]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/ifcvt.c
basic-block.h (single_succ_p, [...]): New inline functions.
[thirdparty/gcc.git] / gcc / ifcvt.c
1 /* If-conversion support.
2 Copyright (C) 2000, 2001, 2002, 2003, 2004, 2005
3 Free Software Foundation, Inc.
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it
8 under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
10 any later version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT
13 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
14 or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
15 License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA. */
21
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "tm.h"
26
27 #include "rtl.h"
28 #include "regs.h"
29 #include "function.h"
30 #include "flags.h"
31 #include "insn-config.h"
32 #include "recog.h"
33 #include "except.h"
34 #include "hard-reg-set.h"
35 #include "basic-block.h"
36 #include "expr.h"
37 #include "real.h"
38 #include "output.h"
39 #include "optabs.h"
40 #include "toplev.h"
41 #include "tm_p.h"
42 #include "cfgloop.h"
43 #include "target.h"
44
45
46 #ifndef HAVE_conditional_execution
47 #define HAVE_conditional_execution 0
48 #endif
49 #ifndef HAVE_conditional_move
50 #define HAVE_conditional_move 0
51 #endif
52 #ifndef HAVE_incscc
53 #define HAVE_incscc 0
54 #endif
55 #ifndef HAVE_decscc
56 #define HAVE_decscc 0
57 #endif
58 #ifndef HAVE_trap
59 #define HAVE_trap 0
60 #endif
61 #ifndef HAVE_conditional_trap
62 #define HAVE_conditional_trap 0
63 #endif
64
65 #ifndef MAX_CONDITIONAL_EXECUTE
66 #define MAX_CONDITIONAL_EXECUTE (BRANCH_COST + 1)
67 #endif
68
69 #define NULL_EDGE ((edge) NULL)
70 #define NULL_BLOCK ((basic_block) NULL)
71
72 /* # of IF-THEN or IF-THEN-ELSE blocks we looked at */
73 static int num_possible_if_blocks;
74
75 /* # of IF-THEN or IF-THEN-ELSE blocks were converted to conditional
76 execution. */
77 static int num_updated_if_blocks;
78
79 /* # of changes made which require life information to be updated. */
80 static int num_true_changes;
81
82 /* Whether conditional execution changes were made. */
83 static int cond_exec_changed_p;
84
85 /* True if life data ok at present. */
86 static bool life_data_ok;
87
88 /* Forward references. */
89 static int count_bb_insns (basic_block);
90 static bool cheap_bb_rtx_cost_p (basic_block, int);
91 static rtx first_active_insn (basic_block);
92 static rtx last_active_insn (basic_block, int);
93 static basic_block block_fallthru (basic_block);
94 static int cond_exec_process_insns (ce_if_block_t *, rtx, rtx, rtx, rtx, int);
95 static rtx cond_exec_get_condition (rtx);
96 static int cond_exec_process_if_block (ce_if_block_t *, int);
97 static rtx noce_get_condition (rtx, rtx *);
98 static int noce_operand_ok (rtx);
99 static int noce_process_if_block (ce_if_block_t *);
100 static int process_if_block (ce_if_block_t *);
101 static void merge_if_block (ce_if_block_t *);
102 static int find_cond_trap (basic_block, edge, edge);
103 static basic_block find_if_header (basic_block, int);
104 static int block_jumps_and_fallthru_p (basic_block, basic_block);
105 static int find_if_block (ce_if_block_t *);
106 static int find_if_case_1 (basic_block, edge, edge);
107 static int find_if_case_2 (basic_block, edge, edge);
108 static int find_memory (rtx *, void *);
109 static int dead_or_predicable (basic_block, basic_block, basic_block,
110 basic_block, int);
111 static void noce_emit_move_insn (rtx, rtx);
112 static rtx block_has_only_trap (basic_block);
113 \f
114 /* Count the number of non-jump active insns in BB. */
115
116 static int
117 count_bb_insns (basic_block bb)
118 {
119 int count = 0;
120 rtx insn = BB_HEAD (bb);
121
122 while (1)
123 {
124 if (CALL_P (insn) || NONJUMP_INSN_P (insn))
125 count++;
126
127 if (insn == BB_END (bb))
128 break;
129 insn = NEXT_INSN (insn);
130 }
131
132 return count;
133 }
134
135 /* Determine whether the total insn_rtx_cost on non-jump insns in
136 basic block BB is less than MAX_COST. This function returns
137 false if the cost of any instruction could not be estimated. */
138
139 static bool
140 cheap_bb_rtx_cost_p (basic_block bb, int max_cost)
141 {
142 int count = 0;
143 rtx insn = BB_HEAD (bb);
144
145 while (1)
146 {
147 if (NONJUMP_INSN_P (insn))
148 {
149 int cost = insn_rtx_cost (PATTERN (insn));
150 if (cost == 0)
151 return false;
152
153 /* If this instruction is the load or set of a "stack" register,
154 such as a floating point register on x87, then the cost of
155 speculatively executing this instruction needs to include
156 the additional cost of popping this register off of the
157 register stack. */
158 #ifdef STACK_REGS
159 {
160 rtx set = single_set (insn);
161 if (set && STACK_REG_P (SET_DEST (set)))
162 cost += COSTS_N_INSNS (1);
163 }
164 #endif
165
166 count += cost;
167 if (count >= max_cost)
168 return false;
169 }
170 else if (CALL_P (insn))
171 return false;
172
173 if (insn == BB_END (bb))
174 break;
175 insn = NEXT_INSN (insn);
176 }
177
178 return true;
179 }
180
181 /* Return the first non-jump active insn in the basic block. */
182
183 static rtx
184 first_active_insn (basic_block bb)
185 {
186 rtx insn = BB_HEAD (bb);
187
188 if (LABEL_P (insn))
189 {
190 if (insn == BB_END (bb))
191 return NULL_RTX;
192 insn = NEXT_INSN (insn);
193 }
194
195 while (NOTE_P (insn))
196 {
197 if (insn == BB_END (bb))
198 return NULL_RTX;
199 insn = NEXT_INSN (insn);
200 }
201
202 if (JUMP_P (insn))
203 return NULL_RTX;
204
205 return insn;
206 }
207
208 /* Return the last non-jump active (non-jump) insn in the basic block. */
209
210 static rtx
211 last_active_insn (basic_block bb, int skip_use_p)
212 {
213 rtx insn = BB_END (bb);
214 rtx head = BB_HEAD (bb);
215
216 while (NOTE_P (insn)
217 || JUMP_P (insn)
218 || (skip_use_p
219 && NONJUMP_INSN_P (insn)
220 && GET_CODE (PATTERN (insn)) == USE))
221 {
222 if (insn == head)
223 return NULL_RTX;
224 insn = PREV_INSN (insn);
225 }
226
227 if (LABEL_P (insn))
228 return NULL_RTX;
229
230 return insn;
231 }
232
233 /* Return the basic block reached by falling though the basic block BB. */
234
235 static basic_block
236 block_fallthru (basic_block bb)
237 {
238 edge e;
239 edge_iterator ei;
240
241 FOR_EACH_EDGE (e, ei, bb->succs)
242 if (e->flags & EDGE_FALLTHRU)
243 break;
244
245 return (e) ? e->dest : NULL_BLOCK;
246 }
247 \f
248 /* Go through a bunch of insns, converting them to conditional
249 execution format if possible. Return TRUE if all of the non-note
250 insns were processed. */
251
252 static int
253 cond_exec_process_insns (ce_if_block_t *ce_info ATTRIBUTE_UNUSED,
254 /* if block information */rtx start,
255 /* first insn to look at */rtx end,
256 /* last insn to look at */rtx test,
257 /* conditional execution test */rtx prob_val,
258 /* probability of branch taken. */int mod_ok)
259 {
260 int must_be_last = FALSE;
261 rtx insn;
262 rtx xtest;
263 rtx pattern;
264
265 if (!start || !end)
266 return FALSE;
267
268 for (insn = start; ; insn = NEXT_INSN (insn))
269 {
270 if (NOTE_P (insn))
271 goto insn_done;
272
273 if (!NONJUMP_INSN_P (insn) && !CALL_P (insn))
274 abort ();
275
276 /* Remove USE insns that get in the way. */
277 if (reload_completed && GET_CODE (PATTERN (insn)) == USE)
278 {
279 /* ??? Ug. Actually unlinking the thing is problematic,
280 given what we'd have to coordinate with our callers. */
281 SET_INSN_DELETED (insn);
282 goto insn_done;
283 }
284
285 /* Last insn wasn't last? */
286 if (must_be_last)
287 return FALSE;
288
289 if (modified_in_p (test, insn))
290 {
291 if (!mod_ok)
292 return FALSE;
293 must_be_last = TRUE;
294 }
295
296 /* Now build the conditional form of the instruction. */
297 pattern = PATTERN (insn);
298 xtest = copy_rtx (test);
299
300 /* If this is already a COND_EXEC, rewrite the test to be an AND of the
301 two conditions. */
302 if (GET_CODE (pattern) == COND_EXEC)
303 {
304 if (GET_MODE (xtest) != GET_MODE (COND_EXEC_TEST (pattern)))
305 return FALSE;
306
307 xtest = gen_rtx_AND (GET_MODE (xtest), xtest,
308 COND_EXEC_TEST (pattern));
309 pattern = COND_EXEC_CODE (pattern);
310 }
311
312 pattern = gen_rtx_COND_EXEC (VOIDmode, xtest, pattern);
313
314 /* If the machine needs to modify the insn being conditionally executed,
315 say for example to force a constant integer operand into a temp
316 register, do so here. */
317 #ifdef IFCVT_MODIFY_INSN
318 IFCVT_MODIFY_INSN (ce_info, pattern, insn);
319 if (! pattern)
320 return FALSE;
321 #endif
322
323 validate_change (insn, &PATTERN (insn), pattern, 1);
324
325 if (CALL_P (insn) && prob_val)
326 validate_change (insn, &REG_NOTES (insn),
327 alloc_EXPR_LIST (REG_BR_PROB, prob_val,
328 REG_NOTES (insn)), 1);
329
330 insn_done:
331 if (insn == end)
332 break;
333 }
334
335 return TRUE;
336 }
337
338 /* Return the condition for a jump. Do not do any special processing. */
339
340 static rtx
341 cond_exec_get_condition (rtx jump)
342 {
343 rtx test_if, cond;
344
345 if (any_condjump_p (jump))
346 test_if = SET_SRC (pc_set (jump));
347 else
348 return NULL_RTX;
349 cond = XEXP (test_if, 0);
350
351 /* If this branches to JUMP_LABEL when the condition is false,
352 reverse the condition. */
353 if (GET_CODE (XEXP (test_if, 2)) == LABEL_REF
354 && XEXP (XEXP (test_if, 2), 0) == JUMP_LABEL (jump))
355 {
356 enum rtx_code rev = reversed_comparison_code (cond, jump);
357 if (rev == UNKNOWN)
358 return NULL_RTX;
359
360 cond = gen_rtx_fmt_ee (rev, GET_MODE (cond), XEXP (cond, 0),
361 XEXP (cond, 1));
362 }
363
364 return cond;
365 }
366
367 /* Given a simple IF-THEN or IF-THEN-ELSE block, attempt to convert it
368 to conditional execution. Return TRUE if we were successful at
369 converting the block. */
370
371 static int
372 cond_exec_process_if_block (ce_if_block_t * ce_info,
373 /* if block information */int do_multiple_p)
374 {
375 basic_block test_bb = ce_info->test_bb; /* last test block */
376 basic_block then_bb = ce_info->then_bb; /* THEN */
377 basic_block else_bb = ce_info->else_bb; /* ELSE or NULL */
378 rtx test_expr; /* expression in IF_THEN_ELSE that is tested */
379 rtx then_start; /* first insn in THEN block */
380 rtx then_end; /* last insn + 1 in THEN block */
381 rtx else_start = NULL_RTX; /* first insn in ELSE block or NULL */
382 rtx else_end = NULL_RTX; /* last insn + 1 in ELSE block */
383 int max; /* max # of insns to convert. */
384 int then_mod_ok; /* whether conditional mods are ok in THEN */
385 rtx true_expr; /* test for else block insns */
386 rtx false_expr; /* test for then block insns */
387 rtx true_prob_val; /* probability of else block */
388 rtx false_prob_val; /* probability of then block */
389 int n_insns;
390 enum rtx_code false_code;
391
392 /* If test is comprised of && or || elements, and we've failed at handling
393 all of them together, just use the last test if it is the special case of
394 && elements without an ELSE block. */
395 if (!do_multiple_p && ce_info->num_multiple_test_blocks)
396 {
397 if (else_bb || ! ce_info->and_and_p)
398 return FALSE;
399
400 ce_info->test_bb = test_bb = ce_info->last_test_bb;
401 ce_info->num_multiple_test_blocks = 0;
402 ce_info->num_and_and_blocks = 0;
403 ce_info->num_or_or_blocks = 0;
404 }
405
406 /* Find the conditional jump to the ELSE or JOIN part, and isolate
407 the test. */
408 test_expr = cond_exec_get_condition (BB_END (test_bb));
409 if (! test_expr)
410 return FALSE;
411
412 /* If the conditional jump is more than just a conditional jump,
413 then we can not do conditional execution conversion on this block. */
414 if (! onlyjump_p (BB_END (test_bb)))
415 return FALSE;
416
417 /* Collect the bounds of where we're to search, skipping any labels, jumps
418 and notes at the beginning and end of the block. Then count the total
419 number of insns and see if it is small enough to convert. */
420 then_start = first_active_insn (then_bb);
421 then_end = last_active_insn (then_bb, TRUE);
422 n_insns = ce_info->num_then_insns = count_bb_insns (then_bb);
423 max = MAX_CONDITIONAL_EXECUTE;
424
425 if (else_bb)
426 {
427 max *= 2;
428 else_start = first_active_insn (else_bb);
429 else_end = last_active_insn (else_bb, TRUE);
430 n_insns += ce_info->num_else_insns = count_bb_insns (else_bb);
431 }
432
433 if (n_insns > max)
434 return FALSE;
435
436 /* Map test_expr/test_jump into the appropriate MD tests to use on
437 the conditionally executed code. */
438
439 true_expr = test_expr;
440
441 false_code = reversed_comparison_code (true_expr, BB_END (test_bb));
442 if (false_code != UNKNOWN)
443 false_expr = gen_rtx_fmt_ee (false_code, GET_MODE (true_expr),
444 XEXP (true_expr, 0), XEXP (true_expr, 1));
445 else
446 false_expr = NULL_RTX;
447
448 #ifdef IFCVT_MODIFY_TESTS
449 /* If the machine description needs to modify the tests, such as setting a
450 conditional execution register from a comparison, it can do so here. */
451 IFCVT_MODIFY_TESTS (ce_info, true_expr, false_expr);
452
453 /* See if the conversion failed. */
454 if (!true_expr || !false_expr)
455 goto fail;
456 #endif
457
458 true_prob_val = find_reg_note (BB_END (test_bb), REG_BR_PROB, NULL_RTX);
459 if (true_prob_val)
460 {
461 true_prob_val = XEXP (true_prob_val, 0);
462 false_prob_val = GEN_INT (REG_BR_PROB_BASE - INTVAL (true_prob_val));
463 }
464 else
465 false_prob_val = NULL_RTX;
466
467 /* If we have && or || tests, do them here. These tests are in the adjacent
468 blocks after the first block containing the test. */
469 if (ce_info->num_multiple_test_blocks > 0)
470 {
471 basic_block bb = test_bb;
472 basic_block last_test_bb = ce_info->last_test_bb;
473
474 if (! false_expr)
475 goto fail;
476
477 do
478 {
479 rtx start, end;
480 rtx t, f;
481 enum rtx_code f_code;
482
483 bb = block_fallthru (bb);
484 start = first_active_insn (bb);
485 end = last_active_insn (bb, TRUE);
486 if (start
487 && ! cond_exec_process_insns (ce_info, start, end, false_expr,
488 false_prob_val, FALSE))
489 goto fail;
490
491 /* If the conditional jump is more than just a conditional jump, then
492 we can not do conditional execution conversion on this block. */
493 if (! onlyjump_p (BB_END (bb)))
494 goto fail;
495
496 /* Find the conditional jump and isolate the test. */
497 t = cond_exec_get_condition (BB_END (bb));
498 if (! t)
499 goto fail;
500
501 f_code = reversed_comparison_code (t, BB_END (bb));
502 if (f_code == UNKNOWN)
503 goto fail;
504
505 f = gen_rtx_fmt_ee (f_code, GET_MODE (t), XEXP (t, 0), XEXP (t, 1));
506 if (ce_info->and_and_p)
507 {
508 t = gen_rtx_AND (GET_MODE (t), true_expr, t);
509 f = gen_rtx_IOR (GET_MODE (t), false_expr, f);
510 }
511 else
512 {
513 t = gen_rtx_IOR (GET_MODE (t), true_expr, t);
514 f = gen_rtx_AND (GET_MODE (t), false_expr, f);
515 }
516
517 /* If the machine description needs to modify the tests, such as
518 setting a conditional execution register from a comparison, it can
519 do so here. */
520 #ifdef IFCVT_MODIFY_MULTIPLE_TESTS
521 IFCVT_MODIFY_MULTIPLE_TESTS (ce_info, bb, t, f);
522
523 /* See if the conversion failed. */
524 if (!t || !f)
525 goto fail;
526 #endif
527
528 true_expr = t;
529 false_expr = f;
530 }
531 while (bb != last_test_bb);
532 }
533
534 /* For IF-THEN-ELSE blocks, we don't allow modifications of the test
535 on then THEN block. */
536 then_mod_ok = (else_bb == NULL_BLOCK);
537
538 /* Go through the THEN and ELSE blocks converting the insns if possible
539 to conditional execution. */
540
541 if (then_end
542 && (! false_expr
543 || ! cond_exec_process_insns (ce_info, then_start, then_end,
544 false_expr, false_prob_val,
545 then_mod_ok)))
546 goto fail;
547
548 if (else_bb && else_end
549 && ! cond_exec_process_insns (ce_info, else_start, else_end,
550 true_expr, true_prob_val, TRUE))
551 goto fail;
552
553 /* If we cannot apply the changes, fail. Do not go through the normal fail
554 processing, since apply_change_group will call cancel_changes. */
555 if (! apply_change_group ())
556 {
557 #ifdef IFCVT_MODIFY_CANCEL
558 /* Cancel any machine dependent changes. */
559 IFCVT_MODIFY_CANCEL (ce_info);
560 #endif
561 return FALSE;
562 }
563
564 #ifdef IFCVT_MODIFY_FINAL
565 /* Do any machine dependent final modifications. */
566 IFCVT_MODIFY_FINAL (ce_info);
567 #endif
568
569 /* Conversion succeeded. */
570 if (dump_file)
571 fprintf (dump_file, "%d insn%s converted to conditional execution.\n",
572 n_insns, (n_insns == 1) ? " was" : "s were");
573
574 /* Merge the blocks! */
575 merge_if_block (ce_info);
576 cond_exec_changed_p = TRUE;
577 return TRUE;
578
579 fail:
580 #ifdef IFCVT_MODIFY_CANCEL
581 /* Cancel any machine dependent changes. */
582 IFCVT_MODIFY_CANCEL (ce_info);
583 #endif
584
585 cancel_changes (0);
586 return FALSE;
587 }
588 \f
589 /* Used by noce_process_if_block to communicate with its subroutines.
