cycles. However,
6297 if SCHED_GROUP_P is set, then we must ensure that nothing
6298 else comes between INSN and its predecessor. If there is
6299 some other insn ready to fire on the next cycle, then that
6300 invariant would be broken.
6301
6302 So when SCHED_GROUP_P is set, just queue this insn for a
6303 single cycle. */
6304 queue_insn (insn, SCHED_GROUP_P (insn) ? 1 : cost, reason);
6305 if (i + 1 < n)
6306 break;
6307 }
6308 }
6309 if (i == n)
6310 pass++;
6311 }
6312 }
6313
6314 /* Called when we detect that the schedule is impossible. We examine the
6315 backtrack queue to find the earliest insn that caused this condition. */
6316
6317 static struct haifa_saved_data *
6318 verify_shadows (void)
6319 {
6320 struct haifa_saved_data *save, *earliest_fail = NULL;
6321 for (save = backtrack_queue; save; save = save->next)
6322 {
6323 int t;
6324 struct delay_pair *pair = save->delay_pair;
6325 rtx_insn *i1 = pair->i1;
6326
6327 for (; pair; pair = pair->next_same_i1)
6328 {
6329 rtx_insn *i2 = pair->i2;
6330
6331 if (QUEUE_INDEX (i2) == QUEUE_SCHEDULED)
6332 continue;
6333
6334 t = INSN_TICK (i1) + pair_delay (pair);
6335 if (t < clock_var)
6336 {
6337 if (sched_verbose >= 2)
6338 fprintf (sched_dump,
6339 ";;\t\tfailed delay requirements for %d/%d (%d->%d)"
6340 ", not ready\n",
6341 INSN_UID (pair->i1), INSN_UID (pair->i2),
6342 INSN_TICK (pair->i1), INSN_EXACT_TICK (pair->i2));
6343 earliest_fail = save;
6344 break;
6345 }
6346 if (QUEUE_INDEX (i2) >= 0)
6347 {
6348 int queued_for = INSN_TICK (i2);
6349
6350 if (t < queued_for)
6351 {
6352 if (sched_verbose >= 2)
6353 fprintf (sched_dump,
6354 ";;\t\tfailed delay requirements for %d/%d"
6355 " (%d->%d), queued too late\n",
6356 INSN_UID (pair->i1), INSN_UID (pair->i2),
6357 INSN_TICK (pair->i1), INSN_EXACT_TICK (pair->i2));
6358 earliest_fail = save;
6359 break;
6360 }
6361 }
6362 }
6363 }
6364
6365 return earliest_fail;
6366 }
6367
6368 /* Print instructions together with useful scheduling information between
6369 HEAD and TAIL (inclusive). */
6370 static void
6371 dump_insn_stream (rtx_insn *head, rtx_insn *tail)
6372 {
6373 fprintf (sched_dump, ";;\t| insn | prio |\n");
6374
6375 rtx_insn *next_tail = NEXT_INSN (tail);
6376 for (rtx_insn *insn = head; insn != next_tail; insn = NEXT_INSN (insn))
6377 {
6378 int priority = NOTE_P (insn) ? 0 : INSN_PRIORITY (insn);
6379 const char *pattern = (NOTE_P (insn)
6380 ? "note"
6381 : str_pattern_slim (PATTERN (insn)));
6382
6383 fprintf (sched_dump, ";;\t| %4d | %4d | %-30s ",
6384 INSN_UID (insn), priority, pattern);
6385
6386 if (sched_verbose >= 4)
6387 {
6388 if (NOTE_P (insn) || recog_memoized (insn) < 0)
6389 fprintf (sched_dump, "nothing");
6390 else
6391 print_reservation (sched_dump, insn);
6392 }
6393 fprintf (sched_dump, "\n");
6394 }
6395 }
6396
6397 /* Use forward list scheduling to rearrange insns of block pointed to by
6398 TARGET_BB, possibly bringing insns from subsequent blocks in the same
6399 region. */
6400
6401 bool
6402 schedule_block (basic_block *target_bb, state_t init_state)
6403 {
6404 int i;
6405 bool success = modulo_ii == 0;
6406 struct sched_block_state ls;
6407 state_t temp_state = NULL; /* It is used for multipass scheduling. */
6408 int sort_p, advance, start_clock_var;
6409
6410 /* Head/tail info for this block. */
6411 rtx_insn *prev_head = current_sched_info->prev_head;
6412 rtx_insn *next_tail = current_sched_info->next_tail;
6413 rtx_insn *head = NEXT_INSN (prev_head);
6414 rtx_insn *tail = PREV_INSN (next_tail);
6415
6416 if ((current_sched_info->flags & DONT_BREAK_DEPENDENCIES) == 0
6417 && sched_pressure != SCHED_PRESSURE_MODEL && !sched_fusion)
6418 find_modifiable_mems (head, tail);
6419
6420 /* We used to have code to avoid getting parameters moved from hard
6421 argument registers into pseudos.
6422
6423 However, it was removed when it proved to be of marginal benefit
6424 and caused problems because schedule_block and compute_forward_dependences
6425 had different notions of what the "head" insn was. */
6426
6427 gcc_assert (head != tail || INSN_P (head));
6428
6429 haifa_recovery_bb_recently_added_p = false;
6430
6431 backtrack_queue = NULL;
6432
6433 /* Debug info. */
6434 if (sched_verbose)
6435 {
6436 dump_new_block_header (0, *target_bb, head, tail);
6437
6438 if (sched_verbose >= 2)
6439 {
6440 dump_insn_stream (head, tail);
6441 memset (&rank_for_schedule_stats, 0,
6442 sizeof (rank_for_schedule_stats));
6443 }
6444 }
6445
6446 if (init_state == NULL)
6447 state_reset (curr_state);
6448 else
6449 memcpy (curr_state, init_state, dfa_state_size);
6450
6451 /* Clear the ready list. */
6452 ready.first = ready.veclen - 1;
6453 ready.n_ready = 0;
6454 ready.n_debug = 0;
6455
6456 /* It is used for first cycle multipass scheduling. */
6457 temp_state = alloca (dfa_state_size);
6458
6459 if (targetm.sched.init)
6460 targetm.sched.init (sched_dump, sched_verbose, ready.veclen);
6461
6462 /* We start inserting insns after PREV_HEAD. */
6463 last_scheduled_insn = prev_head;
6464 last_nondebug_scheduled_insn = NULL;
6465 nonscheduled_insns_begin = NULL;
6466
6467 gcc_assert ((NOTE_P (last_scheduled_insn)
6468 || DEBUG_INSN_P (last_scheduled_insn))
6469 && BLOCK_FOR_INSN (last_scheduled_insn) == *target_bb);
6470
6471 /* Initialize INSN_QUEUE. Q_SIZE is the total number of insns in the
6472 queue. */
6473 q_ptr = 0;
6474 q_size = 0;
6475
6476 insn_queue = XALLOCAVEC (rtx_insn_list *, max_insn_queue_index + 1);
6477 memset (insn_queue, 0, (max_insn_queue_index + 1) * sizeof (rtx));
6478
6479 /* Start just before the beginning of time. */
6480 clock_var = -1;
6481
6482 /* We need queue and ready lists and clock_var be initialized
6483 in try_ready () (which is called through init_ready_list ()). */
6484 (*current_sched_info->init_ready_list) ();
6485
6486 if (sched_pressure)
6487 sched_pressure_start_bb (*target_bb);
6488
6489 /* The algorithm is O(n^2) in the number of ready insns at any given
6490 time in the worst case. Before reload we are more likely to have
6491 big lists so truncate them to a reasonable size. */
6492 if (!reload_completed
6493 && ready.n_ready - ready.n_debug > MAX_SCHED_READY_INSNS)
6494 {
6495 ready_sort_debug (&ready);
6496 ready_sort_real (&ready);
6497
6498 /* Find first free-standing insn past MAX_SCHED_READY_INSNS.
6499 If there are debug insns, we know they're first. */
6500 for (i = MAX_SCHED_READY_INSNS + ready.n_debug; i < ready.n_ready; i++)
6501 if (!SCHED_GROUP_P (ready_element (&ready, i)))
6502 break;
6503
6504 if (sched_verbose >= 2)
6505 {
6506 fprintf (sched_dump,
6507 ";;\t\tReady list on entry: %d insns: ", ready.n_ready);
6508 debug_ready_list (&ready);
6509 fprintf (sched_dump,
6510 ";;\t\t before reload => truncated to %d insns\n", i);
6511 }
6512
6513 /* Delay all insns past it for 1 cycle. If debug counter is
6514 activated make an exception for the insn right after
6515 nonscheduled_insns_begin. */
6516 {
6517 rtx_insn *skip_insn;
6518
6519 if (dbg_cnt (sched_insn) == false)
6520 skip_insn = first_nonscheduled_insn ();
6521 else
6522 skip_insn = NULL;
6523
6524 while (i < ready.n_ready)
6525 {
6526 rtx_insn *insn;
6527
6528 insn = ready_remove (&ready, i);
6529
6530 if (insn != skip_insn)
6531 queue_insn (insn, 1, "list truncated");
6532 }
6533 if (skip_insn)
6534 ready_add (&ready, skip_insn, true);
6535 }
6536 }
6537
6538 /* Now we can restore basic block notes and maintain precise cfg. */
6539 restore_bb_notes (*target_bb);
6540
6541 last_clock_var = -1;
6542
6543 advance = 0;
6544
6545 gcc_assert (scheduled_insns.length () == 0);
6546 sort_p = TRUE;
6547 must_backtrack = false;
6548 modulo_insns_scheduled = 0;
6549
6550 ls.modulo_epilogue = false;
6551 ls.first_cycle_insn_p = true;
6552
6553 /* Loop until all the insns in BB are scheduled. */
6554 while ((*current_sched_info->schedule_more_p) ())
6555 {
6556 perform_replacements_new_cycle ();
6557 do
6558 {
6559 start_clock_var = clock_var;
6560
6561 clock_var++;
6562
6563 advance_one_cycle ();
6564
6565 /* Add to the ready list all pending insns that can be issued now.
