]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/hash-table.h
Update copyright years.
[thirdparty/gcc.git] / gcc / hash-table.h
1 /* A type-safe hash table template.
2 Copyright (C) 2012-2016 Free Software Foundation, Inc.
3 Contributed by Lawrence Crowl <crowl@google.com>
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
10 version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
20
21
22 /* This file implements a typed hash table.
23 The implementation borrows from libiberty's htab_t in hashtab.h.
24
25
26 INTRODUCTION TO TYPES
27
28 Users of the hash table generally need to be aware of three types.
29
30 1. The type being placed into the hash table. This type is called
31 the value type.
32
33 2. The type used to describe how to handle the value type within
34 the hash table. This descriptor type provides the hash table with
35 several things.
36
37 - A typedef named 'value_type' to the value type (from above).
38
39 - A static member function named 'hash' that takes a value_type
40 (or 'const value_type &') and returns a hashval_t value.
41
42 - A typedef named 'compare_type' that is used to test when a value
43 is found. This type is the comparison type. Usually, it will be the
44 same as value_type. If it is not the same type, you must generally
45 explicitly compute hash values and pass them to the hash table.
46
47 - A static member function named 'equal' that takes a value_type
48 and a compare_type, and returns a bool. Both arguments can be
49 const references.
50
51 - A static function named 'remove' that takes an value_type pointer
52 and frees the memory allocated by it. This function is used when
53 individual elements of the table need to be disposed of (e.g.,
54 when deleting a hash table, removing elements from the table, etc).
55
56 - An optional static function named 'keep_cache_entry'. This
57 function is provided only for garbage-collected elements that
58 are not marked by the normal gc mark pass. It describes what
59 what should happen to the element at the end of the gc mark phase.
60 The return value should be:
61 - 0 if the element should be deleted
62 - 1 if the element should be kept and needs to be marked
63 - -1 if the element should be kept and is already marked.
64 Returning -1 rather than 1 is purely an optimization.
65
66 3. The type of the hash table itself. (More later.)
67
68 In very special circumstances, users may need to know about a fourth type.
69
70 4. The template type used to describe how hash table memory
71 is allocated. This type is called the allocator type. It is
72 parameterized on the value type. It provides two functions:
73
74 - A static member function named 'data_alloc'. This function
75 allocates the data elements in the table.
76
77 - A static member function named 'data_free'. This function
78 deallocates the data elements in the table.
79
80 Hash table are instantiated with two type arguments.
81
82 * The descriptor type, (2) above.
83
84 * The allocator type, (4) above. In general, you will not need to
85 provide your own allocator type. By default, hash tables will use
86 the class template xcallocator, which uses malloc/free for allocation.
87
88
89 DEFINING A DESCRIPTOR TYPE
90
91 The first task in using the hash table is to describe the element type.
92 We compose this into a few steps.
93
94 1. Decide on a removal policy for values stored in the table.
95 hash-traits.h provides class templates for the four most common
96 policies:
97
98 * typed_free_remove implements the static 'remove' member function
99 by calling free().
100
101 * typed_noop_remove implements the static 'remove' member function
102 by doing nothing.
103
104 * ggc_remove implements the static 'remove' member by doing nothing,
105 but instead provides routines for gc marking and for PCH streaming.
106 Use this for garbage-collected data that needs to be preserved across
107 collections.
108
109 * ggc_cache_remove is like ggc_remove, except that it does not
110 mark the entries during the normal gc mark phase. Instead it
111 uses 'keep_cache_entry' (described above) to keep elements that
112 were not collected and delete those that were. Use this for
113 garbage-collected caches that should not in themselves stop
114 the data from being collected.
115
116 You can use these policies by simply deriving the descriptor type
117 from one of those class template, with the appropriate argument.
118
119 Otherwise, you need to write the static 'remove' member function
120 in the descriptor class.
121
122 2. Choose a hash function. Write the static 'hash' member function.
123
124 3. Decide whether the lookup function should take as input an object
125 of type value_type or something more restricted. Define compare_type
126 accordingly.
127
128 4. Choose an equality testing function 'equal' that compares a value_type
129 and a compare_type.
130
131 If your elements are pointers, it is usually easiest to start with one
132 of the generic pointer descriptors described below and override the bits
133 you need to change.
134
135 AN EXAMPLE DESCRIPTOR TYPE
136
137 Suppose you want to put some_type into the hash table. You could define
138 the descriptor type as follows.
139
140 struct some_type_hasher : nofree_ptr_hash <some_type>
141 // Deriving from nofree_ptr_hash means that we get a 'remove' that does
142 // nothing. This choice is good for raw values.
