]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/ifcvt.c
Update copyright years.
[thirdparty/gcc.git] / gcc / ifcvt.c
1 /* If-conversion support.
2 Copyright (C) 2000-2016 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it
7 under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3, or (at your option)
9 any later version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT
12 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
13 or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
14 License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20 #include "config.h"
21 #include "system.h"
22 #include "coretypes.h"
23 #include "backend.h"
24 #include "target.h"
25 #include "rtl.h"
26 #include "tree.h"
27 #include "cfghooks.h"
28 #include "df.h"
29 #include "tm_p.h"
30 #include "expmed.h"
31 #include "optabs.h"
32 #include "regs.h"
33 #include "emit-rtl.h"
34 #include "recog.h"
35
36 #include "cfgrtl.h"
37 #include "cfganal.h"
38 #include "cfgcleanup.h"
39 #include "expr.h"
40 #include "output.h"
41 #include "cfgloop.h"
42 #include "tree-pass.h"
43 #include "dbgcnt.h"
44 #include "shrink-wrap.h"
45 #include "rtl-iter.h"
46 #include "ifcvt.h"
47
48 #ifndef MAX_CONDITIONAL_EXECUTE
49 #define MAX_CONDITIONAL_EXECUTE \
50 (BRANCH_COST (optimize_function_for_speed_p (cfun), false) \
51 + 1)
52 #endif
53
54 #define IFCVT_MULTIPLE_DUMPS 1
55
56 #define NULL_BLOCK ((basic_block) NULL)
57
58 /* True if after combine pass. */
59 static bool ifcvt_after_combine;
60
61 /* True if the target has the cbranchcc4 optab. */
62 static bool have_cbranchcc4;
63
64 /* # of IF-THEN or IF-THEN-ELSE blocks we looked at */
65 static int num_possible_if_blocks;
66
67 /* # of IF-THEN or IF-THEN-ELSE blocks were converted to conditional
68 execution. */
69 static int num_updated_if_blocks;
70
71 /* # of changes made. */
72 static int num_true_changes;
73
74 /* Whether conditional execution changes were made. */
75 static int cond_exec_changed_p;
76
77 /* Forward references. */
78 static int count_bb_insns (const_basic_block);
79 static bool cheap_bb_rtx_cost_p (const_basic_block, int, int);
80 static rtx_insn *first_active_insn (basic_block);
81 static rtx_insn *last_active_insn (basic_block, int);
82 static rtx_insn *find_active_insn_before (basic_block, rtx_insn *);
83 static rtx_insn *find_active_insn_after (basic_block, rtx_insn *);
84 static basic_block block_fallthru (basic_block);
85 static int cond_exec_process_insns (ce_if_block *, rtx_insn *, rtx, rtx, int,
86 int);
87 static rtx cond_exec_get_condition (rtx_insn *);
88 static rtx noce_get_condition (rtx_insn *, rtx_insn **, bool);
89 static int noce_operand_ok (const_rtx);
90 static void merge_if_block (ce_if_block *);
91 static int find_cond_trap (basic_block, edge, edge);
92 static basic_block find_if_header (basic_block, int);
93 static int block_jumps_and_fallthru_p (basic_block, basic_block);
94 static int noce_find_if_block (basic_block, edge, edge, int);
95 static int cond_exec_find_if_block (ce_if_block *);
96 static int find_if_case_1 (basic_block, edge, edge);
97 static int find_if_case_2 (basic_block, edge, edge);
98 static int dead_or_predicable (basic_block, basic_block, basic_block,
99 edge, int);
100 static void noce_emit_move_insn (rtx, rtx);
101 static rtx_insn *block_has_only_trap (basic_block);
102 \f
103 /* Count the number of non-jump active insns in BB. */
104
105 static int
106 count_bb_insns (const_basic_block bb)
107 {
108 int count = 0;
109 rtx_insn *insn = BB_HEAD (bb);
110
111 while (1)
112 {
113 if (active_insn_p (insn) && !JUMP_P (insn))
114 count++;
115
116 if (insn == BB_END (bb))
117 break;
118 insn = NEXT_INSN (insn);
119 }
120
121 return count;
122 }
123
124 /* Determine whether the total insn_rtx_cost on non-jump insns in
125 basic block BB is less than MAX_COST. This function returns
126 false if the cost of any instruction could not be estimated.
127
128 The cost of the non-jump insns in BB is scaled by REG_BR_PROB_BASE
129 as those insns are being speculated. MAX_COST is scaled with SCALE
130 plus a small fudge factor. */
131
132 static bool
133 cheap_bb_rtx_cost_p (const_basic_block bb, int scale, int max_cost)
134 {
135 int count = 0;
136 rtx_insn *insn = BB_HEAD (bb);
137 bool speed = optimize_bb_for_speed_p (bb);
138
139 /* Set scale to REG_BR_PROB_BASE to void the identical scaling
140 applied to insn_rtx_cost when optimizing for size. Only do
141 this after combine because if-conversion might interfere with
142 passes before combine.
143
144 Use optimize_function_for_speed_p instead of the pre-defined
145 variable speed to make sure it is set to same value for all
146 basic blocks in one if-conversion transformation. */
147 if (!optimize_function_for_speed_p (cfun) && ifcvt_after_combine)
148 scale = REG_BR_PROB_BASE;
149 /* Our branch probability/scaling factors are just estimates and don't
150 account for cases where we can get speculation for free and other
151 secondary benefits. So we fudge the scale factor to make speculating
152 appear a little more profitable when optimizing for performance. */
153 else
154 scale += REG_BR_PROB_BASE / 8;
155
156
157 max_cost *= scale;
158
159 while (1)
160 {
161 if (NONJUMP_INSN_P (insn))
162 {
163 int cost = insn_rtx_cost (PATTERN (insn), speed) * REG_BR_PROB_BASE;
164 if (cost == 0)
165 return false;
166
167 /* If this instruction is the load or set of a "stack" register,
168 such as a floating point register on x87, then the cost of
169 speculatively executing this insn may need to include
170 the additional cost of popping its result off of the
171 register stack. Unfortunately, correctly recognizing and
172 accounting for this additional overhead is tricky, so for
173 now we simply prohibit such speculative execution. */
174 #ifdef STACK_REGS
175 {
176 rtx set = single_set (insn);
177 if (set && STACK_REG_P (SET_DEST (set)))
178 return false;
179 }
180 #endif
181
182 count += cost;
183 if (count >= max_cost)
184 return false;
185 }
186 else if (CALL_P (insn))
187 return false;
188
189 if (insn == BB_END (bb))
190 break;
191 insn = NEXT_INSN (insn);
192 }
193
194 return true;
195 }
196
197 /* Return the first non-jump active insn in the basic block. */
198
199 static rtx_insn *
200 first_active_insn (basic_block bb)
201 {
202 rtx_insn *insn = BB_HEAD (bb);
203
204 if (LABEL_P (insn))
205 {
206 if (insn == BB_END (bb))
207 return NULL;
208 insn = NEXT_INSN (insn);
209 }
210
211 while (NOTE_P (insn) || DEBUG_INSN_P (insn))
212 {
213 if (insn == BB_END (bb))
214 return NULL;
215 insn = NEXT_INSN (insn);
216 }
217
218 if (JUMP_P (insn))
219 return NULL;
220
221 return insn;
222 }
223
224 /* Return the last non-jump active (non-jump) insn in the basic block. */
225
226 static rtx_insn *
227 last_active_insn (basic_block bb, int skip_use_p)
228 {
229 rtx_insn *insn = BB_END (bb);
230 rtx_insn *head = BB_HEAD (bb);
231
232 while (NOTE_P (insn)
233 || JUMP_P (insn)
234 || DEBUG_INSN_P (insn)
235 || (skip_use_p
236 && NONJUMP_INSN_P (insn)
237 && GET_CODE (PATTERN (insn)) == USE))
238 {
239 if (insn == head)
240 return NULL;
241 insn = PREV_INSN (insn);
242 }
243
244 if (LABEL_P (insn))
245 return NULL;
246
247 return insn;
248 }
249
250 /* Return the active insn before INSN inside basic block CURR_BB. */
251
252 static rtx_insn *
253 find_active_insn_before (basic_block curr_bb, rtx_insn *insn)
254 {
255 if (!insn || insn == BB_HEAD (curr_bb))
256 return NULL;
257
258 while ((insn = PREV_INSN (insn)) != NULL_RTX)
259 {
260 if (NONJUMP_INSN_P (insn) || JUMP_P (insn) || CALL_P (insn))
261 break;
262
263 /* No other active insn all the way to the start of the basic block. */
264 if (insn == BB_HEAD (curr_bb))
265 return NULL;
266 }
267
268 return insn;
269 }
270
271 /* Return the active insn after INSN inside basic block CURR_BB. */
272
273 static rtx_insn *
274 find_active_insn_after (basic_block curr_bb, rtx_insn *insn)
275 {
276 if (!insn || insn == BB_END (curr_bb))
277 return NULL;
278
279 while ((insn = NEXT_INSN (insn)) != NULL_RTX)
280 {
281 if (NONJUMP_INSN_P (insn) || JUMP_P (insn) || CALL_P (insn))
282 break;
283
284 /* No other active insn all the way to the end of the basic block. */
285 if (insn == BB_END (curr_bb))
286 return NULL;
287 }
288
289 return insn;
290 }
291
292 /* Return the basic block reached by falling though the basic block BB. */
293
294 static basic_block
295 block_fallthru (basic_block bb)
296 {
297 edge e = find_fallthru_edge (bb->succs);
298
299 return (e) ? e->dest : NULL_BLOCK;
300 }
301
302 /* Return true if RTXs A and B can be safely interchanged. */
303
304 static bool
305 rtx_interchangeable_p (const_rtx a, const_rtx b)
306 {
307 if (!rtx_equal_p (a, b))
308 return false;
309
310 if (GET_CODE (a) != MEM)
311 return true;
312
313 /* A dead type-unsafe memory reference is legal, but a live type-unsafe memory
314 reference is not. Interchanging a dead type-unsafe memory reference with
315 a live type-safe one creates a live type-unsafe memory reference, in other
316 words, it makes the program illegal.
317 We check here conservatively whether the two memory references have equal
318 memory attributes. */
319
320 return mem_attrs_eq_p (get_mem_attrs (a), get_mem_attrs (b));
321 }
322
323 \f
324 /* Go through a bunch of insns, converting them to conditional
325 execution format if possible. Return TRUE if all of the non-note
326 insns were processed. */
327
328 static int
329 cond_exec_process_insns (ce_if_block *ce_info ATTRIBUTE_UNUSED,
330 /* if block information */rtx_insn *start,
331 /* first insn to look at */rtx end,
332 /* last insn to look at */rtx test,
333 /* conditional execution test */int prob_val,
334 /* probability of branch taken. */int mod_ok)
335 {
336 int must_be_last = FALSE;
337 rtx_insn *insn;
338 rtx xtest;
339 rtx pattern;
340
341 if (!start || !end)
342 return FALSE;
343
344 for (insn = start; ; insn = NEXT_INSN (insn))
345 {
346 /* dwarf2out can't cope with conditional prologues. */
347 if (NOTE_P (insn) && NOTE_KIND (insn) == NOTE_INSN_PROLOGUE_END)
348 return FALSE;
349
350 if (NOTE_P (insn) || DEBUG_INSN_P (insn))
351 goto insn_done;
352
353 gcc_assert (NONJUMP_INSN_P (insn) || CALL_P (insn));
354
355 /* dwarf2out can't cope with conditional unwind info. */
356 if (RTX_FRAME_RELATED_P (insn))
357 return FALSE;
358
359 /* Remove USE insns that get in the way. */
360 if (reload_completed && GET_CODE (PATTERN (insn)) == USE)
361 {
362 /* ??? Ug. Actually unlinking the thing is problematic,
363 given what we'd have to coordinate with our callers. */
364 SET_INSN_DELETED (insn);
365 goto insn_done;
366 }
367
368 /* Last insn wasn't last? */
369 if (must_be_last)
370 return FALSE;
371
372 if (modified_in_p (test, insn))
373 {
374 if (!mod_ok)
375 return FALSE;
376 must_be_last = TRUE;
377 }
378
379 /* Now build the conditional form of the instruction. */
380 pattern = PATTERN (insn);
381 xtest = copy_rtx (test);
382
383 /* If this is already a COND_EXEC, rewrite the test to be an AND of the
384 two conditions. */
385 if (GET_CODE (pattern) == COND_EXEC)
386 {
387 if (GET_MODE (xtest) != GET_MODE (COND_EXEC_TEST (pattern)))
388 return FALSE;
389
390 xtest = gen_rtx_AND (GET_MODE (xtest), xtest,
391 COND_EXEC_TEST (pattern));
392 pattern = COND_EXEC_CODE (pattern);
393 }
394
395 pattern = gen_rtx_COND_EXEC (VOIDmode, xtest, pattern);
396
397 /* If the machine needs to modify the insn being conditionally executed,
398 say for example to force a constant integer operand into a temp
399 register, do so here. */
400 #ifdef IFCVT_MODIFY_INSN
401 IFCVT_MODIFY_INSN (ce_info, pattern, insn);
402 if (! pattern)
403 return FALSE;
404 #endif
405
406 validate_change (insn, &PATTERN (insn), pattern, 1);
407
408 if (CALL_P (insn) && prob_val >= 0)
409 validate_change (insn, &REG_NOTES (insn),
410 gen_rtx_INT_LIST ((machine_mode) REG_BR_PROB,
411 prob_val, REG_NOTES (insn)), 1);
412
413 insn_done:
414 if (insn == end)
415 break;
416 }
417
418 return TRUE;
419 }
420
421 /* Return the condition for a jump. Do not do any special processing. */
422
423 static rtx
424 cond_exec_get_condition (rtx_insn *jump)
425 {
426 rtx test_if, cond;
427
428 if (any_condjump_p (jump))
429 test_if = SET_SRC (pc_set (jump));
430 else
431 return NULL_RTX;
432 cond = XEXP (test_if, 0);
433
434 /* If this branches to JUMP_LABEL when the condition is false,
435 reverse the condition. */
436 if (GET_CODE (XEXP (test_if, 2)) == LABEL_REF
437 && LABEL_REF_LABEL (XEXP (test_if, 2)) == JUMP_LABEL (jump))
438 {
439 enum rtx_code rev = reversed_comparison_code (cond, jump);
440 if (rev == UNKNOWN)
441 return NULL_RTX;
442
443 cond = gen_rtx_fmt_ee (rev, GET_MODE (cond), XEXP (cond, 0),
444 XEXP (cond, 1));
445 }
446
447 return cond;
448 }
449
450 /* Given a simple IF-THEN or IF-THEN-ELSE block, attempt to convert it
451 to conditional execution. Return TRUE if we were successful at
452 converting the block. */
453
454 static int
455 cond_exec_process_if_block (ce_if_block * ce_info,
456 /* if block information */int do_multiple_p)
457 {
458 basic_block test_bb = ce_info->test_bb; /* last test block */
459 basic_block then_bb = ce_info->then_bb; /* THEN */
460 basic_block else_bb = ce_info->else_bb; /* ELSE or NULL */
461 rtx test_expr; /* expression in IF_THEN_ELSE that is tested */
462 rtx_insn *then_start; /* first insn in THEN block */
463 rtx_insn *then_end; /* last insn + 1 in THEN block */
464 rtx_insn *else_start = NULL; /* first insn in ELSE block or NULL */
465 rtx_insn *else_end = NULL; /* last insn + 1 in ELSE block */
466 int max; /* max # of insns to convert. */
467 int then_mod_ok; /* whether conditional mods are ok in THEN */
468 rtx true_expr; /* test for else block insns */
469 rtx false_expr; /* test for then block insns */
470 int true_prob_val; /* probability of else block */
471 int false_prob_val; /* probability of then block */
472 rtx_insn *then_last_head = NULL; /* Last match at the head of THEN */
473 rtx_insn *else_last_head = NULL; /* Last match at the head of ELSE */
474 rtx_insn *then_first_tail = NULL; /* First match at the tail of THEN */
475 rtx_insn *else_first_tail = NULL; /* First match at the tail of ELSE */
476 int then_n_insns, else_n_insns, n_insns;
477 enum rtx_code false_code;
478 rtx note;
479
480 /* If test is comprised of && or || elements, and we've failed at handling
481 all of them together, just use the last test if it is the special case of
482 && elements without an ELSE block. */
483 if (!do_multiple_p && ce_info->num_multiple_test_blocks)
484 {
485 if (else_bb || ! ce_info->and_and_p)
486 return FALSE;
487
488 ce_info->test_bb = test_bb = ce_info->last_test_bb;
489 ce_info->num_multiple_test_blocks = 0;
490 ce_info->num_and_and_blocks = 0;
491 ce_info->num_or_or_blocks = 0;
492 }
493
494 /* Find the conditional jump to the ELSE or JOIN part, and isolate
495 the test. */
496 test_expr = cond_exec_get_condition (BB_END (test_bb));
497 if (! test_expr)
498 return FALSE;
499
500 /* If the conditional jump is more than just a conditional jump,
501 then we can not do conditional execution conversion on this block. */
502 if (! onlyjump_p (BB_END (test_bb)))
503 return FALSE;
504
505 /* Collect the bounds of where we're to search, skipping any labels, jumps
506 and notes at the beginning and end of the block. Then count the total
507 number of insns and see if it is small enough to convert. */
508 then_start = first_active_insn (then_bb);
509 then_end = last_active_insn (then_bb, TRUE);
510 then_n_insns = ce_info->num_then_insns = count_bb_insns (then_bb);
511 n_insns = then_n_insns;
512 max = MAX_CONDITIONAL_EXECUTE;
513
514 if (else_bb)
515 {
516 int n_matching;
517
518 max *= 2;
519 else_start = first_active_insn (else_bb);
520 else_end = last_active_insn (else_bb, TRUE);
521 else_n_insns = ce_info->num_else_insns = count_bb_insns (else_bb);
522 n_insns += else_n_insns;
523
524 /* Look for matching sequences at the head and tail of the two blocks,
525 and limit the range of insns to be converted if possible. */
526 n_matching = flow_find_cross_jump (then_bb, else_bb,
527 &then_first_tail, &else_first_tail,
528 NULL);
529 if (then_first_tail == BB_HEAD (then_bb))
530 then_start = then_end = NULL;
531 if (else_first_tail == BB_HEAD (else_bb))
532 else_start = else_end = NULL;
533
534 if (n_matching > 0)
535 {
536 if (then_end)
537 then_end = find_active_insn_before (then_bb, then_first_tail);
538 if (else_end)
539 else_end = find_active_insn_before (else_bb, else_first_tail);
540 n_insns -= 2 * n_matching;
541 }
542
543 if (then_start
544 && else_start
545 && then_n_insns > n_matching
546 && else_n_insns > n_matching)
547 {
548 int longest_match = MIN (then_n_insns - n_matching,
549 else_n_insns - n_matching);
550 n_matching
551 = flow_find_head_matching_sequence (then_bb, else_bb,
552 &then_last_head,
553 &else_last_head,
554 longest_match);
555
556 if (n_matching > 0)
557 {
558 rtx_insn *insn;
559
560 /* We won't pass the insns in the head sequence to
561 cond_exec_process_insns, so we need to test them here
562 to make sure that they don't clobber the condition. */
563 for (insn = BB_HEAD (then_bb);
564 insn != NEXT_INSN (then_last_head);
565 insn = NEXT_INSN (insn))
566 if (!LABEL_P (insn) && !NOTE_P (insn)
567 && !DEBUG_INSN_P (insn)
568 && modified_in_p (test_expr, insn))
569 return FALSE;
570 }
571
572 if (then_last_head == then_end)
573 then_start = then_end = NULL;
574 if (else_last_head == else_end)
575 else_start = else_end = NULL;
576
577 if (n_matching > 0)
578 {
579 if (then_start)
580 then_start = find_active_insn_after (then_bb, then_last_head);
581 if (else_start)
582 else_start = find_active_insn_after (else_bb, else_last_head);
583 n_insns -= 2 * n_matching;
584 }
585 }
586 }
587
588 if (n_insns > max)
589 return FALSE;
590
591 /* Map test_expr/test_jump into the appropriate MD tests to use on
592 the conditionally executed code. */
593
594 true_expr = test_expr;
595
596 false_code = reversed_comparison_code (true_expr, BB_END (test_bb));
597 if (false_code != UNKNOWN)
598 false_expr = gen_rtx_fmt_ee (false_code, GET_MODE (true_expr),
599 XEXP (true_expr, 0), XEXP (true_expr, 1));
600 else
601 false_expr = NULL_RTX;
602
603 #ifdef IFCVT_MODIFY_TESTS
604 /* If the machine description needs to modify the tests, such as setting a
605 conditional execution register from a comparison, it can do so here. */
606 IFCVT_MODIFY_TESTS (ce_info, true_expr, false_expr);
607
608 /* See if the conversion failed. */
609 if (!true_expr || !false_expr)
610 goto fail;
611 #endif
612
613 note = find_reg_note (BB_END (test_bb), REG_BR_PROB, NULL_RTX);
614 if (note)
615 {
616 true_prob_val = XINT (note, 0);
617 false_prob_val = REG_BR_PROB_BASE - true_prob_val;
618 }
619 else
620 {
621 true_prob_val = -1;
622 false_prob_val = -1;
623 }
624
625 /* If we have && or || tests, do them here. These tests are in the adjacent
626 blocks after the first block containing the test. */
627 if (ce_info->num_multiple_test_blocks > 0)
628 {
629 basic_block bb = test_bb;
630 basic_block last_test_bb = ce_info->last_test_bb;
631
632 if (! false_expr)
633 goto fail;
634
635 do
636 {
637 rtx_insn *start, *end;
638 rtx t, f;
639 enum rtx_code f_code;
640
641 bb = block_fallthru (bb);
642 start = first_active_insn (bb);
643 end = last_active_insn (bb, TRUE);
644 if (start
645 && ! cond_exec_process_insns (ce_info, start, end, false_expr,
646 false_prob_val, FALSE))
647 goto fail;
648
649 /* If the conditional jump is more than just a conditional jump, then
650 we can not do conditional execution conversion on this block. */
651 if (! onlyjump_p (BB_END (bb)))
652 goto fail;
653
654 /* Find the conditional jump and isolate the test. */
655 t = cond_exec_get_condition (BB_END (bb));
656 if (! t)
657 goto fail;
658
659 f_code = reversed_comparison_code (t, BB_END (bb));
660 if (f_code == UNKNOWN)
661 goto fail;
662
663 f = gen_rtx_fmt_ee (f_code, GET_MODE (t), XEXP (t, 0), XEXP (t, 1));
664 if (ce_info->and_and_p)
665 {
666 t = gen_rtx_AND (GET_MODE (t), true_expr, t);
667 f = gen_rtx_IOR (GET_MODE (t), false_expr, f);
668 }
669 else
670 {
671 t = gen_rtx_IOR (GET_MODE (t), true_expr, t);
672 f = gen_rtx_AND (GET_MODE (t), false_expr, f);
673 }
674
675 /* If the machine description needs to modify the tests, such as
676 setting a conditional execution register from a comparison, it can
677 do so here. */
678 #ifdef IFCVT_MODIFY_MULTIPLE_TESTS
679 IFCVT_MODIFY_MULTIPLE_TESTS (ce_info, bb, t, f);
680
681 /* See if the conversion failed. */
682 if (!t || !f)
683 goto fail;
684 #endif
685
686 true_expr = t;
687 false_expr = f;
688 }
689 while (bb != last_test_bb);
690 }
691
692 /* For IF-THEN-ELSE blocks, we don't allow modifications of the test
693 on then THEN block. */
694 then_mod_ok = (else_bb == NULL_BLOCK);
695
696 /* Go through the THEN and ELSE blocks converting the insns if possible
697 to conditional execution. */
698
699 if (then_end
700 && (! false_expr
701 || ! cond_exec_process_insns (ce_info, then_start, then_end,
702 false_expr, false_prob_val,
703 then_mod_ok)))
704 goto fail;
705
706 if (else_bb && else_end
707 && ! cond_exec_process_insns (ce_info, else_start, else_end,
708 true_expr, true_prob_val, TRUE))
709 goto fail;
710
711 /* If we cannot apply the changes, fail. Do not go through the normal fail
712 processing, since apply_change_group will call cancel_changes. */
713 if (! apply_change_group ())
714 {
715 #ifdef IFCVT_MODIFY_CANCEL
716 /* Cancel any machine dependent changes. */
717 IFCVT_MODIFY_CANCEL (ce_info);
718 #endif
719 return FALSE;
720 }
721
722 #ifdef IFCVT_MODIFY_FINAL
723 /* Do any machine dependent final modifications. */
724 IFCVT_MODIFY_FINAL (ce_info);
725 #endif
726
727 /* Conversion succeeded. */
728 if (dump_file)
729 fprintf (dump_file, "%d insn%s converted to conditional execution.\n",
730 n_insns, (n_insns == 1) ? " was" : "s were");
731
732 /* Merge the blocks! If we had matching sequences, make sure to delete one
733 copy at the appropriate location first: delete the copy in the THEN branch
734 for a tail sequence so that the remaining one is executed last for both
735 branches, and delete the copy in the ELSE branch for a head sequence so
736 that the remaining one is executed first for both branches. */
737 if (then_first_tail)
738 {
739 rtx_insn *from = then_first_tail;
740 if (!INSN_P (from))
741 from = find_active_insn_after (then_bb, from);
742 delete_insn_chain (from, BB_END (then_bb), false);
743 }
744 if (else_last_head)
745 delete_insn_chain (first_active_insn (else_bb), else_last_head, false);
746
747 merge_if_block (ce_info);
748 cond_exec_changed_p = TRUE;
749 return TRUE;
750
751 fail:
752 #ifdef IFCVT_MODIFY_CANCEL
753 /* Cancel any machine dependent changes. */
754 IFCVT_MODIFY_CANCEL (ce_info);
755 #endif
756
757 cancel_changes (0);
758 return FALSE;
759 }
760 \f
761 /* Used by noce_process_if_block to communicate with its subroutines.
