]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/ifcvt.c
tm.texi (TARGET_ADDR_SPACE_POINTER_MODE): Document.
[thirdparty/gcc.git] / gcc / ifcvt.c
1 /* If-conversion support.
2 Copyright (C) 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008
3 Free Software Foundation, Inc.
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it
8 under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3, or (at your option)
10 any later version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT
13 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
14 or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
15 License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
20
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "tm.h"
25
26 #include "rtl.h"
27 #include "regs.h"
28 #include "function.h"
29 #include "flags.h"
30 #include "insn-config.h"
31 #include "recog.h"
32 #include "except.h"
33 #include "hard-reg-set.h"
34 #include "basic-block.h"
35 #include "expr.h"
36 #include "real.h"
37 #include "output.h"
38 #include "optabs.h"
39 #include "toplev.h"
40 #include "tm_p.h"
41 #include "cfgloop.h"
42 #include "target.h"
43 #include "timevar.h"
44 #include "tree-pass.h"
45 #include "df.h"
46 #include "vec.h"
47 #include "vecprim.h"
48 #include "dbgcnt.h"
49
50 #ifndef HAVE_conditional_execution
51 #define HAVE_conditional_execution 0
52 #endif
53 #ifndef HAVE_conditional_move
54 #define HAVE_conditional_move 0
55 #endif
56 #ifndef HAVE_incscc
57 #define HAVE_incscc 0
58 #endif
59 #ifndef HAVE_decscc
60 #define HAVE_decscc 0
61 #endif
62 #ifndef HAVE_trap
63 #define HAVE_trap 0
64 #endif
65
66 #ifndef MAX_CONDITIONAL_EXECUTE
67 #define MAX_CONDITIONAL_EXECUTE \
68 (BRANCH_COST (optimize_function_for_speed_p (cfun), false) \
69 + 1)
70 #endif
71
72 #define IFCVT_MULTIPLE_DUMPS 1
73
74 #define NULL_BLOCK ((basic_block) NULL)
75
76 /* # of IF-THEN or IF-THEN-ELSE blocks we looked at */
77 static int num_possible_if_blocks;
78
79 /* # of IF-THEN or IF-THEN-ELSE blocks were converted to conditional
80 execution. */
81 static int num_updated_if_blocks;
82
83 /* # of changes made. */
84 static int num_true_changes;
85
86 /* Whether conditional execution changes were made. */
87 static int cond_exec_changed_p;
88
89 /* Forward references. */
90 static int count_bb_insns (const_basic_block);
91 static bool cheap_bb_rtx_cost_p (const_basic_block, int);
92 static rtx first_active_insn (basic_block);
93 static rtx last_active_insn (basic_block, int);
94 static basic_block block_fallthru (basic_block);
95 static int cond_exec_process_insns (ce_if_block_t *, rtx, rtx, rtx, rtx, int);
96 static rtx cond_exec_get_condition (rtx);
97 static rtx noce_get_condition (rtx, rtx *, bool);
98 static int noce_operand_ok (const_rtx);
99 static void merge_if_block (ce_if_block_t *);
100 static int find_cond_trap (basic_block, edge, edge);
101 static basic_block find_if_header (basic_block, int);
102 static int block_jumps_and_fallthru_p (basic_block, basic_block);
103 static int noce_find_if_block (basic_block, edge, edge, int);
104 static int cond_exec_find_if_block (ce_if_block_t *);
105 static int find_if_case_1 (basic_block, edge, edge);
106 static int find_if_case_2 (basic_block, edge, edge);
107 static int find_memory (rtx *, void *);
108 static int dead_or_predicable (basic_block, basic_block, basic_block,
109 basic_block, int);
110 static void noce_emit_move_insn (rtx, rtx);
111 static rtx block_has_only_trap (basic_block);
112 \f
113 /* Count the number of non-jump active insns in BB. */
114
115 static int
116 count_bb_insns (const_basic_block bb)
117 {
118 int count = 0;
119 rtx insn = BB_HEAD (bb);
120
121 while (1)
122 {
123 if (CALL_P (insn) || NONJUMP_INSN_P (insn))
124 count++;
125
126 if (insn == BB_END (bb))
127 break;
128 insn = NEXT_INSN (insn);
129 }
130
131 return count;
132 }
133
134 /* Determine whether the total insn_rtx_cost on non-jump insns in
135 basic block BB is less than MAX_COST. This function returns
136 false if the cost of any instruction could not be estimated. */
137
138 static bool
139 cheap_bb_rtx_cost_p (const_basic_block bb, int max_cost)
140 {
141 int count = 0;
142 rtx insn = BB_HEAD (bb);
143 bool speed = optimize_bb_for_speed_p (bb);
144
145 while (1)
146 {
147 if (NONJUMP_INSN_P (insn))
148 {
149 int cost = insn_rtx_cost (PATTERN (insn), speed);
150 if (cost == 0)
151 return false;
152
153 /* If this instruction is the load or set of a "stack" register,
154 such as a floating point register on x87, then the cost of
155 speculatively executing this insn may need to include
156 the additional cost of popping its result off of the
157 register stack. Unfortunately, correctly recognizing and
158 accounting for this additional overhead is tricky, so for
159 now we simply prohibit such speculative execution. */
160 #ifdef STACK_REGS
161 {
162 rtx set = single_set (insn);
163 if (set && STACK_REG_P (SET_DEST (set)))
164 return false;
165 }
166 #endif
167
168 count += cost;
169 if (count >= max_cost)
170 return false;
171 }
172 else if (CALL_P (insn))
173 return false;
174
175 if (insn == BB_END (bb))
176 break;
177 insn = NEXT_INSN (insn);
178 }
179
180 return true;
181 }
182
183 /* Return the first non-jump active insn in the basic block. */
184
185 static rtx
186 first_active_insn (basic_block bb)
187 {
188 rtx insn = BB_HEAD (bb);
189
190 if (LABEL_P (insn))
191 {
192 if (insn == BB_END (bb))
193 return NULL_RTX;
194 insn = NEXT_INSN (insn);
195 }
196
197 while (NOTE_P (insn) || DEBUG_INSN_P (insn))
198 {
199 if (insn == BB_END (bb))
200 return NULL_RTX;
201 insn = NEXT_INSN (insn);
202 }
203
204 if (JUMP_P (insn))
205 return NULL_RTX;
206
207 return insn;
208 }
209
210 /* Return the last non-jump active (non-jump) insn in the basic block. */
211
212 static rtx
213 last_active_insn (basic_block bb, int skip_use_p)
214 {
215 rtx insn = BB_END (bb);
216 rtx head = BB_HEAD (bb);
217
218 while (NOTE_P (insn)
219 || JUMP_P (insn)
220 || DEBUG_INSN_P (insn)
221 || (skip_use_p
222 && NONJUMP_INSN_P (insn)
223 && GET_CODE (PATTERN (insn)) == USE))
224 {
225 if (insn == head)
226 return NULL_RTX;
227 insn = PREV_INSN (insn);
228 }
229
230 if (LABEL_P (insn))
231 return NULL_RTX;
232
233 return insn;
234 }
235
236 /* Return the basic block reached by falling though the basic block BB. */
237
238 static basic_block
239 block_fallthru (basic_block bb)
240 {
241 edge e;
242 edge_iterator ei;
243
244 FOR_EACH_EDGE (e, ei, bb->succs)
245 if (e->flags & EDGE_FALLTHRU)
246 break;
247
248 return (e) ? e->dest : NULL_BLOCK;
249 }
250 \f
251 /* Go through a bunch of insns, converting them to conditional
252 execution format if possible. Return TRUE if all of the non-note
253 insns were processed. */
254
255 static int
256 cond_exec_process_insns (ce_if_block_t *ce_info ATTRIBUTE_UNUSED,
257 /* if block information */rtx start,
258 /* first insn to look at */rtx end,
259 /* last insn to look at */rtx test,
260 /* conditional execution test */rtx prob_val,
261 /* probability of branch taken. */int mod_ok)
262 {
263 int must_be_last = FALSE;
264 rtx insn;
265 rtx xtest;
266 rtx pattern;
267
268 if (!start || !end)
269 return FALSE;
270
271 for (insn = start; ; insn = NEXT_INSN (insn))
272 {
273 if (NOTE_P (insn) || DEBUG_INSN_P (insn))
274 goto insn_done;
275
276 gcc_assert(NONJUMP_INSN_P (insn) || CALL_P (insn));
277
278 /* Remove USE insns that get in the way. */
279 if (reload_completed && GET_CODE (PATTERN (insn)) == USE)
280 {
281 /* ??? Ug. Actually unlinking the thing is problematic,
282 given what we'd have to coordinate with our callers. */
283 SET_INSN_DELETED (insn);
284 goto insn_done;
285 }
286
287 /* Last insn wasn't last? */
288 if (must_be_last)
289 return FALSE;
290
291 if (modified_in_p (test, insn))
292 {
293 if (!mod_ok)
294 return FALSE;
295 must_be_last = TRUE;
296 }
297
298 /* Now build the conditional form of the instruction. */
299 pattern = PATTERN (insn);
300 xtest = copy_rtx (test);
301
302 /* If this is already a COND_EXEC, rewrite the test to be an AND of the
303 two conditions. */
304 if (GET_CODE (pattern) == COND_EXEC)
305 {
306 if (GET_MODE (xtest) != GET_MODE (COND_EXEC_TEST (pattern)))
307 return FALSE;
308
309 xtest = gen_rtx_AND (GET_MODE (xtest), xtest,
310 COND_EXEC_TEST (pattern));
311 pattern = COND_EXEC_CODE (pattern);
312 }
313
314 pattern = gen_rtx_COND_EXEC (VOIDmode, xtest, pattern);
315
316 /* If the machine needs to modify the insn being conditionally executed,
317 say for example to force a constant integer operand into a temp
318 register, do so here. */
319 #ifdef IFCVT_MODIFY_INSN
320 IFCVT_MODIFY_INSN (ce_info, pattern, insn);
321 if (! pattern)
322 return FALSE;
323 #endif
324
325 validate_change (insn, &PATTERN (insn), pattern, 1);
326
327 if (CALL_P (insn) && prob_val)
328 validate_change (insn, &REG_NOTES (insn),
329 alloc_EXPR_LIST (REG_BR_PROB, prob_val,
330 REG_NOTES (insn)), 1);
331
332 insn_done:
333 if (insn == end)
334 break;
335 }
336
337 return TRUE;
338 }
339
340 /* Return the condition for a jump. Do not do any special processing. */
341
342 static rtx
343 cond_exec_get_condition (rtx jump)
344 {
345 rtx test_if, cond;
346
347 if (any_condjump_p (jump))
348 test_if = SET_SRC (pc_set (jump));
349 else
350 return NULL_RTX;
351 cond = XEXP (test_if, 0);
352
353 /* If this branches to JUMP_LABEL when the condition is false,
354 reverse the condition. */
355 if (GET_CODE (XEXP (test_if, 2)) == LABEL_REF
356 && XEXP (XEXP (test_if, 2), 0) == JUMP_LABEL (jump))
357 {
358 enum rtx_code rev = reversed_comparison_code (cond, jump);
359 if (rev == UNKNOWN)
360 return NULL_RTX;
361
362 cond = gen_rtx_fmt_ee (rev, GET_MODE (cond), XEXP (cond, 0),
363 XEXP (cond, 1));
364 }
365
366 return cond;
367 }
368
369 /* Given a simple IF-THEN or IF-THEN-ELSE block, attempt to convert it
370 to conditional execution. Return TRUE if we were successful at
371 converting the block. */
372
373 static int
374 cond_exec_process_if_block (ce_if_block_t * ce_info,
375 /* if block information */int do_multiple_p)
376 {
377 basic_block test_bb = ce_info->test_bb; /* last test block */
378 basic_block then_bb = ce_info->then_bb; /* THEN */
379 basic_block else_bb = ce_info->else_bb; /* ELSE or NULL */
380 rtx test_expr; /* expression in IF_THEN_ELSE that is tested */
381 rtx then_start; /* first insn in THEN block */
382 rtx then_end; /* last insn + 1 in THEN block */
383 rtx else_start = NULL_RTX; /* first insn in ELSE block or NULL */
384 rtx else_end = NULL_RTX; /* last insn + 1 in ELSE block */
385 int max; /* max # of insns to convert. */
386 int then_mod_ok; /* whether conditional mods are ok in THEN */
387 rtx true_expr; /* test for else block insns */
388 rtx false_expr; /* test for then block insns */
389 rtx true_prob_val; /* probability of else block */
390 rtx false_prob_val; /* probability of then block */
391 int n_insns;
392 enum rtx_code false_code;
393
394 /* If test is comprised of && or || elements, and we've failed at handling
395 all of them together, just use the last test if it is the special case of
396 && elements without an ELSE block. */
397 if (!do_multiple_p && ce_info->num_multiple_test_blocks)
398 {
399 if (else_bb || ! ce_info->and_and_p)
400 return FALSE;
401
402 ce_info->test_bb = test_bb = ce_info->last_test_bb;
403 ce_info->num_multiple_test_blocks = 0;
404 ce_info->num_and_and_blocks = 0;
405 ce_info->num_or_or_blocks = 0;
406 }
407
408 /* Find the conditional jump to the ELSE or JOIN part, and isolate
409 the test. */
410 test_expr = cond_exec_get_condition (BB_END (test_bb));
411 if (! test_expr)
412 return FALSE;
413
414 /* If the conditional jump is more than just a conditional jump,
415 then we can not do conditional execution conversion on this block. */
416 if (! onlyjump_p (BB_END (test_bb)))
417 return FALSE;
418
419 /* Collect the bounds of where we're to search, skipping any labels, jumps
420 and notes at the beginning and end of the block. Then count the total
421 number of insns and see if it is small enough to convert. */
422 then_start = first_active_insn (then_bb);
423 then_end = last_active_insn (then_bb, TRUE);
424 n_insns = ce_info->num_then_insns = count_bb_insns (then_bb);
425 max = MAX_CONDITIONAL_EXECUTE;
426
427 if (else_bb)
428 {
429 max *= 2;
430 else_start = first_active_insn (else_bb);
431 else_end = last_active_insn (else_bb, TRUE);
432 n_insns += ce_info->num_else_insns = count_bb_insns (else_bb);
433 }
434
435 if (n_insns > max)
436 return FALSE;
437
438 /* Map test_expr/test_jump into the appropriate MD tests to use on
439 the conditionally executed code. */
440
441 true_expr = test_expr;
442
443 false_code = reversed_comparison_code (true_expr, BB_END (test_bb));
444 if (false_code != UNKNOWN)
445 false_expr = gen_rtx_fmt_ee (false_code, GET_MODE (true_expr),
446 XEXP (true_expr, 0), XEXP (true_expr, 1));
447 else
448 false_expr = NULL_RTX;
449
450 #ifdef IFCVT_MODIFY_TESTS
451 /* If the machine description needs to modify the tests, such as setting a
452 conditional execution register from a comparison, it can do so here. */
453 IFCVT_MODIFY_TESTS (ce_info, true_expr, false_expr);
454
455 /* See if the conversion failed. */
456 if (!true_expr || !false_expr)
457 goto fail;
458 #endif
459
460 true_prob_val = find_reg_note (BB_END (test_bb), REG_BR_PROB, NULL_RTX);
461 if (true_prob_val)
462 {
463 true_prob_val = XEXP (true_prob_val, 0);
464 false_prob_val = GEN_INT (REG_BR_PROB_BASE - INTVAL (true_prob_val));
465 }
466 else
467 false_prob_val = NULL_RTX;
468
469 /* If we have && or || tests, do them here. These tests are in the adjacent
470 blocks after the first block containing the test. */
471 if (ce_info->num_multiple_test_blocks > 0)
472 {
473 basic_block bb = test_bb;
474 basic_block last_test_bb = ce_info->last_test_bb;
475
476 if (! false_expr)
477 goto fail;
478
479 do
480 {
481 rtx start, end;
482 rtx t, f;
483 enum rtx_code f_code;
484
485 bb = block_fallthru (bb);
486 start = first_active_insn (bb);
487 end = last_active_insn (bb, TRUE);
488 if (start
489 && ! cond_exec_process_insns (ce_info, start, end, false_expr,
490 false_prob_val, FALSE))
491 goto fail;
492
493 /* If the conditional jump is more than just a conditional jump, then
494 we can not do conditional execution conversion on this block. */
495 if (! onlyjump_p (BB_END (bb)))
496 goto fail;
497
498 /* Find the conditional jump and isolate the test. */
499 t = cond_exec_get_condition (BB_END (bb));
500 if (! t)
501 goto fail;
502
503 f_code = reversed_comparison_code (t, BB_END (bb));
504 if (f_code == UNKNOWN)
505 goto fail;
506
507 f = gen_rtx_fmt_ee (f_code, GET_MODE (t), XEXP (t, 0), XEXP (t, 1));
508 if (ce_info->and_and_p)
509 {
510 t = gen_rtx_AND (GET_MODE (t), true_expr, t);
511 f = gen_rtx_IOR (GET_MODE (t), false_expr, f);
512 }
513 else
514 {
515 t = gen_rtx_IOR (GET_MODE (t), true_expr, t);
516 f = gen_rtx_AND (GET_MODE (t), false_expr, f);
517 }
518
519 /* If the machine description needs to modify the tests, such as
520 setting a conditional execution register from a comparison, it can
521 do so here. */
522 #ifdef IFCVT_MODIFY_MULTIPLE_TESTS
523 IFCVT_MODIFY_MULTIPLE_TESTS (ce_info, bb, t, f);
524
525 /* See if the conversion failed. */
526 if (!t || !f)
527 goto fail;
528 #endif
529
530 true_expr = t;
531 false_expr = f;
532 }
533 while (bb != last_test_bb);
534 }
535
536 /* For IF-THEN-ELSE blocks, we don't allow modifications of the test
537 on then THEN block. */
538 then_mod_ok = (else_bb == NULL_BLOCK);
539
540 /* Go through the THEN and ELSE blocks converting the insns if possible
541 to conditional execution. */
542
543 if (then_end
544 && (! false_expr
545 || ! cond_exec_process_insns (ce_info, then_start, then_end,
546 false_expr, false_prob_val,
547 then_mod_ok)))
548 goto fail;
549
550 if (else_bb && else_end
551 && ! cond_exec_process_insns (ce_info, else_start, else_end,
552 true_expr, true_prob_val, TRUE))
553 goto fail;
554
555 /* If we cannot apply the changes, fail. Do not go through the normal fail
556 processing, since apply_change_group will call cancel_changes. */
557 if (! apply_change_group ())
558 {
559 #ifdef IFCVT_MODIFY_CANCEL
560 /* Cancel any machine dependent changes. */
561 IFCVT_MODIFY_CANCEL (ce_info);
562 #endif
563 return FALSE;
564 }
565
566 #ifdef IFCVT_MODIFY_FINAL
567 /* Do any machine dependent final modifications. */
568 IFCVT_MODIFY_FINAL (ce_info);
569 #endif
570
571 /* Conversion succeeded. */
572 if (dump_file)
573 fprintf (dump_file, "%d insn%s converted to conditional execution.\n",
574 n_insns, (n_insns == 1) ? " was" : "s were");
575
576 /* Merge the blocks! */
577 merge_if_block (ce_info);
578 cond_exec_changed_p = TRUE;
579 return TRUE;
580
581 fail:
582 #ifdef IFCVT_MODIFY_CANCEL
583 /* Cancel any machine dependent changes. */
584 IFCVT_MODIFY_CANCEL (ce_info);
585 #endif
586
587 cancel_changes (0);
588 return FALSE;
589 }
590 \f
591 /* Used by noce_process_if_block to communicate with its subroutines.