143 {
144 static inline hashval_t hash (const value_type *);
145 static inline bool equal (const value_type *, const compare_type *);
146 };
147
148 inline hashval_t
149 some_type_hasher::hash (const value_type *e)
150 { ... compute and return a hash value for E ... }
151
152 inline bool
153 some_type_hasher::equal (const value_type *p1, const compare_type *p2)
154 { ... compare P1 vs P2. Return true if they are the 'same' ... }
155
156
157 AN EXAMPLE HASH_TABLE DECLARATION
158
159 To instantiate a hash table for some_type:
160
161 hash_table <some_type_hasher> some_type_hash_table;
162
163 There is no need to mention some_type directly, as the hash table will
164 obtain it using some_type_hasher::value_type.
165
166 You can then use any of the functions in hash_table's public interface.
167 See hash_table for details. The interface is very similar to libiberty's
168 htab_t.
169
170
171 EASY DESCRIPTORS FOR POINTERS
172
173 There are four descriptors for pointer elements, one for each of
174 the removal policies above:
175
176 * nofree_ptr_hash (based on typed_noop_remove)
177 * free_ptr_hash (based on typed_free_remove)
178 * ggc_ptr_hash (based on ggc_remove)
179 * ggc_cache_ptr_hash (based on ggc_cache_remove)
180
181 These descriptors hash and compare elements by their pointer value,
182 rather than what they point to. So, to instantiate a hash table over
183 pointers to whatever_type, without freeing the whatever_types, use:
184
185 hash_table <nofree_ptr_hash <whatever_type> > whatever_type_hash_table;
186
187
188 HASH TABLE ITERATORS
189
190 The hash table provides standard C++ iterators. For example, consider a
191 hash table of some_info. We wish to consume each element of the table:
192
193 extern void consume (some_info *);
194
195 We define a convenience typedef and the hash table:
196
197 typedef hash_table <some_info_hasher> info_table_type;
198 info_table_type info_table;
199
200 Then we write the loop in typical C++ style:
201
202 for (info_table_type::iterator iter = info_table.begin ();
203 iter != info_table.end ();
204 ++iter)
205 if ((*iter).status == INFO_READY)
206 consume (&*iter);
207
208 Or with common sub-expression elimination:
209
210 for (info_table_type::iterator iter = info_table.begin ();
211 iter != info_table.end ();
212 ++iter)
213 {
214 some_info &elem = *iter;
215 if (elem.status == INFO_READY)
216 consume (&elem);
217 }
218
219 One can also use a more typical GCC style:
220
221 typedef some_info *some_info_p;
222 some_info *elem_ptr;
223 info_table_type::iterator iter;
224 FOR_EACH_HASH_TABLE_ELEMENT (info_table, elem_ptr, some_info_p, iter)
225 if (elem_ptr->status == INFO_READY)
226 consume (elem_ptr);
227
228 */
229
230
231 #ifndef TYPED_HASHTAB_H
232 #define TYPED_HASHTAB_H
233
234 #include "statistics.h"
235 #include "ggc.h"
236 #include "vec.h"
237 #include "hashtab.h"
238 #include "inchash.h"
239 #include "mem-stats-traits.h"
240 #include "hash-traits.h"
241 #include "hash-map-traits.h"
242
243 template<typename, typename, typename> class hash_map;
244 template<typename, typename> class hash_set;
245
246 /* The ordinary memory allocator. */
247 /* FIXME (crowl): This allocator may be extracted for wider sharing later. */
248
249 template <typename Type>
250 struct xcallocator
251 {
252 static Type *data_alloc (size_t count);
253 static void data_free (Type *memory);
254 };
255
256
257 /* Allocate memory for COUNT data blocks. */
258
259 template <typename Type>
260 inline Type *
261 xcallocator <Type>::data_alloc (size_t count)
262 {
263 return static_cast <Type *> (xcalloc (count, sizeof (Type)));
264 }
265
266
267 /* Free memory for data blocks. */
268
269 template <typename Type>
270 inline void
271 xcallocator <Type>::data_free (Type *memory)
272 {
273 return ::free (memory);
274 }
275
276
277 /* Table of primes and their inversion information. */
278
279 struct prime_ent
280 {
281 hashval_t prime;
282 hashval_t inv;
283 hashval_t inv_m2; /* inverse of prime-2 */
284 hashval_t shift;
285 };
286
287 extern struct prime_ent const prime_tab[];
288
289
290 /* Functions for computing hash table indexes. */
291
292 extern unsigned int hash_table_higher_prime_index (unsigned long n)
293 ATTRIBUTE_PURE;
294
295 /* Return X % Y using multiplicative inverse values INV and SHIFT.