762
763 The subroutines know that A and B may be evaluated freely. They
764 know that X is a register. They should insert new instructions
765 before cond_earliest. */
766
767 struct noce_if_info
768 {
769 /* The basic blocks that make up the IF-THEN-{ELSE-,}JOIN block. */
770 basic_block test_bb, then_bb, else_bb, join_bb;
771
772 /* The jump that ends TEST_BB. */
773 rtx_insn *jump;
774
775 /* The jump condition. */
776 rtx cond;
777
778 /* New insns should be inserted before this one. */
779 rtx_insn *cond_earliest;
780
781 /* Insns in the THEN and ELSE block. There is always just this
782 one insns in those blocks. The insns are single_set insns.
783 If there was no ELSE block, INSN_B is the last insn before
784 COND_EARLIEST, or NULL_RTX. In the former case, the insn
785 operands are still valid, as if INSN_B was moved down below
786 the jump. */
787 rtx_insn *insn_a, *insn_b;
788
789 /* The SET_SRC of INSN_A and INSN_B. */
790 rtx a, b;
791
792 /* The SET_DEST of INSN_A. */
793 rtx x;
794
795 /* True if this if block is not canonical. In the canonical form of
796 if blocks, the THEN_BB is the block reached via the fallthru edge
797 from TEST_BB. For the noce transformations, we allow the symmetric
798 form as well. */
799 bool then_else_reversed;
800
801 /* True if the contents of then_bb and else_bb are a
802 simple single set instruction. */
803 bool then_simple;
804 bool else_simple;
805
806 /* The total rtx cost of the instructions in then_bb and else_bb. */
807 unsigned int then_cost;
808 unsigned int else_cost;
809
810 /* Estimated cost of the particular branch instruction. */
811 unsigned int branch_cost;
812 };
813
814 static rtx noce_emit_store_flag (struct noce_if_info *, rtx, int, int);
815 static int noce_try_move (struct noce_if_info *);
816 static int noce_try_store_flag (struct noce_if_info *);
817 static int noce_try_addcc (struct noce_if_info *);
818 static int noce_try_store_flag_constants (struct noce_if_info *);
819 static int noce_try_store_flag_mask (struct noce_if_info *);
820 static rtx noce_emit_cmove (struct noce_if_info *, rtx, enum rtx_code, rtx,
821 rtx, rtx, rtx);
822 static int noce_try_cmove (struct noce_if_info *);
823 static int noce_try_cmove_arith (struct noce_if_info *);
824 static rtx noce_get_alt_condition (struct noce_if_info *, rtx, rtx_insn **);
825 static int noce_try_minmax (struct noce_if_info *);
826 static int noce_try_abs (struct noce_if_info *);
827 static int noce_try_sign_mask (struct noce_if_info *);
828
829 /* Helper function for noce_try_store_flag*. */
830
831 static rtx
832 noce_emit_store_flag (struct noce_if_info *if_info, rtx x, int reversep,
833 int normalize)
834 {
835 rtx cond = if_info->cond;
836 int cond_complex;
837 enum rtx_code code;
838
839 cond_complex = (! general_operand (XEXP (cond, 0), VOIDmode)
840 || ! general_operand (XEXP (cond, 1), VOIDmode));
841
842 /* If earliest == jump, or when the condition is complex, try to
843 build the store_flag insn directly. */
844
845 if (cond_complex)
846 {
847 rtx set = pc_set (if_info->jump);
848 cond = XEXP (SET_SRC (set), 0);
849 if (GET_CODE (XEXP (SET_SRC (set), 2)) == LABEL_REF
850 && LABEL_REF_LABEL (XEXP (SET_SRC (set), 2)) == JUMP_LABEL (if_info->jump))
851 reversep = !reversep;
852 if (if_info->then_else_reversed)
853 reversep = !reversep;
854 }
855
856 if (reversep)
857 code = reversed_comparison_code (cond, if_info->jump);
858 else
859 code = GET_CODE (cond);
860
861 if ((if_info->cond_earliest == if_info->jump || cond_complex)
862 && (normalize == 0 || STORE_FLAG_VALUE == normalize))
863 {
864 rtx src = gen_rtx_fmt_ee (code, GET_MODE (x), XEXP (cond, 0),
865 XEXP (cond, 1));
866 rtx set = gen_rtx_SET (x, src);
867
868 start_sequence ();
869 rtx_insn *insn = emit_insn (set);
870
871 if (recog_memoized (insn) >= 0)
872 {
873 rtx_insn *seq = get_insns ();
874 end_sequence ();
875 emit_insn (seq);
876
877 if_info->cond_earliest = if_info->jump;
878
879 return x;
880 }
881
882 end_sequence ();
883 }
884
885 /* Don't even try if the comparison operands or the mode of X are weird. */
886 if (cond_complex || !SCALAR_INT_MODE_P (GET_MODE (x)))
887 return NULL_RTX;
888
889 return emit_store_flag (x, code, XEXP (cond, 0),
890 XEXP (cond, 1), VOIDmode,
891 (code == LTU || code == LEU
892 || code == GEU || code == GTU), normalize);
893 }
894
895 /* Emit instruction to move an rtx, possibly into STRICT_LOW_PART.
896 X is the destination/target and Y is the value to copy. */
897
898 static void
899 noce_emit_move_insn (rtx x, rtx y)
900 {
901 machine_mode outmode;
902 rtx outer, inner;
903 int bitpos;
904
905 if (GET_CODE (x) != STRICT_LOW_PART)
906 {
907 rtx_insn *seq, *insn;
908 rtx target;
909 optab ot;
910
911 start_sequence ();
912 /* Check that the SET_SRC is reasonable before calling emit_move_insn,
913 otherwise construct a suitable SET pattern ourselves. */
914 insn = (OBJECT_P (y) || CONSTANT_P (y) || GET_CODE (y) == SUBREG)
915 ? emit_move_insn (x, y)
916 : emit_insn (gen_rtx_SET (x, y));
917 seq = get_insns ();
918 end_sequence ();
919
920 if (recog_memoized (insn) <= 0)
921 {
922 if (GET_CODE (x) == ZERO_EXTRACT)
923 {
924 rtx op = XEXP (x, 0);
925 unsigned HOST_WIDE_INT size = INTVAL (XEXP (x, 1));
926 unsigned HOST_WIDE_INT start = INTVAL (XEXP (x, 2));
927
928 /* store_bit_field expects START to be relative to
929 BYTES_BIG_ENDIAN and adjusts this value for machines with
930 BITS_BIG_ENDIAN != BYTES_BIG_ENDIAN. In order to be able to
931 invoke store_bit_field again it is necessary to have the START
932 value from the first call. */
933 if (BITS_BIG_ENDIAN != BYTES_BIG_ENDIAN)
934 {
935 if (MEM_P (op))
936 start = BITS_PER_UNIT - start - size;
937 else
938 {
939 gcc_assert (REG_P (op));
940 start = BITS_PER_WORD - start - size;
941 }
942 }
943
944 gcc_assert (start < (MEM_P (op) ? BITS_PER_UNIT : BITS_PER_WORD));
945 store_bit_field (op, size, start, 0, 0, GET_MODE (x), y, false);
946 return;
947 }
948
949 switch (GET_RTX_CLASS (GET_CODE (y)))
950 {
951 case RTX_UNARY:
952 ot = code_to_optab (GET_CODE (y));
953 if (ot)
954 {
955 start_sequence ();
956 target = expand_unop (GET_MODE (y), ot, XEXP (y, 0), x, 0);
957 if (target != NULL_RTX)
958 {
959 if (target != x)
960 emit_move_insn (x, target);
961 seq = get_insns ();
962 }
963 end_sequence ();
964 }
965 break;
966
967 case RTX_BIN_ARITH:
968 case RTX_COMM_ARITH:
969 ot = code_to_optab (GET_CODE (y));
970 if (ot)
971 {
972 start_sequence ();
973 target = expand_binop (GET_MODE (y), ot,
974 XEXP (y, 0), XEXP (y, 1),
975 x, 0, OPTAB_DIRECT);
976 if (target != NULL_RTX)
977 {
978 if (target != x)
979 emit_move_insn (x, target);
980 seq = get_insns ();
981 }
982 end_sequence ();
983 }
984 break;
985
986 default:
987 break;
988 }
989 }
990
991 emit_insn (seq);
992 return;
993 }
994
995 outer = XEXP (x, 0);
996 inner = XEXP (outer, 0);
997 outmode = GET_MODE (outer);
998 bitpos = SUBREG_BYTE (outer) * BITS_PER_UNIT;
999 store_bit_field (inner, GET_MODE_BITSIZE (outmode), bitpos,
1000 0, 0, outmode, y, false);
1001 }
1002
1003 /* Return the CC reg if it is used in COND. */
1004
1005 static rtx
1006 cc_in_cond (rtx cond)
1007 {
1008 if (have_cbranchcc4 && cond
1009 && GET_MODE_CLASS (GET_MODE (XEXP (cond, 0))) == MODE_CC)
1010 return XEXP (cond, 0);
1011
1012 return NULL_RTX;
1013 }
1014
1015 /* Return sequence of instructions generated by if conversion. This
1016 function calls end_sequence() to end the current stream, ensures
1017 that the instructions are unshared, recognizable non-jump insns.
1018 On failure, this function returns a NULL_RTX. */
1019
1020 static rtx_insn *
1021 end_ifcvt_sequence (struct noce_if_info *if_info)
1022 {
1023 rtx_insn *insn;
1024 rtx_insn *seq = get_insns ();
1025 rtx cc = cc_in_cond (if_info->cond);
1026
1027 set_used_flags (if_info->x);
1028 set_used_flags (if_info->cond);
1029 set_used_flags (if_info->a);
1030 set_used_flags (if_info->b);
1031
1032 for (insn = seq; insn; insn = NEXT_INSN (insn))
1033 set_used_flags (insn);
1034
1035 unshare_all_rtl_in_chain (seq);
1036 end_sequence ();
1037
1038 /* Make sure that all of the instructions emitted are recognizable,
1039 and that we haven't introduced a new jump instruction.
1040 As an exercise for the reader, build a general mechanism that
1041 allows proper placement of required clobbers. */
1042 for (insn = seq; insn; insn = NEXT_INSN (insn))
1043 if (JUMP_P (insn)
1044 || recog_memoized (insn) == -1
1045 /* Make sure new generated code does not clobber CC. */
1046 || (cc && set_of (cc, insn)))
1047 return NULL;
1048
1049 return seq;
1050 }
1051
1052 /* Return true iff the then and else basic block (if it exists)
1053 consist of a single simple set instruction. */
1054
1055 static bool
1056 noce_simple_bbs (struct noce_if_info *if_info)
1057 {
1058 if (!if_info->then_simple)
1059 return false;
1060
1061 if (if_info->else_bb)
1062 return if_info->else_simple;
1063
1064 return true;
1065 }
1066
1067 /* Convert "if (a != b) x = a; else x = b" into "x = a" and
1068 "if (a == b) x = a; else x = b" into "x = b". */
1069
1070 static int
1071 noce_try_move (struct noce_if_info *if_info)
1072 {
1073 rtx cond = if_info->cond;
1074 enum rtx_code code = GET_CODE (cond);
1075 rtx y;
1076 rtx_insn *seq;
1077
1078 if (code != NE && code != EQ)
1079 return FALSE;
1080
1081 if (!noce_simple_bbs (if_info))
1082 return FALSE;
1083
1084 /* This optimization isn't valid if either A or B could be a NaN
1085 or a signed zero. */
1086 if (HONOR_NANS (if_info->x)
1087 || HONOR_SIGNED_ZEROS (if_info->x))
1088 return FALSE;
1089
1090 /* Check whether the operands of the comparison are A and in
1091 either order. */
1092 if ((rtx_equal_p (if_info->a, XEXP (cond, 0))
1093 && rtx_equal_p (if_info->b, XEXP (cond, 1)))
1094 || (rtx_equal_p (if_info->a, XEXP (cond, 1))
1095 && rtx_equal_p (if_info->b, XEXP (cond, 0))))
1096 {
1097 if (!rtx_interchangeable_p (if_info->a, if_info->b))
1098 return FALSE;
1099
1100 y = (code == EQ) ? if_info->a : if_info->b;
1101
1102 /* Avoid generating the move if the source is the destination. */
1103 if (! rtx_equal_p (if_info->x, y))
1104 {
1105 start_sequence ();
1106 noce_emit_move_insn (if_info->x, y);
1107 seq = end_ifcvt_sequence (if_info);
1108 if (!seq)
1109 return FALSE;
1110
1111 emit_insn_before_setloc (seq, if_info->jump,
1112 INSN_LOCATION (if_info->insn_a));
1113 }
1114 return TRUE;
1115 }
1116 return FALSE;
1117 }
1118
1119 /* Convert "if (test) x = 1; else x = 0".
1120
1121 Only try 0 and STORE_FLAG_VALUE here. Other combinations will be
1122 tried in noce_try_store_flag_constants after noce_try_cmove has had
1123 a go at the conversion. */
1124
1125 static int
1126 noce_try_store_flag (struct noce_if_info *if_info)
1127 {
1128 int reversep;
1129 rtx target;
1130 rtx_insn *seq;
1131
1132 if (!noce_simple_bbs (if_info))
1133 return FALSE;
1134
1135 if (CONST_INT_P (if_info->b)
1136 && INTVAL (if_info->b) == STORE_FLAG_VALUE
1137 && if_info->a == const0_rtx)
1138 reversep = 0;
1139 else if (if_info->b == const0_rtx
1140 && CONST_INT_P (if_info->a)
1141 && INTVAL (if_info->a) == STORE_FLAG_VALUE
1142 && (reversed_comparison_code (if_info->cond, if_info->jump)
1143 != UNKNOWN))
1144 reversep = 1;
1145 else
1146 return FALSE;
1147
1148 start_sequence ();
1149
1150 target = noce_emit_store_flag (if_info, if_info->x, reversep, 0);
1151 if (target)
1152 {
1153 if (target != if_info->x)
1154 noce_emit_move_insn (if_info->x, target);
1155
1156 seq = end_ifcvt_sequence (if_info);
1157 if (! seq)
1158 return FALSE;
1159
1160 emit_insn_before_setloc (seq, if_info->jump,
1161 INSN_LOCATION (if_info->insn_a));
1162 return TRUE;
1163 }
1164 else
1165 {
1166 end_sequence ();
1167 return FALSE;
1168 }
1169 }
1170
1171
1172 /* Convert "if (test) x = -A; else x = A" into
1173 x = A; if (test) x = -x if the machine can do the
1174 conditional negate form of this cheaply.
1175 Try this before noce_try_cmove that will just load the
1176 immediates into two registers and do a conditional select
1177 between them. If the target has a conditional negate or
1178 conditional invert operation we can save a potentially
1179 expensive constant synthesis. */
1180
1181 static bool
1182 noce_try_inverse_constants (struct noce_if_info *if_info)
1183 {
1184 if (!noce_simple_bbs (if_info))
1185 return false;
1186
1187 if (!CONST_INT_P (if_info->a)
1188 || !CONST_INT_P (if_info->b)
1189 || !REG_P (if_info->x))
1190 return false;
1191
1192 machine_mode mode = GET_MODE (if_info->x);
1193
1194 HOST_WIDE_INT val_a = INTVAL (if_info->a);
1195 HOST_WIDE_INT val_b = INTVAL (if_info->b);
1196
1197 rtx cond = if_info->cond;
1198
1199 rtx x = if_info->x;
1200 rtx target;
1201
1202 start_sequence ();
1203
1204 rtx_code code;
1205 if (val_b != HOST_WIDE_INT_MIN && val_a == -val_b)
1206 code = NEG;
1207 else if (val_a == ~val_b)
1208 code = NOT;
1209 else
1210 {
1211 end_sequence ();
1212 return false;
1213 }
1214
1215 rtx tmp = gen_reg_rtx (mode);
1216 noce_emit_move_insn (tmp, if_info->a);
1217
1218 target = emit_conditional_neg_or_complement (x, code, mode, cond, tmp, tmp);
1219
1220 if (target)
1221 {
1222 rtx_insn *seq = get_insns ();
1223
1224 if (!seq)
1225 {
1226 end_sequence ();
1227 return false;
1228 }
1229
1230 if (target != if_info->x)
1231 noce_emit_move_insn (if_info->x, target);
1232
1233 seq = end_ifcvt_sequence (if_info);
1234
1235 if (!seq)
1236 return false;
1237
1238 emit_insn_before_setloc (seq, if_info->jump,
1239 INSN_LOCATION (if_info->insn_a));
1240 return true;
1241 }
1242
1243 end_sequence ();
1244 return false;
1245 }
1246
1247
1248 /* Convert "if (test) x = a; else x = b", for A and B constant.
1249 Also allow A = y + c1, B = y + c2, with a common y between A
1250 and B. */
1251
1252 static int
1253 noce_try_store_flag_constants (struct noce_if_info *if_info)
1254 {
1255 rtx target;
1256 rtx_insn *seq;
1257 bool reversep;
1258 HOST_WIDE_INT itrue, ifalse, diff, tmp;
1259 int normalize;
1260 bool can_reverse;
1261 machine_mode mode = GET_MODE (if_info->x);;
1262 rtx common = NULL_RTX;
1263
1264 rtx a = if_info->a;
1265 rtx b = if_info->b;
1266
1267 /* Handle cases like x := test ? y + 3 : y + 4. */
1268 if (GET_CODE (a) == PLUS
1269 && GET_CODE (b) == PLUS
1270 && CONST_INT_P (XEXP (a, 1))
1271 && CONST_INT_P (XEXP (b, 1))
1272 && rtx_equal_p (XEXP (a, 0), XEXP (b, 0))
1273 && noce_operand_ok (XEXP (a, 0))
1274 && if_info->branch_cost >= 2)
1275 {
1276 common = XEXP (a, 0);
1277 a = XEXP (a, 1);
1278 b = XEXP (b, 1);
1279 }
1280
1281 if (!noce_simple_bbs (if_info))
1282 return FALSE;
1283
1284 if (CONST_INT_P (a)
1285 && CONST_INT_P (b))
1286 {
1287 ifalse = INTVAL (a);
1288 itrue = INTVAL (b);
1289 bool subtract_flag_p = false;
1290
1291 diff = (unsigned HOST_WIDE_INT) itrue - ifalse;
1292 /* Make sure we can represent the difference between the two values. */
1293 if ((diff > 0)
1294 != ((ifalse < 0) != (itrue < 0) ? ifalse < 0 : ifalse < itrue))
1295 return FALSE;
1296
1297 diff = trunc_int_for_mode (diff, mode);
1298
1299 can_reverse = (reversed_comparison_code (if_info->cond, if_info->jump)
1300 != UNKNOWN);
1301
1302 reversep = false;
1303 if (diff == STORE_FLAG_VALUE || diff == -STORE_FLAG_VALUE)
1304 {
1305 normalize = 0;
1306 /* We could collapse these cases but it is easier to follow the
1307 diff/STORE_FLAG_VALUE combinations when they are listed
1308 explicitly. */
1309
1310 /* test ? 3 : 4
1311 => 4 + (test != 0). */
1312 if (diff < 0 && STORE_FLAG_VALUE < 0)
1313 reversep = false;
1314 /* test ? 4 : 3
1315 => can_reverse | 4 + (test == 0)
1316 !can_reverse | 3 - (test != 0). */
1317 else if (diff > 0 && STORE_FLAG_VALUE < 0)
1318 {
1319 reversep = can_reverse;
1320 subtract_flag_p = !can_reverse;
1321 /* If we need to subtract the flag and we have PLUS-immediate
1322 A and B then it is unlikely to be beneficial to play tricks
1323 here. */
1324 if (subtract_flag_p && common)
1325 return FALSE;
1326 }
1327 /* test ? 3 : 4
1328 => can_reverse | 3 + (test == 0)
1329 !can_reverse | 4 - (test != 0). */
1330 else if (diff < 0 && STORE_FLAG_VALUE > 0)
1331 {
1332 reversep = can_reverse;
1333 subtract_flag_p = !can_reverse;
1334 /* If we need to subtract the flag and we have PLUS-immediate
1335 A and B then it is unlikely to be beneficial to play tricks
1336 here. */
1337 if (subtract_flag_p && common)
1338 return FALSE;
1339 }
1340 /* test ? 4 : 3
1341 => 4 + (test != 0). */
1342 else if (diff > 0 && STORE_FLAG_VALUE > 0)
1343 reversep = false;
1344 else
1345 gcc_unreachable ();
1346 }
1347 else if (ifalse == 0 && exact_log2 (itrue) >= 0
1348 && (STORE_FLAG_VALUE == 1
1349 || if_info->branch_cost >= 2))
1350 normalize = 1;
1351 else if (itrue == 0 && exact_log2 (ifalse) >= 0 && can_reverse
1352 && (STORE_FLAG_VALUE == 1 || if_info->branch_cost >= 2))
1353 {
1354 normalize = 1;
1355 reversep = true;
1356 }
1357 else if (itrue == -1
1358 && (STORE_FLAG_VALUE == -1
1359 || if_info->branch_cost >= 2))
1360 normalize = -1;
1361 else if (ifalse == -1 && can_reverse
1362 && (STORE_FLAG_VALUE == -1 || if_info->branch_cost >= 2))
1363 {
1364 normalize = -1;
1365 reversep = true;
1366 }
1367 else
1368 return FALSE;
1369
1370 if (reversep)
1371 {
1372 std::swap (itrue, ifalse);
1373 diff = trunc_int_for_mode (-(unsigned HOST_WIDE_INT) diff, mode);
1374 }
1375
1376 start_sequence ();
1377
1378 /* If we have x := test ? x + 3 : x + 4 then move the original
1379 x out of the way while we store flags. */
1380 if (common && rtx_equal_p (common, if_info->x))
1381 {
1382 common = gen_reg_rtx (mode);
1383 noce_emit_move_insn (common, if_info->x);
1384 }
1385
1386 target = noce_emit_store_flag (if_info, if_info->x, reversep, normalize);
1387 if (! target)
1388 {
1389 end_sequence ();
1390 return FALSE;
1391 }
1392
1393 /* if (test) x = 3; else x = 4;
1394 => x = 3 + (test == 0); */
1395 if (diff == STORE_FLAG_VALUE || diff == -STORE_FLAG_VALUE)
1396 {
1397 /* Add the common part now. This may allow combine to merge this
1398 with the store flag operation earlier into some sort of conditional
1399 increment/decrement if the target allows it. */
1400 if (common)
1401 target = expand_simple_binop (mode, PLUS,
1402 target, common,
1403 target, 0, OPTAB_WIDEN);
1404
1405 /* Always use ifalse here. It should have been swapped with itrue
1406 when appropriate when reversep is true. */
1407 target = expand_simple_binop (mode, subtract_flag_p ? MINUS : PLUS,
1408 gen_int_mode (ifalse, mode), target,
1409 if_info->x, 0, OPTAB_WIDEN);
1410 }
1411 /* Other cases are not beneficial when the original A and B are PLUS
1412 expressions. */
1413 else if (common)
1414 {
1415 end_sequence ();
1416 return FALSE;
1417 }
1418 /* if (test) x = 8; else x = 0;
1419 => x = (test != 0) << 3; */
1420 else if (ifalse == 0 && (tmp = exact_log2 (itrue)) >= 0)
1421 {
1422 target = expand_simple_binop (mode, ASHIFT,
1423 target, GEN_INT (tmp), if_info->x, 0,
1424 OPTAB_WIDEN);
1425 }
1426
1427 /* if (test) x = -1; else x = b;
1428 => x = -(test != 0) | b; */
1429 else if (itrue == -1)
1430 {
1431 target = expand_simple_binop (mode, IOR,
1432 target, gen_int_mode (ifalse, mode),
1433 if_info->x, 0, OPTAB_WIDEN);
1434 }
1435 else
1436 {
1437 end_sequence ();
1438 return FALSE;
1439 }
1440
1441 if (! target)
1442 {
1443 end_sequence ();
1444 return FALSE;
1445 }
1446
1447 if (target != if_info->x)
1448 noce_emit_move_insn (if_info->x, target);
1449
1450 seq = end_ifcvt_sequence (if_info);
1451 if (!seq)
1452 return FALSE;
1453
1454 emit_insn_before_setloc (seq, if_info->jump,
1455 INSN_LOCATION (if_info->insn_a));
1456 return TRUE;
1457 }
1458
1459 return FALSE;
1460 }
1461
1462 /* Convert "if (test) foo++" into "foo += (test != 0)", and
1463 similarly for "foo--". */
1464
1465 static int
1466 noce_try_addcc (struct noce_if_info *if_info)
1467 {
1468 rtx target;
1469 rtx_insn *seq;
1470 int subtract, normalize;
1471
1472 if (!noce_simple_bbs (if_info))
1473 return FALSE;
1474
1475 if (GET_CODE (if_info->a) == PLUS
1476 && rtx_equal_p (XEXP (if_info->a, 0), if_info->b)
1477 && (reversed_comparison_code (if_info->cond, if_info->jump)
1478 != UNKNOWN))
1479 {
1480 rtx cond = if_info->cond;
1481 enum rtx_code code = reversed_comparison_code (cond, if_info->jump);
1482
1483 /* First try to use addcc pattern. */
1484 if (general_operand (XEXP (cond, 0), VOIDmode)
1485 && general_operand (XEXP (cond, 1), VOIDmode))
1486 {
1487 start_sequence ();
1488 target = emit_conditional_add (if_info->x, code,
1489 XEXP (cond, 0),
1490 XEXP (cond, 1),
1491 VOIDmode,
1492 if_info->b,
1493 XEXP (if_info->a, 1),
1494 GET_MODE (if_info->x),
1495 (code == LTU || code == GEU
1496 || code == LEU || code == GTU));
1497 if (target)
1498 {
1499 if (target != if_info->x)
1500 noce_emit_move_insn (if_info->x, target);
1501
1502 seq = end_ifcvt_sequence (if_info);
1503 if (!seq)
1504 return FALSE;
1505
1506 emit_insn_before_setloc (seq, if_info->jump,
1507 INSN_LOCATION (if_info->insn_a));
1508 return TRUE;
1509 }
1510 end_sequence ();
1511 }
1512
1513 /* If that fails, construct conditional increment or decrement using
1514 setcc. */
1515 if (if_info->branch_cost >= 2
1516 && (XEXP (if_info->a, 1) == const1_rtx
1517 || XEXP (if_info->a, 1) == constm1_rtx))
1518 {
1519 start_sequence ();
1520 if (STORE_FLAG_VALUE == INTVAL (XEXP (if_info->a, 1)))
1521 subtract = 0, normalize = 0;
1522 else if (-STORE_FLAG_VALUE == INTVAL (XEXP (if_info->a, 1)))
1523 subtract = 1, normalize = 0;
1524 else
1525 subtract = 0, normalize = INTVAL (XEXP (if_info->a, 1));
1526
1527
1528 target = noce_emit_store_flag (if_info,
1529 gen_reg_rtx (GET_MODE (if_info->x)),
1530 1, normalize);
1531
1532 if (target)
1533 target = expand_simple_binop (GET_MODE (if_info->x),
1534 subtract ? MINUS : PLUS,
1535 if_info->b, target, if_info->x,
1536 0, OPTAB_WIDEN);
1537 if (target)
1538 {
1539 if (target != if_info->x)
1540 noce_emit_move_insn (if_info->x, target);
1541
1542 seq = end_ifcvt_sequence (if_info);
1543 if (!seq)
1544 return FALSE;
1545
1546 emit_insn_before_setloc (seq, if_info->jump,
1547 INSN_LOCATION (if_info->insn_a));
1548 return TRUE;
1549 }
1550 end_sequence ();
1551 }
1552 }
1553
1554 return FALSE;
1555 }
1556
1557 /* Convert "if (test) x = 0;" to "x &= -(test == 0);" */
1558
1559 static int
1560 noce_try_store_flag_mask (struct noce_if_info *if_info)
1561 {
1562 rtx target;
1563 rtx_insn *seq;
1564 int reversep;
1565
1566 if (!noce_simple_bbs (if_info))
1567 return FALSE;
1568
1569 reversep = 0;
1570 if ((if_info->branch_cost >= 2
1571 || STORE_FLAG_VALUE == -1)
1572 && ((if_info->a == const0_rtx
1573 && rtx_equal_p (if_info->b, if_info->x))
1574 || ((reversep = (reversed_comparison_code (if_info->cond,
1575 if_info->jump)
1576 != UNKNOWN))
1577 && if_info->b == const0_rtx
1578 && rtx_equal_p (if_info->a, if_info->x))))
1579 {
1580 start_sequence ();
1581 target = noce_emit_store_flag (if_info,
1582 gen_reg_rtx (GET_MODE (if_info->x)),
1583 reversep, -1);
1584 if (target)
1585 target = expand_simple_binop (GET_MODE (if_info->x), AND,
1586 if_info->x,
1587 target, if_info->x, 0,
1588 OPTAB_WIDEN);
1589
1590 if (target)
1591 {
1592 int old_cost, new_cost, insn_cost;
1593 int speed_p;
1594
1595 if (target != if_info->x)
1596 noce_emit_move_insn (if_info->x, target);
1597
1598 seq = end_ifcvt_sequence (if_info);
1599 if (!seq)
1600 return FALSE;
1601
1602 speed_p = optimize_bb_for_speed_p (BLOCK_FOR_INSN (if_info->insn_a));
1603 insn_cost = insn_rtx_cost (PATTERN (if_info->insn_a), speed_p);
1604 old_cost = COSTS_N_INSNS (if_info->branch_cost) + insn_cost;
1605 new_cost = seq_cost (seq, speed_p);
1606
1607 if (new_cost > old_cost)
1608 return FALSE;
1609
1610 emit_insn_before_setloc (seq, if_info->jump,
1611 INSN_LOCATION (if_info->insn_a));
1612 return TRUE;
1613 }
1614
1615 end_sequence ();
1616 }
1617
1618 return FALSE;
1619 }
1620
1621 /* Helper function for noce_try_cmove and noce_try_cmove_arith. */
1622
1623 static rtx
1624 noce_emit_cmove (struct noce_if_info *if_info, rtx x, enum rtx_code code,
1625 rtx cmp_a, rtx cmp_b, rtx vfalse, rtx vtrue)
1626 {
1627 rtx target ATTRIBUTE_UNUSED;
1628 int unsignedp ATTRIBUTE_UNUSED;
1629
1630 /* If earliest == jump, try to build the cmove insn directly.
