]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/ifcvt.c
change local vars to rtx_insn *
[thirdparty/gcc.git] / gcc / ifcvt.c
1 /* If-conversion support.
2 Copyright (C) 2000-2015 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it
7 under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3, or (at your option)
9 any later version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT
12 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
13 or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
14 License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20 #include "config.h"
21 #include "system.h"
22 #include "coretypes.h"
23 #include "tm.h"
24
25 #include "rtl.h"
26 #include "regs.h"
27 #include "hashtab.h"
28 #include "hash-set.h"
29 #include "vec.h"
30 #include "machmode.h"
31 #include "hard-reg-set.h"
32 #include "input.h"
33 #include "function.h"
34 #include "flags.h"
35 #include "insn-config.h"
36 #include "recog.h"
37 #include "except.h"
38 #include "predict.h"
39 #include "dominance.h"
40 #include "cfg.h"
41 #include "cfgrtl.h"
42 #include "cfganal.h"
43 #include "cfgcleanup.h"
44 #include "basic-block.h"
45 #include "symtab.h"
46 #include "statistics.h"
47 #include "double-int.h"
48 #include "real.h"
49 #include "fixed-value.h"
50 #include "alias.h"
51 #include "wide-int.h"
52 #include "inchash.h"
53 #include "tree.h"
54 #include "expmed.h"
55 #include "dojump.h"
56 #include "explow.h"
57 #include "calls.h"
58 #include "emit-rtl.h"
59 #include "varasm.h"
60 #include "stmt.h"
61 #include "expr.h"
62 #include "output.h"
63 #include "insn-codes.h"
64 #include "optabs.h"
65 #include "diagnostic-core.h"
66 #include "tm_p.h"
67 #include "cfgloop.h"
68 #include "target.h"
69 #include "tree-pass.h"
70 #include "df.h"
71 #include "dbgcnt.h"
72 #include "shrink-wrap.h"
73 #include "ifcvt.h"
74
75 #ifndef HAVE_conditional_move
76 #define HAVE_conditional_move 0
77 #endif
78 #ifndef HAVE_incscc
79 #define HAVE_incscc 0
80 #endif
81 #ifndef HAVE_decscc
82 #define HAVE_decscc 0
83 #endif
84 #ifndef HAVE_trap
85 #define HAVE_trap 0
86 #endif
87
88 #ifndef MAX_CONDITIONAL_EXECUTE
89 #define MAX_CONDITIONAL_EXECUTE \
90 (BRANCH_COST (optimize_function_for_speed_p (cfun), false) \
91 + 1)
92 #endif
93
94 #ifndef HAVE_cbranchcc4
95 #define HAVE_cbranchcc4 0
96 #endif
97
98 #define IFCVT_MULTIPLE_DUMPS 1
99
100 #define NULL_BLOCK ((basic_block) NULL)
101
102 /* True if after combine pass. */
103 static bool ifcvt_after_combine;
104
105 /* # of IF-THEN or IF-THEN-ELSE blocks we looked at */
106 static int num_possible_if_blocks;
107
108 /* # of IF-THEN or IF-THEN-ELSE blocks were converted to conditional
109 execution. */
110 static int num_updated_if_blocks;
111
112 /* # of changes made. */
113 static int num_true_changes;
114
115 /* Whether conditional execution changes were made. */
116 static int cond_exec_changed_p;
117
118 /* Forward references. */
119 static int count_bb_insns (const_basic_block);
120 static bool cheap_bb_rtx_cost_p (const_basic_block, int, int);
121 static rtx_insn *first_active_insn (basic_block);
122 static rtx_insn *last_active_insn (basic_block, int);
123 static rtx_insn *find_active_insn_before (basic_block, rtx_insn *);
124 static rtx_insn *find_active_insn_after (basic_block, rtx_insn *);
125 static basic_block block_fallthru (basic_block);
126 static int cond_exec_process_insns (ce_if_block *, rtx_insn *, rtx, rtx, int,
127 int);
128 static rtx cond_exec_get_condition (rtx_insn *);
129 static rtx noce_get_condition (rtx_insn *, rtx_insn **, bool);
130 static int noce_operand_ok (const_rtx);
131 static void merge_if_block (ce_if_block *);
132 static int find_cond_trap (basic_block, edge, edge);
133 static basic_block find_if_header (basic_block, int);
134 static int block_jumps_and_fallthru_p (basic_block, basic_block);
135 static int noce_find_if_block (basic_block, edge, edge, int);
136 static int cond_exec_find_if_block (ce_if_block *);
137 static int find_if_case_1 (basic_block, edge, edge);
138 static int find_if_case_2 (basic_block, edge, edge);
139 static int dead_or_predicable (basic_block, basic_block, basic_block,
140 edge, int);
141 static void noce_emit_move_insn (rtx, rtx);
142 static rtx_insn *block_has_only_trap (basic_block);
143 \f
144 /* Count the number of non-jump active insns in BB. */
145
146 static int
147 count_bb_insns (const_basic_block bb)
148 {
149 int count = 0;
150 rtx_insn *insn = BB_HEAD (bb);
151
152 while (1)
153 {
154 if (active_insn_p (insn) && !JUMP_P (insn))
155 count++;
156
157 if (insn == BB_END (bb))
158 break;
159 insn = NEXT_INSN (insn);
160 }
161
162 return count;
163 }
164
165 /* Determine whether the total insn_rtx_cost on non-jump insns in
166 basic block BB is less than MAX_COST. This function returns
167 false if the cost of any instruction could not be estimated.
168
169 The cost of the non-jump insns in BB is scaled by REG_BR_PROB_BASE
170 as those insns are being speculated. MAX_COST is scaled with SCALE
171 plus a small fudge factor. */
172
173 static bool
174 cheap_bb_rtx_cost_p (const_basic_block bb, int scale, int max_cost)
175 {
176 int count = 0;
177 rtx_insn *insn = BB_HEAD (bb);
178 bool speed = optimize_bb_for_speed_p (bb);
179
180 /* Set scale to REG_BR_PROB_BASE to void the identical scaling
181 applied to insn_rtx_cost when optimizing for size. Only do
182 this after combine because if-conversion might interfere with
183 passes before combine.
184
185 Use optimize_function_for_speed_p instead of the pre-defined
186 variable speed to make sure it is set to same value for all
187 basic blocks in one if-conversion transformation. */
188 if (!optimize_function_for_speed_p (cfun) && ifcvt_after_combine)
189 scale = REG_BR_PROB_BASE;
190 /* Our branch probability/scaling factors are just estimates and don't
191 account for cases where we can get speculation for free and other
192 secondary benefits. So we fudge the scale factor to make speculating
193 appear a little more profitable when optimizing for performance. */
194 else
195 scale += REG_BR_PROB_BASE / 8;
196
197
198 max_cost *= scale;
199
200 while (1)
201 {
202 if (NONJUMP_INSN_P (insn))
203 {
204 int cost = insn_rtx_cost (PATTERN (insn), speed) * REG_BR_PROB_BASE;
205 if (cost == 0)
206 return false;
207
208 /* If this instruction is the load or set of a "stack" register,
209 such as a floating point register on x87, then the cost of
210 speculatively executing this insn may need to include
211 the additional cost of popping its result off of the
212 register stack. Unfortunately, correctly recognizing and
213 accounting for this additional overhead is tricky, so for
214 now we simply prohibit such speculative execution. */
215 #ifdef STACK_REGS
216 {
217 rtx set = single_set (insn);
218 if (set && STACK_REG_P (SET_DEST (set)))
219 return false;
220 }
221 #endif
222
223 count += cost;
224 if (count >= max_cost)
225 return false;
226 }
227 else if (CALL_P (insn))
228 return false;
229
230 if (insn == BB_END (bb))
231 break;
232 insn = NEXT_INSN (insn);
233 }
234
235 return true;
236 }
237
238 /* Return the first non-jump active insn in the basic block. */
239
240 static rtx_insn *
241 first_active_insn (basic_block bb)
242 {
243 rtx_insn *insn = BB_HEAD (bb);
244
245 if (LABEL_P (insn))
246 {
247 if (insn == BB_END (bb))
248 return NULL;
249 insn = NEXT_INSN (insn);
250 }
251
252 while (NOTE_P (insn) || DEBUG_INSN_P (insn))
253 {
254 if (insn == BB_END (bb))
255 return NULL;
256 insn = NEXT_INSN (insn);
257 }
258
259 if (JUMP_P (insn))
260 return NULL;
261
262 return insn;
263 }
264
265 /* Return the last non-jump active (non-jump) insn in the basic block. */
266
267 static rtx_insn *
268 last_active_insn (basic_block bb, int skip_use_p)
269 {
270 rtx_insn *insn = BB_END (bb);
271 rtx_insn *head = BB_HEAD (bb);
272
273 while (NOTE_P (insn)
274 || JUMP_P (insn)
275 || DEBUG_INSN_P (insn)
276 || (skip_use_p
277 && NONJUMP_INSN_P (insn)
278 && GET_CODE (PATTERN (insn)) == USE))
279 {
280 if (insn == head)
281 return NULL;
282 insn = PREV_INSN (insn);
283 }
284
285 if (LABEL_P (insn))
286 return NULL;
287
288 return insn;
289 }
290
291 /* Return the active insn before INSN inside basic block CURR_BB. */
292
293 static rtx_insn *
294 find_active_insn_before (basic_block curr_bb, rtx_insn *insn)
295 {
296 if (!insn || insn == BB_HEAD (curr_bb))
297 return NULL;
298
299 while ((insn = PREV_INSN (insn)) != NULL_RTX)
300 {
301 if (NONJUMP_INSN_P (insn) || JUMP_P (insn) || CALL_P (insn))
302 break;
303
304 /* No other active insn all the way to the start of the basic block. */
305 if (insn == BB_HEAD (curr_bb))
306 return NULL;
307 }
308
309 return insn;
310 }
311
312 /* Return the active insn after INSN inside basic block CURR_BB. */
313
314 static rtx_insn *
315 find_active_insn_after (basic_block curr_bb, rtx_insn *insn)
316 {
317 if (!insn || insn == BB_END (curr_bb))
318 return NULL;
319
320 while ((insn = NEXT_INSN (insn)) != NULL_RTX)
321 {
322 if (NONJUMP_INSN_P (insn) || JUMP_P (insn) || CALL_P (insn))
323 break;
324
325 /* No other active insn all the way to the end of the basic block. */
326 if (insn == BB_END (curr_bb))
327 return NULL;
328 }
329
330 return insn;
331 }
332
333 /* Return the basic block reached by falling though the basic block BB. */
334
335 static basic_block
336 block_fallthru (basic_block bb)
337 {
338 edge e = find_fallthru_edge (bb->succs);
339
340 return (e) ? e->dest : NULL_BLOCK;
341 }
342
343 /* Return true if RTXs A and B can be safely interchanged. */
344
345 static bool
346 rtx_interchangeable_p (const_rtx a, const_rtx b)
347 {
348 if (!rtx_equal_p (a, b))
349 return false;
350
351 if (GET_CODE (a) != MEM)
352 return true;
353
354 /* A dead type-unsafe memory reference is legal, but a live type-unsafe memory
355 reference is not. Interchanging a dead type-unsafe memory reference with
356 a live type-safe one creates a live type-unsafe memory reference, in other
357 words, it makes the program illegal.