6566 If there are no ready insns, increment clock until one
6567 is ready and add all pending insns at that point to the ready
6568 list. */
6569 queue_to_ready (&ready);
6570
6571 gcc_assert (ready.n_ready);
6572
6573 if (sched_verbose >= 2)
6574 {
6575 fprintf (sched_dump, ";;\t\tReady list after queue_to_ready:");
6576 debug_ready_list (&ready);
6577 }
6578 advance -= clock_var - start_clock_var;
6579 }
6580 while (advance > 0);
6581
6582 if (ls.modulo_epilogue)
6583 {
6584 int stage = clock_var / modulo_ii;
6585 if (stage > modulo_last_stage * 2 + 2)
6586 {
6587 if (sched_verbose >= 2)
6588 fprintf (sched_dump,
6589 ";;\t\tmodulo scheduled succeeded at II %d\n",
6590 modulo_ii);
6591 success = true;
6592 goto end_schedule;
6593 }
6594 }
6595 else if (modulo_ii > 0)
6596 {
6597 int stage = clock_var / modulo_ii;
6598 if (stage > modulo_max_stages)
6599 {
6600 if (sched_verbose >= 2)
6601 fprintf (sched_dump,
6602 ";;\t\tfailing schedule due to excessive stages\n");
6603 goto end_schedule;
6604 }
6605 if (modulo_n_insns == modulo_insns_scheduled
6606 && stage > modulo_last_stage)
6607 {
6608 if (sched_verbose >= 2)
6609 fprintf (sched_dump,
6610 ";;\t\tfound kernel after %d stages, II %d\n",
6611 stage, modulo_ii);
6612 ls.modulo_epilogue = true;
6613 }
6614 }
6615
6616 prune_ready_list (temp_state, true, false, ls.modulo_epilogue);
6617 if (ready.n_ready == 0)
6618 continue;
6619 if (must_backtrack)
6620 goto do_backtrack;
6621
6622 ls.shadows_only_p = false;
6623 cycle_issued_insns = 0;
6624 ls.can_issue_more = issue_rate;
6625 for (;;)
6626 {
6627 rtx_insn *insn;
6628 int cost;
6629 bool asm_p;
6630
6631 if (sort_p && ready.n_ready > 0)
6632 {
6633 /* Sort the ready list based on priority. This must be
6634 done every iteration through the loop, as schedule_insn
6635 may have readied additional insns that will not be
6636 sorted correctly. */
6637 ready_sort (&ready);
6638
6639 if (sched_verbose >= 2)
6640 {
6641 fprintf (sched_dump,
6642 ";;\t\tReady list after ready_sort: ");
6643 debug_ready_list (&ready);
6644 }
6645 }
6646
6647 /* We don't want md sched reorder to even see debug isns, so put
6648 them out right away. */
6649 if (ready.n_ready && DEBUG_INSN_P (ready_element (&ready, 0))
6650 && (*current_sched_info->schedule_more_p) ())
6651 {
6652 while (ready.n_ready && DEBUG_INSN_P (ready_element (&ready, 0)))
6653 {
6654 rtx_insn *insn = ready_remove_first (&ready);
6655 gcc_assert (DEBUG_INSN_P (insn));
6656 (*current_sched_info->begin_schedule_ready) (insn);
6657 scheduled_insns.safe_push (insn);
6658 last_scheduled_insn = insn;
6659 advance = schedule_insn (insn);
6660 gcc_assert (advance == 0);
6661 if (ready.n_ready > 0)
6662 ready_sort (&ready);
6663 }
6664 }
6665
6666 if (ls.first_cycle_insn_p && !ready.n_ready)
6667 break;
6668
6669 resume_after_backtrack:
6670 /* Allow the target to reorder the list, typically for
6671 better instruction bundling. */
6672 if (sort_p
6673 && (ready.n_ready == 0
6674 || !SCHED_GROUP_P (ready_element (&ready, 0))))
6675 {
6676 if (ls.first_cycle_insn_p && targetm.sched.reorder)
6677 ls.can_issue_more
6678 = targetm.sched.reorder (sched_dump, sched_verbose,
6679 ready_lastpos (&ready),
6680 &ready.n_ready, clock_var);
6681 else if (!ls.first_cycle_insn_p && targetm.sched.reorder2)
6682 ls.can_issue_more
6683 = targetm.sched.reorder2 (sched_dump, sched_verbose,
6684 ready.n_ready
6685 ? ready_lastpos (&ready) : NULL,
6686 &ready.n_ready, clock_var);
6687 }
6688
6689 restart_choose_ready:
6690 if (sched_verbose >= 2)
6691 {
6692 fprintf (sched_dump, ";;\tReady list (t = %3d): ",
6693 clock_var);
6694 debug_ready_list (&ready);
6695 if (sched_pressure == SCHED_PRESSURE_WEIGHTED)
6696 print_curr_reg_pressure ();
6697 }
6698
6699 if (ready.n_ready == 0
6700 && ls.can_issue_more
6701 && reload_completed)
6702 {
6703 /* Allow scheduling insns directly from the queue in case
6704 there's nothing better to do (ready list is empty) but
6705 there are still vacant dispatch slots in the current cycle. */
6706 if (sched_verbose >= 6)
6707 fprintf (sched_dump,";;\t\tSecond chance\n");
6708 memcpy (temp_state, curr_state, dfa_state_size);
6709 if (early_queue_to_ready (temp_state, &ready))
6710 ready_sort (&ready);
6711 }
6712
6713 if (ready.n_ready == 0
6714 || !ls.can_issue_more
6715 || state_dead_lock_p (curr_state)
6716 || !(*current_sched_info->schedule_more_p) ())
6717 break;
6718
6719 /* Select and remove the insn from the ready list. */
6720 if (sort_p)
6721 {
6722 int res;
6723
6724 insn = NULL;
6725 res = choose_ready (&ready, ls.first_cycle_insn_p, &insn);
6726
6727 if (res < 0)
6728 /* Finish cycle. */
6729 break;
6730 if (res > 0)
6731 goto restart_choose_ready;
6732
6733 gcc_assert (insn != NULL_RTX);
6734 }
6735 else
6736 insn = ready_remove_first (&ready);
6737
6738 if (sched_pressure != SCHED_PRESSURE_NONE
6739 && INSN_TICK (insn) > clock_var)
6740 {
6741 ready_add (&ready, insn, true);
6742 advance = 1;
6743 break;
6744 }
6745
6746 if (targetm.sched.dfa_new_cycle
6747 && targetm.sched.dfa_new_cycle (sched_dump, sched_verbose,
6748 insn, last_clock_var,
6749 clock_var, &sort_p))
6750 /* SORT_P is used by the target to override sorting
6751 of the ready list. This is needed when the target
6752 has modified its internal structures expecting that
6753 the insn will be issued next. As we need the insn
6754 to have the highest priority (so it will be returned by
6755 the ready_remove_first call above), we invoke
6756 ready_add (&ready, insn, true).
6757 But, still, there is one issue: INSN can be later
6758 discarded by scheduler's front end through
6759 current_sched_info->can_schedule_ready_p, hence, won't
6760 be issued next. */
6761 {
6762 ready_add (&ready, insn, true);
6763 break;
6764 }
6765
6766 sort_p = TRUE;
6767
6768 if (current_sched_info->can_schedule_ready_p
6769 && ! (*current_sched_info->can_schedule_ready_p) (insn))
6770 /* We normally get here only if we don't want to move
6771 insn from the split block. */
6772 {
6773 TODO_SPEC (insn) = DEP_POSTPONED;
6774 goto restart_choose_ready;
6775 }
6776
6777 if (delay_htab)
6778 {
6779 /* If this insn is the first part of a delay-slot pair, record a
6780 backtrack point. */
6781 struct delay_pair *delay_entry;
6782 delay_entry
6783 = delay_htab->find_with_hash (insn, htab_hash_pointer (insn));
6784 if (delay_entry)
6785 {
6786 save_backtrack_point (delay_entry, ls);
6787 if (sched_verbose >= 2)
6788 fprintf (sched_dump, ";;\t\tsaving backtrack point\n");
6789 }
6790 }
6791
6792 /* DECISION is made. */
6793
6794 if (modulo_ii > 0 && INSN_UID (insn) < modulo_iter0_max_uid)
6795 {
6796 modulo_insns_scheduled++;
6797 modulo_last_stage = clock_var / modulo_ii;
6798 }
6799 if (TODO_SPEC (insn) & SPECULATIVE)
6800 generate_recovery_code (insn);
6801
6802 if (targetm.sched.dispatch (NULL, IS_DISPATCH_ON))
6803 targetm.sched.dispatch_do (insn, ADD_TO_DISPATCH_WINDOW);
6804
6805 /* Update counters, etc in the scheduler's front end. */
6806 (*current_sched_info->begin_schedule_ready) (insn);
6807 scheduled_insns.safe_push (insn);
6808 gcc_assert (NONDEBUG_INSN_P (insn));
6809 last_nondebug_scheduled_insn = last_scheduled_insn = insn;
6810
6811 if (recog_memoized (insn) >= 0)
6812 {
6813 memcpy (temp_state, curr_state, dfa_state_size);
6814 cost = state_transition (curr_state, insn);
6815 if (sched_pressure != SCHED_PRESSURE_WEIGHTED && !sched_fusion)
6816 gcc_assert (cost < 0);
6817 if (memcmp (temp_state, curr_state, dfa_state_size) != 0)
6818 cycle_issued_insns++;
6819 asm_p = false;
6820 }
6821 else
6822 asm_p = (GET_CODE (PATTERN (insn)) == ASM_INPUT
6823 || asm_noperands (PATTERN (insn)) >= 0);
6824
6825 if (targetm.sched.variable_issue)
6826 ls.can_issue_more =
6827 targetm.sched.variable_issue (sched_dump, sched_verbose,
6828 insn, ls.can_issue_more);
6829 /* A naked CLOBBER or USE generates no instruction, so do
6830 not count them against the issue rate. */
6831 else if (GET_CODE (PATTERN (insn)) != USE
6832 && GET_CODE (PATTERN (insn)) != CLOBBER)
6833 ls.can_issue_more--;
6834 advance = schedule_insn (insn);
6835
6836 if (SHADOW_P (insn))
6837 ls.shadows_only_p = true;
6838
6839 /* After issuing an asm insn we should start a new cycle. */
6840 if (advance == 0 && asm_p)
6841 advance = 1;
6842
6843 if (must_backtrack)
6844 break;
6845
6846 if (advance != 0)
6847 break;
6848
6849 ls.first_cycle_insn_p = false;
6850 if (ready.n_ready > 0)
6851 prune_ready_list (temp_state, false, ls.shadows_only_p,
6852 ls.modulo_epilogue);
6853 }
6854
6855 do_backtrack:
6856 if (!must_backtrack)
6857 for (i = 0; i < ready.n_ready; i++)
6858 {
6859 rtx_insn *insn = ready_element (&ready, i);
6860 if (INSN_EXACT_TICK (insn) == clock_var)
6861 {
6862 must_backtrack = true;
6863 clock_var++;
6864 break;
6865 }
6866 }
6867 if (must_backtrack && modulo_ii > 0)
6868 {
6869 if (modulo_backtracks_left == 0)
6870 goto end_schedule;
6871 modulo_backtracks_left--;
6872 }
6873 while (must_backtrack)
6874 {
6875 struct haifa_saved_data *failed;
6876 rtx_insn *failed_insn;
6877
6878 must_backtrack = false;
6879 failed = verify_shadows ();
6880 gcc_assert (failed);
6881
6882 failed_insn = failed->delay_pair->i1;
6883 /* Clear these queues. */
6884 perform_replacements_new_cycle ();
6885 toggle_cancelled_flags (false);
6886 unschedule_insns_until (failed_insn);
6887 while (failed != backtrack_queue)
6888 free_topmost_backtrack_point (true);
6889 restore_last_backtrack_point (&ls);
6890 if (sched_verbose >= 2)
6891 fprintf (sched_dump, ";;\t\trewind to cycle %d\n", clock_var);
6892 /* Delay by at least a cycle. This could cause additional
6893 backtracking. */
6894 queue_insn (failed_insn, 1, "backtracked");
6895 advance = 0;
6896 if (must_backtrack)
6897 continue;
6898 if (ready.n_ready > 0)
6899 goto resume_after_backtrack;
6900 else
6901 {
6902 if (clock_var == 0 && ls.first_cycle_insn_p)
6903 goto end_schedule;
6904 advance = 1;
6905 break;
6906 }
6907 }
6908 ls.first_cycle_insn_p = true;
6909 }
6910 if (ls.modulo_epilogue)
6911 success = true;
6912 end_schedule:
6913 if (!ls.first_cycle_insn_p || advance)
6914 advance_one_cycle ();
6915 perform_replacements_new_cycle ();
6916 if (modulo_ii > 0)
6917 {
6918 /* Once again, debug insn suckiness: they can be on the ready list
6919 even if they have unresolved dependencies. To make our view
6920 of the world consistent, remove such "ready" insns. */
6921 restart_debug_insn_loop:
6922 for (i = ready.n_ready - 1; i >= 0; i--)
6923 {
6924 rtx_insn *x;
6925
6926 x = ready_element (&ready, i);
6927 if (DEPS_LIST_FIRST (INSN_HARD_BACK_DEPS (x)) != NULL
6928 || DEPS_LIST_FIRST (INSN_SPEC_BACK_DEPS (x)) != NULL)
6929 {
6930 ready_remove (&ready, i);
6931 goto restart_debug_insn_loop;
6932 }
6933 }
6934 for (i = ready.n_ready - 1; i >= 0; i--)
6935 {
6936 rtx_insn *x;
6937
6938 x = ready_element (&ready, i);
6939 resolve_dependencies (x);
6940 }
6941 for (i = 0; i <= max_insn_queue_index; i++)
6942 {
6943 rtx_insn_list *link;
6944 while ((link = insn_queue[i]) != NULL)
6945 {
6946 rtx_insn *x = link->insn ();
6947 insn_queue[i] = link->next ();
6948 QUEUE_INDEX (x) = QUEUE_NOWHERE;
6949 free_INSN_LIST_node (link);
6950 resolve_dependencies (x);
6951 }
6952 }
6953 }
6954
6955 if (!success)
6956 undo_all_replacements ();
6957
6958 /* Debug info. */
6959 if (sched_verbose)
6960 {
6961 fprintf (sched_dump, ";;\tReady list (final): ");
6962 debug_ready_list (&ready);
6963 }
6964
6965 if (modulo_ii == 0 && current_sched_info->queue_must_finish_empty)
6966 /* Sanity check -- queue must be empty now. Meaningless if region has
6967 multiple bbs. */
6968 gcc_assert (!q_size && !ready.n_ready && !ready.n_debug);
6969 else if (modulo_ii == 0)
6970 {
6971 /* We must maintain QUEUE_INDEX between blocks in region. */
6972 for (i = ready.n_ready - 1; i >= 0; i--)
6973 {
6974 rtx_insn *x;
6975
6976 x = ready_element (&ready, i);
6977 QUEUE_INDEX (x) = QUEUE_NOWHERE;
6978 TODO_SPEC (x) = HARD_DEP;
6979 }
6980
6981 if (q_size)
6982 for (i = 0; i <= max_insn_queue_index; i++)
6983 {
6984 rtx_insn_list *link;
6985 for (link = insn_queue[i]; link; link = link->next ())
6986 {
6987 rtx_insn *x;
6988
6989 x = link->insn ();
6990 QUEUE_INDEX (x) = QUEUE_NOWHERE;
6991 TODO_SPEC (x) = HARD_DEP;
6992 }
6993 free_INSN_LIST_list (&insn_queue[i]);
6994 }
6995 }
6996
6997 if (sched_pressure == SCHED_PRESSURE_MODEL)
6998 model_end_schedule ();
6999
7000 if (success)
7001 {
7002 commit_schedule (prev_head, tail, target_bb);
7003 if (sched_verbose)
7004 fprintf (sched_dump, ";; total time = %d\n", clock_var);
7005 }
7006 else
7007 last_scheduled_insn = tail;
7008
7009 scheduled_insns.truncate (0);
7010
7011 if (!current_sched_info->queue_must_finish_empty
7012 || haifa_recovery_bb_recently_added_p)
7013 {
7014 /* INSN_TICK (minimum clock tick at which the insn becomes
7015 ready) may be not correct for the insn in the subsequent
7016 blocks of the region. We should use a correct value of
7017 `clock_var' or modify INSN_TICK. It is better to keep
7018 clock_var value equal to 0 at the start of a basic block.