590
591 The subroutines know that A and B may be evaluated freely. They
592 know that X is a register. They should insert new instructions
593 before cond_earliest. */
594
595 struct noce_if_info
596 {
597 basic_block test_bb;
598 rtx insn_a, insn_b;
599 rtx x, a, b;
600 rtx jump, cond, cond_earliest;
601 /* True if "b" was originally evaluated unconditionally. */
602 bool b_unconditional;
603 };
604
605 static rtx noce_emit_store_flag (struct noce_if_info *, rtx, int, int);
606 static int noce_try_move (struct noce_if_info *);
607 static int noce_try_store_flag (struct noce_if_info *);
608 static int noce_try_addcc (struct noce_if_info *);
609 static int noce_try_store_flag_constants (struct noce_if_info *);
610 static int noce_try_store_flag_mask (struct noce_if_info *);
611 static rtx noce_emit_cmove (struct noce_if_info *, rtx, enum rtx_code, rtx,
612 rtx, rtx, rtx);
613 static int noce_try_cmove (struct noce_if_info *);
614 static int noce_try_cmove_arith (struct noce_if_info *);
615 static rtx noce_get_alt_condition (struct noce_if_info *, rtx, rtx *);
616 static int noce_try_minmax (struct noce_if_info *);
617 static int noce_try_abs (struct noce_if_info *);
618 static int noce_try_sign_mask (struct noce_if_info *);
619
620 /* Helper function for noce_try_store_flag*. */
621
622 static rtx
623 noce_emit_store_flag (struct noce_if_info *if_info, rtx x, int reversep,
624 int normalize)
625 {
626 rtx cond = if_info->cond;
627 int cond_complex;
628 enum rtx_code code;
629
630 cond_complex = (! general_operand (XEXP (cond, 0), VOIDmode)
631 || ! general_operand (XEXP (cond, 1), VOIDmode));
632
633 /* If earliest == jump, or when the condition is complex, try to
634 build the store_flag insn directly. */
635
636 if (cond_complex)
637 cond = XEXP (SET_SRC (pc_set (if_info->jump)), 0);
638
639 if (reversep)
640 code = reversed_comparison_code (cond, if_info->jump);
641 else
642 code = GET_CODE (cond);
643
644 if ((if_info->cond_earliest == if_info->jump || cond_complex)
645 && (normalize == 0 || STORE_FLAG_VALUE == normalize))
646 {
647 rtx tmp;
648
649 tmp = gen_rtx_fmt_ee (code, GET_MODE (x), XEXP (cond, 0),
650 XEXP (cond, 1));
651 tmp = gen_rtx_SET (VOIDmode, x, tmp);
652
653 start_sequence ();
654 tmp = emit_insn (tmp);
655
656 if (recog_memoized (tmp) >= 0)
657 {
658 tmp = get_insns ();
659 end_sequence ();
660 emit_insn (tmp);
661
662 if_info->cond_earliest = if_info->jump;
663
664 return x;
665 }
666
667 end_sequence ();
668 }
669
670 /* Don't even try if the comparison operands or the mode of X are weird. */
671 if (cond_complex || !SCALAR_INT_MODE_P (GET_MODE (x)))
672 return NULL_RTX;
673
674 return emit_store_flag (x, code, XEXP (cond, 0),
675 XEXP (cond, 1), VOIDmode,
676 (code == LTU || code == LEU
677 || code == GEU || code == GTU), normalize);
678 }
679
680 /* Emit instruction to move an rtx, possibly into STRICT_LOW_PART.
681 X is the destination/target and Y is the value to copy. */
682
683 static void
684 noce_emit_move_insn (rtx x, rtx y)
685 {
686 enum machine_mode outmode;
687 rtx outer, inner;
688 int bitpos;
689
690 if (GET_CODE (x) != STRICT_LOW_PART)
691 {
692 emit_move_insn (x, y);
693 return;
694 }
695
696 outer = XEXP (x, 0);
697 inner = XEXP (outer, 0);
698 outmode = GET_MODE (outer);
699 bitpos = SUBREG_BYTE (outer) * BITS_PER_UNIT;
700 store_bit_field (inner, GET_MODE_BITSIZE (outmode), bitpos, outmode, y);
701 }
702
703 /* Return sequence of instructions generated by if conversion. This
704 function calls end_sequence() to end the current stream, ensures
705 that are instructions are unshared, recognizable non-jump insns.
706 On failure, this function returns a NULL_RTX. */
707
708 static rtx
709 end_ifcvt_sequence (struct noce_if_info *if_info)
710 {
711 rtx insn;
712 rtx seq = get_insns ();
713
714 set_used_flags (if_info->x);
715 set_used_flags (if_info->cond);
716 unshare_all_rtl_in_chain (seq);
717 end_sequence ();
718
719 /* Make sure that all of the instructions emitted are recognizable,
720 and that we haven't introduced a new jump instruction.
721 As an exercise for the reader, build a general mechanism that
722 allows proper placement of required clobbers. */
723 for (insn = seq; insn; insn = NEXT_INSN (insn))
724 if (JUMP_P (insn)
725 || recog_memoized (insn) == -1)
726 return NULL_RTX;
727
728 return seq;
729 }
730
731 /* Convert "if (a != b) x = a; else x = b" into "x = a" and
732 "if (a == b) x = a; else x = b" into "x = b". */
733
734 static int
735 noce_try_move (struct noce_if_info *if_info)
736 {
737 rtx cond = if_info->cond;
738 enum rtx_code code = GET_CODE (cond);
739 rtx y, seq;
740
741 if (code != NE && code != EQ)
742 return FALSE;
743
744 /* This optimization isn't valid if either A or B could be a NaN
745 or a signed zero. */
746 if (HONOR_NANS (GET_MODE (if_info->x))
747 || HONOR_SIGNED_ZEROS (GET_MODE (if_info->x)))
748 return FALSE;
749
750 /* Check whether the operands of the comparison are A and in
751 either order. */
752 if ((rtx_equal_p (if_info->a, XEXP (cond, 0))
753 && rtx_equal_p (if_info->b, XEXP (cond, 1)))
754 || (rtx_equal_p (if_info->a, XEXP (cond, 1))
755 && rtx_equal_p (if_info->b, XEXP (cond, 0))))
756 {
757 y = (code == EQ) ? if_info->a : if_info->b;
758
759 /* Avoid generating the move if the source is the destination. */
760 if (! rtx_equal_p (if_info->x, y))
761 {
762 start_sequence ();
763 noce_emit_move_insn (if_info->x, y);
764 seq = end_ifcvt_sequence (if_info);
765 if (!seq)
766 return FALSE;
767
768 emit_insn_before_setloc (seq, if_info->jump,
769 INSN_LOCATOR (if_info->insn_a));
770 }
771 return TRUE;
772 }
773 return FALSE;
774 }
775
776 /* Convert "if (test) x = 1; else x = 0".