296
297 The multiplicative inverses computed above are for 32-bit types,
298 and requires that we be able to compute a highpart multiply.
299
300 FIX: I am not at all convinced that
301 3 loads, 2 multiplications, 3 shifts, and 3 additions
302 will be faster than
303 1 load and 1 modulus
304 on modern systems running a compiler. */
305
306 inline hashval_t
307 mul_mod (hashval_t x, hashval_t y, hashval_t inv, int shift)
308 {
309 hashval_t t1, t2, t3, t4, q, r;
310
311 t1 = ((uint64_t)x * inv) >> 32;
312 t2 = x - t1;
313 t3 = t2 >> 1;
314 t4 = t1 + t3;
315 q = t4 >> shift;
316 r = x - (q * y);
317
318 return r;
319 }
320
321 /* Compute the primary table index for HASH given current prime index. */
322
323 inline hashval_t
324 hash_table_mod1 (hashval_t hash, unsigned int index)
325 {
326 const struct prime_ent *p = &prime_tab[index];
327 gcc_checking_assert (sizeof (hashval_t) * CHAR_BIT <= 32);
328 return mul_mod (hash, p->prime, p->inv, p->shift);
329 }
330
331 /* Compute the secondary table index for HASH given current prime index. */
332
333 inline hashval_t
334 hash_table_mod2 (hashval_t hash, unsigned int index)
335 {
336 const struct prime_ent *p = &prime_tab[index];
337 gcc_checking_assert (sizeof (hashval_t) * CHAR_BIT <= 32);
338 return 1 + mul_mod (hash, p->prime - 2, p->inv_m2, p->shift);
339 }
340
341 class mem_usage;
342
343 /* User-facing hash table type.
344
345 The table stores elements of type Descriptor::value_type and uses
346 the static descriptor functions described at the top of the file
347 to hash, compare and remove elements.
348
349 Specify the template Allocator to allocate and free memory.
350 The default is xcallocator.
351
352 Storage is an implementation detail and should not be used outside the
353 hash table code.
354
355 */
356 template <typename Descriptor,
357 template<typename Type> class Allocator = xcallocator>
358 class hash_table
359 {
360 typedef typename Descriptor::value_type value_type;
361 typedef typename Descriptor::compare_type compare_type;
362
363 public:
364 explicit hash_table (size_t, bool ggc = false,
365 bool gather_mem_stats = GATHER_STATISTICS,
366 mem_alloc_origin origin = HASH_TABLE_ORIGIN
367 CXX_MEM_STAT_INFO);
368 explicit hash_table (const hash_table &, bool ggc = false,
369 bool gather_mem_stats = GATHER_STATISTICS,
370 mem_alloc_origin origin = HASH_TABLE_ORIGIN
371 CXX_MEM_STAT_INFO);
372 ~hash_table ();
373
374 /* Create a hash_table in gc memory. */
375 static hash_table *
376 create_ggc (size_t n CXX_MEM_STAT_INFO)
377 {
378 hash_table *table = ggc_alloc<hash_table> ();
379 new (table) hash_table (n, true, GATHER_STATISTICS,
380 HASH_TABLE_ORIGIN PASS_MEM_STAT);
381 return table;
382 }
383
384 /* Current size (in entries) of the hash table. */
385 size_t size () const { return m_size; }
386
387 /* Return the current number of elements in this hash table. */
388 size_t elements () const { return m_n_elements - m_n_deleted; }
389
390 /* Return the current number of elements in this hash table. */
391 size_t elements_with_deleted () const { return m_n_elements; }
392
393 /* This function clears all entries in the given hash table. */
394 void empty ();
395
396 /* This function clears a specified SLOT in a hash table. It is
397 useful when you've already done the lookup and don't want to do it
398 again. */
399 void clear_slot (value_type *);
400
401 /* This function searches for a hash table entry equal to the given
402 COMPARABLE element starting with the given HASH value. It cannot
403 be used to insert or delete an element. */
404 value_type &find_with_hash (const compare_type &, hashval_t);
405
406 /* Like find_slot_with_hash, but compute the hash value from the element. */
407 value_type &find (const value_type &value)
408 {
409 return find_with_hash (value, Descriptor::hash (value));
410 }
411
412 value_type *find_slot (const value_type &value, insert_option insert)
413 {
414 return find_slot_with_hash (value, Descriptor::hash (value), insert);
415 }
416
417 /* This function searches for a hash table slot containing an entry
418 equal to the given COMPARABLE element and starting with the given
419 HASH. To delete an entry, call this with insert=NO_INSERT, then
420 call clear_slot on the slot returned (possibly after doing some
421 checks). To insert an entry, call this with insert=INSERT, then
422 write the value you want into the returned slot. When inserting an
423 entry, NULL may be returned if memory allocation fails. */
424 value_type *find_slot_with_hash (const compare_type &comparable,
425 hashval_t hash, enum insert_option insert);
426
427 /* This function deletes an element with the given COMPARABLE value
428 from hash table starting with the given HASH. If there is no
429 matching element in the hash table, this function does nothing. */
430 void remove_elt_with_hash (const compare_type &, hashval_t);
431
432 /* Like remove_elt_with_hash, but compute the hash value from the
433 element. */
434 void remove_elt (const value_type &value)
435 {
436 remove_elt_with_hash (value, Descriptor::hash (value));
437 }
438
439 /* This function scans over the entire hash table calling CALLBACK for
440 each live entry. If CALLBACK returns false, the iteration stops.