7019 Therefore we modify INSN_TICK here. */
7020 fix_inter_tick (NEXT_INSN (prev_head), last_scheduled_insn);
7021 }
7022
7023 if (targetm.sched.finish)
7024 {
7025 targetm.sched.finish (sched_dump, sched_verbose);
7026 /* Target might have added some instructions to the scheduled block
7027 in its md_finish () hook. These new insns don't have any data
7028 initialized and to identify them we extend h_i_d so that they'll
7029 get zero luids. */
7030 sched_extend_luids ();
7031 }
7032
7033 /* Update head/tail boundaries. */
7034 head = NEXT_INSN (prev_head);
7035 tail = last_scheduled_insn;
7036
7037 if (sched_verbose)
7038 {
7039 fprintf (sched_dump, ";; new head = %d\n;; new tail = %d\n",
7040 INSN_UID (head), INSN_UID (tail));
7041
7042 if (sched_verbose >= 2)
7043 {
7044 dump_insn_stream (head, tail);
7045 print_rank_for_schedule_stats (";; TOTAL ", &rank_for_schedule_stats,
7046 NULL);
7047 }
7048
7049 fprintf (sched_dump, "\n");
7050 }
7051
7052 head = restore_other_notes (head, NULL);
7053
7054 current_sched_info->head = head;
7055 current_sched_info->tail = tail;
7056
7057 free_backtrack_queue ();
7058
7059 return success;
7060 }
7061 \f
7062 /* Set_priorities: compute priority of each insn in the block. */
7063
7064 int
7065 set_priorities (rtx_insn *head, rtx_insn *tail)
7066 {
7067 rtx_insn *insn;
7068 int n_insn;
7069 int sched_max_insns_priority =
7070 current_sched_info->sched_max_insns_priority;
7071 rtx_insn *prev_head;
7072
7073 if (head == tail && ! INSN_P (head))
7074 gcc_unreachable ();
7075
7076 n_insn = 0;
7077
7078 prev_head = PREV_INSN (head);
7079 for (insn = tail; insn != prev_head; insn = PREV_INSN (insn))
7080 {
7081 if (!INSN_P (insn))
7082 continue;
7083
7084 n_insn++;
7085 (void) priority (insn);
7086
7087 gcc_assert (INSN_PRIORITY_KNOWN (insn));
7088
7089 sched_max_insns_priority = MAX (sched_max_insns_priority,
7090 INSN_PRIORITY (insn));
7091 }
7092
7093 current_sched_info->sched_max_insns_priority = sched_max_insns_priority;
7094
7095 return n_insn;
7096 }
7097
7098 /* Set dump and sched_verbose for the desired debugging output. If no
7099 dump-file was specified, but -fsched-verbose=N (any N), print to stderr.
7100 For -fsched-verbose=N, N>=10, print everything to stderr. */
7101 void
7102 setup_sched_dump (void)
7103 {
7104 sched_verbose = sched_verbose_param;
7105 if (sched_verbose_param == 0 && dump_file)
7106 sched_verbose = 1;
7107 sched_dump = ((sched_verbose_param >= 10 || !dump_file)
7108 ? stderr : dump_file);
7109 }
7110
7111 /* Allocate data for register pressure sensitive scheduling. */
7112 static void
7113 alloc_global_sched_pressure_data (void)
7114 {
7115 if (sched_pressure != SCHED_PRESSURE_NONE)
7116 {
7117 int i, max_regno = max_reg_num ();
7118
7119 if (sched_dump != NULL)
7120 /* We need info about pseudos for rtl dumps about pseudo
7121 classes and costs. */
7122 regstat_init_n_sets_and_refs ();
7123 ira_set_pseudo_classes (true, sched_verbose ? sched_dump : NULL);
7124 sched_regno_pressure_class
7125 = (enum reg_class *) xmalloc (max_regno * sizeof (enum reg_class));
7126 for (i = 0; i < max_regno; i++)
7127 sched_regno_pressure_class[i]
7128 = (i < FIRST_PSEUDO_REGISTER
7129 ? ira_pressure_class_translate[REGNO_REG_CLASS (i)]
7130 : ira_pressure_class_translate[reg_allocno_class (i)]);
7131 curr_reg_live = BITMAP_ALLOC (NULL);
7132 if (sched_pressure == SCHED_PRESSURE_WEIGHTED)
7133 {
7134 saved_reg_live = BITMAP_ALLOC (NULL);
7135 region_ref_regs = BITMAP_ALLOC (NULL);
7136 }
7137
7138 /* Calculate number of CALL_USED_REGS in register classes that
7139 we calculate register pressure for. */
7140 for (int c = 0; c < ira_pressure_classes_num; ++c)
7141 {
7142 enum reg_class cl = ira_pressure_classes[c];
7143
7144 call_used_regs_num[cl] = 0;
7145
7146 for (int i = 0; i < ira_class_hard_regs_num[cl]; ++i)
7147 if (call_used_regs[ira_class_hard_regs[cl][i]])
7148 ++call_used_regs_num[cl];
7149 }
7150 }
7151 }
7152
7153 /* Free data for register pressure sensitive scheduling. Also called
7154 from schedule_region when stopping sched-pressure early. */
7155 void
7156 free_global_sched_pressure_data (void)
7157 {
7158 if (sched_pressure != SCHED_PRESSURE_NONE)
7159 {
7160 if (regstat_n_sets_and_refs != NULL)
7161 regstat_free_n_sets_and_refs ();
7162 if (sched_pressure == SCHED_PRESSURE_WEIGHTED)
7163 {
7164 BITMAP_FREE (region_ref_regs);
7165 BITMAP_FREE (saved_reg_live);
7166 }
7167 BITMAP_FREE (curr_reg_live);
7168 free (sched_regno_pressure_class);
7169 }
7170 }
7171
7172 /* Initialize some global state for the scheduler. This function works
7173 with the common data shared between all the schedulers. It is called
7174 from the scheduler specific initialization routine. */
7175
7176 void
7177 sched_init (void)
7178 {
7179 /* Disable speculative loads in their presence if cc0 defined. */
7180 if (HAVE_cc0)
7181 flag_schedule_speculative_load = 0;
7182
7183 if (targetm.sched.dispatch (NULL, IS_DISPATCH_ON))
7184 targetm.sched.dispatch_do (NULL, DISPATCH_INIT);
7185
7186 if (live_range_shrinkage_p)
7187 sched_pressure = SCHED_PRESSURE_WEIGHTED;
7188 else if (flag_sched_pressure
7189 && !reload_completed
7190 && common_sched_info->sched_pass_id == SCHED_RGN_PASS)
7191 sched_pressure = ((enum sched_pressure_algorithm)
7192 PARAM_VALUE (PARAM_SCHED_PRESSURE_ALGORITHM));
7193 else
7194 sched_pressure = SCHED_PRESSURE_NONE;
7195
7196 if (sched_pressure != SCHED_PRESSURE_NONE)
7197 ira_setup_eliminable_regset ();
7198
7199 /* Initialize SPEC_INFO. */
7200 if (targetm.sched.set_sched_flags)
7201 {
7202 spec_info = &spec_info_var;
7203 targetm.sched.set_sched_flags (spec_info);
7204
7205 if (spec_info->mask != 0)
7206 {
7207 spec_info->data_weakness_cutoff =
7208 (PARAM_VALUE (PARAM_SCHED_SPEC_PROB_CUTOFF) * MAX_DEP_WEAK) / 100;
7209 spec_info->control_weakness_cutoff =
7210 (PARAM_VALUE (PARAM_SCHED_SPEC_PROB_CUTOFF)
7211 * REG_BR_PROB_BASE) / 100;
7212 }
7213 else
7214 /* So we won't read anything accidentally. */
7215 spec_info = NULL;
7216
7217 }
7218 else
7219 /* So we won't read anything accidentally. */
7220 spec_info = 0;
7221
7222 /* Initialize issue_rate. */
7223 if (targetm.sched.issue_rate)
7224 issue_rate = targetm.sched.issue_rate ();
7225 else
7226 issue_rate = 1;
7227
7228 if (targetm.sched.first_cycle_multipass_dfa_lookahead
7229 /* Don't use max_issue with reg_pressure scheduling. Multipass
7230 scheduling and reg_pressure scheduling undo each other's decisions. */
7231 && sched_pressure == SCHED_PRESSURE_NONE)
7232 dfa_lookahead = targetm.sched.first_cycle_multipass_dfa_lookahead ();
7233 else
7234 dfa_lookahead = 0;
7235
7236 /* Set to "0" so that we recalculate. */
7237 max_lookahead_tries = 0;
7238
7239 if (targetm.sched.init_dfa_pre_cycle_insn)
7240 targetm.sched.init_dfa_pre_cycle_insn ();
7241
7242 if (targetm.sched.init_dfa_post_cycle_insn)
7243 targetm.sched.init_dfa_post_cycle_insn ();
7244
7245 dfa_start ();
7246 dfa_state_size = state_size ();
7247
7248 init_alias_analysis ();
7249
7250 if (!sched_no_dce)
7251 df_set_flags (DF_LR_RUN_DCE);
7252 df_note_add_problem ();
7253
7254 /* More problems needed for interloop dep calculation in SMS. */
7255 if (common_sched_info->sched_pass_id == SCHED_SMS_PASS)
7256 {
7257 df_rd_add_problem ();
7258 df_chain_add_problem (DF_DU_CHAIN + DF_UD_CHAIN);
7259 }
7260
7261 df_analyze ();
7262
7263 /* Do not run DCE after reload, as this can kill nops inserted
7264 by bundling. */
7265 if (reload_completed)
7266 df_clear_flags (DF_LR_RUN_DCE);
7267
7268 regstat_compute_calls_crossed ();
7269
7270 if (targetm.sched.init_global)
7271 targetm.sched.init_global (sched_dump, sched_verbose, get_max_uid () + 1);
7272
7273 alloc_global_sched_pressure_data ();
7274
7275 curr_state = xmalloc (dfa_state_size);
7276 }
7277
7278 static void haifa_init_only_bb (basic_block, basic_block);
7279
7280 /* Initialize data structures specific to the Haifa scheduler. */
7281 void
7282 haifa_sched_init (void)
7283 {
7284 setup_sched_dump ();
7285 sched_init ();
7286
7287 scheduled_insns.create (0);
7288
7289 if (spec_info != NULL)
7290 {
7291 sched_deps_info->use_deps_list = 1;
7292 sched_deps_info->generate_spec_deps = 1;
7293 }
7294
7295 /* Initialize luids, dependency caches, target and h_i_d for the
7296 whole function. */
7297 {
7298 bb_vec_t bbs;
7299 bbs.create (n_basic_blocks_for_fn (cfun));
7300 basic_block bb;
7301
7302 sched_init_bbs ();
7303
7304 FOR_EACH_BB_FN (bb, cfun)
7305 bbs.quick_push (bb);
7306 sched_init_luids (bbs);
7307 sched_deps_init (true);
7308 sched_extend_target ();
7309 haifa_init_h_i_d (bbs);
7310
7311 bbs.release ();
7312 }
7313
7314 sched_init_only_bb = haifa_init_only_bb;
7315 sched_split_block = sched_split_block_1;
7316 sched_create_empty_bb = sched_create_empty_bb_1;
7317 haifa_recovery_bb_ever_added_p = false;
7318
7319 nr_begin_data = nr_begin_control = nr_be_in_data = nr_be_in_control = 0;
7320 before_recovery = 0;
7321 after_recovery = 0;
7322
7323 modulo_ii = 0;
7324 }
7325
7326 /* Finish work with the data specific to the Haifa scheduler. */
7327 void
7328 haifa_sched_finish (void)
7329 {
7330 sched_create_empty_bb = NULL;
7331 sched_split_block = NULL;
7332 sched_init_only_bb = NULL;
7333
7334 if (spec_info && spec_info->dump)
7335 {
7336 char c = reload_completed ? 'a' : 'b';
7337
7338 fprintf (spec_info->dump,
7339 ";; %s:\n", current_function_name ());
7340
7341 fprintf (spec_info->dump,
7342 ";; Procedure %cr-begin-data-spec motions == %d\n",
7343 c, nr_begin_data);
7344 fprintf (spec_info->dump,
7345 ";; Procedure %cr-be-in-data-spec motions == %d\n",
7346 c, nr_be_in_data);
7347 fprintf (spec_info->dump,
7348 ";; Procedure %cr-begin-control-spec motions == %d\n",
7349 c, nr_begin_control);
7350 fprintf (spec_info->dump,
7351 ";; Procedure %cr-be-in-control-spec motions == %d\n",
7352 c, nr_be_in_control);
7353 }
7354
7355 scheduled_insns.release ();
7356
7357 /* Finalize h_i_d, dependency caches, and luids for the whole
7358 function. Target will be finalized in md_global_finish (). */
7359 sched_deps_finish ();
7360 sched_finish_luids ();
7361 current_sched_info = NULL;
7362 sched_finish ();
7363 }
7364
7365 /* Free global data used during insn scheduling. This function works with
7366 the common data shared between the schedulers. */
7367
7368 void
7369 sched_finish (void)
7370 {
7371 haifa_finish_h_i_d ();
7372 free_global_sched_pressure_data ();
7373 free (curr_state);
7374
7375 if (targetm.sched.finish_global)
7376 targetm.sched.finish_global (sched_dump, sched_verbose);
7377
7378 end_alias_analysis ();
7379
7380 regstat_free_calls_crossed ();
7381
7382 dfa_finish ();
7383 }
7384
7385 /* Free all delay_pair structures that were recorded. */
7386 void
7387 free_delay_pairs (void)
7388 {
7389 if (delay_htab)
7390 {
7391 delay_htab->empty ();
7392 delay_htab_i2->empty ();