358 We check here conservatively whether the two memory references have equal
359 memory attributes. */
360
361 return mem_attrs_eq_p (get_mem_attrs (a), get_mem_attrs (b));
362 }
363
364 \f
365 /* Go through a bunch of insns, converting them to conditional
366 execution format if possible. Return TRUE if all of the non-note
367 insns were processed. */
368
369 static int
370 cond_exec_process_insns (ce_if_block *ce_info ATTRIBUTE_UNUSED,
371 /* if block information */rtx_insn *start,
372 /* first insn to look at */rtx end,
373 /* last insn to look at */rtx test,
374 /* conditional execution test */int prob_val,
375 /* probability of branch taken. */int mod_ok)
376 {
377 int must_be_last = FALSE;
378 rtx_insn *insn;
379 rtx xtest;
380 rtx pattern;
381
382 if (!start || !end)
383 return FALSE;
384
385 for (insn = start; ; insn = NEXT_INSN (insn))
386 {
387 /* dwarf2out can't cope with conditional prologues. */
388 if (NOTE_P (insn) && NOTE_KIND (insn) == NOTE_INSN_PROLOGUE_END)
389 return FALSE;
390
391 if (NOTE_P (insn) || DEBUG_INSN_P (insn))
392 goto insn_done;
393
394 gcc_assert (NONJUMP_INSN_P (insn) || CALL_P (insn));
395
396 /* dwarf2out can't cope with conditional unwind info. */
397 if (RTX_FRAME_RELATED_P (insn))
398 return FALSE;
399
400 /* Remove USE insns that get in the way. */
401 if (reload_completed && GET_CODE (PATTERN (insn)) == USE)
402 {
403 /* ??? Ug. Actually unlinking the thing is problematic,
404 given what we'd have to coordinate with our callers. */
405 SET_INSN_DELETED (insn);
406 goto insn_done;
407 }
408
409 /* Last insn wasn't last? */
410 if (must_be_last)
411 return FALSE;
412
413 if (modified_in_p (test, insn))
414 {
415 if (!mod_ok)
416 return FALSE;
417 must_be_last = TRUE;
418 }
419
420 /* Now build the conditional form of the instruction. */
421 pattern = PATTERN (insn);
422 xtest = copy_rtx (test);
423
424 /* If this is already a COND_EXEC, rewrite the test to be an AND of the
425 two conditions. */
426 if (GET_CODE (pattern) == COND_EXEC)
427 {
428 if (GET_MODE (xtest) != GET_MODE (COND_EXEC_TEST (pattern)))
429 return FALSE;
430
431 xtest = gen_rtx_AND (GET_MODE (xtest), xtest,
432 COND_EXEC_TEST (pattern));
433 pattern = COND_EXEC_CODE (pattern);
434 }
435
436 pattern = gen_rtx_COND_EXEC (VOIDmode, xtest, pattern);
437
438 /* If the machine needs to modify the insn being conditionally executed,
439 say for example to force a constant integer operand into a temp
440 register, do so here. */
441 #ifdef IFCVT_MODIFY_INSN
442 IFCVT_MODIFY_INSN (ce_info, pattern, insn);
443 if (! pattern)
444 return FALSE;
445 #endif
446
447 validate_change (insn, &PATTERN (insn), pattern, 1);
448
449 if (CALL_P (insn) && prob_val >= 0)
450 validate_change (insn, &REG_NOTES (insn),
451 gen_rtx_INT_LIST ((machine_mode) REG_BR_PROB,
452 prob_val, REG_NOTES (insn)), 1);
453
454 insn_done:
455 if (insn == end)
456 break;
457 }
458
459 return TRUE;
460 }
461
462 /* Return the condition for a jump. Do not do any special processing. */
463
464 static rtx
465 cond_exec_get_condition (rtx_insn *jump)
466 {
467 rtx test_if, cond;
468
469 if (any_condjump_p (jump))
470 test_if = SET_SRC (pc_set (jump));
471 else
472 return NULL_RTX;
473 cond = XEXP (test_if, 0);
474
475 /* If this branches to JUMP_LABEL when the condition is false,
476 reverse the condition. */
477 if (GET_CODE (XEXP (test_if, 2)) == LABEL_REF
478 && LABEL_REF_LABEL (XEXP (test_if, 2)) == JUMP_LABEL (jump))
479 {
480 enum rtx_code rev = reversed_comparison_code (cond, jump);
481 if (rev == UNKNOWN)
482 return NULL_RTX;
483
484 cond = gen_rtx_fmt_ee (rev, GET_MODE (cond), XEXP (cond, 0),
485 XEXP (cond, 1));
486 }
487
488 return cond;
489 }
490
491 /* Given a simple IF-THEN or IF-THEN-ELSE block, attempt to convert it
492 to conditional execution. Return TRUE if we were successful at
493 converting the block. */
494
495 static int
496 cond_exec_process_if_block (ce_if_block * ce_info,
497 /* if block information */int do_multiple_p)
498 {
499 basic_block test_bb = ce_info->test_bb; /* last test block */
500 basic_block then_bb = ce_info->then_bb; /* THEN */
501 basic_block else_bb = ce_info->else_bb; /* ELSE or NULL */
502 rtx test_expr; /* expression in IF_THEN_ELSE that is tested */
503 rtx_insn *then_start; /* first insn in THEN block */
504 rtx_insn *then_end; /* last insn + 1 in THEN block */
505 rtx_insn *else_start = NULL; /* first insn in ELSE block or NULL */
506 rtx_insn *else_end = NULL; /* last insn + 1 in ELSE block */
507 int max; /* max # of insns to convert. */
508 int then_mod_ok; /* whether conditional mods are ok in THEN */
509 rtx true_expr; /* test for else block insns */
510 rtx false_expr; /* test for then block insns */
511 int true_prob_val; /* probability of else block */
512 int false_prob_val; /* probability of then block */
513 rtx_insn *then_last_head = NULL; /* Last match at the head of THEN */
514 rtx_insn *else_last_head = NULL; /* Last match at the head of ELSE */
515 rtx_insn *then_first_tail = NULL; /* First match at the tail of THEN */
516 rtx_insn *else_first_tail = NULL; /* First match at the tail of ELSE */
517 int then_n_insns, else_n_insns, n_insns;
518 enum rtx_code false_code;
519 rtx note;
520
521 /* If test is comprised of && or || elements, and we've failed at handling
522 all of them together, just use the last test if it is the special case of
523 && elements without an ELSE block. */
524 if (!do_multiple_p && ce_info->num_multiple_test_blocks)
525 {
526 if (else_bb || ! ce_info->and_and_p)
527 return FALSE;
528
529 ce_info->test_bb = test_bb = ce_info->last_test_bb;
530 ce_info->num_multiple_test_blocks = 0;
531 ce_info->num_and_and_blocks = 0;
532 ce_info->num_or_or_blocks = 0;
533 }
534
535 /* Find the conditional jump to the ELSE or JOIN part, and isolate
536 the test. */
537 test_expr = cond_exec_get_condition (BB_END (test_bb));
538 if (! test_expr)
539 return FALSE;
540
541 /* If the conditional jump is more than just a conditional jump,
542 then we can not do conditional execution conversion on this block. */
543 if (! onlyjump_p (BB_END (test_bb)))
544 return FALSE;
545
546 /* Collect the bounds of where we're to search, skipping any labels, jumps
547 and notes at the beginning and end of the block. Then count the total
548 number of insns and see if it is small enough to convert. */
549 then_start = first_active_insn (then_bb);
550 then_end = last_active_insn (then_bb, TRUE);
551 then_n_insns = ce_info->num_then_insns = count_bb_insns (then_bb);
552 n_insns = then_n_insns;
553 max = MAX_CONDITIONAL_EXECUTE;
554
555 if (else_bb)
556 {
557 int n_matching;
558
559 max *= 2;
560 else_start = first_active_insn (else_bb);
561 else_end = last_active_insn (else_bb, TRUE);
562 else_n_insns = ce_info->num_else_insns = count_bb_insns (else_bb);
563 n_insns += else_n_insns;
564
565 /* Look for matching sequences at the head and tail of the two blocks,
566 and limit the range of insns to be converted if possible. */
567 n_matching = flow_find_cross_jump (then_bb, else_bb,
568 &then_first_tail, &else_first_tail,
569 NULL);
570 if (then_first_tail == BB_HEAD (then_bb))
571 then_start = then_end = NULL;
572 if (else_first_tail == BB_HEAD (else_bb))
573 else_start = else_end = NULL;
574
575 if (n_matching > 0)
576 {
577 if (then_end)
578 then_end = find_active_insn_before (then_bb, then_first_tail);
579 if (else_end)
580 else_end = find_active_insn_before (else_bb, else_first_tail);
581 n_insns -= 2 * n_matching;
582 }
583
584 if (then_start
585 && else_start
586 && then_n_insns > n_matching
587 && else_n_insns > n_matching)
588 {
589 int longest_match = MIN (then_n_insns - n_matching,
590 else_n_insns - n_matching);
591 n_matching
592 = flow_find_head_matching_sequence (then_bb, else_bb,
593 &then_last_head,
594 &else_last_head,
595 longest_match);
596
597 if (n_matching > 0)
598 {
599 rtx_insn *insn;
600
601 /* We won't pass the insns in the head sequence to
602 cond_exec_process_insns, so we need to test them here
603 to make sure that they don't clobber the condition. */
604 for (insn = BB_HEAD (then_bb);
605 insn != NEXT_INSN (then_last_head);
606 insn = NEXT_INSN (insn))
607 if (!LABEL_P (insn) && !NOTE_P (insn)
608 && !DEBUG_INSN_P (insn)
609 && modified_in_p (test_expr, insn))
610 return FALSE;
611 }
612
613 if (then_last_head == then_end)
614 then_start = then_end = NULL;
615 if (else_last_head == else_end)
616 else_start = else_end = NULL;
617
618 if (n_matching > 0)
619 {
620 if (then_start)
621 then_start = find_active_insn_after (then_bb, then_last_head);
622 if (else_start)
623 else_start = find_active_insn_after (else_bb, else_last_head);
624 n_insns -= 2 * n_matching;
625 }
626 }
627 }
628
629 if (n_insns > max)
630 return FALSE;
631
632 /* Map test_expr/test_jump into the appropriate MD tests to use on
633 the conditionally executed code. */
634
635 true_expr = test_expr;
636
637 false_code = reversed_comparison_code (true_expr, BB_END (test_bb));
638 if (false_code != UNKNOWN)
639 false_expr = gen_rtx_fmt_ee (false_code, GET_MODE (true_expr),
640 XEXP (true_expr, 0), XEXP (true_expr, 1));
641 else
642 false_expr = NULL_RTX;
643
644 #ifdef IFCVT_MODIFY_TESTS
645 /* If the machine description needs to modify the tests, such as setting a
646 conditional execution register from a comparison, it can do so here. */
647 IFCVT_MODIFY_TESTS (ce_info, true_expr, false_expr);
648
649 /* See if the conversion failed. */
650 if (!true_expr || !false_expr)
651 goto fail;
652 #endif
653
654 note = find_reg_note (BB_END (test_bb), REG_BR_PROB, NULL_RTX);
655 if (note)
656 {
657 true_prob_val = XINT (note, 0);
658 false_prob_val = REG_BR_PROB_BASE - true_prob_val;
659 }
660 else
661 {
662 true_prob_val = -1;
663 false_prob_val = -1;
664 }
665
666 /* If we have && or || tests, do them here. These tests are in the adjacent
667 blocks after the first block containing the test. */
668 if (ce_info->num_multiple_test_blocks > 0)
669 {
670 basic_block bb = test_bb;
671 basic_block last_test_bb = ce_info->last_test_bb;
672
673 if (! false_expr)
674 goto fail;
675
676 do
677 {
678 rtx_insn *start, *end;
679 rtx t, f;
680 enum rtx_code f_code;
681
682 bb = block_fallthru (bb);
683 start = first_active_insn (bb);
684 end = last_active_insn (bb, TRUE);
685 if (start
686 && ! cond_exec_process_insns (ce_info, start, end, false_expr,
687 false_prob_val, FALSE))
688 goto fail;
689
690 /* If the conditional jump is more than just a conditional jump, then
691 we can not do conditional execution conversion on this block. */
692 if (! onlyjump_p (BB_END (bb)))
693 goto fail;
694
695 /* Find the conditional jump and isolate the test. */
696 t = cond_exec_get_condition (BB_END (bb));
697 if (! t)
698 goto fail;
699
700 f_code = reversed_comparison_code (t, BB_END (bb));
701 if (f_code == UNKNOWN)
702 goto fail;
703
704 f = gen_rtx_fmt_ee (f_code, GET_MODE (t), XEXP (t, 0), XEXP (t, 1));
705 if (ce_info->and_and_p)
706 {
707 t = gen_rtx_AND (GET_MODE (t), true_expr, t);
708 f = gen_rtx_IOR (GET_MODE (t), false_expr, f);
709 }
710 else
711 {
712 t = gen_rtx_IOR (GET_MODE (t), true_expr, t);
713 f = gen_rtx_AND (GET_MODE (t), false_expr, f);
714 }
715
716 /* If the machine description needs to modify the tests, such as
717 setting a conditional execution register from a comparison, it can
718 do so here. */
719 #ifdef IFCVT_MODIFY_MULTIPLE_TESTS
720 IFCVT_MODIFY_MULTIPLE_TESTS (ce_info, bb, t, f);
721
722 /* See if the conversion failed. */
723 if (!t || !f)
724 goto fail;
725 #endif
726
727 true_expr = t;
728 false_expr = f;
729 }
730 while (bb != last_test_bb);
731 }
732
733 /* For IF-THEN-ELSE blocks, we don't allow modifications of the test
734 on then THEN block. */
735 then_mod_ok = (else_bb == NULL_BLOCK);
736
737 /* Go through the THEN and ELSE blocks converting the insns if possible
738 to conditional execution. */
739
740 if (then_end
741 && (! false_expr
742 || ! cond_exec_process_insns (ce_info, then_start, then_end,
743 false_expr, false_prob_val,
744 then_mod_ok)))
745 goto fail;
746
747 if (else_bb && else_end
748 && ! cond_exec_process_insns (ce_info, else_start, else_end,
749 true_expr, true_prob_val, TRUE))
750 goto fail;
751
752 /* If we cannot apply the changes, fail. Do not go through the normal fail
753 processing, since apply_change_group will call cancel_changes. */
754 if (! apply_change_group ())
755 {
756 #ifdef IFCVT_MODIFY_CANCEL
757 /* Cancel any machine dependent changes. */
758 IFCVT_MODIFY_CANCEL (ce_info);
759 #endif
760 return FALSE;
761 }
762
763 #ifdef IFCVT_MODIFY_FINAL
764 /* Do any machine dependent final modifications. */
765 IFCVT_MODIFY_FINAL (ce_info);
766 #endif
767
768 /* Conversion succeeded. */
769 if (dump_file)
770 fprintf (dump_file, "%d insn%s converted to conditional execution.\n",
771 n_insns, (n_insns == 1) ? " was" : "s were");
772
773 /* Merge the blocks! If we had matching sequences, make sure to delete one
774 copy at the appropriate location first: delete the copy in the THEN branch
775 for a tail sequence so that the remaining one is executed last for both
776 branches, and delete the copy in the ELSE branch for a head sequence so
777 that the remaining one is executed first for both branches. */
778 if (then_first_tail)
779 {
780 rtx_insn *from = then_first_tail;
781 if (!INSN_P (from))
782 from = find_active_insn_after (then_bb, from);
783 delete_insn_chain (from, BB_END (then_bb), false);
784 }
785 if (else_last_head)
786 delete_insn_chain (first_active_insn (else_bb), else_last_head, false);
787
788 merge_if_block (ce_info);
789 cond_exec_changed_p = TRUE;
790 return TRUE;
791
792 fail:
793 #ifdef IFCVT_MODIFY_CANCEL
794 /* Cancel any machine dependent changes. */
795 IFCVT_MODIFY_CANCEL (ce_info);
796 #endif
797
798 cancel_changes (0);
799 return FALSE;
800 }
801 \f
802 /* Used by noce_process_if_block to communicate with its subroutines.