441 ARGUMENT is passed as CALLBACK's second argument. */
442 template <typename Argument,
443 int (*Callback) (value_type *slot, Argument argument)>
444 void traverse_noresize (Argument argument);
445
446 /* Like traverse_noresize, but does resize the table when it is too empty
447 to improve effectivity of subsequent calls. */
448 template <typename Argument,
449 int (*Callback) (value_type *slot, Argument argument)>
450 void traverse (Argument argument);
451
452 class iterator
453 {
454 public:
455 iterator () : m_slot (NULL), m_limit (NULL) {}
456
457 iterator (value_type *slot, value_type *limit) :
458 m_slot (slot), m_limit (limit) {}
459
460 inline value_type &operator * () { return *m_slot; }
461 void slide ();
462 inline iterator &operator ++ ();
463 bool operator != (const iterator &other) const
464 {
465 return m_slot != other.m_slot || m_limit != other.m_limit;
466 }
467
468 private:
469 value_type *m_slot;
470 value_type *m_limit;
471 };
472
473 iterator begin () const
474 {
475 iterator iter (m_entries, m_entries + m_size);
476 iter.slide ();
477 return iter;
478 }
479
480 iterator end () const { return iterator (); }
481
482 double collisions () const
483 {
484 return m_searches ? static_cast <double> (m_collisions) / m_searches : 0;
485 }
486
487 private:
488 template<typename T> friend void gt_ggc_mx (hash_table<T> *);
489 template<typename T> friend void gt_pch_nx (hash_table<T> *);
490 template<typename T> friend void
491 hashtab_entry_note_pointers (void *, void *, gt_pointer_operator, void *);
492 template<typename T, typename U, typename V> friend void
493 gt_pch_nx (hash_map<T, U, V> *, gt_pointer_operator, void *);
494 template<typename T, typename U> friend void gt_pch_nx (hash_set<T, U> *,
495 gt_pointer_operator,
496 void *);
497 template<typename T> friend void gt_pch_nx (hash_table<T> *,
498 gt_pointer_operator, void *);
499
500 template<typename T> friend void gt_cleare_cache (hash_table<T> *);
501
502 value_type *alloc_entries (size_t n CXX_MEM_STAT_INFO) const;
503 value_type *find_empty_slot_for_expand (hashval_t);
504 void expand ();
505 static bool is_deleted (value_type &v)
506 {
507 return Descriptor::is_deleted (v);
508 }
509
510 static bool is_empty (value_type &v)
511 {
512 return Descriptor::is_empty (v);
513 }
514
515 static void mark_deleted (value_type &v)
516 {
517 Descriptor::mark_deleted (v);
518 }
519
520 static void mark_empty (value_type &v)
521 {
522 Descriptor::mark_empty (v);
523 }
524
525 /* Table itself. */
526 typename Descriptor::value_type *m_entries;
527
528 size_t m_size;
529
530 /* Current number of elements including also deleted elements. */
531 size_t m_n_elements;
532
533 /* Current number of deleted elements in the table. */
534 size_t m_n_deleted;
535
536 /* The following member is used for debugging. Its value is number
537 of all calls of `htab_find_slot' for the hash table. */
538 unsigned int m_searches;
539
540 /* The following member is used for debugging. Its value is number
541 of collisions fixed for time of work with the hash table. */
542 unsigned int m_collisions;
543
544 /* Current size (in entries) of the hash table, as an index into the
545 table of primes. */
546 unsigned int m_size_prime_index;
547
548 /* if m_entries is stored in ggc memory. */
549 bool m_ggc;
550
551 /* If we should gather memory statistics for the table. */
552 bool m_gather_mem_stats;
553 };
554
555 /* As mem-stats.h heavily utilizes hash maps (hash tables), we have to include