7393 }
7394 }
7395
7396 /* Fix INSN_TICKs of the instructions in the current block as well as
7397 INSN_TICKs of their dependents.
7398 HEAD and TAIL are the begin and the end of the current scheduled block. */
7399 static void
7400 fix_inter_tick (rtx_insn *head, rtx_insn *tail)
7401 {
7402 /* Set of instructions with corrected INSN_TICK. */
7403 bitmap_head processed;
7404 /* ??? It is doubtful if we should assume that cycle advance happens on
7405 basic block boundaries. Basically insns that are unconditionally ready
7406 on the start of the block are more preferable then those which have
7407 a one cycle dependency over insn from the previous block. */
7408 int next_clock = clock_var + 1;
7409
7410 bitmap_initialize (&processed, 0);
7411
7412 /* Iterates over scheduled instructions and fix their INSN_TICKs and
7413 INSN_TICKs of dependent instructions, so that INSN_TICKs are consistent
7414 across different blocks. */
7415 for (tail = NEXT_INSN (tail); head != tail; head = NEXT_INSN (head))
7416 {
7417 if (INSN_P (head))
7418 {
7419 int tick;
7420 sd_iterator_def sd_it;
7421 dep_t dep;
7422
7423 tick = INSN_TICK (head);
7424 gcc_assert (tick >= MIN_TICK);
7425
7426 /* Fix INSN_TICK of instruction from just scheduled block. */
7427 if (bitmap_set_bit (&processed, INSN_LUID (head)))
7428 {
7429 tick -= next_clock;
7430
7431 if (tick < MIN_TICK)
7432 tick = MIN_TICK;
7433
7434 INSN_TICK (head) = tick;
7435 }
7436
7437 if (DEBUG_INSN_P (head))
7438 continue;
7439
7440 FOR_EACH_DEP (head, SD_LIST_RES_FORW, sd_it, dep)
7441 {
7442 rtx_insn *next;
7443
7444 next = DEP_CON (dep);
7445 tick = INSN_TICK (next);
7446
7447 if (tick != INVALID_TICK
7448 /* If NEXT has its INSN_TICK calculated, fix it.
7449 If not - it will be properly calculated from
7450 scratch later in fix_tick_ready. */
7451 && bitmap_set_bit (&processed, INSN_LUID (next)))
7452 {
7453 tick -= next_clock;
7454
7455 if (tick < MIN_TICK)
7456 tick = MIN_TICK;
7457
7458 if (tick > INTER_TICK (next))
7459 INTER_TICK (next) = tick;
7460 else
7461 tick = INTER_TICK (next);
7462
7463 INSN_TICK (next) = tick;
7464 }
7465 }
7466 }
7467 }
7468 bitmap_clear (&processed);
7469 }
7470
7471 /* Check if NEXT is ready to be added to the ready or queue list.
7472 If "yes", add it to the proper list.
7473 Returns:
7474 -1 - is not ready yet,
7475 0 - added to the ready list,
7476 0 < N - queued for N cycles. */
7477 int
7478 try_ready (rtx_insn *next)
7479 {
7480 ds_t old_ts, new_ts;
7481
7482 old_ts = TODO_SPEC (next);
7483
7484 gcc_assert (!(old_ts & ~(SPECULATIVE | HARD_DEP | DEP_CONTROL | DEP_POSTPONED))
7485 && (old_ts == HARD_DEP
7486 || old_ts == DEP_POSTPONED
7487 || (old_ts & SPECULATIVE)
7488 || old_ts == DEP_CONTROL));
7489
7490 new_ts = recompute_todo_spec (next, false);
7491
7492 if (new_ts & (HARD_DEP | DEP_POSTPONED))
7493 gcc_assert (new_ts == old_ts
7494 && QUEUE_INDEX (next) == QUEUE_NOWHERE);
7495 else if (current_sched_info->new_ready)
7496 new_ts = current_sched_info->new_ready (next, new_ts);
7497
7498 /* * if !(old_ts & SPECULATIVE) (e.g. HARD_DEP or 0), then insn might
7499 have its original pattern or changed (speculative) one. This is due
7500 to changing ebb in region scheduling.
7501 * But if (old_ts & SPECULATIVE), then we are pretty sure that insn
7502 has speculative pattern.
7503
7504 We can't assert (!(new_ts & HARD_DEP) || new_ts == old_ts) here because
7505 control-speculative NEXT could have been discarded by sched-rgn.c
7506 (the same case as when discarded by can_schedule_ready_p ()). */
7507
7508 if ((new_ts & SPECULATIVE)
7509 /* If (old_ts == new_ts), then (old_ts & SPECULATIVE) and we don't
7510 need to change anything. */
7511 && new_ts != old_ts)
7512 {
7513 int res;
7514 rtx new_pat;
7515
7516 gcc_assert ((new_ts & SPECULATIVE) && !(new_ts & ~SPECULATIVE));
7517
7518 res = haifa_speculate_insn (next, new_ts, &new_pat);
7519
7520 switch (res)
7521 {
7522 case -1:
7523 /* It would be nice to change DEP_STATUS of all dependences,
7524 which have ((DEP_STATUS & SPECULATIVE) == new_ts) to HARD_DEP,
7525 so we won't reanalyze anything. */
7526 new_ts = HARD_DEP;
7527 break;
7528
7529 case 0:
7530 /* We follow the rule, that every speculative insn
7531 has non-null ORIG_PAT. */
7532 if (!ORIG_PAT (next))
7533 ORIG_PAT (next) = PATTERN (next);
7534 break;
7535
7536 case 1:
7537 if (!ORIG_PAT (next))
7538 /* If we gonna to overwrite the original pattern of insn,
7539 save it. */
7540 ORIG_PAT (next) = PATTERN (next);
7541
7542 res = haifa_change_pattern (next, new_pat);
7543 gcc_assert (res);
7544 break;
7545
7546 default:
7547 gcc_unreachable ();
7548 }
7549 }
7550
7551 /* We need to restore pattern only if (new_ts == 0), because otherwise it is
7552 either correct (new_ts & SPECULATIVE),
7553 or we simply don't care (new_ts & HARD_DEP). */
7554
7555 gcc_assert (!ORIG_PAT (next)
7556 || !IS_SPECULATION_BRANCHY_CHECK_P (next));
7557
7558 TODO_SPEC (next) = new_ts;
7559
7560 if (new_ts & (HARD_DEP | DEP_POSTPONED))
7561 {
7562 /* We can't assert (QUEUE_INDEX (next) == QUEUE_NOWHERE) here because
7563 control-speculative NEXT could have been discarded by sched-rgn.c
7564 (the same case as when discarded by can_schedule_ready_p ()). */
7565 /*gcc_assert (QUEUE_INDEX (next) == QUEUE_NOWHERE);*/
7566
7567 change_queue_index (next, QUEUE_NOWHERE);
7568
7569 return -1;
7570 }
7571 else if (!(new_ts & BEGIN_SPEC)
7572 && ORIG_PAT (next) && PREDICATED_PAT (next) == NULL_RTX
7573 && !IS_SPECULATION_CHECK_P (next))
7574 /* We should change pattern of every previously speculative
7575 instruction - and we determine if NEXT was speculative by using
7576 ORIG_PAT field. Except one case - speculation checks have ORIG_PAT
7577 pat too, so skip them. */
7578 {
7579 bool success = haifa_change_pattern (next, ORIG_PAT (next));
7580 gcc_assert (success);
7581 ORIG_PAT (next) = 0;
7582 }
7583
7584 if (sched_verbose >= 2)
7585 {
7586 fprintf (sched_dump, ";;\t\tdependencies resolved: insn %s",
7587 (*current_sched_info->print_insn) (next, 0));
7588
7589 if (spec_info && spec_info->dump)
7590 {
7591 if (new_ts & BEGIN_DATA)
7592 fprintf (spec_info->dump, "; data-spec;");
7593 if (new_ts & BEGIN_CONTROL)
7594 fprintf (spec_info->dump, "; control-spec;");
7595 if (new_ts & BE_IN_CONTROL)
7596 fprintf (spec_info->dump, "; in-control-spec;");
7597 }
7598 if (TODO_SPEC (next) & DEP_CONTROL)
7599 fprintf (sched_dump, " predicated");
7600 fprintf (sched_dump, "\n");
7601 }
7602
7603 adjust_priority (next);
7604
7605 return fix_tick_ready (next);
7606 }
7607
7608 /* Calculate INSN_TICK of NEXT and add it to either ready or queue list. */
7609 static int
7610 fix_tick_ready (rtx_insn *next)
7611 {
7612 int tick, delay;
7613
7614 if (!DEBUG_INSN_P (next) && !sd_lists_empty_p (next, SD_LIST_RES_BACK))
7615 {
7616 int full_p;
7617 sd_iterator_def sd_it;
7618 dep_t dep;
7619
7620 tick = INSN_TICK (next);
7621 /* if tick is not equal to INVALID_TICK, then update
7622 INSN_TICK of NEXT with the most recent resolved dependence
7623 cost. Otherwise, recalculate from scratch. */
7624 full_p = (tick == INVALID_TICK);
7625
7626 FOR_EACH_DEP (next, SD_LIST_RES_BACK, sd_it, dep)
7627 {
7628 rtx_insn *pro = DEP_PRO (dep);
7629 int tick1;
7630
7631 gcc_assert (INSN_TICK (pro) >= MIN_TICK);
7632
7633 tick1 = INSN_TICK (pro) + dep_cost (dep);
7634 if (tick1 > tick)
7635 tick = tick1;
7636
7637 if (!full_p)
7638 break;
7639 }
7640 }
7641 else
7642 tick = -1;
7643
7644 INSN_TICK (next) = tick;
7645
7646 delay = tick - clock_var;
7647 if (delay <= 0 || sched_pressure != SCHED_PRESSURE_NONE || sched_fusion)
7648 delay = QUEUE_READY;
7649
7650 change_queue_index (next, delay);
7651
7652 return delay;
7653 }
7654
7655 /* Move NEXT to the proper queue list with (DELAY >= 1),
7656 or add it to the ready list (DELAY == QUEUE_READY),
7657 or remove it from ready and queue lists at all (DELAY == QUEUE_NOWHERE). */
7658 static void
7659 change_queue_index (rtx_insn *next, int delay)
7660 {
7661 int i = QUEUE_INDEX (next);
7662
7663 gcc_assert (QUEUE_NOWHERE <= delay && delay <= max_insn_queue_index
7664 && delay != 0);
7665 gcc_assert (i != QUEUE_SCHEDULED);
7666
7667 if ((delay > 0 && NEXT_Q_AFTER (q_ptr, delay) == i)
7668 || (delay < 0 && delay == i))
7669 /* We have nothing to do. */
7670 return;
7671
7672 /* Remove NEXT from wherever it is now. */
7673 if (i == QUEUE_READY)
7674 ready_remove_insn (next);
7675 else if (i >= 0)
7676 queue_remove (next);
7677
7678 /* Add it to the proper place. */
7679 if (delay == QUEUE_READY)
7680 ready_add (readyp, next, false);
7681 else if (delay >= 1)
7682 queue_insn (next, delay, "change queue index");
7683
7684 if (sched_verbose >= 2)
7685 {
7686 fprintf (sched_dump, ";;\t\ttick updated: insn %s",
7687 (*current_sched_info->print_insn) (next, 0));
7688
7689 if (delay == QUEUE_READY)
7690 fprintf (sched_dump, " into ready\n");
7691 else if (delay >= 1)
7692 fprintf (sched_dump, " into queue with cost=%d\n", delay);
7693 else
7694 fprintf (sched_dump, " removed from ready or queue lists\n");
7695 }
7696 }
7697
7698 static int sched_ready_n_insns = -1;
7699
7700 /* Initialize per region data structures. */
7701 void
7702 sched_extend_ready_list (int new_sched_ready_n_insns)
7703 {
7704 int i;
7705
7706 if (sched_ready_n_insns == -1)
7707 /* At the first call we need to initialize one more choice_stack
7708 entry. */
7709 {
7710 i = 0;
7711 sched_ready_n_insns = 0;
7712 scheduled_insns.reserve (new_sched_ready_n_insns);
7713 }
7714 else
7715 i = sched_ready_n_insns + 1;
7716
7717 ready.veclen = new_sched_ready_n_insns + issue_rate;
7718 ready.vec = XRESIZEVEC (rtx_insn *, ready.vec, ready.veclen);
7719
7720 gcc_assert (new_sched_ready_n_insns >= sched_ready_n_insns);
7721
7722 ready_try = (signed char *) xrecalloc (ready_try, new_sched_ready_n_insns,
7723 sched_ready_n_insns,
7724 sizeof (*ready_try));
7725
7726 /* We allocate +1 element to save initial state in the choice_stack[0]
7727 entry. */
7728 choice_stack = XRESIZEVEC (struct choice_entry, choice_stack,
7729 new_sched_ready_n_insns + 1);
7730
7731 for (; i <= new_sched_ready_n_insns; i++)
7732 {
7733 choice_stack[i].state = xmalloc (dfa_state_size);
7734
7735 if (targetm.sched.first_cycle_multipass_init)
7736 targetm.sched.first_cycle_multipass_init (&(choice_stack[i]
7737 .target_data));
7738 }
7739
7740 sched_ready_n_insns = new_sched_ready_n_insns;
7741 }
7742
7743 /* Free per region data structures. */
7744 void
7745 sched_finish_ready_list (void)
7746 {
7747 int i;
7748
7749 free (ready.vec);
7750 ready.vec = NULL;
7751 ready.veclen = 0;
7752
7753 free (ready_try);
7754 ready_try = NULL;
7755
7756 for (i = 0; i <= sched_ready_n_insns; i++)
7757 {
7758 if (targetm.sched.first_cycle_multipass_fini)
7759 targetm.sched.first_cycle_multipass_fini (&(choice_stack[i]
7760 .target_data));
7761
7762 free (choice_stack [i].state);
7763 }
7764 free (choice_stack);
7765 choice_stack = NULL;
7766
7767 sched_ready_n_insns = -1;
7768 }
7769
7770 static int
7771 haifa_luid_for_non_insn (rtx x)
7772 {
7773 gcc_assert (NOTE_P (x) || LABEL_P (x));
7774
7775 return 0;
7776 }
7777
7778 /* Generates recovery code for INSN. */
7779 static void
7780 generate_recovery_code (rtx_insn *insn)
7781 {
7782 if (TODO_SPEC (insn) & BEGIN_SPEC)
7783 begin_speculative_block (insn);
7784
7785 /* Here we have insn with no dependencies to
7786 instructions other then CHECK_SPEC ones. */
7787
7788 if (TODO_SPEC (insn) & BE_IN_SPEC)
7789 add_to_speculative_block (insn);
7790 }
7791
7792 /* Helper function.