803
804 The subroutines know that A and B may be evaluated freely. They
805 know that X is a register. They should insert new instructions
806 before cond_earliest. */
807
808 struct noce_if_info
809 {
810 /* The basic blocks that make up the IF-THEN-{ELSE-,}JOIN block. */
811 basic_block test_bb, then_bb, else_bb, join_bb;
812
813 /* The jump that ends TEST_BB. */
814 rtx_insn *jump;
815
816 /* The jump condition. */
817 rtx cond;
818
819 /* New insns should be inserted before this one. */
820 rtx_insn *cond_earliest;
821
822 /* Insns in the THEN and ELSE block. There is always just this
823 one insns in those blocks. The insns are single_set insns.
824 If there was no ELSE block, INSN_B is the last insn before
825 COND_EARLIEST, or NULL_RTX. In the former case, the insn
826 operands are still valid, as if INSN_B was moved down below
827 the jump. */
828 rtx_insn *insn_a, *insn_b;
829
830 /* The SET_SRC of INSN_A and INSN_B. */
831 rtx a, b;
832
833 /* The SET_DEST of INSN_A. */
834 rtx x;
835
836 /* True if this if block is not canonical. In the canonical form of
837 if blocks, the THEN_BB is the block reached via the fallthru edge
838 from TEST_BB. For the noce transformations, we allow the symmetric
839 form as well. */
840 bool then_else_reversed;
841
842 /* Estimated cost of the particular branch instruction. */
843 int branch_cost;
844 };
845
846 static rtx noce_emit_store_flag (struct noce_if_info *, rtx, int, int);
847 static int noce_try_move (struct noce_if_info *);
848 static int noce_try_store_flag (struct noce_if_info *);
849 static int noce_try_addcc (struct noce_if_info *);
850 static int noce_try_store_flag_constants (struct noce_if_info *);
851 static int noce_try_store_flag_mask (struct noce_if_info *);
852 static rtx noce_emit_cmove (struct noce_if_info *, rtx, enum rtx_code, rtx,
853 rtx, rtx, rtx);
854 static int noce_try_cmove (struct noce_if_info *);
855 static int noce_try_cmove_arith (struct noce_if_info *);
856 static rtx noce_get_alt_condition (struct noce_if_info *, rtx, rtx_insn **);
857 static int noce_try_minmax (struct noce_if_info *);
858 static int noce_try_abs (struct noce_if_info *);
859 static int noce_try_sign_mask (struct noce_if_info *);
860
861 /* Helper function for noce_try_store_flag*. */
862
863 static rtx
864 noce_emit_store_flag (struct noce_if_info *if_info, rtx x, int reversep,
865 int normalize)
866 {
867 rtx cond = if_info->cond;
868 int cond_complex;
869 enum rtx_code code;
870
871 cond_complex = (! general_operand (XEXP (cond, 0), VOIDmode)
872 || ! general_operand (XEXP (cond, 1), VOIDmode));
873
874 /* If earliest == jump, or when the condition is complex, try to
875 build the store_flag insn directly. */
876
877 if (cond_complex)
878 {
879 rtx set = pc_set (if_info->jump);
880 cond = XEXP (SET_SRC (set), 0);
881 if (GET_CODE (XEXP (SET_SRC (set), 2)) == LABEL_REF
882 && LABEL_REF_LABEL (XEXP (SET_SRC (set), 2)) == JUMP_LABEL (if_info->jump))
883 reversep = !reversep;
884 if (if_info->then_else_reversed)
885 reversep = !reversep;
886 }
887
888 if (reversep)
889 code = reversed_comparison_code (cond, if_info->jump);
890 else
891 code = GET_CODE (cond);
892
893 if ((if_info->cond_earliest == if_info->jump || cond_complex)
894 && (normalize == 0 || STORE_FLAG_VALUE == normalize))
895 {
896 rtx src = gen_rtx_fmt_ee (code, GET_MODE (x), XEXP (cond, 0),
897 XEXP (cond, 1));
898 rtx set = gen_rtx_SET (VOIDmode, x, src);
899
900 start_sequence ();
901 rtx_insn *insn = emit_insn (set);
902
903 if (recog_memoized (insn) >= 0)
904 {
905 rtx_insn *seq = get_insns ();
906 end_sequence ();
907 emit_insn (seq);
908
909 if_info->cond_earliest = if_info->jump;
910
911 return x;
912 }
913
914 end_sequence ();
915 }
916
917 /* Don't even try if the comparison operands or the mode of X are weird. */
918 if (cond_complex || !SCALAR_INT_MODE_P (GET_MODE (x)))
919 return NULL_RTX;
920
921 return emit_store_flag (x, code, XEXP (cond, 0),
922 XEXP (cond, 1), VOIDmode,
923 (code == LTU || code == LEU
924 || code == GEU || code == GTU), normalize);
925 }
926
927 /* Emit instruction to move an rtx, possibly into STRICT_LOW_PART.
928 X is the destination/target and Y is the value to copy. */
929
930 static void
931 noce_emit_move_insn (rtx x, rtx y)
932 {
933 machine_mode outmode;
934 rtx outer, inner;
935 int bitpos;
936
937 if (GET_CODE (x) != STRICT_LOW_PART)
938 {
939 rtx_insn *seq, *insn;
940 rtx target;
941 optab ot;
942
943 start_sequence ();
944 /* Check that the SET_SRC is reasonable before calling emit_move_insn,
945 otherwise construct a suitable SET pattern ourselves. */
946 insn = (OBJECT_P (y) || CONSTANT_P (y) || GET_CODE (y) == SUBREG)
947 ? emit_move_insn (x, y)
948 : emit_insn (gen_rtx_SET (VOIDmode, x, y));
949 seq = get_insns ();
950 end_sequence ();
951
952 if (recog_memoized (insn) <= 0)
953 {
954 if (GET_CODE (x) == ZERO_EXTRACT)
955 {
956 rtx op = XEXP (x, 0);
957 unsigned HOST_WIDE_INT size = INTVAL (XEXP (x, 1));
958 unsigned HOST_WIDE_INT start = INTVAL (XEXP (x, 2));
959
960 /* store_bit_field expects START to be relative to
961 BYTES_BIG_ENDIAN and adjusts this value for machines with
962 BITS_BIG_ENDIAN != BYTES_BIG_ENDIAN. In order to be able to
963 invoke store_bit_field again it is necessary to have the START
964 value from the first call. */
965 if (BITS_BIG_ENDIAN != BYTES_BIG_ENDIAN)
966 {
967 if (MEM_P (op))
968 start = BITS_PER_UNIT - start - size;
969 else
970 {
971 gcc_assert (REG_P (op));
972 start = BITS_PER_WORD - start - size;
973 }
974 }
975
976 gcc_assert (start < (MEM_P (op) ? BITS_PER_UNIT : BITS_PER_WORD));
977 store_bit_field (op, size, start, 0, 0, GET_MODE (x), y);
978 return;
979 }
980
981 switch (GET_RTX_CLASS (GET_CODE (y)))
982 {
983 case RTX_UNARY:
984 ot = code_to_optab (GET_CODE (y));
985 if (ot)
986 {
987 start_sequence ();
988 target = expand_unop (GET_MODE (y), ot, XEXP (y, 0), x, 0);
989 if (target != NULL_RTX)
990 {
991 if (target != x)
992 emit_move_insn (x, target);
993 seq = get_insns ();
994 }
995 end_sequence ();
996 }
997 break;
998
999 case RTX_BIN_ARITH:
1000 case RTX_COMM_ARITH:
1001 ot = code_to_optab (GET_CODE (y));
1002 if (ot)
1003 {
1004 start_sequence ();
1005 target = expand_binop (GET_MODE (y), ot,
1006 XEXP (y, 0), XEXP (y, 1),
1007 x, 0, OPTAB_DIRECT);
1008 if (target != NULL_RTX)
1009 {
1010 if (target != x)
1011 emit_move_insn (x, target);
1012 seq = get_insns ();
1013 }
1014 end_sequence ();
1015 }
1016 break;
1017
1018 default:
1019 break;
1020 }
1021 }
1022
1023 emit_insn (seq);
1024 return;
1025 }
1026
1027 outer = XEXP (x, 0);
1028 inner = XEXP (outer, 0);
1029 outmode = GET_MODE (outer);
1030 bitpos = SUBREG_BYTE (outer) * BITS_PER_UNIT;
1031 store_bit_field (inner, GET_MODE_BITSIZE (outmode), bitpos,
1032 0, 0, outmode, y);
1033 }
1034
1035 /* Return the CC reg if it is used in COND. */
1036
1037 static rtx
1038 cc_in_cond (rtx cond)
1039 {
1040 if (HAVE_cbranchcc4 && cond
1041 && GET_MODE_CLASS (GET_MODE (XEXP (cond, 0))) == MODE_CC)
1042 return XEXP (cond, 0);
1043
1044 return NULL_RTX;
1045 }
1046
1047 /* Return sequence of instructions generated by if conversion. This
1048 function calls end_sequence() to end the current stream, ensures
1049 that are instructions are unshared, recognizable non-jump insns.
1050 On failure, this function returns a NULL_RTX. */
1051
1052 static rtx_insn *
1053 end_ifcvt_sequence (struct noce_if_info *if_info)
1054 {
1055 rtx_insn *insn;
1056 rtx_insn *seq = get_insns ();
1057 rtx cc = cc_in_cond (if_info->cond);
1058
1059 set_used_flags (if_info->x);
1060 set_used_flags (if_info->cond);
1061 set_used_flags (if_info->a);
1062 set_used_flags (if_info->b);
1063 unshare_all_rtl_in_chain (seq);
1064 end_sequence ();
1065
1066 /* Make sure that all of the instructions emitted are recognizable,
1067 and that we haven't introduced a new jump instruction.
1068 As an exercise for the reader, build a general mechanism that
1069 allows proper placement of required clobbers. */
1070 for (insn = seq; insn; insn = NEXT_INSN (insn))
1071 if (JUMP_P (insn)
1072 || recog_memoized (insn) == -1
1073 /* Make sure new generated code does not clobber CC. */
1074 || (cc && set_of (cc, insn)))
1075 return NULL;
1076
1077 return seq;
1078 }
1079
1080 /* Convert "if (a != b) x = a; else x = b" into "x = a" and
1081 "if (a == b) x = a; else x = b" into "x = b". */
1082
1083 static int
1084 noce_try_move (struct noce_if_info *if_info)
1085 {
1086 rtx cond = if_info->cond;
1087 enum rtx_code code = GET_CODE (cond);
1088 rtx y;
1089 rtx_insn *seq;
1090
1091 if (code != NE && code != EQ)
1092 return FALSE;
1093
1094 /* This optimization isn't valid if either A or B could be a NaN
1095 or a signed zero. */
1096 if (HONOR_NANS (if_info->x)
1097 || HONOR_SIGNED_ZEROS (if_info->x))
1098 return FALSE;
1099
1100 /* Check whether the operands of the comparison are A and in
1101 either order. */
1102 if ((rtx_equal_p (if_info->a, XEXP (cond, 0))
1103 && rtx_equal_p (if_info->b, XEXP (cond, 1)))
1104 || (rtx_equal_p (if_info->a, XEXP (cond, 1))
1105 && rtx_equal_p (if_info->b, XEXP (cond, 0))))
1106 {
1107 if (!rtx_interchangeable_p (if_info->a, if_info->b))
1108 return FALSE;
1109
1110 y = (code == EQ) ? if_info->a : if_info->b;
1111
1112 /* Avoid generating the move if the source is the destination. */
1113 if (! rtx_equal_p (if_info->x, y))
1114 {
1115 start_sequence ();
1116 noce_emit_move_insn (if_info->x, y);
1117 seq = end_ifcvt_sequence (if_info);
1118 if (!seq)
1119 return FALSE;
1120
1121 emit_insn_before_setloc (seq, if_info->jump,
1122 INSN_LOCATION (if_info->insn_a));
1123 }
1124 return TRUE;
1125 }
1126 return FALSE;
1127 }
1128
1129 /* Convert "if (test) x = 1; else x = 0".