1631 This is helpful when combine has created some complex condition
1632 (like for alpha's cmovlbs) that we can't hope to regenerate
1633 through the normal interface. */
1634
1635 if (if_info->cond_earliest == if_info->jump)
1636 {
1637 rtx cond = gen_rtx_fmt_ee (code, GET_MODE (if_info->cond), cmp_a, cmp_b);
1638 rtx if_then_else = gen_rtx_IF_THEN_ELSE (GET_MODE (x),
1639 cond, vtrue, vfalse);
1640 rtx set = gen_rtx_SET (x, if_then_else);
1641
1642 start_sequence ();
1643 rtx_insn *insn = emit_insn (set);
1644
1645 if (recog_memoized (insn) >= 0)
1646 {
1647 rtx_insn *seq = get_insns ();
1648 end_sequence ();
1649 emit_insn (seq);
1650
1651 return x;
1652 }
1653
1654 end_sequence ();
1655 }
1656
1657 /* Don't even try if the comparison operands are weird
1658 except that the target supports cbranchcc4. */
1659 if (! general_operand (cmp_a, GET_MODE (cmp_a))
1660 || ! general_operand (cmp_b, GET_MODE (cmp_b)))
1661 {
1662 if (!have_cbranchcc4
1663 || GET_MODE_CLASS (GET_MODE (cmp_a)) != MODE_CC
1664 || cmp_b != const0_rtx)
1665 return NULL_RTX;
1666 }
1667
1668 unsignedp = (code == LTU || code == GEU
1669 || code == LEU || code == GTU);
1670
1671 target = emit_conditional_move (x, code, cmp_a, cmp_b, VOIDmode,
1672 vtrue, vfalse, GET_MODE (x),
1673 unsignedp);
1674 if (target)
1675 return target;
1676
1677 /* We might be faced with a situation like:
1678
1679 x = (reg:M TARGET)
1680 vtrue = (subreg:M (reg:N VTRUE) BYTE)
1681 vfalse = (subreg:M (reg:N VFALSE) BYTE)
1682
1683 We can't do a conditional move in mode M, but it's possible that we
1684 could do a conditional move in mode N instead and take a subreg of
1685 the result.
1686
1687 If we can't create new pseudos, though, don't bother. */
1688 if (reload_completed)
1689 return NULL_RTX;
1690
1691 if (GET_CODE (vtrue) == SUBREG && GET_CODE (vfalse) == SUBREG)
1692 {
1693 rtx reg_vtrue = SUBREG_REG (vtrue);
1694 rtx reg_vfalse = SUBREG_REG (vfalse);
1695 unsigned int byte_vtrue = SUBREG_BYTE (vtrue);
1696 unsigned int byte_vfalse = SUBREG_BYTE (vfalse);
1697 rtx promoted_target;
1698
1699 if (GET_MODE (reg_vtrue) != GET_MODE (reg_vfalse)
1700 || byte_vtrue != byte_vfalse
1701 || (SUBREG_PROMOTED_VAR_P (vtrue)
1702 != SUBREG_PROMOTED_VAR_P (vfalse))
1703 || (SUBREG_PROMOTED_GET (vtrue)
1704 != SUBREG_PROMOTED_GET (vfalse)))
1705 return NULL_RTX;
1706
1707 promoted_target = gen_reg_rtx (GET_MODE (reg_vtrue));
1708
1709 target = emit_conditional_move (promoted_target, code, cmp_a, cmp_b,
1710 VOIDmode, reg_vtrue, reg_vfalse,
1711 GET_MODE (reg_vtrue), unsignedp);
1712 /* Nope, couldn't do it in that mode either. */
1713 if (!target)
1714 return NULL_RTX;
1715
1716 target = gen_rtx_SUBREG (GET_MODE (vtrue), promoted_target, byte_vtrue);
1717 SUBREG_PROMOTED_VAR_P (target) = SUBREG_PROMOTED_VAR_P (vtrue);
1718 SUBREG_PROMOTED_SET (target, SUBREG_PROMOTED_GET (vtrue));
1719 emit_move_insn (x, target);
1720 return x;
1721 }
1722 else
1723 return NULL_RTX;
1724 }
1725
1726 /* Try only simple constants and registers here. More complex cases
1727 are handled in noce_try_cmove_arith after noce_try_store_flag_arith
1728 has had a go at it. */
1729
1730 static int
1731 noce_try_cmove (struct noce_if_info *if_info)
1732 {
1733 enum rtx_code code;
1734 rtx target;
1735 rtx_insn *seq;
1736
1737 if (!noce_simple_bbs (if_info))
1738 return FALSE;
1739
1740 if ((CONSTANT_P (if_info->a) || register_operand (if_info->a, VOIDmode))
1741 && (CONSTANT_P (if_info->b) || register_operand (if_info->b, VOIDmode)))
1742 {
1743 start_sequence ();
1744
1745 code = GET_CODE (if_info->cond);
1746 target = noce_emit_cmove (if_info, if_info->x, code,
1747 XEXP (if_info->cond, 0),
1748 XEXP (if_info->cond, 1),
1749 if_info->a, if_info->b);
1750
1751 if (target)
1752 {
1753 if (target != if_info->x)
1754 noce_emit_move_insn (if_info->x, target);
1755
1756 seq = end_ifcvt_sequence (if_info);
1757 if (!seq)
1758 return FALSE;
1759
1760 emit_insn_before_setloc (seq, if_info->jump,
1761 INSN_LOCATION (if_info->insn_a));
1762 return TRUE;
1763 }
1764 /* If both a and b are constants try a last-ditch transformation:
1765 if (test) x = a; else x = b;
1766 => x = (-(test != 0) & (b - a)) + a;
1767 Try this only if the target-specific expansion above has failed.
1768 The target-specific expander may want to generate sequences that
1769 we don't know about, so give them a chance before trying this
1770 approach. */
1771 else if (!targetm.have_conditional_execution ()
1772 && CONST_INT_P (if_info->a) && CONST_INT_P (if_info->b)
1773 && ((if_info->branch_cost >= 2 && STORE_FLAG_VALUE == -1)
1774 || if_info->branch_cost >= 3))
1775 {
1776 machine_mode mode = GET_MODE (if_info->x);
1777 HOST_WIDE_INT ifalse = INTVAL (if_info->a);
1778 HOST_WIDE_INT itrue = INTVAL (if_info->b);
1779 rtx target = noce_emit_store_flag (if_info, if_info->x, false, -1);
1780 if (!target)
1781 {
1782 end_sequence ();
1783 return FALSE;
1784 }
1785
1786 HOST_WIDE_INT diff = (unsigned HOST_WIDE_INT) itrue - ifalse;
1787 /* Make sure we can represent the difference
1788 between the two values. */
1789 if ((diff > 0)
1790 != ((ifalse < 0) != (itrue < 0) ? ifalse < 0 : ifalse < itrue))
1791 {
1792 end_sequence ();
1793 return FALSE;
1794 }
1795
1796 diff = trunc_int_for_mode (diff, mode);
1797 target = expand_simple_binop (mode, AND,
1798 target, gen_int_mode (diff, mode),
1799 if_info->x, 0, OPTAB_WIDEN);
1800 if (target)
1801 target = expand_simple_binop (mode, PLUS,
1802 target, gen_int_mode (ifalse, mode),
1803 if_info->x, 0, OPTAB_WIDEN);
1804 if (target)
1805 {
1806 if (target != if_info->x)
1807 noce_emit_move_insn (if_info->x, target);
1808
1809 seq = end_ifcvt_sequence (if_info);
1810 if (!seq)
1811 return FALSE;
1812
1813 emit_insn_before_setloc (seq, if_info->jump,
1814 INSN_LOCATION (if_info->insn_a));
1815 return TRUE;
1816 }
1817 else
1818 {
1819 end_sequence ();
1820 return FALSE;
1821 }
1822 }
1823 else
1824 end_sequence ();
1825 }
1826
1827 return FALSE;
1828 }
1829
1830 /* Return true if X contains a conditional code mode rtx. */
1831
1832 static bool
1833 contains_ccmode_rtx_p (rtx x)
1834 {
1835 subrtx_iterator::array_type array;
1836 FOR_EACH_SUBRTX (iter, array, x, ALL)
1837 if (GET_MODE_CLASS (GET_MODE (*iter)) == MODE_CC)
1838 return true;
1839
1840 return false;
1841 }
1842
1843 /* Helper for bb_valid_for_noce_process_p. Validate that
1844 the rtx insn INSN is a single set that does not set
1845 the conditional register CC and is in general valid for
1846 if-conversion. */
1847
1848 static bool
1849 insn_valid_noce_process_p (rtx_insn *insn, rtx cc)
1850 {
1851 if (!insn
1852 || !NONJUMP_INSN_P (insn)
1853 || (cc && set_of (cc, insn)))
1854 return false;
1855
1856 rtx sset = single_set (insn);
1857
1858 /* Currently support only simple single sets in test_bb. */
1859 if (!sset
1860 || !noce_operand_ok (SET_DEST (sset))
1861 || contains_ccmode_rtx_p (SET_DEST (sset))
1862 || !noce_operand_ok (SET_SRC (sset)))
1863 return false;
1864
1865 return true;
1866 }
1867
1868
1869 /* Return true iff the registers that the insns in BB_A set do not
1870 get used in BB_B. */
1871
1872 static bool
1873 bbs_ok_for_cmove_arith (basic_block bb_a, basic_block bb_b)
1874 {
1875 rtx_insn *a_insn;
1876 bitmap bba_sets = BITMAP_ALLOC (&reg_obstack);
1877
1878 df_ref def;
1879 df_ref use;
1880
1881 FOR_BB_INSNS (bb_a, a_insn)
1882 {
1883 if (!active_insn_p (a_insn))
1884 continue;
1885
1886 rtx sset_a = single_set (a_insn);
1887
1888 if (!sset_a)
1889 {
1890 BITMAP_FREE (bba_sets);
1891 return false;
1892 }
1893
1894 /* Record all registers that BB_A sets. */
1895 FOR_EACH_INSN_DEF (def, a_insn)
1896 bitmap_set_bit (bba_sets, DF_REF_REGNO (def));
1897 }
1898
1899 rtx_insn *b_insn;
1900
1901 FOR_BB_INSNS (bb_b, b_insn)
1902 {
1903 if (!active_insn_p (b_insn))
1904 continue;
1905
1906 rtx sset_b = single_set (b_insn);
1907
1908 if (!sset_b)
1909 {
1910 BITMAP_FREE (bba_sets);
1911 return false;
1912 }
1913
1914 /* Make sure this is a REG and not some instance
1915 of ZERO_EXTRACT or SUBREG or other dangerous stuff. */
1916 if (!REG_P (SET_DEST (sset_b)))
1917 {
1918 BITMAP_FREE (bba_sets);
1919 return false;
1920 }
1921
1922 /* If the insn uses a reg set in BB_A return false. */
1923 FOR_EACH_INSN_USE (use, b_insn)
1924 {
1925 if (bitmap_bit_p (bba_sets, DF_REF_REGNO (use)))
1926 {
1927 BITMAP_FREE (bba_sets);
1928 return false;
1929 }
1930 }
1931
1932 }
1933
1934 BITMAP_FREE (bba_sets);
1935 return true;
1936 }
1937
1938 /* Emit copies of all the active instructions in BB except the last.
1939 This is a helper for noce_try_cmove_arith. */
1940
1941 static void
1942 noce_emit_all_but_last (basic_block bb)
1943 {
1944 rtx_insn *last = last_active_insn (bb, FALSE);
1945 rtx_insn *insn;
1946 FOR_BB_INSNS (bb, insn)
1947 {
1948 if (insn != last && active_insn_p (insn))
1949 {
1950 rtx_insn *to_emit = as_a <rtx_insn *> (copy_rtx (insn));
1951
1952 emit_insn (PATTERN (to_emit));
1953 }
1954 }
1955 }
1956
1957 /* Helper for noce_try_cmove_arith. Emit the pattern TO_EMIT and return
1958 the resulting insn or NULL if it's not a valid insn. */
1959
1960 static rtx_insn *
1961 noce_emit_insn (rtx to_emit)
1962 {
1963 gcc_assert (to_emit);
1964 rtx_insn *insn = emit_insn (to_emit);
1965
1966 if (recog_memoized (insn) < 0)
1967 return NULL;
1968
1969 return insn;
1970 }
1971
1972 /* Helper for noce_try_cmove_arith. Emit a copy of the insns up to
1973 and including the penultimate one in BB if it is not simple
1974 (as indicated by SIMPLE). Then emit LAST_INSN as the last
1975 insn in the block. The reason for that is that LAST_INSN may
1976 have been modified by the preparation in noce_try_cmove_arith. */
1977
1978 static bool
1979 noce_emit_bb (rtx last_insn, basic_block bb, bool simple)
1980 {
1981 if (bb && !simple)
1982 noce_emit_all_but_last (bb);
1983
1984 if (last_insn && !noce_emit_insn (last_insn))
1985 return false;
1986
1987 return true;
1988 }
1989
1990 /* Try more complex cases involving conditional_move. */
1991
1992 static int
1993 noce_try_cmove_arith (struct noce_if_info *if_info)
1994 {
1995 rtx a = if_info->a;
1996 rtx b = if_info->b;
1997 rtx x = if_info->x;
1998 rtx orig_a, orig_b;
1999 rtx_insn *insn_a, *insn_b;
2000 bool a_simple = if_info->then_simple;
2001 bool b_simple = if_info->else_simple;
2002 basic_block then_bb = if_info->then_bb;
2003 basic_block else_bb = if_info->else_bb;
2004 rtx target;
2005 int is_mem = 0;
2006 enum rtx_code code;
2007 rtx_insn *ifcvt_seq;
2008
2009 /* A conditional move from two memory sources is equivalent to a
2010 conditional on their addresses followed by a load. Don't do this
2011 early because it'll screw alias analysis. Note that we've
2012 already checked for no side effects. */
2013 /* ??? FIXME: Magic number 5. */
2014 if (cse_not_expected
2015 && MEM_P (a) && MEM_P (b)
2016 && MEM_ADDR_SPACE (a) == MEM_ADDR_SPACE (b)
2017 && if_info->branch_cost >= 5)
2018 {
2019 machine_mode address_mode = get_address_mode (a);
2020
2021 a = XEXP (a, 0);
2022 b = XEXP (b, 0);
2023 x = gen_reg_rtx (address_mode);
2024 is_mem = 1;
2025 }
2026
2027 /* ??? We could handle this if we knew that a load from A or B could
2028 not trap or fault. This is also true if we've already loaded
2029 from the address along the path from ENTRY. */
2030 else if (may_trap_or_fault_p (a) || may_trap_or_fault_p (b))
2031 return FALSE;
2032
2033 /* if (test) x = a + b; else x = c - d;
2034 => y = a + b;
2035 x = c - d;
2036 if (test)
2037 x = y;
2038 */
2039
2040 code = GET_CODE (if_info->cond);
2041 insn_a = if_info->insn_a;
2042 insn_b = if_info->insn_b;
2043
2044 machine_mode x_mode = GET_MODE (x);
2045
2046 if (!can_conditionally_move_p (x_mode))
2047 return FALSE;
2048
2049 unsigned int then_cost;
2050 unsigned int else_cost;
2051 if (insn_a)
2052 then_cost = if_info->then_cost;
2053 else
2054 then_cost = 0;
2055
2056 if (insn_b)
2057 else_cost = if_info->else_cost;
2058 else
2059 else_cost = 0;
2060
2061 /* We're going to execute one of the basic blocks anyway, so
2062 bail out if the most expensive of the two blocks is unacceptable. */
2063 if (MAX (then_cost, else_cost) > COSTS_N_INSNS (if_info->branch_cost))
2064 return FALSE;
2065
2066 /* Possibly rearrange operands to make things come out more natural. */
2067 if (reversed_comparison_code (if_info->cond, if_info->jump) != UNKNOWN)
2068 {
2069 int reversep = 0;
2070 if (rtx_equal_p (b, x))
2071 reversep = 1;
2072 else if (general_operand (b, GET_MODE (b)))
2073 reversep = 1;
2074
2075 if (reversep)
2076 {
2077 code = reversed_comparison_code (if_info->cond, if_info->jump);
2078 std::swap (a, b);
2079 std::swap (insn_a, insn_b);
2080 std::swap (a_simple, b_simple);
2081 std::swap (then_bb, else_bb);
2082 }
2083 }
2084
2085 if (then_bb && else_bb && !a_simple && !b_simple
2086 && (!bbs_ok_for_cmove_arith (then_bb, else_bb)
2087 || !bbs_ok_for_cmove_arith (else_bb, then_bb)))
2088 return FALSE;
2089
2090 start_sequence ();
2091
2092 /* If one of the blocks is empty then the corresponding B or A value
2093 came from the test block. The non-empty complex block that we will
2094 emit might clobber the register used by B or A, so move it to a pseudo
2095 first. */
2096
2097 rtx tmp_a = NULL_RTX;
2098 rtx tmp_b = NULL_RTX;
2099
2100 if (b_simple || !else_bb)
2101 tmp_b = gen_reg_rtx (x_mode);
2102
2103 if (a_simple || !then_bb)
2104 tmp_a = gen_reg_rtx (x_mode);
2105
2106 orig_a = a;
2107 orig_b = b;
2108
2109 rtx emit_a = NULL_RTX;
2110 rtx emit_b = NULL_RTX;
2111 rtx_insn *tmp_insn = NULL;
2112 bool modified_in_a = false;
2113 bool modified_in_b = false;
2114 /* If either operand is complex, load it into a register first.
2115 The best way to do this is to copy the original insn. In this
2116 way we preserve any clobbers etc that the insn may have had.