592
593 The subroutines know that A and B may be evaluated freely. They
594 know that X is a register. They should insert new instructions
595 before cond_earliest. */
596
597 struct noce_if_info
598 {
599 /* The basic blocks that make up the IF-THEN-{ELSE-,}JOIN block. */
600 basic_block test_bb, then_bb, else_bb, join_bb;
601
602 /* The jump that ends TEST_BB. */
603 rtx jump;
604
605 /* The jump condition. */
606 rtx cond;
607
608 /* New insns should be inserted before this one. */
609 rtx cond_earliest;
610
611 /* Insns in the THEN and ELSE block. There is always just this
612 one insns in those blocks. The insns are single_set insns.
613 If there was no ELSE block, INSN_B is the last insn before
614 COND_EARLIEST, or NULL_RTX. In the former case, the insn
615 operands are still valid, as if INSN_B was moved down below
616 the jump. */
617 rtx insn_a, insn_b;
618
619 /* The SET_SRC of INSN_A and INSN_B. */
620 rtx a, b;
621
622 /* The SET_DEST of INSN_A. */
623 rtx x;
624
625 /* True if this if block is not canonical. In the canonical form of
626 if blocks, the THEN_BB is the block reached via the fallthru edge
627 from TEST_BB. For the noce transformations, we allow the symmetric
628 form as well. */
629 bool then_else_reversed;
630
631 /* Estimated cost of the particular branch instruction. */
632 int branch_cost;
633 };
634
635 static rtx noce_emit_store_flag (struct noce_if_info *, rtx, int, int);
636 static int noce_try_move (struct noce_if_info *);
637 static int noce_try_store_flag (struct noce_if_info *);
638 static int noce_try_addcc (struct noce_if_info *);
639 static int noce_try_store_flag_constants (struct noce_if_info *);
640 static int noce_try_store_flag_mask (struct noce_if_info *);
641 static rtx noce_emit_cmove (struct noce_if_info *, rtx, enum rtx_code, rtx,
642 rtx, rtx, rtx);
643 static int noce_try_cmove (struct noce_if_info *);
644 static int noce_try_cmove_arith (struct noce_if_info *);
645 static rtx noce_get_alt_condition (struct noce_if_info *, rtx, rtx *);
646 static int noce_try_minmax (struct noce_if_info *);
647 static int noce_try_abs (struct noce_if_info *);
648 static int noce_try_sign_mask (struct noce_if_info *);
649
650 /* Helper function for noce_try_store_flag*. */
651
652 static rtx
653 noce_emit_store_flag (struct noce_if_info *if_info, rtx x, int reversep,
654 int normalize)
655 {
656 rtx cond = if_info->cond;
657 int cond_complex;
658 enum rtx_code code;
659
660 cond_complex = (! general_operand (XEXP (cond, 0), VOIDmode)
661 || ! general_operand (XEXP (cond, 1), VOIDmode));
662
663 /* If earliest == jump, or when the condition is complex, try to
664 build the store_flag insn directly. */
665
666 if (cond_complex)
667 {
668 rtx set = pc_set (if_info->jump);
669 cond = XEXP (SET_SRC (set), 0);
670 if (GET_CODE (XEXP (SET_SRC (set), 2)) == LABEL_REF
671 && XEXP (XEXP (SET_SRC (set), 2), 0) == JUMP_LABEL (if_info->jump))
672 reversep = !reversep;
673 if (if_info->then_else_reversed)
674 reversep = !reversep;
675 }
676
677 if (reversep)
678 code = reversed_comparison_code (cond, if_info->jump);
679 else
680 code = GET_CODE (cond);
681
682 if ((if_info->cond_earliest == if_info->jump || cond_complex)
683 && (normalize == 0 || STORE_FLAG_VALUE == normalize))
684 {
685 rtx tmp;
686
687 tmp = gen_rtx_fmt_ee (code, GET_MODE (x), XEXP (cond, 0),
688 XEXP (cond, 1));
689 tmp = gen_rtx_SET (VOIDmode, x, tmp);
690
691 start_sequence ();
692 tmp = emit_insn (tmp);
693
694 if (recog_memoized (tmp) >= 0)
695 {
696 tmp = get_insns ();
697 end_sequence ();
698 emit_insn (tmp);
699
700 if_info->cond_earliest = if_info->jump;
701
702 return x;
703 }
704
705 end_sequence ();
706 }
707
708 /* Don't even try if the comparison operands or the mode of X are weird. */
709 if (cond_complex || !SCALAR_INT_MODE_P (GET_MODE (x)))
710 return NULL_RTX;
711
712 return emit_store_flag (x, code, XEXP (cond, 0),
713 XEXP (cond, 1), VOIDmode,
714 (code == LTU || code == LEU
715 || code == GEU || code == GTU), normalize);
716 }
717
718 /* Emit instruction to move an rtx, possibly into STRICT_LOW_PART.
719 X is the destination/target and Y is the value to copy. */
720
721 static void
722 noce_emit_move_insn (rtx x, rtx y)
723 {
724 enum machine_mode outmode;
725 rtx outer, inner;
726 int bitpos;
727
728 if (GET_CODE (x) != STRICT_LOW_PART)
729 {
730 rtx seq, insn, target;
731 optab ot;
732
733 start_sequence ();
734 /* Check that the SET_SRC is reasonable before calling emit_move_insn,
735 otherwise construct a suitable SET pattern ourselves. */
736 insn = (OBJECT_P (y) || CONSTANT_P (y) || GET_CODE (y) == SUBREG)
737 ? emit_move_insn (x, y)
738 : emit_insn (gen_rtx_SET (VOIDmode, x, y));
739 seq = get_insns ();
740 end_sequence ();
741
742 if (recog_memoized (insn) <= 0)
743 {
744 if (GET_CODE (x) == ZERO_EXTRACT)
745 {
746 rtx op = XEXP (x, 0);
747 unsigned HOST_WIDE_INT size = INTVAL (XEXP (x, 1));
748 unsigned HOST_WIDE_INT start = INTVAL (XEXP (x, 2));
749
750 /* store_bit_field expects START to be relative to
751 BYTES_BIG_ENDIAN and adjusts this value for machines with
752 BITS_BIG_ENDIAN != BYTES_BIG_ENDIAN. In order to be able to
753 invoke store_bit_field again it is necessary to have the START
754 value from the first call. */
755 if (BITS_BIG_ENDIAN != BYTES_BIG_ENDIAN)
756 {
757 if (MEM_P (op))
758 start = BITS_PER_UNIT - start - size;
759 else
760 {
761 gcc_assert (REG_P (op));
762 start = BITS_PER_WORD - start - size;
763 }
764 }
765
766 gcc_assert (start < (MEM_P (op) ? BITS_PER_UNIT : BITS_PER_WORD));
767 store_bit_field (op, size, start, GET_MODE (x), y);
768 return;
769 }
770
771 switch (GET_RTX_CLASS (GET_CODE (y)))
772 {
773 case RTX_UNARY:
774 ot = code_to_optab[GET_CODE (y)];
775 if (ot)
776 {
777 start_sequence ();
778 target = expand_unop (GET_MODE (y), ot, XEXP (y, 0), x, 0);
779 if (target != NULL_RTX)
780 {
781 if (target != x)
782 emit_move_insn (x, target);
783 seq = get_insns ();
784 }
785 end_sequence ();
786 }
787 break;
788
789 case RTX_BIN_ARITH:
790 case RTX_COMM_ARITH:
791 ot = code_to_optab[GET_CODE (y)];
792 if (ot)
793 {
794 start_sequence ();
795 target = expand_binop (GET_MODE (y), ot,
796 XEXP (y, 0), XEXP (y, 1),
797 x, 0, OPTAB_DIRECT);
798 if (target != NULL_RTX)
799 {
800 if (target != x)
801 emit_move_insn (x, target);
802 seq = get_insns ();
803 }
804 end_sequence ();
805 }
806 break;
807
808 default:
809 break;
810 }
811 }
812
813 emit_insn (seq);
814 return;
815 }
816
817 outer = XEXP (x, 0);
818 inner = XEXP (outer, 0);
819 outmode = GET_MODE (outer);
820 bitpos = SUBREG_BYTE (outer) * BITS_PER_UNIT;
821 store_bit_field (inner, GET_MODE_BITSIZE (outmode), bitpos, outmode, y);
822 }
823
824 /* Return sequence of instructions generated by if conversion. This
825 function calls end_sequence() to end the current stream, ensures
826 that are instructions are unshared, recognizable non-jump insns.
827 On failure, this function returns a NULL_RTX. */
828
829 static rtx
830 end_ifcvt_sequence (struct noce_if_info *if_info)
831 {
832 rtx insn;
833 rtx seq = get_insns ();
834
835 set_used_flags (if_info->x);
836 set_used_flags (if_info->cond);
837 unshare_all_rtl_in_chain (seq);
838 end_sequence ();
839
840 /* Make sure that all of the instructions emitted are recognizable,
841 and that we haven't introduced a new jump instruction.
842 As an exercise for the reader, build a general mechanism that
843 allows proper placement of required clobbers. */
844 for (insn = seq; insn; insn = NEXT_INSN (insn))
845 if (JUMP_P (insn)
846 || recog_memoized (insn) == -1)
847 return NULL_RTX;
848
849 return seq;
850 }
851
852 /* Convert "if (a != b) x = a; else x = b" into "x = a" and
853 "if (a == b) x = a; else x = b" into "x = b". */
854
855 static int
856 noce_try_move (struct noce_if_info *if_info)
857 {
858 rtx cond = if_info->cond;
859 enum rtx_code code = GET_CODE (cond);
860 rtx y, seq;
861
862 if (code != NE && code != EQ)
863 return FALSE;
864
865 /* This optimization isn't valid if either A or B could be a NaN
866 or a signed zero. */
867 if (HONOR_NANS (GET_MODE (if_info->x))
868 || HONOR_SIGNED_ZEROS (GET_MODE (if_info->x)))
869 return FALSE;
870
871 /* Check whether the operands of the comparison are A and in
872 either order. */
873 if ((rtx_equal_p (if_info->a, XEXP (cond, 0))
874 && rtx_equal_p (if_info->b, XEXP (cond, 1)))
875 || (rtx_equal_p (if_info->a, XEXP (cond, 1))
876 && rtx_equal_p (if_info->b, XEXP (cond, 0))))
877 {
878 y = (code == EQ) ? if_info->a : if_info->b;
879
880 /* Avoid generating the move if the source is the destination. */
881 if (! rtx_equal_p (if_info->x, y))
882 {
883 start_sequence ();
884 noce_emit_move_insn (if_info->x, y);
885 seq = end_ifcvt_sequence (if_info);
886 if (!seq)
887 return FALSE;
888
889 emit_insn_before_setloc (seq, if_info->jump,
890 INSN_LOCATOR (if_info->insn_a));
891 }
892 return TRUE;
893 }
894 return FALSE;
895 }
896
897 /* Convert "if (test) x = 1; else x = 0".
898
899 Only try 0 and STORE_FLAG_VALUE here. Other combinations will be
900 tried in noce_try_store_flag_constants after noce_try_cmove has had
901 a go at the conversion. */
902
903 static int
904 noce_try_store_flag (struct noce_if_info *if_info)
905 {
906 int reversep;
907 rtx target, seq;
908
909 if (CONST_INT_P (if_info->b)
910 && INTVAL (if_info->b) == STORE_FLAG_VALUE
911 && if_info->a == const0_rtx)
912 reversep = 0;
913 else if (if_info->b == const0_rtx
914 && CONST_INT_P (if_info->a)
915 && INTVAL (if_info->a) == STORE_FLAG_VALUE
916 && (reversed_comparison_code (if_info->cond, if_info->jump)
917 != UNKNOWN))
918 reversep = 1;
919 else
920 return FALSE;
921
922 start_sequence ();
923
924 target = noce_emit_store_flag (if_info, if_info->x, reversep, 0);
925 if (target)
926 {
927 if (target != if_info->x)
928 noce_emit_move_insn (if_info->x, target);
929
930 seq = end_ifcvt_sequence (if_info);
931 if (! seq)
932 return FALSE;
933
934 emit_insn_before_setloc (seq, if_info->jump,
935 INSN_LOCATOR (if_info->insn_a));
936 return TRUE;
937 }
938 else
939 {
940 end_sequence ();
941 return FALSE;
942 }
943 }
944
945 /* Convert "if (test) x = a; else x = b", for A and B constant. */
946
947 static int
948 noce_try_store_flag_constants (struct noce_if_info *if_info)
949 {
950 rtx target, seq;
951 int reversep;
952 HOST_WIDE_INT itrue, ifalse, diff, tmp;
953 int normalize, can_reverse;
954 enum machine_mode mode;
955
956 if (CONST_INT_P (if_info->a)
957 && CONST_INT_P (if_info->b))
958 {
959 mode = GET_MODE (if_info->x);
960 ifalse = INTVAL (if_info->a);
961 itrue = INTVAL (if_info->b);
962
963 /* Make sure we can represent the difference between the two values. */
964 if ((itrue - ifalse > 0)
965 != ((ifalse < 0) != (itrue < 0) ? ifalse < 0 : ifalse < itrue))
966 return FALSE;
967
968 diff = trunc_int_for_mode (itrue - ifalse, mode);
969
970 can_reverse = (reversed_comparison_code (if_info->cond, if_info->jump)
971 != UNKNOWN);
972
973 reversep = 0;
974 if (diff == STORE_FLAG_VALUE || diff == -STORE_FLAG_VALUE)
975 normalize = 0;
976 else if (ifalse == 0 && exact_log2 (itrue) >= 0
977 && (STORE_FLAG_VALUE == 1
978 || if_info->branch_cost >= 2))
979 normalize = 1;
980 else if (itrue == 0 && exact_log2 (ifalse) >= 0 && can_reverse
981 && (STORE_FLAG_VALUE == 1 || if_info->branch_cost >= 2))
982 normalize = 1, reversep = 1;
983 else if (itrue == -1
984 && (STORE_FLAG_VALUE == -1
985 || if_info->branch_cost >= 2))
986 normalize = -1;
987 else if (ifalse == -1 && can_reverse
988 && (STORE_FLAG_VALUE == -1 || if_info->branch_cost >= 2))
989 normalize = -1, reversep = 1;
990 else if ((if_info->branch_cost >= 2 && STORE_FLAG_VALUE == -1)
991 || if_info->branch_cost >= 3)
992 normalize = -1;
993 else
994 return FALSE;
995
996 if (reversep)
997 {
998 tmp = itrue; itrue = ifalse; ifalse = tmp;
999 diff = trunc_int_for_mode (-diff, mode);
1000 }
1001
1002 start_sequence ();
1003 target = noce_emit_store_flag (if_info, if_info->x, reversep, normalize);
1004 if (! target)
1005 {
1006 end_sequence ();
1007 return FALSE;
1008 }
1009
1010 /* if (test) x = 3; else x = 4;
1011 => x = 3 + (test == 0); */
1012 if (diff == STORE_FLAG_VALUE || diff == -STORE_FLAG_VALUE)
1013 {
1014 target = expand_simple_binop (mode,
1015 (diff == STORE_FLAG_VALUE
1016 ? PLUS : MINUS),
1017 GEN_INT (ifalse), target, if_info->x, 0,
1018 OPTAB_WIDEN);
1019 }
1020
1021 /* if (test) x = 8; else x = 0;
1022 => x = (test != 0) << 3; */
1023 else if (ifalse == 0 && (tmp = exact_log2 (itrue)) >= 0)
1024 {
1025 target = expand_simple_binop (mode, ASHIFT,
1026 target, GEN_INT (tmp), if_info->x, 0,
1027 OPTAB_WIDEN);
1028 }
1029
1030 /* if (test) x = -1; else x = b;
1031 => x = -(test != 0) | b; */
1032 else if (itrue == -1)
1033 {
1034 target = expand_simple_binop (mode, IOR,
1035 target, GEN_INT (ifalse), if_info->x, 0,
1036 OPTAB_WIDEN);
1037 }
1038
1039 /* if (test) x = a; else x = b;
1040 => x = (-(test != 0) & (b - a)) + a; */
1041 else
1042 {
1043 target = expand_simple_binop (mode, AND,
1044 target, GEN_INT (diff), if_info->x, 0,
1045 OPTAB_WIDEN);
1046 if (target)
1047 target = expand_simple_binop (mode, PLUS,
1048 target, GEN_INT (ifalse),
1049 if_info->x, 0, OPTAB_WIDEN);
1050 }
1051
1052 if (! target)
1053 {
1054 end_sequence ();
1055 return FALSE;
1056 }
1057
1058 if (target != if_info->x)
1059 noce_emit_move_insn (if_info->x, target);
1060
1061 seq = end_ifcvt_sequence (if_info);
1062 if (!seq)
1063 return FALSE;
1064
1065 emit_insn_before_setloc (seq, if_info->jump,
1066 INSN_LOCATOR (if_info->insn_a));
1067 return TRUE;
1068 }
1069
1070 return FALSE;
1071 }
1072
1073 /* Convert "if (test) foo++" into "foo += (test != 0)", and
1074 similarly for "foo--". */
1075
1076 static int
1077 noce_try_addcc (struct noce_if_info *if_info)
1078 {
1079 rtx target, seq;
1080 int subtract, normalize;
1081
1082 if (GET_CODE (if_info->a) == PLUS
1083 && rtx_equal_p (XEXP (if_info->a, 0), if_info->b)
1084 && (reversed_comparison_code (if_info->cond, if_info->jump)
1085 != UNKNOWN))
1086 {
1087 rtx cond = if_info->cond;
1088 enum rtx_code code = reversed_comparison_code (cond, if_info->jump);
1089
1090 /* First try to use addcc pattern. */
1091 if (general_operand (XEXP (cond, 0), VOIDmode)
1092 && general_operand (XEXP (cond, 1), VOIDmode))
1093 {
1094 start_sequence ();
1095 target = emit_conditional_add (if_info->x, code,
1096 XEXP (cond, 0),
1097 XEXP (cond, 1),
1098 VOIDmode,
1099 if_info->b,
1100 XEXP (if_info->a, 1),
1101 GET_MODE (if_info->x),
1102 (code == LTU || code == GEU
1103 || code == LEU || code == GTU));
1104 if (target)
1105 {
1106 if (target != if_info->x)
1107 noce_emit_move_insn (if_info->x, target);
1108
1109 seq = end_ifcvt_sequence (if_info);
1110 if (!seq)
1111 return FALSE;
1112
1113 emit_insn_before_setloc (seq, if_info->jump,
1114 INSN_LOCATOR (if_info->insn_a));
1115 return TRUE;
1116 }
1117 end_sequence ();
1118 }
1119
1120 /* If that fails, construct conditional increment or decrement using
1121 setcc. */
1122 if (if_info->branch_cost >= 2
1123 && (XEXP (if_info->a, 1) == const1_rtx
1124 || XEXP (if_info->a, 1) == constm1_rtx))
1125 {
1126 start_sequence ();
1127 if (STORE_FLAG_VALUE == INTVAL (XEXP (if_info->a, 1)))
1128 subtract = 0, normalize = 0;
1129 else if (-STORE_FLAG_VALUE == INTVAL (XEXP (if_info->a, 1)))
1130 subtract = 1, normalize = 0;
1131 else
1132 subtract = 0, normalize = INTVAL (XEXP (if_info->a, 1));
1133
1134
1135 target = noce_emit_store_flag (if_info,
1136 gen_reg_rtx (GET_MODE (if_info->x)),
1137 1, normalize);
1138
1139 if (target)
1140 target = expand_simple_binop (GET_MODE (if_info->x),
1141 subtract ? MINUS : PLUS,
1142 if_info->b, target, if_info->x,
1143 0, OPTAB_WIDEN);
1144 if (target)
1145 {
1146 if (target != if_info->x)
1147 noce_emit_move_insn (if_info->x, target);
1148
1149 seq = end_ifcvt_sequence (if_info);
1150 if (!seq)
1151 return FALSE;
1152
1153 emit_insn_before_setloc (seq, if_info->jump,
1154 INSN_LOCATOR (if_info->insn_a));
1155 return TRUE;
1156 }
1157 end_sequence ();
1158 }
1159 }
1160
1161 return FALSE;
1162 }
1163
1164 /* Convert "if (test) x = 0;" to "x &= -(test == 0);" */
1165
1166 static int
1167 noce_try_store_flag_mask (struct noce_if_info *if_info)
1168 {
1169 rtx target, seq;
1170 int reversep;
1171
1172 reversep = 0;
1173 if ((if_info->branch_cost >= 2
1174 || STORE_FLAG_VALUE == -1)
1175 && ((if_info->a == const0_rtx
1176 && rtx_equal_p (if_info->b, if_info->x))
1177 || ((reversep = (reversed_comparison_code (if_info->cond,
1178 if_info->jump)
1179 != UNKNOWN))
1180 && if_info->b == const0_rtx
1181 && rtx_equal_p (if_info->a, if_info->x))))
1182 {
1183 start_sequence ();
1184 target = noce_emit_store_flag (if_info,
1185 gen_reg_rtx (GET_MODE (if_info->x)),
1186 reversep, -1);
1187 if (target)
1188 target = expand_simple_binop (GET_MODE (if_info->x), AND,
1189 if_info->x,
1190 target, if_info->x, 0,
1191 OPTAB_WIDEN);
1192
1193 if (target)
1194 {
1195 if (target != if_info->x)
1196 noce_emit_move_insn (if_info->x, target);
1197
1198 seq = end_ifcvt_sequence (if_info);
1199 if (!seq)
1200 return FALSE;
1201
1202 emit_insn_before_setloc (seq, if_info->jump,
1203 INSN_LOCATOR (if_info->insn_a));
1204 return TRUE;
1205 }
1206
1207 end_sequence ();
1208 }
1209
1210 return FALSE;
1211 }
1212
1213 /* Helper function for noce_try_cmove and noce_try_cmove_arith. */
1214
1215 static rtx
1216 noce_emit_cmove (struct noce_if_info *if_info, rtx x, enum rtx_code code,
1217 rtx cmp_a, rtx cmp_b, rtx vfalse, rtx vtrue)
1218 {
1219 /* If earliest == jump, try to build the cmove insn directly.