7793 Tries to add speculative dependencies of type FS between instructions
7794 in deps_list L and TWIN. */
7795 static void
7796 process_insn_forw_deps_be_in_spec (rtx_insn *insn, rtx_insn *twin, ds_t fs)
7797 {
7798 sd_iterator_def sd_it;
7799 dep_t dep;
7800
7801 FOR_EACH_DEP (insn, SD_LIST_FORW, sd_it, dep)
7802 {
7803 ds_t ds;
7804 rtx_insn *consumer;
7805
7806 consumer = DEP_CON (dep);
7807
7808 ds = DEP_STATUS (dep);
7809
7810 if (/* If we want to create speculative dep. */
7811 fs
7812 /* And we can do that because this is a true dep. */
7813 && (ds & DEP_TYPES) == DEP_TRUE)
7814 {
7815 gcc_assert (!(ds & BE_IN_SPEC));
7816
7817 if (/* If this dep can be overcome with 'begin speculation'. */
7818 ds & BEGIN_SPEC)
7819 /* Then we have a choice: keep the dep 'begin speculative'
7820 or transform it into 'be in speculative'. */
7821 {
7822 if (/* In try_ready we assert that if insn once became ready
7823 it can be removed from the ready (or queue) list only
7824 due to backend decision. Hence we can't let the
7825 probability of the speculative dep to decrease. */
7826 ds_weak (ds) <= ds_weak (fs))
7827 {
7828 ds_t new_ds;
7829
7830 new_ds = (ds & ~BEGIN_SPEC) | fs;
7831
7832 if (/* consumer can 'be in speculative'. */
7833 sched_insn_is_legitimate_for_speculation_p (consumer,
7834 new_ds))
7835 /* Transform it to be in speculative. */
7836 ds = new_ds;
7837 }
7838 }
7839 else
7840 /* Mark the dep as 'be in speculative'. */
7841 ds |= fs;
7842 }
7843
7844 {
7845 dep_def _new_dep, *new_dep = &_new_dep;
7846
7847 init_dep_1 (new_dep, twin, consumer, DEP_TYPE (dep), ds);
7848 sd_add_dep (new_dep, false);
7849 }
7850 }
7851 }
7852
7853 /* Generates recovery code for BEGIN speculative INSN. */
7854 static void
7855 begin_speculative_block (rtx_insn *insn)
7856 {
7857 if (TODO_SPEC (insn) & BEGIN_DATA)
7858 nr_begin_data++;
7859 if (TODO_SPEC (insn) & BEGIN_CONTROL)
7860 nr_begin_control++;
7861
7862 create_check_block_twin (insn, false);
7863
7864 TODO_SPEC (insn) &= ~BEGIN_SPEC;
7865 }
7866
7867 static void haifa_init_insn (rtx_insn *);
7868
7869 /* Generates recovery code for BE_IN speculative INSN. */
7870 static void
7871 add_to_speculative_block (rtx_insn *insn)
7872 {
7873 ds_t ts;
7874 sd_iterator_def sd_it;
7875 dep_t dep;
7876 rtx_insn_list *twins = NULL;
7877 rtx_vec_t priorities_roots;
7878
7879 ts = TODO_SPEC (insn);
7880 gcc_assert (!(ts & ~BE_IN_SPEC));
7881
7882 if (ts & BE_IN_DATA)
7883 nr_be_in_data++;
7884 if (ts & BE_IN_CONTROL)
7885 nr_be_in_control++;
7886
7887 TODO_SPEC (insn) &= ~BE_IN_SPEC;
7888 gcc_assert (!TODO_SPEC (insn));
7889
7890 DONE_SPEC (insn) |= ts;
7891
7892 /* First we convert all simple checks to branchy. */
7893 for (sd_it = sd_iterator_start (insn, SD_LIST_SPEC_BACK);
7894 sd_iterator_cond (&sd_it, &dep);)
7895 {
7896 rtx_insn *check = DEP_PRO (dep);
7897
7898 if (IS_SPECULATION_SIMPLE_CHECK_P (check))
7899 {
7900 create_check_block_twin (check, true);
7901
7902 /* Restart search. */
7903 sd_it = sd_iterator_start (insn, SD_LIST_SPEC_BACK);
7904 }
7905 else
7906 /* Continue search. */
7907 sd_iterator_next (&sd_it);
7908 }
7909
7910 priorities_roots.create (0);
7911 clear_priorities (insn, &priorities_roots);
7912
7913 while (1)
7914 {
7915 rtx_insn *check, *twin;
7916 basic_block rec;
7917
7918 /* Get the first backward dependency of INSN. */
7919 sd_it = sd_iterator_start (insn, SD_LIST_SPEC_BACK);
7920 if (!sd_iterator_cond (&sd_it, &dep))
7921 /* INSN has no backward dependencies left. */
7922 break;
7923
7924 gcc_assert ((DEP_STATUS (dep) & BEGIN_SPEC) == 0
7925 && (DEP_STATUS (dep) & BE_IN_SPEC) != 0
7926 && (DEP_STATUS (dep) & DEP_TYPES) == DEP_TRUE);
7927
7928 check = DEP_PRO (dep);
7929
7930 gcc_assert (!IS_SPECULATION_CHECK_P (check) && !ORIG_PAT (check)
7931 && QUEUE_INDEX (check) == QUEUE_NOWHERE);
7932
7933 rec = BLOCK_FOR_INSN (check);
7934
7935 twin = emit_insn_before (copy_insn (PATTERN (insn)), BB_END (rec));
7936 haifa_init_insn (twin);
7937
7938 sd_copy_back_deps (twin, insn, true);
7939
7940 if (sched_verbose && spec_info->dump)
7941 /* INSN_BB (insn) isn't determined for twin insns yet.
7942 So we can't use current_sched_info->print_insn. */
7943 fprintf (spec_info->dump, ";;\t\tGenerated twin insn : %d/rec%d\n",
7944 INSN_UID (twin), rec->index);
7945
7946 twins = alloc_INSN_LIST (twin, twins);
7947
7948 /* Add dependences between TWIN and all appropriate
7949 instructions from REC. */
7950 FOR_EACH_DEP (insn, SD_LIST_SPEC_BACK, sd_it, dep)
7951 {
7952 rtx_insn *pro = DEP_PRO (dep);
7953
7954 gcc_assert (DEP_TYPE (dep) == REG_DEP_TRUE);
7955
7956 /* INSN might have dependencies from the instructions from
7957 several recovery blocks. At this iteration we process those
7958 producers that reside in REC. */
7959 if (BLOCK_FOR_INSN (pro) == rec)
7960 {
7961 dep_def _new_dep, *new_dep = &_new_dep;
7962
7963 init_dep (new_dep, pro, twin, REG_DEP_TRUE);
7964 sd_add_dep (new_dep, false);
7965 }
7966 }
7967
7968 process_insn_forw_deps_be_in_spec (insn, twin, ts);
7969
7970 /* Remove all dependencies between INSN and insns in REC. */
7971 for (sd_it = sd_iterator_start (insn, SD_LIST_SPEC_BACK);
7972 sd_iterator_cond (&sd_it, &dep);)
7973 {
7974 rtx_insn *pro = DEP_PRO (dep);
7975
7976 if (BLOCK_FOR_INSN (pro) == rec)
7977 sd_delete_dep (sd_it);
7978 else
7979 sd_iterator_next (&sd_it);
7980 }
7981 }
7982
7983 /* We couldn't have added the dependencies between INSN and TWINS earlier
7984 because that would make TWINS appear in the INSN_BACK_DEPS (INSN). */
7985 while (twins)
7986 {
7987 rtx_insn *twin;
7988 rtx_insn_list *next_node;
7989
7990 twin = twins->insn ();
7991
7992 {
7993 dep_def _new_dep, *new_dep = &_new_dep;
7994
7995 init_dep (new_dep, insn, twin, REG_DEP_OUTPUT);
7996 sd_add_dep (new_dep, false);
7997 }
7998
7999 next_node = twins->next ();
8000 free_INSN_LIST_node (twins);
8001 twins = next_node;
8002 }
8003
8004 calc_priorities (priorities_roots);
8005 priorities_roots.release ();
8006 }
8007
8008 /* Extends and fills with zeros (only the new part) array pointed to by P. */
8009 void *
8010 xrecalloc (void *p, size_t new_nmemb, size_t old_nmemb, size_t size)
8011 {
8012 gcc_assert (new_nmemb >= old_nmemb);
8013 p = XRESIZEVAR (void, p, new_nmemb * size);
8014 memset (((char *) p) + old_nmemb * size, 0, (new_nmemb - old_nmemb) * size);
8015 return p;
8016 }
8017
8018 /* Helper function.
8019 Find fallthru edge from PRED. */
8020 edge
8021 find_fallthru_edge_from (basic_block pred)
8022 {
8023 edge e;
8024 basic_block succ;
8025
8026 succ = pred->next_bb;
8027 gcc_assert (succ->prev_bb == pred);
8028
8029 if (EDGE_COUNT (pred->succs) <= EDGE_COUNT (succ->preds))
8030 {
8031 e = find_fallthru_edge (pred->succs);
8032
8033 if (e)
8034 {
8035 gcc_assert (e->dest == succ);
8036 return e;
8037 }
8038 }
8039 else
8040 {
8041 e = find_fallthru_edge (succ->preds);
8042
8043 if (e)
8044 {
8045 gcc_assert (e->src == pred);
8046 return e;
8047 }
8048 }
8049
8050 return NULL;
8051 }
8052
8053 /* Extend per basic block data structures. */
8054 static void
8055 sched_extend_bb (void)
8056 {
8057 /* The following is done to keep current_sched_info->next_tail non null. */
8058 rtx_insn *end = BB_END (EXIT_BLOCK_PTR_FOR_FN (cfun)->prev_bb);
8059 rtx_insn *insn = DEBUG_INSN_P (end) ? prev_nondebug_insn (end) : end;
8060 if (NEXT_INSN (end) == 0
8061 || (!NOTE_P (insn)
8062 && !LABEL_P (insn)
8063 /* Don't emit a NOTE if it would end up before a BARRIER. */
8064 && !BARRIER_P (NEXT_INSN (end))))
8065 {
8066 rtx_note *note = emit_note_after (NOTE_INSN_DELETED, end);
8067 /* Make note appear outside BB. */
8068 set_block_for_insn (note, NULL);
8069 BB_END (EXIT_BLOCK_PTR_FOR_FN (cfun)->prev_bb) = end;
8070 }
8071 }
8072
8073 /* Init per basic block data structures. */
8074 void
8075 sched_init_bbs (void)
8076 {
8077 sched_extend_bb ();
8078 }
8079
8080 /* Initialize BEFORE_RECOVERY variable. */
8081 static void
8082 init_before_recovery (basic_block *before_recovery_ptr)
8083 {
8084 basic_block last;
8085 edge e;
8086
8087 last = EXIT_BLOCK_PTR_FOR_FN (cfun)->prev_bb;
8088 e = find_fallthru_edge_from (last);
8089
8090 if (e)
8091 {
8092 /* We create two basic blocks:
8093 1. Single instruction block is inserted right after E->SRC
8094 and has jump to
8095 2. Empty block right before EXIT_BLOCK.
