]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/hwint.c
double-int.h (double_int_popcount): New inline function.
[thirdparty/gcc.git] / gcc / hwint.c
1 /* Operations on HOST_WIDE_INT.
2 Copyright (C) 1987, 1988, 1989, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010
4 Free Software Foundation, Inc.
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
12
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
21
22 #include "config.h"
23 #include "system.h"
24 #include "diagnostic-core.h"
25
26 #if GCC_VERSION < 3004
27
28 /* The functions clz_hwi, ctz_hwi, ffs_hwi, floor_log2, ceil_log2,
29 and exact_log2 are defined as inline functions in hwint.h
30 if GCC_VERSION >= 3004.
31 The definitions here are used for older versions of GCC and
32 non-GCC bootstrap compilers. */
33
34 /* Given X, an unsigned number, return the largest int Y such that 2**Y <= X.
35 If X is 0, return -1. */
36
37 int
38 floor_log2 (unsigned HOST_WIDE_INT x)
39 {
40 int t = 0;
41
42 if (x == 0)
43 return -1;
44
45 if (HOST_BITS_PER_WIDE_INT > 64)
46 if (x >= (unsigned HOST_WIDE_INT) 1 << (t + 64))
47 t += 64;
48 if (HOST_BITS_PER_WIDE_INT > 32)
49 if (x >= ((unsigned HOST_WIDE_INT) 1) << (t + 32))
50 t += 32;
51 if (x >= ((unsigned HOST_WIDE_INT) 1) << (t + 16))
52 t += 16;
53 if (x >= ((unsigned HOST_WIDE_INT) 1) << (t + 8))
54 t += 8;
55 if (x >= ((unsigned HOST_WIDE_INT) 1) << (t + 4))
56 t += 4;
57 if (x >= ((unsigned HOST_WIDE_INT) 1) << (t + 2))
58 t += 2;
59 if (x >= ((unsigned HOST_WIDE_INT) 1) << (t + 1))
60 t += 1;
61
62 return t;
63 }
64
65 /* Given X, an unsigned number, return the largest Y such that 2**Y >= X. */
66
67 int
68 ceil_log2 (unsigned HOST_WIDE_INT x)
69 {
70 return floor_log2 (x - 1) + 1;
71 }
72
73 /* Return the logarithm of X, base 2, considering X unsigned,
74 if X is a power of 2. Otherwise, returns -1. */
75
76 int
77 exact_log2 (unsigned HOST_WIDE_INT x)
78 {
79 if (x != (x & -x))
80 return -1;
81 return floor_log2 (x);
82 }
83
84 /* Given X, an unsigned number, return the number of least significant bits
85 that are zero. When X == 0, the result is the word size. */
86
87 int
88 ctz_hwi (unsigned HOST_WIDE_INT x)
89 {
90 return x ? floor_log2 (x & -x) : HOST_BITS_PER_WIDE_INT;
91 }
92
93 /* Similarly for most significant bits. */
94
95 int
96 clz_hwi (unsigned HOST_WIDE_INT x)
97 {
98 return HOST_BITS_PER_WIDE_INT - 1 - floor_log2(x);
99 }
100
101 /* Similar to ctz_hwi, except that the least significant bit is numbered
102 starting from 1, and X == 0 yields 0. */
103
104 int
105 ffs_hwi (unsigned HOST_WIDE_INT x)
106 {
107 return 1 + floor_log2 (x & -x);
108 }
109
110 /* Return the number of set bits in X. */
111
112 int
113 popcount_hwi (unsigned HOST_WIDE_INT x)
114 {
115 int i, ret = 0;
116
117 for (i = 0; i < sizeof (x); i += 1)
118 {
119 ret += x & 1;
120 x >>= 1;
121 }
122
123 return ret;
124 }
125
126 #endif /* GCC_VERSION < 3004 */
127
128 /* Compute the absolute value of X. */
129
130 HOST_WIDE_INT
131 abs_hwi (HOST_WIDE_INT x)
132 {
133 gcc_checking_assert (x != HOST_WIDE_INT_MIN);
134 return x >= 0 ? x : -x;
135 }
136
137 /* Compute the absolute value of X as an unsigned type. */
138
139 unsigned HOST_WIDE_INT
140 absu_hwi (HOST_WIDE_INT x)
141 {
142 return x >= 0 ? (unsigned HOST_WIDE_INT)x : -(unsigned HOST_WIDE_INT)x;
143 }
144
145 /* Compute the greatest common divisor of two numbers A and B using
146 Euclid's algorithm. */
147
148 HOST_WIDE_INT
149 gcd (HOST_WIDE_INT a, HOST_WIDE_INT b)
150 {
151 HOST_WIDE_INT x, y, z;
152
153 x = abs_hwi (a);
154 y = abs_hwi (b);
155
156 while (x > 0)
157 {
158 z = y % x;
159 y = x;
160 x = z;
161 }
162
163 return y;
164 }
165
166 /* For X and Y positive integers, return X multiplied by Y and check
167 that the result does not overflow. */
168
169 HOST_WIDE_INT
170 pos_mul_hwi (HOST_WIDE_INT x, HOST_WIDE_INT y)
171 {
172 if (x != 0)
173 gcc_checking_assert ((HOST_WIDE_INT_MAX) / x >= y);
174
175 return x * y;
176 }
177
178 /* Return X multiplied by Y and check that the result does not
179 overflow. */
180
181 HOST_WIDE_INT
182 mul_hwi (HOST_WIDE_INT x, HOST_WIDE_INT y)
183 {
184 gcc_checking_assert (x != HOST_WIDE_INT_MIN
185 && y != HOST_WIDE_INT_MIN);
186
187 if (x >= 0)
188 {
189 if (y >= 0)
190 return pos_mul_hwi (x, y);
191
192 return -pos_mul_hwi (x, -y);
193 }
194
195 if (y >= 0)
196 return -pos_mul_hwi (-x, y);
197
198 return pos_mul_hwi (-x, -y);
199 }
200
201 /* Compute the least common multiple of two numbers A and B . */
202
203 HOST_WIDE_INT
204 least_common_multiple (HOST_WIDE_INT a, HOST_WIDE_INT b)
205 {
206 return mul_hwi (abs_hwi (a) / gcd (a, b), abs_hwi (b));
207 }