1220 This is helpful when combine has created some complex condition
1221 (like for alpha's cmovlbs) that we can't hope to regenerate
1222 through the normal interface. */
1223
1224 if (if_info->cond_earliest == if_info->jump)
1225 {
1226 rtx tmp;
1227
1228 tmp = gen_rtx_fmt_ee (code, GET_MODE (if_info->cond), cmp_a, cmp_b);
1229 tmp = gen_rtx_IF_THEN_ELSE (GET_MODE (x), tmp, vtrue, vfalse);
1230 tmp = gen_rtx_SET (VOIDmode, x, tmp);
1231
1232 start_sequence ();
1233 tmp = emit_insn (tmp);
1234
1235 if (recog_memoized (tmp) >= 0)
1236 {
1237 tmp = get_insns ();
1238 end_sequence ();
1239 emit_insn (tmp);
1240
1241 return x;
1242 }
1243
1244 end_sequence ();
1245 }
1246
1247 /* Don't even try if the comparison operands are weird. */
1248 if (! general_operand (cmp_a, GET_MODE (cmp_a))
1249 || ! general_operand (cmp_b, GET_MODE (cmp_b)))
1250 return NULL_RTX;
1251
1252 #if HAVE_conditional_move
1253 return emit_conditional_move (x, code, cmp_a, cmp_b, VOIDmode,
1254 vtrue, vfalse, GET_MODE (x),
1255 (code == LTU || code == GEU
1256 || code == LEU || code == GTU));
1257 #else
1258 /* We'll never get here, as noce_process_if_block doesn't call the
1259 functions involved. Ifdef code, however, should be discouraged
1260 because it leads to typos in the code not selected. However,
1261 emit_conditional_move won't exist either. */
1262 return NULL_RTX;
1263 #endif
1264 }
1265
1266 /* Try only simple constants and registers here. More complex cases
1267 are handled in noce_try_cmove_arith after noce_try_store_flag_arith
1268 has had a go at it. */
1269
1270 static int
1271 noce_try_cmove (struct noce_if_info *if_info)
1272 {
1273 enum rtx_code code;
1274 rtx target, seq;
1275
1276 if ((CONSTANT_P (if_info->a) || register_operand (if_info->a, VOIDmode))
1277 && (CONSTANT_P (if_info->b) || register_operand (if_info->b, VOIDmode)))
1278 {
1279 start_sequence ();
1280
1281 code = GET_CODE (if_info->cond);
1282 target = noce_emit_cmove (if_info, if_info->x, code,
1283 XEXP (if_info->cond, 0),
1284 XEXP (if_info->cond, 1),
1285 if_info->a, if_info->b);
1286
1287 if (target)
1288 {
1289 if (target != if_info->x)
1290 noce_emit_move_insn (if_info->x, target);
1291
1292 seq = end_ifcvt_sequence (if_info);
1293 if (!seq)
1294 return FALSE;
1295
1296 emit_insn_before_setloc (seq, if_info->jump,
1297 INSN_LOCATOR (if_info->insn_a));
1298 return TRUE;
1299 }
1300 else
1301 {
1302 end_sequence ();
1303 return FALSE;
1304 }
1305 }
1306
1307 return FALSE;
1308 }
1309
1310 /* Try more complex cases involving conditional_move. */
1311
1312 static int
1313 noce_try_cmove_arith (struct noce_if_info *if_info)
1314 {
1315 rtx a = if_info->a;
1316 rtx b = if_info->b;
1317 rtx x = if_info->x;
1318 rtx orig_a, orig_b;
1319 rtx insn_a, insn_b;
1320 rtx tmp, target;
1321 int is_mem = 0;
1322 int insn_cost;
1323 enum rtx_code code;
1324
1325 /* A conditional move from two memory sources is equivalent to a
1326 conditional on their addresses followed by a load. Don't do this
1327 early because it'll screw alias analysis. Note that we've
1328 already checked for no side effects. */
1329 /* ??? FIXME: Magic number 5. */
1330 if (cse_not_expected
1331 && MEM_P (a) && MEM_P (b)
1332 && MEM_ADDR_SPACE (a) == MEM_ADDR_SPACE (b)
1333 && if_info->branch_cost >= 5)
1334 {
1335 enum machine_mode address_mode
1336 = targetm.addr_space.address_mode (MEM_ADDR_SPACE (a));
1337
1338 a = XEXP (a, 0);
1339 b = XEXP (b, 0);
1340 x = gen_reg_rtx (address_mode);
1341 is_mem = 1;
1342 }
1343
1344 /* ??? We could handle this if we knew that a load from A or B could
1345 not fault. This is also true if we've already loaded
1346 from the address along the path from ENTRY. */
1347 else if (may_trap_p (a) || may_trap_p (b))
1348 return FALSE;
1349
1350 /* if (test) x = a + b; else x = c - d;
1351 => y = a + b;
1352 x = c - d;
1353 if (test)
1354 x = y;
1355 */
1356
1357 code = GET_CODE (if_info->cond);
1358 insn_a = if_info->insn_a;
1359 insn_b = if_info->insn_b;
1360
1361 /* Total insn_rtx_cost should be smaller than branch cost. Exit
1362 if insn_rtx_cost can't be estimated. */
1363 if (insn_a)
1364 {
1365 insn_cost = insn_rtx_cost (PATTERN (insn_a),
1366 optimize_bb_for_speed_p (BLOCK_FOR_INSN (insn_a)));
1367 if (insn_cost == 0 || insn_cost > COSTS_N_INSNS (if_info->branch_cost))
1368 return FALSE;
1369 }
1370 else
1371 insn_cost = 0;
1372
1373 if (insn_b)
1374 {
1375 insn_cost += insn_rtx_cost (PATTERN (insn_b),
1376 optimize_bb_for_speed_p (BLOCK_FOR_INSN (insn_b)));
1377 if (insn_cost == 0 || insn_cost > COSTS_N_INSNS (if_info->branch_cost))
1378 return FALSE;
1379 }
1380
1381 /* Possibly rearrange operands to make things come out more natural. */
1382 if (reversed_comparison_code (if_info->cond, if_info->jump) != UNKNOWN)
1383 {
1384 int reversep = 0;
1385 if (rtx_equal_p (b, x))
1386 reversep = 1;
1387 else if (general_operand (b, GET_MODE (b)))
1388 reversep = 1;
1389
1390 if (reversep)
1391 {
1392 code = reversed_comparison_code (if_info->cond, if_info->jump);
1393 tmp = a, a = b, b = tmp;
1394 tmp = insn_a, insn_a = insn_b, insn_b = tmp;
1395 }
1396 }
1397
1398 start_sequence ();
1399
1400 orig_a = a;
1401 orig_b = b;
1402
1403 /* If either operand is complex, load it into a register first.
1404 The best way to do this is to copy the original insn. In this
1405 way we preserve any clobbers etc that the insn may have had.
1406 This is of course not possible in the IS_MEM case. */
1407 if (! general_operand (a, GET_MODE (a)))
1408 {
1409 rtx set;
1410
1411 if (is_mem)
1412 {
1413 tmp = gen_reg_rtx (GET_MODE (a));
1414 tmp = emit_insn (gen_rtx_SET (VOIDmode, tmp, a));
1415 }
1416 else if (! insn_a)
1417 goto end_seq_and_fail;
1418 else
1419 {
1420 a = gen_reg_rtx (GET_MODE (a));
1421 tmp = copy_rtx (insn_a);
1422 set = single_set (tmp);
1423 SET_DEST (set) = a;
1424 tmp = emit_insn (PATTERN (tmp));
1425 }
1426 if (recog_memoized (tmp) < 0)
1427 goto end_seq_and_fail;
1428 }
1429 if (! general_operand (b, GET_MODE (b)))
1430 {
1431 rtx set, last;
1432
1433 if (is_mem)
1434 {
1435 tmp = gen_reg_rtx (GET_MODE (b));
1436 tmp = gen_rtx_SET (VOIDmode, tmp, b);
1437 }
1438 else if (! insn_b)
1439 goto end_seq_and_fail;
1440 else
1441 {
1442 b = gen_reg_rtx (GET_MODE (b));
1443 tmp = copy_rtx (insn_b);
1444 set = single_set (tmp);
1445 SET_DEST (set) = b;
1446 tmp = PATTERN (tmp);
1447 }
1448
1449 /* If insn to set up A clobbers any registers B depends on, try to
1450 swap insn that sets up A with the one that sets up B. If even
1451 that doesn't help, punt. */
1452 last = get_last_insn ();
1453 if (last && modified_in_p (orig_b, last))
1454 {
1455 tmp = emit_insn_before (tmp, get_insns ());
1456 if (modified_in_p (orig_a, tmp))
1457 goto end_seq_and_fail;
1458 }
1459 else
1460 tmp = emit_insn (tmp);
1461
1462 if (recog_memoized (tmp) < 0)
1463 goto end_seq_and_fail;
1464 }
1465
1466 target = noce_emit_cmove (if_info, x, code, XEXP (if_info->cond, 0),
1467 XEXP (if_info->cond, 1), a, b);
1468
1469 if (! target)
1470 goto end_seq_and_fail;
1471
1472 /* If we're handling a memory for above, emit the load now. */
1473 if (is_mem)
1474 {
1475 tmp = gen_rtx_MEM (GET_MODE (if_info->x), target);
1476
1477 /* Copy over flags as appropriate. */
1478 if (MEM_VOLATILE_P (if_info->a) || MEM_VOLATILE_P (if_info->b))
1479 MEM_VOLATILE_P (tmp) = 1;
1480 if (MEM_IN_STRUCT_P (if_info->a) && MEM_IN_STRUCT_P (if_info->b))
1481 MEM_IN_STRUCT_P (tmp) = 1;
1482 if (MEM_SCALAR_P (if_info->a) && MEM_SCALAR_P (if_info->b))
1483 MEM_SCALAR_P (tmp) = 1;
1484 if (MEM_ALIAS_SET (if_info->a) == MEM_ALIAS_SET (if_info->b))
1485 set_mem_alias_set (tmp, MEM_ALIAS_SET (if_info->a));
1486 set_mem_align (tmp,
1487 MIN (MEM_ALIGN (if_info->a), MEM_ALIGN (if_info->b)));
1488
1489 gcc_assert (MEM_ADDR_SPACE (if_info->a) == MEM_ADDR_SPACE (if_info->b));
1490 set_mem_addr_space (tmp, MEM_ADDR_SPACE (if_info->a));
1491
1492 noce_emit_move_insn (if_info->x, tmp);
1493 }
1494 else if (target != x)
1495 noce_emit_move_insn (x, target);
1496
1497 tmp = end_ifcvt_sequence (if_info);
1498 if (!tmp)
1499 return FALSE;
1500
1501 emit_insn_before_setloc (tmp, if_info->jump, INSN_LOCATOR (if_info->insn_a));
1502 return TRUE;
1503
1504 end_seq_and_fail:
1505 end_sequence ();
1506 return FALSE;
1507 }
1508
1509 /* For most cases, the simplified condition we found is the best
1510 choice, but this is not the case for the min/max/abs transforms.
1511 For these we wish to know that it is A or B in the condition. */
1512
1513 static rtx
1514 noce_get_alt_condition (struct noce_if_info *if_info, rtx target,
1515 rtx *earliest)
1516 {
1517 rtx cond, set, insn;
1518 int reverse;
1519
1520 /* If target is already mentioned in the known condition, return it. */
1521 if (reg_mentioned_p (target, if_info->cond))
1522 {
1523 *earliest = if_info->cond_earliest;
1524 return if_info->cond;
1525 }
1526
1527 set = pc_set (if_info->jump);
1528 cond = XEXP (SET_SRC (set), 0);
1529 reverse
1530 = GET_CODE (XEXP (SET_SRC (set), 2)) == LABEL_REF
1531 && XEXP (XEXP (SET_SRC (set), 2), 0) == JUMP_LABEL (if_info->jump);
1532 if (if_info->then_else_reversed)
1533 reverse = !reverse;
1534
1535 /* If we're looking for a constant, try to make the conditional
1536 have that constant in it. There are two reasons why it may
1537 not have the constant we want:
1538
1539 1. GCC may have needed to put the constant in a register, because
1540 the target can't compare directly against that constant. For
1541 this case, we look for a SET immediately before the comparison
1542 that puts a constant in that register.
1543
1544 2. GCC may have canonicalized the conditional, for example
1545 replacing "if x < 4" with "if x <= 3". We can undo that (or
1546 make equivalent types of changes) to get the constants we need
1547 if they're off by one in the right direction. */
1548
1549 if (CONST_INT_P (target))
1550 {
1551 enum rtx_code code = GET_CODE (if_info->cond);
1552 rtx op_a = XEXP (if_info->cond, 0);
1553 rtx op_b = XEXP (if_info->cond, 1);
1554 rtx prev_insn;
1555
1556 /* First, look to see if we put a constant in a register. */
1557 prev_insn = prev_nonnote_insn (if_info->cond_earliest);
1558 if (prev_insn
1559 && BLOCK_NUM (prev_insn) == BLOCK_NUM (if_info->cond_earliest)
1560 && INSN_P (prev_insn)
1561 && GET_CODE (PATTERN (prev_insn)) == SET)
1562 {
1563 rtx src = find_reg_equal_equiv_note (prev_insn);
1564 if (!src)
1565 src = SET_SRC (PATTERN (prev_insn));
1566 if (CONST_INT_P (src))
1567 {
1568 if (rtx_equal_p (op_a, SET_DEST (PATTERN (prev_insn))))
1569 op_a = src;
1570 else if (rtx_equal_p (op_b, SET_DEST (PATTERN (prev_insn))))
1571 op_b = src;
1572
1573 if (CONST_INT_P (op_a))
1574 {
1575 rtx tmp = op_a;
1576 op_a = op_b;
1577 op_b = tmp;
1578 code = swap_condition (code);
1579 }
1580 }
1581 }
1582
1583 /* Now, look to see if we can get the right constant by
1584 adjusting the conditional. */
1585 if (CONST_INT_P (op_b))
1586 {
1587 HOST_WIDE_INT desired_val = INTVAL (target);
1588 HOST_WIDE_INT actual_val = INTVAL (op_b);
1589
1590 switch (code)
1591 {
1592 case LT:
1593 if (actual_val == desired_val + 1)
1594 {
1595 code = LE;
1596 op_b = GEN_INT (desired_val);
1597 }
1598 break;
1599 case LE:
1600 if (actual_val == desired_val - 1)
1601 {
1602 code = LT;
1603 op_b = GEN_INT (desired_val);
1604 }
1605 break;
1606 case GT:
1607 if (actual_val == desired_val - 1)
1608 {
1609 code = GE;
1610 op_b = GEN_INT (desired_val);
1611 }
1612 break;
1613 case GE:
1614 if (actual_val == desired_val + 1)
1615 {
1616 code = GT;
1617 op_b = GEN_INT (desired_val);
1618 }
1619 break;
1620 default:
1621 break;
1622 }
1623 }
1624
1625 /* If we made any changes, generate a new conditional that is
1626 equivalent to what we started with, but has the right
1627 constants in it. */
1628 if (code != GET_CODE (if_info->cond)
1629 || op_a != XEXP (if_info->cond, 0)
1630 || op_b != XEXP (if_info->cond, 1))
1631 {
1632 cond = gen_rtx_fmt_ee (code, GET_MODE (cond), op_a, op_b);
1633 *earliest = if_info->cond_earliest;
1634 return cond;
1635 }
1636 }
1637
1638 cond = canonicalize_condition (if_info->jump, cond, reverse,
1639 earliest, target, false, true);
1640 if (! cond || ! reg_mentioned_p (target, cond))
1641 return NULL;
1642
1643 /* We almost certainly searched back to a different place.