2117 This is of course not possible in the IS_MEM case. */
2118
2119 if (! general_operand (a, GET_MODE (a)) || tmp_a)
2120 {
2121
2122 if (is_mem)
2123 {
2124 rtx reg = gen_reg_rtx (GET_MODE (a));
2125 emit_a = gen_rtx_SET (reg, a);
2126 }
2127 else
2128 {
2129 if (insn_a)
2130 {
2131 a = tmp_a ? tmp_a : gen_reg_rtx (GET_MODE (a));
2132
2133 rtx_insn *copy_of_a = as_a <rtx_insn *> (copy_rtx (insn_a));
2134 rtx set = single_set (copy_of_a);
2135 SET_DEST (set) = a;
2136
2137 emit_a = PATTERN (copy_of_a);
2138 }
2139 else
2140 {
2141 rtx tmp_reg = tmp_a ? tmp_a : gen_reg_rtx (GET_MODE (a));
2142 emit_a = gen_rtx_SET (tmp_reg, a);
2143 a = tmp_reg;
2144 }
2145 }
2146 }
2147
2148 if (! general_operand (b, GET_MODE (b)) || tmp_b)
2149 {
2150 if (is_mem)
2151 {
2152 rtx reg = gen_reg_rtx (GET_MODE (b));
2153 emit_b = gen_rtx_SET (reg, b);
2154 }
2155 else
2156 {
2157 if (insn_b)
2158 {
2159 b = tmp_b ? tmp_b : gen_reg_rtx (GET_MODE (b));
2160 rtx_insn *copy_of_b = as_a <rtx_insn *> (copy_rtx (insn_b));
2161 rtx set = single_set (copy_of_b);
2162
2163 SET_DEST (set) = b;
2164 emit_b = PATTERN (copy_of_b);
2165 }
2166 else
2167 {
2168 rtx tmp_reg = tmp_b ? tmp_b : gen_reg_rtx (GET_MODE (b));
2169 emit_b = gen_rtx_SET (tmp_reg, b);
2170 b = tmp_reg;
2171 }
2172 }
2173 }
2174
2175 modified_in_a = emit_a != NULL_RTX && modified_in_p (orig_b, emit_a);
2176 if (tmp_b && then_bb)
2177 {
2178 FOR_BB_INSNS (then_bb, tmp_insn)
2179 /* Don't check inside insn_a. We will have changed it to emit_a
2180 with a destination that doesn't conflict. */
2181 if (!(insn_a && tmp_insn == insn_a)
2182 && modified_in_p (orig_b, tmp_insn))
2183 {
2184 modified_in_a = true;
2185 break;
2186 }
2187
2188 }
2189
2190 modified_in_b = emit_b != NULL_RTX && modified_in_p (orig_a, emit_b);
2191 if (tmp_a && else_bb)
2192 {
2193 FOR_BB_INSNS (else_bb, tmp_insn)
2194 /* Don't check inside insn_b. We will have changed it to emit_b
2195 with a destination that doesn't conflict. */
2196 if (!(insn_b && tmp_insn == insn_b)
2197 && modified_in_p (orig_a, tmp_insn))
2198 {
2199 modified_in_b = true;
2200 break;
2201 }
2202 }
2203
2204 /* If insn to set up A clobbers any registers B depends on, try to
2205 swap insn that sets up A with the one that sets up B. If even
2206 that doesn't help, punt. */
2207 if (modified_in_a && !modified_in_b)
2208 {
2209 if (!noce_emit_bb (emit_b, else_bb, b_simple))
2210 goto end_seq_and_fail;
2211
2212 if (!noce_emit_bb (emit_a, then_bb, a_simple))
2213 goto end_seq_and_fail;
2214 }
2215 else if (!modified_in_a)
2216 {
2217 if (!noce_emit_bb (emit_a, then_bb, a_simple))
2218 goto end_seq_and_fail;
2219
2220 if (!noce_emit_bb (emit_b, else_bb, b_simple))
2221 goto end_seq_and_fail;
2222 }
2223 else
2224 goto end_seq_and_fail;
2225
2226 target = noce_emit_cmove (if_info, x, code, XEXP (if_info->cond, 0),
2227 XEXP (if_info->cond, 1), a, b);
2228
2229 if (! target)
2230 goto end_seq_and_fail;
2231
2232 /* If we're handling a memory for above, emit the load now. */
2233 if (is_mem)
2234 {
2235 rtx mem = gen_rtx_MEM (GET_MODE (if_info->x), target);
2236
2237 /* Copy over flags as appropriate. */
2238 if (MEM_VOLATILE_P (if_info->a) || MEM_VOLATILE_P (if_info->b))
2239 MEM_VOLATILE_P (mem) = 1;
2240 if (MEM_ALIAS_SET (if_info->a) == MEM_ALIAS_SET (if_info->b))
2241 set_mem_alias_set (mem, MEM_ALIAS_SET (if_info->a));
2242 set_mem_align (mem,
2243 MIN (MEM_ALIGN (if_info->a), MEM_ALIGN (if_info->b)));
2244
2245 gcc_assert (MEM_ADDR_SPACE (if_info->a) == MEM_ADDR_SPACE (if_info->b));
2246 set_mem_addr_space (mem, MEM_ADDR_SPACE (if_info->a));
2247
2248 noce_emit_move_insn (if_info->x, mem);
2249 }
2250 else if (target != x)
2251 noce_emit_move_insn (x, target);
2252
2253 ifcvt_seq = end_ifcvt_sequence (if_info);
2254 if (!ifcvt_seq)
2255 return FALSE;
2256
2257 emit_insn_before_setloc (ifcvt_seq, if_info->jump,
2258 INSN_LOCATION (if_info->insn_a));
2259 return TRUE;
2260
2261 end_seq_and_fail:
2262 end_sequence ();
2263 return FALSE;
2264 }
2265
2266 /* For most cases, the simplified condition we found is the best
2267 choice, but this is not the case for the min/max/abs transforms.
2268 For these we wish to know that it is A or B in the condition. */
2269
2270 static rtx
2271 noce_get_alt_condition (struct noce_if_info *if_info, rtx target,
2272 rtx_insn **earliest)
2273 {
2274 rtx cond, set;
2275 rtx_insn *insn;
2276 int reverse;
2277
2278 /* If target is already mentioned in the known condition, return it. */
2279 if (reg_mentioned_p (target, if_info->cond))
2280 {
2281 *earliest = if_info->cond_earliest;
2282 return if_info->cond;
2283 }
2284
2285 set = pc_set (if_info->jump);
2286 cond = XEXP (SET_SRC (set), 0);
2287 reverse
2288 = GET_CODE (XEXP (SET_SRC (set), 2)) == LABEL_REF
2289 && LABEL_REF_LABEL (XEXP (SET_SRC (set), 2)) == JUMP_LABEL (if_info->jump);
2290 if (if_info->then_else_reversed)
2291 reverse = !reverse;
2292
2293 /* If we're looking for a constant, try to make the conditional
2294 have that constant in it. There are two reasons why it may
2295 not have the constant we want:
2296
2297 1. GCC may have needed to put the constant in a register, because
2298 the target can't compare directly against that constant. For
2299 this case, we look for a SET immediately before the comparison
2300 that puts a constant in that register.
2301
2302 2. GCC may have canonicalized the conditional, for example
2303 replacing "if x < 4" with "if x <= 3". We can undo that (or
2304 make equivalent types of changes) to get the constants we need
2305 if they're off by one in the right direction. */
2306
2307 if (CONST_INT_P (target))
2308 {
2309 enum rtx_code code = GET_CODE (if_info->cond);
2310 rtx op_a = XEXP (if_info->cond, 0);
2311 rtx op_b = XEXP (if_info->cond, 1);
2312 rtx_insn *prev_insn;
2313
2314 /* First, look to see if we put a constant in a register. */
2315 prev_insn = prev_nonnote_insn (if_info->cond_earliest);
2316 if (prev_insn
2317 && BLOCK_FOR_INSN (prev_insn)
2318 == BLOCK_FOR_INSN (if_info->cond_earliest)
2319 && INSN_P (prev_insn)
2320 && GET_CODE (PATTERN (prev_insn)) == SET)
2321 {
2322 rtx src = find_reg_equal_equiv_note (prev_insn);
2323 if (!src)
2324 src = SET_SRC (PATTERN (prev_insn));
2325 if (CONST_INT_P (src))
2326 {
2327 if (rtx_equal_p (op_a, SET_DEST (PATTERN (prev_insn))))
2328 op_a = src;
2329 else if (rtx_equal_p (op_b, SET_DEST (PATTERN (prev_insn))))
2330 op_b = src;
2331
2332 if (CONST_INT_P (op_a))
2333 {
2334 std::swap (op_a, op_b);
2335 code = swap_condition (code);
2336 }
2337 }
2338 }
2339
2340 /* Now, look to see if we can get the right constant by
2341 adjusting the conditional. */
2342 if (CONST_INT_P (op_b))
2343 {
2344 HOST_WIDE_INT desired_val = INTVAL (target);
2345 HOST_WIDE_INT actual_val = INTVAL (op_b);
2346
2347 switch (code)
2348 {
2349 case LT:
2350 if (actual_val == desired_val + 1)
2351 {
2352 code = LE;
2353 op_b = GEN_INT (desired_val);
2354 }
2355 break;
2356 case LE:
2357 if (actual_val == desired_val - 1)
2358 {
2359 code = LT;
2360 op_b = GEN_INT (desired_val);
2361 }
2362 break;
2363 case GT:
2364 if (actual_val == desired_val - 1)
2365 {
2366 code = GE;
2367 op_b = GEN_INT (desired_val);
2368 }
2369 break;
2370 case GE:
2371 if (actual_val == desired_val + 1)
2372 {
2373 code = GT;
2374 op_b = GEN_INT (desired_val);
2375 }
2376 break;
2377 default:
2378 break;
2379 }
2380 }
2381
2382 /* If we made any changes, generate a new conditional that is
2383 equivalent to what we started with, but has the right
2384 constants in it. */
2385 if (code != GET_CODE (if_info->cond)
2386 || op_a != XEXP (if_info->cond, 0)
2387 || op_b != XEXP (if_info->cond, 1))
2388 {
2389 cond = gen_rtx_fmt_ee (code, GET_MODE (cond), op_a, op_b);
2390 *earliest = if_info->cond_earliest;
2391 return cond;
2392 }
2393 }
2394
2395 cond = canonicalize_condition (if_info->jump, cond, reverse,
2396 earliest, target, have_cbranchcc4, true);
2397 if (! cond || ! reg_mentioned_p (target, cond))
2398 return NULL;
2399
2400 /* We almost certainly searched back to a different place.
2401 Need to re-verify correct lifetimes. */
2402
2403 /* X may not be mentioned in the range (cond_earliest, jump]. */
2404 for (insn = if_info->jump; insn != *earliest; insn = PREV_INSN (insn))
2405 if (INSN_P (insn) && reg_overlap_mentioned_p (if_info->x, PATTERN (insn)))
2406 return NULL;
2407
2408 /* A and B may not be modified in the range [cond_earliest, jump). */
2409 for (insn = *earliest; insn != if_info->jump; insn = NEXT_INSN (insn))
2410 if (INSN_P (insn)
2411 && (modified_in_p (if_info->a, insn)
2412 || modified_in_p (if_info->b, insn)))
2413 return NULL;
2414
2415 return cond;
2416 }
2417
2418 /* Convert "if (a < b) x = a; else x = b;" to "x = min(a, b);", etc. */
2419
2420 static int
2421 noce_try_minmax (struct noce_if_info *if_info)
2422 {
2423 rtx cond, target;
2424 rtx_insn *earliest, *seq;
2425 enum rtx_code code, op;
2426 int unsignedp;
2427
2428 if (!noce_simple_bbs (if_info))
2429 return FALSE;
2430
2431 /* ??? Reject modes with NaNs or signed zeros since we don't know how
2432 they will be resolved with an SMIN/SMAX. It wouldn't be too hard
2433 to get the target to tell us... */
2434 if (HONOR_SIGNED_ZEROS (if_info->x)
2435 || HONOR_NANS (if_info->x))
2436 return FALSE;
2437
2438 cond = noce_get_alt_condition (if_info, if_info->a, &earliest);
2439 if (!cond)
2440 return FALSE;
2441
2442 /* Verify the condition is of the form we expect, and canonicalize
2443 the comparison code. */
2444 code = GET_CODE (cond);
2445 if (rtx_equal_p (XEXP (cond, 0), if_info->a))
2446 {
2447 if (! rtx_equal_p (XEXP (cond, 1), if_info->b))
2448 return FALSE;
2449 }
2450 else if (rtx_equal_p (XEXP (cond, 1), if_info->a))
2451 {
2452 if (! rtx_equal_p (XEXP (cond, 0), if_info->b))
2453 return FALSE;
2454 code = swap_condition (code);
2455 }
2456 else
2457 return FALSE;
2458
2459 /* Determine what sort of operation this is. Note that the code is for
2460 a taken branch, so the code->operation mapping appears backwards. */
2461 switch (code)
2462 {
2463 case LT:
2464 case LE:
2465 case UNLT:
2466 case UNLE:
2467 op = SMAX;
2468 unsignedp = 0;
2469 break;
2470 case GT:
2471 case GE:
2472 case UNGT:
2473 case UNGE:
2474 op = SMIN;
2475 unsignedp = 0;
2476 break;
2477 case LTU:
2478 case LEU:
2479 op = UMAX;
2480 unsignedp = 1;
2481 break;
2482 case GTU:
2483 case GEU:
2484 op = UMIN;
2485 unsignedp = 1;
2486 break;
2487 default:
2488 return FALSE;
2489 }
2490
2491 start_sequence ();
2492
2493 target = expand_simple_binop (GET_MODE (if_info->x), op,
2494 if_info->a, if_info->b,
2495 if_info->x, unsignedp, OPTAB_WIDEN);
2496 if (! target)
2497 {
2498 end_sequence ();
2499 return FALSE;
2500 }
2501 if (target != if_info->x)
2502 noce_emit_move_insn (if_info->x, target);
2503
2504 seq = end_ifcvt_sequence (if_info);
2505 if (!seq)
2506 return FALSE;
2507
2508 emit_insn_before_setloc (seq, if_info->jump, INSN_LOCATION (if_info->insn_a));
2509 if_info->cond = cond;
2510 if_info->cond_earliest = earliest;
2511
2512 return TRUE;
2513 }
2514
2515 /* Convert "if (a < 0) x = -a; else x = a;" to "x = abs(a);",
2516 "if (a < 0) x = ~a; else x = a;" to "x = one_cmpl_abs(a);",
2517 etc. */
2518
2519 static int
2520 noce_try_abs (struct noce_if_info *if_info)
2521 {
2522 rtx cond, target, a, b, c;
2523 rtx_insn *earliest, *seq;
2524 int negate;
2525 bool one_cmpl = false;
2526
2527 if (!noce_simple_bbs (if_info))
2528 return FALSE;
2529
2530 /* Reject modes with signed zeros. */
2531 if (HONOR_SIGNED_ZEROS (if_info->x))
2532 return FALSE;
2533
2534 /* Recognize A and B as constituting an ABS or NABS. The canonical
2535 form is a branch around the negation, taken when the object is the
2536 first operand of a comparison against 0 that evaluates to true. */
2537 a = if_info->a;
2538 b = if_info->b;
2539 if (GET_CODE (a) == NEG && rtx_equal_p (XEXP (a, 0), b))
2540 negate = 0;
2541 else if (GET_CODE (b) == NEG && rtx_equal_p (XEXP (b, 0), a))
2542 {
2543 std::swap (a, b);
2544 negate = 1;
2545 }
2546 else if (GET_CODE (a) == NOT && rtx_equal_p (XEXP (a, 0), b))
2547 {
2548 negate = 0;
2549 one_cmpl = true;
2550 }
2551 else if (GET_CODE (b) == NOT && rtx_equal_p (XEXP (b, 0), a))
2552 {
2553 std::swap (a, b);
2554 negate = 1;
2555 one_cmpl = true;
2556 }
2557 else
2558 return FALSE;
2559
2560 cond = noce_get_alt_condition (if_info, b, &earliest);
2561 if (!cond)
2562 return FALSE;
2563
2564 /* Verify the condition is of the form we expect. */
2565 if (rtx_equal_p (XEXP (cond, 0), b))
2566 c = XEXP (cond, 1);
2567 else if (rtx_equal_p (XEXP (cond, 1), b))
2568 {
2569 c = XEXP (cond, 0);
2570 negate = !negate;
2571 }
2572 else
2573 return FALSE;
2574
2575 /* Verify that C is zero. Search one step backward for a
2576 REG_EQUAL note or a simple source if necessary. */
2577 if (REG_P (c))
2578 {
2579 rtx set;
2580 rtx_insn *insn = prev_nonnote_insn (earliest);
2581 if (insn
2582 && BLOCK_FOR_INSN (insn) == BLOCK_FOR_INSN (earliest)
2583 && (set = single_set (insn))
2584 && rtx_equal_p (SET_DEST (set), c))
2585 {
2586 rtx note = find_reg_equal_equiv_note (insn);
2587 if (note)
2588 c = XEXP (note, 0);
2589 else
2590 c = SET_SRC (set);
2591 }
2592 else
2593 return FALSE;
2594 }
2595 if (MEM_P (c)
2596 && GET_CODE (XEXP (c, 0)) == SYMBOL_REF
2597 && CONSTANT_POOL_ADDRESS_P (XEXP (c, 0)))
2598 c = get_pool_constant (XEXP (c, 0));
2599
2600 /* Work around funny ideas get_condition has wrt canonicalization.
2601 Note that these rtx constants are known to be CONST_INT, and
2602 therefore imply integer comparisons.
2603 The one_cmpl case is more complicated, as we want to handle
2604 only x < 0 ? ~x : x or x >= 0 ? x : ~x to one_cmpl_abs (x)
2605 and x < 0 ? x : ~x or x >= 0 ? ~x : x to ~one_cmpl_abs (x),
2606 but not other cases (x > -1 is equivalent of x >= 0). */
2607 if (c == constm1_rtx && GET_CODE (cond) == GT)
2608 ;
2609 else if (c == const1_rtx && GET_CODE (cond) == LT)
2610 {
2611 if (one_cmpl)
2612 return FALSE;
2613 }
2614 else if (c == CONST0_RTX (GET_MODE (b)))
2615 {
2616 if (one_cmpl
2617 && GET_CODE (cond) != GE
2618 && GET_CODE (cond) != LT)
2619 return FALSE;
2620 }
2621 else
2622 return FALSE;
2623
2624 /* Determine what sort of operation this is. */
2625 switch (GET_CODE (cond))
2626 {
2627 case LT:
2628 case LE:
2629 case UNLT:
2630 case UNLE:
2631 negate = !negate;
2632 break;
2633 case GT:
2634 case GE:
2635 case UNGT:
2636 case UNGE:
2637 break;
2638 default:
2639 return FALSE;
2640 }
2641
2642 start_sequence ();
2643 if (one_cmpl)
2644 target = expand_one_cmpl_abs_nojump (GET_MODE (if_info->x), b,
2645 if_info->x);
2646 else
2647 target = expand_abs_nojump (GET_MODE (if_info->x), b, if_info->x, 1);
2648
2649 /* ??? It's a quandary whether cmove would be better here, especially
2650 for integers. Perhaps combine will clean things up. */
2651 if (target && negate)
2652 {
2653 if (one_cmpl)
2654 target = expand_simple_unop (GET_MODE (target), NOT, target,
2655 if_info->x, 0);
2656 else
2657 target = expand_simple_unop (GET_MODE (target), NEG, target,
2658 if_info->x, 0);
2659 }
2660
2661 if (! target)
2662 {
2663 end_sequence ();
2664 return FALSE;
2665 }
2666
2667 if (target != if_info->x)
2668 noce_emit_move_insn (if_info->x, target);
2669
2670 seq = end_ifcvt_sequence (if_info);
2671 if (!seq)
2672 return FALSE;
2673
2674 emit_insn_before_setloc (seq, if_info->jump, INSN_LOCATION (if_info->insn_a));
2675 if_info->cond = cond;
2676 if_info->cond_earliest = earliest;
2677
2678 return TRUE;
2679 }
2680
2681 /* Convert "if (m < 0) x = b; else x = 0;" to "x = (m >> C) & b;". */
2682
2683 static int
2684 noce_try_sign_mask (struct noce_if_info *if_info)
2685 {
2686 rtx cond, t, m, c;
2687 rtx_insn *seq;
2688 machine_mode mode;
2689 enum rtx_code code;
2690 bool t_unconditional;
2691
2692 if (!noce_simple_bbs (if_info))
2693 return FALSE;
2694
2695 cond = if_info->cond;
2696 code = GET_CODE (cond);
2697 m = XEXP (cond, 0);
2698 c = XEXP (cond, 1);
2699
2700 t = NULL_RTX;
2701 if (if_info->a == const0_rtx)
2702 {
2703 if ((code == LT && c == const0_rtx)
2704 || (code == LE && c == constm1_rtx))
2705 t = if_info->b;
2706 }
2707 else if (if_info->b == const0_rtx)
2708 {
2709 if ((code == GE && c == const0_rtx)
2710 || (code == GT && c == constm1_rtx))
2711 t = if_info->a;
2712 }
2713
2714 if (! t || side_effects_p (t))
2715 return FALSE;
2716
2717 /* We currently don't handle different modes. */
2718 mode = GET_MODE (t);
2719 if (GET_MODE (m) != mode)
2720 return FALSE;
2721
2722 /* This is only profitable if T is unconditionally executed/evaluated in the
2723 original insn sequence or T is cheap. The former happens if B is the
2724 non-zero (T) value and if INSN_B was taken from TEST_BB, or there was no
2725 INSN_B which can happen for e.g. conditional stores to memory. For the
2726 cost computation use the block TEST_BB where the evaluation will end up
2727 after the transformation. */
2728 t_unconditional =
2729 (t == if_info->b
2730 && (if_info->insn_b == NULL_RTX
2731 || BLOCK_FOR_INSN (if_info->insn_b) == if_info->test_bb));
2732 if (!(t_unconditional
2733 || (set_src_cost (t, mode, optimize_bb_for_speed_p (if_info->test_bb))
2734 < COSTS_N_INSNS (2))))
2735 return FALSE;
2736
2737 start_sequence ();
2738 /* Use emit_store_flag to generate "m < 0 ? -1 : 0" instead of expanding
2739 "(signed) m >> 31" directly. This benefits targets with specialized
2740 insns to obtain the signmask, but still uses ashr_optab otherwise. */
2741 m = emit_store_flag (gen_reg_rtx (mode), LT, m, const0_rtx, mode, 0, -1);
2742 t = m ? expand_binop (mode, and_optab, m, t, NULL_RTX, 0, OPTAB_DIRECT)
2743 : NULL_RTX;
2744
2745 if (!t)
2746 {
2747 end_sequence ();
2748 return FALSE;
2749 }
2750
2751 noce_emit_move_insn (if_info->x, t);
2752
2753 seq = end_ifcvt_sequence (if_info);
2754 if (!seq)
2755 return FALSE;
2756
2757 emit_insn_before_setloc (seq, if_info->jump, INSN_LOCATION (if_info->insn_a));
2758 return TRUE;
2759 }
2760
2761
2762 /* Optimize away "if (x & C) x |= C" and similar bit manipulation
2763 transformations. */
2764
2765 static int
2766 noce_try_bitop (struct noce_if_info *if_info)
2767 {
2768 rtx cond, x, a, result;
2769 rtx_insn *seq;
2770 machine_mode mode;
2771 enum rtx_code code;
2772 int bitnum;
2773
2774 x = if_info->x;
2775 cond = if_info->cond;
2776 code = GET_CODE (cond);
2777
2778 if (!noce_simple_bbs (if_info))
2779 return FALSE;
2780
2781 /* Check for no else condition. */
2782 if (! rtx_equal_p (x, if_info->b))
2783 return FALSE;
2784
2785 /* Check for a suitable condition. */
2786 if (code != NE && code != EQ)
2787 return FALSE;
2788 if (XEXP (cond, 1) != const0_rtx)
2789 return FALSE;
2790 cond = XEXP (cond, 0);
2791
2792 /* ??? We could also handle AND here. */
2793 if (GET_CODE (cond) == ZERO_EXTRACT)
2794 {
2795 if (XEXP (cond, 1) != const1_rtx
2796 || !CONST_INT_P (XEXP (cond, 2))
2797 || ! rtx_equal_p (x, XEXP (cond, 0)))
2798 return FALSE;
2799 bitnum = INTVAL (XEXP (cond, 2));
2800 mode = GET_MODE (x);
2801 if (BITS_BIG_ENDIAN)
2802 bitnum = GET_MODE_BITSIZE (mode) - 1 - bitnum;
2803 if (bitnum < 0 || bitnum >= HOST_BITS_PER_WIDE_INT)
2804 return FALSE;
2805 }
2806 else
2807 return FALSE;
2808
2809 a = if_info->a;
2810 if (GET_CODE (a) == IOR || GET_CODE (a) == XOR)
2811 {
2812 /* Check for "if (X & C) x = x op C". */
2813 if (! rtx_equal_p (x, XEXP (a, 0))
2814 || !CONST_INT_P (XEXP (a, 1))
2815 || (INTVAL (XEXP (a, 1)) & GET_MODE_MASK (mode))
2816 != (unsigned HOST_WIDE_INT) 1 << bitnum)
2817 return FALSE;
2818
2819 /* if ((x & C) == 0) x |= C; is transformed to x |= C. */
2820 /* if ((x & C) != 0) x |= C; is transformed to nothing. */
2821 if (GET_CODE (a) == IOR)
2822 result = (code == NE) ? a : NULL_RTX;
2823 else if (code == NE)
2824 {
2825 /* if ((x & C) == 0) x ^= C; is transformed to x |= C. */
2826 result = gen_int_mode ((HOST_WIDE_INT) 1 << bitnum, mode);
2827 result = simplify_gen_binary (IOR, mode, x, result);
2828 }
2829 else
2830 {
2831 /* if ((x & C) != 0) x ^= C; is transformed to x &= ~C. */
2832 result = gen_int_mode (~((HOST_WIDE_INT) 1 << bitnum), mode);
2833 result = simplify_gen_binary (AND, mode, x, result);
2834 }
2835 }
2836 else if (GET_CODE (a) == AND)
2837 {
2838 /* Check for "if (X & C) x &= ~C". */
2839 if (! rtx_equal_p (x, XEXP (a, 0))
2840 || !CONST_INT_P (XEXP (a, 1))
2841 || (INTVAL (XEXP (a, 1)) & GET_MODE_MASK (mode))
2842 != (~((HOST_WIDE_INT) 1 << bitnum) & GET_MODE_MASK (mode)))
2843 return FALSE;
2844
2845 /* if ((x & C) == 0) x &= ~C; is transformed to nothing. */
2846 /* if ((x & C) != 0) x &= ~C; is transformed to x &= ~C. */
2847 result = (code == EQ) ? a : NULL_RTX;
2848 }
2849 else
2850 return FALSE;
2851
2852 if (result)
2853 {
2854 start_sequence ();
2855 noce_emit_move_insn (x, result);
2856 seq = end_ifcvt_sequence (if_info);
2857 if (!seq)
2858 return FALSE;
2859
2860 emit_insn_before_setloc (seq, if_info->jump,
2861 INSN_LOCATION (if_info->insn_a));
2862 }
2863 return TRUE;
2864 }
2865
2866
2867 /* Similar to get_condition, only the resulting condition must be
2868 valid at JUMP, instead of at EARLIEST.