556 mem-stats.h after hash_table declaration. */
557
558 #include "mem-stats.h"
559 #include "hash-map.h"
560
561 extern mem_alloc_description<mem_usage> hash_table_usage;
562
563 /* Support function for statistics. */
564 extern void dump_hash_table_loc_statistics (void);
565
566 template<typename Descriptor, template<typename Type> class Allocator>
567 hash_table<Descriptor, Allocator>::hash_table (size_t size, bool ggc, bool
568 gather_mem_stats,
569 mem_alloc_origin origin
570 MEM_STAT_DECL) :
571 m_n_elements (0), m_n_deleted (0), m_searches (0), m_collisions (0),
572 m_ggc (ggc), m_gather_mem_stats (gather_mem_stats)
573 {
574 unsigned int size_prime_index;
575
576 size_prime_index = hash_table_higher_prime_index (size);
577 size = prime_tab[size_prime_index].prime;
578
579 if (m_gather_mem_stats)
580 hash_table_usage.register_descriptor (this, origin, ggc
581 FINAL_PASS_MEM_STAT);
582
583 m_entries = alloc_entries (size PASS_MEM_STAT);
584 m_size = size;
585 m_size_prime_index = size_prime_index;
586 }
587
588 template<typename Descriptor, template<typename Type> class Allocator>
589 hash_table<Descriptor, Allocator>::hash_table (const hash_table &h, bool ggc,
590 bool gather_mem_stats,
591 mem_alloc_origin origin
592 MEM_STAT_DECL) :
593 m_n_elements (h.m_n_elements), m_n_deleted (h.m_n_deleted),
594 m_searches (0), m_collisions (0), m_ggc (ggc),
595 m_gather_mem_stats (gather_mem_stats)
596 {
597 size_t size = h.m_size;
598
599 if (m_gather_mem_stats)
600 hash_table_usage.register_descriptor (this, origin, ggc
601 FINAL_PASS_MEM_STAT);
602
603 value_type *nentries = alloc_entries (size PASS_MEM_STAT);
604 for (size_t i = 0; i < size; ++i)
605 {
606 value_type &entry = h.m_entries[i];
607 if (is_deleted (entry))
608 mark_deleted (nentries[i]);
609 else if (!is_empty (entry))
610 nentries[i] = entry;
611 }
612 m_entries = nentries;
613 m_size = size;
614 m_size_prime_index = h.m_size_prime_index;
615 }
616
617 template<typename Descriptor, template<typename Type> class Allocator>
618 hash_table<Descriptor, Allocator>::~hash_table ()
619 {
620 for (size_t i = m_size - 1; i < m_size; i--)
621 if (!is_empty (m_entries[i]) && !is_deleted (m_entries[i]))
622 Descriptor::remove (m_entries[i]);
623
624 if (!m_ggc)
625 Allocator <value_type> ::data_free (m_entries);
626 else
627 ggc_free (m_entries);
628
629 if (m_gather_mem_stats)
630 hash_table_usage.release_instance_overhead (this,
631 sizeof (value_type) * m_size,
632 true);
633 }
634
635 /* This function returns an array of empty hash table elements. */
636
637 template<typename Descriptor, template<typename Type> class Allocator>
638 inline typename hash_table<Descriptor, Allocator>::value_type *
639 hash_table<Descriptor, Allocator>::alloc_entries (size_t n MEM_STAT_DECL) const
640 {
641 value_type *nentries;
642
643 if (m_gather_mem_stats)
644 hash_table_usage.register_instance_overhead (sizeof (value_type) * n, this);
645
646 if (!m_ggc)
647 nentries = Allocator <value_type> ::data_alloc (n);
648 else
649 nentries = ::ggc_cleared_vec_alloc<value_type> (n PASS_MEM_STAT);
650
651 gcc_assert (nentries != NULL);
652 for (size_t i = 0; i < n; i++)
653 mark_empty (nentries[i]);
654
655 return nentries;
656 }
657
658 /* Similar to find_slot, but without several unwanted side effects:
659 - Does not call equal when it finds an existing entry.
660 - Does not change the count of elements/searches/collisions in the
661 hash table.