1644 Need to re-verify correct lifetimes. */
1645
1646 /* X may not be mentioned in the range (cond_earliest, jump]. */
1647 for (insn = if_info->jump; insn != *earliest; insn = PREV_INSN (insn))
1648 if (INSN_P (insn) && reg_overlap_mentioned_p (if_info->x, PATTERN (insn)))
1649 return NULL;
1650
1651 /* A and B may not be modified in the range [cond_earliest, jump). */
1652 for (insn = *earliest; insn != if_info->jump; insn = NEXT_INSN (insn))
1653 if (INSN_P (insn)
1654 && (modified_in_p (if_info->a, insn)
1655 || modified_in_p (if_info->b, insn)))
1656 return NULL;
1657
1658 return cond;
1659 }
1660
1661 /* Convert "if (a < b) x = a; else x = b;" to "x = min(a, b);", etc. */
1662
1663 static int
1664 noce_try_minmax (struct noce_if_info *if_info)
1665 {
1666 rtx cond, earliest, target, seq;
1667 enum rtx_code code, op;
1668 int unsignedp;
1669
1670 /* ??? Reject modes with NaNs or signed zeros since we don't know how
1671 they will be resolved with an SMIN/SMAX. It wouldn't be too hard
1672 to get the target to tell us... */
1673 if (HONOR_SIGNED_ZEROS (GET_MODE (if_info->x))
1674 || HONOR_NANS (GET_MODE (if_info->x)))
1675 return FALSE;
1676
1677 cond = noce_get_alt_condition (if_info, if_info->a, &earliest);
1678 if (!cond)
1679 return FALSE;
1680
1681 /* Verify the condition is of the form we expect, and canonicalize
1682 the comparison code. */
1683 code = GET_CODE (cond);
1684 if (rtx_equal_p (XEXP (cond, 0), if_info->a))
1685 {
1686 if (! rtx_equal_p (XEXP (cond, 1), if_info->b))
1687 return FALSE;
1688 }
1689 else if (rtx_equal_p (XEXP (cond, 1), if_info->a))
1690 {
1691 if (! rtx_equal_p (XEXP (cond, 0), if_info->b))
1692 return FALSE;
1693 code = swap_condition (code);
1694 }
1695 else
1696 return FALSE;
1697
1698 /* Determine what sort of operation this is. Note that the code is for
1699 a taken branch, so the code->operation mapping appears backwards. */
1700 switch (code)
1701 {
1702 case LT:
1703 case LE:
1704 case UNLT:
1705 case UNLE:
1706 op = SMAX;
1707 unsignedp = 0;
1708 break;
1709 case GT:
1710 case GE:
1711 case UNGT:
1712 case UNGE:
1713 op = SMIN;
1714 unsignedp = 0;
1715 break;
1716 case LTU:
1717 case LEU:
1718 op = UMAX;
1719 unsignedp = 1;
1720 break;
1721 case GTU:
1722 case GEU:
1723 op = UMIN;
1724 unsignedp = 1;
1725 break;
1726 default:
1727 return FALSE;
1728 }
1729
1730 start_sequence ();
1731
1732 target = expand_simple_binop (GET_MODE (if_info->x), op,
1733 if_info->a, if_info->b,
1734 if_info->x, unsignedp, OPTAB_WIDEN);
1735 if (! target)
1736 {
1737 end_sequence ();
1738 return FALSE;
1739 }
1740 if (target != if_info->x)
1741 noce_emit_move_insn (if_info->x, target);
1742
1743 seq = end_ifcvt_sequence (if_info);
1744 if (!seq)
1745 return FALSE;
1746
1747 emit_insn_before_setloc (seq, if_info->jump, INSN_LOCATOR (if_info->insn_a));
1748 if_info->cond = cond;
1749 if_info->cond_earliest = earliest;
1750
1751 return TRUE;
1752 }
1753
1754 /* Convert "if (a < 0) x = -a; else x = a;" to "x = abs(a);",
1755 "if (a < 0) x = ~a; else x = a;" to "x = one_cmpl_abs(a);",
1756 etc. */
1757
1758 static int
1759 noce_try_abs (struct noce_if_info *if_info)
1760 {
1761 rtx cond, earliest, target, seq, a, b, c;
1762 int negate;
1763 bool one_cmpl = false;
1764
1765 /* Reject modes with signed zeros. */
1766 if (HONOR_SIGNED_ZEROS (GET_MODE (if_info->x)))
1767 return FALSE;
1768
1769 /* Recognize A and B as constituting an ABS or NABS. The canonical
1770 form is a branch around the negation, taken when the object is the
1771 first operand of a comparison against 0 that evaluates to true. */
1772 a = if_info->a;
1773 b = if_info->b;
1774 if (GET_CODE (a) == NEG && rtx_equal_p (XEXP (a, 0), b))
1775 negate = 0;
1776 else if (GET_CODE (b) == NEG && rtx_equal_p (XEXP (b, 0), a))
1777 {
1778 c = a; a = b; b = c;
1779 negate = 1;
1780 }
1781 else if (GET_CODE (a) == NOT && rtx_equal_p (XEXP (a, 0), b))
1782 {
1783 negate = 0;
1784 one_cmpl = true;
1785 }
1786 else if (GET_CODE (b) == NOT && rtx_equal_p (XEXP (b, 0), a))
1787 {
1788 c = a; a = b; b = c;
1789 negate = 1;
1790 one_cmpl = true;
1791 }
1792 else
1793 return FALSE;
1794
1795 cond = noce_get_alt_condition (if_info, b, &earliest);
1796 if (!cond)
1797 return FALSE;
1798
1799 /* Verify the condition is of the form we expect. */
1800 if (rtx_equal_p (XEXP (cond, 0), b))
1801 c = XEXP (cond, 1);
1802 else if (rtx_equal_p (XEXP (cond, 1), b))
1803 {
1804 c = XEXP (cond, 0);
1805 negate = !negate;
1806 }
1807 else
1808 return FALSE;
1809
1810 /* Verify that C is zero. Search one step backward for a
1811 REG_EQUAL note or a simple source if necessary. */
1812 if (REG_P (c))
1813 {
1814 rtx set, insn = prev_nonnote_insn (earliest);
1815 if (insn
1816 && BLOCK_NUM (insn) == BLOCK_NUM (earliest)
1817 && (set = single_set (insn))
1818 && rtx_equal_p (SET_DEST (set), c))
1819 {
1820 rtx note = find_reg_equal_equiv_note (insn);
1821 if (note)
1822 c = XEXP (note, 0);
1823 else
1824 c = SET_SRC (set);
1825 }
1826 else
1827 return FALSE;
1828 }
1829 if (MEM_P (c)
1830 && GET_CODE (XEXP (c, 0)) == SYMBOL_REF
1831 && CONSTANT_POOL_ADDRESS_P (XEXP (c, 0)))
1832 c = get_pool_constant (XEXP (c, 0));
1833
1834 /* Work around funny ideas get_condition has wrt canonicalization.
1835 Note that these rtx constants are known to be CONST_INT, and
1836 therefore imply integer comparisons. */
1837 if (c == constm1_rtx && GET_CODE (cond) == GT)
1838 ;
1839 else if (c == const1_rtx && GET_CODE (cond) == LT)
1840 ;
1841 else if (c != CONST0_RTX (GET_MODE (b)))
1842 return FALSE;
1843
1844 /* Determine what sort of operation this is. */
1845 switch (GET_CODE (cond))
1846 {
1847 case LT:
1848 case LE:
1849 case UNLT:
1850 case UNLE:
1851 negate = !negate;
1852 break;
1853 case GT:
1854 case GE:
1855 case UNGT:
1856 case UNGE:
1857 break;
1858 default:
1859 return FALSE;
1860 }
1861
1862 start_sequence ();
1863 if (one_cmpl)
1864 target = expand_one_cmpl_abs_nojump (GET_MODE (if_info->x), b,
1865 if_info->x);
1866 else
1867 target = expand_abs_nojump (GET_MODE (if_info->x), b, if_info->x, 1);
1868
1869 /* ??? It's a quandary whether cmove would be better here, especially
1870 for integers. Perhaps combine will clean things up. */
1871 if (target && negate)
1872 {
1873 if (one_cmpl)
1874 target = expand_simple_unop (GET_MODE (target), NOT, target,
1875 if_info->x, 0);
1876 else
1877 target = expand_simple_unop (GET_MODE (target), NEG, target,
1878 if_info->x, 0);
1879 }
1880
1881 if (! target)
1882 {
1883 end_sequence ();
1884 return FALSE;
1885 }
1886
1887 if (target != if_info->x)
1888 noce_emit_move_insn (if_info->x, target);
1889
1890 seq = end_ifcvt_sequence (if_info);
1891 if (!seq)
1892 return FALSE;
1893
1894 emit_insn_before_setloc (seq, if_info->jump, INSN_LOCATOR (if_info->insn_a));
1895 if_info->cond = cond;
1896 if_info->cond_earliest = earliest;
1897
1898 return TRUE;
1899 }
1900
1901 /* Convert "if (m < 0) x = b; else x = 0;" to "x = (m >> C) & b;". */
1902
1903 static int
1904 noce_try_sign_mask (struct noce_if_info *if_info)
1905 {
1906 rtx cond, t, m, c, seq;
1907 enum machine_mode mode;
1908 enum rtx_code code;
1909 bool t_unconditional;
1910
1911 cond = if_info->cond;
1912 code = GET_CODE (cond);
1913 m = XEXP (cond, 0);
1914 c = XEXP (cond, 1);
1915
1916 t = NULL_RTX;
1917 if (if_info->a == const0_rtx)
1918 {
1919 if ((code == LT && c == const0_rtx)
1920 || (code == LE && c == constm1_rtx))
1921 t = if_info->b;
1922 }
1923 else if (if_info->b == const0_rtx)
1924 {
1925 if ((code == GE && c == const0_rtx)
1926 || (code == GT && c == constm1_rtx))
1927 t = if_info->a;
1928 }
1929
1930 if (! t || side_effects_p (t))
1931 return FALSE;
1932
1933 /* We currently don't handle different modes. */
1934 mode = GET_MODE (t);
1935 if (GET_MODE (m) != mode)
1936 return FALSE;
1937
1938 /* This is only profitable if T is unconditionally executed/evaluated in the
1939 original insn sequence or T is cheap. The former happens if B is the
1940 non-zero (T) value and if INSN_B was taken from TEST_BB, or there was no
1941 INSN_B which can happen for e.g. conditional stores to memory. For the
1942 cost computation use the block TEST_BB where the evaluation will end up
1943 after the transformation. */
1944 t_unconditional =
1945 (t == if_info->b
1946 && (if_info->insn_b == NULL_RTX
1947 || BLOCK_FOR_INSN (if_info->insn_b) == if_info->test_bb));
1948 if (!(t_unconditional
1949 || (rtx_cost (t, SET, optimize_bb_for_speed_p (if_info->test_bb))
1950 < COSTS_N_INSNS (2))))
1951 return FALSE;
1952
1953 start_sequence ();
1954 /* Use emit_store_flag to generate "m < 0 ? -1 : 0" instead of expanding
1955 "(signed) m >> 31" directly. This benefits targets with specialized
1956 insns to obtain the signmask, but still uses ashr_optab otherwise. */
1957 m = emit_store_flag (gen_reg_rtx (mode), LT, m, const0_rtx, mode, 0, -1);
1958 t = m ? expand_binop (mode, and_optab, m, t, NULL_RTX, 0, OPTAB_DIRECT)
1959 : NULL_RTX;
1960
1961 if (!t)
1962 {
1963 end_sequence ();
1964 return FALSE;
1965 }
1966
1967 noce_emit_move_insn (if_info->x, t);
1968
1969 seq = end_ifcvt_sequence (if_info);
1970 if (!seq)
1971 return FALSE;
1972
1973 emit_insn_before_setloc (seq, if_info->jump, INSN_LOCATOR (if_info->insn_a));
1974 return TRUE;
1975 }
1976
1977
1978 /* Optimize away "if (x & C) x |= C" and similar bit manipulation
1979 transformations. */
1980
1981 static int
1982 noce_try_bitop (struct noce_if_info *if_info)
1983 {
1984 rtx cond, x, a, result, seq;
1985 enum machine_mode mode;
1986 enum rtx_code code;
1987 int bitnum;
1988
1989 x = if_info->x;
1990 cond = if_info->cond;
1991 code = GET_CODE (cond);
1992
1993 /* Check for no else condition. */
1994 if (! rtx_equal_p (x, if_info->b))
1995 return FALSE;
1996
1997 /* Check for a suitable condition. */
1998 if (code != NE && code != EQ)
1999 return FALSE;
2000 if (XEXP (cond, 1) != const0_rtx)
2001 return FALSE;
2002 cond = XEXP (cond, 0);
2003
2004 /* ??? We could also handle AND here. */
2005 if (GET_CODE (cond) == ZERO_EXTRACT)
2006 {
2007 if (XEXP (cond, 1) != const1_rtx
2008 || !CONST_INT_P (XEXP (cond, 2))
2009 || ! rtx_equal_p (x, XEXP (cond, 0)))
2010 return FALSE;
2011 bitnum = INTVAL (XEXP (cond, 2));
2012 mode = GET_MODE (x);
2013 if (BITS_BIG_ENDIAN)
2014 bitnum = GET_MODE_BITSIZE (mode) - 1 - bitnum;
2015 if (bitnum < 0 || bitnum >= HOST_BITS_PER_WIDE_INT)
2016 return FALSE;
2017 }
2018 else
2019 return FALSE;
2020
2021 a = if_info->a;
2022 if (GET_CODE (a) == IOR || GET_CODE (a) == XOR)
2023 {
2024 /* Check for "if (X & C) x = x op C". */
2025 if (! rtx_equal_p (x, XEXP (a, 0))
2026 || !CONST_INT_P (XEXP (a, 1))
2027 || (INTVAL (XEXP (a, 1)) & GET_MODE_MASK (mode))
2028 != (unsigned HOST_WIDE_INT) 1 << bitnum)
2029 return FALSE;
2030
2031 /* if ((x & C) == 0) x |= C; is transformed to x |= C. */
2032 /* if ((x & C) != 0) x |= C; is transformed to nothing. */
2033 if (GET_CODE (a) == IOR)
2034 result = (code == NE) ? a : NULL_RTX;
2035 else if (code == NE)
2036 {
2037 /* if ((x & C) == 0) x ^= C; is transformed to x |= C. */
2038 result = gen_int_mode ((HOST_WIDE_INT) 1 << bitnum, mode);
2039 result = simplify_gen_binary (IOR, mode, x, result);
2040 }
2041 else
2042 {
2043 /* if ((x & C) != 0) x ^= C; is transformed to x &= ~C. */
2044 result = gen_int_mode (~((HOST_WIDE_INT) 1 << bitnum), mode);
2045 result = simplify_gen_binary (AND, mode, x, result);
2046 }
2047 }
2048 else if (GET_CODE (a) == AND)
2049 {
2050 /* Check for "if (X & C) x &= ~C". */
2051 if (! rtx_equal_p (x, XEXP (a, 0))
2052 || !CONST_INT_P (XEXP (a, 1))
2053 || (INTVAL (XEXP (a, 1)) & GET_MODE_MASK (mode))
2054 != (~((HOST_WIDE_INT) 1 << bitnum) & GET_MODE_MASK (mode)))
2055 return FALSE;
2056
2057 /* if ((x & C) == 0) x &= ~C; is transformed to nothing. */
2058 /* if ((x & C) != 0) x &= ~C; is transformed to x &= ~C. */
2059 result = (code == EQ) ? a : NULL_RTX;
2060 }
2061 else
2062 return FALSE;
2063
2064 if (result)
2065 {
2066 start_sequence ();
2067 noce_emit_move_insn (x, result);
2068 seq = end_ifcvt_sequence (if_info);
2069 if (!seq)
2070 return FALSE;
2071
2072 emit_insn_before_setloc (seq, if_info->jump,
2073 INSN_LOCATOR (if_info->insn_a));
2074 }
2075 return TRUE;
2076 }
2077
2078
2079 /* Similar to get_condition, only the resulting condition must be
2080 valid at JUMP, instead of at EARLIEST.
2081
2082 If THEN_ELSE_REVERSED is true, the fallthrough does not go to the
2083 THEN block of the caller, and we have to reverse the condition. */
2084
2085 static rtx
2086 noce_get_condition (rtx jump, rtx *earliest, bool then_else_reversed)
2087 {
2088 rtx cond, set, tmp;
2089 bool reverse;
2090
2091 if (! any_condjump_p (jump))
2092 return NULL_RTX;
2093
2094 set = pc_set (jump);
2095
2096 /* If this branches to JUMP_LABEL when the condition is false,
2097 reverse the condition. */
2098 reverse = (GET_CODE (XEXP (SET_SRC (set), 2)) == LABEL_REF
2099 && XEXP (XEXP (SET_SRC (set), 2), 0) == JUMP_LABEL (jump));
2100
2101 /* We may have to reverse because the caller's if block is not canonical,
2102 i.e. the THEN block isn't the fallthrough block for the TEST block
2103 (see find_if_header). */
2104 if (then_else_reversed)
2105 reverse = !reverse;
2106
2107 /* If the condition variable is a register and is MODE_INT, accept it. */
2108
2109 cond = XEXP (SET_SRC (set), 0);
2110 tmp = XEXP (cond, 0);
2111 if (REG_P (tmp) && GET_MODE_CLASS (GET_MODE (tmp)) == MODE_INT)
2112 {
2113 *earliest = jump;
2114
2115 if (reverse)
2116 cond = gen_rtx_fmt_ee (reverse_condition (GET_CODE (cond)),
2117 GET_MODE (cond), tmp, XEXP (cond, 1));
2118 return cond;
2119 }
2120
2121 /* Otherwise, fall back on canonicalize_condition to do the dirty
2122 work of manipulating MODE_CC values and COMPARE rtx codes. */
2123 return canonicalize_condition (jump, cond, reverse, earliest,
2124 NULL_RTX, false, true);
2125 }
2126
2127 /* Return true if OP is ok for if-then-else processing. */
2128
2129 static int
2130 noce_operand_ok (const_rtx op)
2131 {
2132 /* We special-case memories, so handle any of them with
2133 no address side effects. */
2134 if (MEM_P (op))
2135 return ! side_effects_p (XEXP (op, 0));
2136
2137 if (side_effects_p (op))
2138 return FALSE;
2139
2140 return ! may_trap_p (op);
2141 }
2142
2143 /* Return true if a write into MEM may trap or fault. */
2144
2145 static bool
2146 noce_mem_write_may_trap_or_fault_p (const_rtx mem)
2147 {
2148 rtx addr;
2149
2150 if (MEM_READONLY_P (mem))
2151 return true;
2152
2153 if (may_trap_or_fault_p (mem))
2154 return true;
2155
2156 addr = XEXP (mem, 0);
2157
2158 /* Call target hook to avoid the effects of -fpic etc.... */
2159 addr = targetm.delegitimize_address (addr);
2160
2161 while (addr)
2162 switch (GET_CODE (addr))
2163 {
2164 case CONST:
2165 case PRE_DEC:
2166 case PRE_INC:
2167 case POST_DEC:
2168 case POST_INC:
2169 case POST_MODIFY:
2170 addr = XEXP (addr, 0);
2171 break;
2172 case LO_SUM:
2173 case PRE_MODIFY:
2174 addr = XEXP (addr, 1);
2175 break;
2176 case PLUS:
2177 if (CONST_INT_P (XEXP (addr, 1)))
2178 addr = XEXP (addr, 0);
2179 else
2180 return false;
2181 break;
2182 case LABEL_REF:
2183 return true;
2184 case SYMBOL_REF:
2185 if (SYMBOL_REF_DECL (addr)
2186 && decl_readonly_section (SYMBOL_REF_DECL (addr), 0))
2187 return true;
2188 return false;
2189 default:
2190 return false;
2191 }
2192
2193 return false;
2194 }
2195
2196 /* Return whether we can use store speculation for MEM. TOP_BB is the
2197 basic block above the conditional block where we are considering
2198 doing the speculative store. We look for whether MEM is set
2199 unconditionally later in the function. */
2200
2201 static bool
2202 noce_can_store_speculate_p (basic_block top_bb, const_rtx mem)
2203 {
2204 basic_block dominator;
2205
2206 for (dominator = get_immediate_dominator (CDI_POST_DOMINATORS, top_bb);
2207 dominator != NULL;
2208 dominator = get_immediate_dominator (CDI_POST_DOMINATORS, dominator))
2209 {
2210 rtx insn;
2211
2212 FOR_BB_INSNS (dominator, insn)
2213 {
2214 /* If we see something that might be a memory barrier, we
2215 have to stop looking. Even if the MEM is set later in
2216 the function, we still don't want to set it
2217 unconditionally before the barrier. */
2218 if (INSN_P (insn)
2219 && (volatile_insn_p (PATTERN (insn))
2220 || (CALL_P (insn) && (!RTL_CONST_CALL_P (insn)))))
2221 return false;
2222
2223 if (memory_modified_in_insn_p (mem, insn))
2224 return true;
2225 if (modified_in_p (XEXP (mem, 0), insn))
2226 return false;
2227
2228 }
2229 }
2230
2231 return false;
2232 }
2233
2234 /* Given a simple IF-THEN-JOIN or IF-THEN-ELSE-JOIN block, attempt to convert
2235 it without using conditional execution. Return TRUE if we were successful
2236 at converting the block. */
2237
2238 static int
2239 noce_process_if_block (struct noce_if_info *if_info)
2240 {
2241 basic_block test_bb = if_info->test_bb; /* test block */
2242 basic_block then_bb = if_info->then_bb; /* THEN */
2243 basic_block else_bb = if_info->else_bb; /* ELSE or NULL */
2244 basic_block join_bb = if_info->join_bb; /* JOIN */
2245 rtx jump = if_info->jump;
2246 rtx cond = if_info->cond;
2247 rtx insn_a, insn_b;
2248 rtx set_a, set_b;
2249 rtx orig_x, x, a, b;
2250
2251 /* We're looking for patterns of the form
2252
2253 (1) if (...) x = a; else x = b;
2254 (2) x = b; if (...) x = a;
2255 (3) if (...) x = a; // as if with an initial x = x.