8096 Between these two blocks recovery blocks will be emitted. */
8097
8098 basic_block single, empty;
8099 rtx_insn *x;
8100 rtx label;
8101
8102 /* If the fallthrough edge to exit we've found is from the block we've
8103 created before, don't do anything more. */
8104 if (last == after_recovery)
8105 return;
8106
8107 adding_bb_to_current_region_p = false;
8108
8109 single = sched_create_empty_bb (last);
8110 empty = sched_create_empty_bb (single);
8111
8112 /* Add new blocks to the root loop. */
8113 if (current_loops != NULL)
8114 {
8115 add_bb_to_loop (single, (*current_loops->larray)[0]);
8116 add_bb_to_loop (empty, (*current_loops->larray)[0]);
8117 }
8118
8119 single->count = last->count;
8120 empty->count = last->count;
8121 single->frequency = last->frequency;
8122 empty->frequency = last->frequency;
8123 BB_COPY_PARTITION (single, last);
8124 BB_COPY_PARTITION (empty, last);
8125
8126 redirect_edge_succ (e, single);
8127 make_single_succ_edge (single, empty, 0);
8128 make_single_succ_edge (empty, EXIT_BLOCK_PTR_FOR_FN (cfun),
8129 EDGE_FALLTHRU);
8130
8131 label = block_label (empty);
8132 x = emit_jump_insn_after (gen_jump (label), BB_END (single));
8133 JUMP_LABEL (x) = label;
8134 LABEL_NUSES (label)++;
8135 haifa_init_insn (x);
8136
8137 emit_barrier_after (x);
8138
8139 sched_init_only_bb (empty, NULL);
8140 sched_init_only_bb (single, NULL);
8141 sched_extend_bb ();
8142
8143 adding_bb_to_current_region_p = true;
8144 before_recovery = single;
8145 after_recovery = empty;
8146
8147 if (before_recovery_ptr)
8148 *before_recovery_ptr = before_recovery;
8149
8150 if (sched_verbose >= 2 && spec_info->dump)
8151 fprintf (spec_info->dump,
8152 ";;\t\tFixed fallthru to EXIT : %d->>%d->%d->>EXIT\n",
8153 last->index, single->index, empty->index);
8154 }
8155 else
8156 before_recovery = last;
8157 }
8158
8159 /* Returns new recovery block. */
8160 basic_block
8161 sched_create_recovery_block (basic_block *before_recovery_ptr)
8162 {
8163 rtx label;
8164 rtx_insn *barrier;
8165 basic_block rec;
8166
8167 haifa_recovery_bb_recently_added_p = true;
8168 haifa_recovery_bb_ever_added_p = true;
8169
8170 init_before_recovery (before_recovery_ptr);
8171
8172 barrier = get_last_bb_insn (before_recovery);
8173 gcc_assert (BARRIER_P (barrier));
8174
8175 label = emit_label_after (gen_label_rtx (), barrier);
8176
8177 rec = create_basic_block (label, label, before_recovery);
8178
8179 /* A recovery block always ends with an unconditional jump. */
8180 emit_barrier_after (BB_END (rec));
8181
8182 if (BB_PARTITION (before_recovery) != BB_UNPARTITIONED)
8183 BB_SET_PARTITION (rec, BB_COLD_PARTITION);
8184
8185 if (sched_verbose && spec_info->dump)
8186 fprintf (spec_info->dump, ";;\t\tGenerated recovery block rec%d\n",
8187 rec->index);
8188
8189 return rec;
8190 }
8191
8192 /* Create edges: FIRST_BB -> REC; FIRST_BB -> SECOND_BB; REC -> SECOND_BB
8193 and emit necessary jumps. */
8194 void
8195 sched_create_recovery_edges (basic_block first_bb, basic_block rec,
8196 basic_block second_bb)
8197 {
8198 rtx label;
8199 rtx jump;
8200 int edge_flags;
8201
8202 /* This is fixing of incoming edge. */
8203 /* ??? Which other flags should be specified? */
8204 if (BB_PARTITION (first_bb) != BB_PARTITION (rec))
8205 /* Partition type is the same, if it is "unpartitioned". */
8206 edge_flags = EDGE_CROSSING;
8207 else
8208 edge_flags = 0;
8209
8210 make_edge (first_bb, rec, edge_flags);
8211 label = block_label (second_bb);
8212 jump = emit_jump_insn_after (gen_jump (label), BB_END (rec));
8213 JUMP_LABEL (jump) = label;
8214 LABEL_NUSES (label)++;
8215
8216 if (BB_PARTITION (second_bb) != BB_PARTITION (rec))
8217 /* Partition type is the same, if it is "unpartitioned". */
8218 {
8219 /* Rewritten from cfgrtl.c. */
8220 if (flag_reorder_blocks_and_partition
8221 && targetm_common.have_named_sections)
8222 {
8223 /* We don't need the same note for the check because
8224 any_condjump_p (check) == true. */
8225 CROSSING_JUMP_P (jump) = 1;
8226 }
8227 edge_flags = EDGE_CROSSING;
8228 }
8229 else
8230 edge_flags = 0;
8231
8232 make_single_succ_edge (rec, second_bb, edge_flags);
8233 if (dom_info_available_p (CDI_DOMINATORS))
8234 set_immediate_dominator (CDI_DOMINATORS, rec, first_bb);
8235 }
8236
8237 /* This function creates recovery code for INSN. If MUTATE_P is nonzero,
8238 INSN is a simple check, that should be converted to branchy one. */
8239 static void
8240 create_check_block_twin (rtx_insn *insn, bool mutate_p)
8241 {
8242 basic_block rec;
8243 rtx_insn *label, *check, *twin;
8244 rtx check_pat;
8245 ds_t fs;
8246 sd_iterator_def sd_it;
8247 dep_t dep;
8248 dep_def _new_dep, *new_dep = &_new_dep;
8249 ds_t todo_spec;
8250
8251 gcc_assert (ORIG_PAT (insn) != NULL_RTX);
8252
8253 if (!mutate_p)
8254 todo_spec = TODO_SPEC (insn);
8255 else
8256 {
8257 gcc_assert (IS_SPECULATION_SIMPLE_CHECK_P (insn)
8258 && (TODO_SPEC (insn) & SPECULATIVE) == 0);
8259
8260 todo_spec = CHECK_SPEC (insn);
8261 }
8262
8263 todo_spec &= SPECULATIVE;
8264
8265 /* Create recovery block. */
8266 if (mutate_p || targetm.sched.needs_block_p (todo_spec))
8267 {
8268 rec = sched_create_recovery_block (NULL);
8269 label = BB_HEAD (rec);
8270 }
8271 else
8272 {
8273 rec = EXIT_BLOCK_PTR_FOR_FN (cfun);
8274 label = NULL;
8275 }
8276
8277 /* Emit CHECK. */
8278 check_pat = targetm.sched.gen_spec_check (insn, label, todo_spec);
8279
8280 if (rec != EXIT_BLOCK_PTR_FOR_FN (cfun))
8281 {
8282 /* To have mem_reg alive at the beginning of second_bb,
8283 we emit check BEFORE insn, so insn after splitting
8284 insn will be at the beginning of second_bb, which will
8285 provide us with the correct life information. */
8286 check = emit_jump_insn_before (check_pat, insn);
8287 JUMP_LABEL (check) = label;
8288 LABEL_NUSES (label)++;
8289 }
8290 else
8291 check = emit_insn_before (check_pat, insn);
8292
8293 /* Extend data structures. */
8294 haifa_init_insn (check);
8295
8296 /* CHECK is being added to current region. Extend ready list. */
8297 gcc_assert (sched_ready_n_insns != -1);
8298 sched_extend_ready_list (sched_ready_n_insns + 1);
8299
8300 if (current_sched_info->add_remove_insn)
8301 current_sched_info->add_remove_insn (insn, 0);
8302
8303 RECOVERY_BLOCK (check) = rec;
8304
8305 if (sched_verbose && spec_info->dump)
8306 fprintf (spec_info->dump, ";;\t\tGenerated check insn : %s\n",
8307 (*current_sched_info->print_insn) (check, 0));
8308
8309 gcc_assert (ORIG_PAT (insn));
8310
8311 /* Initialize TWIN (twin is a duplicate of original instruction
8312 in the recovery block). */
8313 if (rec != EXIT_BLOCK_PTR_FOR_FN (cfun))
8314 {
8315 sd_iterator_def sd_it;
8316 dep_t dep;
8317
8318 FOR_EACH_DEP (insn, SD_LIST_RES_BACK, sd_it, dep)
8319 if ((DEP_STATUS (dep) & DEP_OUTPUT) != 0)
8320 {
8321 struct _dep _dep2, *dep2 = &_dep2;
8322
8323 init_dep (dep2, DEP_PRO (dep), check, REG_DEP_TRUE);
8324
8325 sd_add_dep (dep2, true);
8326 }
8327
8328 twin = emit_insn_after (ORIG_PAT (insn), BB_END (rec));
8329 haifa_init_insn (twin);
8330
8331 if (sched_verbose && spec_info->dump)
8332 /* INSN_BB (insn) isn't determined for twin insns yet.
8333 So we can't use current_sched_info->print_insn. */
8334 fprintf (spec_info->dump, ";;\t\tGenerated twin insn : %d/rec%d\n",
8335 INSN_UID (twin), rec->index);
8336 }
8337 else
8338 {
8339 ORIG_PAT (check) = ORIG_PAT (insn);
8340 HAS_INTERNAL_DEP (check) = 1;
8341 twin = check;
8342 /* ??? We probably should change all OUTPUT dependencies to
8343 (TRUE | OUTPUT). */
8344 }
8345
8346 /* Copy all resolved back dependencies of INSN to TWIN. This will
8347 provide correct value for INSN_TICK (TWIN). */
8348 sd_copy_back_deps (twin, insn, true);
8349
8350 if (rec != EXIT_BLOCK_PTR_FOR_FN (cfun))
8351 /* In case of branchy check, fix CFG. */
8352 {
8353 basic_block first_bb, second_bb;
8354 rtx_insn *jump;
8355
8356 first_bb = BLOCK_FOR_INSN (check);
8357 second_bb = sched_split_block (first_bb, check);
8358
8359 sched_create_recovery_edges (first_bb, rec, second_bb);
8360
8361 sched_init_only_bb (second_bb, first_bb);
8362 sched_init_only_bb (rec, EXIT_BLOCK_PTR_FOR_FN (cfun));
8363
8364 jump = BB_END (rec);
8365 haifa_init_insn (jump);
8366 }
8367
8368 /* Move backward dependences from INSN to CHECK and
8369 move forward dependences from INSN to TWIN. */
8370
8371 /* First, create dependencies between INSN's producers and CHECK & TWIN. */
8372 FOR_EACH_DEP (insn, SD_LIST_BACK, sd_it, dep)
8373 {
8374 rtx_insn *pro = DEP_PRO (dep);
8375 ds_t ds;
8376
8377 /* If BEGIN_DATA: [insn ~~TRUE~~> producer]:
8378 check --TRUE--> producer ??? or ANTI ???