662 This function also assumes there are no deleted entries in the table.
663 HASH is the hash value for the element to be inserted. */
664
665 template<typename Descriptor, template<typename Type> class Allocator>
666 typename hash_table<Descriptor, Allocator>::value_type *
667 hash_table<Descriptor, Allocator>::find_empty_slot_for_expand (hashval_t hash)
668 {
669 hashval_t index = hash_table_mod1 (hash, m_size_prime_index);
670 size_t size = m_size;
671 value_type *slot = m_entries + index;
672 hashval_t hash2;
673
674 if (is_empty (*slot))
675 return slot;
676 gcc_checking_assert (!is_deleted (*slot));
677
678 hash2 = hash_table_mod2 (hash, m_size_prime_index);
679 for (;;)
680 {
681 index += hash2;
682 if (index >= size)
683 index -= size;
684
685 slot = m_entries + index;
686 if (is_empty (*slot))
687 return slot;
688 gcc_checking_assert (!is_deleted (*slot));
689 }
690 }
691
692 /* The following function changes size of memory allocated for the
693 entries and repeatedly inserts the table elements. The occupancy
694 of the table after the call will be about 50%. Naturally the hash
695 table must already exist. Remember also that the place of the
696 table entries is changed. If memory allocation fails, this function
697 will abort. */
698
699 template<typename Descriptor, template<typename Type> class Allocator>
700 void
701 hash_table<Descriptor, Allocator>::expand ()
702 {
703 value_type *oentries = m_entries;
704 unsigned int oindex = m_size_prime_index;
705 size_t osize = size ();
706 value_type *olimit = oentries + osize;
707 size_t elts = elements ();
708
709 /* Resize only when table after removal of unused elements is either
710 too full or too empty. */
711 unsigned int nindex;
712 size_t nsize;
713 if (elts * 2 > osize || (elts * 8 < osize && osize > 32))
714 {
715 nindex = hash_table_higher_prime_index (elts * 2);
716 nsize = prime_tab[nindex].prime;
717 }
718 else
719 {
720 nindex = oindex;
721 nsize = osize;
722 }
723
724 value_type *nentries = alloc_entries (nsize);
725
726 if (m_gather_mem_stats)
727 hash_table_usage.release_instance_overhead (this, sizeof (value_type)
728 * osize);
729
730 m_entries = nentries;
731 m_size = nsize;
732 m_size_prime_index = nindex;
733 m_n_elements -= m_n_deleted;
734 m_n_deleted = 0;
735
736 value_type *p = oentries;
737 do
738 {
739 value_type &x = *p;
740
741 if (!is_empty (x) && !is_deleted (x))
742 {
743 value_type *q = find_empty_slot_for_expand (Descriptor::hash (x));
744
745 *q = x;
746 }
747
748 p++;
749 }
750 while (p < olimit);
751
752 if (!m_ggc)
753 Allocator <value_type> ::data_free (oentries);
754 else
755 ggc_free (oentries);
756 }
757
758 template<typename Descriptor, template<typename Type> class Allocator>
759 void
760 hash_table<Descriptor, Allocator>::empty ()
761 {
762 size_t size = m_size;
763 value_type *entries = m_entries;
764 int i;
765
766 for (i = size - 1; i >= 0; i--)
767 if (!is_empty (entries[i]) && !is_deleted (entries[i]))
768 Descriptor::remove (entries[i]);
769
770 /* Instead of clearing megabyte, downsize the table. */
771 if (size > 1024*1024 / sizeof (PTR))
772 {
773 int nindex = hash_table_higher_prime_index (1024 / sizeof (PTR));
774 int nsize = prime_tab[nindex].prime;
775
776 if (!m_ggc)
777 Allocator <value_type> ::data_free (m_entries);
778 else
779 ggc_free (m_entries);
780
781 m_entries = alloc_entries (nsize);
782 m_size = nsize;
783 m_size_prime_index = nindex;
784 }
785 else
786 memset (entries, 0, size * sizeof (value_type));
787 m_n_deleted = 0;
788 m_n_elements = 0;
789 }
790
791 /* This function clears a specified SLOT in a hash table. It is
792 useful when you've already done the lookup and don't want to do it
793 again. */
794
795 template<typename Descriptor, template<typename Type> class Allocator>
796 void
797 hash_table<Descriptor, Allocator>::clear_slot (value_type *slot)
798 {
799 gcc_checking_assert (!(slot < m_entries || slot >= m_entries + size ()