2256
2257 The later patterns require jumps to be more expensive.
2258
2259 ??? For future expansion, look for multiple X in such patterns. */
2260
2261 /* Look for one of the potential sets. */
2262 insn_a = first_active_insn (then_bb);
2263 if (! insn_a
2264 || insn_a != last_active_insn (then_bb, FALSE)
2265 || (set_a = single_set (insn_a)) == NULL_RTX)
2266 return FALSE;
2267
2268 x = SET_DEST (set_a);
2269 a = SET_SRC (set_a);
2270
2271 /* Look for the other potential set. Make sure we've got equivalent
2272 destinations. */
2273 /* ??? This is overconservative. Storing to two different mems is
2274 as easy as conditionally computing the address. Storing to a
2275 single mem merely requires a scratch memory to use as one of the
2276 destination addresses; often the memory immediately below the
2277 stack pointer is available for this. */
2278 set_b = NULL_RTX;
2279 if (else_bb)
2280 {
2281 insn_b = first_active_insn (else_bb);
2282 if (! insn_b
2283 || insn_b != last_active_insn (else_bb, FALSE)
2284 || (set_b = single_set (insn_b)) == NULL_RTX
2285 || ! rtx_equal_p (x, SET_DEST (set_b)))
2286 return FALSE;
2287 }
2288 else
2289 {
2290 insn_b = prev_nonnote_insn (if_info->cond_earliest);
2291 while (insn_b && DEBUG_INSN_P (insn_b))
2292 insn_b = prev_nonnote_insn (insn_b);
2293 /* We're going to be moving the evaluation of B down from above
2294 COND_EARLIEST to JUMP. Make sure the relevant data is still
2295 intact. */
2296 if (! insn_b
2297 || BLOCK_NUM (insn_b) != BLOCK_NUM (if_info->cond_earliest)
2298 || !NONJUMP_INSN_P (insn_b)
2299 || (set_b = single_set (insn_b)) == NULL_RTX
2300 || ! rtx_equal_p (x, SET_DEST (set_b))
2301 || ! noce_operand_ok (SET_SRC (set_b))
2302 || reg_overlap_mentioned_p (x, SET_SRC (set_b))
2303 || modified_between_p (SET_SRC (set_b), insn_b, jump)
2304 /* Likewise with X. In particular this can happen when
2305 noce_get_condition looks farther back in the instruction
2306 stream than one might expect. */
2307 || reg_overlap_mentioned_p (x, cond)
2308 || reg_overlap_mentioned_p (x, a)
2309 || modified_between_p (x, insn_b, jump))
2310 insn_b = set_b = NULL_RTX;
2311 }
2312
2313 /* If x has side effects then only the if-then-else form is safe to
2314 convert. But even in that case we would need to restore any notes
2315 (such as REG_INC) at then end. That can be tricky if
2316 noce_emit_move_insn expands to more than one insn, so disable the
2317 optimization entirely for now if there are side effects. */
2318 if (side_effects_p (x))
2319 return FALSE;
2320
2321 b = (set_b ? SET_SRC (set_b) : x);
2322
2323 /* Only operate on register destinations, and even then avoid extending
2324 the lifetime of hard registers on small register class machines. */
2325 orig_x = x;
2326 if (!REG_P (x)
2327 || (SMALL_REGISTER_CLASSES
2328 && REGNO (x) < FIRST_PSEUDO_REGISTER))
2329 {
2330 if (GET_MODE (x) == BLKmode)
2331 return FALSE;
2332
2333 if (GET_CODE (x) == ZERO_EXTRACT
2334 && (!CONST_INT_P (XEXP (x, 1))
2335 || !CONST_INT_P (XEXP (x, 2))))
2336 return FALSE;
2337
2338 x = gen_reg_rtx (GET_MODE (GET_CODE (x) == STRICT_LOW_PART
2339 ? XEXP (x, 0) : x));
2340 }
2341
2342 /* Don't operate on sources that may trap or are volatile. */
2343 if (! noce_operand_ok (a) || ! noce_operand_ok (b))
2344 return FALSE;
2345
2346 retry:
2347 /* Set up the info block for our subroutines. */
2348 if_info->insn_a = insn_a;
2349 if_info->insn_b = insn_b;
2350 if_info->x = x;
2351 if_info->a = a;
2352 if_info->b = b;
2353
2354 /* Try optimizations in some approximation of a useful order. */
2355 /* ??? Should first look to see if X is live incoming at all. If it
2356 isn't, we don't need anything but an unconditional set. */
2357
2358 /* Look and see if A and B are really the same. Avoid creating silly
2359 cmove constructs that no one will fix up later. */
2360 if (rtx_equal_p (a, b))
2361 {
2362 /* If we have an INSN_B, we don't have to create any new rtl. Just
2363 move the instruction that we already have. If we don't have an
2364 INSN_B, that means that A == X, and we've got a noop move. In
2365 that case don't do anything and let the code below delete INSN_A. */
2366 if (insn_b && else_bb)
2367 {
2368 rtx note;
2369
2370 if (else_bb && insn_b == BB_END (else_bb))
2371 BB_END (else_bb) = PREV_INSN (insn_b);
2372 reorder_insns (insn_b, insn_b, PREV_INSN (jump));
2373
2374 /* If there was a REG_EQUAL note, delete it since it may have been
2375 true due to this insn being after a jump. */
2376 if ((note = find_reg_note (insn_b, REG_EQUAL, NULL_RTX)) != 0)
2377 remove_note (insn_b, note);
2378
2379 insn_b = NULL_RTX;
2380 }
2381 /* If we have "x = b; if (...) x = a;", and x has side-effects, then
2382 x must be executed twice. */
2383 else if (insn_b && side_effects_p (orig_x))
2384 return FALSE;
2385
2386 x = orig_x;
2387 goto success;
2388 }
2389
2390 if (!set_b && MEM_P (orig_x))
2391 {
2392 /* Disallow the "if (...) x = a;" form (implicit "else x = x;")
2393 for optimizations if writing to x may trap or fault,
2394 i.e. it's a memory other than a static var or a stack slot,
2395 is misaligned on strict aligned machines or is read-only. If
2396 x is a read-only memory, then the program is valid only if we
2397 avoid the store into it. If there are stores on both the
2398 THEN and ELSE arms, then we can go ahead with the conversion;
2399 either the program is broken, or the condition is always
2400 false such that the other memory is selected. */
2401 if (noce_mem_write_may_trap_or_fault_p (orig_x))
2402 return FALSE;
2403
2404 /* Avoid store speculation: given "if (...) x = a" where x is a
2405 MEM, we only want to do the store if x is always set
2406 somewhere in the function. This avoids cases like
2407 if (pthread_mutex_trylock(mutex))
2408 ++global_variable;
2409 where we only want global_variable to be changed if the mutex
2410 is held. FIXME: This should ideally be expressed directly in
2411 RTL somehow. */
2412 if (!noce_can_store_speculate_p (test_bb, orig_x))
2413 return FALSE;
2414 }
2415
2416 if (noce_try_move (if_info))
2417 goto success;
2418 if (noce_try_store_flag (if_info))
2419 goto success;
2420 if (noce_try_bitop (if_info))
2421 goto success;
2422 if (noce_try_minmax (if_info))
2423 goto success;
2424 if (noce_try_abs (if_info))
2425 goto success;
2426 if (HAVE_conditional_move
2427 && noce_try_cmove (if_info))
2428 goto success;
2429 if (! HAVE_conditional_execution)
2430 {
2431 if (noce_try_store_flag_constants (if_info))
2432 goto success;
2433 if (noce_try_addcc (if_info))
2434 goto success;
2435 if (noce_try_store_flag_mask (if_info))
2436 goto success;
2437 if (HAVE_conditional_move
2438 && noce_try_cmove_arith (if_info))
2439 goto success;
2440 if (noce_try_sign_mask (if_info))
2441 goto success;
2442 }
2443
2444 if (!else_bb && set_b)
2445 {
2446 insn_b = set_b = NULL_RTX;
2447 b = orig_x;
2448 goto retry;
2449 }
2450
2451 return FALSE;
2452
2453 success:
2454
2455 /* If we used a temporary, fix it up now. */
2456 if (orig_x != x)
2457 {
2458 rtx seq;
2459
2460 start_sequence ();
2461 noce_emit_move_insn (orig_x, x);
2462 seq = get_insns ();
2463 set_used_flags (orig_x);
2464 unshare_all_rtl_in_chain (seq);
2465 end_sequence ();
2466
2467 emit_insn_before_setloc (seq, BB_END (test_bb), INSN_LOCATOR (insn_a));
2468 }
2469
2470 /* The original THEN and ELSE blocks may now be removed. The test block
2471 must now jump to the join block. If the test block and the join block
2472 can be merged, do so. */
2473 if (else_bb)
2474 {
2475 delete_basic_block (else_bb);
2476 num_true_changes++;
2477 }
2478 else
2479 remove_edge (find_edge (test_bb, join_bb));
2480
2481 remove_edge (find_edge (then_bb, join_bb));
2482 redirect_edge_and_branch_force (single_succ_edge (test_bb), join_bb);
2483 delete_basic_block (then_bb);
2484 num_true_changes++;
2485
2486 if (can_merge_blocks_p (test_bb, join_bb))
2487 {
2488 merge_blocks (test_bb, join_bb);
2489 num_true_changes++;
2490 }
2491
2492 num_updated_if_blocks++;
2493 return TRUE;
2494 }
2495
2496 /* Check whether a block is suitable for conditional move conversion.
2497 Every insn must be a simple set of a register to a constant or a
2498 register. For each assignment, store the value in the array VALS,
2499 indexed by register number, then store the register number in
2500 REGS. COND is the condition we will test. */
2501
2502 static int
2503 check_cond_move_block (basic_block bb, rtx *vals, VEC (int, heap) **regs, rtx cond)
2504 {
2505 rtx insn;
2506
2507 /* We can only handle simple jumps at the end of the basic block.
2508 It is almost impossible to update the CFG otherwise. */
2509 insn = BB_END (bb);
2510 if (JUMP_P (insn) && !onlyjump_p (insn))
2511 return FALSE;
2512
2513 FOR_BB_INSNS (bb, insn)
2514 {
2515 rtx set, dest, src;
2516
2517 if (!NONDEBUG_INSN_P (insn) || JUMP_P (insn))
2518 continue;
2519 set = single_set (insn);
2520 if (!set)
2521 return FALSE;
2522
2523 dest = SET_DEST (set);
2524 src = SET_SRC (set);
2525 if (!REG_P (dest)
2526 || (SMALL_REGISTER_CLASSES && HARD_REGISTER_P (dest)))
2527 return FALSE;
2528
2529 if (!CONSTANT_P (src) && !register_operand (src, VOIDmode))
2530 return FALSE;
2531
2532 if (side_effects_p (src) || side_effects_p (dest))
2533 return FALSE;
2534
2535 if (may_trap_p (src) || may_trap_p (dest))
2536 return FALSE;
2537
2538 /* Don't try to handle this if the source register was
2539 modified earlier in the block. */
2540 if ((REG_P (src)
2541 && vals[REGNO (src)] != NULL)
2542 || (GET_CODE (src) == SUBREG && REG_P (SUBREG_REG (src))
2543 && vals[REGNO (SUBREG_REG (src))] != NULL))
2544 return FALSE;
2545
2546 /* Don't try to handle this if the destination register was
2547 modified earlier in the block. */
2548 if (vals[REGNO (dest)] != NULL)
2549 return FALSE;
2550
2551 /* Don't try to handle this if the condition uses the
2552 destination register. */
2553 if (reg_overlap_mentioned_p (dest, cond))
2554 return FALSE;
2555
2556 /* Don't try to handle this if the source register is modified
2557 later in the block. */
2558 if (!CONSTANT_P (src)
2559 && modified_between_p (src, insn, NEXT_INSN (BB_END (bb))))
2560 return FALSE;
2561
2562 vals[REGNO (dest)] = src;
2563
2564 VEC_safe_push (int, heap, *regs, REGNO (dest));
2565 }
2566
2567 return TRUE;
2568 }
2569
2570 /* Given a basic block BB suitable for conditional move conversion,
2571 a condition COND, and arrays THEN_VALS and ELSE_VALS containing the
2572 register values depending on COND, emit the insns in the block as
2573 conditional moves. If ELSE_BLOCK is true, THEN_BB was already
2574 processed. The caller has started a sequence for the conversion.
2575 Return true if successful, false if something goes wrong. */
2576
2577 static bool
2578 cond_move_convert_if_block (struct noce_if_info *if_infop,
2579 basic_block bb, rtx cond,
2580 rtx *then_vals, rtx *else_vals,
2581 bool else_block_p)
2582 {
2583 enum rtx_code code;
2584 rtx insn, cond_arg0, cond_arg1;
2585
2586 code = GET_CODE (cond);
2587 cond_arg0 = XEXP (cond, 0);
2588 cond_arg1 = XEXP (cond, 1);
2589
2590 FOR_BB_INSNS (bb, insn)
2591 {
2592 rtx set, target, dest, t, e;
2593 unsigned int regno;
2594
2595 /* ??? Maybe emit conditional debug insn? */
2596 if (!NONDEBUG_INSN_P (insn) || JUMP_P (insn))
2597 continue;
2598 set = single_set (insn);
2599 gcc_assert (set && REG_P (SET_DEST (set)));
2600
2601 dest = SET_DEST (set);
2602 regno = REGNO (dest);
2603
2604 t = then_vals[regno];
2605 e = else_vals[regno];
2606
2607 if (else_block_p)
2608 {
2609 /* If this register was set in the then block, we already
2610 handled this case there. */
2611 if (t)
2612 continue;
2613 t = dest;
2614 gcc_assert (e);
2615 }
2616 else
2617 {
2618 gcc_assert (t);
2619 if (!e)
2620 e = dest;
2621 }
2622
2623 target = noce_emit_cmove (if_infop, dest, code, cond_arg0, cond_arg1,
2624 t, e);
2625 if (!target)
2626 return false;
2627
2628 if (target != dest)
2629 noce_emit_move_insn (dest, target);
2630 }
2631
2632 return true;
2633 }
2634
2635 /* Given a simple IF-THEN-JOIN or IF-THEN-ELSE-JOIN block, attempt to convert
2636 it using only conditional moves. Return TRUE if we were successful at
2637 converting the block. */
2638
2639 static int
2640 cond_move_process_if_block (struct noce_if_info *if_info)
2641 {
2642 basic_block test_bb = if_info->test_bb;
2643 basic_block then_bb = if_info->then_bb;
2644 basic_block else_bb = if_info->else_bb;
2645 basic_block join_bb = if_info->join_bb;
2646 rtx jump = if_info->jump;
2647 rtx cond = if_info->cond;
2648 rtx seq, loc_insn;
2649 int max_reg, size, c, reg;
2650 rtx *then_vals;
2651 rtx *else_vals;
2652 VEC (int, heap) *then_regs = NULL;
2653 VEC (int, heap) *else_regs = NULL;
2654 unsigned int i;
2655
2656 /* Build a mapping for each block to the value used for each
2657 register. */
2658 max_reg = max_reg_num ();
2659 size = (max_reg + 1) * sizeof (rtx);
2660 then_vals = (rtx *) alloca (size);
2661 else_vals = (rtx *) alloca (size);
2662 memset (then_vals, 0, size);
2663 memset (else_vals, 0, size);
2664
2665 /* Make sure the blocks are suitable. */
2666 if (!check_cond_move_block (then_bb, then_vals, &then_regs, cond)
2667 || (else_bb && !check_cond_move_block (else_bb, else_vals, &else_regs, cond)))
2668 {
2669 VEC_free (int, heap, then_regs);
2670 VEC_free (int, heap, else_regs);
2671 return FALSE;
2672 }
2673
2674 /* Make sure the blocks can be used together. If the same register
2675 is set in both blocks, and is not set to a constant in both
2676 cases, then both blocks must set it to the same register. We
2677 have already verified that if it is set to a register, that the
2678 source register does not change after the assignment. Also count
2679 the number of registers set in only one of the blocks. */
2680 c = 0;
2681 for (i = 0; VEC_iterate (int, then_regs, i, reg); i++)
2682 {
2683 if (!then_vals[reg] && !else_vals[reg])
2684 continue;
2685
2686 if (!else_vals[reg])
2687 ++c;
2688 else
2689 {
2690 if (!CONSTANT_P (then_vals[reg])
2691 && !CONSTANT_P (else_vals[reg])
2692 && !rtx_equal_p (then_vals[reg], else_vals[reg]))
2693 {
2694 VEC_free (int, heap, then_regs);
2695 VEC_free (int, heap, else_regs);
2696 return FALSE;
2697 }
2698 }
2699 }
2700
2701 /* Finish off c for MAX_CONDITIONAL_EXECUTE. */
2702 for (i = 0; VEC_iterate (int, else_regs, i, reg); ++i)
2703 if (!then_vals[reg])
2704 ++c;
2705
2706 /* Make sure it is reasonable to convert this block. What matters
2707 is the number of assignments currently made in only one of the
2708 branches, since if we convert we are going to always execute
2709 them. */
2710 if (c > MAX_CONDITIONAL_EXECUTE)
2711 {
2712 VEC_free (int, heap, then_regs);
2713 VEC_free (int, heap, else_regs);
2714 return FALSE;
2715 }
2716
2717 /* Try to emit the conditional moves. First do the then block,
2718 then do anything left in the else blocks. */
2719 start_sequence ();
2720 if (!cond_move_convert_if_block (if_info, then_bb, cond,
2721 then_vals, else_vals, false)
2722 || (else_bb
2723 && !cond_move_convert_if_block (if_info, else_bb, cond,
2724 then_vals, else_vals, true)))
2725 {
2726 end_sequence ();
2727 VEC_free (int, heap, then_regs);
2728 VEC_free (int, heap, else_regs);
2729 return FALSE;
2730 }
2731 seq = end_ifcvt_sequence (if_info);
2732 if (!seq)
2733 {
2734 VEC_free (int, heap, then_regs);
2735 VEC_free (int, heap, else_regs);
2736 return FALSE;
2737 }
2738
2739 loc_insn = first_active_insn (then_bb);
2740 if (!loc_insn)
2741 {
2742 loc_insn = first_active_insn (else_bb);
2743 gcc_assert (loc_insn);
2744 }
2745 emit_insn_before_setloc (seq, jump, INSN_LOCATOR (loc_insn));
2746
2747 if (else_bb)
2748 {
2749 delete_basic_block (else_bb);
2750 num_true_changes++;
2751 }
2752 else
2753 remove_edge (find_edge (test_bb, join_bb));
2754
2755 remove_edge (find_edge (then_bb, join_bb));
2756 redirect_edge_and_branch_force (single_succ_edge (test_bb), join_bb);
2757 delete_basic_block (then_bb);
2758 num_true_changes++;
2759
2760 if (can_merge_blocks_p (test_bb, join_bb))
2761 {
2762 merge_blocks (test_bb, join_bb);
2763 num_true_changes++;
2764 }
2765
2766 num_updated_if_blocks++;
2767
2768 VEC_free (int, heap, then_regs);
2769 VEC_free (int, heap, else_regs);
2770 return TRUE;
2771 }
2772
2773 \f
2774 /* Determine if a given basic block heads a simple IF-THEN-JOIN or an
2775 IF-THEN-ELSE-JOIN block.
2776
2777 If so, we'll try to convert the insns to not require the branch,
2778 using only transformations that do not require conditional execution.