2869
2870 If THEN_ELSE_REVERSED is true, the fallthrough does not go to the
2871 THEN block of the caller, and we have to reverse the condition. */
2872
2873 static rtx
2874 noce_get_condition (rtx_insn *jump, rtx_insn **earliest, bool then_else_reversed)
2875 {
2876 rtx cond, set, tmp;
2877 bool reverse;
2878
2879 if (! any_condjump_p (jump))
2880 return NULL_RTX;
2881
2882 set = pc_set (jump);
2883
2884 /* If this branches to JUMP_LABEL when the condition is false,
2885 reverse the condition. */
2886 reverse = (GET_CODE (XEXP (SET_SRC (set), 2)) == LABEL_REF
2887 && LABEL_REF_LABEL (XEXP (SET_SRC (set), 2)) == JUMP_LABEL (jump));
2888
2889 /* We may have to reverse because the caller's if block is not canonical,
2890 i.e. the THEN block isn't the fallthrough block for the TEST block
2891 (see find_if_header). */
2892 if (then_else_reversed)
2893 reverse = !reverse;
2894
2895 /* If the condition variable is a register and is MODE_INT, accept it. */
2896
2897 cond = XEXP (SET_SRC (set), 0);
2898 tmp = XEXP (cond, 0);
2899 if (REG_P (tmp) && GET_MODE_CLASS (GET_MODE (tmp)) == MODE_INT
2900 && (GET_MODE (tmp) != BImode
2901 || !targetm.small_register_classes_for_mode_p (BImode)))
2902 {
2903 *earliest = jump;
2904
2905 if (reverse)
2906 cond = gen_rtx_fmt_ee (reverse_condition (GET_CODE (cond)),
2907 GET_MODE (cond), tmp, XEXP (cond, 1));
2908 return cond;
2909 }
2910
2911 /* Otherwise, fall back on canonicalize_condition to do the dirty
2912 work of manipulating MODE_CC values and COMPARE rtx codes. */
2913 tmp = canonicalize_condition (jump, cond, reverse, earliest,
2914 NULL_RTX, have_cbranchcc4, true);
2915
2916 /* We don't handle side-effects in the condition, like handling
2917 REG_INC notes and making sure no duplicate conditions are emitted. */
2918 if (tmp != NULL_RTX && side_effects_p (tmp))
2919 return NULL_RTX;
2920
2921 return tmp;
2922 }
2923
2924 /* Return true if OP is ok for if-then-else processing. */
2925
2926 static int
2927 noce_operand_ok (const_rtx op)
2928 {
2929 if (side_effects_p (op))
2930 return FALSE;
2931
2932 /* We special-case memories, so handle any of them with
2933 no address side effects. */
2934 if (MEM_P (op))
2935 return ! side_effects_p (XEXP (op, 0));
2936
2937 return ! may_trap_p (op);
2938 }
2939
2940 /* Return true if X contains a MEM subrtx. */
2941
2942 static bool
2943 contains_mem_rtx_p (rtx x)
2944 {
2945 subrtx_iterator::array_type array;
2946 FOR_EACH_SUBRTX (iter, array, x, ALL)
2947 if (MEM_P (*iter))
2948 return true;
2949
2950 return false;
2951 }
2952
2953 /* Return true iff basic block TEST_BB is valid for noce if-conversion.
2954 The condition used in this if-conversion is in COND.
2955 In practice, check that TEST_BB ends with a single set
2956 x := a and all previous computations
2957 in TEST_BB don't produce any values that are live after TEST_BB.
2958 In other words, all the insns in TEST_BB are there only
2959 to compute a value for x. Put the rtx cost of the insns
2960 in TEST_BB into COST. Record whether TEST_BB is a single simple
2961 set instruction in SIMPLE_P. */
2962
2963 static bool
2964 bb_valid_for_noce_process_p (basic_block test_bb, rtx cond,
2965 unsigned int *cost, bool *simple_p)
2966 {
2967 if (!test_bb)
2968 return false;
2969
2970 rtx_insn *last_insn = last_active_insn (test_bb, FALSE);
2971 rtx last_set = NULL_RTX;
2972
2973 rtx cc = cc_in_cond (cond);
2974
2975 if (!insn_valid_noce_process_p (last_insn, cc))
2976 return false;
2977 last_set = single_set (last_insn);
2978
2979 rtx x = SET_DEST (last_set);
2980 rtx_insn *first_insn = first_active_insn (test_bb);
2981 rtx first_set = single_set (first_insn);
2982
2983 if (!first_set)
2984 return false;
2985
2986 /* We have a single simple set, that's okay. */
2987 bool speed_p = optimize_bb_for_speed_p (test_bb);
2988
2989 if (first_insn == last_insn)
2990 {
2991 *simple_p = noce_operand_ok (SET_DEST (first_set));
2992 *cost = insn_rtx_cost (first_set, speed_p);
2993 return *simple_p;
2994 }
2995
2996 rtx_insn *prev_last_insn = PREV_INSN (last_insn);
2997 gcc_assert (prev_last_insn);
2998
2999 /* For now, disallow setting x multiple times in test_bb. */
3000 if (REG_P (x) && reg_set_between_p (x, first_insn, prev_last_insn))
3001 return false;
3002
3003 bitmap test_bb_temps = BITMAP_ALLOC (&reg_obstack);
3004
3005 /* The regs that are live out of test_bb. */
3006 bitmap test_bb_live_out = df_get_live_out (test_bb);
3007
3008 int potential_cost = insn_rtx_cost (last_set, speed_p);
3009 rtx_insn *insn;
3010 FOR_BB_INSNS (test_bb, insn)
3011 {
3012 if (insn != last_insn)
3013 {
3014 if (!active_insn_p (insn))
3015 continue;
3016
3017 if (!insn_valid_noce_process_p (insn, cc))
3018 goto free_bitmap_and_fail;
3019
3020 rtx sset = single_set (insn);
3021 gcc_assert (sset);
3022
3023 if (contains_mem_rtx_p (SET_SRC (sset))
3024 || !REG_P (SET_DEST (sset))
3025 || reg_overlap_mentioned_p (SET_DEST (sset), cond))
3026 goto free_bitmap_and_fail;
3027
3028 potential_cost += insn_rtx_cost (sset, speed_p);
3029 bitmap_set_bit (test_bb_temps, REGNO (SET_DEST (sset)));
3030 }
3031 }
3032
3033 /* If any of the intermediate results in test_bb are live after test_bb
3034 then fail. */
3035 if (bitmap_intersect_p (test_bb_live_out, test_bb_temps))
3036 goto free_bitmap_and_fail;
3037
3038 BITMAP_FREE (test_bb_temps);
3039 *cost = potential_cost;
3040 *simple_p = false;
3041 return true;
3042
3043 free_bitmap_and_fail:
3044 BITMAP_FREE (test_bb_temps);
3045 return false;
3046 }
3047
3048 /* We have something like:
3049
3050 if (x > y)
3051 { i = a; j = b; k = c; }
3052
3053 Make it:
3054
3055 tmp_i = (x > y) ? a : i;
3056 tmp_j = (x > y) ? b : j;
3057 tmp_k = (x > y) ? c : k;
3058 i = tmp_i;
3059 j = tmp_j;
3060 k = tmp_k;
3061
3062 Subsequent passes are expected to clean up the extra moves.
3063
3064 Look for special cases such as writes to one register which are
3065 read back in another SET, as might occur in a swap idiom or
3066 similar.
3067
3068 These look like:
3069
3070 if (x > y)
3071 i = a;
3072 j = i;
3073
3074 Which we want to rewrite to:
3075
3076 tmp_i = (x > y) ? a : i;
3077 tmp_j = (x > y) ? tmp_i : j;
3078 i = tmp_i;
3079 j = tmp_j;
3080
3081 We can catch these when looking at (SET x y) by keeping a list of the
3082 registers we would have targeted before if-conversion and looking back
3083 through it for an overlap with Y. If we find one, we rewire the
3084 conditional set to use the temporary we introduced earlier.
3085
3086 IF_INFO contains the useful information about the block structure and
3087 jump instructions. */
3088
3089 static int
3090 noce_convert_multiple_sets (struct noce_if_info *if_info)
3091 {
3092 basic_block test_bb = if_info->test_bb;
3093 basic_block then_bb = if_info->then_bb;
3094 basic_block join_bb = if_info->join_bb;
3095 rtx_insn *jump = if_info->jump;
3096 rtx_insn *cond_earliest;
3097 rtx_insn *insn;
3098
3099 start_sequence ();
3100
3101 /* Decompose the condition attached to the jump. */
3102 rtx cond = noce_get_condition (jump, &cond_earliest, false);
3103 rtx x = XEXP (cond, 0);
3104 rtx y = XEXP (cond, 1);
3105 rtx_code cond_code = GET_CODE (cond);
3106
3107 /* The true targets for a conditional move. */
3108 auto_vec<rtx> targets;
3109 /* The temporaries introduced to allow us to not consider register
3110 overlap. */
3111 auto_vec<rtx> temporaries;
3112 /* The insns we've emitted. */
3113 auto_vec<rtx_insn *> unmodified_insns;
3114 int count = 0;
3115
3116 FOR_BB_INSNS (then_bb, insn)
3117 {
3118 /* Skip over non-insns. */
3119 if (!active_insn_p (insn))
3120 continue;
3121
3122 rtx set = single_set (insn);
3123 gcc_checking_assert (set);
3124
3125 rtx target = SET_DEST (set);
3126 rtx temp = gen_reg_rtx (GET_MODE (target));
3127 rtx new_val = SET_SRC (set);
3128 rtx old_val = target;
3129
3130 /* If we were supposed to read from an earlier write in this block,
3131 we've changed the register allocation. Rewire the read. While
3132 we are looking, also try to catch a swap idiom. */
3133 for (int i = count - 1; i >= 0; --i)
3134 if (reg_overlap_mentioned_p (new_val, targets[i]))
3135 {
3136 /* Catch a "swap" style idiom. */
3137 if (find_reg_note (insn, REG_DEAD, new_val) != NULL_RTX)
3138 /* The write to targets[i] is only live until the read
3139 here. As the condition codes match, we can propagate
3140 the set to here. */
3141 new_val = SET_SRC (single_set (unmodified_insns[i]));
3142 else
3143 new_val = temporaries[i];
3144 break;
3145 }
3146
3147 /* If we had a non-canonical conditional jump (i.e. one where
3148 the fallthrough is to the "else" case) we need to reverse
3149 the conditional select. */
3150 if (if_info->then_else_reversed)
3151 std::swap (old_val, new_val);
3152
3153 /* Actually emit the conditional move. */
3154 rtx temp_dest = noce_emit_cmove (if_info, temp, cond_code,
3155 x, y, new_val, old_val);
3156
3157 /* If we failed to expand the conditional move, drop out and don't
3158 try to continue. */
3159 if (temp_dest == NULL_RTX)
3160 {
3161 end_sequence ();
3162 return FALSE;
3163 }
3164
3165 /* Bookkeeping. */
3166 count++;
3167 targets.safe_push (target);
3168 temporaries.safe_push (temp_dest);
3169 unmodified_insns.safe_push (insn);
3170 }
3171
3172 /* We must have seen some sort of insn to insert, otherwise we were
3173 given an empty BB to convert, and we can't handle that. */
3174 gcc_assert (!unmodified_insns.is_empty ());
3175
3176 /* Now fixup the assignments. */
3177 for (int i = 0; i < count; i++)
3178 noce_emit_move_insn (targets[i], temporaries[i]);
3179
3180 /* Actually emit the sequence. */
3181 rtx_insn *seq = get_insns ();
3182
3183 for (insn = seq; insn; insn = NEXT_INSN (insn))
3184 set_used_flags (insn);
3185
3186 /* Mark all our temporaries and targets as used. */
3187 for (int i = 0; i < count; i++)
3188 {
3189 set_used_flags (temporaries[i]);
3190 set_used_flags (targets[i]);
3191 }
3192
3193 set_used_flags (cond);
3194 set_used_flags (x);
3195 set_used_flags (y);
3196
3197 unshare_all_rtl_in_chain (seq);
3198 end_sequence ();
3199
3200 if (!seq)
3201 return FALSE;
3202
3203 for (insn = seq; insn; insn = NEXT_INSN (insn))
3204 if (JUMP_P (insn)
3205 || recog_memoized (insn) == -1)
3206 return FALSE;
3207
3208 emit_insn_before_setloc (seq, if_info->jump,
3209 INSN_LOCATION (unmodified_insns.last ()));
3210
3211 /* Clean up THEN_BB and the edges in and out of it. */
3212 remove_edge (find_edge (test_bb, join_bb));
3213 remove_edge (find_edge (then_bb, join_bb));
3214 redirect_edge_and_branch_force (single_succ_edge (test_bb), join_bb);
3215 delete_basic_block (then_bb);
3216 num_true_changes++;
3217
3218 /* Maybe merge blocks now the jump is simple enough. */
3219 if (can_merge_blocks_p (test_bb, join_bb))
3220 {
3221 merge_blocks (test_bb, join_bb);
3222 num_true_changes++;
3223 }
3224
3225 num_updated_if_blocks++;
3226 return TRUE;
3227 }
3228
3229 /* Return true iff basic block TEST_BB is comprised of only
3230 (SET (REG) (REG)) insns suitable for conversion to a series
3231 of conditional moves. FORNOW: Use II to find the expected cost of
3232 the branch into/over TEST_BB.
3233
3234 TODO: This creates an implicit "magic number" for branch_cost.
3235 II->branch_cost now guides the maximum number of set instructions in
3236 a basic block which is considered profitable to completely
3237 if-convert. */
3238
3239 static bool
3240 bb_ok_for_noce_convert_multiple_sets (basic_block test_bb,
3241 struct noce_if_info *ii)
3242 {
3243 rtx_insn *insn;
3244 unsigned count = 0;
3245
3246 FOR_BB_INSNS (test_bb, insn)
3247 {
3248 /* Skip over notes etc. */
3249 if (!active_insn_p (insn))
3250 continue;
3251
3252 /* We only handle SET insns. */
3253 rtx set = single_set (insn);
3254 if (set == NULL_RTX)
3255 return false;
3256
3257 rtx dest = SET_DEST (set);
3258 rtx src = SET_SRC (set);
3259
3260 /* We can possibly relax this, but for now only handle REG to REG
3261 moves. This avoids any issues that might come from introducing
3262 loads/stores that might violate data-race-freedom guarantees. */
3263 if (!(REG_P (src) && REG_P (dest)))
3264 return false;
3265
3266 /* Destination must be appropriate for a conditional write. */
3267 if (!noce_operand_ok (dest))
3268 return false;
3269
3270 /* We must be able to conditionally move in this mode. */
3271 if (!can_conditionally_move_p (GET_MODE (dest)))
3272 return false;
3273
3274 ++count;
3275 }
3276
3277 /* FORNOW: Our cost model is a count of the number of instructions we
3278 would if-convert. This is suboptimal, and should be improved as part
3279 of a wider rework of branch_cost. */
3280 if (count > ii->branch_cost)
3281 return FALSE;
3282
3283 return count > 0;
3284 }
3285
3286 /* Given a simple IF-THEN-JOIN or IF-THEN-ELSE-JOIN block, attempt to convert
3287 it without using conditional execution. Return TRUE if we were successful
3288 at converting the block. */
3289
3290 static int
3291 noce_process_if_block (struct noce_if_info *if_info)
3292 {
3293 basic_block test_bb = if_info->test_bb; /* test block */
3294 basic_block then_bb = if_info->then_bb; /* THEN */
3295 basic_block else_bb = if_info->else_bb; /* ELSE or NULL */
3296 basic_block join_bb = if_info->join_bb; /* JOIN */
3297 rtx_insn *jump = if_info->jump;
3298 rtx cond = if_info->cond;
3299 rtx_insn *insn_a, *insn_b;
3300 rtx set_a, set_b;
3301 rtx orig_x, x, a, b;
3302
3303 /* We're looking for patterns of the form
3304
3305 (1) if (...) x = a; else x = b;
3306 (2) x = b; if (...) x = a;
3307 (3) if (...) x = a; // as if with an initial x = x.
3308 (4) if (...) { x = a; y = b; z = c; } // Like 3, for multiple SETS.
3309 The later patterns require jumps to be more expensive.
3310 For the if (...) x = a; else x = b; case we allow multiple insns
3311 inside the then and else blocks as long as their only effect is
3312 to calculate a value for x.
3313 ??? For future expansion, further expand the "multiple X" rules. */
3314
3315 /* First look for multiple SETS. */
3316 if (!else_bb
3317 && HAVE_conditional_move
3318 && !HAVE_cc0
3319 && bb_ok_for_noce_convert_multiple_sets (then_bb, if_info))
3320 {
3321 if (noce_convert_multiple_sets (if_info))
3322 return TRUE;
3323 }
3324
3325 if (! bb_valid_for_noce_process_p (then_bb, cond, &if_info->then_cost,
3326 &if_info->then_simple))
3327 return false;
3328
3329 if (else_bb
3330 && ! bb_valid_for_noce_process_p (else_bb, cond, &if_info->else_cost,
3331 &if_info->else_simple))
3332 return false;
3333
3334 insn_a = last_active_insn (then_bb, FALSE);
3335 set_a = single_set (insn_a);
3336 gcc_assert (set_a);
3337
3338 x = SET_DEST (set_a);
3339 a = SET_SRC (set_a);
3340
3341 /* Look for the other potential set. Make sure we've got equivalent
3342 destinations. */
3343 /* ??? This is overconservative. Storing to two different mems is
3344 as easy as conditionally computing the address. Storing to a
3345 single mem merely requires a scratch memory to use as one of the
3346 destination addresses; often the memory immediately below the
3347 stack pointer is available for this. */
3348 set_b = NULL_RTX;
3349 if (else_bb)
3350 {
3351 insn_b = last_active_insn (else_bb, FALSE);
3352 set_b = single_set (insn_b);
3353 gcc_assert (set_b);
3354
3355 if (!rtx_interchangeable_p (x, SET_DEST (set_b)))
3356 return FALSE;
3357 }
3358 else
3359 {
3360 insn_b = prev_nonnote_nondebug_insn (if_info->cond_earliest);
3361 /* We're going to be moving the evaluation of B down from above
3362 COND_EARLIEST to JUMP. Make sure the relevant data is still
3363 intact. */
3364 if (! insn_b
3365 || BLOCK_FOR_INSN (insn_b) != BLOCK_FOR_INSN (if_info->cond_earliest)
3366 || !NONJUMP_INSN_P (insn_b)
3367 || (set_b = single_set (insn_b)) == NULL_RTX
3368 || ! rtx_interchangeable_p (x, SET_DEST (set_b))
3369 || ! noce_operand_ok (SET_SRC (set_b))
3370 || reg_overlap_mentioned_p (x, SET_SRC (set_b))
3371 || modified_between_p (SET_SRC (set_b), insn_b, jump)
3372 /* Avoid extending the lifetime of hard registers on small
3373 register class machines. */
3374 || (REG_P (SET_SRC (set_b))
3375 && HARD_REGISTER_P (SET_SRC (set_b))
3376 && targetm.small_register_classes_for_mode_p
3377 (GET_MODE (SET_SRC (set_b))))
3378 /* Likewise with X. In particular this can happen when
3379 noce_get_condition looks farther back in the instruction
3380 stream than one might expect. */
3381 || reg_overlap_mentioned_p (x, cond)
3382 || reg_overlap_mentioned_p (x, a)
3383 || modified_between_p (x, insn_b, jump))
3384 {
3385 insn_b = NULL;
3386 set_b = NULL_RTX;
3387 }
3388 }
3389
3390 /* If x has side effects then only the if-then-else form is safe to
3391 convert. But even in that case we would need to restore any notes
3392 (such as REG_INC) at then end. That can be tricky if
3393 noce_emit_move_insn expands to more than one insn, so disable the
3394 optimization entirely for now if there are side effects. */
3395 if (side_effects_p (x))
3396 return FALSE;
3397
3398 b = (set_b ? SET_SRC (set_b) : x);
3399
3400 /* Only operate on register destinations, and even then avoid extending
3401 the lifetime of hard registers on small register class machines. */
3402 orig_x = x;
3403 if (!REG_P (x)
3404 || (HARD_REGISTER_P (x)
3405 && targetm.small_register_classes_for_mode_p (GET_MODE (x))))
3406 {
3407 if (GET_MODE (x) == BLKmode)
3408 return FALSE;
3409
3410 if (GET_CODE (x) == ZERO_EXTRACT
3411 && (!CONST_INT_P (XEXP (x, 1))
3412 || !CONST_INT_P (XEXP (x, 2))))
3413 return FALSE;
3414
3415 x = gen_reg_rtx (GET_MODE (GET_CODE (x) == STRICT_LOW_PART
3416 ? XEXP (x, 0) : x));
3417 }
3418
3419 /* Don't operate on sources that may trap or are volatile. */
3420 if (! noce_operand_ok (a) || ! noce_operand_ok (b))
3421 return FALSE;
3422
3423 retry:
3424 /* Set up the info block for our subroutines. */
3425 if_info->insn_a = insn_a;
3426 if_info->insn_b = insn_b;
3427 if_info->x = x;
3428 if_info->a = a;
3429 if_info->b = b;
3430
3431 /* Try optimizations in some approximation of a useful order. */
3432 /* ??? Should first look to see if X is live incoming at all. If it
3433 isn't, we don't need anything but an unconditional set. */
3434
3435 /* Look and see if A and B are really the same. Avoid creating silly
3436 cmove constructs that no one will fix up later. */
3437 if (noce_simple_bbs (if_info)
3438 && rtx_interchangeable_p (a, b))
3439 {
3440 /* If we have an INSN_B, we don't have to create any new rtl. Just
3441 move the instruction that we already have. If we don't have an
3442 INSN_B, that means that A == X, and we've got a noop move. In
3443 that case don't do anything and let the code below delete INSN_A. */
3444 if (insn_b && else_bb)
3445 {
3446 rtx note;
3447
3448 if (else_bb && insn_b == BB_END (else_bb))
3449 BB_END (else_bb) = PREV_INSN (insn_b);
3450 reorder_insns (insn_b, insn_b, PREV_INSN (jump));
3451
3452 /* If there was a REG_EQUAL note, delete it since it may have been
3453 true due to this insn being after a jump. */
3454 if ((note = find_reg_note (insn_b, REG_EQUAL, NULL_RTX)) != 0)
3455 remove_note (insn_b, note);
3456
3457 insn_b = NULL;
3458 }
3459 /* If we have "x = b; if (...) x = a;", and x has side-effects, then
3460 x must be executed twice. */
3461 else if (insn_b && side_effects_p (orig_x))
3462 return FALSE;
3463
3464 x = orig_x;
3465 goto success;
3466 }
3467
3468 if (!set_b && MEM_P (orig_x))
3469 /* We want to avoid store speculation to avoid cases like
3470 if (pthread_mutex_trylock(mutex))
3471 ++global_variable;
3472 Rather than go to much effort here, we rely on the SSA optimizers,
3473 which do a good enough job these days. */
3474 return FALSE;
3475
3476 if (noce_try_move (if_info))
3477 goto success;
3478 if (noce_try_store_flag (if_info))
3479 goto success;
3480 if (noce_try_bitop (if_info))
3481 goto success;
3482 if (noce_try_minmax (if_info))
3483 goto success;
3484 if (noce_try_abs (if_info))
3485 goto success;
3486 if (noce_try_inverse_constants (if_info))
3487 goto success;
3488 if (!targetm.have_conditional_execution ()
3489 && noce_try_store_flag_constants (if_info))
3490 goto success;
3491 if (HAVE_conditional_move
3492 && noce_try_cmove (if_info))
3493 goto success;
3494 if (! targetm.have_conditional_execution ())
3495 {
3496 if (noce_try_addcc (if_info))
3497 goto success;
3498 if (noce_try_store_flag_mask (if_info))
3499 goto success;
3500 if (HAVE_conditional_move
3501 && noce_try_cmove_arith (if_info))
3502 goto success;
3503 if (noce_try_sign_mask (if_info))
3504 goto success;
3505 }
3506
3507 if (!else_bb && set_b)
3508 {
3509 insn_b = NULL;
3510 set_b = NULL_RTX;
3511 b = orig_x;
3512 goto retry;
3513 }
3514
3515 return FALSE;
3516
3517 success:
3518
3519 /* If we used a temporary, fix it up now. */
3520 if (orig_x != x)
3521 {
3522 rtx_insn *seq;
3523
3524 start_sequence ();
3525 noce_emit_move_insn (orig_x, x);
3526 seq = get_insns ();
3527 set_used_flags (orig_x);
3528 unshare_all_rtl_in_chain (seq);
3529 end_sequence ();
3530
3531 emit_insn_before_setloc (seq, BB_END (test_bb), INSN_LOCATION (insn_a));
3532 }
3533
3534 /* The original THEN and ELSE blocks may now be removed. The test block
3535 must now jump to the join block. If the test block and the join block
3536 can be merged, do so. */
3537 if (else_bb)
3538 {
3539 delete_basic_block (else_bb);
3540 num_true_changes++;
3541 }
3542 else
3543 remove_edge (find_edge (test_bb, join_bb));
3544
3545 remove_edge (find_edge (then_bb, join_bb));
3546 redirect_edge_and_branch_force (single_succ_edge (test_bb), join_bb);
3547 delete_basic_block (then_bb);
3548 num_true_changes++;
3549
3550 if (can_merge_blocks_p (test_bb, join_bb))
3551 {
3552 merge_blocks (test_bb, join_bb);
3553 num_true_changes++;
3554 }
3555
3556 num_updated_if_blocks++;
3557 return TRUE;
3558 }
3559
3560 /* Check whether a block is suitable for conditional move conversion.