777
778 Only try 0 and STORE_FLAG_VALUE here. Other combinations will be
779 tried in noce_try_store_flag_constants after noce_try_cmove has had
780 a go at the conversion. */
781
782 static int
783 noce_try_store_flag (struct noce_if_info *if_info)
784 {
785 int reversep;
786 rtx target, seq;
787
788 if (GET_CODE (if_info->b) == CONST_INT
789 && INTVAL (if_info->b) == STORE_FLAG_VALUE
790 && if_info->a == const0_rtx)
791 reversep = 0;
792 else if (if_info->b == const0_rtx
793 && GET_CODE (if_info->a) == CONST_INT
794 && INTVAL (if_info->a) == STORE_FLAG_VALUE
795 && (reversed_comparison_code (if_info->cond, if_info->jump)
796 != UNKNOWN))
797 reversep = 1;
798 else
799 return FALSE;
800
801 start_sequence ();
802
803 target = noce_emit_store_flag (if_info, if_info->x, reversep, 0);
804 if (target)
805 {
806 if (target != if_info->x)
807 noce_emit_move_insn (if_info->x, target);
808
809 seq = end_ifcvt_sequence (if_info);
810 if (! seq)
811 return FALSE;
812
813 emit_insn_before_setloc (seq, if_info->jump,
814 INSN_LOCATOR (if_info->insn_a));
815 return TRUE;
816 }
817 else
818 {
819 end_sequence ();
820 return FALSE;
821 }
822 }
823
824 /* Convert "if (test) x = a; else x = b", for A and B constant. */
825
826 static int
827 noce_try_store_flag_constants (struct noce_if_info *if_info)
828 {
829 rtx target, seq;
830 int reversep;
831 HOST_WIDE_INT itrue, ifalse, diff, tmp;
832 int normalize, can_reverse;
833 enum machine_mode mode;
834
835 if (! no_new_pseudos
836 && GET_CODE (if_info->a) == CONST_INT
837 && GET_CODE (if_info->b) == CONST_INT)
838 {
839 mode = GET_MODE (if_info->x);
840 ifalse = INTVAL (if_info->a);
841 itrue = INTVAL (if_info->b);
842
843 /* Make sure we can represent the difference between the two values. */
844 if ((itrue - ifalse > 0)
845 != ((ifalse < 0) != (itrue < 0) ? ifalse < 0 : ifalse < itrue))
846 return FALSE;
847
848 diff = trunc_int_for_mode (itrue - ifalse, mode);
849
850 can_reverse = (reversed_comparison_code (if_info->cond, if_info->jump)
851 != UNKNOWN);
852
853 reversep = 0;
854 if (diff == STORE_FLAG_VALUE || diff == -STORE_FLAG_VALUE)
855 normalize = 0;
856 else if (ifalse == 0 && exact_log2 (itrue) >= 0
857 && (STORE_FLAG_VALUE == 1
858 || BRANCH_COST >= 2))
859 normalize = 1;
860 else if (itrue == 0 && exact_log2 (ifalse) >= 0 && can_reverse
861 && (STORE_FLAG_VALUE == 1 || BRANCH_COST >= 2))
862 normalize = 1, reversep = 1;
863 else if (itrue == -1
864 && (STORE_FLAG_VALUE == -1
865 || BRANCH_COST >= 2))
866 normalize = -1;
867 else if (ifalse == -1 && can_reverse
868 && (STORE_FLAG_VALUE == -1 || BRANCH_COST >= 2))
869 normalize = -1, reversep = 1;
870 else if ((BRANCH_COST >= 2 && STORE_FLAG_VALUE == -1)
871 || BRANCH_COST >= 3)
872 normalize = -1;
873 else
874 return FALSE;
875
876 if (reversep)
877 {
878 tmp = itrue; itrue = ifalse; ifalse = tmp;
879 diff = trunc_int_for_mode (-diff, mode);
880 }
881
882 start_sequence ();
883 target = noce_emit_store_flag (if_info, if_info->x, reversep, normalize);
884 if (! target)
885 {
886 end_sequence ();
887 return FALSE;
888 }
889
890 /* if (test) x = 3; else x = 4;
891 => x = 3 + (test == 0); */
892 if (diff == STORE_FLAG_VALUE || diff == -STORE_FLAG_VALUE)
893 {
894 target = expand_simple_binop (mode,
895 (diff == STORE_FLAG_VALUE
896 ? PLUS : MINUS),
897 GEN_INT (ifalse), target, if_info->x, 0,
898 OPTAB_WIDEN);
899 }
900
901 /* if (test) x = 8; else x = 0;
902 => x = (test != 0) << 3; */
903 else if (ifalse == 0 && (tmp = exact_log2 (itrue)) >= 0)
904 {
905 target = expand_simple_binop (mode, ASHIFT,
906 target, GEN_INT (tmp), if_info->x, 0,
907 OPTAB_WIDEN);
908 }
909
910 /* if (test) x = -1; else x = b;
911 => x = -(test != 0) | b; */
912 else if (itrue == -1)
913 {
914 target = expand_simple_binop (mode, IOR,
915 target, GEN_INT (ifalse), if_info->x, 0,
916 OPTAB_WIDEN);
917 }
918
919 /* if (test) x = a; else x = b;
920 => x = (-(test != 0) & (b - a)) + a; */
921 else
922 {
923 target = expand_simple_binop (mode, AND,
924 target, GEN_INT (diff), if_info->x, 0,
925 OPTAB_WIDEN);
926 if (target)
927 target = expand_simple_binop (mode, PLUS,
928 target, GEN_INT (ifalse),
929 if_info->x, 0, OPTAB_WIDEN);
930 }
931
932 if (! target)
933 {
934 end_sequence ();
935 return FALSE;
936 }
937
938 if (target != if_info->x)
939 noce_emit_move_insn (if_info->x, target);
940
941 seq = end_ifcvt_sequence (if_info);
942 if (!seq)
943 return FALSE;
944
945 emit_insn_before_setloc (seq, if_info->jump,
946 INSN_LOCATOR (if_info->insn_a));
947 return TRUE;
948 }
949
950 return FALSE;
951 }
952
953 /* Convert "if (test) foo++" into "foo += (test != 0)", and
954 similarly for "foo--". */
955
956 static int
957 noce_try_addcc (struct noce_if_info *if_info)
958 {
959 rtx target, seq;
960 int subtract, normalize;
961
962 if (! no_new_pseudos
963 && GET_CODE (if_info->a) == PLUS
964 && rtx_equal_p (XEXP (if_info->a, 0), if_info->b)
965 && (reversed_comparison_code (if_info->cond, if_info->jump)
966 != UNKNOWN))
967 {
968 rtx cond = if_info->cond;
969 enum rtx_code code = reversed_comparison_code (cond, if_info->jump);
970
971 /* First try to use addcc pattern. */
972 if (general_operand (XEXP (cond, 0), VOIDmode)
973 && general_operand (XEXP (cond, 1), VOIDmode))
974 {
975 start_sequence ();
976 target = emit_conditional_add (if_info->x, code,
977 XEXP (cond, 0),
978 XEXP (cond, 1),
979 VOIDmode,
980 if_info->b,
981 XEXP (if_info->a, 1),
982 GET_MODE (if_info->x),
983 (code == LTU || code == GEU
984 || code == LEU || code == GTU));
985 if (target)
986 {
987 if (target != if_info->x)
988 noce_emit_move_insn (if_info->x, target);
989
990 seq = end_ifcvt_sequence (if_info);
991 if (!seq)
992 return FALSE;
993
994 emit_insn_before_setloc (seq, if_info->jump,
995 INSN_LOCATOR (if_info->insn_a));
996 return TRUE;
997 }
998 end_sequence ();
999 }
1000
1001 /* If that fails, construct conditional increment or decrement using
1002 setcc. */
1003 if (BRANCH_COST >= 2
1004 && (XEXP (if_info->a, 1) == const1_rtx
1005 || XEXP (if_info->a, 1) == constm1_rtx))
1006 {
1007 start_sequence ();
1008 if (STORE_FLAG_VALUE == INTVAL (XEXP (if_info->a, 1)))
1009 subtract = 0, normalize = 0;
1010 else if (-STORE_FLAG_VALUE == INTVAL (XEXP (if_info->a, 1)))
1011 subtract = 1, normalize = 0;
1012 else
1013 subtract = 0, normalize = INTVAL (XEXP (if_info->a, 1));
1014
1015
1016 target = noce_emit_store_flag (if_info,
1017 gen_reg_rtx (GET_MODE (if_info->x)),
1018 1, normalize);
1019
1020 if (target)
1021 target = expand_simple_binop (GET_MODE (if_info->x),
1022 subtract ? MINUS : PLUS,
1023 if_info->b, target, if_info->x,
1024 0, OPTAB_WIDEN);
1025 if (target)
1026 {
1027 if (target != if_info->x)
1028 noce_emit_move_insn (if_info->x, target);
1029
1030 seq = end_ifcvt_sequence (if_info);
1031 if (!seq)
1032 return FALSE;
1033
1034 emit_insn_before_setloc (seq, if_info->jump,
1035 INSN_LOCATOR (if_info->insn_a));
1036 return TRUE;
1037 }
1038 end_sequence ();
1039 }
1040 }
1041
1042 return FALSE;
1043 }
1044
1045 /* Convert "if (test) x = 0;" to "x &= -(test == 0);" */
1046
1047 static int
1048 noce_try_store_flag_mask (struct noce_if_info *if_info)
1049 {
1050 rtx target, seq;
1051 int reversep;
1052
1053 reversep = 0;
1054 if (! no_new_pseudos
1055 && (BRANCH_COST >= 2
1056 || STORE_FLAG_VALUE == -1)
1057 && ((if_info->a == const0_rtx
1058 && rtx_equal_p (if_info->b, if_info->x))
1059 || ((reversep = (reversed_comparison_code (if_info->cond,
1060 if_info->jump)
1061 != UNKNOWN))
1062 && if_info->b == const0_rtx
1063 && rtx_equal_p (if_info->a, if_info->x))))
1064 {
1065 start_sequence ();
1066 target = noce_emit_store_flag (if_info,
1067 gen_reg_rtx (GET_MODE (if_info->x)),
1068 reversep, -1);
1069 if (target)
1070 target = expand_simple_binop (GET_MODE (if_info->x), AND,
1071 if_info->x,
1072 target, if_info->x, 0,
1073 OPTAB_WIDEN);
1074
1075 if (target)
1076 {
1077 if (target != if_info->x)
1078 noce_emit_move_insn (if_info->x, target);
1079
1080 seq = end_ifcvt_sequence (if_info);
1081 if (!seq)
1082 return FALSE;
1083
1084 emit_insn_before_setloc (seq, if_info->jump,
1085 INSN_LOCATOR (if_info->insn_a));
1086 return TRUE;
1087 }
1088
1089 end_sequence ();
1090 }
1091
1092 return FALSE;
1093 }
1094
1095 /* Helper function for noce_try_cmove and noce_try_cmove_arith. */
1096
1097 static rtx
1098 noce_emit_cmove (struct noce_if_info *if_info, rtx x, enum rtx_code code,
1099 rtx cmp_a, rtx cmp_b, rtx vfalse, rtx vtrue)
1100 {
1101 /* If earliest == jump, try to build the cmove insn directly.
1102 This is helpful when combine has created some complex condition
1103 (like for alpha's cmovlbs) that we can't hope to regenerate
1104 through the normal interface. */
1105
1106 if (if_info->cond_earliest == if_info->jump)
1107 {
1108 rtx tmp;
1109
1110 tmp = gen_rtx_fmt_ee (code, GET_MODE (if_info->cond), cmp_a, cmp_b);
1111 tmp = gen_rtx_IF_THEN_ELSE (GET_MODE (x), tmp, vtrue, vfalse);
1112 tmp = gen_rtx_SET (VOIDmode, x, tmp);
1113
1114 start_sequence ();
1115 tmp = emit_insn (tmp);
1116
1117 if (recog_memoized (tmp) >= 0)
1118 {
1119 tmp = get_insns ();
1120 end_sequence ();
1121 emit_insn (tmp);
1122
1123 return x;
1124 }
1125
1126 end_sequence ();
1127 }
1128
1129 /* Don't even try if the comparison operands are weird. */
1130 if (! general_operand (cmp_a, GET_MODE (cmp_a))
1131 || ! general_operand (cmp_b, GET_MODE (cmp_b)))
1132 return NULL_RTX;
1133
1134 #if HAVE_conditional_move
1135 return emit_conditional_move (x, code, cmp_a, cmp_b, VOIDmode,
1136 vtrue, vfalse, GET_MODE (x),
1137 (code == LTU || code == GEU
1138 || code == LEU || code == GTU));
1139 #else
1140 /* We'll never get here, as noce_process_if_block doesn't call the
1141 functions involved. Ifdef code, however, should be discouraged
1142 because it leads to typos in the code not selected. However,
1143 emit_conditional_move won't exist either. */
1144 return NULL_RTX;
1145 #endif
1146 }
1147
1148 /* Try only simple constants and registers here. More complex cases
1149 are handled in noce_try_cmove_arith after noce_try_store_flag_arith
1150 has had a go at it. */
1151
1152 static int
1153 noce_try_cmove (struct noce_if_info *if_info)
1154 {
1155 enum rtx_code code;
1156 rtx target, seq;
1157
1158 if ((CONSTANT_P (if_info->a) || register_operand (if_info->a, VOIDmode))
1159 && (CONSTANT_P (if_info->b) || register_operand (if_info->b, VOIDmode)))
1160 {
1161 start_sequence ();
1162
1163 code = GET_CODE (if_info->cond);
1164 target = noce_emit_cmove (if_info, if_info->x, code,
1165 XEXP (if_info->cond, 0),
1166 XEXP (if_info->cond, 1),
1167 if_info->a, if_info->b);
1168
1169 if (target)
1170 {
1171 if (target != if_info->x)
1172 noce_emit_move_insn (if_info->x, target);
1173
1174 seq = end_ifcvt_sequence (if_info);
1175 if (!seq)
1176 return FALSE;
1177
1178 emit_insn_before_setloc (seq, if_info->jump,
1179 INSN_LOCATOR (if_info->insn_a));
1180 return TRUE;
1181 }
1182 else
1183 {
1184 end_sequence ();
1185 return FALSE;
1186 }
1187 }
1188
1189 return FALSE;
1190 }
1191
1192 /* Try more complex cases involving conditional_move. */
1193
1194 static int
1195 noce_try_cmove_arith (struct noce_if_info *if_info)
1196 {
1197 rtx a = if_info->a;
1198 rtx b = if_info->b;
1199 rtx x = if_info->x;
1200 rtx orig_a, orig_b;
1201 rtx insn_a, insn_b;
1202 rtx tmp, target;
1203 int is_mem = 0;
1204 int insn_cost;
1205 enum rtx_code code;
1206
1207 /* A conditional move from two memory sources is equivalent to a
1208 conditional on their addresses followed by a load. Don't do this
1209 early because it'll screw alias analysis. Note that we've
1210 already checked for no side effects. */
1211 if (! no_new_pseudos && cse_not_expected
1212 && MEM_P (a) && MEM_P (b)
1213 && BRANCH_COST >= 5)
1214 {
1215 a = XEXP (a, 0);
1216 b = XEXP (b, 0);
1217 x = gen_reg_rtx (Pmode);
1218 is_mem = 1;
1219 }
1220
1221 /* ??? We could handle this if we knew that a load from A or B could
1222 not fault. This is also true if we've already loaded
1223 from the address along the path from ENTRY. */
1224 else if (may_trap_p (a) || may_trap_p (b))
1225 return FALSE;
1226
1227 /* if (test) x = a + b; else x = c - d;
1228 => y = a + b;
1229 x = c - d;
1230 if (test)
1231 x = y;
1232 */
1233
1234 code = GET_CODE (if_info->cond);
1235 insn_a = if_info->insn_a;
1236 insn_b = if_info->insn_b;
1237
1238 /* Total insn_rtx_cost should be smaller than branch cost. Exit
1239 if insn_rtx_cost can't be estimated. */
1240 if (insn_a)
1241 {
1242 insn_cost = insn_rtx_cost (PATTERN (insn_a));
1243 if (insn_cost == 0 || insn_cost > COSTS_N_INSNS (BRANCH_COST))
1244 return FALSE;
1245 }
1246 else
1247 {
1248 insn_cost = 0;
1249 }
1250
1251 if (insn_b) {
1252 insn_cost += insn_rtx_cost (PATTERN (insn_b));
1253 if (insn_cost == 0 || insn_cost > COSTS_N_INSNS (BRANCH_COST))
1254 return FALSE;
1255 }
1256
1257 /* Possibly rearrange operands to make things come out more natural. */
1258 if (reversed_comparison_code (if_info->cond, if_info->jump) != UNKNOWN)
1259 {
1260 int reversep = 0;
1261 if (rtx_equal_p (b, x))
1262 reversep = 1;
1263 else if (general_operand (b, GET_MODE (b)))
1264 reversep = 1;
1265
1266 if (reversep)
1267 {
1268 code = reversed_comparison_code (if_info->cond, if_info->jump);
1269 tmp = a, a = b, b = tmp;
1270 tmp = insn_a, insn_a = insn_b, insn_b = tmp;
1271 }
1272 }
1273
1274 start_sequence ();
1275
1276 orig_a = a;
1277 orig_b = b;
1278
1279 /* If either operand is complex, load it into a register first.
1280 The best way to do this is to copy the original insn. In this
1281 way we preserve any clobbers etc that the insn may have had.