2779
2780 Return TRUE if we were successful at converting the block. */
2781
2782 static int
2783 noce_find_if_block (basic_block test_bb,
2784 edge then_edge, edge else_edge,
2785 int pass)
2786 {
2787 basic_block then_bb, else_bb, join_bb;
2788 bool then_else_reversed = false;
2789 rtx jump, cond;
2790 rtx cond_earliest;
2791 struct noce_if_info if_info;
2792
2793 /* We only ever should get here before reload. */
2794 gcc_assert (!reload_completed);
2795
2796 /* Recognize an IF-THEN-ELSE-JOIN block. */
2797 if (single_pred_p (then_edge->dest)
2798 && single_succ_p (then_edge->dest)
2799 && single_pred_p (else_edge->dest)
2800 && single_succ_p (else_edge->dest)
2801 && single_succ (then_edge->dest) == single_succ (else_edge->dest))
2802 {
2803 then_bb = then_edge->dest;
2804 else_bb = else_edge->dest;
2805 join_bb = single_succ (then_bb);
2806 }
2807 /* Recognize an IF-THEN-JOIN block. */
2808 else if (single_pred_p (then_edge->dest)
2809 && single_succ_p (then_edge->dest)
2810 && single_succ (then_edge->dest) == else_edge->dest)
2811 {
2812 then_bb = then_edge->dest;
2813 else_bb = NULL_BLOCK;
2814 join_bb = else_edge->dest;
2815 }
2816 /* Recognize an IF-ELSE-JOIN block. We can have those because the order
2817 of basic blocks in cfglayout mode does not matter, so the fallthrough
2818 edge can go to any basic block (and not just to bb->next_bb, like in
2819 cfgrtl mode). */
2820 else if (single_pred_p (else_edge->dest)
2821 && single_succ_p (else_edge->dest)
2822 && single_succ (else_edge->dest) == then_edge->dest)
2823 {
2824 /* The noce transformations do not apply to IF-ELSE-JOIN blocks.
2825 To make this work, we have to invert the THEN and ELSE blocks
2826 and reverse the jump condition. */
2827 then_bb = else_edge->dest;
2828 else_bb = NULL_BLOCK;
2829 join_bb = single_succ (then_bb);
2830 then_else_reversed = true;
2831 }
2832 else
2833 /* Not a form we can handle. */
2834 return FALSE;
2835
2836 /* The edges of the THEN and ELSE blocks cannot have complex edges. */
2837 if (single_succ_edge (then_bb)->flags & EDGE_COMPLEX)
2838 return FALSE;
2839 if (else_bb
2840 && single_succ_edge (else_bb)->flags & EDGE_COMPLEX)
2841 return FALSE;
2842
2843 num_possible_if_blocks++;
2844
2845 if (dump_file)
2846 {
2847 fprintf (dump_file,
2848 "\nIF-THEN%s-JOIN block found, pass %d, test %d, then %d",
2849 (else_bb) ? "-ELSE" : "",
2850 pass, test_bb->index, then_bb->index);
2851
2852 if (else_bb)
2853 fprintf (dump_file, ", else %d", else_bb->index);
2854
2855 fprintf (dump_file, ", join %d\n", join_bb->index);
2856 }
2857
2858 /* If the conditional jump is more than just a conditional
2859 jump, then we can not do if-conversion on this block. */
2860 jump = BB_END (test_bb);
2861 if (! onlyjump_p (jump))
2862 return FALSE;
2863
2864 /* If this is not a standard conditional jump, we can't parse it. */
2865 cond = noce_get_condition (jump,
2866 &cond_earliest,
2867 then_else_reversed);
2868 if (!cond)
2869 return FALSE;
2870
2871 /* We must be comparing objects whose modes imply the size. */
2872 if (GET_MODE (XEXP (cond, 0)) == BLKmode)
2873 return FALSE;
2874
2875 /* Initialize an IF_INFO struct to pass around. */
2876 memset (&if_info, 0, sizeof if_info);
2877 if_info.test_bb = test_bb;
2878 if_info.then_bb = then_bb;
2879 if_info.else_bb = else_bb;
2880 if_info.join_bb = join_bb;
2881 if_info.cond = cond;
2882 if_info.cond_earliest = cond_earliest;
2883 if_info.jump = jump;
2884 if_info.then_else_reversed = then_else_reversed;
2885 if_info.branch_cost = BRANCH_COST (optimize_bb_for_speed_p (test_bb),
2886 predictable_edge_p (then_edge));
2887
2888 /* Do the real work. */
2889
2890 if (noce_process_if_block (&if_info))
2891 return TRUE;
2892
2893 if (HAVE_conditional_move
2894 && cond_move_process_if_block (&if_info))
2895 return TRUE;
2896
2897 return FALSE;
2898 }
2899 \f
2900
2901 /* Merge the blocks and mark for local life update. */
2902
2903 static void
2904 merge_if_block (struct ce_if_block * ce_info)
2905 {
2906 basic_block test_bb = ce_info->test_bb; /* last test block */
2907 basic_block then_bb = ce_info->then_bb; /* THEN */
2908 basic_block else_bb = ce_info->else_bb; /* ELSE or NULL */
2909 basic_block join_bb = ce_info->join_bb; /* join block */
2910 basic_block combo_bb;
2911
2912 /* All block merging is done into the lower block numbers. */
2913
2914 combo_bb = test_bb;
2915 df_set_bb_dirty (test_bb);
2916
2917 /* Merge any basic blocks to handle && and || subtests. Each of
2918 the blocks are on the fallthru path from the predecessor block. */
2919 if (ce_info->num_multiple_test_blocks > 0)
2920 {
2921 basic_block bb = test_bb;
2922 basic_block last_test_bb = ce_info->last_test_bb;
2923 basic_block fallthru = block_fallthru (bb);
2924
2925 do
2926 {
2927 bb = fallthru;
2928 fallthru = block_fallthru (bb);
2929 merge_blocks (combo_bb, bb);
2930 num_true_changes++;
2931 }
2932 while (bb != last_test_bb);
2933 }
2934
2935 /* Merge TEST block into THEN block. Normally the THEN block won't have a
2936 label, but it might if there were || tests. That label's count should be
2937 zero, and it normally should be removed. */
2938
2939 if (then_bb)
2940 {
2941 merge_blocks (combo_bb, then_bb);
2942 num_true_changes++;
2943 }
2944
2945 /* The ELSE block, if it existed, had a label. That label count
2946 will almost always be zero, but odd things can happen when labels
2947 get their addresses taken. */
2948 if (else_bb)
2949 {
2950 merge_blocks (combo_bb, else_bb);
2951 num_true_changes++;
2952 }
2953
2954 /* If there was no join block reported, that means it was not adjacent
2955 to the others, and so we cannot merge them. */
2956
2957 if (! join_bb)
2958 {
2959 rtx last = BB_END (combo_bb);
2960
2961 /* The outgoing edge for the current COMBO block should already
2962 be correct. Verify this. */
2963 if (EDGE_COUNT (combo_bb->succs) == 0)
2964 gcc_assert (find_reg_note (last, REG_NORETURN, NULL)
2965 || (NONJUMP_INSN_P (last)
2966 && GET_CODE (PATTERN (last)) == TRAP_IF
2967 && (TRAP_CONDITION (PATTERN (last))
2968 == const_true_rtx)));
2969
2970 else
2971 /* There should still be something at the end of the THEN or ELSE
2972 blocks taking us to our final destination. */
2973 gcc_assert (JUMP_P (last)
2974 || (EDGE_SUCC (combo_bb, 0)->dest == EXIT_BLOCK_PTR
2975 && CALL_P (last)
2976 && SIBLING_CALL_P (last))
2977 || ((EDGE_SUCC (combo_bb, 0)->flags & EDGE_EH)
2978 && can_throw_internal (last)));
2979 }
2980
2981 /* The JOIN block may have had quite a number of other predecessors too.
2982 Since we've already merged the TEST, THEN and ELSE blocks, we should
2983 have only one remaining edge from our if-then-else diamond. If there
2984 is more than one remaining edge, it must come from elsewhere. There
2985 may be zero incoming edges if the THEN block didn't actually join
2986 back up (as with a call to a non-return function). */
2987 else if (EDGE_COUNT (join_bb->preds) < 2
2988 && join_bb != EXIT_BLOCK_PTR)
2989 {
2990 /* We can merge the JOIN cleanly and update the dataflow try
2991 again on this pass.*/
2992 merge_blocks (combo_bb, join_bb);
2993 num_true_changes++;
2994 }
2995 else
2996 {
2997 /* We cannot merge the JOIN. */
2998
2999 /* The outgoing edge for the current COMBO block should already
3000 be correct. Verify this. */
3001 gcc_assert (single_succ_p (combo_bb)
3002 && single_succ (combo_bb) == join_bb);
3003
3004 /* Remove the jump and cruft from the end of the COMBO block. */
3005 if (join_bb != EXIT_BLOCK_PTR)
3006 tidy_fallthru_edge (single_succ_edge (combo_bb));
3007 }
3008
3009 num_updated_if_blocks++;
3010 }
3011 \f
3012 /* Find a block ending in a simple IF condition and try to transform it
3013 in some way. When converting a multi-block condition, put the new code
3014 in the first such block and delete the rest. Return a pointer to this
3015 first block if some transformation was done. Return NULL otherwise. */
3016
3017 static basic_block
3018 find_if_header (basic_block test_bb, int pass)
3019 {
3020 ce_if_block_t ce_info;
3021 edge then_edge;
3022 edge else_edge;
3023
3024 /* The kind of block we're looking for has exactly two successors. */
3025 if (EDGE_COUNT (test_bb->succs) != 2)
3026 return NULL;
3027
3028 then_edge = EDGE_SUCC (test_bb, 0);
3029 else_edge = EDGE_SUCC (test_bb, 1);
3030
3031 if (df_get_bb_dirty (then_edge->dest))
3032 return NULL;
3033 if (df_get_bb_dirty (else_edge->dest))
3034 return NULL;
3035
3036 /* Neither edge should be abnormal. */
3037 if ((then_edge->flags & EDGE_COMPLEX)
3038 || (else_edge->flags & EDGE_COMPLEX))
3039 return NULL;
3040
3041 /* Nor exit the loop. */
3042 if ((then_edge->flags & EDGE_LOOP_EXIT)
3043 || (else_edge->flags & EDGE_LOOP_EXIT))
3044 return NULL;
3045
3046 /* The THEN edge is canonically the one that falls through. */
3047 if (then_edge->flags & EDGE_FALLTHRU)
3048 ;
3049 else if (else_edge->flags & EDGE_FALLTHRU)
3050 {
3051 edge e = else_edge;
3052 else_edge = then_edge;
3053 then_edge = e;
3054 }
3055 else
3056 /* Otherwise this must be a multiway branch of some sort. */
3057 return NULL;
3058
3059 memset (&ce_info, '\0', sizeof (ce_info));
3060 ce_info.test_bb = test_bb;
3061 ce_info.then_bb = then_edge->dest;
3062 ce_info.else_bb = else_edge->dest;
3063 ce_info.pass = pass;
3064
3065 #ifdef IFCVT_INIT_EXTRA_FIELDS
3066 IFCVT_INIT_EXTRA_FIELDS (&ce_info);
3067 #endif
3068
3069 if (! reload_completed
3070 && noce_find_if_block (test_bb, then_edge, else_edge, pass))
3071 goto success;
3072
3073 if (HAVE_conditional_execution && reload_completed
3074 && cond_exec_find_if_block (&ce_info))
3075 goto success;
3076
3077 if (HAVE_trap
3078 && optab_handler (ctrap_optab, word_mode)->insn_code != CODE_FOR_nothing
3079 && find_cond_trap (test_bb, then_edge, else_edge))
3080 goto success;
3081
3082 if (dom_info_state (CDI_POST_DOMINATORS) >= DOM_NO_FAST_QUERY
3083 && (! HAVE_conditional_execution || reload_completed))
3084 {
3085 if (find_if_case_1 (test_bb, then_edge, else_edge))
3086 goto success;
3087 if (find_if_case_2 (test_bb, then_edge, else_edge))
3088 goto success;
3089 }
3090
3091 return NULL;
3092
3093 success:
3094 if (dump_file)
3095 fprintf (dump_file, "Conversion succeeded on pass %d.\n", pass);
3096 /* Set this so we continue looking. */
3097 cond_exec_changed_p = TRUE;
3098 return ce_info.test_bb;
3099 }
3100
3101 /* Return true if a block has two edges, one of which falls through to the next
3102 block, and the other jumps to a specific block, so that we can tell if the
3103 block is part of an && test or an || test. Returns either -1 or the number
3104 of non-note, non-jump, non-USE/CLOBBER insns in the block. */
3105
3106 static int
3107 block_jumps_and_fallthru_p (basic_block cur_bb, basic_block target_bb)
3108 {
3109 edge cur_edge;
3110 int fallthru_p = FALSE;
3111 int jump_p = FALSE;
3112 rtx insn;
3113 rtx end;
3114 int n_insns = 0;
3115 edge_iterator ei;
3116
3117 if (!cur_bb || !target_bb)
3118 return -1;
3119
3120 /* If no edges, obviously it doesn't jump or fallthru. */
3121 if (EDGE_COUNT (cur_bb->succs) == 0)
3122 return FALSE;
3123
3124 FOR_EACH_EDGE (cur_edge, ei, cur_bb->succs)
3125 {
3126 if (cur_edge->flags & EDGE_COMPLEX)
3127 /* Anything complex isn't what we want. */
3128 return -1;
3129
3130 else if (cur_edge->flags & EDGE_FALLTHRU)
3131 fallthru_p = TRUE;
3132
3133 else if (cur_edge->dest == target_bb)
3134 jump_p = TRUE;
3135
3136 else
3137 return -1;
3138 }
3139
3140 if ((jump_p & fallthru_p) == 0)
3141 return -1;
3142
3143 /* Don't allow calls in the block, since this is used to group && and ||
3144 together for conditional execution support. ??? we should support
3145 conditional execution support across calls for IA-64 some day, but
3146 for now it makes the code simpler. */
3147 end = BB_END (cur_bb);
3148 insn = BB_HEAD (cur_bb);
3149
3150 while (insn != NULL_RTX)
3151 {
3152 if (CALL_P (insn))
3153 return -1;
3154
3155 if (INSN_P (insn)
3156 && !JUMP_P (insn)
3157 && !DEBUG_INSN_P (insn)
3158 && GET_CODE (PATTERN (insn)) != USE
3159 && GET_CODE (PATTERN (insn)) != CLOBBER)
3160 n_insns++;
3161
3162 if (insn == end)
3163 break;
3164
3165 insn = NEXT_INSN (insn);
3166 }
3167
3168 return n_insns;
3169 }
3170
3171 /* Determine if a given basic block heads a simple IF-THEN or IF-THEN-ELSE
3172 block. If so, we'll try to convert the insns to not require the branch.
3173 Return TRUE if we were successful at converting the block. */
3174
3175 static int
3176 cond_exec_find_if_block (struct ce_if_block * ce_info)
3177 {
3178 basic_block test_bb = ce_info->test_bb;
3179 basic_block then_bb = ce_info->then_bb;
3180 basic_block else_bb = ce_info->else_bb;
3181 basic_block join_bb = NULL_BLOCK;
3182 edge cur_edge;
3183 basic_block next;
3184 edge_iterator ei;
3185
3186 ce_info->last_test_bb = test_bb;
3187
3188 /* We only ever should get here after reload,
3189 and only if we have conditional execution. */
3190 gcc_assert (HAVE_conditional_execution && reload_completed);
3191
3192 /* Discover if any fall through predecessors of the current test basic block
3193 were && tests (which jump to the else block) or || tests (which jump to
3194 the then block). */
3195 if (single_pred_p (test_bb)
3196 && single_pred_edge (test_bb)->flags == EDGE_FALLTHRU)
3197 {
3198 basic_block bb = single_pred (test_bb);
3199 basic_block target_bb;
3200 int max_insns = MAX_CONDITIONAL_EXECUTE;
3201 int n_insns;
3202
3203 /* Determine if the preceding block is an && or || block. */
3204 if ((n_insns = block_jumps_and_fallthru_p (bb, else_bb)) >= 0)
3205 {
3206 ce_info->and_and_p = TRUE;
3207 target_bb = else_bb;
3208 }
3209 else if ((n_insns = block_jumps_and_fallthru_p (bb, then_bb)) >= 0)
3210 {
3211 ce_info->and_and_p = FALSE;
3212 target_bb = then_bb;
3213 }
3214 else
3215 target_bb = NULL_BLOCK;
3216
3217 if (target_bb && n_insns <= max_insns)
3218 {
3219 int total_insns = 0;
3220 int blocks = 0;
3221
3222 ce_info->last_test_bb = test_bb;
3223
3224 /* Found at least one && or || block, look for more. */
3225 do
3226 {
3227 ce_info->test_bb = test_bb = bb;
3228 total_insns += n_insns;
3229 blocks++;
3230
3231 if (!single_pred_p (bb))
3232 break;
3233
3234 bb = single_pred (bb);
3235 n_insns = block_jumps_and_fallthru_p (bb, target_bb);
3236 }
3237 while (n_insns >= 0 && (total_insns + n_insns) <= max_insns);
3238
3239 ce_info->num_multiple_test_blocks = blocks;
3240 ce_info->num_multiple_test_insns = total_insns;
3241
3242 if (ce_info->and_and_p)
3243 ce_info->num_and_and_blocks = blocks;
3244 else
3245 ce_info->num_or_or_blocks = blocks;
3246 }
3247 }
3248
3249 /* The THEN block of an IF-THEN combo must have exactly one predecessor,
3250 other than any || blocks which jump to the THEN block. */
3251 if ((EDGE_COUNT (then_bb->preds) - ce_info->num_or_or_blocks) != 1)
3252 return FALSE;
3253
3254 /* The edges of the THEN and ELSE blocks cannot have complex edges. */
3255 FOR_EACH_EDGE (cur_edge, ei, then_bb->preds)
3256 {
3257 if (cur_edge->flags & EDGE_COMPLEX)
3258 return FALSE;
3259 }
3260
3261 FOR_EACH_EDGE (cur_edge, ei, else_bb->preds)
3262 {
3263 if (cur_edge->flags & EDGE_COMPLEX)
3264 return FALSE;
3265 }
3266
3267 /* The THEN block of an IF-THEN combo must have zero or one successors. */
3268 if (EDGE_COUNT (then_bb->succs) > 0
3269 && (!single_succ_p (then_bb)
3270 || (single_succ_edge (then_bb)->flags & EDGE_COMPLEX)
3271 || (epilogue_completed && tablejump_p (BB_END (then_bb), NULL, NULL))))
3272 return FALSE;
3273
3274 /* If the THEN block has no successors, conditional execution can still
3275 make a conditional call. Don't do this unless the ELSE block has
3276 only one incoming edge -- the CFG manipulation is too ugly otherwise.