3561 Every insn must be a simple set of a register to a constant or a
3562 register. For each assignment, store the value in the pointer map
3563 VALS, keyed indexed by register pointer, then store the register
3564 pointer in REGS. COND is the condition we will test. */
3565
3566 static int
3567 check_cond_move_block (basic_block bb,
3568 hash_map<rtx, rtx> *vals,
3569 vec<rtx> *regs,
3570 rtx cond)
3571 {
3572 rtx_insn *insn;
3573 rtx cc = cc_in_cond (cond);
3574
3575 /* We can only handle simple jumps at the end of the basic block.
3576 It is almost impossible to update the CFG otherwise. */
3577 insn = BB_END (bb);
3578 if (JUMP_P (insn) && !onlyjump_p (insn))
3579 return FALSE;
3580
3581 FOR_BB_INSNS (bb, insn)
3582 {
3583 rtx set, dest, src;
3584
3585 if (!NONDEBUG_INSN_P (insn) || JUMP_P (insn))
3586 continue;
3587 set = single_set (insn);
3588 if (!set)
3589 return FALSE;
3590
3591 dest = SET_DEST (set);
3592 src = SET_SRC (set);
3593 if (!REG_P (dest)
3594 || (HARD_REGISTER_P (dest)
3595 && targetm.small_register_classes_for_mode_p (GET_MODE (dest))))
3596 return FALSE;
3597
3598 if (!CONSTANT_P (src) && !register_operand (src, VOIDmode))
3599 return FALSE;
3600
3601 if (side_effects_p (src) || side_effects_p (dest))
3602 return FALSE;
3603
3604 if (may_trap_p (src) || may_trap_p (dest))
3605 return FALSE;
3606
3607 /* Don't try to handle this if the source register was
3608 modified earlier in the block. */
3609 if ((REG_P (src)
3610 && vals->get (src))
3611 || (GET_CODE (src) == SUBREG && REG_P (SUBREG_REG (src))
3612 && vals->get (SUBREG_REG (src))))
3613 return FALSE;
3614
3615 /* Don't try to handle this if the destination register was
3616 modified earlier in the block. */
3617 if (vals->get (dest))
3618 return FALSE;
3619
3620 /* Don't try to handle this if the condition uses the
3621 destination register. */
3622 if (reg_overlap_mentioned_p (dest, cond))
3623 return FALSE;
3624
3625 /* Don't try to handle this if the source register is modified
3626 later in the block. */
3627 if (!CONSTANT_P (src)
3628 && modified_between_p (src, insn, NEXT_INSN (BB_END (bb))))
3629 return FALSE;
3630
3631 /* Skip it if the instruction to be moved might clobber CC. */
3632 if (cc && set_of (cc, insn))
3633 return FALSE;
3634
3635 vals->put (dest, src);
3636
3637 regs->safe_push (dest);
3638 }
3639
3640 return TRUE;
3641 }
3642
3643 /* Given a basic block BB suitable for conditional move conversion,
3644 a condition COND, and pointer maps THEN_VALS and ELSE_VALS containing
3645 the register values depending on COND, emit the insns in the block as
3646 conditional moves. If ELSE_BLOCK is true, THEN_BB was already
3647 processed. The caller has started a sequence for the conversion.
3648 Return true if successful, false if something goes wrong. */
3649
3650 static bool
3651 cond_move_convert_if_block (struct noce_if_info *if_infop,
3652 basic_block bb, rtx cond,
3653 hash_map<rtx, rtx> *then_vals,
3654 hash_map<rtx, rtx> *else_vals,
3655 bool else_block_p)
3656 {
3657 enum rtx_code code;
3658 rtx_insn *insn;
3659 rtx cond_arg0, cond_arg1;
3660
3661 code = GET_CODE (cond);
3662 cond_arg0 = XEXP (cond, 0);
3663 cond_arg1 = XEXP (cond, 1);
3664
3665 FOR_BB_INSNS (bb, insn)
3666 {
3667 rtx set, target, dest, t, e;
3668
3669 /* ??? Maybe emit conditional debug insn? */
3670 if (!NONDEBUG_INSN_P (insn) || JUMP_P (insn))
3671 continue;
3672 set = single_set (insn);
3673 gcc_assert (set && REG_P (SET_DEST (set)));
3674
3675 dest = SET_DEST (set);
3676
3677 rtx *then_slot = then_vals->get (dest);
3678 rtx *else_slot = else_vals->get (dest);
3679 t = then_slot ? *then_slot : NULL_RTX;
3680 e = else_slot ? *else_slot : NULL_RTX;
3681
3682 if (else_block_p)
3683 {
3684 /* If this register was set in the then block, we already
3685 handled this case there. */
3686 if (t)
3687 continue;
3688 t = dest;
3689 gcc_assert (e);
3690 }
3691 else
3692 {
3693 gcc_assert (t);
3694 if (!e)
3695 e = dest;
3696 }
3697
3698 target = noce_emit_cmove (if_infop, dest, code, cond_arg0, cond_arg1,
3699 t, e);
3700 if (!target)
3701 return false;
3702
3703 if (target != dest)
3704 noce_emit_move_insn (dest, target);
3705 }
3706
3707 return true;
3708 }
3709
3710 /* Given a simple IF-THEN-JOIN or IF-THEN-ELSE-JOIN block, attempt to convert
3711 it using only conditional moves. Return TRUE if we were successful at
3712 converting the block. */
3713
3714 static int
3715 cond_move_process_if_block (struct noce_if_info *if_info)
3716 {
3717 basic_block test_bb = if_info->test_bb;
3718 basic_block then_bb = if_info->then_bb;
3719 basic_block else_bb = if_info->else_bb;
3720 basic_block join_bb = if_info->join_bb;
3721 rtx_insn *jump = if_info->jump;
3722 rtx cond = if_info->cond;
3723 rtx_insn *seq, *loc_insn;
3724 rtx reg;
3725 int c;
3726 vec<rtx> then_regs = vNULL;
3727 vec<rtx> else_regs = vNULL;
3728 unsigned int i;
3729 int success_p = FALSE;
3730
3731 /* Build a mapping for each block to the value used for each
3732 register. */
3733 hash_map<rtx, rtx> then_vals;
3734 hash_map<rtx, rtx> else_vals;
3735
3736 /* Make sure the blocks are suitable. */
3737 if (!check_cond_move_block (then_bb, &then_vals, &then_regs, cond)
3738 || (else_bb
3739 && !check_cond_move_block (else_bb, &else_vals, &else_regs, cond)))
3740 goto done;
3741
3742 /* Make sure the blocks can be used together. If the same register
3743 is set in both blocks, and is not set to a constant in both
3744 cases, then both blocks must set it to the same register. We
3745 have already verified that if it is set to a register, that the
3746 source register does not change after the assignment. Also count
3747 the number of registers set in only one of the blocks. */
3748 c = 0;
3749 FOR_EACH_VEC_ELT (then_regs, i, reg)
3750 {
3751 rtx *then_slot = then_vals.get (reg);
3752 rtx *else_slot = else_vals.get (reg);
3753
3754 gcc_checking_assert (then_slot);
3755 if (!else_slot)
3756 ++c;
3757 else
3758 {
3759 rtx then_val = *then_slot;
3760 rtx else_val = *else_slot;
3761 if (!CONSTANT_P (then_val) && !CONSTANT_P (else_val)
3762 && !rtx_equal_p (then_val, else_val))
3763 goto done;
3764 }
3765 }
3766
3767 /* Finish off c for MAX_CONDITIONAL_EXECUTE. */
3768 FOR_EACH_VEC_ELT (else_regs, i, reg)
3769 {
3770 gcc_checking_assert (else_vals.get (reg));
3771 if (!then_vals.get (reg))
3772 ++c;
3773 }
3774
3775 /* Make sure it is reasonable to convert this block. What matters
3776 is the number of assignments currently made in only one of the
3777 branches, since if we convert we are going to always execute
3778 them. */
3779 if (c > MAX_CONDITIONAL_EXECUTE)
3780 goto done;
3781
3782 /* Try to emit the conditional moves. First do the then block,
3783 then do anything left in the else blocks. */
3784 start_sequence ();
3785 if (!cond_move_convert_if_block (if_info, then_bb, cond,
3786 &then_vals, &else_vals, false)
3787 || (else_bb
3788 && !cond_move_convert_if_block (if_info, else_bb, cond,
3789 &then_vals, &else_vals, true)))
3790 {
3791 end_sequence ();
3792 goto done;
3793 }
3794 seq = end_ifcvt_sequence (if_info);
3795 if (!seq)
3796 goto done;
3797
3798 loc_insn = first_active_insn (then_bb);
3799 if (!loc_insn)
3800 {
3801 loc_insn = first_active_insn (else_bb);
3802 gcc_assert (loc_insn);
3803 }
3804 emit_insn_before_setloc (seq, jump, INSN_LOCATION (loc_insn));
3805
3806 if (else_bb)
3807 {
3808 delete_basic_block (else_bb);
3809 num_true_changes++;
3810 }
3811 else
3812 remove_edge (find_edge (test_bb, join_bb));
3813
3814 remove_edge (find_edge (then_bb, join_bb));
3815 redirect_edge_and_branch_force (single_succ_edge (test_bb), join_bb);
3816 delete_basic_block (then_bb);
3817 num_true_changes++;
3818
3819 if (can_merge_blocks_p (test_bb, join_bb))
3820 {
3821 merge_blocks (test_bb, join_bb);
3822 num_true_changes++;
3823 }
3824
3825 num_updated_if_blocks++;
3826
3827 success_p = TRUE;
3828
3829 done:
3830 then_regs.release ();
3831 else_regs.release ();
3832 return success_p;
3833 }
3834
3835 \f
3836 /* Determine if a given basic block heads a simple IF-THEN-JOIN or an
3837 IF-THEN-ELSE-JOIN block.
3838
3839 If so, we'll try to convert the insns to not require the branch,
3840 using only transformations that do not require conditional execution.
3841
3842 Return TRUE if we were successful at converting the block. */
3843
3844 static int
3845 noce_find_if_block (basic_block test_bb, edge then_edge, edge else_edge,
3846 int pass)
3847 {
3848 basic_block then_bb, else_bb, join_bb;
3849 bool then_else_reversed = false;
3850 rtx_insn *jump;
3851 rtx cond;
3852 rtx_insn *cond_earliest;
3853 struct noce_if_info if_info;
3854
3855 /* We only ever should get here before reload. */
3856 gcc_assert (!reload_completed);
3857
3858 /* Recognize an IF-THEN-ELSE-JOIN block. */
3859 if (single_pred_p (then_edge->dest)
3860 && single_succ_p (then_edge->dest)
3861 && single_pred_p (else_edge->dest)
3862 && single_succ_p (else_edge->dest)
3863 && single_succ (then_edge->dest) == single_succ (else_edge->dest))
3864 {
3865 then_bb = then_edge->dest;
3866 else_bb = else_edge->dest;
3867 join_bb = single_succ (then_bb);
3868 }
3869 /* Recognize an IF-THEN-JOIN block. */
3870 else if (single_pred_p (then_edge->dest)
3871 && single_succ_p (then_edge->dest)
3872 && single_succ (then_edge->dest) == else_edge->dest)
3873 {
3874 then_bb = then_edge->dest;
3875 else_bb = NULL_BLOCK;
3876 join_bb = else_edge->dest;
3877 }
3878 /* Recognize an IF-ELSE-JOIN block. We can have those because the order
3879 of basic blocks in cfglayout mode does not matter, so the fallthrough
3880 edge can go to any basic block (and not just to bb->next_bb, like in
3881 cfgrtl mode). */
3882 else if (single_pred_p (else_edge->dest)
3883 && single_succ_p (else_edge->dest)
3884 && single_succ (else_edge->dest) == then_edge->dest)
3885 {
3886 /* The noce transformations do not apply to IF-ELSE-JOIN blocks.
3887 To make this work, we have to invert the THEN and ELSE blocks
3888 and reverse the jump condition. */
3889 then_bb = else_edge->dest;
3890 else_bb = NULL_BLOCK;
3891 join_bb = single_succ (then_bb);
3892 then_else_reversed = true;
3893 }
3894 else
3895 /* Not a form we can handle. */
3896 return FALSE;
3897
3898 /* The edges of the THEN and ELSE blocks cannot have complex edges. */
3899 if (single_succ_edge (then_bb)->flags & EDGE_COMPLEX)
3900 return FALSE;
3901 if (else_bb
3902 && single_succ_edge (else_bb)->flags & EDGE_COMPLEX)
3903 return FALSE;
3904
3905 num_possible_if_blocks++;
3906
3907 if (dump_file)
3908 {
3909 fprintf (dump_file,
3910 "\nIF-THEN%s-JOIN block found, pass %d, test %d, then %d",
3911 (else_bb) ? "-ELSE" : "",
3912 pass, test_bb->index, then_bb->index);
3913
3914 if (else_bb)
3915 fprintf (dump_file, ", else %d", else_bb->index);
3916
3917 fprintf (dump_file, ", join %d\n", join_bb->index);
3918 }
3919
3920 /* If the conditional jump is more than just a conditional
3921 jump, then we can not do if-conversion on this block. */
3922 jump = BB_END (test_bb);
3923 if (! onlyjump_p (jump))
3924 return FALSE;
3925
3926 /* If this is not a standard conditional jump, we can't parse it. */
3927 cond = noce_get_condition (jump, &cond_earliest, then_else_reversed);
3928 if (!cond)
3929 return FALSE;
3930
3931 /* We must be comparing objects whose modes imply the size. */
3932 if (GET_MODE (XEXP (cond, 0)) == BLKmode)
3933 return FALSE;
3934
3935 /* Initialize an IF_INFO struct to pass around. */
3936 memset (&if_info, 0, sizeof if_info);
3937 if_info.test_bb = test_bb;
3938 if_info.then_bb = then_bb;
3939 if_info.else_bb = else_bb;
3940 if_info.join_bb = join_bb;
3941 if_info.cond = cond;
3942 if_info.cond_earliest = cond_earliest;
3943 if_info.jump = jump;
3944 if_info.then_else_reversed = then_else_reversed;
3945 if_info.branch_cost = BRANCH_COST (optimize_bb_for_speed_p (test_bb),
3946 predictable_edge_p (then_edge));
3947
3948 /* Do the real work. */
3949
3950 if (noce_process_if_block (&if_info))
3951 return TRUE;
3952
3953 if (HAVE_conditional_move
3954 && cond_move_process_if_block (&if_info))
3955 return TRUE;
3956
3957 return FALSE;
3958 }
3959 \f
3960
3961 /* Merge the blocks and mark for local life update. */
3962
3963 static void
3964 merge_if_block (struct ce_if_block * ce_info)
3965 {
3966 basic_block test_bb = ce_info->test_bb; /* last test block */
3967 basic_block then_bb = ce_info->then_bb; /* THEN */
3968 basic_block else_bb = ce_info->else_bb; /* ELSE or NULL */
3969 basic_block join_bb = ce_info->join_bb; /* join block */
3970 basic_block combo_bb;
3971
3972 /* All block merging is done into the lower block numbers. */
3973
3974 combo_bb = test_bb;
3975 df_set_bb_dirty (test_bb);
3976
3977 /* Merge any basic blocks to handle && and || subtests. Each of
3978 the blocks are on the fallthru path from the predecessor block. */
3979 if (ce_info->num_multiple_test_blocks > 0)
3980 {
3981 basic_block bb = test_bb;
3982 basic_block last_test_bb = ce_info->last_test_bb;
3983 basic_block fallthru = block_fallthru (bb);
3984
3985 do
3986 {
3987 bb = fallthru;
3988 fallthru = block_fallthru (bb);
3989 merge_blocks (combo_bb, bb);
3990 num_true_changes++;
3991 }
3992 while (bb != last_test_bb);
3993 }
3994
3995 /* Merge TEST block into THEN block. Normally the THEN block won't have a
3996 label, but it might if there were || tests. That label's count should be
3997 zero, and it normally should be removed. */
3998
3999 if (then_bb)
4000 {
4001 /* If THEN_BB has no successors, then there's a BARRIER after it.
4002 If COMBO_BB has more than one successor (THEN_BB), then that BARRIER
4003 is no longer needed, and in fact it is incorrect to leave it in
4004 the insn stream. */
4005 if (EDGE_COUNT (then_bb->succs) == 0
4006 && EDGE_COUNT (combo_bb->succs) > 1)
4007 {
4008 rtx_insn *end = NEXT_INSN (BB_END (then_bb));
4009 while (end && NOTE_P (end) && !NOTE_INSN_BASIC_BLOCK_P (end))
4010 end = NEXT_INSN (end);
4011
4012 if (end && BARRIER_P (end))
4013 delete_insn (end);
4014 }
4015 merge_blocks (combo_bb, then_bb);
4016 num_true_changes++;
4017 }
4018
4019 /* The ELSE block, if it existed, had a label. That label count
4020 will almost always be zero, but odd things can happen when labels
4021 get their addresses taken. */
4022 if (else_bb)
4023 {
4024 /* If ELSE_BB has no successors, then there's a BARRIER after it.
4025 If COMBO_BB has more than one successor (ELSE_BB), then that BARRIER
4026 is no longer needed, and in fact it is incorrect to leave it in
4027 the insn stream. */
4028 if (EDGE_COUNT (else_bb->succs) == 0
4029 && EDGE_COUNT (combo_bb->succs) > 1)
4030 {
4031 rtx_insn *end = NEXT_INSN (BB_END (else_bb));
4032 while (end && NOTE_P (end) && !NOTE_INSN_BASIC_BLOCK_P (end))
4033 end = NEXT_INSN (end);
4034
4035 if (end && BARRIER_P (end))
4036 delete_insn (end);
4037 }
4038 merge_blocks (combo_bb, else_bb);
4039 num_true_changes++;
4040 }
4041
4042 /* If there was no join block reported, that means it was not adjacent
4043 to the others, and so we cannot merge them. */
4044
4045 if (! join_bb)
4046 {
4047 rtx_insn *last = BB_END (combo_bb);
4048
4049 /* The outgoing edge for the current COMBO block should already
4050 be correct. Verify this. */
4051 if (EDGE_COUNT (combo_bb->succs) == 0)
4052 gcc_assert (find_reg_note (last, REG_NORETURN, NULL)
4053 || (NONJUMP_INSN_P (last)
4054 && GET_CODE (PATTERN (last)) == TRAP_IF
4055 && (TRAP_CONDITION (PATTERN (last))
4056 == const_true_rtx)));
4057
4058 else
4059 /* There should still be something at the end of the THEN or ELSE
4060 blocks taking us to our final destination. */
4061 gcc_assert (JUMP_P (last)
4062 || (EDGE_SUCC (combo_bb, 0)->dest
4063 == EXIT_BLOCK_PTR_FOR_FN (cfun)
4064 && CALL_P (last)
4065 && SIBLING_CALL_P (last))
4066 || ((EDGE_SUCC (combo_bb, 0)->flags & EDGE_EH)
4067 && can_throw_internal (last)));
4068 }
4069
4070 /* The JOIN block may have had quite a number of other predecessors too.