1282 This is of course not possible in the IS_MEM case. */
1283 if (! general_operand (a, GET_MODE (a)))
1284 {
1285 rtx set;
1286
1287 if (no_new_pseudos)
1288 goto end_seq_and_fail;
1289
1290 if (is_mem)
1291 {
1292 tmp = gen_reg_rtx (GET_MODE (a));
1293 tmp = emit_insn (gen_rtx_SET (VOIDmode, tmp, a));
1294 }
1295 else if (! insn_a)
1296 goto end_seq_and_fail;
1297 else
1298 {
1299 a = gen_reg_rtx (GET_MODE (a));
1300 tmp = copy_rtx (insn_a);
1301 set = single_set (tmp);
1302 SET_DEST (set) = a;
1303 tmp = emit_insn (PATTERN (tmp));
1304 }
1305 if (recog_memoized (tmp) < 0)
1306 goto end_seq_and_fail;
1307 }
1308 if (! general_operand (b, GET_MODE (b)))
1309 {
1310 rtx set, last;
1311
1312 if (no_new_pseudos)
1313 goto end_seq_and_fail;
1314
1315 if (is_mem)
1316 {
1317 tmp = gen_reg_rtx (GET_MODE (b));
1318 tmp = gen_rtx_SET (VOIDmode, tmp, b);
1319 }
1320 else if (! insn_b)
1321 goto end_seq_and_fail;
1322 else
1323 {
1324 b = gen_reg_rtx (GET_MODE (b));
1325 tmp = copy_rtx (insn_b);
1326 set = single_set (tmp);
1327 SET_DEST (set) = b;
1328 tmp = PATTERN (tmp);
1329 }
1330
1331 /* If insn to set up A clobbers any registers B depends on, try to
1332 swap insn that sets up A with the one that sets up B. If even
1333 that doesn't help, punt. */
1334 last = get_last_insn ();
1335 if (last && modified_in_p (orig_b, last))
1336 {
1337 tmp = emit_insn_before (tmp, get_insns ());
1338 if (modified_in_p (orig_a, tmp))
1339 goto end_seq_and_fail;
1340 }
1341 else
1342 tmp = emit_insn (tmp);
1343
1344 if (recog_memoized (tmp) < 0)
1345 goto end_seq_and_fail;
1346 }
1347
1348 target = noce_emit_cmove (if_info, x, code, XEXP (if_info->cond, 0),
1349 XEXP (if_info->cond, 1), a, b);
1350
1351 if (! target)
1352 goto end_seq_and_fail;
1353
1354 /* If we're handling a memory for above, emit the load now. */
1355 if (is_mem)
1356 {
1357 tmp = gen_rtx_MEM (GET_MODE (if_info->x), target);
1358
1359 /* Copy over flags as appropriate. */
1360 if (MEM_VOLATILE_P (if_info->a) || MEM_VOLATILE_P (if_info->b))
1361 MEM_VOLATILE_P (tmp) = 1;
1362 if (MEM_IN_STRUCT_P (if_info->a) && MEM_IN_STRUCT_P (if_info->b))
1363 MEM_IN_STRUCT_P (tmp) = 1;
1364 if (MEM_SCALAR_P (if_info->a) && MEM_SCALAR_P (if_info->b))
1365 MEM_SCALAR_P (tmp) = 1;
1366 if (MEM_ALIAS_SET (if_info->a) == MEM_ALIAS_SET (if_info->b))
1367 set_mem_alias_set (tmp, MEM_ALIAS_SET (if_info->a));
1368 set_mem_align (tmp,
1369 MIN (MEM_ALIGN (if_info->a), MEM_ALIGN (if_info->b)));
1370
1371 noce_emit_move_insn (if_info->x, tmp);
1372 }
1373 else if (target != x)
1374 noce_emit_move_insn (x, target);
1375
1376 tmp = end_ifcvt_sequence (if_info);
1377 if (!tmp)
1378 return FALSE;
1379
1380 emit_insn_before_setloc (tmp, if_info->jump, INSN_LOCATOR (if_info->insn_a));
1381 return TRUE;
1382
1383 end_seq_and_fail:
1384 end_sequence ();
1385 return FALSE;
1386 }
1387
1388 /* For most cases, the simplified condition we found is the best
1389 choice, but this is not the case for the min/max/abs transforms.
1390 For these we wish to know that it is A or B in the condition. */
1391
1392 static rtx
1393 noce_get_alt_condition (struct noce_if_info *if_info, rtx target,
1394 rtx *earliest)
1395 {
1396 rtx cond, set, insn;
1397 int reverse;
1398
1399 /* If target is already mentioned in the known condition, return it. */
1400 if (reg_mentioned_p (target, if_info->cond))
1401 {
1402 *earliest = if_info->cond_earliest;
1403 return if_info->cond;
1404 }
1405
1406 set = pc_set (if_info->jump);
1407 cond = XEXP (SET_SRC (set), 0);
1408 reverse
1409 = GET_CODE (XEXP (SET_SRC (set), 2)) == LABEL_REF
1410 && XEXP (XEXP (SET_SRC (set), 2), 0) == JUMP_LABEL (if_info->jump);
1411
1412 /* If we're looking for a constant, try to make the conditional
1413 have that constant in it. There are two reasons why it may
1414 not have the constant we want:
1415
1416 1. GCC may have needed to put the constant in a register, because
1417 the target can't compare directly against that constant. For
1418 this case, we look for a SET immediately before the comparison
1419 that puts a constant in that register.
1420
1421 2. GCC may have canonicalized the conditional, for example
1422 replacing "if x < 4" with "if x <= 3". We can undo that (or
1423 make equivalent types of changes) to get the constants we need
1424 if they're off by one in the right direction. */
1425
1426 if (GET_CODE (target) == CONST_INT)
1427 {
1428 enum rtx_code code = GET_CODE (if_info->cond);
1429 rtx op_a = XEXP (if_info->cond, 0);
1430 rtx op_b = XEXP (if_info->cond, 1);
1431 rtx prev_insn;
1432
1433 /* First, look to see if we put a constant in a register. */
1434 prev_insn = PREV_INSN (if_info->cond_earliest);
1435 if (prev_insn
1436 && INSN_P (prev_insn)
1437 && GET_CODE (PATTERN (prev_insn)) == SET)
1438 {
1439 rtx src = find_reg_equal_equiv_note (prev_insn);
1440 if (!src)
1441 src = SET_SRC (PATTERN (prev_insn));
1442 if (GET_CODE (src) == CONST_INT)
1443 {
1444 if (rtx_equal_p (op_a, SET_DEST (PATTERN (prev_insn))))
1445 op_a = src;
1446 else if (rtx_equal_p (op_b, SET_DEST (PATTERN (prev_insn))))
1447 op_b = src;
1448
1449 if (GET_CODE (op_a) == CONST_INT)
1450 {
1451 rtx tmp = op_a;
1452 op_a = op_b;
1453 op_b = tmp;
1454 code = swap_condition (code);
1455 }
1456 }
1457 }
1458
1459 /* Now, look to see if we can get the right constant by
1460 adjusting the conditional. */
1461 if (GET_CODE (op_b) == CONST_INT)
1462 {
1463 HOST_WIDE_INT desired_val = INTVAL (target);
1464 HOST_WIDE_INT actual_val = INTVAL (op_b);
1465
1466 switch (code)
1467 {
1468 case LT:
1469 if (actual_val == desired_val + 1)
1470 {
1471 code = LE;
1472 op_b = GEN_INT (desired_val);
1473 }
1474 break;
1475 case LE:
1476 if (actual_val == desired_val - 1)
1477 {
1478 code = LT;
1479 op_b = GEN_INT (desired_val);
1480 }
1481 break;
1482 case GT:
1483 if (actual_val == desired_val - 1)
1484 {
1485 code = GE;
1486 op_b = GEN_INT (desired_val);
1487 }
1488 break;
1489 case GE:
1490 if (actual_val == desired_val + 1)
1491 {
1492 code = GT;
1493 op_b = GEN_INT (desired_val);
1494 }
1495 break;
1496 default:
1497 break;
1498 }
1499 }
1500
1501 /* If we made any changes, generate a new conditional that is
1502 equivalent to what we started with, but has the right
1503 constants in it. */
1504 if (code != GET_CODE (if_info->cond)
1505 || op_a != XEXP (if_info->cond, 0)
1506 || op_b != XEXP (if_info->cond, 1))
1507 {
1508 cond = gen_rtx_fmt_ee (code, GET_MODE (cond), op_a, op_b);
1509 *earliest = if_info->cond_earliest;
1510 return cond;
1511 }
1512 }
1513
1514 cond = canonicalize_condition (if_info->jump, cond, reverse,
1515 earliest, target, false, true);
1516 if (! cond || ! reg_mentioned_p (target, cond))
1517 return NULL;
1518
1519 /* We almost certainly searched back to a different place.
1520 Need to re-verify correct lifetimes. */
1521
1522 /* X may not be mentioned in the range (cond_earliest, jump]. */
1523 for (insn = if_info->jump; insn != *earliest; insn = PREV_INSN (insn))
1524 if (INSN_P (insn) && reg_overlap_mentioned_p (if_info->x, PATTERN (insn)))
1525 return NULL;
1526
1527 /* A and B may not be modified in the range [cond_earliest, jump). */
1528 for (insn = *earliest; insn != if_info->jump; insn = NEXT_INSN (insn))
1529 if (INSN_P (insn)
1530 && (modified_in_p (if_info->a, insn)
1531 || modified_in_p (if_info->b, insn)))
1532 return NULL;
1533
1534 return cond;
1535 }
1536
1537 /* Convert "if (a < b) x = a; else x = b;" to "x = min(a, b);", etc. */
1538
1539 static int
1540 noce_try_minmax (struct noce_if_info *if_info)
1541 {
1542 rtx cond, earliest, target, seq;
1543 enum rtx_code code, op;
1544 int unsignedp;
1545
1546 /* ??? Can't guarantee that expand_binop won't create pseudos. */
1547 if (no_new_pseudos)
1548 return FALSE;
1549
1550 /* ??? Reject modes with NaNs or signed zeros since we don't know how
1551 they will be resolved with an SMIN/SMAX. It wouldn't be too hard
1552 to get the target to tell us... */
1553 if (HONOR_SIGNED_ZEROS (GET_MODE (if_info->x))
1554 || HONOR_NANS (GET_MODE (if_info->x)))
1555 return FALSE;
1556
1557 cond = noce_get_alt_condition (if_info, if_info->a, &earliest);
1558 if (!cond)
1559 return FALSE;
1560
1561 /* Verify the condition is of the form we expect, and canonicalize
1562 the comparison code. */
1563 code = GET_CODE (cond);
1564 if (rtx_equal_p (XEXP (cond, 0), if_info->a))
1565 {
1566 if (! rtx_equal_p (XEXP (cond, 1), if_info->b))
1567 return FALSE;
1568 }
1569 else if (rtx_equal_p (XEXP (cond, 1), if_info->a))
1570 {
1571 if (! rtx_equal_p (XEXP (cond, 0), if_info->b))
1572 return FALSE;
1573 code = swap_condition (code);
1574 }
1575 else
1576 return FALSE;
1577
1578 /* Determine what sort of operation this is. Note that the code is for
1579 a taken branch, so the code->operation mapping appears backwards. */
1580 switch (code)
1581 {
1582 case LT:
1583 case LE:
1584 case UNLT:
1585 case UNLE:
1586 op = SMAX;
1587 unsignedp = 0;
1588 break;
1589 case GT:
1590 case GE:
1591 case UNGT:
1592 case UNGE:
1593 op = SMIN;
1594 unsignedp = 0;
1595 break;
1596 case LTU:
1597 case LEU:
1598 op = UMAX;
1599 unsignedp = 1;
1600 break;
1601 case GTU:
1602 case GEU:
1603 op = UMIN;
1604 unsignedp = 1;
1605 break;
1606 default:
1607 return FALSE;
1608 }
1609
1610 start_sequence ();
1611
1612 target = expand_simple_binop (GET_MODE (if_info->x), op,
1613 if_info->a, if_info->b,
1614 if_info->x, unsignedp, OPTAB_WIDEN);
1615 if (! target)
1616 {
1617 end_sequence ();
1618 return FALSE;
1619 }
1620 if (target != if_info->x)
1621 noce_emit_move_insn (if_info->x, target);
1622
1623 seq = end_ifcvt_sequence (if_info);
1624 if (!seq)
1625 return FALSE;
1626
1627 emit_insn_before_setloc (seq, if_info->jump, INSN_LOCATOR (if_info->insn_a));
1628 if_info->cond = cond;
1629 if_info->cond_earliest = earliest;
1630
1631 return TRUE;
1632 }
1633
1634 /* Convert "if (a < 0) x = -a; else x = a;" to "x = abs(a);", etc. */
1635
1636 static int
1637 noce_try_abs (struct noce_if_info *if_info)
1638 {
1639 rtx cond, earliest, target, seq, a, b, c;
1640 int negate;
1641
1642 /* ??? Can't guarantee that expand_binop won't create pseudos. */
1643 if (no_new_pseudos)
1644 return FALSE;
1645
1646 /* Recognize A and B as constituting an ABS or NABS. */
1647 a = if_info->a;
1648 b = if_info->b;
1649 if (GET_CODE (a) == NEG && rtx_equal_p (XEXP (a, 0), b))
1650 negate = 0;
1651 else if (GET_CODE (b) == NEG && rtx_equal_p (XEXP (b, 0), a))
1652 {
1653 c = a; a = b; b = c;
1654 negate = 1;
1655 }
1656 else
1657 return FALSE;
1658
1659 cond = noce_get_alt_condition (if_info, b, &earliest);
1660 if (!cond)
1661 return FALSE;
1662
1663 /* Verify the condition is of the form we expect. */
1664 if (rtx_equal_p (XEXP (cond, 0), b))
1665 c = XEXP (cond, 1);
1666 else if (rtx_equal_p (XEXP (cond, 1), b))
1667 c = XEXP (cond, 0);
1668 else
1669 return FALSE;
1670
1671 /* Verify that C is zero. Search backward through the block for
1672 a REG_EQUAL note if necessary. */
1673 if (REG_P (c))
1674 {
1675 rtx insn, note = NULL;
1676 for (insn = earliest;
1677 insn != BB_HEAD (if_info->test_bb);
1678 insn = PREV_INSN (insn))
1679 if (INSN_P (insn)
1680 && ((note = find_reg_note (insn, REG_EQUAL, c))
1681 || (note = find_reg_note (insn, REG_EQUIV, c))))
1682 break;
1683 if (! note)
1684 return FALSE;
1685 c = XEXP (note, 0);
1686 }
1687 if (MEM_P (c)
1688 && GET_CODE (XEXP (c, 0)) == SYMBOL_REF
1689 && CONSTANT_POOL_ADDRESS_P (XEXP (c, 0)))
1690 c = get_pool_constant (XEXP (c, 0));
1691
1692 /* Work around funny ideas get_condition has wrt canonicalization.