1130
1131 Only try 0 and STORE_FLAG_VALUE here. Other combinations will be
1132 tried in noce_try_store_flag_constants after noce_try_cmove has had
1133 a go at the conversion. */
1134
1135 static int
1136 noce_try_store_flag (struct noce_if_info *if_info)
1137 {
1138 int reversep;
1139 rtx target;
1140 rtx_insn *seq;
1141
1142 if (CONST_INT_P (if_info->b)
1143 && INTVAL (if_info->b) == STORE_FLAG_VALUE
1144 && if_info->a == const0_rtx)
1145 reversep = 0;
1146 else if (if_info->b == const0_rtx
1147 && CONST_INT_P (if_info->a)
1148 && INTVAL (if_info->a) == STORE_FLAG_VALUE
1149 && (reversed_comparison_code (if_info->cond, if_info->jump)
1150 != UNKNOWN))
1151 reversep = 1;
1152 else
1153 return FALSE;
1154
1155 start_sequence ();
1156
1157 target = noce_emit_store_flag (if_info, if_info->x, reversep, 0);
1158 if (target)
1159 {
1160 if (target != if_info->x)
1161 noce_emit_move_insn (if_info->x, target);
1162
1163 seq = end_ifcvt_sequence (if_info);
1164 if (! seq)
1165 return FALSE;
1166
1167 emit_insn_before_setloc (seq, if_info->jump,
1168 INSN_LOCATION (if_info->insn_a));
1169 return TRUE;
1170 }
1171 else
1172 {
1173 end_sequence ();
1174 return FALSE;
1175 }
1176 }
1177
1178 /* Convert "if (test) x = a; else x = b", for A and B constant. */
1179
1180 static int
1181 noce_try_store_flag_constants (struct noce_if_info *if_info)
1182 {
1183 rtx target;
1184 rtx_insn *seq;
1185 int reversep;
1186 HOST_WIDE_INT itrue, ifalse, diff, tmp;
1187 int normalize, can_reverse;
1188 machine_mode mode;
1189
1190 if (CONST_INT_P (if_info->a)
1191 && CONST_INT_P (if_info->b))
1192 {
1193 mode = GET_MODE (if_info->x);
1194 ifalse = INTVAL (if_info->a);
1195 itrue = INTVAL (if_info->b);
1196
1197 diff = (unsigned HOST_WIDE_INT) itrue - ifalse;
1198 /* Make sure we can represent the difference between the two values. */
1199 if ((diff > 0)
1200 != ((ifalse < 0) != (itrue < 0) ? ifalse < 0 : ifalse < itrue))
1201 return FALSE;
1202
1203 diff = trunc_int_for_mode (diff, mode);
1204
1205 can_reverse = (reversed_comparison_code (if_info->cond, if_info->jump)
1206 != UNKNOWN);
1207
1208 reversep = 0;
1209 if (diff == STORE_FLAG_VALUE || diff == -STORE_FLAG_VALUE)
1210 normalize = 0;
1211 else if (ifalse == 0 && exact_log2 (itrue) >= 0
1212 && (STORE_FLAG_VALUE == 1
1213 || if_info->branch_cost >= 2))
1214 normalize = 1;
1215 else if (itrue == 0 && exact_log2 (ifalse) >= 0 && can_reverse
1216 && (STORE_FLAG_VALUE == 1 || if_info->branch_cost >= 2))
1217 normalize = 1, reversep = 1;
1218 else if (itrue == -1
1219 && (STORE_FLAG_VALUE == -1
1220 || if_info->branch_cost >= 2))
1221 normalize = -1;
1222 else if (ifalse == -1 && can_reverse
1223 && (STORE_FLAG_VALUE == -1 || if_info->branch_cost >= 2))
1224 normalize = -1, reversep = 1;
1225 else if ((if_info->branch_cost >= 2 && STORE_FLAG_VALUE == -1)
1226 || if_info->branch_cost >= 3)
1227 normalize = -1;
1228 else
1229 return FALSE;
1230
1231 if (reversep)
1232 {
1233 tmp = itrue; itrue = ifalse; ifalse = tmp;
1234 diff = trunc_int_for_mode (-(unsigned HOST_WIDE_INT) diff, mode);
1235 }
1236
1237 start_sequence ();
1238 target = noce_emit_store_flag (if_info, if_info->x, reversep, normalize);
1239 if (! target)
1240 {
1241 end_sequence ();
1242 return FALSE;
1243 }
1244
1245 /* if (test) x = 3; else x = 4;
1246 => x = 3 + (test == 0); */
1247 if (diff == STORE_FLAG_VALUE || diff == -STORE_FLAG_VALUE)
1248 {
1249 target = expand_simple_binop (mode,
1250 (diff == STORE_FLAG_VALUE
1251 ? PLUS : MINUS),
1252 gen_int_mode (ifalse, mode), target,
1253 if_info->x, 0, OPTAB_WIDEN);
1254 }
1255
1256 /* if (test) x = 8; else x = 0;
1257 => x = (test != 0) << 3; */
1258 else if (ifalse == 0 && (tmp = exact_log2 (itrue)) >= 0)
1259 {
1260 target = expand_simple_binop (mode, ASHIFT,
1261 target, GEN_INT (tmp), if_info->x, 0,
1262 OPTAB_WIDEN);
1263 }
1264
1265 /* if (test) x = -1; else x = b;
1266 => x = -(test != 0) | b; */
1267 else if (itrue == -1)
1268 {
1269 target = expand_simple_binop (mode, IOR,
1270 target, gen_int_mode (ifalse, mode),
1271 if_info->x, 0, OPTAB_WIDEN);
1272 }
1273
1274 /* if (test) x = a; else x = b;
1275 => x = (-(test != 0) & (b - a)) + a; */
1276 else
1277 {
1278 target = expand_simple_binop (mode, AND,
1279 target, gen_int_mode (diff, mode),
1280 if_info->x, 0, OPTAB_WIDEN);
1281 if (target)
1282 target = expand_simple_binop (mode, PLUS,
1283 target, gen_int_mode (ifalse, mode),
1284 if_info->x, 0, OPTAB_WIDEN);
1285 }
1286
1287 if (! target)
1288 {
1289 end_sequence ();
1290 return FALSE;
1291 }
1292
1293 if (target != if_info->x)
1294 noce_emit_move_insn (if_info->x, target);
1295
1296 seq = end_ifcvt_sequence (if_info);
1297 if (!seq)
1298 return FALSE;
1299
1300 emit_insn_before_setloc (seq, if_info->jump,
1301 INSN_LOCATION (if_info->insn_a));
1302 return TRUE;
1303 }
1304
1305 return FALSE;
1306 }
1307
1308 /* Convert "if (test) foo++" into "foo += (test != 0)", and
1309 similarly for "foo--". */
1310
1311 static int
1312 noce_try_addcc (struct noce_if_info *if_info)
1313 {
1314 rtx target;
1315 rtx_insn *seq;
1316 int subtract, normalize;
1317
1318 if (GET_CODE (if_info->a) == PLUS
1319 && rtx_equal_p (XEXP (if_info->a, 0), if_info->b)
1320 && (reversed_comparison_code (if_info->cond, if_info->jump)
1321 != UNKNOWN))
1322 {
1323 rtx cond = if_info->cond;
1324 enum rtx_code code = reversed_comparison_code (cond, if_info->jump);
1325
1326 /* First try to use addcc pattern. */
1327 if (general_operand (XEXP (cond, 0), VOIDmode)
1328 && general_operand (XEXP (cond, 1), VOIDmode))
1329 {
1330 start_sequence ();
1331 target = emit_conditional_add (if_info->x, code,
1332 XEXP (cond, 0),
1333 XEXP (cond, 1),
1334 VOIDmode,
1335 if_info->b,
1336 XEXP (if_info->a, 1),
1337 GET_MODE (if_info->x),
1338 (code == LTU || code == GEU
1339 || code == LEU || code == GTU));
1340 if (target)
1341 {
1342 if (target != if_info->x)
1343 noce_emit_move_insn (if_info->x, target);
1344
1345 seq = end_ifcvt_sequence (if_info);
1346 if (!seq)
1347 return FALSE;
1348
1349 emit_insn_before_setloc (seq, if_info->jump,
1350 INSN_LOCATION (if_info->insn_a));
1351 return TRUE;
1352 }
1353 end_sequence ();
1354 }
1355
1356 /* If that fails, construct conditional increment or decrement using
1357 setcc. */
1358 if (if_info->branch_cost >= 2
1359 && (XEXP (if_info->a, 1) == const1_rtx
1360 || XEXP (if_info->a, 1) == constm1_rtx))
1361 {
1362 start_sequence ();
1363 if (STORE_FLAG_VALUE == INTVAL (XEXP (if_info->a, 1)))
1364 subtract = 0, normalize = 0;
1365 else if (-STORE_FLAG_VALUE == INTVAL (XEXP (if_info->a, 1)))
1366 subtract = 1, normalize = 0;
1367 else
1368 subtract = 0, normalize = INTVAL (XEXP (if_info->a, 1));
1369
1370
1371 target = noce_emit_store_flag (if_info,
1372 gen_reg_rtx (GET_MODE (if_info->x)),
1373 1, normalize);
1374
1375 if (target)
1376 target = expand_simple_binop (GET_MODE (if_info->x),
1377 subtract ? MINUS : PLUS,
1378 if_info->b, target, if_info->x,
1379 0, OPTAB_WIDEN);
1380 if (target)
1381 {
1382 if (target != if_info->x)
1383 noce_emit_move_insn (if_info->x, target);
1384
1385 seq = end_ifcvt_sequence (if_info);
1386 if (!seq)
1387 return FALSE;
1388
1389 emit_insn_before_setloc (seq, if_info->jump,
1390 INSN_LOCATION (if_info->insn_a));
1391 return TRUE;
1392 }
1393 end_sequence ();
1394 }
1395 }
1396
1397 return FALSE;
1398 }
1399
1400 /* Convert "if (test) x = 0;" to "x &= -(test == 0);" */
1401
1402 static int
1403 noce_try_store_flag_mask (struct noce_if_info *if_info)
1404 {
1405 rtx target;
1406 rtx_insn *seq;
1407 int reversep;
1408
1409 reversep = 0;
1410 if ((if_info->branch_cost >= 2
1411 || STORE_FLAG_VALUE == -1)
1412 && ((if_info->a == const0_rtx
1413 && rtx_equal_p (if_info->b, if_info->x))
1414 || ((reversep = (reversed_comparison_code (if_info->cond,
1415 if_info->jump)
1416 != UNKNOWN))
1417 && if_info->b == const0_rtx
1418 && rtx_equal_p (if_info->a, if_info->x))))
1419 {
1420 start_sequence ();
1421 target = noce_emit_store_flag (if_info,
1422 gen_reg_rtx (GET_MODE (if_info->x)),
1423 reversep, -1);
1424 if (target)
1425 target = expand_simple_binop (GET_MODE (if_info->x), AND,
1426 if_info->x,
1427 target, if_info->x, 0,
1428 OPTAB_WIDEN);
1429
1430 if (target)
1431 {
1432 int old_cost, new_cost, insn_cost;
1433 int speed_p;
1434
1435 if (target != if_info->x)
1436 noce_emit_move_insn (if_info->x, target);
1437
1438 seq = end_ifcvt_sequence (if_info);
1439 if (!seq)
1440 return FALSE;
1441
1442 speed_p = optimize_bb_for_speed_p (BLOCK_FOR_INSN (if_info->insn_a));
1443 insn_cost = insn_rtx_cost (PATTERN (if_info->insn_a), speed_p);
1444 old_cost = COSTS_N_INSNS (if_info->branch_cost) + insn_cost;
1445 new_cost = seq_cost (seq, speed_p);
1446
1447 if (new_cost > old_cost)
1448 return FALSE;
1449
1450 emit_insn_before_setloc (seq, if_info->jump,
1451 INSN_LOCATION (if_info->insn_a));
1452 return TRUE;
1453 }
1454
1455 end_sequence ();
1456 }
1457
1458 return FALSE;
1459 }
1460
1461 /* Helper function for noce_try_cmove and noce_try_cmove_arith. */
1462
1463 static rtx
1464 noce_emit_cmove (struct noce_if_info *if_info, rtx x, enum rtx_code code,
1465 rtx cmp_a, rtx cmp_b, rtx vfalse, rtx vtrue)
1466 {
1467 rtx target ATTRIBUTE_UNUSED;
1468 int unsignedp ATTRIBUTE_UNUSED;
1469
1470 /* If earliest == jump, try to build the cmove insn directly.
1471 This is helpful when combine has created some complex condition
1472 (like for alpha's cmovlbs) that we can't hope to regenerate
1473 through the normal interface. */
1474
1475 if (if_info->cond_earliest == if_info->jump)
1476 {
1477 rtx cond = gen_rtx_fmt_ee (code, GET_MODE (if_info->cond), cmp_a, cmp_b);
1478 rtx if_then_else = gen_rtx_IF_THEN_ELSE (GET_MODE (x),
1479 cond, vtrue, vfalse);
1480 rtx set = gen_rtx_SET (VOIDmode, x, if_then_else);
1481
1482 start_sequence ();
1483 rtx_insn *insn = emit_insn (set);
1484
1485 if (recog_memoized (insn) >= 0)
1486 {
1487 rtx_insn *seq = get_insns ();
1488 end_sequence ();
1489 emit_insn (seq);
1490
1491 return x;
1492 }
1493
1494 end_sequence ();
1495 }
1496
1497 /* Don't even try if the comparison operands are weird
1498 except that the target supports cbranchcc4. */
1499 if (! general_operand (cmp_a, GET_MODE (cmp_a))
1500 || ! general_operand (cmp_b, GET_MODE (cmp_b)))
1501 {
1502 if (!(HAVE_cbranchcc4)
1503 || GET_MODE_CLASS (GET_MODE (cmp_a)) != MODE_CC
1504 || cmp_b != const0_rtx)
1505 return NULL_RTX;
1506 }
1507
1508 #if HAVE_conditional_move
1509 unsignedp = (code == LTU || code == GEU
1510 || code == LEU || code == GTU);
1511
1512 target = emit_conditional_move (x, code, cmp_a, cmp_b, VOIDmode,
1513 vtrue, vfalse, GET_MODE (x),
1514 unsignedp);
1515 if (target)
1516 return target;
1517
1518 /* We might be faced with a situation like:
1519
1520 x = (reg:M TARGET)
1521 vtrue = (subreg:M (reg:N VTRUE) BYTE)
1522 vfalse = (subreg:M (reg:N VFALSE) BYTE)
1523
1524 We can't do a conditional move in mode M, but it's possible that we
1525 could do a conditional move in mode N instead and take a subreg of
1526 the result.