800 || is_empty (*slot) || is_deleted (*slot)));
801
802 Descriptor::remove (*slot);
803
804 mark_deleted (*slot);
805 m_n_deleted++;
806 }
807
808 /* This function searches for a hash table entry equal to the given
809 COMPARABLE element starting with the given HASH value. It cannot
810 be used to insert or delete an element. */
811
812 template<typename Descriptor, template<typename Type> class Allocator>
813 typename hash_table<Descriptor, Allocator>::value_type &
814 hash_table<Descriptor, Allocator>
815 ::find_with_hash (const compare_type &comparable, hashval_t hash)
816 {
817 m_searches++;
818 size_t size = m_size;
819 hashval_t index = hash_table_mod1 (hash, m_size_prime_index);
820
821 value_type *entry = &m_entries[index];
822 if (is_empty (*entry)
823 || (!is_deleted (*entry) && Descriptor::equal (*entry, comparable)))
824 return *entry;
825
826 hashval_t hash2 = hash_table_mod2 (hash, m_size_prime_index);
827 for (;;)
828 {
829 m_collisions++;
830 index += hash2;
831 if (index >= size)
832 index -= size;
833
834 entry = &m_entries[index];
835 if (is_empty (*entry)
836 || (!is_deleted (*entry) && Descriptor::equal (*entry, comparable)))
837 return *entry;
838 }
839 }
840
841 /* This function searches for a hash table slot containing an entry
842 equal to the given COMPARABLE element and starting with the given
843 HASH. To delete an entry, call this with insert=NO_INSERT, then
844 call clear_slot on the slot returned (possibly after doing some
845 checks). To insert an entry, call this with insert=INSERT, then
846 write the value you want into the returned slot. When inserting an
847 entry, NULL may be returned if memory allocation fails. */
848
849 template<typename Descriptor, template<typename Type> class Allocator>
850 typename hash_table<Descriptor, Allocator>::value_type *
851 hash_table<Descriptor, Allocator>
852 ::find_slot_with_hash (const compare_type &comparable, hashval_t hash,
853 enum insert_option insert)
854 {
855 if (insert == INSERT && m_size * 3 <= m_n_elements * 4)
856 expand ();
857
858 m_searches++;
859
860 value_type *first_deleted_slot = NULL;
861 hashval_t index = hash_table_mod1 (hash, m_size_prime_index);
862 hashval_t hash2 = hash_table_mod2 (hash, m_size_prime_index);
863 value_type *entry = &m_entries[index];
864 size_t size = m_size;
865 if (is_empty (*entry))
866 goto empty_entry;
867 else if (is_deleted (*entry))
868 first_deleted_slot = &m_entries[index];
869 else if (Descriptor::equal (*entry, comparable))
870 return &m_entries[index];
871
872 for (;;)
873 {
874 m_collisions++;
875 index += hash2;
876 if (index >= size)
877 index -= size;
878
879 entry = &m_entries[index];
880 if (is_empty (*entry))
881 goto empty_entry;
882 else if (is_deleted (*entry))
883 {
884 if (!first_deleted_slot)
885 first_deleted_slot = &m_entries[index];
886 }
887 else if (Descriptor::equal (*entry, comparable))
888 return &m_entries[index];
889 }
890
891 empty_entry:
892 if (insert == NO_INSERT)
893 return NULL;
894
895 if (first_deleted_slot)
896 {
897 m_n_deleted--;
898 mark_empty (*first_deleted_slot);
899 return first_deleted_slot;
900 }
901
902 m_n_elements++;
903 return &m_entries[index];
904 }
905
906 /* This function deletes an element with the given COMPARABLE value
907 from hash table starting with the given HASH. If there is no
908 matching element in the hash table, this function does nothing. */
909
910 template<typename Descriptor, template<typename Type> class Allocator>
911 void
912 hash_table<Descriptor, Allocator>
913 ::remove_elt_with_hash (const compare_type &comparable, hashval_t hash)
914 {
915 value_type *slot = find_slot_with_hash (comparable, hash, NO_INSERT);
916 if (is_empty (*slot))
917 return;
918
919 Descriptor::remove (*slot);
920
921 mark_deleted (*slot);
922 m_n_deleted++;
923 }
924
925 /* This function scans over the entire hash table calling CALLBACK for
926 each live entry. If CALLBACK returns false, the iteration stops.