1693 Note that these rtx constants are known to be CONST_INT, and
1694 therefore imply integer comparisons. */
1695 if (c == constm1_rtx && GET_CODE (cond) == GT)
1696 ;
1697 else if (c == const1_rtx && GET_CODE (cond) == LT)
1698 ;
1699 else if (c != CONST0_RTX (GET_MODE (b)))
1700 return FALSE;
1701
1702 /* Determine what sort of operation this is. */
1703 switch (GET_CODE (cond))
1704 {
1705 case LT:
1706 case LE:
1707 case UNLT:
1708 case UNLE:
1709 negate = !negate;
1710 break;
1711 case GT:
1712 case GE:
1713 case UNGT:
1714 case UNGE:
1715 break;
1716 default:
1717 return FALSE;
1718 }
1719
1720 start_sequence ();
1721
1722 target = expand_abs_nojump (GET_MODE (if_info->x), b, if_info->x, 1);
1723
1724 /* ??? It's a quandary whether cmove would be better here, especially
1725 for integers. Perhaps combine will clean things up. */
1726 if (target && negate)
1727 target = expand_simple_unop (GET_MODE (target), NEG, target, if_info->x, 0);
1728
1729 if (! target)
1730 {
1731 end_sequence ();
1732 return FALSE;
1733 }
1734
1735 if (target != if_info->x)
1736 noce_emit_move_insn (if_info->x, target);
1737
1738 seq = end_ifcvt_sequence (if_info);
1739 if (!seq)
1740 return FALSE;
1741
1742 emit_insn_before_setloc (seq, if_info->jump, INSN_LOCATOR (if_info->insn_a));
1743 if_info->cond = cond;
1744 if_info->cond_earliest = earliest;
1745
1746 return TRUE;
1747 }
1748
1749 /* Convert "if (m < 0) x = b; else x = 0;" to "x = (m >> C) & b;". */
1750
1751 static int
1752 noce_try_sign_mask (struct noce_if_info *if_info)
1753 {
1754 rtx cond, t, m, c, seq;
1755 enum machine_mode mode;
1756 enum rtx_code code;
1757
1758 if (no_new_pseudos)
1759 return FALSE;
1760
1761 cond = if_info->cond;
1762 code = GET_CODE (cond);
1763 m = XEXP (cond, 0);
1764 c = XEXP (cond, 1);
1765
1766 t = NULL_RTX;
1767 if (if_info->a == const0_rtx)
1768 {
1769 if ((code == LT && c == const0_rtx)
1770 || (code == LE && c == constm1_rtx))
1771 t = if_info->b;
1772 }
1773 else if (if_info->b == const0_rtx)
1774 {
1775 if ((code == GE && c == const0_rtx)
1776 || (code == GT && c == constm1_rtx))
1777 t = if_info->a;
1778 }
1779
1780 if (! t || side_effects_p (t))
1781 return FALSE;
1782
1783 /* We currently don't handle different modes. */
1784 mode = GET_MODE (t);
1785 if (GET_MODE (m) != mode)
1786 return FALSE;
1787
1788 /* This is only profitable if T is cheap, or T is unconditionally
1789 executed/evaluated in the original insn sequence. */
1790 if (rtx_cost (t, SET) >= COSTS_N_INSNS (2)
1791 && (!if_info->b_unconditional
1792 || t != if_info->b))
1793 return FALSE;
1794
1795 start_sequence ();
1796 /* Use emit_store_flag to generate "m < 0 ? -1 : 0" instead of expanding
1797 "(signed) m >> 31" directly. This benefits targets with specialized
1798 insns to obtain the signmask, but still uses ashr_optab otherwise. */
1799 m = emit_store_flag (gen_reg_rtx (mode), LT, m, const0_rtx, mode, 0, -1);
1800 t = m ? expand_binop (mode, and_optab, m, t, NULL_RTX, 0, OPTAB_DIRECT)
1801 : NULL_RTX;
1802
1803 if (!t)
1804 {
1805 end_sequence ();
1806 return FALSE;
1807 }
1808
1809 noce_emit_move_insn (if_info->x, t);
1810
1811 seq = end_ifcvt_sequence (if_info);
1812 if (!seq)
1813 return FALSE;
1814
1815 emit_insn_before_setloc (seq, if_info->jump, INSN_LOCATOR (if_info->insn_a));
1816 return TRUE;
1817 }
1818
1819
1820 /* Similar to get_condition, only the resulting condition must be
1821 valid at JUMP, instead of at EARLIEST. */
1822
1823 static rtx
1824 noce_get_condition (rtx jump, rtx *earliest)
1825 {
1826 rtx cond, set, tmp;
1827 bool reverse;
1828
1829 if (! any_condjump_p (jump))
1830 return NULL_RTX;
1831
1832 set = pc_set (jump);
1833
1834 /* If this branches to JUMP_LABEL when the condition is false,
1835 reverse the condition. */
1836 reverse = (GET_CODE (XEXP (SET_SRC (set), 2)) == LABEL_REF
1837 && XEXP (XEXP (SET_SRC (set), 2), 0) == JUMP_LABEL (jump));
1838
1839 /* If the condition variable is a register and is MODE_INT, accept it. */
1840
1841 cond = XEXP (SET_SRC (set), 0);
1842 tmp = XEXP (cond, 0);
1843 if (REG_P (tmp) && GET_MODE_CLASS (GET_MODE (tmp)) == MODE_INT)
1844 {
1845 *earliest = jump;
1846
1847 if (reverse)
1848 cond = gen_rtx_fmt_ee (reverse_condition (GET_CODE (cond)),
1849 GET_MODE (cond), tmp, XEXP (cond, 1));
1850 return cond;
1851 }
1852
1853 /* Otherwise, fall back on canonicalize_condition to do the dirty
1854 work of manipulating MODE_CC values and COMPARE rtx codes. */
1855 return canonicalize_condition (jump, cond, reverse, earliest,
1856 NULL_RTX, false, true);
1857 }
1858
1859 /* Return true if OP is ok for if-then-else processing. */
1860
1861 static int
1862 noce_operand_ok (rtx op)
1863 {
1864 /* We special-case memories, so handle any of them with
1865 no address side effects. */
1866 if (MEM_P (op))
1867 return ! side_effects_p (XEXP (op, 0));
1868
1869 if (side_effects_p (op))
1870 return FALSE;
1871
1872 return ! may_trap_p (op);
1873 }
1874
1875 /* Given a simple IF-THEN or IF-THEN-ELSE block, attempt to convert it
1876 without using conditional execution. Return TRUE if we were
1877 successful at converting the block. */
1878
1879 static int
1880 noce_process_if_block (struct ce_if_block * ce_info)
1881 {
1882 basic_block test_bb = ce_info->test_bb; /* test block */
1883 basic_block then_bb = ce_info->then_bb; /* THEN */
1884 basic_block else_bb = ce_info->else_bb; /* ELSE or NULL */
1885 struct noce_if_info if_info;
1886 rtx insn_a, insn_b;
1887 rtx set_a, set_b;
1888 rtx orig_x, x, a, b;
1889 rtx jump, cond;
1890
1891 /* We're looking for patterns of the form
1892
1893 (1) if (...) x = a; else x = b;
1894 (2) x = b; if (...) x = a;
1895 (3) if (...) x = a; // as if with an initial x = x.
1896
1897 The later patterns require jumps to be more expensive.
1898
1899 ??? For future expansion, look for multiple X in such patterns. */
1900
1901 /* If test is comprised of && or || elements, don't handle it unless it is
1902 the special case of && elements without an ELSE block. */
1903 if (ce_info->num_multiple_test_blocks)
1904 {
1905 if (else_bb || ! ce_info->and_and_p)
1906 return FALSE;
1907
1908 ce_info->test_bb = test_bb = ce_info->last_test_bb;
1909 ce_info->num_multiple_test_blocks = 0;
1910 ce_info->num_and_and_blocks = 0;
1911 ce_info->num_or_or_blocks = 0;
1912 }
1913
1914 /* If this is not a standard conditional jump, we can't parse it. */
1915 jump = BB_END (test_bb);
1916 cond = noce_get_condition (jump, &if_info.cond_earliest);
1917 if (! cond)
1918 return FALSE;
1919
1920 /* If the conditional jump is more than just a conditional
1921 jump, then we can not do if-conversion on this block. */
1922 if (! onlyjump_p (jump))
1923 return FALSE;
1924
1925 /* We must be comparing objects whose modes imply the size. */
1926 if (GET_MODE (XEXP (cond, 0)) == BLKmode)
1927 return FALSE;
1928
1929 /* Look for one of the potential sets. */
1930 insn_a = first_active_insn (then_bb);
1931 if (! insn_a
1932 || insn_a != last_active_insn (then_bb, FALSE)
1933 || (set_a = single_set (insn_a)) == NULL_RTX)
1934 return FALSE;
1935
1936 x = SET_DEST (set_a);
1937 a = SET_SRC (set_a);
1938
1939 /* Look for the other potential set. Make sure we've got equivalent
1940 destinations. */
1941 /* ??? This is overconservative. Storing to two different mems is
1942 as easy as conditionally computing the address. Storing to a
1943 single mem merely requires a scratch memory to use as one of the
1944 destination addresses; often the memory immediately below the
1945 stack pointer is available for this. */
1946 set_b = NULL_RTX;
1947 if (else_bb)
1948 {
1949 insn_b = first_active_insn (else_bb);
1950 if (! insn_b
1951 || insn_b != last_active_insn (else_bb, FALSE)
1952 || (set_b = single_set (insn_b)) == NULL_RTX
1953 || ! rtx_equal_p (x, SET_DEST (set_b)))
1954 return FALSE;
1955 }
1956 else
1957 {
1958 insn_b = prev_nonnote_insn (if_info.cond_earliest);
1959 /* We're going to be moving the evaluation of B down from above
1960 COND_EARLIEST to JUMP. Make sure the relevant data is still
1961 intact. */
1962 if (! insn_b
1963 || !NONJUMP_INSN_P (insn_b)
1964 || (set_b = single_set (insn_b)) == NULL_RTX
1965 || ! rtx_equal_p (x, SET_DEST (set_b))
1966 || reg_overlap_mentioned_p (x, SET_SRC (set_b))
1967 || modified_between_p (SET_SRC (set_b),
1968 PREV_INSN (if_info.cond_earliest), jump)
1969 /* Likewise with X. In particular this can happen when
1970 noce_get_condition looks farther back in the instruction
1971 stream than one might expect. */
1972 || reg_overlap_mentioned_p (x, cond)
1973 || reg_overlap_mentioned_p (x, a)
1974 || modified_between_p (x, PREV_INSN (if_info.cond_earliest), jump))
1975 insn_b = set_b = NULL_RTX;
1976 }
1977
1978 /* If x has side effects then only the if-then-else form is safe to
1979 convert. But even in that case we would need to restore any notes
1980 (such as REG_INC) at then end. That can be tricky if
1981 noce_emit_move_insn expands to more than one insn, so disable the
1982 optimization entirely for now if there are side effects. */
1983 if (side_effects_p (x))
1984 return FALSE;
1985
1986 b = (set_b ? SET_SRC (set_b) : x);
1987
1988 /* Only operate on register destinations, and even then avoid extending
1989 the lifetime of hard registers on small register class machines. */
1990 orig_x = x;
1991 if (!REG_P (x)
1992 || (SMALL_REGISTER_CLASSES
1993 && REGNO (x) < FIRST_PSEUDO_REGISTER))
1994 {
1995 if (no_new_pseudos || GET_MODE (x) == BLKmode)
1996 return FALSE;
1997 x = gen_reg_rtx (GET_MODE (GET_CODE (x) == STRICT_LOW_PART
1998 ? XEXP (x, 0) : x));
1999 }
2000
2001 /* Don't operate on sources that may trap or are volatile. */
2002 if (! noce_operand_ok (a) || ! noce_operand_ok (b))
2003 return FALSE;
2004
2005 /* Set up the info block for our subroutines. */
2006 if_info.test_bb = test_bb;
2007 if_info.cond = cond;
2008 if_info.jump = jump;
2009 if_info.insn_a = insn_a;
2010 if_info.insn_b = insn_b;
2011 if_info.x = x;
2012 if_info.a = a;
2013 if_info.b = b;
2014 if_info.b_unconditional = else_bb == 0;
2015
2016 /* Try optimizations in some approximation of a useful order. */
2017 /* ??? Should first look to see if X is live incoming at all. If it
2018 isn't, we don't need anything but an unconditional set. */
2019
2020 /* Look and see if A and B are really the same. Avoid creating silly
2021 cmove constructs that no one will fix up later. */
2022 if (rtx_equal_p (a, b))
2023 {
2024 /* If we have an INSN_B, we don't have to create any new rtl. Just
2025 move the instruction that we already have. If we don't have an
2026 INSN_B, that means that A == X, and we've got a noop move. In
2027 that case don't do anything and let the code below delete INSN_A. */
2028 if (insn_b && else_bb)
2029 {
2030 rtx note;
2031
2032 if (else_bb && insn_b == BB_END (else_bb))
2033 BB_END (else_bb) = PREV_INSN (insn_b);
2034 reorder_insns (insn_b, insn_b, PREV_INSN (jump));
2035
2036 /* If there was a REG_EQUAL note, delete it since it may have been
2037 true due to this insn being after a jump. */
2038 if ((note = find_reg_note (insn_b, REG_EQUAL, NULL_RTX)) != 0)
2039 remove_note (insn_b, note);
2040
2041 insn_b = NULL_RTX;
2042 }
2043 /* If we have "x = b; if (...) x = a;", and x has side-effects, then
2044 x must be executed twice. */
2045 else if (insn_b && side_effects_p (orig_x))
2046 return FALSE;
2047
2048 x = orig_x;
2049 goto success;
2050 }
2051
2052 /* Disallow the "if (...) x = a;" form (with an implicit "else x = x;")
2053 for most optimizations if writing to x may trap, i.e. it's a memory
2054 other than a static var or a stack slot. */
2055 if (! set_b
2056 && MEM_P (orig_x)
2057 && ! MEM_NOTRAP_P (orig_x)
2058 && rtx_addr_can_trap_p (XEXP (orig_x, 0)))
2059 {
2060 if (HAVE_conditional_move)
2061 {
2062 if (noce_try_cmove (&if_info))
2063 goto success;
2064 if (! HAVE_conditional_execution
2065 && noce_try_cmove_arith (&if_info))
2066 goto success;
2067 }
2068 return FALSE;
2069 }
2070
2071 if (noce_try_move (&if_info))
2072 goto success;
2073 if (noce_try_store_flag (&if_info))
2074 goto success;
2075 if (noce_try_minmax (&if_info))
2076 goto success;
2077 if (noce_try_abs (&if_info))
2078 goto success;
2079 if (HAVE_conditional_move
2080 && noce_try_cmove (&if_info))
2081 goto success;
2082 if (! HAVE_conditional_execution)
2083 {
2084 if (noce_try_store_flag_constants (&if_info))
2085 goto success;
2086 if (noce_try_addcc (&if_info))
2087 goto success;
2088 if (noce_try_store_flag_mask (&if_info))
2089 goto success;
2090 if (HAVE_conditional_move
2091 && noce_try_cmove_arith (&if_info))
2092 goto success;
2093 if (noce_try_sign_mask (&if_info))
2094 goto success;
2095 }
2096
2097 return FALSE;
2098
2099 success:
2100 /* The original sets may now be killed. */
2101 delete_insn (insn_a);
2102
2103 /* Several special cases here: First, we may have reused insn_b above,
2104 in which case insn_b is now NULL. Second, we want to delete insn_b
2105 if it came from the ELSE block, because follows the now correct
2106 write that appears in the TEST block. However, if we got insn_b from
2107 the TEST block, it may in fact be loading data needed for the comparison.