1527
1528 If we can't create new pseudos, though, don't bother. */
1529 if (reload_completed)
1530 return NULL_RTX;
1531
1532 if (GET_CODE (vtrue) == SUBREG && GET_CODE (vfalse) == SUBREG)
1533 {
1534 rtx reg_vtrue = SUBREG_REG (vtrue);
1535 rtx reg_vfalse = SUBREG_REG (vfalse);
1536 unsigned int byte_vtrue = SUBREG_BYTE (vtrue);
1537 unsigned int byte_vfalse = SUBREG_BYTE (vfalse);
1538 rtx promoted_target;
1539
1540 if (GET_MODE (reg_vtrue) != GET_MODE (reg_vfalse)
1541 || byte_vtrue != byte_vfalse
1542 || (SUBREG_PROMOTED_VAR_P (vtrue)
1543 != SUBREG_PROMOTED_VAR_P (vfalse))
1544 || (SUBREG_PROMOTED_GET (vtrue)
1545 != SUBREG_PROMOTED_GET (vfalse)))
1546 return NULL_RTX;
1547
1548 promoted_target = gen_reg_rtx (GET_MODE (reg_vtrue));
1549
1550 target = emit_conditional_move (promoted_target, code, cmp_a, cmp_b,
1551 VOIDmode, reg_vtrue, reg_vfalse,
1552 GET_MODE (reg_vtrue), unsignedp);
1553 /* Nope, couldn't do it in that mode either. */
1554 if (!target)
1555 return NULL_RTX;
1556
1557 target = gen_rtx_SUBREG (GET_MODE (vtrue), promoted_target, byte_vtrue);
1558 SUBREG_PROMOTED_VAR_P (target) = SUBREG_PROMOTED_VAR_P (vtrue);
1559 SUBREG_PROMOTED_SET (target, SUBREG_PROMOTED_GET (vtrue));
1560 emit_move_insn (x, target);
1561 return x;
1562 }
1563 else
1564 return NULL_RTX;
1565 #else
1566 /* We'll never get here, as noce_process_if_block doesn't call the
1567 functions involved. Ifdef code, however, should be discouraged
1568 because it leads to typos in the code not selected. However,
1569 emit_conditional_move won't exist either. */
1570 return NULL_RTX;
1571 #endif
1572 }
1573
1574 /* Try only simple constants and registers here. More complex cases
1575 are handled in noce_try_cmove_arith after noce_try_store_flag_arith
1576 has had a go at it. */
1577
1578 static int
1579 noce_try_cmove (struct noce_if_info *if_info)
1580 {
1581 enum rtx_code code;
1582 rtx target;
1583 rtx_insn *seq;
1584
1585 if ((CONSTANT_P (if_info->a) || register_operand (if_info->a, VOIDmode))
1586 && (CONSTANT_P (if_info->b) || register_operand (if_info->b, VOIDmode)))
1587 {
1588 start_sequence ();
1589
1590 code = GET_CODE (if_info->cond);
1591 target = noce_emit_cmove (if_info, if_info->x, code,
1592 XEXP (if_info->cond, 0),
1593 XEXP (if_info->cond, 1),
1594 if_info->a, if_info->b);
1595
1596 if (target)
1597 {
1598 if (target != if_info->x)
1599 noce_emit_move_insn (if_info->x, target);
1600
1601 seq = end_ifcvt_sequence (if_info);
1602 if (!seq)
1603 return FALSE;
1604
1605 emit_insn_before_setloc (seq, if_info->jump,
1606 INSN_LOCATION (if_info->insn_a));
1607 return TRUE;
1608 }
1609 else
1610 {
1611 end_sequence ();
1612 return FALSE;
1613 }
1614 }
1615
1616 return FALSE;
1617 }
1618
1619 /* Try more complex cases involving conditional_move. */
1620
1621 static int
1622 noce_try_cmove_arith (struct noce_if_info *if_info)
1623 {
1624 rtx a = if_info->a;
1625 rtx b = if_info->b;
1626 rtx x = if_info->x;
1627 rtx orig_a, orig_b;
1628 rtx_insn *insn_a, *insn_b;
1629 rtx target;
1630 int is_mem = 0;
1631 int insn_cost;
1632 enum rtx_code code;
1633 rtx_insn *ifcvt_seq;
1634
1635 /* A conditional move from two memory sources is equivalent to a
1636 conditional on their addresses followed by a load. Don't do this
1637 early because it'll screw alias analysis. Note that we've
1638 already checked for no side effects. */
1639 /* ??? FIXME: Magic number 5. */
1640 if (cse_not_expected
1641 && MEM_P (a) && MEM_P (b)
1642 && MEM_ADDR_SPACE (a) == MEM_ADDR_SPACE (b)
1643 && if_info->branch_cost >= 5)
1644 {
1645 machine_mode address_mode = get_address_mode (a);
1646
1647 a = XEXP (a, 0);
1648 b = XEXP (b, 0);
1649 x = gen_reg_rtx (address_mode);
1650 is_mem = 1;
1651 }
1652
1653 /* ??? We could handle this if we knew that a load from A or B could
1654 not trap or fault. This is also true if we've already loaded
1655 from the address along the path from ENTRY. */
1656 else if (may_trap_or_fault_p (a) || may_trap_or_fault_p (b))
1657 return FALSE;
1658
1659 /* if (test) x = a + b; else x = c - d;
1660 => y = a + b;
1661 x = c - d;
1662 if (test)
1663 x = y;
1664 */
1665
1666 code = GET_CODE (if_info->cond);
1667 insn_a = if_info->insn_a;
1668 insn_b = if_info->insn_b;
1669
1670 /* Total insn_rtx_cost should be smaller than branch cost. Exit
1671 if insn_rtx_cost can't be estimated. */
1672 if (insn_a)
1673 {
1674 insn_cost
1675 = insn_rtx_cost (PATTERN (insn_a),
1676 optimize_bb_for_speed_p (BLOCK_FOR_INSN (insn_a)));
1677 if (insn_cost == 0 || insn_cost > COSTS_N_INSNS (if_info->branch_cost))
1678 return FALSE;
1679 }
1680 else
1681 insn_cost = 0;
1682
1683 if (insn_b)
1684 {
1685 insn_cost
1686 += insn_rtx_cost (PATTERN (insn_b),
1687 optimize_bb_for_speed_p (BLOCK_FOR_INSN (insn_b)));
1688 if (insn_cost == 0 || insn_cost > COSTS_N_INSNS (if_info->branch_cost))
1689 return FALSE;
1690 }
1691
1692 /* Possibly rearrange operands to make things come out more natural. */
1693 if (reversed_comparison_code (if_info->cond, if_info->jump) != UNKNOWN)
1694 {
1695 int reversep = 0;
1696 if (rtx_equal_p (b, x))
1697 reversep = 1;
1698 else if (general_operand (b, GET_MODE (b)))
1699 reversep = 1;
1700
1701 if (reversep)
1702 {
1703 rtx tmp;
1704 rtx_insn *tmp_insn;
1705 code = reversed_comparison_code (if_info->cond, if_info->jump);
1706 tmp = a, a = b, b = tmp;
1707 tmp_insn = insn_a, insn_a = insn_b, insn_b = tmp_insn;
1708 }
1709 }
1710
1711 start_sequence ();
1712
1713 orig_a = a;
1714 orig_b = b;
1715
1716 /* If either operand is complex, load it into a register first.
1717 The best way to do this is to copy the original insn. In this
1718 way we preserve any clobbers etc that the insn may have had.
1719 This is of course not possible in the IS_MEM case. */
1720 if (! general_operand (a, GET_MODE (a)))
1721 {
1722 rtx_insn *insn;
1723
1724 if (is_mem)
1725 {
1726 rtx reg = gen_reg_rtx (GET_MODE (a));
1727 insn = emit_insn (gen_rtx_SET (VOIDmode, reg, a));
1728 }
1729 else if (! insn_a)
1730 goto end_seq_and_fail;
1731 else
1732 {
1733 a = gen_reg_rtx (GET_MODE (a));
1734 rtx_insn *copy_of_a = as_a <rtx_insn *> (copy_rtx (insn_a));
1735 rtx set = single_set (copy_of_a);
1736 SET_DEST (set) = a;
1737 insn = emit_insn (PATTERN (copy_of_a));
1738 }
1739 if (recog_memoized (insn) < 0)
1740 goto end_seq_and_fail;
1741 }
1742 if (! general_operand (b, GET_MODE (b)))
1743 {
1744 rtx pat;
1745 rtx_insn *last;
1746 rtx_insn *new_insn;
1747
1748 if (is_mem)
1749 {
1750 rtx reg = gen_reg_rtx (GET_MODE (b));
1751 pat = gen_rtx_SET (VOIDmode, reg, b);
1752 }
1753 else if (! insn_b)
1754 goto end_seq_and_fail;
1755 else
1756 {
1757 b = gen_reg_rtx (GET_MODE (b));
1758 rtx_insn *copy_of_insn_b = as_a <rtx_insn *> (copy_rtx (insn_b));
1759 rtx set = single_set (copy_of_insn_b);
1760 SET_DEST (set) = b;
1761 pat = PATTERN (copy_of_insn_b);
1762 }
1763
1764 /* If insn to set up A clobbers any registers B depends on, try to
1765 swap insn that sets up A with the one that sets up B. If even
1766 that doesn't help, punt. */
1767 last = get_last_insn ();
1768 if (last && modified_in_p (orig_b, last))
1769 {
1770 new_insn = emit_insn_before (pat, get_insns ());
1771 if (modified_in_p (orig_a, new_insn))
1772 goto end_seq_and_fail;
1773 }
1774 else
1775 new_insn = emit_insn (pat);
1776
1777 if (recog_memoized (new_insn) < 0)
1778 goto end_seq_and_fail;
1779 }
1780
1781 target = noce_emit_cmove (if_info, x, code, XEXP (if_info->cond, 0),
1782 XEXP (if_info->cond, 1), a, b);
1783
1784 if (! target)
1785 goto end_seq_and_fail;
1786
1787 /* If we're handling a memory for above, emit the load now. */
1788 if (is_mem)
1789 {
1790 rtx mem = gen_rtx_MEM (GET_MODE (if_info->x), target);
1791
1792 /* Copy over flags as appropriate. */
1793 if (MEM_VOLATILE_P (if_info->a) || MEM_VOLATILE_P (if_info->b))
1794 MEM_VOLATILE_P (mem) = 1;
1795 if (MEM_ALIAS_SET (if_info->a) == MEM_ALIAS_SET (if_info->b))
1796 set_mem_alias_set (mem, MEM_ALIAS_SET (if_info->a));
1797 set_mem_align (mem,
1798 MIN (MEM_ALIGN (if_info->a), MEM_ALIGN (if_info->b)));
1799
1800 gcc_assert (MEM_ADDR_SPACE (if_info->a) == MEM_ADDR_SPACE (if_info->b));
1801 set_mem_addr_space (mem, MEM_ADDR_SPACE (if_info->a));
1802
1803 noce_emit_move_insn (if_info->x, mem);
1804 }
1805 else if (target != x)
1806 noce_emit_move_insn (x, target);
1807
1808 ifcvt_seq = end_ifcvt_sequence (if_info);
1809 if (!ifcvt_seq)
1810 return FALSE;
1811
1812 emit_insn_before_setloc (ifcvt_seq, if_info->jump,
1813 INSN_LOCATION (if_info->insn_a));
1814 return TRUE;
1815
1816 end_seq_and_fail:
1817 end_sequence ();
1818 return FALSE;
1819 }
1820
1821 /* For most cases, the simplified condition we found is the best
1822 choice, but this is not the case for the min/max/abs transforms.
1823 For these we wish to know that it is A or B in the condition. */
1824
1825 static rtx
1826 noce_get_alt_condition (struct noce_if_info *if_info, rtx target,
1827 rtx_insn **earliest)
1828 {
1829 rtx cond, set;
1830 rtx_insn *insn;
1831 int reverse;
1832
1833 /* If target is already mentioned in the known condition, return it. */
1834 if (reg_mentioned_p (target, if_info->cond))
1835 {
1836 *earliest = if_info->cond_earliest;
1837 return if_info->cond;
1838 }
1839
1840 set = pc_set (if_info->jump);
1841 cond = XEXP (SET_SRC (set), 0);
1842 reverse
1843 = GET_CODE (XEXP (SET_SRC (set), 2)) == LABEL_REF
1844 && LABEL_REF_LABEL (XEXP (SET_SRC (set), 2)) == JUMP_LABEL (if_info->jump);
1845 if (if_info->then_else_reversed)
1846 reverse = !reverse;
1847
1848 /* If we're looking for a constant, try to make the conditional
1849 have that constant in it. There are two reasons why it may
1850 not have the constant we want:
1851
1852 1. GCC may have needed to put the constant in a register, because
1853 the target can't compare directly against that constant. For
1854 this case, we look for a SET immediately before the comparison
1855 that puts a constant in that register.