4071 Since we've already merged the TEST, THEN and ELSE blocks, we should
4072 have only one remaining edge from our if-then-else diamond. If there
4073 is more than one remaining edge, it must come from elsewhere. There
4074 may be zero incoming edges if the THEN block didn't actually join
4075 back up (as with a call to a non-return function). */
4076 else if (EDGE_COUNT (join_bb->preds) < 2
4077 && join_bb != EXIT_BLOCK_PTR_FOR_FN (cfun))
4078 {
4079 /* We can merge the JOIN cleanly and update the dataflow try
4080 again on this pass.*/
4081 merge_blocks (combo_bb, join_bb);
4082 num_true_changes++;
4083 }
4084 else
4085 {
4086 /* We cannot merge the JOIN. */
4087
4088 /* The outgoing edge for the current COMBO block should already
4089 be correct. Verify this. */
4090 gcc_assert (single_succ_p (combo_bb)
4091 && single_succ (combo_bb) == join_bb);
4092
4093 /* Remove the jump and cruft from the end of the COMBO block. */
4094 if (join_bb != EXIT_BLOCK_PTR_FOR_FN (cfun))
4095 tidy_fallthru_edge (single_succ_edge (combo_bb));
4096 }
4097
4098 num_updated_if_blocks++;
4099 }
4100 \f
4101 /* Find a block ending in a simple IF condition and try to transform it
4102 in some way. When converting a multi-block condition, put the new code
4103 in the first such block and delete the rest. Return a pointer to this
4104 first block if some transformation was done. Return NULL otherwise. */
4105
4106 static basic_block
4107 find_if_header (basic_block test_bb, int pass)
4108 {
4109 ce_if_block ce_info;
4110 edge then_edge;
4111 edge else_edge;
4112
4113 /* The kind of block we're looking for has exactly two successors. */
4114 if (EDGE_COUNT (test_bb->succs) != 2)
4115 return NULL;
4116
4117 then_edge = EDGE_SUCC (test_bb, 0);
4118 else_edge = EDGE_SUCC (test_bb, 1);
4119
4120 if (df_get_bb_dirty (then_edge->dest))
4121 return NULL;
4122 if (df_get_bb_dirty (else_edge->dest))
4123 return NULL;
4124
4125 /* Neither edge should be abnormal. */
4126 if ((then_edge->flags & EDGE_COMPLEX)
4127 || (else_edge->flags & EDGE_COMPLEX))
4128 return NULL;
4129
4130 /* Nor exit the loop. */
4131 if ((then_edge->flags & EDGE_LOOP_EXIT)
4132 || (else_edge->flags & EDGE_LOOP_EXIT))
4133 return NULL;
4134
4135 /* The THEN edge is canonically the one that falls through. */
4136 if (then_edge->flags & EDGE_FALLTHRU)
4137 ;
4138 else if (else_edge->flags & EDGE_FALLTHRU)
4139 std::swap (then_edge, else_edge);
4140 else
4141 /* Otherwise this must be a multiway branch of some sort. */
4142 return NULL;
4143
4144 memset (&ce_info, 0, sizeof (ce_info));
4145 ce_info.test_bb = test_bb;
4146 ce_info.then_bb = then_edge->dest;
4147 ce_info.else_bb = else_edge->dest;
4148 ce_info.pass = pass;
4149
4150 #ifdef IFCVT_MACHDEP_INIT
4151 IFCVT_MACHDEP_INIT (&ce_info);
4152 #endif
4153
4154 if (!reload_completed
4155 && noce_find_if_block (test_bb, then_edge, else_edge, pass))
4156 goto success;
4157
4158 if (reload_completed
4159 && targetm.have_conditional_execution ()
4160 && cond_exec_find_if_block (&ce_info))
4161 goto success;
4162
4163 if (targetm.have_trap ()
4164 && optab_handler (ctrap_optab, word_mode) != CODE_FOR_nothing
4165 && find_cond_trap (test_bb, then_edge, else_edge))
4166 goto success;
4167
4168 if (dom_info_state (CDI_POST_DOMINATORS) >= DOM_NO_FAST_QUERY
4169 && (reload_completed || !targetm.have_conditional_execution ()))
4170 {
4171 if (find_if_case_1 (test_bb, then_edge, else_edge))
4172 goto success;
4173 if (find_if_case_2 (test_bb, then_edge, else_edge))
4174 goto success;
4175 }
4176
4177 return NULL;
4178
4179 success:
4180 if (dump_file)
4181 fprintf (dump_file, "Conversion succeeded on pass %d.\n", pass);
4182 /* Set this so we continue looking. */
4183 cond_exec_changed_p = TRUE;
4184 return ce_info.test_bb;
4185 }
4186
4187 /* Return true if a block has two edges, one of which falls through to the next
4188 block, and the other jumps to a specific block, so that we can tell if the
4189 block is part of an && test or an || test. Returns either -1 or the number
4190 of non-note, non-jump, non-USE/CLOBBER insns in the block. */
4191
4192 static int
4193 block_jumps_and_fallthru_p (basic_block cur_bb, basic_block target_bb)
4194 {
4195 edge cur_edge;
4196 int fallthru_p = FALSE;
4197 int jump_p = FALSE;
4198 rtx_insn *insn;
4199 rtx_insn *end;
4200 int n_insns = 0;
4201 edge_iterator ei;
4202
4203 if (!cur_bb || !target_bb)
4204 return -1;
4205
4206 /* If no edges, obviously it doesn't jump or fallthru. */
4207 if (EDGE_COUNT (cur_bb->succs) == 0)
4208 return FALSE;
4209
4210 FOR_EACH_EDGE (cur_edge, ei, cur_bb->succs)
4211 {
4212 if (cur_edge->flags & EDGE_COMPLEX)
4213 /* Anything complex isn't what we want. */
4214 return -1;
4215
4216 else if (cur_edge->flags & EDGE_FALLTHRU)
4217 fallthru_p = TRUE;
4218
4219 else if (cur_edge->dest == target_bb)
4220 jump_p = TRUE;
4221
4222 else
4223 return -1;
4224 }
4225
4226 if ((jump_p & fallthru_p) == 0)
4227 return -1;
4228
4229 /* Don't allow calls in the block, since this is used to group && and ||
4230 together for conditional execution support. ??? we should support
4231 conditional execution support across calls for IA-64 some day, but
4232 for now it makes the code simpler. */
4233 end = BB_END (cur_bb);
4234 insn = BB_HEAD (cur_bb);
4235
4236 while (insn != NULL_RTX)
4237 {
4238 if (CALL_P (insn))
4239 return -1;
4240
4241 if (INSN_P (insn)
4242 && !JUMP_P (insn)
4243 && !DEBUG_INSN_P (insn)
4244 && GET_CODE (PATTERN (insn)) != USE
4245 && GET_CODE (PATTERN (insn)) != CLOBBER)
4246 n_insns++;
4247
4248 if (insn == end)
4249 break;
4250
4251 insn = NEXT_INSN (insn);
4252 }
4253
4254 return n_insns;
4255 }
4256
4257 /* Determine if a given basic block heads a simple IF-THEN or IF-THEN-ELSE
4258 block. If so, we'll try to convert the insns to not require the branch.
4259 Return TRUE if we were successful at converting the block. */
4260
4261 static int
4262 cond_exec_find_if_block (struct ce_if_block * ce_info)
4263 {
4264 basic_block test_bb = ce_info->test_bb;
4265 basic_block then_bb = ce_info->then_bb;
4266 basic_block else_bb = ce_info->else_bb;
4267 basic_block join_bb = NULL_BLOCK;
4268 edge cur_edge;
4269 basic_block next;
4270 edge_iterator ei;
4271
4272 ce_info->last_test_bb = test_bb;
4273
4274 /* We only ever should get here after reload,
4275 and if we have conditional execution. */
4276 gcc_assert (reload_completed && targetm.have_conditional_execution ());
4277
4278 /* Discover if any fall through predecessors of the current test basic block
4279 were && tests (which jump to the else block) or || tests (which jump to
4280 the then block). */
4281 if (single_pred_p (test_bb)
4282 && single_pred_edge (test_bb)->flags == EDGE_FALLTHRU)
4283 {
4284 basic_block bb = single_pred (test_bb);
4285 basic_block target_bb;
4286 int max_insns = MAX_CONDITIONAL_EXECUTE;
4287 int n_insns;
4288
4289 /* Determine if the preceding block is an && or || block. */
4290 if ((n_insns = block_jumps_and_fallthru_p (bb, else_bb)) >= 0)
4291 {
4292 ce_info->and_and_p = TRUE;
4293 target_bb = else_bb;
4294 }
4295 else if ((n_insns = block_jumps_and_fallthru_p (bb, then_bb)) >= 0)
4296 {
4297 ce_info->and_and_p = FALSE;
4298 target_bb = then_bb;
4299 }
4300 else
4301 target_bb = NULL_BLOCK;
4302
4303 if (target_bb && n_insns <= max_insns)
4304 {
4305 int total_insns = 0;
4306 int blocks = 0;
4307
4308 ce_info->last_test_bb = test_bb;
4309
4310 /* Found at least one && or || block, look for more. */
4311 do
4312 {
4313 ce_info->test_bb = test_bb = bb;
4314 total_insns += n_insns;
4315 blocks++;
4316
4317 if (!single_pred_p (bb))
4318 break;
4319
4320 bb = single_pred (bb);
4321 n_insns = block_jumps_and_fallthru_p (bb, target_bb);
4322 }
4323 while (n_insns >= 0 && (total_insns + n_insns) <= max_insns);
4324
4325 ce_info->num_multiple_test_blocks = blocks;
4326 ce_info->num_multiple_test_insns = total_insns;
4327
4328 if (ce_info->and_and_p)
4329 ce_info->num_and_and_blocks = blocks;
4330 else
4331 ce_info->num_or_or_blocks = blocks;
4332 }
4333 }
4334
4335 /* The THEN block of an IF-THEN combo must have exactly one predecessor,
4336 other than any || blocks which jump to the THEN block. */
4337 if ((EDGE_COUNT (then_bb->preds) - ce_info->num_or_or_blocks) != 1)
4338 return FALSE;
4339
4340 /* The edges of the THEN and ELSE blocks cannot have complex edges. */
4341 FOR_EACH_EDGE (cur_edge, ei, then_bb->preds)
4342 {
4343 if (cur_edge->flags & EDGE_COMPLEX)
4344 return FALSE;
4345 }
4346
4347 FOR_EACH_EDGE (cur_edge, ei, else_bb->preds)
4348 {
4349 if (cur_edge->flags & EDGE_COMPLEX)
4350 return FALSE;
4351 }
4352
4353 /* The THEN block of an IF-THEN combo must have zero or one successors. */
4354 if (EDGE_COUNT (then_bb->succs) > 0
4355 && (!single_succ_p (then_bb)
4356 || (single_succ_edge (then_bb)->flags & EDGE_COMPLEX)
4357 || (epilogue_completed
4358 && tablejump_p (BB_END (then_bb), NULL, NULL))))
4359 return FALSE;
4360
4361 /* If the THEN block has no successors, conditional execution can still
4362 make a conditional call. Don't do this unless the ELSE block has
4363 only one incoming edge -- the CFG manipulation is too ugly otherwise.
4364 Check for the last insn of the THEN block being an indirect jump, which
4365 is listed as not having any successors, but confuses the rest of the CE
4366 code processing. ??? we should fix this in the future. */
4367 if (EDGE_COUNT (then_bb->succs) == 0)
4368 {
4369 if (single_pred_p (else_bb) && else_bb != EXIT_BLOCK_PTR_FOR_FN (cfun))
4370 {
4371 rtx_insn *last_insn = BB_END (then_bb);
4372
4373 while (last_insn
4374 && NOTE_P (last_insn)
4375 && last_insn != BB_HEAD (then_bb))
4376 last_insn = PREV_INSN (last_insn);
4377
4378 if (last_insn
4379 && JUMP_P (last_insn)
4380 && ! simplejump_p (last_insn))
4381 return FALSE;
4382
4383 join_bb = else_bb;
4384 else_bb = NULL_BLOCK;
4385 }
4386 else
4387 return FALSE;
4388 }
4389
4390 /* If the THEN block's successor is the other edge out of the TEST block,
4391 then we have an IF-THEN combo without an ELSE. */
4392 else if (single_succ (then_bb) == else_bb)
4393 {
4394 join_bb = else_bb;
4395 else_bb = NULL_BLOCK;
4396 }
4397
4398 /* If the THEN and ELSE block meet in a subsequent block, and the ELSE
4399 has exactly one predecessor and one successor, and the outgoing edge
4400 is not complex, then we have an IF-THEN-ELSE combo. */
4401 else if (single_succ_p (else_bb)
4402 && single_succ (then_bb) == single_succ (else_bb)
4403 && single_pred_p (else_bb)
4404 && !(single_succ_edge (else_bb)->flags & EDGE_COMPLEX)
4405 && !(epilogue_completed
4406 && tablejump_p (BB_END (else_bb), NULL, NULL)))
4407 join_bb = single_succ (else_bb);
4408
4409 /* Otherwise it is not an IF-THEN or IF-THEN-ELSE combination. */
4410 else
4411 return FALSE;
4412
4413 num_possible_if_blocks++;
4414
4415 if (dump_file)
4416 {
4417 fprintf (dump_file,
4418 "\nIF-THEN%s block found, pass %d, start block %d "
4419 "[insn %d], then %d [%d]",
4420 (else_bb) ? "-ELSE" : "",
4421 ce_info->pass,
4422 test_bb->index,
4423 BB_HEAD (test_bb) ? (int)INSN_UID (BB_HEAD (test_bb)) : -1,
4424 then_bb->index,
4425 BB_HEAD (then_bb) ? (int)INSN_UID (BB_HEAD (then_bb)) : -1);
4426
4427 if (else_bb)
4428 fprintf (dump_file, ", else %d [%d]",
4429 else_bb->index,
4430 BB_HEAD (else_bb) ? (int)INSN_UID (BB_HEAD (else_bb)) : -1);
4431
4432 fprintf (dump_file, ", join %d [%d]",
4433 join_bb->index,
4434 BB_HEAD (join_bb) ? (int)INSN_UID (BB_HEAD (join_bb)) : -1);
4435
4436 if (ce_info->num_multiple_test_blocks > 0)
4437 fprintf (dump_file, ", %d %s block%s last test %d [%d]",
4438 ce_info->num_multiple_test_blocks,
4439 (ce_info->and_and_p) ? "&&" : "||",
4440 (ce_info->num_multiple_test_blocks == 1) ? "" : "s",
4441 ce_info->last_test_bb->index,
4442 ((BB_HEAD (ce_info->last_test_bb))
4443 ? (int)INSN_UID (BB_HEAD (ce_info->last_test_bb))
4444 : -1));
4445
4446 fputc ('\n', dump_file);
4447 }
4448
4449 /* Make sure IF, THEN, and ELSE, blocks are adjacent. Actually, we get the
4450 first condition for free, since we've already asserted that there's a
4451 fallthru edge from IF to THEN. Likewise for the && and || blocks, since
4452 we checked the FALLTHRU flag, those are already adjacent to the last IF
4453 block. */
4454 /* ??? As an enhancement, move the ELSE block. Have to deal with
4455 BLOCK notes, if by no other means than backing out the merge if they
4456 exist. Sticky enough I don't want to think about it now. */
4457 next = then_bb;
4458 if (else_bb && (next = next->next_bb) != else_bb)
4459 return FALSE;
4460 if ((next = next->next_bb) != join_bb
4461 && join_bb != EXIT_BLOCK_PTR_FOR_FN (cfun))
4462 {
4463 if (else_bb)
4464 join_bb = NULL;
4465 else
4466 return FALSE;
4467 }
4468
4469 /* Do the real work. */
4470
4471 ce_info->else_bb = else_bb;
4472 ce_info->join_bb = join_bb;
4473
4474 /* If we have && and || tests, try to first handle combining the && and ||
4475 tests into the conditional code, and if that fails, go back and handle
4476 it without the && and ||, which at present handles the && case if there
4477 was no ELSE block. */
4478 if (cond_exec_process_if_block (ce_info, TRUE))
4479 return TRUE;
4480
4481 if (ce_info->num_multiple_test_blocks)
4482 {
4483 cancel_changes (0);
4484
4485 if (cond_exec_process_if_block (ce_info, FALSE))
4486 return TRUE;
4487 }
4488
4489 return FALSE;
4490 }
4491
4492 /* Convert a branch over a trap, or a branch
4493 to a trap, into a conditional trap. */
4494
4495 static int
4496 find_cond_trap (basic_block test_bb, edge then_edge, edge else_edge)
4497 {
4498 basic_block then_bb = then_edge->dest;
4499 basic_block else_bb = else_edge->dest;
4500 basic_block other_bb, trap_bb;
4501 rtx_insn *trap, *jump;
4502 rtx cond;
4503 rtx_insn *cond_earliest;
4504 enum rtx_code code;
4505
4506 /* Locate the block with the trap instruction. */
4507 /* ??? While we look for no successors, we really ought to allow
4508 EH successors. Need to fix merge_if_block for that to work. */
4509 if ((trap = block_has_only_trap (then_bb)) != NULL)
4510 trap_bb = then_bb, other_bb = else_bb;
4511 else if ((trap = block_has_only_trap (else_bb)) != NULL)
4512 trap_bb = else_bb, other_bb = then_bb;
4513 else
4514 return FALSE;
4515
4516 if (dump_file)
4517 {
4518 fprintf (dump_file, "\nTRAP-IF block found, start %d, trap %d\n",
4519 test_bb->index, trap_bb->index);
4520 }
4521
4522 /* If this is not a standard conditional jump, we can't parse it. */
4523 jump = BB_END (test_bb);
4524 cond = noce_get_condition (jump, &cond_earliest, false);
4525 if (! cond)
4526 return FALSE;
4527
4528 /* If the conditional jump is more than just a conditional jump, then
4529 we can not do if-conversion on this block. Give up for returnjump_p,
4530 changing a conditional return followed by unconditional trap for
4531 conditional trap followed by unconditional return is likely not
4532 beneficial and harder to handle. */
4533 if (! onlyjump_p (jump) || returnjump_p (jump))
4534 return FALSE;
4535
4536 /* We must be comparing objects whose modes imply the size. */
4537 if (GET_MODE (XEXP (cond, 0)) == BLKmode)
4538 return FALSE;
4539
4540 /* Reverse the comparison code, if necessary. */
4541 code = GET_CODE (cond);
4542 if (then_bb == trap_bb)
4543 {
4544 code = reversed_comparison_code (cond, jump);
4545 if (code == UNKNOWN)
4546 return FALSE;
4547 }
4548
4549 /* Attempt to generate the conditional trap. */
4550 rtx_insn *seq = gen_cond_trap (code, copy_rtx (XEXP (cond, 0)),
4551 copy_rtx (XEXP (cond, 1)),
4552 TRAP_CODE (PATTERN (trap)));
4553 if (seq == NULL)
4554 return FALSE;
4555
4556 /* Emit the new insns before cond_earliest. */
4557 emit_insn_before_setloc (seq, cond_earliest, INSN_LOCATION (trap));
4558
4559 /* Delete the trap block if possible. */
4560 remove_edge (trap_bb == then_bb ? then_edge : else_edge);
4561 df_set_bb_dirty (test_bb);
4562 df_set_bb_dirty (then_bb);
4563 df_set_bb_dirty (else_bb);
4564
4565 if (EDGE_COUNT (trap_bb->preds) == 0)
4566 {
4567 delete_basic_block (trap_bb);
4568 num_true_changes++;
4569 }
4570
4571 /* Wire together the blocks again. */
4572 if (current_ir_type () == IR_RTL_CFGLAYOUT)
4573 single_succ_edge (test_bb)->flags |= EDGE_FALLTHRU;
4574 else if (trap_bb == then_bb)
4575 {
4576 rtx lab = JUMP_LABEL (jump);
4577 rtx_insn *seq = targetm.gen_jump (lab);
4578 rtx_jump_insn *newjump = emit_jump_insn_after (seq, jump);
4579 LABEL_NUSES (lab) += 1;
4580 JUMP_LABEL (newjump) = lab;
4581 emit_barrier_after (newjump);
4582 }
4583 delete_insn (jump);
4584
4585 if (can_merge_blocks_p (test_bb, other_bb))
4586 {
4587 merge_blocks (test_bb, other_bb);
4588 num_true_changes++;
4589 }
4590
4591 num_updated_if_blocks++;
4592 return TRUE;
4593 }
4594
4595 /* Subroutine of find_cond_trap: if BB contains only a trap insn,
4596 return it. */
4597
4598 static rtx_insn *
4599 block_has_only_trap (basic_block bb)
4600 {
4601 rtx_insn *trap;
4602
4603 /* We're not the exit block. */
4604 if (bb == EXIT_BLOCK_PTR_FOR_FN (cfun))
4605 return NULL;
4606
4607 /* The block must have no successors. */
4608 if (EDGE_COUNT (bb->succs) > 0)
4609 return NULL;
4610
4611 /* The only instruction in the THEN block must be the trap. */
4612 trap = first_active_insn (bb);
4613 if (! (trap == BB_END (bb)
4614 && GET_CODE (PATTERN (trap)) == TRAP_IF
4615 && TRAP_CONDITION (PATTERN (trap)) == const_true_rtx))
4616 return NULL;
4617
4618 return trap;
4619 }
4620
4621 /* Look for IF-THEN-ELSE cases in which one of THEN or ELSE is
4622 transformable, but not necessarily the other. There need be no
4623 JOIN block.
4624
4625 Return TRUE if we were successful at converting the block.
4626
4627 Cases we'd like to look at:
4628
4629 (1)
4630 if (test) goto over; // x not live
4631 x = a;
4632 goto label;
4633 over:
4634
4635 becomes
4636
4637 x = a;
4638 if (! test) goto label;
4639
4640 (2)
4641 if (test) goto E; // x not live
4642 x = big();
4643 goto L;
4644 E:
4645 x = b;
4646 goto M;
4647
4648 becomes
4649
4650 x = b;
4651 if (test) goto M;
4652 x = big();
4653 goto L;
4654
4655 (3) // This one's really only interesting for targets that can do
4656 // multiway branching, e.g. IA-64 BBB bundles. For other targets
4657 // it results in multiple branches on a cache line, which often
4658 // does not sit well with predictors.
4659
4660 if (test1) goto E; // predicted not taken
4661 x = a;
4662 if (test2) goto F;
4663 ...
4664 E:
4665 x = b;
4666 J:
4667
4668 becomes
4669
4670 x = a;
4671 if (test1) goto E;
4672 if (test2) goto F;
4673
4674 Notes:
4675
4676 (A) Don't do (2) if the branch is predicted against the block we're
4677 eliminating. Do it anyway if we can eliminate a branch; this requires
4678 that the sole successor of the eliminated block postdominate the other
4679 side of the if.
4680
4681 (B) With CE, on (3) we can steal from both sides of the if, creating
4682
4683 if (test1) x = a;
4684 if (!test1) x = b;
4685 if (test1) goto J;
4686 if (test2) goto F;
4687 ...
4688 J:
4689
4690 Again, this is most useful if J postdominates.
4691
4692 (C) CE substitutes for helpful life information.
4693
4694 (D) These heuristics need a lot of work. */
4695
4696 /* Tests for case 1 above. */
4697
4698 static int
4699 find_if_case_1 (basic_block test_bb, edge then_edge, edge else_edge)
4700 {
4701 basic_block then_bb = then_edge->dest;
4702 basic_block else_bb = else_edge->dest;
4703 basic_block new_bb;
4704 int then_bb_index, then_prob;
4705 rtx else_target = NULL_RTX;
4706
4707 /* If we are partitioning hot/cold basic blocks, we don't want to
4708 mess up unconditional or indirect jumps that cross between hot
4709 and cold sections.
4710
4711 Basic block partitioning may result in some jumps that appear to
4712 be optimizable (or blocks that appear to be mergeable), but which really
4713 must be left untouched (they are required to make it safely across
4714 partition boundaries). See the comments at the top of
4715 bb-reorder.c:partition_hot_cold_basic_blocks for complete details. */
4716
4717 if ((BB_END (then_bb)
4718 && JUMP_P (BB_END (then_bb))
4719 && CROSSING_JUMP_P (BB_END (then_bb)))
4720 || (BB_END (test_bb)
4721 && JUMP_P (BB_END (test_bb))
4722 && CROSSING_JUMP_P (BB_END (test_bb)))
4723 || (BB_END (else_bb)
4724 && JUMP_P (BB_END (else_bb))
4725 && CROSSING_JUMP_P (BB_END (else_bb))))
4726 return FALSE;
4727
4728 /* THEN has one successor. */
4729 if (!single_succ_p (then_bb))
4730 return FALSE;
4731
4732 /* THEN does not fall through, but is not strange either. */
4733 if (single_succ_edge (then_bb)->flags & (EDGE_COMPLEX | EDGE_FALLTHRU))
4734 return FALSE;
4735
4736 /* THEN has one predecessor. */
4737 if (!single_pred_p (then_bb))
4738 return FALSE;
4739
4740 /* THEN must do something. */
4741 if (forwarder_block_p (then_bb))
4742 return FALSE;
4743
4744 num_possible_if_blocks++;
4745 if (dump_file)
4746 fprintf (dump_file,
4747 "\nIF-CASE-1 found, start %d, then %d\n",
4748 test_bb->index, then_bb->index);
4749
4750 if (then_edge->probability)
4751 then_prob = REG_BR_PROB_BASE - then_edge->probability;
4752 else
4753 then_prob = REG_BR_PROB_BASE / 2;
4754
4755 /* We're speculating from the THEN path, we want to make sure the cost
4756 of speculation is within reason. */
4757 if (! cheap_bb_rtx_cost_p (then_bb, then_prob,
4758 COSTS_N_INSNS (BRANCH_COST (optimize_bb_for_speed_p (then_edge->src),
4759 predictable_edge_p (then_edge)))))
4760 return FALSE;
4761
4762 if (else_bb == EXIT_BLOCK_PTR_FOR_FN (cfun))
4763 {
4764 rtx_insn *jump = BB_END (else_edge->src);
4765 gcc_assert (JUMP_P (jump));
4766 else_target = JUMP_LABEL (jump);
4767 }
4768
4769 /* Registers set are dead, or are predicable. */
4770 if (! dead_or_predicable (test_bb, then_bb, else_bb,
4771 single_succ_edge (then_bb), 1))
4772 return FALSE;
4773
4774 /* Conversion went ok, including moving the insns and fixing up the
4775 jump. Adjust the CFG to match. */
4776
4777 /* We can avoid creating a new basic block if then_bb is immediately
4778 followed by else_bb, i.e. deleting then_bb allows test_bb to fall
4779 through to else_bb. */
4780
4781 if (then_bb->next_bb == else_bb
4782 && then_bb->prev_bb == test_bb
4783 && else_bb != EXIT_BLOCK_PTR_FOR_FN (cfun))
4784 {
4785 redirect_edge_succ (FALLTHRU_EDGE (test_bb), else_bb);
4786 new_bb = 0;
4787 }
4788 else if (else_bb == EXIT_BLOCK_PTR_FOR_FN (cfun))
4789 new_bb = force_nonfallthru_and_redirect (FALLTHRU_EDGE (test_bb),
4790 else_bb, else_target);
4791 else
4792 new_bb = redirect_edge_and_branch_force (FALLTHRU_EDGE (test_bb),
4793 else_bb);
4794
4795 df_set_bb_dirty (test_bb);
4796 df_set_bb_dirty (else_bb);
4797
4798 then_bb_index = then_bb->index;
4799 delete_basic_block (then_bb);
4800
4801 /* Make rest of code believe that the newly created block is the THEN_BB
4802 block we removed. */
4803 if (new_bb)
4804 {
4805 df_bb_replace (then_bb_index, new_bb);
4806 /* This should have been done above via force_nonfallthru_and_redirect
4807 (possibly called from redirect_edge_and_branch_force). */
4808 gcc_checking_assert (BB_PARTITION (new_bb) == BB_PARTITION (test_bb));
4809 }
4810
4811 num_true_changes++;
4812 num_updated_if_blocks++;
4813
4814 return TRUE;
4815 }
4816
4817 /* Test for case 2 above. */
4818
4819 static int
4820 find_if_case_2 (basic_block test_bb, edge then_edge, edge else_edge)
4821 {
4822 basic_block then_bb = then_edge->dest;
4823 basic_block else_bb = else_edge->dest;
4824 edge else_succ;
4825 int then_prob, else_prob;
4826
4827 /* We do not want to speculate (empty) loop latches. */
4828 if (current_loops
4829 && else_bb->loop_father->latch == else_bb)
4830 return FALSE;
4831
4832 /* If we are partitioning hot/cold basic blocks, we don't want to
4833 mess up unconditional or indirect jumps that cross between hot
4834 and cold sections.