3277 Check for the last insn of the THEN block being an indirect jump, which
3278 is listed as not having any successors, but confuses the rest of the CE
3279 code processing. ??? we should fix this in the future. */
3280 if (EDGE_COUNT (then_bb->succs) == 0)
3281 {
3282 if (single_pred_p (else_bb))
3283 {
3284 rtx last_insn = BB_END (then_bb);
3285
3286 while (last_insn
3287 && NOTE_P (last_insn)
3288 && last_insn != BB_HEAD (then_bb))
3289 last_insn = PREV_INSN (last_insn);
3290
3291 if (last_insn
3292 && JUMP_P (last_insn)
3293 && ! simplejump_p (last_insn))
3294 return FALSE;
3295
3296 join_bb = else_bb;
3297 else_bb = NULL_BLOCK;
3298 }
3299 else
3300 return FALSE;
3301 }
3302
3303 /* If the THEN block's successor is the other edge out of the TEST block,
3304 then we have an IF-THEN combo without an ELSE. */
3305 else if (single_succ (then_bb) == else_bb)
3306 {
3307 join_bb = else_bb;
3308 else_bb = NULL_BLOCK;
3309 }
3310
3311 /* If the THEN and ELSE block meet in a subsequent block, and the ELSE
3312 has exactly one predecessor and one successor, and the outgoing edge
3313 is not complex, then we have an IF-THEN-ELSE combo. */
3314 else if (single_succ_p (else_bb)
3315 && single_succ (then_bb) == single_succ (else_bb)
3316 && single_pred_p (else_bb)
3317 && ! (single_succ_edge (else_bb)->flags & EDGE_COMPLEX)
3318 && ! (epilogue_completed && tablejump_p (BB_END (else_bb), NULL, NULL)))
3319 join_bb = single_succ (else_bb);
3320
3321 /* Otherwise it is not an IF-THEN or IF-THEN-ELSE combination. */
3322 else
3323 return FALSE;
3324
3325 num_possible_if_blocks++;
3326
3327 if (dump_file)
3328 {
3329 fprintf (dump_file,
3330 "\nIF-THEN%s block found, pass %d, start block %d "
3331 "[insn %d], then %d [%d]",
3332 (else_bb) ? "-ELSE" : "",
3333 ce_info->pass,
3334 test_bb->index,
3335 BB_HEAD (test_bb) ? (int)INSN_UID (BB_HEAD (test_bb)) : -1,
3336 then_bb->index,
3337 BB_HEAD (then_bb) ? (int)INSN_UID (BB_HEAD (then_bb)) : -1);
3338
3339 if (else_bb)
3340 fprintf (dump_file, ", else %d [%d]",
3341 else_bb->index,
3342 BB_HEAD (else_bb) ? (int)INSN_UID (BB_HEAD (else_bb)) : -1);
3343
3344 fprintf (dump_file, ", join %d [%d]",
3345 join_bb->index,
3346 BB_HEAD (join_bb) ? (int)INSN_UID (BB_HEAD (join_bb)) : -1);
3347
3348 if (ce_info->num_multiple_test_blocks > 0)
3349 fprintf (dump_file, ", %d %s block%s last test %d [%d]",
3350 ce_info->num_multiple_test_blocks,
3351 (ce_info->and_and_p) ? "&&" : "||",
3352 (ce_info->num_multiple_test_blocks == 1) ? "" : "s",
3353 ce_info->last_test_bb->index,
3354 ((BB_HEAD (ce_info->last_test_bb))
3355 ? (int)INSN_UID (BB_HEAD (ce_info->last_test_bb))
3356 : -1));
3357
3358 fputc ('\n', dump_file);
3359 }
3360
3361 /* Make sure IF, THEN, and ELSE, blocks are adjacent. Actually, we get the
3362 first condition for free, since we've already asserted that there's a
3363 fallthru edge from IF to THEN. Likewise for the && and || blocks, since
3364 we checked the FALLTHRU flag, those are already adjacent to the last IF
3365 block. */
3366 /* ??? As an enhancement, move the ELSE block. Have to deal with
3367 BLOCK notes, if by no other means than backing out the merge if they
3368 exist. Sticky enough I don't want to think about it now. */
3369 next = then_bb;
3370 if (else_bb && (next = next->next_bb) != else_bb)
3371 return FALSE;
3372 if ((next = next->next_bb) != join_bb && join_bb != EXIT_BLOCK_PTR)
3373 {
3374 if (else_bb)
3375 join_bb = NULL;
3376 else
3377 return FALSE;
3378 }
3379
3380 /* Do the real work. */
3381
3382 ce_info->else_bb = else_bb;
3383 ce_info->join_bb = join_bb;
3384
3385 /* If we have && and || tests, try to first handle combining the && and ||
3386 tests into the conditional code, and if that fails, go back and handle
3387 it without the && and ||, which at present handles the && case if there
3388 was no ELSE block. */
3389 if (cond_exec_process_if_block (ce_info, TRUE))
3390 return TRUE;
3391
3392 if (ce_info->num_multiple_test_blocks)
3393 {
3394 cancel_changes (0);
3395
3396 if (cond_exec_process_if_block (ce_info, FALSE))
3397 return TRUE;
3398 }
3399
3400 return FALSE;
3401 }
3402
3403 /* Convert a branch over a trap, or a branch
3404 to a trap, into a conditional trap. */
3405
3406 static int
3407 find_cond_trap (basic_block test_bb, edge then_edge, edge else_edge)
3408 {
3409 basic_block then_bb = then_edge->dest;
3410 basic_block else_bb = else_edge->dest;
3411 basic_block other_bb, trap_bb;
3412 rtx trap, jump, cond, cond_earliest, seq;
3413 enum rtx_code code;
3414
3415 /* Locate the block with the trap instruction. */
3416 /* ??? While we look for no successors, we really ought to allow
3417 EH successors. Need to fix merge_if_block for that to work. */
3418 if ((trap = block_has_only_trap (then_bb)) != NULL)
3419 trap_bb = then_bb, other_bb = else_bb;
3420 else if ((trap = block_has_only_trap (else_bb)) != NULL)
3421 trap_bb = else_bb, other_bb = then_bb;
3422 else
3423 return FALSE;
3424
3425 if (dump_file)
3426 {
3427 fprintf (dump_file, "\nTRAP-IF block found, start %d, trap %d\n",
3428 test_bb->index, trap_bb->index);
3429 }
3430
3431 /* If this is not a standard conditional jump, we can't parse it. */
3432 jump = BB_END (test_bb);
3433 cond = noce_get_condition (jump, &cond_earliest, false);
3434 if (! cond)
3435 return FALSE;
3436
3437 /* If the conditional jump is more than just a conditional jump, then
3438 we can not do if-conversion on this block. */
3439 if (! onlyjump_p (jump))
3440 return FALSE;
3441
3442 /* We must be comparing objects whose modes imply the size. */
3443 if (GET_MODE (XEXP (cond, 0)) == BLKmode)
3444 return FALSE;
3445
3446 /* Reverse the comparison code, if necessary. */
3447 code = GET_CODE (cond);
3448 if (then_bb == trap_bb)
3449 {
3450 code = reversed_comparison_code (cond, jump);
3451 if (code == UNKNOWN)
3452 return FALSE;
3453 }
3454
3455 /* Attempt to generate the conditional trap. */
3456 seq = gen_cond_trap (code, copy_rtx (XEXP (cond, 0)),
3457 copy_rtx (XEXP (cond, 1)),
3458 TRAP_CODE (PATTERN (trap)));
3459 if (seq == NULL)
3460 return FALSE;
3461
3462 /* Emit the new insns before cond_earliest. */
3463 emit_insn_before_setloc (seq, cond_earliest, INSN_LOCATOR (trap));
3464
3465 /* Delete the trap block if possible. */
3466 remove_edge (trap_bb == then_bb ? then_edge : else_edge);
3467 df_set_bb_dirty (test_bb);
3468 df_set_bb_dirty (then_bb);
3469 df_set_bb_dirty (else_bb);
3470
3471 if (EDGE_COUNT (trap_bb->preds) == 0)
3472 {
3473 delete_basic_block (trap_bb);
3474 num_true_changes++;
3475 }
3476
3477 /* Wire together the blocks again. */
3478 if (current_ir_type () == IR_RTL_CFGLAYOUT)
3479 single_succ_edge (test_bb)->flags |= EDGE_FALLTHRU;
3480 else
3481 {
3482 rtx lab, newjump;
3483
3484 lab = JUMP_LABEL (jump);
3485 newjump = emit_jump_insn_after (gen_jump (lab), jump);
3486 LABEL_NUSES (lab) += 1;
3487 JUMP_LABEL (newjump) = lab;
3488 emit_barrier_after (newjump);
3489 }
3490 delete_insn (jump);
3491
3492 if (can_merge_blocks_p (test_bb, other_bb))
3493 {
3494 merge_blocks (test_bb, other_bb);
3495 num_true_changes++;
3496 }
3497
3498 num_updated_if_blocks++;
3499 return TRUE;
3500 }
3501
3502 /* Subroutine of find_cond_trap: if BB contains only a trap insn,
3503 return it. */
3504
3505 static rtx
3506 block_has_only_trap (basic_block bb)
3507 {
3508 rtx trap;
3509
3510 /* We're not the exit block. */
3511 if (bb == EXIT_BLOCK_PTR)
3512 return NULL_RTX;
3513
3514 /* The block must have no successors. */
3515 if (EDGE_COUNT (bb->succs) > 0)
3516 return NULL_RTX;
3517
3518 /* The only instruction in the THEN block must be the trap. */
3519 trap = first_active_insn (bb);
3520 if (! (trap == BB_END (bb)
3521 && GET_CODE (PATTERN (trap)) == TRAP_IF
3522 && TRAP_CONDITION (PATTERN (trap)) == const_true_rtx))
3523 return NULL_RTX;
3524
3525 return trap;
3526 }
3527
3528 /* Look for IF-THEN-ELSE cases in which one of THEN or ELSE is
3529 transformable, but not necessarily the other. There need be no
3530 JOIN block.
3531
3532 Return TRUE if we were successful at converting the block.
3533
3534 Cases we'd like to look at:
3535
3536 (1)
3537 if (test) goto over; // x not live
3538 x = a;
3539 goto label;
3540 over:
3541
3542 becomes
3543
3544 x = a;
3545 if (! test) goto label;
3546
3547 (2)
3548 if (test) goto E; // x not live
3549 x = big();
3550 goto L;
3551 E:
3552 x = b;
3553 goto M;
3554
3555 becomes
3556
3557 x = b;
3558 if (test) goto M;
3559 x = big();
3560 goto L;
3561
3562 (3) // This one's really only interesting for targets that can do
3563 // multiway branching, e.g. IA-64 BBB bundles. For other targets
3564 // it results in multiple branches on a cache line, which often
3565 // does not sit well with predictors.
3566
3567 if (test1) goto E; // predicted not taken
3568 x = a;
3569 if (test2) goto F;
3570 ...
3571 E:
3572 x = b;
3573 J:
3574
3575 becomes
3576
3577 x = a;
3578 if (test1) goto E;
3579 if (test2) goto F;
3580
3581 Notes:
3582
3583 (A) Don't do (2) if the branch is predicted against the block we're
3584 eliminating. Do it anyway if we can eliminate a branch; this requires
3585 that the sole successor of the eliminated block postdominate the other
3586 side of the if.
3587
3588 (B) With CE, on (3) we can steal from both sides of the if, creating
3589
3590 if (test1) x = a;
3591 if (!test1) x = b;
3592 if (test1) goto J;
3593 if (test2) goto F;
3594 ...
3595 J:
3596
3597 Again, this is most useful if J postdominates.
3598
3599 (C) CE substitutes for helpful life information.
3600
3601 (D) These heuristics need a lot of work. */
3602
3603 /* Tests for case 1 above. */
3604
3605 static int
3606 find_if_case_1 (basic_block test_bb, edge then_edge, edge else_edge)
3607 {
3608 basic_block then_bb = then_edge->dest;
3609 basic_block else_bb = else_edge->dest;
3610 basic_block new_bb;
3611 int then_bb_index;
3612
3613 /* If we are partitioning hot/cold basic blocks, we don't want to
3614 mess up unconditional or indirect jumps that cross between hot
3615 and cold sections.
3616
3617 Basic block partitioning may result in some jumps that appear to
3618 be optimizable (or blocks that appear to be mergeable), but which really
3619 must be left untouched (they are required to make it safely across
3620 partition boundaries). See the comments at the top of
3621 bb-reorder.c:partition_hot_cold_basic_blocks for complete details. */
3622
3623 if ((BB_END (then_bb)
3624 && find_reg_note (BB_END (then_bb), REG_CROSSING_JUMP, NULL_RTX))
3625 || (BB_END (test_bb)
3626 && find_reg_note (BB_END (test_bb), REG_CROSSING_JUMP, NULL_RTX))
3627 || (BB_END (else_bb)
3628 && find_reg_note (BB_END (else_bb), REG_CROSSING_JUMP,
3629 NULL_RTX)))
3630 return FALSE;
3631
3632 /* THEN has one successor. */
3633 if (!single_succ_p (then_bb))
3634 return FALSE;
3635
3636 /* THEN does not fall through, but is not strange either. */
3637 if (single_succ_edge (then_bb)->flags & (EDGE_COMPLEX | EDGE_FALLTHRU))
3638 return FALSE;
3639
3640 /* THEN has one predecessor. */
3641 if (!single_pred_p (then_bb))
3642 return FALSE;
3643
3644 /* THEN must do something. */
3645 if (forwarder_block_p (then_bb))
3646 return FALSE;
3647
3648 num_possible_if_blocks++;
3649 if (dump_file)
3650 fprintf (dump_file,
3651 "\nIF-CASE-1 found, start %d, then %d\n",
3652 test_bb->index, then_bb->index);
3653
3654 /* THEN is small. */
3655 if (! cheap_bb_rtx_cost_p (then_bb,
3656 COSTS_N_INSNS (BRANCH_COST (optimize_bb_for_speed_p (then_edge->src),
3657 predictable_edge_p (then_edge)))))
3658 return FALSE;
3659
3660 /* Registers set are dead, or are predicable. */
3661 if (! dead_or_predicable (test_bb, then_bb, else_bb,
3662 single_succ (then_bb), 1))
3663 return FALSE;
3664
3665 /* Conversion went ok, including moving the insns and fixing up the
3666 jump. Adjust the CFG to match. */
3667
3668 /* We can avoid creating a new basic block if then_bb is immediately
3669 followed by else_bb, i.e. deleting then_bb allows test_bb to fall
3670 thru to else_bb. */
3671
3672 if (then_bb->next_bb == else_bb
3673 && then_bb->prev_bb == test_bb
3674 && else_bb != EXIT_BLOCK_PTR)
3675 {
3676 redirect_edge_succ (FALLTHRU_EDGE (test_bb), else_bb);
3677 new_bb = 0;
3678 }
3679 else
3680 new_bb = redirect_edge_and_branch_force (FALLTHRU_EDGE (test_bb),
3681 else_bb);
3682
3683 df_set_bb_dirty (test_bb);
3684 df_set_bb_dirty (else_bb);
3685
3686 then_bb_index = then_bb->index;
3687 delete_basic_block (then_bb);
3688
3689 /* Make rest of code believe that the newly created block is the THEN_BB
3690 block we removed. */
3691 if (new_bb)
3692 {
3693 df_bb_replace (then_bb_index, new_bb);
3694 /* Since the fallthru edge was redirected from test_bb to new_bb,
3695 we need to ensure that new_bb is in the same partition as
3696 test bb (you can not fall through across section boundaries). */
3697 BB_COPY_PARTITION (new_bb, test_bb);
3698 }
3699
3700 num_true_changes++;
3701 num_updated_if_blocks++;
3702
3703 return TRUE;
3704 }
3705
3706 /* Test for case 2 above. */
3707
3708 static int
3709 find_if_case_2 (basic_block test_bb, edge then_edge, edge else_edge)
3710 {
3711 basic_block then_bb = then_edge->dest;
3712 basic_block else_bb = else_edge->dest;
3713 edge else_succ;
3714 rtx note;
3715
3716 /* If we are partitioning hot/cold basic blocks, we don't want to
3717 mess up unconditional or indirect jumps that cross between hot
3718 and cold sections.
3719
3720 Basic block partitioning may result in some jumps that appear to
3721 be optimizable (or blocks that appear to be mergeable), but which really
3722 must be left untouched (they are required to make it safely across
3723 partition boundaries). See the comments at the top of
3724 bb-reorder.c:partition_hot_cold_basic_blocks for complete details. */
3725
3726 if ((BB_END (then_bb)
3727 && find_reg_note (BB_END (then_bb), REG_CROSSING_JUMP, NULL_RTX))
3728 || (BB_END (test_bb)
3729 && find_reg_note (BB_END (test_bb), REG_CROSSING_JUMP, NULL_RTX))
3730 || (BB_END (else_bb)
3731 && find_reg_note (BB_END (else_bb), REG_CROSSING_JUMP,
3732 NULL_RTX)))
3733 return FALSE;
3734
3735 /* ELSE has one successor. */
3736 if (!single_succ_p (else_bb))
3737 return FALSE;
3738 else
3739 else_succ = single_succ_edge (else_bb);
3740
3741 /* ELSE outgoing edge is not complex. */
3742 if (else_succ->flags & EDGE_COMPLEX)
3743 return FALSE;
3744
3745 /* ELSE has one predecessor. */
3746 if (!single_pred_p (else_bb))
3747 return FALSE;
3748
3749 /* THEN is not EXIT. */
3750 if (then_bb->index < NUM_FIXED_BLOCKS)
3751 return FALSE;
3752
3753 /* ELSE is predicted or SUCC(ELSE) postdominates THEN. */
3754 note = find_reg_note (BB_END (test_bb), REG_BR_PROB, NULL_RTX);
3755 if (note && INTVAL (XEXP (note, 0)) >= REG_BR_PROB_BASE / 2)
3756 ;
3757 else if (else_succ->dest->index < NUM_FIXED_BLOCKS
3758 || dominated_by_p (CDI_POST_DOMINATORS, then_bb,
3759 else_succ->dest))
3760 ;
3761 else
3762 return FALSE;
3763
3764 num_possible_if_blocks++;
3765 if (dump_file)
3766 fprintf (dump_file,
3767 "\nIF-CASE-2 found, start %d, else %d\n",
3768 test_bb->index, else_bb->index);
3769
3770 /* ELSE is small. */
3771 if (! cheap_bb_rtx_cost_p (else_bb,
3772 COSTS_N_INSNS (BRANCH_COST (optimize_bb_for_speed_p (else_edge->src),
3773 predictable_edge_p (else_edge)))))
3774 return FALSE;
3775
3776 /* Registers set are dead, or are predicable. */
3777 if (! dead_or_predicable (test_bb, else_bb, then_bb, else_succ->dest, 0))
3778 return FALSE;
3779
3780 /* Conversion went ok, including moving the insns and fixing up the
3781 jump. Adjust the CFG to match. */
3782
3783 df_set_bb_dirty (test_bb);
3784 df_set_bb_dirty (then_bb);
3785 delete_basic_block (else_bb);
3786
3787 num_true_changes++;
3788 num_updated_if_blocks++;
3789
3790 /* ??? We may now fallthru from one of THEN's successors into a join
3791 block. Rerun cleanup_cfg? Examine things manually? Wait? */
3792
3793 return TRUE;
3794 }
3795
3796 /* A subroutine of dead_or_predicable called through for_each_rtx.