1856
1857 2. GCC may have canonicalized the conditional, for example
1858 replacing "if x < 4" with "if x <= 3". We can undo that (or
1859 make equivalent types of changes) to get the constants we need
1860 if they're off by one in the right direction. */
1861
1862 if (CONST_INT_P (target))
1863 {
1864 enum rtx_code code = GET_CODE (if_info->cond);
1865 rtx op_a = XEXP (if_info->cond, 0);
1866 rtx op_b = XEXP (if_info->cond, 1);
1867 rtx_insn *prev_insn;
1868
1869 /* First, look to see if we put a constant in a register. */
1870 prev_insn = prev_nonnote_insn (if_info->cond_earliest);
1871 if (prev_insn
1872 && BLOCK_FOR_INSN (prev_insn)
1873 == BLOCK_FOR_INSN (if_info->cond_earliest)
1874 && INSN_P (prev_insn)
1875 && GET_CODE (PATTERN (prev_insn)) == SET)
1876 {
1877 rtx src = find_reg_equal_equiv_note (prev_insn);
1878 if (!src)
1879 src = SET_SRC (PATTERN (prev_insn));
1880 if (CONST_INT_P (src))
1881 {
1882 if (rtx_equal_p (op_a, SET_DEST (PATTERN (prev_insn))))
1883 op_a = src;
1884 else if (rtx_equal_p (op_b, SET_DEST (PATTERN (prev_insn))))
1885 op_b = src;
1886
1887 if (CONST_INT_P (op_a))
1888 {
1889 rtx tmp = op_a;
1890 op_a = op_b;
1891 op_b = tmp;
1892 code = swap_condition (code);
1893 }
1894 }
1895 }
1896
1897 /* Now, look to see if we can get the right constant by
1898 adjusting the conditional. */
1899 if (CONST_INT_P (op_b))
1900 {
1901 HOST_WIDE_INT desired_val = INTVAL (target);
1902 HOST_WIDE_INT actual_val = INTVAL (op_b);
1903
1904 switch (code)
1905 {
1906 case LT:
1907 if (actual_val == desired_val + 1)
1908 {
1909 code = LE;
1910 op_b = GEN_INT (desired_val);
1911 }
1912 break;
1913 case LE:
1914 if (actual_val == desired_val - 1)
1915 {
1916 code = LT;
1917 op_b = GEN_INT (desired_val);
1918 }
1919 break;
1920 case GT:
1921 if (actual_val == desired_val - 1)
1922 {
1923 code = GE;
1924 op_b = GEN_INT (desired_val);
1925 }
1926 break;
1927 case GE:
1928 if (actual_val == desired_val + 1)
1929 {
1930 code = GT;
1931 op_b = GEN_INT (desired_val);
1932 }
1933 break;
1934 default:
1935 break;
1936 }
1937 }
1938
1939 /* If we made any changes, generate a new conditional that is
1940 equivalent to what we started with, but has the right
1941 constants in it. */
1942 if (code != GET_CODE (if_info->cond)
1943 || op_a != XEXP (if_info->cond, 0)
1944 || op_b != XEXP (if_info->cond, 1))
1945 {
1946 cond = gen_rtx_fmt_ee (code, GET_MODE (cond), op_a, op_b);
1947 *earliest = if_info->cond_earliest;
1948 return cond;
1949 }
1950 }
1951
1952 cond = canonicalize_condition (if_info->jump, cond, reverse,
1953 earliest, target, HAVE_cbranchcc4, true);
1954 if (! cond || ! reg_mentioned_p (target, cond))
1955 return NULL;
1956
1957 /* We almost certainly searched back to a different place.
1958 Need to re-verify correct lifetimes. */
1959
1960 /* X may not be mentioned in the range (cond_earliest, jump]. */
1961 for (insn = if_info->jump; insn != *earliest; insn = PREV_INSN (insn))
1962 if (INSN_P (insn) && reg_overlap_mentioned_p (if_info->x, PATTERN (insn)))
1963 return NULL;
1964
1965 /* A and B may not be modified in the range [cond_earliest, jump). */
1966 for (insn = *earliest; insn != if_info->jump; insn = NEXT_INSN (insn))
1967 if (INSN_P (insn)
1968 && (modified_in_p (if_info->a, insn)
1969 || modified_in_p (if_info->b, insn)))
1970 return NULL;
1971
1972 return cond;
1973 }
1974
1975 /* Convert "if (a < b) x = a; else x = b;" to "x = min(a, b);", etc. */
1976
1977 static int
1978 noce_try_minmax (struct noce_if_info *if_info)
1979 {
1980 rtx cond, target;
1981 rtx_insn *earliest, *seq;
1982 enum rtx_code code, op;
1983 int unsignedp;
1984
1985 /* ??? Reject modes with NaNs or signed zeros since we don't know how
1986 they will be resolved with an SMIN/SMAX. It wouldn't be too hard
1987 to get the target to tell us... */
1988 if (HONOR_SIGNED_ZEROS (if_info->x)
1989 || HONOR_NANS (if_info->x))
1990 return FALSE;
1991
1992 cond = noce_get_alt_condition (if_info, if_info->a, &earliest);
1993 if (!cond)
1994 return FALSE;
1995
1996 /* Verify the condition is of the form we expect, and canonicalize
1997 the comparison code. */
1998 code = GET_CODE (cond);
1999 if (rtx_equal_p (XEXP (cond, 0), if_info->a))
2000 {
2001 if (! rtx_equal_p (XEXP (cond, 1), if_info->b))
2002 return FALSE;
2003 }
2004 else if (rtx_equal_p (XEXP (cond, 1), if_info->a))
2005 {
2006 if (! rtx_equal_p (XEXP (cond, 0), if_info->b))
2007 return FALSE;
2008 code = swap_condition (code);
2009 }
2010 else
2011 return FALSE;
2012
2013 /* Determine what sort of operation this is. Note that the code is for
2014 a taken branch, so the code->operation mapping appears backwards. */
2015 switch (code)
2016 {
2017 case LT:
2018 case LE:
2019 case UNLT:
2020 case UNLE:
2021 op = SMAX;
2022 unsignedp = 0;
2023 break;
2024 case GT:
2025 case GE:
2026 case UNGT:
2027 case UNGE:
2028 op = SMIN;
2029 unsignedp = 0;
2030 break;
2031 case LTU:
2032 case LEU:
2033 op = UMAX;
2034 unsignedp = 1;
2035 break;
2036 case GTU:
2037 case GEU:
2038 op = UMIN;
2039 unsignedp = 1;
2040 break;
2041 default:
2042 return FALSE;
2043 }
2044
2045 start_sequence ();
2046
2047 target = expand_simple_binop (GET_MODE (if_info->x), op,
2048 if_info->a, if_info->b,
2049 if_info->x, unsignedp, OPTAB_WIDEN);
2050 if (! target)
2051 {
2052 end_sequence ();
2053 return FALSE;
2054 }
2055 if (target != if_info->x)
2056 noce_emit_move_insn (if_info->x, target);
2057
2058 seq = end_ifcvt_sequence (if_info);
2059 if (!seq)
2060 return FALSE;
2061
2062 emit_insn_before_setloc (seq, if_info->jump, INSN_LOCATION (if_info->insn_a));
2063 if_info->cond = cond;
2064 if_info->cond_earliest = earliest;
2065
2066 return TRUE;
2067 }
2068
2069 /* Convert "if (a < 0) x = -a; else x = a;" to "x = abs(a);",
2070 "if (a < 0) x = ~a; else x = a;" to "x = one_cmpl_abs(a);",
2071 etc. */
2072
2073 static int
2074 noce_try_abs (struct noce_if_info *if_info)
2075 {
2076 rtx cond, target, a, b, c;
2077 rtx_insn *earliest, *seq;
2078 int negate;
2079 bool one_cmpl = false;
2080
2081 /* Reject modes with signed zeros. */
2082 if (HONOR_SIGNED_ZEROS (if_info->x))
2083 return FALSE;
2084
2085 /* Recognize A and B as constituting an ABS or NABS. The canonical
2086 form is a branch around the negation, taken when the object is the
2087 first operand of a comparison against 0 that evaluates to true. */
2088 a = if_info->a;
2089 b = if_info->b;
2090 if (GET_CODE (a) == NEG && rtx_equal_p (XEXP (a, 0), b))
2091 negate = 0;
2092 else if (GET_CODE (b) == NEG && rtx_equal_p (XEXP (b, 0), a))
2093 {
2094 c = a; a = b; b = c;
2095 negate = 1;
2096 }
2097 else if (GET_CODE (a) == NOT && rtx_equal_p (XEXP (a, 0), b))
2098 {
2099 negate = 0;
2100 one_cmpl = true;
2101 }
2102 else if (GET_CODE (b) == NOT && rtx_equal_p (XEXP (b, 0), a))
2103 {
2104 c = a; a = b; b = c;
2105 negate = 1;
2106 one_cmpl = true;
2107 }
2108 else
2109 return FALSE;
2110
2111 cond = noce_get_alt_condition (if_info, b, &earliest);
2112 if (!cond)
2113 return FALSE;
2114
2115 /* Verify the condition is of the form we expect. */
2116 if (rtx_equal_p (XEXP (cond, 0), b))
2117 c = XEXP (cond, 1);
2118 else if (rtx_equal_p (XEXP (cond, 1), b))
2119 {
2120 c = XEXP (cond, 0);
2121 negate = !negate;
2122 }
2123 else
2124 return FALSE;
2125
2126 /* Verify that C is zero. Search one step backward for a
2127 REG_EQUAL note or a simple source if necessary. */
2128 if (REG_P (c))
2129 {
2130 rtx set;
2131 rtx_insn *insn = prev_nonnote_insn (earliest);
2132 if (insn
2133 && BLOCK_FOR_INSN (insn) == BLOCK_FOR_INSN (earliest)
2134 && (set = single_set (insn))
2135 && rtx_equal_p (SET_DEST (set), c))
2136 {
2137 rtx note = find_reg_equal_equiv_note (insn);
2138 if (note)
2139 c = XEXP (note, 0);
2140 else
2141 c = SET_SRC (set);
2142 }
2143 else
2144 return FALSE;
2145 }
2146 if (MEM_P (c)
2147 && GET_CODE (XEXP (c, 0)) == SYMBOL_REF
2148 && CONSTANT_POOL_ADDRESS_P (XEXP (c, 0)))
2149 c = get_pool_constant (XEXP (c, 0));
2150
2151 /* Work around funny ideas get_condition has wrt canonicalization.