8379 twin --TRUE--> producer
8380 twin --ANTI--> check
8381
8382 If BEGIN_CONTROL: [insn ~~ANTI~~> producer]:
8383 check --ANTI--> producer
8384 twin --ANTI--> producer
8385 twin --ANTI--> check
8386
8387 If BE_IN_SPEC: [insn ~~TRUE~~> producer]:
8388 check ~~TRUE~~> producer
8389 twin ~~TRUE~~> producer
8390 twin --ANTI--> check */
8391
8392 ds = DEP_STATUS (dep);
8393
8394 if (ds & BEGIN_SPEC)
8395 {
8396 gcc_assert (!mutate_p);
8397 ds &= ~BEGIN_SPEC;
8398 }
8399
8400 init_dep_1 (new_dep, pro, check, DEP_TYPE (dep), ds);
8401 sd_add_dep (new_dep, false);
8402
8403 if (rec != EXIT_BLOCK_PTR_FOR_FN (cfun))
8404 {
8405 DEP_CON (new_dep) = twin;
8406 sd_add_dep (new_dep, false);
8407 }
8408 }
8409
8410 /* Second, remove backward dependencies of INSN. */
8411 for (sd_it = sd_iterator_start (insn, SD_LIST_SPEC_BACK);
8412 sd_iterator_cond (&sd_it, &dep);)
8413 {
8414 if ((DEP_STATUS (dep) & BEGIN_SPEC)
8415 || mutate_p)
8416 /* We can delete this dep because we overcome it with
8417 BEGIN_SPECULATION. */
8418 sd_delete_dep (sd_it);
8419 else
8420 sd_iterator_next (&sd_it);
8421 }
8422
8423 /* Future Speculations. Determine what BE_IN speculations will be like. */
8424 fs = 0;
8425
8426 /* Fields (DONE_SPEC (x) & BEGIN_SPEC) and CHECK_SPEC (x) are set only
8427 here. */
8428
8429 gcc_assert (!DONE_SPEC (insn));
8430
8431 if (!mutate_p)
8432 {
8433 ds_t ts = TODO_SPEC (insn);
8434
8435 DONE_SPEC (insn) = ts & BEGIN_SPEC;
8436 CHECK_SPEC (check) = ts & BEGIN_SPEC;
8437
8438 /* Luckiness of future speculations solely depends upon initial
8439 BEGIN speculation. */
8440 if (ts & BEGIN_DATA)
8441 fs = set_dep_weak (fs, BE_IN_DATA, get_dep_weak (ts, BEGIN_DATA));
8442 if (ts & BEGIN_CONTROL)
8443 fs = set_dep_weak (fs, BE_IN_CONTROL,
8444 get_dep_weak (ts, BEGIN_CONTROL));
8445 }
8446 else
8447 CHECK_SPEC (check) = CHECK_SPEC (insn);
8448
8449 /* Future speculations: call the helper. */
8450 process_insn_forw_deps_be_in_spec (insn, twin, fs);
8451
8452 if (rec != EXIT_BLOCK_PTR_FOR_FN (cfun))
8453 {
8454 /* Which types of dependencies should we use here is,
8455 generally, machine-dependent question... But, for now,
8456 it is not. */
8457
8458 if (!mutate_p)
8459 {
8460 init_dep (new_dep, insn, check, REG_DEP_TRUE);
8461 sd_add_dep (new_dep, false);
8462
8463 init_dep (new_dep, insn, twin, REG_DEP_OUTPUT);
8464 sd_add_dep (new_dep, false);
8465 }
8466 else
8467 {
8468 if (spec_info->dump)
8469 fprintf (spec_info->dump, ";;\t\tRemoved simple check : %s\n",
8470 (*current_sched_info->print_insn) (insn, 0));
8471
8472 /* Remove all dependencies of the INSN. */
8473 {
8474 sd_it = sd_iterator_start (insn, (SD_LIST_FORW
8475 | SD_LIST_BACK
8476 | SD_LIST_RES_BACK));
8477 while (sd_iterator_cond (&sd_it, &dep))
8478 sd_delete_dep (sd_it);
8479 }
8480
8481 /* If former check (INSN) already was moved to the ready (or queue)
8482 list, add new check (CHECK) there too. */
8483 if (QUEUE_INDEX (insn) != QUEUE_NOWHERE)
8484 try_ready (check);
8485
8486 /* Remove old check from instruction stream and free its
8487 data. */
8488 sched_remove_insn (insn);
8489 }
8490
8491 init_dep (new_dep, check, twin, REG_DEP_ANTI);
8492 sd_add_dep (new_dep, false);
8493 }
8494 else
8495 {
8496 init_dep_1 (new_dep, insn, check, REG_DEP_TRUE, DEP_TRUE | DEP_OUTPUT);
8497 sd_add_dep (new_dep, false);
8498 }
8499
8500 if (!mutate_p)
8501 /* Fix priorities. If MUTATE_P is nonzero, this is not necessary,
8502 because it'll be done later in add_to_speculative_block. */
8503 {
8504 rtx_vec_t priorities_roots = rtx_vec_t ();
8505
8506 clear_priorities (twin, &priorities_roots);
8507 calc_priorities (priorities_roots);
8508 priorities_roots.release ();
8509 }
8510 }
8511
8512 /* Removes dependency between instructions in the recovery block REC
8513 and usual region instructions. It keeps inner dependences so it
8514 won't be necessary to recompute them. */
8515 static void
8516 fix_recovery_deps (basic_block rec)
8517 {
8518 rtx_insn *note, *insn, *jump;
8519 rtx_insn_list *ready_list = 0;
8520 bitmap_head in_ready;
8521 rtx_insn_list *link;
8522
8523 bitmap_initialize (&in_ready, 0);
8524
8525 /* NOTE - a basic block note. */
8526 note = NEXT_INSN (BB_HEAD (rec));
8527 gcc_assert (NOTE_INSN_BASIC_BLOCK_P (note));
8528 insn = BB_END (rec);
8529 gcc_assert (JUMP_P (insn));
8530 insn = PREV_INSN (insn);
8531
8532 do
8533 {
8534 sd_iterator_def sd_it;
8535 dep_t dep;
8536
8537 for (sd_it = sd_iterator_start (insn, SD_LIST_FORW);
8538 sd_iterator_cond (&sd_it, &dep);)
8539 {
8540 rtx_insn *consumer = DEP_CON (dep);
8541
8542 if (BLOCK_FOR_INSN (consumer) != rec)
8543 {
8544 sd_delete_dep (sd_it);
8545
8546 if (bitmap_set_bit (&in_ready, INSN_LUID (consumer)))
8547 ready_list = alloc_INSN_LIST (consumer, ready_list);
8548 }
8549 else
8550 {
8551 gcc_assert ((DEP_STATUS (dep) & DEP_TYPES) == DEP_TRUE);
8552
8553 sd_iterator_next (&sd_it);
8554 }
8555 }
8556
8557 insn = PREV_INSN (insn);
8558 }
8559 while (insn != note);
8560
8561 bitmap_clear (&in_ready);
8562
8563 /* Try to add instructions to the ready or queue list. */
8564 for (link = ready_list; link; link = link->next ())
8565 try_ready (link->insn ());
8566 free_INSN_LIST_list (&ready_list);
8567
8568 /* Fixing jump's dependences. */
8569 insn = BB_HEAD (rec);
8570 jump = BB_END (rec);
8571
8572 gcc_assert (LABEL_P (insn));
8573 insn = NEXT_INSN (insn);
8574
8575 gcc_assert (NOTE_INSN_BASIC_BLOCK_P (insn));
8576 add_jump_dependencies (insn, jump);
8577 }
8578
8579 /* Change pattern of INSN to NEW_PAT. Invalidate cached haifa
8580 instruction data. */
8581 static bool
8582 haifa_change_pattern (rtx_insn *insn, rtx new_pat)
8583 {
8584 int t;
8585
8586 t = validate_change (insn, &PATTERN (insn), new_pat, 0);
8587 if (!t)
8588 return false;
8589
8590 update_insn_after_change (insn);
8591 return true;
8592 }
8593
8594 /* -1 - can't speculate,
8595 0 - for speculation with REQUEST mode it is OK to use
8596 current instruction pattern,
8597 1 - need to change pattern for *NEW_PAT to be speculative. */
8598 int
8599 sched_speculate_insn (rtx_insn *insn, ds_t request, rtx *new_pat)
8600 {
8601 gcc_assert (current_sched_info->flags & DO_SPECULATION
8602 && (request & SPECULATIVE)
8603 && sched_insn_is_legitimate_for_speculation_p (insn, request));
8604
8605 if ((request & spec_info->mask) != request)
8606 return -1;
8607
8608 if (request & BE_IN_SPEC
8609 && !(request & BEGIN_SPEC))
8610 return 0;
8611
8612 return targetm.sched.speculate_insn (insn, request, new_pat);
8613 }
8614
8615 static int
8616 haifa_speculate_insn (rtx_insn *insn, ds_t request, rtx *new_pat)
8617 {
8618 gcc_assert (sched_deps_info->generate_spec_deps
8619 && !IS_SPECULATION_CHECK_P (insn));
8620
8621 if (HAS_INTERNAL_DEP (insn)
8622 || SCHED_GROUP_P (insn))
8623 return -1;
8624
8625 return sched_speculate_insn (insn, request, new_pat);
8626 }
8627
8628 /* Print some information about block BB, which starts with HEAD and
8629 ends with TAIL, before scheduling it.
8630 I is zero, if scheduler is about to start with the fresh ebb. */
8631 static void
8632 dump_new_block_header (int i, basic_block bb, rtx_insn *head, rtx_insn *tail)
8633 {
8634 if (!i)
8635 fprintf (sched_dump,
8636 ";; ======================================================\n");
8637 else
8638 fprintf (sched_dump,
8639 ";; =====================ADVANCING TO=====================\n");
8640 fprintf (sched_dump,
8641 ";; -- basic block %d from %d to %d -- %s reload\n",
8642 bb->index, INSN_UID (head), INSN_UID (tail),
8643 (reload_completed ? "after" : "before"));
8644 fprintf (sched_dump,
8645 ";; ======================================================\n");
8646 fprintf (sched_dump, "\n");
8647 }
8648
8649 /* Unlink basic block notes and labels and saves them, so they
8650 can be easily restored. We unlink basic block notes in EBB to
8651 provide back-compatibility with the previous code, as target backends
8652 assume, that there'll be only instructions between
8653 current_sched_info->{head and tail}. We restore these notes as soon
8654 as we can.
8655 FIRST (LAST) is the first (last) basic block in the ebb.
8656 NB: In usual case (FIRST == LAST) nothing is really done. */
8657 void
8658 unlink_bb_notes (basic_block first, basic_block last)
8659 {
8660 /* We DON'T unlink basic block notes of the first block in the ebb. */
8661 if (first == last)
8662 return;
8663
8664 bb_header = XNEWVEC (rtx_insn *, last_basic_block_for_fn (cfun));
8665
8666 /* Make a sentinel. */
8667 if (last->next_bb != EXIT_BLOCK_PTR_FOR_FN (cfun))
8668 bb_header[last->next_bb->index] = 0;
8669
8670 first = first->next_bb;
8671 do
8672 {
8673 rtx_insn *prev, *label, *note, *next;
8674
8675 label = BB_HEAD (last);
8676 if (LABEL_P (label))
8677 note = NEXT_INSN (label);
8678 else
8679 note = label;
8680 gcc_assert (NOTE_INSN_BASIC_BLOCK_P (note));
8681
8682 prev = PREV_INSN (label);
8683 next = NEXT_INSN (note);
8684 gcc_assert (prev && next);
8685
8686 SET_NEXT_INSN (prev) = next;
8687 SET_PREV_INSN (next) = prev;
8688
8689 bb_header[last->index] = label;
8690
8691 if (last == first)
8692 break;
8693
8694 last = last->prev_bb;
8695 }
8696 while (1);
8697 }
8698
8699 /* Restore basic block notes.
8700 FIRST is the first basic block in the ebb. */
8701 static void
8702 restore_bb_notes (basic_block first)
8703 {
8704 if (!bb_header)
8705 return;
8706
8707 /* We DON'T unlink basic block notes of the first block in the ebb. */
8708 first = first->next_bb;
8709 /* Remember: FIRST is actually a second basic block in the ebb. */
8710
8711 while (first != EXIT_BLOCK_PTR_FOR_FN (cfun)
8712 && bb_header[first->index])
8713 {
8714 rtx_insn *prev, *label, *note, *next;
8715
8716 label = bb_header[first->index];
8717 prev = PREV_INSN (label);
8718 next = NEXT_INSN (prev);
8719
8720 if (LABEL_P (label))
8721 note = NEXT_INSN (label);
8722 else
8723 note = label;
8724 gcc_assert (NOTE_INSN_BASIC_BLOCK_P (note));
8725
8726 bb_header[first->index] = 0;
8727
8728 SET_NEXT_INSN (prev) = label;
8729 SET_NEXT_INSN (note) = next;
8730 SET_PREV_INSN (next) = note;
8731
8732 first = first->next_bb;
8733 }
8734
8735 free (bb_header);
8736 bb_header = 0;
8737 }
8738
8739 /* Helper function.
8740 Fix CFG after both in- and inter-block movement of
8741 control_flow_insn_p JUMP. */
8742 static void
8743 fix_jump_move (rtx_insn *jump)
8744 {
8745 basic_block bb, jump_bb, jump_bb_next;
8746
8747 bb = BLOCK_FOR_INSN (PREV_INSN (jump));
8748 jump_bb = BLOCK_FOR_INSN (jump);
8749 jump_bb_next = jump_bb->next_bb;
8750
8751 gcc_assert (common_sched_info->sched_pass_id == SCHED_EBB_PASS
8752 || IS_SPECULATION_BRANCHY_CHECK_P (jump));
8753
8754 if (!NOTE_INSN_BASIC_BLOCK_P (BB_END (jump_bb_next)))
8755 /* if jump_bb_next is not empty. */
8756 BB_END (jump_bb) = BB_END (jump_bb_next);
8757
8758 if (BB_END (bb) != PREV_INSN (jump))
8759 /* Then there are instruction after jump that should be placed
8760 to jump_bb_next. */
8761 BB_END (jump_bb_next) = BB_END (bb);
8762 else
8763 /* Otherwise jump_bb_next is empty. */
8764 BB_END (jump_bb_next) = NEXT_INSN (BB_HEAD (jump_bb_next));
8765
8766 /* To make assertion in move_insn happy. */
8767 BB_END (bb) = PREV_INSN (jump);
8768
8769 update_bb_for_insn (jump_bb_next);
8770 }
8771
8772 /* Fix CFG after interblock movement of control_flow_insn_p JUMP. */
8773 static void
8774 move_block_after_check (rtx_insn *jump)
8775 {
8776 basic_block bb, jump_bb, jump_bb_next;
8777 vec<edge, va_gc> *t;
8778
8779 bb = BLOCK_FOR_INSN (PREV_INSN (jump));
8780 jump_bb = BLOCK_FOR_INSN (jump);
8781 jump_bb_next = jump_bb->next_bb;
8782
8783 update_bb_for_insn (jump_bb);
8784
8785 gcc_assert (IS_SPECULATION_CHECK_P (jump)
8786 || IS_SPECULATION_CHECK_P (BB_END (jump_bb_next)));
8787
8788 unlink_block (jump_bb_next);
8789 link_block (jump_bb_next, bb);
8790
8791 t = bb->succs;
8792 bb->succs = 0;
8793 move_succs (&(jump_bb->succs), bb);
8794 move_succs (&(jump_bb_next->succs), jump_bb);
8795 move_succs (&t, jump_bb_next);
8796
8797 df_mark_solutions_dirty ();
8798
8799 common_sched_info->fix_recovery_cfg
8800 (bb->index, jump_bb->index, jump_bb_next->index);
8801 }
8802
8803 /* Helper function for move_block_after_check.