927 ARGUMENT is passed as CALLBACK's second argument. */
928
929 template<typename Descriptor,
930 template<typename Type> class Allocator>
931 template<typename Argument,
932 int (*Callback)
933 (typename hash_table<Descriptor, Allocator>::value_type *slot,
934 Argument argument)>
935 void
936 hash_table<Descriptor, Allocator>::traverse_noresize (Argument argument)
937 {
938 value_type *slot = m_entries;
939 value_type *limit = slot + size ();
940
941 do
942 {
943 value_type &x = *slot;
944
945 if (!is_empty (x) && !is_deleted (x))
946 if (! Callback (slot, argument))
947 break;
948 }
949 while (++slot < limit);
950 }
951
952 /* Like traverse_noresize, but does resize the table when it is too empty
953 to improve effectivity of subsequent calls. */
954
955 template <typename Descriptor,
956 template <typename Type> class Allocator>
957 template <typename Argument,
958 int (*Callback)
959 (typename hash_table<Descriptor, Allocator>::value_type *slot,
960 Argument argument)>
961 void
962 hash_table<Descriptor, Allocator>::traverse (Argument argument)
963 {
964 size_t size = m_size;
965 if (elements () * 8 < size && size > 32)
966 expand ();
967
968 traverse_noresize <Argument, Callback> (argument);
969 }
970
971 /* Slide down the iterator slots until an active entry is found. */
972
973 template<typename Descriptor, template<typename Type> class Allocator>
974 void
975 hash_table<Descriptor, Allocator>::iterator::slide ()
976 {
977 for ( ; m_slot < m_limit; ++m_slot )
978 {
979 value_type &x = *m_slot;
980 if (!is_empty (x) && !is_deleted (x))
981 return;
982 }
983 m_slot = NULL;
984 m_limit = NULL;
985 }
986
987 /* Bump the iterator. */
988
989 template<typename Descriptor, template<typename Type> class Allocator>
990 inline typename hash_table<Descriptor, Allocator>::iterator &
991 hash_table<Descriptor, Allocator>::iterator::operator ++ ()
992 {
993 ++m_slot;
994 slide ();
995 return *this;
996 }
997
998
999 /* Iterate through the elements of hash_table HTAB,
1000 using hash_table <....>::iterator ITER,
1001 storing each element in RESULT, which is of type TYPE. */
1002
1003 #define FOR_EACH_HASH_TABLE_ELEMENT(HTAB, RESULT, TYPE, ITER) \
1004 for ((ITER) = (HTAB).begin (); \
1005 (ITER) != (HTAB).end () ? (RESULT = *(ITER) , true) : false; \
1006 ++(ITER))
1007
1008 /* ggc walking routines. */
1009
1010 template<typename E>
1011 static inline void
1012 gt_ggc_mx (hash_table<E> *h)
1013 {
1014 typedef hash_table<E> table;
1015
1016 if (!ggc_test_and_set_mark (h->m_entries))
1017 return;
1018
1019 for (size_t i = 0; i < h->m_size; i++)
1020 {
1021 if (table::is_empty (h->m_entries[i])
1022 || table::is_deleted (h->m_entries[i]))
1023 continue;
1024
1025 E::ggc_mx (h->m_entries[i]);
1026 }
1027 }
1028
1029 template<typename D>
1030 static inline void
1031 hashtab_entry_note_pointers (void *obj, void *h, gt_pointer_operator op,
1032 void *cookie)
1033 {
1034 hash_table<D> *map = static_cast<hash_table<D> *> (h);
1035 gcc_checking_assert (map->m_entries == obj);
1036 for (size_t i = 0; i < map->m_size; i++)
1037 {
1038 typedef hash_table<D> table;
1039 if (table::is_empty (map->m_entries[i])
1040 || table::is_deleted (map->m_entries[i]))
1041 continue;
1042
1043 D::pch_nx (map->m_entries[i], op, cookie);
1044 }
1045 }
1046
1047 template<typename D>
1048 static void
1049 gt_pch_nx (hash_table<D> *h)
1050 {
1051 bool success
1052 = gt_pch_note_object (h->m_entries, h, hashtab_entry_note_pointers<D>);
1053 gcc_checking_assert (success);
1054 for (size_t i = 0; i < h->m_size; i++)
1055 {
1056 if (hash_table<D>::is_empty (h->m_entries[i])
1057 || hash_table<D>::is_deleted (h->m_entries[i]))
1058 continue;
1059
1060 D::pch_nx (h->m_entries[i]);
1061 }
1062 }
1063
1064 template<typename D>
1065 static inline void
1066 gt_pch_nx (hash_table<D> *h, gt_pointer_operator op, void *cookie)
1067 {
1068 op (&h->m_entries, cookie);
1069 }
1070
1071 template<typename H>
1072 inline void
1073 gt_cleare_cache (hash_table<H> *h)
1074 {
1075 extern void gt_ggc_mx (typename H::value_type &t);
1076 typedef hash_table<H> table;
1077 if (!h)
1078 return;
1079
1080 for (typename table::iterator iter = h->begin (); iter != h->end (); ++iter)
1081 if (!table::is_empty (*iter) && !table::is_deleted (*iter))
1082 {
1083 int res = H::keep_cache_entry (*iter);
1084 if (res == 0)
1085 h->clear_slot (&*iter);
1086 else if (res != -1)
1087 gt_ggc_mx (*iter);
1088 }
1089 }
1090
1091 #endif /* TYPED_HASHTAB_H */