2108 We'll let life_analysis remove the insn if it's really dead. */
2109 if (insn_b && else_bb)
2110 delete_insn (insn_b);
2111
2112 /* The new insns will have been inserted immediately before the jump. We
2113 should be able to remove the jump with impunity, but the condition itself
2114 may have been modified by gcse to be shared across basic blocks. */
2115 delete_insn (jump);
2116
2117 /* If we used a temporary, fix it up now. */
2118 if (orig_x != x)
2119 {
2120 start_sequence ();
2121 noce_emit_move_insn (orig_x, x);
2122 insn_b = get_insns ();
2123 set_used_flags (orig_x);
2124 unshare_all_rtl_in_chain (insn_b);
2125 end_sequence ();
2126
2127 emit_insn_after_setloc (insn_b, BB_END (test_bb), INSN_LOCATOR (insn_a));
2128 }
2129
2130 /* Merge the blocks! */
2131 merge_if_block (ce_info);
2132
2133 return TRUE;
2134 }
2135 \f
2136 /* Attempt to convert an IF-THEN or IF-THEN-ELSE block into
2137 straight line code. Return true if successful. */
2138
2139 static int
2140 process_if_block (struct ce_if_block * ce_info)
2141 {
2142 if (! reload_completed
2143 && noce_process_if_block (ce_info))
2144 return TRUE;
2145
2146 if (HAVE_conditional_execution && reload_completed)
2147 {
2148 /* If we have && and || tests, try to first handle combining the && and
2149 || tests into the conditional code, and if that fails, go back and
2150 handle it without the && and ||, which at present handles the && case
2151 if there was no ELSE block. */
2152 if (cond_exec_process_if_block (ce_info, TRUE))
2153 return TRUE;
2154
2155 if (ce_info->num_multiple_test_blocks)
2156 {
2157 cancel_changes (0);
2158
2159 if (cond_exec_process_if_block (ce_info, FALSE))
2160 return TRUE;
2161 }
2162 }
2163
2164 return FALSE;
2165 }
2166
2167 /* Merge the blocks and mark for local life update. */
2168
2169 static void
2170 merge_if_block (struct ce_if_block * ce_info)
2171 {
2172 basic_block test_bb = ce_info->test_bb; /* last test block */
2173 basic_block then_bb = ce_info->then_bb; /* THEN */
2174 basic_block else_bb = ce_info->else_bb; /* ELSE or NULL */
2175 basic_block join_bb = ce_info->join_bb; /* join block */
2176 basic_block combo_bb;
2177
2178 /* All block merging is done into the lower block numbers. */
2179
2180 combo_bb = test_bb;
2181
2182 /* Merge any basic blocks to handle && and || subtests. Each of
2183 the blocks are on the fallthru path from the predecessor block. */
2184 if (ce_info->num_multiple_test_blocks > 0)
2185 {
2186 basic_block bb = test_bb;
2187 basic_block last_test_bb = ce_info->last_test_bb;
2188 basic_block fallthru = block_fallthru (bb);
2189
2190 do
2191 {
2192 bb = fallthru;
2193 fallthru = block_fallthru (bb);
2194 merge_blocks (combo_bb, bb);
2195 num_true_changes++;
2196 }
2197 while (bb != last_test_bb);
2198 }
2199
2200 /* Merge TEST block into THEN block. Normally the THEN block won't have a
2201 label, but it might if there were || tests. That label's count should be
2202 zero, and it normally should be removed. */
2203
2204 if (then_bb)
2205 {
2206 if (combo_bb->global_live_at_end)
2207 COPY_REG_SET (combo_bb->global_live_at_end,
2208 then_bb->global_live_at_end);
2209 merge_blocks (combo_bb, then_bb);
2210 num_true_changes++;
2211 }
2212
2213 /* The ELSE block, if it existed, had a label. That label count
2214 will almost always be zero, but odd things can happen when labels
2215 get their addresses taken. */
2216 if (else_bb)
2217 {
2218 merge_blocks (combo_bb, else_bb);
2219 num_true_changes++;
2220 }
2221
2222 /* If there was no join block reported, that means it was not adjacent
2223 to the others, and so we cannot merge them. */
2224
2225 if (! join_bb)
2226 {
2227 rtx last = BB_END (combo_bb);
2228
2229 /* The outgoing edge for the current COMBO block should already
2230 be correct. Verify this. */
2231 if (EDGE_COUNT (combo_bb->succs) == 0)
2232 {
2233 if (find_reg_note (last, REG_NORETURN, NULL))
2234 ;
2235 else if (NONJUMP_INSN_P (last)
2236 && GET_CODE (PATTERN (last)) == TRAP_IF
2237 && TRAP_CONDITION (PATTERN (last)) == const_true_rtx)
2238 ;
2239 else
2240 abort ();
2241 }
2242
2243 /* There should still be something at the end of the THEN or ELSE
2244 blocks taking us to our final destination. */
2245 else if (JUMP_P (last))
2246 ;
2247 else if (EDGE_SUCC (combo_bb, 0)->dest == EXIT_BLOCK_PTR
2248 && CALL_P (last)
2249 && SIBLING_CALL_P (last))
2250 ;
2251 else if ((EDGE_SUCC (combo_bb, 0)->flags & EDGE_EH)
2252 && can_throw_internal (last))
2253 ;
2254 else
2255 abort ();
2256 }
2257
2258 /* The JOIN block may have had quite a number of other predecessors too.
2259 Since we've already merged the TEST, THEN and ELSE blocks, we should
2260 have only one remaining edge from our if-then-else diamond. If there
2261 is more than one remaining edge, it must come from elsewhere. There
2262 may be zero incoming edges if the THEN block didn't actually join
2263 back up (as with a call to abort). */
2264 else if (EDGE_COUNT (join_bb->preds) < 2
2265 && join_bb != EXIT_BLOCK_PTR)
2266 {
2267 /* We can merge the JOIN. */
2268 if (combo_bb->global_live_at_end)
2269 COPY_REG_SET (combo_bb->global_live_at_end,
2270 join_bb->global_live_at_end);
2271
2272 merge_blocks (combo_bb, join_bb);
2273 num_true_changes++;
2274 }
2275 else
2276 {
2277 /* We cannot merge the JOIN. */
2278
2279 /* The outgoing edge for the current COMBO block should already
2280 be correct. Verify this. */
2281 gcc_assert (single_succ_p (combo_bb)
2282 && single_succ (combo_bb) == join_bb);
2283
2284 /* Remove the jump and cruft from the end of the COMBO block. */
2285 if (join_bb != EXIT_BLOCK_PTR)
2286 tidy_fallthru_edge (single_succ_edge (combo_bb));
2287 }
2288
2289 num_updated_if_blocks++;
2290 }
2291 \f
2292 /* Find a block ending in a simple IF condition and try to transform it
2293 in some way. When converting a multi-block condition, put the new code
2294 in the first such block and delete the rest. Return a pointer to this
2295 first block if some transformation was done. Return NULL otherwise. */
2296
2297 static basic_block
2298 find_if_header (basic_block test_bb, int pass)
2299 {
2300 ce_if_block_t ce_info;
2301 edge then_edge;
2302 edge else_edge;
2303
2304 /* The kind of block we're looking for has exactly two successors. */
2305 if (EDGE_COUNT (test_bb->succs) != 2)
2306 return NULL;
2307
2308 then_edge = EDGE_SUCC (test_bb, 0);
2309 else_edge = EDGE_SUCC (test_bb, 1);
2310
2311 /* Neither edge should be abnormal. */
2312 if ((then_edge->flags & EDGE_COMPLEX)
2313 || (else_edge->flags & EDGE_COMPLEX))
2314 return NULL;
2315
2316 /* Nor exit the loop. */
2317 if ((then_edge->flags & EDGE_LOOP_EXIT)
2318 || (else_edge->flags & EDGE_LOOP_EXIT))
2319 return NULL;
2320
2321 /* The THEN edge is canonically the one that falls through. */
2322 if (then_edge->flags & EDGE_FALLTHRU)
2323 ;
2324 else if (else_edge->flags & EDGE_FALLTHRU)
2325 {
2326 edge e = else_edge;
2327 else_edge = then_edge;
2328 then_edge = e;
2329 }
2330 else
2331 /* Otherwise this must be a multiway branch of some sort. */
2332 return NULL;
2333
2334 memset (&ce_info, '\0', sizeof (ce_info));
2335 ce_info.test_bb = test_bb;
2336 ce_info.then_bb = then_edge->dest;
2337 ce_info.else_bb = else_edge->dest;
2338 ce_info.pass = pass;
2339
2340 #ifdef IFCVT_INIT_EXTRA_FIELDS
2341 IFCVT_INIT_EXTRA_FIELDS (&ce_info);
2342 #endif
2343
2344 if (find_if_block (&ce_info))
2345 goto success;
2346
2347 if (HAVE_trap && HAVE_conditional_trap
2348 && find_cond_trap (test_bb, then_edge, else_edge))
2349 goto success;
2350
2351 if (dom_computed[CDI_POST_DOMINATORS] >= DOM_NO_FAST_QUERY
2352 && (! HAVE_conditional_execution || reload_completed))
2353 {
2354 if (find_if_case_1 (test_bb, then_edge, else_edge))
2355 goto success;
2356 if (find_if_case_2 (test_bb, then_edge, else_edge))
2357 goto success;
2358 }
2359
2360 return NULL;
2361
2362 success:
2363 if (dump_file)
2364 fprintf (dump_file, "Conversion succeeded on pass %d.\n", pass);
2365 return ce_info.test_bb;
2366 }
2367
2368 /* Return true if a block has two edges, one of which falls through to the next
2369 block, and the other jumps to a specific block, so that we can tell if the
2370 block is part of an && test or an || test. Returns either -1 or the number
2371 of non-note, non-jump, non-USE/CLOBBER insns in the block. */
2372
2373 static int
2374 block_jumps_and_fallthru_p (basic_block cur_bb, basic_block target_bb)
2375 {
2376 edge cur_edge;
2377 int fallthru_p = FALSE;
2378 int jump_p = FALSE;
2379 rtx insn;
2380 rtx end;
2381 int n_insns = 0;
2382 edge_iterator ei;
2383
2384 if (!cur_bb || !target_bb)
2385 return -1;
2386
2387 /* If no edges, obviously it doesn't jump or fallthru. */
2388 if (EDGE_COUNT (cur_bb->succs) == 0)
2389 return FALSE;
2390
2391 FOR_EACH_EDGE (cur_edge, ei, cur_bb->succs)
2392 {
2393 if (cur_edge->flags & EDGE_COMPLEX)
2394 /* Anything complex isn't what we want. */
2395 return -1;
2396
2397 else if (cur_edge->flags & EDGE_FALLTHRU)
2398 fallthru_p = TRUE;
2399
2400 else if (cur_edge->dest == target_bb)
2401 jump_p = TRUE;
2402
2403 else
2404 return -1;
2405 }
2406
2407 if ((jump_p & fallthru_p) == 0)
2408 return -1;
2409
2410 /* Don't allow calls in the block, since this is used to group && and ||
2411 together for conditional execution support. ??? we should support
2412 conditional execution support across calls for IA-64 some day, but
2413 for now it makes the code simpler. */
2414 end = BB_END (cur_bb);
2415 insn = BB_HEAD (cur_bb);
2416
2417 while (insn != NULL_RTX)
2418 {
2419 if (CALL_P (insn))
2420 return -1;
2421
2422 if (INSN_P (insn)
2423 && !JUMP_P (insn)
2424 && GET_CODE (PATTERN (insn)) != USE
2425 && GET_CODE (PATTERN (insn)) != CLOBBER)
2426 n_insns++;
2427
2428 if (insn == end)
2429 break;
2430
2431 insn = NEXT_INSN (insn);
2432 }
2433
2434 return n_insns;
2435 }
2436
2437 /* Determine if a given basic block heads a simple IF-THEN or IF-THEN-ELSE
2438 block. If so, we'll try to convert the insns to not require the branch.
2439 Return TRUE if we were successful at converting the block. */
2440
2441 static int
2442 find_if_block (struct ce_if_block * ce_info)
2443 {
2444 basic_block test_bb = ce_info->test_bb;
2445 basic_block then_bb = ce_info->then_bb;
2446 basic_block else_bb = ce_info->else_bb;
2447 basic_block join_bb = NULL_BLOCK;
2448 edge cur_edge;
2449 basic_block next;
2450 edge_iterator ei;
2451
2452 ce_info->last_test_bb = test_bb;
2453
2454 /* Discover if any fall through predecessors of the current test basic block
2455 were && tests (which jump to the else block) or || tests (which jump to
2456 the then block). */
2457 if (HAVE_conditional_execution && reload_completed
2458 && single_pred_p (test_bb)
2459 && single_pred_edge (test_bb)->flags == EDGE_FALLTHRU)
2460 {
2461 basic_block bb = single_pred (test_bb);
2462 basic_block target_bb;
2463 int max_insns = MAX_CONDITIONAL_EXECUTE;
2464 int n_insns;
2465
2466 /* Determine if the preceding block is an && or || block. */
2467 if ((n_insns = block_jumps_and_fallthru_p (bb, else_bb)) >= 0)
2468 {
2469 ce_info->and_and_p = TRUE;
2470 target_bb = else_bb;
2471 }
2472 else if ((n_insns = block_jumps_and_fallthru_p (bb, then_bb)) >= 0)
2473 {
2474 ce_info->and_and_p = FALSE;
2475 target_bb = then_bb;
2476 }
2477 else
2478 target_bb = NULL_BLOCK;
2479
2480 if (target_bb && n_insns <= max_insns)
2481 {
2482 int total_insns = 0;
2483 int blocks = 0;
2484
2485 ce_info->last_test_bb = test_bb;
2486
2487 /* Found at least one && or || block, look for more. */
2488 do
2489 {
2490 ce_info->test_bb = test_bb = bb;
2491 total_insns += n_insns;
2492 blocks++;
2493
2494 if (!single_pred_p (bb))
2495 break;
2496
2497 bb = single_pred (bb);
2498 n_insns = block_jumps_and_fallthru_p (bb, target_bb);
2499 }
2500 while (n_insns >= 0 && (total_insns + n_insns) <= max_insns);
2501
2502 ce_info->num_multiple_test_blocks = blocks;
2503 ce_info->num_multiple_test_insns = total_insns;
2504
2505 if (ce_info->and_and_p)
2506 ce_info->num_and_and_blocks = blocks;
2507 else
2508 ce_info->num_or_or_blocks = blocks;
2509 }
2510 }
2511
2512 /* The THEN block of an IF-THEN combo must have exactly one predecessor,
2513 other than any || blocks which jump to the THEN block. */
2514 if ((EDGE_COUNT (then_bb->preds) - ce_info->num_or_or_blocks) != 1)
2515 return FALSE;
2516
2517 /* The edges of the THEN and ELSE blocks cannot have complex edges. */
2518 FOR_EACH_EDGE (cur_edge, ei, then_bb->preds)
2519 {
2520 if (cur_edge->flags & EDGE_COMPLEX)
2521 return FALSE;
2522 }
2523
2524 FOR_EACH_EDGE (cur_edge, ei, else_bb->preds)
2525 {
2526 if (cur_edge->flags & EDGE_COMPLEX)
2527 return FALSE;
2528 }
2529
2530 /* The THEN block of an IF-THEN combo must have zero or one successors. */
2531 if (EDGE_COUNT (then_bb->succs) > 0
2532 && (!single_succ_p (then_bb)
2533 || (single_succ_edge (then_bb)->flags & EDGE_COMPLEX)
2534 || (flow2_completed && tablejump_p (BB_END (then_bb), NULL, NULL))))
2535 return FALSE;
2536
2537 /* If the THEN block has no successors, conditional execution can still
2538 make a conditional call. Don't do this unless the ELSE block has
2539 only one incoming edge -- the CFG manipulation is too ugly otherwise.