8804 This functions attaches edge vector pointed to by SUCCSP to
8805 block TO. */
8806 static void
8807 move_succs (vec<edge, va_gc> **succsp, basic_block to)
8808 {
8809 edge e;
8810 edge_iterator ei;
8811
8812 gcc_assert (to->succs == 0);
8813
8814 to->succs = *succsp;
8815
8816 FOR_EACH_EDGE (e, ei, to->succs)
8817 e->src = to;
8818
8819 *succsp = 0;
8820 }
8821
8822 /* Remove INSN from the instruction stream.
8823 INSN should have any dependencies. */
8824 static void
8825 sched_remove_insn (rtx_insn *insn)
8826 {
8827 sd_finish_insn (insn);
8828
8829 change_queue_index (insn, QUEUE_NOWHERE);
8830 current_sched_info->add_remove_insn (insn, 1);
8831 delete_insn (insn);
8832 }
8833
8834 /* Clear priorities of all instructions, that are forward dependent on INSN.
8835 Store in vector pointed to by ROOTS_PTR insns on which priority () should
8836 be invoked to initialize all cleared priorities. */
8837 static void
8838 clear_priorities (rtx_insn *insn, rtx_vec_t *roots_ptr)
8839 {
8840 sd_iterator_def sd_it;
8841 dep_t dep;
8842 bool insn_is_root_p = true;
8843
8844 gcc_assert (QUEUE_INDEX (insn) != QUEUE_SCHEDULED);
8845
8846 FOR_EACH_DEP (insn, SD_LIST_BACK, sd_it, dep)
8847 {
8848 rtx_insn *pro = DEP_PRO (dep);
8849
8850 if (INSN_PRIORITY_STATUS (pro) >= 0
8851 && QUEUE_INDEX (insn) != QUEUE_SCHEDULED)
8852 {
8853 /* If DEP doesn't contribute to priority then INSN itself should
8854 be added to priority roots. */
8855 if (contributes_to_priority_p (dep))
8856 insn_is_root_p = false;
8857
8858 INSN_PRIORITY_STATUS (pro) = -1;
8859 clear_priorities (pro, roots_ptr);
8860 }
8861 }
8862
8863 if (insn_is_root_p)
8864 roots_ptr->safe_push (insn);
8865 }
8866
8867 /* Recompute priorities of instructions, whose priorities might have been
8868 changed. ROOTS is a vector of instructions whose priority computation will
8869 trigger initialization of all cleared priorities. */
8870 static void
8871 calc_priorities (rtx_vec_t roots)
8872 {
8873 int i;
8874 rtx_insn *insn;
8875
8876 FOR_EACH_VEC_ELT (roots, i, insn)
8877 priority (insn);
8878 }
8879
8880
8881 /* Add dependences between JUMP and other instructions in the recovery
8882 block. INSN is the first insn the recovery block. */
8883 static void
8884 add_jump_dependencies (rtx_insn *insn, rtx_insn *jump)
8885 {
8886 do
8887 {
8888 insn = NEXT_INSN (insn);
8889 if (insn == jump)
8890 break;
8891
8892 if (dep_list_size (insn, SD_LIST_FORW) == 0)
8893 {
8894 dep_def _new_dep, *new_dep = &_new_dep;
8895
8896 init_dep (new_dep, insn, jump, REG_DEP_ANTI);
8897 sd_add_dep (new_dep, false);
8898 }
8899 }
8900 while (1);
8901
8902 gcc_assert (!sd_lists_empty_p (jump, SD_LIST_BACK));
8903 }
8904
8905 /* Extend data structures for logical insn UID. */
8906 void
8907 sched_extend_luids (void)
8908 {
8909 int new_luids_max_uid = get_max_uid () + 1;
8910
8911 sched_luids.safe_grow_cleared (new_luids_max_uid);
8912 }
8913
8914 /* Initialize LUID for INSN. */
8915 void
8916 sched_init_insn_luid (rtx_insn *insn)
8917 {
8918 int i = INSN_P (insn) ? 1 : common_sched_info->luid_for_non_insn (insn);
8919 int luid;
8920
8921 if (i >= 0)
8922 {
8923 luid = sched_max_luid;
8924 sched_max_luid += i;
8925 }
8926 else
8927 luid = -1;
8928
8929 SET_INSN_LUID (insn, luid);
8930 }
8931
8932 /* Initialize luids for BBS.
8933 The hook common_sched_info->luid_for_non_insn () is used to determine
8934 if notes, labels, etc. need luids. */
8935 void
8936 sched_init_luids (bb_vec_t bbs)
8937 {
8938 int i;
8939 basic_block bb;
8940
8941 sched_extend_luids ();
8942 FOR_EACH_VEC_ELT (bbs, i, bb)
8943 {
8944 rtx_insn *insn;
8945
8946 FOR_BB_INSNS (bb, insn)
8947 sched_init_insn_luid (insn);
8948 }
8949 }
8950
8951 /* Free LUIDs. */
8952 void
8953 sched_finish_luids (void)
8954 {
8955 sched_luids.release ();
8956 sched_max_luid = 1;
8957 }
8958
8959 /* Return logical uid of INSN. Helpful while debugging. */
8960 int
8961 insn_luid (rtx_insn *insn)
8962 {
8963 return INSN_LUID (insn);
8964 }
8965
8966 /* Extend per insn data in the target. */
8967 void
8968 sched_extend_target (void)
8969 {
8970 if (targetm.sched.h_i_d_extended)
8971 targetm.sched.h_i_d_extended ();
8972 }
8973
8974 /* Extend global scheduler structures (those, that live across calls to
8975 schedule_block) to include information about just emitted INSN. */
8976 static void
8977 extend_h_i_d (void)
8978 {
8979 int reserve = (get_max_uid () + 1 - h_i_d.length ());
8980 if (reserve > 0
8981 && ! h_i_d.space (reserve))
8982 {
8983 h_i_d.safe_grow_cleared (3 * get_max_uid () / 2);
8984 sched_extend_target ();
8985 }
8986 }
8987
8988 /* Initialize h_i_d entry of the INSN with default values.
8989 Values, that are not explicitly initialized here, hold zero. */
8990 static void
8991 init_h_i_d (rtx_insn *insn)
8992 {
8993 if (INSN_LUID (insn) > 0)
8994 {
8995 INSN_COST (insn) = -1;
8996 QUEUE_INDEX (insn) = QUEUE_NOWHERE;
8997 INSN_TICK (insn) = INVALID_TICK;
8998 INSN_EXACT_TICK (insn) = INVALID_TICK;
8999 INTER_TICK (insn) = INVALID_TICK;
9000 TODO_SPEC (insn) = HARD_DEP;
9001 INSN_AUTOPREF_MULTIPASS_DATA (insn)[0].status
9002 = AUTOPREF_MULTIPASS_DATA_UNINITIALIZED;
9003 INSN_AUTOPREF_MULTIPASS_DATA (insn)[1].status
9004 = AUTOPREF_MULTIPASS_DATA_UNINITIALIZED;
9005 }
9006 }
9007
9008 /* Initialize haifa_insn_data for BBS. */
9009 void
9010 haifa_init_h_i_d (bb_vec_t bbs)
9011 {
9012 int i;
9013 basic_block bb;
9014
9015 extend_h_i_d ();
9016 FOR_EACH_VEC_ELT (bbs, i, bb)
9017 {
9018 rtx_insn *insn;
9019
9020 FOR_BB_INSNS (bb, insn)
9021 init_h_i_d (insn);
9022 }
9023 }
9024
9025 /* Finalize haifa_insn_data. */
9026 void
9027 haifa_finish_h_i_d (void)
9028 {
9029 int i;
9030 haifa_insn_data_t data;
9031 struct reg_use_data *use, *next;
9032
9033 FOR_EACH_VEC_ELT (h_i_d, i, data)
9034 {
9035 free (data->max_reg_pressure);
9036 free (data->reg_pressure);
9037 for (use = data->reg_use_list; use != NULL; use = next)
9038 {
9039 next = use->next_insn_use;
9040 free (use);
9041 }
9042 }
9043 h_i_d.release ();
9044 }
9045
9046 /* Init data for the new insn INSN. */
9047 static void
9048 haifa_init_insn (rtx_insn *insn)
9049 {
9050 gcc_assert (insn != NULL);
9051
9052 sched_extend_luids ();
9053 sched_init_insn_luid (insn);
9054 sched_extend_target ();
9055 sched_deps_init (false);
9056 extend_h_i_d ();
9057 init_h_i_d (insn);
9058
9059 if (adding_bb_to_current_region_p)
9060 {
9061 sd_init_insn (insn);
9062
9063 /* Extend dependency caches by one element. */
9064 extend_dependency_caches (1, false);
9065 }
9066 if (sched_pressure != SCHED_PRESSURE_NONE)
9067 init_insn_reg_pressure_info (insn);
9068 }
9069
9070 /* Init data for the new basic block BB which comes after AFTER. */
9071 static void
9072 haifa_init_only_bb (basic_block bb, basic_block after)
9073 {
9074 gcc_assert (bb != NULL);
9075
9076 sched_init_bbs ();
9077
9078 if (common_sched_info->add_block)
9079 /* This changes only data structures of the front-end. */
9080 common_sched_info->add_block (bb, after);
9081 }
9082
9083 /* A generic version of sched_split_block (). */
9084 basic_block
9085 sched_split_block_1 (basic_block first_bb, rtx after)
9086 {
9087 edge e;
9088
9089 e = split_block (first_bb, after);
9090 gcc_assert (e->src == first_bb);
9091
9092 /* sched_split_block emits note if *check == BB_END. Probably it
9093 is better to rip that note off. */
9094
9095 return e->dest;
9096 }
9097
9098 /* A generic version of sched_create_empty_bb (). */
9099 basic_block
9100 sched_create_empty_bb_1 (basic_block after)
9101 {
9102 return create_empty_bb (after);
9103 }
9104
9105 /* Insert PAT as an INSN into the schedule and update the necessary data
9106 structures to account for it. */
9107 rtx_insn *
9108 sched_emit_insn (rtx pat)
9109 {
9110 rtx_insn *insn = emit_insn_before (pat, first_nonscheduled_insn ());
9111 haifa_init_insn (insn);
9112
9113 if (current_sched_info->add_remove_insn)
9114 current_sched_info->add_remove_insn (insn, 0);
9115
9116 (*current_sched_info->begin_schedule_ready) (insn);
9117 scheduled_insns.safe_push (insn);
9118
9119 last_scheduled_insn = insn;
9120 return insn;
9121 }
9122
9123 /* This function returns a candidate satisfying dispatch constraints from
9124 the ready list. */
9125
9126 static rtx_insn *
9127 ready_remove_first_dispatch (struct ready_list *ready)
9128 {
9129 int i;
9130 rtx_insn *insn = ready_element (ready, 0);
9131
9132 if (ready->n_ready == 1
9133 || !INSN_P (insn)
9134 || INSN_CODE (insn) < 0
9135 || !active_insn_p (insn)
9136 || targetm.sched.dispatch (insn, FITS_DISPATCH_WINDOW))
9137 return ready_remove_first (ready);
9138
9139 for (i = 1; i < ready->n_ready; i++)
9140 {
9141 insn = ready_element (ready, i);
9142
9143 if (!INSN_P (insn)
9144 || INSN_CODE (insn) < 0
9145 || !active_insn_p (insn))
9146 continue;
9147
9148 if (targetm.sched.dispatch (insn, FITS_DISPATCH_WINDOW))
9149 {
9150 /* Return ith element of ready. */
9151 insn = ready_remove (ready, i);
9152 return insn;
9153 }
9154 }
9155
9156 if (targetm.sched.dispatch (NULL, DISPATCH_VIOLATION))
9157 return ready_remove_first (ready);
9158
9159 for (i = 1; i < ready->n_ready; i++)
9160 {
9161 insn = ready_element (ready, i);
9162
9163 if (!INSN_P (insn)
9164 || INSN_CODE (insn) < 0
9165 || !active_insn_p (insn))
9166 continue;
9167
9168 /* Return i-th element of ready. */
9169 if (targetm.sched.dispatch (insn, IS_CMP))
9170 return ready_remove (ready, i);
9171 }
9172
9173 return ready_remove_first (ready);
9174 }
9175
9176 /* Get number of ready insn in the ready list. */
9177
9178 int
9179 number_in_ready (void)
9180 {
9181 return ready.n_ready;
9182 }
9183
9184 /* Get number of ready's in the ready list. */
9185
9186 rtx_insn *
9187 get_ready_element (int i)
9188 {
9189 return ready_element (&ready, i);
9190 }
9191
9192 #endif /* INSN_SCHEDULING */