2152 Note that these rtx constants are known to be CONST_INT, and
2153 therefore imply integer comparisons. */
2154 if (c == constm1_rtx && GET_CODE (cond) == GT)
2155 ;
2156 else if (c == const1_rtx && GET_CODE (cond) == LT)
2157 ;
2158 else if (c != CONST0_RTX (GET_MODE (b)))
2159 return FALSE;
2160
2161 /* Determine what sort of operation this is. */
2162 switch (GET_CODE (cond))
2163 {
2164 case LT:
2165 case LE:
2166 case UNLT:
2167 case UNLE:
2168 negate = !negate;
2169 break;
2170 case GT:
2171 case GE:
2172 case UNGT:
2173 case UNGE:
2174 break;
2175 default:
2176 return FALSE;
2177 }
2178
2179 start_sequence ();
2180 if (one_cmpl)
2181 target = expand_one_cmpl_abs_nojump (GET_MODE (if_info->x), b,
2182 if_info->x);
2183 else
2184 target = expand_abs_nojump (GET_MODE (if_info->x), b, if_info->x, 1);
2185
2186 /* ??? It's a quandary whether cmove would be better here, especially
2187 for integers. Perhaps combine will clean things up. */
2188 if (target && negate)
2189 {
2190 if (one_cmpl)
2191 target = expand_simple_unop (GET_MODE (target), NOT, target,
2192 if_info->x, 0);
2193 else
2194 target = expand_simple_unop (GET_MODE (target), NEG, target,
2195 if_info->x, 0);
2196 }
2197
2198 if (! target)
2199 {
2200 end_sequence ();
2201 return FALSE;
2202 }
2203
2204 if (target != if_info->x)
2205 noce_emit_move_insn (if_info->x, target);
2206
2207 seq = end_ifcvt_sequence (if_info);
2208 if (!seq)
2209 return FALSE;
2210
2211 emit_insn_before_setloc (seq, if_info->jump, INSN_LOCATION (if_info->insn_a));
2212 if_info->cond = cond;
2213 if_info->cond_earliest = earliest;
2214
2215 return TRUE;
2216 }
2217
2218 /* Convert "if (m < 0) x = b; else x = 0;" to "x = (m >> C) & b;". */
2219
2220 static int
2221 noce_try_sign_mask (struct noce_if_info *if_info)
2222 {
2223 rtx cond, t, m, c;
2224 rtx_insn *seq;
2225 machine_mode mode;
2226 enum rtx_code code;
2227 bool t_unconditional;
2228
2229 cond = if_info->cond;
2230 code = GET_CODE (cond);
2231 m = XEXP (cond, 0);
2232 c = XEXP (cond, 1);
2233
2234 t = NULL_RTX;
2235 if (if_info->a == const0_rtx)
2236 {
2237 if ((code == LT && c == const0_rtx)
2238 || (code == LE && c == constm1_rtx))
2239 t = if_info->b;
2240 }
2241 else if (if_info->b == const0_rtx)
2242 {
2243 if ((code == GE && c == const0_rtx)
2244 || (code == GT && c == constm1_rtx))
2245 t = if_info->a;
2246 }
2247
2248 if (! t || side_effects_p (t))
2249 return FALSE;
2250
2251 /* We currently don't handle different modes. */
2252 mode = GET_MODE (t);
2253 if (GET_MODE (m) != mode)
2254 return FALSE;
2255
2256 /* This is only profitable if T is unconditionally executed/evaluated in the
2257 original insn sequence or T is cheap. The former happens if B is the
2258 non-zero (T) value and if INSN_B was taken from TEST_BB, or there was no
2259 INSN_B which can happen for e.g. conditional stores to memory. For the
2260 cost computation use the block TEST_BB where the evaluation will end up
2261 after the transformation. */
2262 t_unconditional =
2263 (t == if_info->b
2264 && (if_info->insn_b == NULL_RTX
2265 || BLOCK_FOR_INSN (if_info->insn_b) == if_info->test_bb));
2266 if (!(t_unconditional
2267 || (set_src_cost (t, optimize_bb_for_speed_p (if_info->test_bb))
2268 < COSTS_N_INSNS (2))))
2269 return FALSE;
2270
2271 start_sequence ();
2272 /* Use emit_store_flag to generate "m < 0 ? -1 : 0" instead of expanding
2273 "(signed) m >> 31" directly. This benefits targets with specialized
2274 insns to obtain the signmask, but still uses ashr_optab otherwise. */
2275 m = emit_store_flag (gen_reg_rtx (mode), LT, m, const0_rtx, mode, 0, -1);
2276 t = m ? expand_binop (mode, and_optab, m, t, NULL_RTX, 0, OPTAB_DIRECT)
2277 : NULL_RTX;
2278
2279 if (!t)
2280 {
2281 end_sequence ();
2282 return FALSE;
2283 }
2284
2285 noce_emit_move_insn (if_info->x, t);
2286
2287 seq = end_ifcvt_sequence (if_info);
2288 if (!seq)
2289 return FALSE;
2290
2291 emit_insn_before_setloc (seq, if_info->jump, INSN_LOCATION (if_info->insn_a));
2292 return TRUE;
2293 }
2294
2295
2296 /* Optimize away "if (x & C) x |= C" and similar bit manipulation
2297 transformations. */
2298
2299 static int
2300 noce_try_bitop (struct noce_if_info *if_info)
2301 {
2302 rtx cond, x, a, result;
2303 rtx_insn *seq;
2304 machine_mode mode;
2305 enum rtx_code code;
2306 int bitnum;
2307
2308 x = if_info->x;
2309 cond = if_info->cond;
2310 code = GET_CODE (cond);
2311
2312 /* Check for no else condition. */
2313 if (! rtx_equal_p (x, if_info->b))
2314 return FALSE;
2315
2316 /* Check for a suitable condition. */
2317 if (code != NE && code != EQ)
2318 return FALSE;
2319 if (XEXP (cond, 1) != const0_rtx)
2320 return FALSE;
2321 cond = XEXP (cond, 0);
2322
2323 /* ??? We could also handle AND here. */
2324 if (GET_CODE (cond) == ZERO_EXTRACT)
2325 {
2326 if (XEXP (cond, 1) != const1_rtx
2327 || !CONST_INT_P (XEXP (cond, 2))
2328 || ! rtx_equal_p (x, XEXP (cond, 0)))
2329 return FALSE;
2330 bitnum = INTVAL (XEXP (cond, 2));
2331 mode = GET_MODE (x);
2332 if (BITS_BIG_ENDIAN)
2333 bitnum = GET_MODE_BITSIZE (mode) - 1 - bitnum;
2334 if (bitnum < 0 || bitnum >= HOST_BITS_PER_WIDE_INT)
2335 return FALSE;
2336 }
2337 else
2338 return FALSE;
2339
2340 a = if_info->a;
2341 if (GET_CODE (a) == IOR || GET_CODE (a) == XOR)
2342 {
2343 /* Check for "if (X & C) x = x op C". */
2344 if (! rtx_equal_p (x, XEXP (a, 0))
2345 || !CONST_INT_P (XEXP (a, 1))
2346 || (INTVAL (XEXP (a, 1)) & GET_MODE_MASK (mode))
2347 != (unsigned HOST_WIDE_INT) 1 << bitnum)
2348 return FALSE;
2349
2350 /* if ((x & C) == 0) x |= C; is transformed to x |= C. */
2351 /* if ((x & C) != 0) x |= C; is transformed to nothing. */
2352 if (GET_CODE (a) == IOR)
2353 result = (code == NE) ? a : NULL_RTX;
2354 else if (code == NE)
2355 {
2356 /* if ((x & C) == 0) x ^= C; is transformed to x |= C. */
2357 result = gen_int_mode ((HOST_WIDE_INT) 1 << bitnum, mode);
2358 result = simplify_gen_binary (IOR, mode, x, result);
2359 }
2360 else
2361 {
2362 /* if ((x & C) != 0) x ^= C; is transformed to x &= ~C. */
2363 result = gen_int_mode (~((HOST_WIDE_INT) 1 << bitnum), mode);
2364 result = simplify_gen_binary (AND, mode, x, result);
2365 }
2366 }
2367 else if (GET_CODE (a) == AND)
2368 {
2369 /* Check for "if (X & C) x &= ~C". */
2370 if (! rtx_equal_p (x, XEXP (a, 0))
2371 || !CONST_INT_P (XEXP (a, 1))
2372 || (INTVAL (XEXP (a, 1)) & GET_MODE_MASK (mode))
2373 != (~((HOST_WIDE_INT) 1 << bitnum) & GET_MODE_MASK (mode)))
2374 return FALSE;
2375
2376 /* if ((x & C) == 0) x &= ~C; is transformed to nothing. */
2377 /* if ((x & C) != 0) x &= ~C; is transformed to x &= ~C. */
2378 result = (code == EQ) ? a : NULL_RTX;
2379 }
2380 else
2381 return FALSE;
2382
2383 if (result)
2384 {
2385 start_sequence ();
2386 noce_emit_move_insn (x, result);
2387 seq = end_ifcvt_sequence (if_info);
2388 if (!seq)
2389 return FALSE;
2390
2391 emit_insn_before_setloc (seq, if_info->jump,
2392 INSN_LOCATION (if_info->insn_a));
2393 }
2394 return TRUE;
2395 }
2396
2397
2398 /* Similar to get_condition, only the resulting condition must be
2399 valid at JUMP, instead of at EARLIEST.
2400
2401 If THEN_ELSE_REVERSED is true, the fallthrough does not go to the
2402 THEN block of the caller, and we have to reverse the condition. */
2403
2404 static rtx
2405 noce_get_condition (rtx_insn *jump, rtx_insn **earliest, bool then_else_reversed)
2406 {
2407 rtx cond, set, tmp;
2408 bool reverse;
2409
2410 if (! any_condjump_p (jump))
2411 return NULL_RTX;
2412
2413 set = pc_set (jump);
2414
2415 /* If this branches to JUMP_LABEL when the condition is false,
2416 reverse the condition. */
2417 reverse = (GET_CODE (XEXP (SET_SRC (set), 2)) == LABEL_REF
2418 && LABEL_REF_LABEL (XEXP (SET_SRC (set), 2)) == JUMP_LABEL (jump));
2419
2420 /* We may have to reverse because the caller's if block is not canonical,
2421 i.e. the THEN block isn't the fallthrough block for the TEST block
2422 (see find_if_header). */
2423 if (then_else_reversed)
2424 reverse = !reverse;
2425
2426 /* If the condition variable is a register and is MODE_INT, accept it. */
2427
2428 cond = XEXP (SET_SRC (set), 0);
2429 tmp = XEXP (cond, 0);
2430 if (REG_P (tmp) && GET_MODE_CLASS (GET_MODE (tmp)) == MODE_INT
2431 && (GET_MODE (tmp) != BImode
2432 || !targetm.small_register_classes_for_mode_p (BImode)))
2433 {
2434 *earliest = jump;
2435
2436 if (reverse)
2437 cond = gen_rtx_fmt_ee (reverse_condition (GET_CODE (cond)),
2438 GET_MODE (cond), tmp, XEXP (cond, 1));
2439 return cond;
2440 }
2441
2442 /* Otherwise, fall back on canonicalize_condition to do the dirty
2443 work of manipulating MODE_CC values and COMPARE rtx codes. */
2444 tmp = canonicalize_condition (jump, cond, reverse, earliest,
2445 NULL_RTX, HAVE_cbranchcc4, true);
2446
2447 /* We don't handle side-effects in the condition, like handling
2448 REG_INC notes and making sure no duplicate conditions are emitted. */
2449 if (tmp != NULL_RTX && side_effects_p (tmp))
2450 return NULL_RTX;
2451
2452 return tmp;
2453 }
2454
2455 /* Return true if OP is ok for if-then-else processing. */
2456
2457 static int
2458 noce_operand_ok (const_rtx op)
2459 {
2460 if (side_effects_p (op))
2461 return FALSE;
2462
2463 /* We special-case memories, so handle any of them with
2464 no address side effects. */
2465 if (MEM_P (op))
2466 return ! side_effects_p (XEXP (op, 0));
2467
2468 return ! may_trap_p (op);
2469 }
2470
2471 /* Return true if a write into MEM may trap or fault. */
2472
2473 static bool
2474 noce_mem_write_may_trap_or_fault_p (const_rtx mem)
2475 {
2476 rtx addr;
2477
2478 if (MEM_READONLY_P (mem))
2479 return true;
2480
2481 if (may_trap_or_fault_p (mem))
2482 return true;
2483
2484 addr = XEXP (mem, 0);
2485
2486 /* Call target hook to avoid the effects of -fpic etc.... */
2487 addr = targetm.delegitimize_address (addr);
2488
2489 while (addr)
2490 switch (GET_CODE (addr))
2491 {
2492 case CONST:
2493 case PRE_DEC:
2494 case PRE_INC:
2495 case POST_DEC:
2496 case POST_INC:
2497 case POST_MODIFY:
2498 addr = XEXP (addr, 0);
2499 break;
2500 case LO_SUM:
2501 case PRE_MODIFY:
2502 addr = XEXP (addr, 1);
2503 break;
2504 case PLUS:
2505 if (CONST_INT_P (XEXP (addr, 1)))
2506 addr = XEXP (addr, 0);
2507 else
2508 return false;
2509 break;
2510 case LABEL_REF:
2511 return true;
2512 case SYMBOL_REF:
2513 if (SYMBOL_REF_DECL (addr)
2514 && decl_readonly_section (SYMBOL_REF_DECL (addr), 0))
2515 return true;
2516 return false;
2517 default:
2518 return false;
2519 }
2520
2521 return false;
2522 }
2523
2524 /* Return whether we can use store speculation for MEM. TOP_BB is the
2525 basic block above the conditional block where we are considering
2526 doing the speculative store. We look for whether MEM is set
2527 unconditionally later in the function. */
2528
2529 static bool
2530 noce_can_store_speculate_p (basic_block top_bb, const_rtx mem)
2531 {
2532 basic_block dominator;
2533
2534 for (dominator = get_immediate_dominator (CDI_POST_DOMINATORS, top_bb);
2535 dominator != NULL;
2536 dominator = get_immediate_dominator (CDI_POST_DOMINATORS, dominator))
2537 {
2538 rtx_insn *insn;
2539
2540 FOR_BB_INSNS (dominator, insn)
2541 {
2542 /* If we see something that might be a memory barrier, we
2543 have to stop looking. Even if the MEM is set later in
2544 the function, we still don't want to set it
2545 unconditionally before the barrier. */
2546 if (INSN_P (insn)
2547 && (volatile_insn_p (PATTERN (insn))
2548 || (CALL_P (insn) && (!RTL_CONST_CALL_P (insn)))))
2549 return false;
2550
2551 if (memory_must_be_modified_in_insn_p (mem, insn))
2552 return true;
2553 if (modified_in_p (XEXP (mem, 0), insn))
2554 return false;
2555
2556 }
2557 }
2558
2559 return false;
2560 }
2561
2562 /* Given a simple IF-THEN-JOIN or IF-THEN-ELSE-JOIN block, attempt to convert
2563 it without using conditional execution. Return TRUE if we were successful
2564 at converting the block. */
2565
2566 static int
2567 noce_process_if_block (struct noce_if_info *if_info)
2568 {
2569 basic_block test_bb = if_info->test_bb; /* test block */
2570 basic_block then_bb = if_info->then_bb; /* THEN */
2571 basic_block else_bb = if_info->else_bb; /* ELSE or NULL */
2572 basic_block join_bb = if_info->join_bb; /* JOIN */
2573 rtx_insn *jump = if_info->jump;
2574 rtx cond = if_info->cond;
2575 rtx_insn *insn_a, *insn_b;
2576 rtx set_a, set_b;
2577 rtx orig_x, x, a, b;
2578 rtx cc;
2579
2580 /* We're looking for patterns of the form
2581
2582 (1) if (...) x = a; else x = b;
2583 (2) x = b; if (...) x = a;
2584 (3) if (...) x = a; // as if with an initial x = x.