2540 Check for the last insn of the THEN block being an indirect jump, which
2541 is listed as not having any successors, but confuses the rest of the CE
2542 code processing. ??? we should fix this in the future. */
2543 if (EDGE_COUNT (then_bb->succs) == 0)
2544 {
2545 if (single_pred_p (else_bb))
2546 {
2547 rtx last_insn = BB_END (then_bb);
2548
2549 while (last_insn
2550 && NOTE_P (last_insn)
2551 && last_insn != BB_HEAD (then_bb))
2552 last_insn = PREV_INSN (last_insn);
2553
2554 if (last_insn
2555 && JUMP_P (last_insn)
2556 && ! simplejump_p (last_insn))
2557 return FALSE;
2558
2559 join_bb = else_bb;
2560 else_bb = NULL_BLOCK;
2561 }
2562 else
2563 return FALSE;
2564 }
2565
2566 /* If the THEN block's successor is the other edge out of the TEST block,
2567 then we have an IF-THEN combo without an ELSE. */
2568 else if (single_succ (then_bb) == else_bb)
2569 {
2570 join_bb = else_bb;
2571 else_bb = NULL_BLOCK;
2572 }
2573
2574 /* If the THEN and ELSE block meet in a subsequent block, and the ELSE
2575 has exactly one predecessor and one successor, and the outgoing edge
2576 is not complex, then we have an IF-THEN-ELSE combo. */
2577 else if (single_succ_p (else_bb)
2578 && single_succ (then_bb) == single_succ (else_bb)
2579 && single_pred_p (else_bb)
2580 && ! (single_succ_edge (else_bb)->flags & EDGE_COMPLEX)
2581 && ! (flow2_completed && tablejump_p (BB_END (else_bb), NULL, NULL)))
2582 join_bb = single_succ (else_bb);
2583
2584 /* Otherwise it is not an IF-THEN or IF-THEN-ELSE combination. */
2585 else
2586 return FALSE;
2587
2588 num_possible_if_blocks++;
2589
2590 if (dump_file)
2591 {
2592 fprintf (dump_file,
2593 "\nIF-THEN%s block found, pass %d, start block %d "
2594 "[insn %d], then %d [%d]",
2595 (else_bb) ? "-ELSE" : "",
2596 ce_info->pass,
2597 test_bb->index,
2598 BB_HEAD (test_bb) ? (int)INSN_UID (BB_HEAD (test_bb)) : -1,
2599 then_bb->index,
2600 BB_HEAD (then_bb) ? (int)INSN_UID (BB_HEAD (then_bb)) : -1);
2601
2602 if (else_bb)
2603 fprintf (dump_file, ", else %d [%d]",
2604 else_bb->index,
2605 BB_HEAD (else_bb) ? (int)INSN_UID (BB_HEAD (else_bb)) : -1);
2606
2607 fprintf (dump_file, ", join %d [%d]",
2608 join_bb->index,
2609 BB_HEAD (join_bb) ? (int)INSN_UID (BB_HEAD (join_bb)) : -1);
2610
2611 if (ce_info->num_multiple_test_blocks > 0)
2612 fprintf (dump_file, ", %d %s block%s last test %d [%d]",
2613 ce_info->num_multiple_test_blocks,
2614 (ce_info->and_and_p) ? "&&" : "||",
2615 (ce_info->num_multiple_test_blocks == 1) ? "" : "s",
2616 ce_info->last_test_bb->index,
2617 ((BB_HEAD (ce_info->last_test_bb))
2618 ? (int)INSN_UID (BB_HEAD (ce_info->last_test_bb))
2619 : -1));
2620
2621 fputc ('\n', dump_file);
2622 }
2623
2624 /* Make sure IF, THEN, and ELSE, blocks are adjacent. Actually, we get the
2625 first condition for free, since we've already asserted that there's a
2626 fallthru edge from IF to THEN. Likewise for the && and || blocks, since
2627 we checked the FALLTHRU flag, those are already adjacent to the last IF
2628 block. */
2629 /* ??? As an enhancement, move the ELSE block. Have to deal with
2630 BLOCK notes, if by no other means than aborting the merge if they
2631 exist. Sticky enough I don't want to think about it now. */
2632 next = then_bb;
2633 if (else_bb && (next = next->next_bb) != else_bb)
2634 return FALSE;
2635 if ((next = next->next_bb) != join_bb && join_bb != EXIT_BLOCK_PTR)
2636 {
2637 if (else_bb)
2638 join_bb = NULL;
2639 else
2640 return FALSE;
2641 }
2642
2643 /* Do the real work. */
2644 ce_info->else_bb = else_bb;
2645 ce_info->join_bb = join_bb;
2646
2647 return process_if_block (ce_info);
2648 }
2649
2650 /* Convert a branch over a trap, or a branch
2651 to a trap, into a conditional trap. */
2652
2653 static int
2654 find_cond_trap (basic_block test_bb, edge then_edge, edge else_edge)
2655 {
2656 basic_block then_bb = then_edge->dest;
2657 basic_block else_bb = else_edge->dest;
2658 basic_block other_bb, trap_bb;
2659 rtx trap, jump, cond, cond_earliest, seq;
2660 enum rtx_code code;
2661
2662 /* Locate the block with the trap instruction. */
2663 /* ??? While we look for no successors, we really ought to allow
2664 EH successors. Need to fix merge_if_block for that to work. */
2665 if ((trap = block_has_only_trap (then_bb)) != NULL)
2666 trap_bb = then_bb, other_bb = else_bb;
2667 else if ((trap = block_has_only_trap (else_bb)) != NULL)
2668 trap_bb = else_bb, other_bb = then_bb;
2669 else
2670 return FALSE;
2671
2672 if (dump_file)
2673 {
2674 fprintf (dump_file, "\nTRAP-IF block found, start %d, trap %d\n",
2675 test_bb->index, trap_bb->index);
2676 }
2677
2678 /* If this is not a standard conditional jump, we can't parse it. */
2679 jump = BB_END (test_bb);
2680 cond = noce_get_condition (jump, &cond_earliest);
2681 if (! cond)
2682 return FALSE;
2683
2684 /* If the conditional jump is more than just a conditional jump, then
2685 we can not do if-conversion on this block. */
2686 if (! onlyjump_p (jump))
2687 return FALSE;
2688
2689 /* We must be comparing objects whose modes imply the size. */
2690 if (GET_MODE (XEXP (cond, 0)) == BLKmode)
2691 return FALSE;
2692
2693 /* Reverse the comparison code, if necessary. */
2694 code = GET_CODE (cond);
2695 if (then_bb == trap_bb)
2696 {
2697 code = reversed_comparison_code (cond, jump);
2698 if (code == UNKNOWN)
2699 return FALSE;
2700 }
2701
2702 /* Attempt to generate the conditional trap. */
2703 seq = gen_cond_trap (code, XEXP (cond, 0),
2704 XEXP (cond, 1),
2705 TRAP_CODE (PATTERN (trap)));
2706 if (seq == NULL)
2707 return FALSE;
2708
2709 num_true_changes++;
2710
2711 /* Emit the new insns before cond_earliest. */
2712 emit_insn_before_setloc (seq, cond_earliest, INSN_LOCATOR (trap));
2713
2714 /* Delete the trap block if possible. */
2715 remove_edge (trap_bb == then_bb ? then_edge : else_edge);
2716 if (EDGE_COUNT (trap_bb->preds) == 0)
2717 delete_basic_block (trap_bb);
2718
2719 /* If the non-trap block and the test are now adjacent, merge them.
2720 Otherwise we must insert a direct branch. */
2721 if (test_bb->next_bb == other_bb)
2722 {
2723 struct ce_if_block new_ce_info;
2724 delete_insn (jump);
2725 memset (&new_ce_info, '\0', sizeof (new_ce_info));
2726 new_ce_info.test_bb = test_bb;
2727 new_ce_info.then_bb = NULL;
2728 new_ce_info.else_bb = NULL;
2729 new_ce_info.join_bb = other_bb;
2730 merge_if_block (&new_ce_info);
2731 }
2732 else
2733 {
2734 rtx lab, newjump;
2735
2736 lab = JUMP_LABEL (jump);
2737 newjump = emit_jump_insn_after (gen_jump (lab), jump);
2738 LABEL_NUSES (lab) += 1;
2739 JUMP_LABEL (newjump) = lab;
2740 emit_barrier_after (newjump);
2741
2742 delete_insn (jump);
2743 }
2744
2745 return TRUE;
2746 }
2747
2748 /* Subroutine of find_cond_trap: if BB contains only a trap insn,
2749 return it. */
2750
2751 static rtx
2752 block_has_only_trap (basic_block bb)
2753 {
2754 rtx trap;
2755
2756 /* We're not the exit block. */
2757 if (bb == EXIT_BLOCK_PTR)
2758 return NULL_RTX;
2759
2760 /* The block must have no successors. */
2761 if (EDGE_COUNT (bb->succs) > 0)
2762 return NULL_RTX;
2763
2764 /* The only instruction in the THEN block must be the trap. */
2765 trap = first_active_insn (bb);
2766 if (! (trap == BB_END (bb)
2767 && GET_CODE (PATTERN (trap)) == TRAP_IF
2768 && TRAP_CONDITION (PATTERN (trap)) == const_true_rtx))
2769 return NULL_RTX;
2770
2771 return trap;
2772 }
2773
2774 /* Look for IF-THEN-ELSE cases in which one of THEN or ELSE is
2775 transformable, but not necessarily the other. There need be no
2776 JOIN block.
2777
2778 Return TRUE if we were successful at converting the block.
2779
2780 Cases we'd like to look at:
2781
2782 (1)
2783 if (test) goto over; // x not live
2784 x = a;
2785 goto label;
2786 over:
2787
2788 becomes
2789
2790 x = a;
2791 if (! test) goto label;
2792
2793 (2)
2794 if (test) goto E; // x not live
2795 x = big();
2796 goto L;
2797 E:
2798 x = b;
2799 goto M;
2800
2801 becomes
2802
2803 x = b;
2804 if (test) goto M;
2805 x = big();
2806 goto L;
2807
2808 (3) // This one's really only interesting for targets that can do
2809 // multiway branching, e.g. IA-64 BBB bundles. For other targets
2810 // it results in multiple branches on a cache line, which often
2811 // does not sit well with predictors.
2812
2813 if (test1) goto E; // predicted not taken
2814 x = a;
2815 if (test2) goto F;
2816 ...
2817 E:
2818 x = b;
2819 J:
2820
2821 becomes
2822
2823 x = a;
2824 if (test1) goto E;
2825 if (test2) goto F;
2826
2827 Notes:
2828
2829 (A) Don't do (2) if the branch is predicted against the block we're
2830 eliminating. Do it anyway if we can eliminate a branch; this requires
2831 that the sole successor of the eliminated block postdominate the other
2832 side of the if.
2833
2834 (B) With CE, on (3) we can steal from both sides of the if, creating
2835
2836 if (test1) x = a;
2837 if (!test1) x = b;
2838 if (test1) goto J;
2839 if (test2) goto F;
2840 ...
2841 J:
2842
2843 Again, this is most useful if J postdominates.
2844
2845 (C) CE substitutes for helpful life information.
2846
2847 (D) These heuristics need a lot of work. */
2848
2849 /* Tests for case 1 above. */
2850
2851 static int
2852 find_if_case_1 (basic_block test_bb, edge then_edge, edge else_edge)
2853 {
2854 basic_block then_bb = then_edge->dest;
2855 basic_block else_bb = else_edge->dest, new_bb;
2856 int then_bb_index;
2857
2858 /* If we are partitioning hot/cold basic blocks, we don't want to
2859 mess up unconditional or indirect jumps that cross between hot
2860 and cold sections.
2861
2862 Basic block partitioning may result in some jumps that appear to
2863 be optimizable (or blocks that appear to be mergeable), but which really
2864 must be left untouched (they are required to make it safely across
2865 partition boundaries). See the comments at the top of
2866 bb-reorder.c:partition_hot_cold_basic_blocks for complete details. */
2867
2868 if (flag_reorder_blocks_and_partition
2869 && ((BB_END (then_bb)
2870 && find_reg_note (BB_END (then_bb), REG_CROSSING_JUMP, NULL_RTX))
2871 || (BB_END (else_bb)
2872 && find_reg_note (BB_END (else_bb), REG_CROSSING_JUMP,
2873 NULL_RTX))))
2874 return FALSE;
2875
2876 /* THEN has one successor. */
2877 if (!single_succ_p (then_bb))
2878 return FALSE;
2879
2880 /* THEN does not fall through, but is not strange either. */
2881 if (single_succ_edge (then_bb)->flags & (EDGE_COMPLEX | EDGE_FALLTHRU))
2882 return FALSE;
2883
2884 /* THEN has one predecessor. */
2885 if (!single_pred_p (then_bb))
2886 return FALSE;
2887
2888 /* THEN must do something. */
2889 if (forwarder_block_p (then_bb))
2890 return FALSE;
2891
2892 num_possible_if_blocks++;
2893 if (dump_file)
2894 fprintf (dump_file,
2895 "\nIF-CASE-1 found, start %d, then %d\n",
2896 test_bb->index, then_bb->index);
2897
2898 /* THEN is small. */
2899 if (! cheap_bb_rtx_cost_p (then_bb, COSTS_N_INSNS (BRANCH_COST)))
2900 return FALSE;
2901
2902 /* Registers set are dead, or are predicable. */
2903 if (! dead_or_predicable (test_bb, then_bb, else_bb,
2904 single_succ (then_bb), 1))
2905 return FALSE;
2906
2907 /* Conversion went ok, including moving the insns and fixing up the
2908 jump. Adjust the CFG to match. */
2909
2910 bitmap_ior (test_bb->global_live_at_end,
2911 else_bb->global_live_at_start,
2912 then_bb->global_live_at_end);
2913
2914
2915 /* We can avoid creating a new basic block if then_bb is immediately
2916 followed by else_bb, i.e. deleting then_bb allows test_bb to fall
2917 thru to else_bb. */
2918
2919 if (then_bb->next_bb == else_bb
2920 && then_bb->prev_bb == test_bb
2921 && else_bb != EXIT_BLOCK_PTR)
2922 {
2923 redirect_edge_succ (FALLTHRU_EDGE (test_bb), else_bb);
2924 new_bb = 0;
2925 }
2926 else
2927 new_bb = redirect_edge_and_branch_force (FALLTHRU_EDGE (test_bb),
2928 else_bb);
2929
2930 then_bb_index = then_bb->index;
2931 delete_basic_block (then_bb);
2932
2933 /* Make rest of code believe that the newly created block is the THEN_BB
2934 block we removed. */
2935 if (new_bb)
2936 {
2937 new_bb->index = then_bb_index;
2938 BASIC_BLOCK (then_bb_index) = new_bb;
2939 /* Since the fallthru edge was redirected from test_bb to new_bb,
2940 we need to ensure that new_bb is in the same partition as
2941 test bb (you can not fall through across section boundaries). */
2942 BB_COPY_PARTITION (new_bb, test_bb);
2943 }
2944 /* We've possibly created jump to next insn, cleanup_cfg will solve that
2945 later. */
2946
2947 num_true_changes++;
2948 num_updated_if_blocks++;
2949
2950 return TRUE;
2951 }
2952
2953 /* Test for case 2 above. */
2954
2955 static int
2956 find_if_case_2 (basic_block test_bb, edge then_edge, edge else_edge)
2957 {
2958 basic_block then_bb = then_edge->dest;
2959 basic_block else_bb = else_edge->dest;
2960 edge else_succ;
2961 rtx note;
2962
2963 /* If we are partitioning hot/cold basic blocks, we don't want to
2964 mess up unconditional or indirect jumps that cross between hot
2965 and cold sections.