4835
4836 Basic block partitioning may result in some jumps that appear to
4837 be optimizable (or blocks that appear to be mergeable), but which really
4838 must be left untouched (they are required to make it safely across
4839 partition boundaries). See the comments at the top of
4840 bb-reorder.c:partition_hot_cold_basic_blocks for complete details. */
4841
4842 if ((BB_END (then_bb)
4843 && JUMP_P (BB_END (then_bb))
4844 && CROSSING_JUMP_P (BB_END (then_bb)))
4845 || (BB_END (test_bb)
4846 && JUMP_P (BB_END (test_bb))
4847 && CROSSING_JUMP_P (BB_END (test_bb)))
4848 || (BB_END (else_bb)
4849 && JUMP_P (BB_END (else_bb))
4850 && CROSSING_JUMP_P (BB_END (else_bb))))
4851 return FALSE;
4852
4853 /* ELSE has one successor. */
4854 if (!single_succ_p (else_bb))
4855 return FALSE;
4856 else
4857 else_succ = single_succ_edge (else_bb);
4858
4859 /* ELSE outgoing edge is not complex. */
4860 if (else_succ->flags & EDGE_COMPLEX)
4861 return FALSE;
4862
4863 /* ELSE has one predecessor. */
4864 if (!single_pred_p (else_bb))
4865 return FALSE;
4866
4867 /* THEN is not EXIT. */
4868 if (then_bb->index < NUM_FIXED_BLOCKS)
4869 return FALSE;
4870
4871 if (else_edge->probability)
4872 {
4873 else_prob = else_edge->probability;
4874 then_prob = REG_BR_PROB_BASE - else_prob;
4875 }
4876 else
4877 {
4878 else_prob = REG_BR_PROB_BASE / 2;
4879 then_prob = REG_BR_PROB_BASE / 2;
4880 }
4881
4882 /* ELSE is predicted or SUCC(ELSE) postdominates THEN. */
4883 if (else_prob > then_prob)
4884 ;
4885 else if (else_succ->dest->index < NUM_FIXED_BLOCKS
4886 || dominated_by_p (CDI_POST_DOMINATORS, then_bb,
4887 else_succ->dest))
4888 ;
4889 else
4890 return FALSE;
4891
4892 num_possible_if_blocks++;
4893 if (dump_file)
4894 fprintf (dump_file,
4895 "\nIF-CASE-2 found, start %d, else %d\n",
4896 test_bb->index, else_bb->index);
4897
4898 /* We're speculating from the ELSE path, we want to make sure the cost
4899 of speculation is within reason. */
4900 if (! cheap_bb_rtx_cost_p (else_bb, else_prob,
4901 COSTS_N_INSNS (BRANCH_COST (optimize_bb_for_speed_p (else_edge->src),
4902 predictable_edge_p (else_edge)))))
4903 return FALSE;
4904
4905 /* Registers set are dead, or are predicable. */
4906 if (! dead_or_predicable (test_bb, else_bb, then_bb, else_succ, 0))
4907 return FALSE;
4908
4909 /* Conversion went ok, including moving the insns and fixing up the
4910 jump. Adjust the CFG to match. */
4911
4912 df_set_bb_dirty (test_bb);
4913 df_set_bb_dirty (then_bb);
4914 delete_basic_block (else_bb);
4915
4916 num_true_changes++;
4917 num_updated_if_blocks++;
4918
4919 /* ??? We may now fallthru from one of THEN's successors into a join
4920 block. Rerun cleanup_cfg? Examine things manually? Wait? */
4921
4922 return TRUE;
4923 }
4924
4925 /* Used by the code above to perform the actual rtl transformations.
4926 Return TRUE if successful.
4927
4928 TEST_BB is the block containing the conditional branch. MERGE_BB
4929 is the block containing the code to manipulate. DEST_EDGE is an
4930 edge representing a jump to the join block; after the conversion,
4931 TEST_BB should be branching to its destination.
4932 REVERSEP is true if the sense of the branch should be reversed. */
4933
4934 static int
4935 dead_or_predicable (basic_block test_bb, basic_block merge_bb,
4936 basic_block other_bb, edge dest_edge, int reversep)
4937 {
4938 basic_block new_dest = dest_edge->dest;
4939 rtx_insn *head, *end, *jump;
4940 rtx_insn *earliest = NULL;
4941 rtx old_dest;
4942 bitmap merge_set = NULL;
4943 /* Number of pending changes. */
4944 int n_validated_changes = 0;
4945 rtx new_dest_label = NULL_RTX;
4946
4947 jump = BB_END (test_bb);
4948
4949 /* Find the extent of the real code in the merge block. */
4950 head = BB_HEAD (merge_bb);
4951 end = BB_END (merge_bb);
4952
4953 while (DEBUG_INSN_P (end) && end != head)
4954 end = PREV_INSN (end);
4955
4956 /* If merge_bb ends with a tablejump, predicating/moving insn's
4957 into test_bb and then deleting merge_bb will result in the jumptable
4958 that follows merge_bb being removed along with merge_bb and then we
4959 get an unresolved reference to the jumptable. */
4960 if (tablejump_p (end, NULL, NULL))
4961 return FALSE;
4962
4963 if (LABEL_P (head))
4964 head = NEXT_INSN (head);
4965 while (DEBUG_INSN_P (head) && head != end)
4966 head = NEXT_INSN (head);
4967 if (NOTE_P (head))
4968 {
4969 if (head == end)
4970 {
4971 head = end = NULL;
4972 goto no_body;
4973 }
4974 head = NEXT_INSN (head);
4975 while (DEBUG_INSN_P (head) && head != end)
4976 head = NEXT_INSN (head);
4977 }
4978
4979 if (JUMP_P (end))
4980 {
4981 if (!onlyjump_p (end))
4982 return FALSE;
4983 if (head == end)
4984 {
4985 head = end = NULL;
4986 goto no_body;
4987 }
4988 end = PREV_INSN (end);
4989 while (DEBUG_INSN_P (end) && end != head)
4990 end = PREV_INSN (end);
4991 }
4992
4993 /* Don't move frame-related insn across the conditional branch. This
4994 can lead to one of the paths of the branch having wrong unwind info. */
4995 if (epilogue_completed)
4996 {
4997 rtx_insn *insn = head;
4998 while (1)
4999 {
5000 if (INSN_P (insn) && RTX_FRAME_RELATED_P (insn))
5001 return FALSE;
5002 if (insn == end)
5003 break;
5004 insn = NEXT_INSN (insn);
5005 }
5006 }
5007
5008 /* Disable handling dead code by conditional execution if the machine needs
5009 to do anything funny with the tests, etc. */
5010 #ifndef IFCVT_MODIFY_TESTS
5011 if (targetm.have_conditional_execution ())
5012 {
5013 /* In the conditional execution case, we have things easy. We know
5014 the condition is reversible. We don't have to check life info
5015 because we're going to conditionally execute the code anyway.
5016 All that's left is making sure the insns involved can actually
5017 be predicated. */
5018
5019 rtx cond;
5020
5021 cond = cond_exec_get_condition (jump);
5022 if (! cond)
5023 return FALSE;
5024
5025 rtx note = find_reg_note (jump, REG_BR_PROB, NULL_RTX);
5026 int prob_val = (note ? XINT (note, 0) : -1);
5027
5028 if (reversep)
5029 {
5030 enum rtx_code rev = reversed_comparison_code (cond, jump);
5031 if (rev == UNKNOWN)
5032 return FALSE;
5033 cond = gen_rtx_fmt_ee (rev, GET_MODE (cond), XEXP (cond, 0),
5034 XEXP (cond, 1));
5035 if (prob_val >= 0)
5036 prob_val = REG_BR_PROB_BASE - prob_val;
5037 }
5038
5039 if (cond_exec_process_insns (NULL, head, end, cond, prob_val, 0)
5040 && verify_changes (0))
5041 n_validated_changes = num_validated_changes ();
5042 else
5043 cancel_changes (0);
5044
5045 earliest = jump;
5046 }
5047 #endif
5048
5049 /* If we allocated new pseudos (e.g. in the conditional move
5050 expander called from noce_emit_cmove), we must resize the
5051 array first. */
5052 if (max_regno < max_reg_num ())
5053 max_regno = max_reg_num ();
5054
5055 /* Try the NCE path if the CE path did not result in any changes. */
5056 if (n_validated_changes == 0)
5057 {
5058 rtx cond;
5059 rtx_insn *insn;
5060 regset live;
5061 bool success;
5062
5063 /* In the non-conditional execution case, we have to verify that there
5064 are no trapping operations, no calls, no references to memory, and
5065 that any registers modified are dead at the branch site. */
5066
5067 if (!any_condjump_p (jump))
5068 return FALSE;
5069
5070 /* Find the extent of the conditional. */
5071 cond = noce_get_condition (jump, &earliest, false);
5072 if (!cond)
5073 return FALSE;
5074
5075 live = BITMAP_ALLOC (&reg_obstack);
5076 simulate_backwards_to_point (merge_bb, live, end);
5077 success = can_move_insns_across (head, end, earliest, jump,
5078 merge_bb, live,
5079 df_get_live_in (other_bb), NULL);
5080 BITMAP_FREE (live);
5081 if (!success)
5082 return FALSE;
5083
5084 /* Collect the set of registers set in MERGE_BB. */
5085 merge_set = BITMAP_ALLOC (&reg_obstack);
5086
5087 FOR_BB_INSNS (merge_bb, insn)
5088 if (NONDEBUG_INSN_P (insn))
5089 df_simulate_find_defs (insn, merge_set);
5090
5091 /* If shrink-wrapping, disable this optimization when test_bb is
5092 the first basic block and merge_bb exits. The idea is to not
5093 move code setting up a return register as that may clobber a
5094 register used to pass function parameters, which then must be
5095 saved in caller-saved regs. A caller-saved reg requires the
5096 prologue, killing a shrink-wrap opportunity. */
5097 if ((SHRINK_WRAPPING_ENABLED && !epilogue_completed)
5098 && ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb == test_bb
5099 && single_succ_p (new_dest)
5100 && single_succ (new_dest) == EXIT_BLOCK_PTR_FOR_FN (cfun)
5101 && bitmap_intersect_p (df_get_live_in (new_dest), merge_set))
5102 {
5103 regset return_regs;
5104 unsigned int i;
5105
5106 return_regs = BITMAP_ALLOC (&reg_obstack);
5107
5108 /* Start off with the intersection of regs used to pass
5109 params and regs used to return values. */
5110 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
5111 if (FUNCTION_ARG_REGNO_P (i)
5112 && targetm.calls.function_value_regno_p (i))
5113 bitmap_set_bit (return_regs, INCOMING_REGNO (i));
5114
5115 bitmap_and_into (return_regs,
5116 df_get_live_out (ENTRY_BLOCK_PTR_FOR_FN (cfun)));
5117 bitmap_and_into (return_regs,
5118 df_get_live_in (EXIT_BLOCK_PTR_FOR_FN (cfun)));
5119 if (!bitmap_empty_p (return_regs))
5120 {
5121 FOR_BB_INSNS_REVERSE (new_dest, insn)
5122 if (NONDEBUG_INSN_P (insn))
5123 {
5124 df_ref def;
5125
5126 /* If this insn sets any reg in return_regs, add all
5127 reg uses to the set of regs we're interested in. */
5128 FOR_EACH_INSN_DEF (def, insn)
5129 if (bitmap_bit_p (return_regs, DF_REF_REGNO (def)))
5130 {
5131 df_simulate_uses (insn, return_regs);
5132 break;
5133 }
5134 }
5135 if (bitmap_intersect_p (merge_set, return_regs))
5136 {
5137 BITMAP_FREE (return_regs);
5138 BITMAP_FREE (merge_set);
5139 return FALSE;
5140 }
5141 }
5142 BITMAP_FREE (return_regs);
5143 }
5144 }
5145
5146 no_body:
5147 /* We don't want to use normal invert_jump or redirect_jump because
5148 we don't want to delete_insn called. Also, we want to do our own
5149 change group management. */
5150
5151 old_dest = JUMP_LABEL (jump);
5152 if (other_bb != new_dest)
5153 {
5154 if (!any_condjump_p (jump))
5155 goto cancel;
5156
5157 if (JUMP_P (BB_END (dest_edge->src)))
5158 new_dest_label = JUMP_LABEL (BB_END (dest_edge->src));
5159 else if (new_dest == EXIT_BLOCK_PTR_FOR_FN (cfun))
5160 new_dest_label = ret_rtx;
5161 else
5162 new_dest_label = block_label (new_dest);
5163
5164 rtx_jump_insn *jump_insn = as_a <rtx_jump_insn *> (jump);
5165 if (reversep
5166 ? ! invert_jump_1 (jump_insn, new_dest_label)
5167 : ! redirect_jump_1 (jump_insn, new_dest_label))
5168 goto cancel;
5169 }
5170
5171 if (verify_changes (n_validated_changes))
5172 confirm_change_group ();
5173 else
5174 goto cancel;
5175
5176 if (other_bb != new_dest)
5177 {
5178 redirect_jump_2 (as_a <rtx_jump_insn *> (jump), old_dest, new_dest_label,
5179 0, reversep);
5180
5181 redirect_edge_succ (BRANCH_EDGE (test_bb), new_dest);
5182 if (reversep)
5183 {
5184 std::swap (BRANCH_EDGE (test_bb)->count,
5185 FALLTHRU_EDGE (test_bb)->count);
5186 std::swap (BRANCH_EDGE (test_bb)->probability,
5187 FALLTHRU_EDGE (test_bb)->probability);
5188 update_br_prob_note (test_bb);
5189 }
5190 }
5191
5192 /* Move the insns out of MERGE_BB to before the branch. */
5193 if (head != NULL)
5194 {
5195 rtx_insn *insn;
5196
5197 if (end == BB_END (merge_bb))
5198 BB_END (merge_bb) = PREV_INSN (head);
5199
5200 /* PR 21767: when moving insns above a conditional branch, the REG_EQUAL
5201 notes being moved might become invalid. */
5202 insn = head;
5203 do
5204 {
5205 rtx note;
5206
5207 if (! INSN_P (insn))
5208 continue;
5209 note = find_reg_note (insn, REG_EQUAL, NULL_RTX);
5210 if (! note)
5211 continue;
5212 remove_note (insn, note);
5213 } while (insn != end && (insn = NEXT_INSN (insn)));
5214
5215 /* PR46315: when moving insns above a conditional branch, the REG_EQUAL
5216 notes referring to the registers being set might become invalid. */
5217 if (merge_set)
5218 {
5219 unsigned i;
5220 bitmap_iterator bi;
5221
5222 EXECUTE_IF_SET_IN_BITMAP (merge_set, 0, i, bi)
5223 remove_reg_equal_equiv_notes_for_regno (i);
5224
5225 BITMAP_FREE (merge_set);
5226 }
5227
5228 reorder_insns (head, end, PREV_INSN (earliest));
5229 }
5230
5231 /* Remove the jump and edge if we can. */
5232 if (other_bb == new_dest)
5233 {
5234 delete_insn (jump);
5235 remove_edge (BRANCH_EDGE (test_bb));
5236 /* ??? Can't merge blocks here, as then_bb is still in use.
5237 At minimum, the merge will get done just before bb-reorder. */
5238 }
5239
5240 return TRUE;
5241
5242 cancel:
5243 cancel_changes (0);
5244
5245 if (merge_set)
5246 BITMAP_FREE (merge_set);
5247
5248 return FALSE;
5249 }
5250 \f
5251 /* Main entry point for all if-conversion. AFTER_COMBINE is true if
5252 we are after combine pass. */
5253
5254 static void
5255 if_convert (bool after_combine)
5256 {
5257 basic_block bb;
5258 int pass;
5259
5260 if (optimize == 1)
5261 {
5262 df_live_add_problem ();
5263 df_live_set_all_dirty ();
5264 }
5265
5266 /* Record whether we are after combine pass. */
5267 ifcvt_after_combine = after_combine;
5268 have_cbranchcc4 = (direct_optab_handler (cbranch_optab, CCmode)
5269 != CODE_FOR_nothing);
5270 num_possible_if_blocks = 0;
5271 num_updated_if_blocks = 0;
5272 num_true_changes = 0;
5273
5274 loop_optimizer_init (AVOID_CFG_MODIFICATIONS);
5275 mark_loop_exit_edges ();
5276 loop_optimizer_finalize ();
5277 free_dominance_info (CDI_DOMINATORS);
5278
5279 /* Compute postdominators. */
5280 calculate_dominance_info (CDI_POST_DOMINATORS);
5281
5282 df_set_flags (DF_LR_RUN_DCE);
5283
5284 /* Go through each of the basic blocks looking for things to convert. If we
5285 have conditional execution, we make multiple passes to allow us to handle
5286 IF-THEN{-ELSE} blocks within other IF-THEN{-ELSE} blocks. */
5287 pass = 0;
5288 do
5289 {
5290 df_analyze ();
5291 /* Only need to do dce on the first pass. */
5292 df_clear_flags (DF_LR_RUN_DCE);
5293 cond_exec_changed_p = FALSE;
5294 pass++;
5295
5296 #ifdef IFCVT_MULTIPLE_DUMPS
5297 if (dump_file && pass > 1)
5298 fprintf (dump_file, "\n\n========== Pass %d ==========\n", pass);
5299 #endif
5300
5301 FOR_EACH_BB_FN (bb, cfun)
5302 {
5303 basic_block new_bb;
5304 while (!df_get_bb_dirty (bb)
5305 && (new_bb = find_if_header (bb, pass)) != NULL)
5306 bb = new_bb;
5307 }
5308
5309 #ifdef IFCVT_MULTIPLE_DUMPS
5310 if (dump_file && cond_exec_changed_p)
5311 print_rtl_with_bb (dump_file, get_insns (), dump_flags);
5312 #endif
5313 }
5314 while (cond_exec_changed_p);
5315
5316 #ifdef IFCVT_MULTIPLE_DUMPS
5317 if (dump_file)
5318 fprintf (dump_file, "\n\n========== no more changes\n");
5319 #endif
5320
5321 free_dominance_info (CDI_POST_DOMINATORS);
5322
5323 if (dump_file)
5324 fflush (dump_file);
5325
5326 clear_aux_for_blocks ();
5327
5328 /* If we allocated new pseudos, we must resize the array for sched1. */
5329 if (max_regno < max_reg_num ())
5330 max_regno = max_reg_num ();
5331
5332 /* Write the final stats. */
5333 if (dump_file && num_possible_if_blocks > 0)
5334 {
5335 fprintf (dump_file,
5336 "\n%d possible IF blocks searched.\n",
5337 num_possible_if_blocks);
5338 fprintf (dump_file,
5339 "%d IF blocks converted.\n",
5340 num_updated_if_blocks);
5341 fprintf (dump_file,
5342 "%d true changes made.\n\n\n",
5343 num_true_changes);
5344 }
5345
5346 if (optimize == 1)
5347 df_remove_problem (df_live);
5348
5349 checking_verify_flow_info ();
5350 }
5351 \f
5352 /* If-conversion and CFG cleanup. */
5353 static unsigned int
5354 rest_of_handle_if_conversion (void)
5355 {
5356 if (flag_if_conversion)
5357 {
5358 if (dump_file)
5359 {
5360 dump_reg_info (dump_file);
5361 dump_flow_info (dump_file, dump_flags);
5362 }
5363 cleanup_cfg (CLEANUP_EXPENSIVE);
5364 if_convert (false);
5365 }
5366
5367 cleanup_cfg (0);
5368 return 0;
5369 }
5370
5371 namespace {
5372
5373 const pass_data pass_data_rtl_ifcvt =
5374 {
5375 RTL_PASS, /* type */
5376 "ce1", /* name */
5377 OPTGROUP_NONE, /* optinfo_flags */
5378 TV_IFCVT, /* tv_id */
5379 0, /* properties_required */
5380 0, /* properties_provided */
5381 0, /* properties_destroyed */
5382 0, /* todo_flags_start */
5383 TODO_df_finish, /* todo_flags_finish */
5384 };
5385
5386 class pass_rtl_ifcvt : public rtl_opt_pass
5387 {
5388 public:
5389 pass_rtl_ifcvt (gcc::context *ctxt)
5390 : rtl_opt_pass (pass_data_rtl_ifcvt, ctxt)
5391 {}
5392
5393 /* opt_pass methods: */
5394 virtual bool gate (function *)
5395 {
5396 return (optimize > 0) && dbg_cnt (if_conversion);
5397 }
5398
5399 virtual unsigned int execute (function *)
5400 {
5401 return rest_of_handle_if_conversion ();
5402 }
5403
5404 }; // class pass_rtl_ifcvt
5405
5406 } // anon namespace
5407
5408 rtl_opt_pass *
5409 make_pass_rtl_ifcvt (gcc::context *ctxt)
5410 {
5411 return new pass_rtl_ifcvt (ctxt);
5412 }
5413
5414
5415 /* Rerun if-conversion, as combine may have simplified things enough
5416 to now meet sequence length restrictions. */
5417
5418 namespace {
5419
5420 const pass_data pass_data_if_after_combine =
5421 {
5422 RTL_PASS, /* type */
5423 "ce2", /* name */
5424 OPTGROUP_NONE, /* optinfo_flags */
5425 TV_IFCVT, /* tv_id */
5426 0, /* properties_required */
5427 0, /* properties_provided */
5428 0, /* properties_destroyed */
5429 0, /* todo_flags_start */
5430 TODO_df_finish, /* todo_flags_finish */
5431 };
5432
5433 class pass_if_after_combine : public rtl_opt_pass
5434 {
5435 public:
5436 pass_if_after_combine (gcc::context *ctxt)
5437 : rtl_opt_pass (pass_data_if_after_combine, ctxt)
5438 {}
5439
5440 /* opt_pass methods: */
5441 virtual bool gate (function *)
5442 {
5443 return optimize > 0 && flag_if_conversion
5444 && dbg_cnt (if_after_combine);
5445 }
5446
5447 virtual unsigned int execute (function *)
5448 {
5449 if_convert (true);
5450 return 0;
5451 }
5452
5453 }; // class pass_if_after_combine
5454
5455 } // anon namespace
5456
5457 rtl_opt_pass *
5458 make_pass_if_after_combine (gcc::context *ctxt)
5459 {
5460 return new pass_if_after_combine (ctxt);
5461 }
5462
5463
5464 namespace {
5465
5466 const pass_data pass_data_if_after_reload =
5467 {
5468 RTL_PASS, /* type */
5469 "ce3", /* name */
5470 OPTGROUP_NONE, /* optinfo_flags */
5471 TV_IFCVT2, /* tv_id */
5472 0, /* properties_required */
5473 0, /* properties_provided */
5474 0, /* properties_destroyed */
5475 0, /* todo_flags_start */
5476 TODO_df_finish, /* todo_flags_finish */
5477 };
5478
5479 class pass_if_after_reload : public rtl_opt_pass
5480 {
5481 public:
5482 pass_if_after_reload (gcc::context *ctxt)
5483 : rtl_opt_pass (pass_data_if_after_reload, ctxt)
5484 {}
5485
5486 /* opt_pass methods: */
5487 virtual bool gate (function *)
5488 {
5489 return optimize > 0 && flag_if_conversion2
5490 && dbg_cnt (if_after_reload);
5491 }
5492
5493 virtual unsigned int execute (function *)
5494 {
5495 if_convert (true);
5496 return 0;
5497 }
5498
5499 }; // class pass_if_after_reload
5500
5501 } // anon namespace
5502
5503 rtl_opt_pass *
5504 make_pass_if_after_reload (gcc::context *ctxt)
5505 {
5506 return new pass_if_after_reload (ctxt);
5507 }