3797 Return 1 if a memory is found. */
3798
3799 static int
3800 find_memory (rtx *px, void *data ATTRIBUTE_UNUSED)
3801 {
3802 return MEM_P (*px);
3803 }
3804
3805 /* Used by the code above to perform the actual rtl transformations.
3806 Return TRUE if successful.
3807
3808 TEST_BB is the block containing the conditional branch. MERGE_BB
3809 is the block containing the code to manipulate. NEW_DEST is the
3810 label TEST_BB should be branching to after the conversion.
3811 REVERSEP is true if the sense of the branch should be reversed. */
3812
3813 static int
3814 dead_or_predicable (basic_block test_bb, basic_block merge_bb,
3815 basic_block other_bb, basic_block new_dest, int reversep)
3816 {
3817 rtx head, end, jump, earliest = NULL_RTX, old_dest, new_label = NULL_RTX;
3818 /* Number of pending changes. */
3819 int n_validated_changes = 0;
3820
3821 jump = BB_END (test_bb);
3822
3823 /* Find the extent of the real code in the merge block. */
3824 head = BB_HEAD (merge_bb);
3825 end = BB_END (merge_bb);
3826
3827 while (DEBUG_INSN_P (end) && end != head)
3828 end = PREV_INSN (end);
3829
3830 /* If merge_bb ends with a tablejump, predicating/moving insn's
3831 into test_bb and then deleting merge_bb will result in the jumptable
3832 that follows merge_bb being removed along with merge_bb and then we
3833 get an unresolved reference to the jumptable. */
3834 if (tablejump_p (end, NULL, NULL))
3835 return FALSE;
3836
3837 if (LABEL_P (head))
3838 head = NEXT_INSN (head);
3839 while (DEBUG_INSN_P (head) && head != end)
3840 head = NEXT_INSN (head);
3841 if (NOTE_P (head))
3842 {
3843 if (head == end)
3844 {
3845 head = end = NULL_RTX;
3846 goto no_body;
3847 }
3848 head = NEXT_INSN (head);
3849 while (DEBUG_INSN_P (head) && head != end)
3850 head = NEXT_INSN (head);
3851 }
3852
3853 if (JUMP_P (end))
3854 {
3855 if (head == end)
3856 {
3857 head = end = NULL_RTX;
3858 goto no_body;
3859 }
3860 end = PREV_INSN (end);
3861 while (DEBUG_INSN_P (end) && end != head)
3862 end = PREV_INSN (end);
3863 }
3864
3865 /* Disable handling dead code by conditional execution if the machine needs
3866 to do anything funny with the tests, etc. */
3867 #ifndef IFCVT_MODIFY_TESTS
3868 if (HAVE_conditional_execution)
3869 {
3870 /* In the conditional execution case, we have things easy. We know
3871 the condition is reversible. We don't have to check life info
3872 because we're going to conditionally execute the code anyway.
3873 All that's left is making sure the insns involved can actually
3874 be predicated. */
3875
3876 rtx cond, prob_val;
3877
3878 cond = cond_exec_get_condition (jump);
3879 if (! cond)
3880 return FALSE;
3881
3882 prob_val = find_reg_note (jump, REG_BR_PROB, NULL_RTX);
3883 if (prob_val)
3884 prob_val = XEXP (prob_val, 0);
3885
3886 if (reversep)
3887 {
3888 enum rtx_code rev = reversed_comparison_code (cond, jump);
3889 if (rev == UNKNOWN)
3890 return FALSE;
3891 cond = gen_rtx_fmt_ee (rev, GET_MODE (cond), XEXP (cond, 0),
3892 XEXP (cond, 1));
3893 if (prob_val)
3894 prob_val = GEN_INT (REG_BR_PROB_BASE - INTVAL (prob_val));
3895 }
3896
3897 if (cond_exec_process_insns (NULL, head, end, cond, prob_val, 0)
3898 && verify_changes (0))
3899 n_validated_changes = num_validated_changes ();
3900 else
3901 cancel_changes (0);
3902
3903 earliest = jump;
3904 }
3905 #endif
3906 /* Try the NCE path if the CE path did not result in any changes. */
3907 if (n_validated_changes == 0)
3908 {
3909 /* In the non-conditional execution case, we have to verify that there
3910 are no trapping operations, no calls, no references to memory, and
3911 that any registers modified are dead at the branch site. */
3912
3913 rtx insn, cond, prev;
3914 bitmap merge_set, test_live, test_set;
3915 unsigned i, fail = 0;
3916 bitmap_iterator bi;
3917
3918 /* Check for no calls or trapping operations. */
3919 for (insn = head; ; insn = NEXT_INSN (insn))
3920 {
3921 if (CALL_P (insn))
3922 return FALSE;
3923 if (NONDEBUG_INSN_P (insn))
3924 {
3925 if (may_trap_p (PATTERN (insn)))
3926 return FALSE;
3927
3928 /* ??? Even non-trapping memories such as stack frame
3929 references must be avoided. For stores, we collect
3930 no lifetime info; for reads, we'd have to assert
3931 true_dependence false against every store in the
3932 TEST range. */
3933 if (for_each_rtx (&PATTERN (insn), find_memory, NULL))
3934 return FALSE;
3935 }
3936 if (insn == end)
3937 break;
3938 }
3939
3940 if (! any_condjump_p (jump))
3941 return FALSE;
3942
3943 /* Find the extent of the conditional. */
3944 cond = noce_get_condition (jump, &earliest, false);
3945 if (! cond)
3946 return FALSE;
3947
3948 /* Collect:
3949 MERGE_SET = set of registers set in MERGE_BB
3950 TEST_LIVE = set of registers live at EARLIEST
3951 TEST_SET = set of registers set between EARLIEST and the
3952 end of the block. */
3953
3954 merge_set = BITMAP_ALLOC (&reg_obstack);
3955 test_live = BITMAP_ALLOC (&reg_obstack);
3956 test_set = BITMAP_ALLOC (&reg_obstack);
3957
3958 /* ??? bb->local_set is only valid during calculate_global_regs_live,
3959 so we must recompute usage for MERGE_BB. Not so bad, I suppose,
3960 since we've already asserted that MERGE_BB is small. */
3961 /* If we allocated new pseudos (e.g. in the conditional move
3962 expander called from noce_emit_cmove), we must resize the
3963 array first. */
3964 if (max_regno < max_reg_num ())
3965 max_regno = max_reg_num ();
3966
3967 FOR_BB_INSNS (merge_bb, insn)
3968 {
3969 if (NONDEBUG_INSN_P (insn))
3970 {
3971 unsigned int uid = INSN_UID (insn);
3972 df_ref *def_rec;
3973 for (def_rec = DF_INSN_UID_DEFS (uid); *def_rec; def_rec++)
3974 {
3975 df_ref def = *def_rec;
3976 bitmap_set_bit (merge_set, DF_REF_REGNO (def));
3977 }
3978 }
3979 }
3980
3981 /* For small register class machines, don't lengthen lifetimes of
3982 hard registers before reload. */
3983 if (SMALL_REGISTER_CLASSES && ! reload_completed)
3984 {
3985 EXECUTE_IF_SET_IN_BITMAP (merge_set, 0, i, bi)
3986 {
3987 if (i < FIRST_PSEUDO_REGISTER
3988 && ! fixed_regs[i]
3989 && ! global_regs[i])
3990 fail = 1;
3991 }
3992 }
3993
3994 /* For TEST, we're interested in a range of insns, not a whole block.
3995 Moreover, we're interested in the insns live from OTHER_BB. */
3996
3997 /* The loop below takes the set of live registers
3998 after JUMP, and calculates the live set before EARLIEST. */
3999 bitmap_copy (test_live, df_get_live_in (other_bb));
4000 df_simulate_initialize_backwards (test_bb, test_live);
4001 for (insn = jump; ; insn = prev)
4002 {
4003 if (INSN_P (insn))
4004 {
4005 df_simulate_find_defs (insn, test_set);
4006 df_simulate_one_insn_backwards (test_bb, insn, test_live);
4007 }
4008 prev = PREV_INSN (insn);
4009 if (insn == earliest)
4010 break;
4011 }
4012
4013 /* We can perform the transformation if
4014 MERGE_SET & (TEST_SET | TEST_LIVE)
4015 and
4016 TEST_SET & DF_LIVE_IN (merge_bb)
4017 are empty. */
4018
4019 if (bitmap_intersect_p (test_set, merge_set)
4020 || bitmap_intersect_p (test_live, merge_set)
4021 || bitmap_intersect_p (test_set, df_get_live_in (merge_bb)))
4022 fail = 1;
4023
4024 BITMAP_FREE (merge_set);
4025 BITMAP_FREE (test_live);
4026 BITMAP_FREE (test_set);
4027
4028 if (fail)
4029 return FALSE;
4030 }
4031
4032 no_body:
4033 /* We don't want to use normal invert_jump or redirect_jump because
4034 we don't want to delete_insn called. Also, we want to do our own
4035 change group management. */
4036
4037 old_dest = JUMP_LABEL (jump);
4038 if (other_bb != new_dest)
4039 {
4040 new_label = block_label (new_dest);
4041 if (reversep
4042 ? ! invert_jump_1 (jump, new_label)
4043 : ! redirect_jump_1 (jump, new_label))
4044 goto cancel;
4045 }
4046
4047 if (verify_changes (n_validated_changes))
4048 confirm_change_group ();
4049 else
4050 goto cancel;
4051
4052 if (other_bb != new_dest)
4053 {
4054 redirect_jump_2 (jump, old_dest, new_label, 0, reversep);
4055
4056 redirect_edge_succ (BRANCH_EDGE (test_bb), new_dest);
4057 if (reversep)
4058 {
4059 gcov_type count, probability;
4060 count = BRANCH_EDGE (test_bb)->count;
4061 BRANCH_EDGE (test_bb)->count = FALLTHRU_EDGE (test_bb)->count;
4062 FALLTHRU_EDGE (test_bb)->count = count;
4063 probability = BRANCH_EDGE (test_bb)->probability;
4064 BRANCH_EDGE (test_bb)->probability
4065 = FALLTHRU_EDGE (test_bb)->probability;
4066 FALLTHRU_EDGE (test_bb)->probability = probability;
4067 update_br_prob_note (test_bb);
4068 }
4069 }
4070
4071 /* Move the insns out of MERGE_BB to before the branch. */
4072 if (head != NULL)
4073 {
4074 rtx insn;
4075
4076 if (end == BB_END (merge_bb))
4077 BB_END (merge_bb) = PREV_INSN (head);
4078
4079 /* PR 21767: When moving insns above a conditional branch, REG_EQUAL
4080 notes might become invalid. */
4081 insn = head;
4082 do
4083 {
4084 rtx note, set;
4085
4086 if (! INSN_P (insn))
4087 continue;
4088 note = find_reg_note (insn, REG_EQUAL, NULL_RTX);
4089 if (! note)
4090 continue;
4091 set = single_set (insn);
4092 if (!set || !function_invariant_p (SET_SRC (set)))
4093 remove_note (insn, note);
4094 } while (insn != end && (insn = NEXT_INSN (insn)));
4095
4096 reorder_insns (head, end, PREV_INSN (earliest));
4097 }
4098
4099 /* Remove the jump and edge if we can. */
4100 if (other_bb == new_dest)
4101 {
4102 delete_insn (jump);
4103 remove_edge (BRANCH_EDGE (test_bb));
4104 /* ??? Can't merge blocks here, as then_bb is still in use.
4105 At minimum, the merge will get done just before bb-reorder. */
4106 }
4107
4108 return TRUE;
4109
4110 cancel:
4111 cancel_changes (0);
4112 return FALSE;
4113 }
4114 \f
4115 /* Main entry point for all if-conversion. */
4116
4117 static void
4118 if_convert (void)
4119 {
4120 basic_block bb;
4121 int pass;
4122
4123 if (optimize == 1)
4124 {
4125 df_live_add_problem ();
4126 df_live_set_all_dirty ();
4127 }
4128
4129 num_possible_if_blocks = 0;
4130 num_updated_if_blocks = 0;
4131 num_true_changes = 0;
4132
4133 loop_optimizer_init (AVOID_CFG_MODIFICATIONS);
4134 mark_loop_exit_edges ();
4135 loop_optimizer_finalize ();
4136 free_dominance_info (CDI_DOMINATORS);
4137
4138 /* Compute postdominators. */
4139 calculate_dominance_info (CDI_POST_DOMINATORS);
4140
4141 df_set_flags (DF_LR_RUN_DCE);
4142
4143 /* Go through each of the basic blocks looking for things to convert. If we
4144 have conditional execution, we make multiple passes to allow us to handle
4145 IF-THEN{-ELSE} blocks within other IF-THEN{-ELSE} blocks. */
4146 pass = 0;
4147 do
4148 {
4149 df_analyze ();
4150 /* Only need to do dce on the first pass. */
4151 df_clear_flags (DF_LR_RUN_DCE);
4152 cond_exec_changed_p = FALSE;
4153 pass++;
4154
4155 #ifdef IFCVT_MULTIPLE_DUMPS
4156 if (dump_file && pass > 1)
4157 fprintf (dump_file, "\n\n========== Pass %d ==========\n", pass);
4158 #endif
4159
4160 FOR_EACH_BB (bb)
4161 {
4162 basic_block new_bb;
4163 while (!df_get_bb_dirty (bb)
4164 && (new_bb = find_if_header (bb, pass)) != NULL)
4165 bb = new_bb;
4166 }
4167
4168 #ifdef IFCVT_MULTIPLE_DUMPS
4169 if (dump_file && cond_exec_changed_p)
4170 print_rtl_with_bb (dump_file, get_insns ());
4171 #endif
4172 }
4173 while (cond_exec_changed_p);
4174
4175 #ifdef IFCVT_MULTIPLE_DUMPS
4176 if (dump_file)
4177 fprintf (dump_file, "\n\n========== no more changes\n");
4178 #endif
4179
4180 free_dominance_info (CDI_POST_DOMINATORS);
4181
4182 if (dump_file)
4183 fflush (dump_file);
4184
4185 clear_aux_for_blocks ();
4186
4187 /* If we allocated new pseudos, we must resize the array for sched1. */
4188 if (max_regno < max_reg_num ())
4189 max_regno = max_reg_num ();
4190
4191 /* Write the final stats. */
4192 if (dump_file && num_possible_if_blocks > 0)
4193 {
4194 fprintf (dump_file,
4195 "\n%d possible IF blocks searched.\n",
4196 num_possible_if_blocks);
4197 fprintf (dump_file,
4198 "%d IF blocks converted.\n",
4199 num_updated_if_blocks);
4200 fprintf (dump_file,
4201 "%d true changes made.\n\n\n",
4202 num_true_changes);
4203 }
4204
4205 if (optimize == 1)
4206 df_remove_problem (df_live);
4207
4208 #ifdef ENABLE_CHECKING
4209 verify_flow_info ();
4210 #endif
4211 }
4212 \f
4213 static bool
4214 gate_handle_if_conversion (void)
4215 {
4216 return (optimize > 0)
4217 && dbg_cnt (if_conversion);
4218 }
4219
4220 /* If-conversion and CFG cleanup. */
4221 static unsigned int
4222 rest_of_handle_if_conversion (void)
4223 {
4224 if (flag_if_conversion)
4225 {
4226 if (dump_file)
4227 dump_flow_info (dump_file, dump_flags);
4228 cleanup_cfg (CLEANUP_EXPENSIVE);
4229 if_convert ();
4230 }
4231
4232 cleanup_cfg (0);
4233 return 0;
4234 }
4235
4236 struct rtl_opt_pass pass_rtl_ifcvt =
4237 {
4238 {
4239 RTL_PASS,
4240 "ce1", /* name */
4241 gate_handle_if_conversion, /* gate */
4242 rest_of_handle_if_conversion, /* execute */
4243 NULL, /* sub */
4244 NULL, /* next */
4245 0, /* static_pass_number */
4246 TV_IFCVT, /* tv_id */
4247 0, /* properties_required */
4248 0, /* properties_provided */
4249 0, /* properties_destroyed */
4250 0, /* todo_flags_start */
4251 TODO_df_finish | TODO_verify_rtl_sharing |
4252 TODO_dump_func /* todo_flags_finish */
4253 }
4254 };
4255
4256 static bool
4257 gate_handle_if_after_combine (void)
4258 {
4259 return optimize > 0 && flag_if_conversion
4260 && dbg_cnt (if_after_combine);
4261 }
4262
4263
4264 /* Rerun if-conversion, as combine may have simplified things enough
4265 to now meet sequence length restrictions. */
4266 static unsigned int
4267 rest_of_handle_if_after_combine (void)
4268 {
4269 if_convert ();
4270 return 0;
4271 }
4272
4273 struct rtl_opt_pass pass_if_after_combine =
4274 {
4275 {
4276 RTL_PASS,
4277 "ce2", /* name */
4278 gate_handle_if_after_combine, /* gate */
4279 rest_of_handle_if_after_combine, /* execute */
4280 NULL, /* sub */
4281 NULL, /* next */
4282 0, /* static_pass_number */
4283 TV_IFCVT, /* tv_id */
4284 0, /* properties_required */
4285 0, /* properties_provided */
4286 0, /* properties_destroyed */
4287 0, /* todo_flags_start */
4288 TODO_df_finish | TODO_verify_rtl_sharing |
4289 TODO_dump_func |
4290 TODO_ggc_collect /* todo_flags_finish */
4291 }
4292 };
4293
4294
4295 static bool
4296 gate_handle_if_after_reload (void)
4297 {
4298 return optimize > 0 && flag_if_conversion2
4299 && dbg_cnt (if_after_reload);
4300 }
4301
4302 static unsigned int
4303 rest_of_handle_if_after_reload (void)
4304 {
4305 if_convert ();
4306 return 0;
4307 }
4308
4309
4310 struct rtl_opt_pass pass_if_after_reload =
4311 {
4312 {
4313 RTL_PASS,
4314 "ce3", /* name */
4315 gate_handle_if_after_reload, /* gate */
4316 rest_of_handle_if_after_reload, /* execute */
4317 NULL, /* sub */
4318 NULL, /* next */
4319 0, /* static_pass_number */
4320 TV_IFCVT2, /* tv_id */
4321 0, /* properties_required */
4322 0, /* properties_provided */
4323 0, /* properties_destroyed */
4324 0, /* todo_flags_start */
4325 TODO_df_finish | TODO_verify_rtl_sharing |
4326 TODO_dump_func |
4327 TODO_ggc_collect /* todo_flags_finish */
4328 }
4329 };