2966
2967 Basic block partitioning may result in some jumps that appear to
2968 be optimizable (or blocks that appear to be mergeable), but which really
2969 must be left untouched (they are required to make it safely across
2970 partition boundaries). See the comments at the top of
2971 bb-reorder.c:partition_hot_cold_basic_blocks for complete details. */
2972
2973 if (flag_reorder_blocks_and_partition
2974 && ((BB_END (then_bb)
2975 && find_reg_note (BB_END (then_bb), REG_CROSSING_JUMP, NULL_RTX))
2976 || (BB_END (else_bb)
2977 && find_reg_note (BB_END (else_bb), REG_CROSSING_JUMP,
2978 NULL_RTX))))
2979 return FALSE;
2980
2981 /* ELSE has one successor. */
2982 if (!single_succ_p (else_bb))
2983 return FALSE;
2984 else
2985 else_succ = single_succ_edge (else_bb);
2986
2987 /* ELSE outgoing edge is not complex. */
2988 if (else_succ->flags & EDGE_COMPLEX)
2989 return FALSE;
2990
2991 /* ELSE has one predecessor. */
2992 if (!single_pred_p (else_bb))
2993 return FALSE;
2994
2995 /* THEN is not EXIT. */
2996 if (then_bb->index < 0)
2997 return FALSE;
2998
2999 /* ELSE is predicted or SUCC(ELSE) postdominates THEN. */
3000 note = find_reg_note (BB_END (test_bb), REG_BR_PROB, NULL_RTX);
3001 if (note && INTVAL (XEXP (note, 0)) >= REG_BR_PROB_BASE / 2)
3002 ;
3003 else if (else_succ->dest->index < 0
3004 || dominated_by_p (CDI_POST_DOMINATORS, then_bb,
3005 else_succ->dest))
3006 ;
3007 else
3008 return FALSE;
3009
3010 num_possible_if_blocks++;
3011 if (dump_file)
3012 fprintf (dump_file,
3013 "\nIF-CASE-2 found, start %d, else %d\n",
3014 test_bb->index, else_bb->index);
3015
3016 /* ELSE is small. */
3017 if (! cheap_bb_rtx_cost_p (else_bb, COSTS_N_INSNS (BRANCH_COST)))
3018 return FALSE;
3019
3020 /* Registers set are dead, or are predicable. */
3021 if (! dead_or_predicable (test_bb, else_bb, then_bb, else_succ->dest, 0))
3022 return FALSE;
3023
3024 /* Conversion went ok, including moving the insns and fixing up the
3025 jump. Adjust the CFG to match. */
3026
3027 bitmap_ior (test_bb->global_live_at_end,
3028 then_bb->global_live_at_start,
3029 else_bb->global_live_at_end);
3030
3031 delete_basic_block (else_bb);
3032
3033 num_true_changes++;
3034 num_updated_if_blocks++;
3035
3036 /* ??? We may now fallthru from one of THEN's successors into a join
3037 block. Rerun cleanup_cfg? Examine things manually? Wait? */
3038
3039 return TRUE;
3040 }
3041
3042 /* A subroutine of dead_or_predicable called through for_each_rtx.
3043 Return 1 if a memory is found. */
3044
3045 static int
3046 find_memory (rtx *px, void *data ATTRIBUTE_UNUSED)
3047 {
3048 return MEM_P (*px);
3049 }
3050
3051 /* Used by the code above to perform the actual rtl transformations.
3052 Return TRUE if successful.
3053
3054 TEST_BB is the block containing the conditional branch. MERGE_BB
3055 is the block containing the code to manipulate. NEW_DEST is the
3056 label TEST_BB should be branching to after the conversion.
3057 REVERSEP is true if the sense of the branch should be reversed. */
3058
3059 static int
3060 dead_or_predicable (basic_block test_bb, basic_block merge_bb,
3061 basic_block other_bb, basic_block new_dest, int reversep)
3062 {
3063 rtx head, end, jump, earliest = NULL_RTX, old_dest, new_label = NULL_RTX;
3064
3065 jump = BB_END (test_bb);
3066
3067 /* Find the extent of the real code in the merge block. */
3068 head = BB_HEAD (merge_bb);
3069 end = BB_END (merge_bb);
3070
3071 if (LABEL_P (head))
3072 head = NEXT_INSN (head);
3073 if (NOTE_P (head))
3074 {
3075 if (head == end)
3076 {
3077 head = end = NULL_RTX;
3078 goto no_body;
3079 }
3080 head = NEXT_INSN (head);
3081 }
3082
3083 if (JUMP_P (end))
3084 {
3085 if (head == end)
3086 {
3087 head = end = NULL_RTX;
3088 goto no_body;
3089 }
3090 end = PREV_INSN (end);
3091 }
3092
3093 /* Disable handling dead code by conditional execution if the machine needs
3094 to do anything funny with the tests, etc. */
3095 #ifndef IFCVT_MODIFY_TESTS
3096 if (HAVE_conditional_execution)
3097 {
3098 /* In the conditional execution case, we have things easy. We know
3099 the condition is reversible. We don't have to check life info
3100 because we're going to conditionally execute the code anyway.
3101 All that's left is making sure the insns involved can actually
3102 be predicated. */
3103
3104 rtx cond, prob_val;
3105
3106 cond = cond_exec_get_condition (jump);
3107 if (! cond)
3108 return FALSE;
3109
3110 prob_val = find_reg_note (jump, REG_BR_PROB, NULL_RTX);
3111 if (prob_val)
3112 prob_val = XEXP (prob_val, 0);
3113
3114 if (reversep)
3115 {
3116 enum rtx_code rev = reversed_comparison_code (cond, jump);
3117 if (rev == UNKNOWN)
3118 return FALSE;
3119 cond = gen_rtx_fmt_ee (rev, GET_MODE (cond), XEXP (cond, 0),
3120 XEXP (cond, 1));
3121 if (prob_val)
3122 prob_val = GEN_INT (REG_BR_PROB_BASE - INTVAL (prob_val));
3123 }
3124
3125 if (! cond_exec_process_insns ((ce_if_block_t *)0, head, end, cond,
3126 prob_val, 0))
3127 goto cancel;
3128
3129 earliest = jump;
3130 }
3131 else
3132 #endif
3133 {
3134 /* In the non-conditional execution case, we have to verify that there
3135 are no trapping operations, no calls, no references to memory, and
3136 that any registers modified are dead at the branch site. */
3137
3138 rtx insn, cond, prev;
3139 regset merge_set, tmp, test_live, test_set;
3140 struct propagate_block_info *pbi;
3141 unsigned i, fail = 0;
3142 bitmap_iterator bi;
3143
3144 /* Check for no calls or trapping operations. */
3145 for (insn = head; ; insn = NEXT_INSN (insn))
3146 {
3147 if (CALL_P (insn))
3148 return FALSE;
3149 if (INSN_P (insn))
3150 {
3151 if (may_trap_p (PATTERN (insn)))
3152 return FALSE;
3153
3154 /* ??? Even non-trapping memories such as stack frame
3155 references must be avoided. For stores, we collect
3156 no lifetime info; for reads, we'd have to assert
3157 true_dependence false against every store in the
3158 TEST range. */
3159 if (for_each_rtx (&PATTERN (insn), find_memory, NULL))
3160 return FALSE;
3161 }
3162 if (insn == end)
3163 break;
3164 }
3165
3166 if (! any_condjump_p (jump))
3167 return FALSE;
3168
3169 /* Find the extent of the conditional. */
3170 cond = noce_get_condition (jump, &earliest);
3171 if (! cond)
3172 return FALSE;
3173
3174 /* Collect:
3175 MERGE_SET = set of registers set in MERGE_BB
3176 TEST_LIVE = set of registers live at EARLIEST
3177 TEST_SET = set of registers set between EARLIEST and the
3178 end of the block. */
3179
3180 tmp = ALLOC_REG_SET (&reg_obstack);
3181 merge_set = ALLOC_REG_SET (&reg_obstack);
3182 test_live = ALLOC_REG_SET (&reg_obstack);
3183 test_set = ALLOC_REG_SET (&reg_obstack);
3184
3185 /* ??? bb->local_set is only valid during calculate_global_regs_live,
3186 so we must recompute usage for MERGE_BB. Not so bad, I suppose,
3187 since we've already asserted that MERGE_BB is small. */
3188 propagate_block (merge_bb, tmp, merge_set, merge_set, 0);
3189
3190 /* For small register class machines, don't lengthen lifetimes of
3191 hard registers before reload. */
3192 if (SMALL_REGISTER_CLASSES && ! reload_completed)
3193 {
3194 EXECUTE_IF_SET_IN_BITMAP (merge_set, 0, i, bi)
3195 {
3196 if (i < FIRST_PSEUDO_REGISTER
3197 && ! fixed_regs[i]
3198 && ! global_regs[i])
3199 fail = 1;
3200 }
3201 }
3202
3203 /* For TEST, we're interested in a range of insns, not a whole block.
3204 Moreover, we're interested in the insns live from OTHER_BB. */
3205
3206 COPY_REG_SET (test_live, other_bb->global_live_at_start);
3207 pbi = init_propagate_block_info (test_bb, test_live, test_set, test_set,
3208 0);
3209
3210 for (insn = jump; ; insn = prev)
3211 {
3212 prev = propagate_one_insn (pbi, insn);
3213 if (insn == earliest)
3214 break;
3215 }
3216
3217 free_propagate_block_info (pbi);
3218
3219 /* We can perform the transformation if
3220 MERGE_SET & (TEST_SET | TEST_LIVE)
3221 and
3222 TEST_SET & merge_bb->global_live_at_start
3223 are empty. */
3224
3225 if (bitmap_intersect_p (test_set, merge_set)
3226 || bitmap_intersect_p (test_live, merge_set)
3227 || bitmap_intersect_p (test_set, merge_bb->global_live_at_start))
3228 fail = 1;
3229
3230 FREE_REG_SET (tmp);
3231 FREE_REG_SET (merge_set);
3232 FREE_REG_SET (test_live);
3233 FREE_REG_SET (test_set);
3234
3235 if (fail)
3236 return FALSE;
3237 }
3238
3239 no_body:
3240 /* We don't want to use normal invert_jump or redirect_jump because
3241 we don't want to delete_insn called. Also, we want to do our own
3242 change group management. */
3243
3244 old_dest = JUMP_LABEL (jump);
3245 if (other_bb != new_dest)
3246 {
3247 new_label = block_label (new_dest);
3248 if (reversep
3249 ? ! invert_jump_1 (jump, new_label)
3250 : ! redirect_jump_1 (jump, new_label))
3251 goto cancel;
3252 }
3253
3254 if (! apply_change_group ())
3255 return FALSE;
3256
3257 if (other_bb != new_dest)
3258 {
3259 redirect_jump_2 (jump, old_dest, new_label, -1, reversep);
3260
3261 redirect_edge_succ (BRANCH_EDGE (test_bb), new_dest);
3262 if (reversep)
3263 {
3264 gcov_type count, probability;
3265 count = BRANCH_EDGE (test_bb)->count;
3266 BRANCH_EDGE (test_bb)->count = FALLTHRU_EDGE (test_bb)->count;
3267 FALLTHRU_EDGE (test_bb)->count = count;
3268 probability = BRANCH_EDGE (test_bb)->probability;
3269 BRANCH_EDGE (test_bb)->probability
3270 = FALLTHRU_EDGE (test_bb)->probability;
3271 FALLTHRU_EDGE (test_bb)->probability = probability;
3272 update_br_prob_note (test_bb);
3273 }
3274 }
3275
3276 /* Move the insns out of MERGE_BB to before the branch. */
3277 if (head != NULL)
3278 {
3279 if (end == BB_END (merge_bb))
3280 BB_END (merge_bb) = PREV_INSN (head);
3281
3282 if (squeeze_notes (&head, &end))
3283 return TRUE;
3284
3285 reorder_insns (head, end, PREV_INSN (earliest));
3286 }
3287
3288 /* Remove the jump and edge if we can. */
3289 if (other_bb == new_dest)
3290 {
3291 delete_insn (jump);
3292 remove_edge (BRANCH_EDGE (test_bb));
3293 /* ??? Can't merge blocks here, as then_bb is still in use.
3294 At minimum, the merge will get done just before bb-reorder. */
3295 }
3296
3297 return TRUE;
3298
3299 cancel:
3300 cancel_changes (0);
3301 return FALSE;
3302 }
3303 \f
3304 /* Main entry point for all if-conversion. */
3305
3306 void
3307 if_convert (int x_life_data_ok)
3308 {
3309 basic_block bb;
3310 int pass;
3311
3312 num_possible_if_blocks = 0;
3313 num_updated_if_blocks = 0;
3314 num_true_changes = 0;
3315 life_data_ok = (x_life_data_ok != 0);
3316
3317 if ((! targetm.cannot_modify_jumps_p ())
3318 && (!flag_reorder_blocks_and_partition || !no_new_pseudos
3319 || !targetm.have_named_sections))
3320 {
3321 struct loops loops;
3322
3323 flow_loops_find (&loops);
3324 mark_loop_exit_edges (&loops);
3325 flow_loops_free (&loops);
3326 free_dominance_info (CDI_DOMINATORS);
3327 }
3328
3329 /* Compute postdominators if we think we'll use them. */
3330 if (HAVE_conditional_execution || life_data_ok)
3331 calculate_dominance_info (CDI_POST_DOMINATORS);
3332
3333 if (life_data_ok)
3334 clear_bb_flags ();
3335
3336 /* Go through each of the basic blocks looking for things to convert. If we
3337 have conditional execution, we make multiple passes to allow us to handle
3338 IF-THEN{-ELSE} blocks within other IF-THEN{-ELSE} blocks. */
3339 pass = 0;
3340 do
3341 {
3342 cond_exec_changed_p = FALSE;
3343 pass++;
3344
3345 #ifdef IFCVT_MULTIPLE_DUMPS
3346 if (dump_file && pass > 1)
3347 fprintf (dump_file, "\n\n========== Pass %d ==========\n", pass);
3348 #endif
3349
3350 FOR_EACH_BB (bb)
3351 {
3352 basic_block new_bb;
3353 while ((new_bb = find_if_header (bb, pass)))
3354 bb = new_bb;
3355 }
3356
3357 #ifdef IFCVT_MULTIPLE_DUMPS
3358 if (dump_file && cond_exec_changed_p)
3359 print_rtl_with_bb (dump_file, get_insns ());
3360 #endif
3361 }
3362 while (cond_exec_changed_p);
3363
3364 #ifdef IFCVT_MULTIPLE_DUMPS
3365 if (dump_file)
3366 fprintf (dump_file, "\n\n========== no more changes\n");
3367 #endif
3368
3369 free_dominance_info (CDI_POST_DOMINATORS);
3370
3371 if (dump_file)
3372 fflush (dump_file);
3373
3374 clear_aux_for_blocks ();
3375
3376 /* Rebuild life info for basic blocks that require it. */
3377 if (num_true_changes && life_data_ok)
3378 {
3379 /* If we allocated new pseudos, we must resize the array for sched1. */
3380 if (max_regno < max_reg_num ())
3381 {
3382 max_regno = max_reg_num ();
3383 allocate_reg_info (max_regno, FALSE, FALSE);
3384 }
3385 update_life_info_in_dirty_blocks (UPDATE_LIFE_GLOBAL_RM_NOTES,
3386 PROP_DEATH_NOTES | PROP_SCAN_DEAD_CODE
3387 | PROP_KILL_DEAD_CODE);
3388 }
3389
3390 /* Write the final stats. */
3391 if (dump_file && num_possible_if_blocks > 0)
3392 {
3393 fprintf (dump_file,
3394 "\n%d possible IF blocks searched.\n",
3395 num_possible_if_blocks);
3396 fprintf (dump_file,
3397 "%d IF blocks converted.\n",
3398 num_updated_if_blocks);
3399 fprintf (dump_file,
3400 "%d true changes made.\n\n\n",
3401 num_true_changes);
3402 }
3403
3404 #ifdef ENABLE_CHECKING
3405 verify_flow_info ();
3406 #endif
3407 }