2585
2586 The later patterns require jumps to be more expensive.
2587
2588 ??? For future expansion, look for multiple X in such patterns. */
2589
2590 /* Look for one of the potential sets. */
2591 insn_a = first_active_insn (then_bb);
2592 if (! insn_a
2593 || insn_a != last_active_insn (then_bb, FALSE)
2594 || (set_a = single_set (insn_a)) == NULL_RTX)
2595 return FALSE;
2596
2597 x = SET_DEST (set_a);
2598 a = SET_SRC (set_a);
2599
2600 /* Look for the other potential set. Make sure we've got equivalent
2601 destinations. */
2602 /* ??? This is overconservative. Storing to two different mems is
2603 as easy as conditionally computing the address. Storing to a
2604 single mem merely requires a scratch memory to use as one of the
2605 destination addresses; often the memory immediately below the
2606 stack pointer is available for this. */
2607 set_b = NULL_RTX;
2608 if (else_bb)
2609 {
2610 insn_b = first_active_insn (else_bb);
2611 if (! insn_b
2612 || insn_b != last_active_insn (else_bb, FALSE)
2613 || (set_b = single_set (insn_b)) == NULL_RTX
2614 || ! rtx_interchangeable_p (x, SET_DEST (set_b)))
2615 return FALSE;
2616 }
2617 else
2618 {
2619 insn_b = prev_nonnote_nondebug_insn (if_info->cond_earliest);
2620 /* We're going to be moving the evaluation of B down from above
2621 COND_EARLIEST to JUMP. Make sure the relevant data is still
2622 intact. */
2623 if (! insn_b
2624 || BLOCK_FOR_INSN (insn_b) != BLOCK_FOR_INSN (if_info->cond_earliest)
2625 || !NONJUMP_INSN_P (insn_b)
2626 || (set_b = single_set (insn_b)) == NULL_RTX
2627 || ! rtx_interchangeable_p (x, SET_DEST (set_b))
2628 || ! noce_operand_ok (SET_SRC (set_b))
2629 || reg_overlap_mentioned_p (x, SET_SRC (set_b))
2630 || modified_between_p (SET_SRC (set_b), insn_b, jump)
2631 /* Avoid extending the lifetime of hard registers on small
2632 register class machines. */
2633 || (REG_P (SET_SRC (set_b))
2634 && HARD_REGISTER_P (SET_SRC (set_b))
2635 && targetm.small_register_classes_for_mode_p
2636 (GET_MODE (SET_SRC (set_b))))
2637 /* Likewise with X. In particular this can happen when
2638 noce_get_condition looks farther back in the instruction
2639 stream than one might expect. */
2640 || reg_overlap_mentioned_p (x, cond)
2641 || reg_overlap_mentioned_p (x, a)
2642 || modified_between_p (x, insn_b, jump))
2643 {
2644 insn_b = NULL;
2645 set_b = NULL_RTX;
2646 }
2647 }
2648
2649 /* If x has side effects then only the if-then-else form is safe to
2650 convert. But even in that case we would need to restore any notes
2651 (such as REG_INC) at then end. That can be tricky if
2652 noce_emit_move_insn expands to more than one insn, so disable the
2653 optimization entirely for now if there are side effects. */
2654 if (side_effects_p (x))
2655 return FALSE;
2656
2657 b = (set_b ? SET_SRC (set_b) : x);
2658
2659 /* Only operate on register destinations, and even then avoid extending
2660 the lifetime of hard registers on small register class machines. */
2661 orig_x = x;
2662 if (!REG_P (x)
2663 || (HARD_REGISTER_P (x)
2664 && targetm.small_register_classes_for_mode_p (GET_MODE (x))))
2665 {
2666 if (GET_MODE (x) == BLKmode)
2667 return FALSE;
2668
2669 if (GET_CODE (x) == ZERO_EXTRACT
2670 && (!CONST_INT_P (XEXP (x, 1))
2671 || !CONST_INT_P (XEXP (x, 2))))
2672 return FALSE;
2673
2674 x = gen_reg_rtx (GET_MODE (GET_CODE (x) == STRICT_LOW_PART
2675 ? XEXP (x, 0) : x));
2676 }
2677
2678 /* Don't operate on sources that may trap or are volatile. */
2679 if (! noce_operand_ok (a) || ! noce_operand_ok (b))
2680 return FALSE;
2681
2682 retry:
2683 /* Set up the info block for our subroutines. */
2684 if_info->insn_a = insn_a;
2685 if_info->insn_b = insn_b;
2686 if_info->x = x;
2687 if_info->a = a;
2688 if_info->b = b;
2689
2690 /* Skip it if the instruction to be moved might clobber CC. */
2691 cc = cc_in_cond (cond);
2692 if (cc
2693 && (set_of (cc, insn_a)
2694 || (insn_b && set_of (cc, insn_b))))
2695 return FALSE;
2696
2697 /* Try optimizations in some approximation of a useful order. */
2698 /* ??? Should first look to see if X is live incoming at all. If it
2699 isn't, we don't need anything but an unconditional set. */
2700
2701 /* Look and see if A and B are really the same. Avoid creating silly
2702 cmove constructs that no one will fix up later. */
2703 if (rtx_interchangeable_p (a, b))
2704 {
2705 /* If we have an INSN_B, we don't have to create any new rtl. Just
2706 move the instruction that we already have. If we don't have an
2707 INSN_B, that means that A == X, and we've got a noop move. In
2708 that case don't do anything and let the code below delete INSN_A. */
2709 if (insn_b && else_bb)
2710 {
2711 rtx note;
2712
2713 if (else_bb && insn_b == BB_END (else_bb))
2714 BB_END (else_bb) = PREV_INSN (insn_b);
2715 reorder_insns (insn_b, insn_b, PREV_INSN (jump));
2716
2717 /* If there was a REG_EQUAL note, delete it since it may have been
2718 true due to this insn being after a jump. */
2719 if ((note = find_reg_note (insn_b, REG_EQUAL, NULL_RTX)) != 0)
2720 remove_note (insn_b, note);
2721
2722 insn_b = NULL;
2723 }
2724 /* If we have "x = b; if (...) x = a;", and x has side-effects, then
2725 x must be executed twice. */
2726 else if (insn_b && side_effects_p (orig_x))
2727 return FALSE;
2728
2729 x = orig_x;
2730 goto success;
2731 }
2732
2733 if (!set_b && MEM_P (orig_x))
2734 {
2735 /* Disallow the "if (...) x = a;" form (implicit "else x = x;")
2736 for optimizations if writing to x may trap or fault,
2737 i.e. it's a memory other than a static var or a stack slot,
2738 is misaligned on strict aligned machines or is read-only. If
2739 x is a read-only memory, then the program is valid only if we
2740 avoid the store into it. If there are stores on both the
2741 THEN and ELSE arms, then we can go ahead with the conversion;
2742 either the program is broken, or the condition is always
2743 false such that the other memory is selected. */
2744 if (noce_mem_write_may_trap_or_fault_p (orig_x))
2745 return FALSE;
2746
2747 /* Avoid store speculation: given "if (...) x = a" where x is a
2748 MEM, we only want to do the store if x is always set
2749 somewhere in the function. This avoids cases like
2750 if (pthread_mutex_trylock(mutex))
2751 ++global_variable;
2752 where we only want global_variable to be changed if the mutex
2753 is held. FIXME: This should ideally be expressed directly in
2754 RTL somehow. */
2755 if (!noce_can_store_speculate_p (test_bb, orig_x))
2756 return FALSE;
2757 }
2758
2759 if (noce_try_move (if_info))
2760 goto success;
2761 if (noce_try_store_flag (if_info))
2762 goto success;
2763 if (noce_try_bitop (if_info))
2764 goto success;
2765 if (noce_try_minmax (if_info))
2766 goto success;
2767 if (noce_try_abs (if_info))
2768 goto success;
2769 if (HAVE_conditional_move
2770 && noce_try_cmove (if_info))
2771 goto success;
2772 if (! targetm.have_conditional_execution ())
2773 {
2774 if (noce_try_store_flag_constants (if_info))
2775 goto success;
2776 if (noce_try_addcc (if_info))
2777 goto success;
2778 if (noce_try_store_flag_mask (if_info))
2779 goto success;
2780 if (HAVE_conditional_move
2781 && noce_try_cmove_arith (if_info))
2782 goto success;
2783 if (noce_try_sign_mask (if_info))
2784 goto success;
2785 }
2786
2787 if (!else_bb && set_b)
2788 {
2789 insn_b = NULL;
2790 set_b = NULL_RTX;
2791 b = orig_x;
2792 goto retry;
2793 }
2794
2795 return FALSE;
2796
2797 success:
2798
2799 /* If we used a temporary, fix it up now. */
2800 if (orig_x != x)
2801 {
2802 rtx_insn *seq;
2803
2804 start_sequence ();
2805 noce_emit_move_insn (orig_x, x);
2806 seq = get_insns ();
2807 set_used_flags (orig_x);
2808 unshare_all_rtl_in_chain (seq);
2809 end_sequence ();
2810
2811 emit_insn_before_setloc (seq, BB_END (test_bb), INSN_LOCATION (insn_a));
2812 }
2813
2814 /* The original THEN and ELSE blocks may now be removed. The test block
2815 must now jump to the join block. If the test block and the join block
2816 can be merged, do so. */
2817 if (else_bb)
2818 {
2819 delete_basic_block (else_bb);
2820 num_true_changes++;
2821 }
2822 else
2823 remove_edge (find_edge (test_bb, join_bb));
2824
2825 remove_edge (find_edge (then_bb, join_bb));
2826 redirect_edge_and_branch_force (single_succ_edge (test_bb), join_bb);
2827 delete_basic_block (then_bb);
2828 num_true_changes++;
2829
2830 if (can_merge_blocks_p (test_bb, join_bb))
2831 {
2832 merge_blocks (test_bb, join_bb);
2833 num_true_changes++;
2834 }
2835
2836 num_updated_if_blocks++;
2837 return TRUE;
2838 }
2839
2840 /* Check whether a block is suitable for conditional move conversion.
2841 Every insn must be a simple set of a register to a constant or a
2842 register. For each assignment, store the value in the pointer map
2843 VALS, keyed indexed by register pointer, then store the register
2844 pointer in REGS. COND is the condition we will test. */
2845
2846 static int
2847 check_cond_move_block (basic_block bb,
2848 hash_map<rtx, rtx> *vals,
2849 vec<rtx> *regs,
2850 rtx cond)
2851 {
2852 rtx_insn *insn;
2853 rtx cc = cc_in_cond (cond);
2854
2855 /* We can only handle simple jumps at the end of the basic block.
2856 It is almost impossible to update the CFG otherwise. */
2857 insn = BB_END (bb);
2858 if (JUMP_P (insn) && !onlyjump_p (insn))
2859 return FALSE;
2860
2861 FOR_BB_INSNS (bb, insn)
2862 {
2863 rtx set, dest, src;
2864
2865 if (!NONDEBUG_INSN_P (insn) || JUMP_P (insn))
2866 continue;
2867 set = single_set (insn);
2868 if (!set)
2869 return FALSE;
2870
2871 dest = SET_DEST (set);
2872 src = SET_SRC (set);
2873 if (!REG_P (dest)
2874 || (HARD_REGISTER_P (dest)
2875 && targetm.small_register_classes_for_mode_p (GET_MODE (dest))))
2876 return FALSE;
2877
2878 if (!CONSTANT_P (src) && !register_operand (src, VOIDmode))
2879 return FALSE;
2880
2881 if (side_effects_p (src) || side_effects_p (dest))
2882 return FALSE;
2883
2884 if (may_trap_p (src) || may_trap_p (dest))
2885 return FALSE;
2886
2887 /* Don't try to handle this if the source register was
2888 modified earlier in the block. */
2889 if ((REG_P (src)
2890 && vals->get (src))
2891 || (GET_CODE (src) == SUBREG && REG_P (SUBREG_REG (src))
2892 && vals->get (SUBREG_REG (src))))
2893 return FALSE;
2894
2895 /* Don't try to handle this if the destination register was
2896 modified earlier in the block. */
2897 if (vals->get (dest))
2898 return FALSE;
2899
2900 /* Don't try to handle this if the condition uses the
2901 destination register. */
2902 if (reg_overlap_mentioned_p (dest, cond))
2903 return FALSE;
2904
2905 /* Don't try to handle this if the source register is modified
2906 later in the block. */
2907 if (!CONSTANT_P (src)
2908 && modified_between_p (src, insn, NEXT_INSN (BB_END (bb))))
2909 return FALSE;
2910
2911 /* Skip it if the instruction to be moved might clobber CC. */
2912 if (cc && set_of (cc, insn))
2913 return FALSE;
2914
2915 vals->put (dest, src);
2916
2917 regs->safe_push (dest);
2918 }
2919
2920 return TRUE;
2921 }
2922
2923 /* Given a basic block BB suitable for conditional move conversion,
2924 a condition COND, and pointer maps THEN_VALS and ELSE_VALS containing
2925 the register values depending on COND, emit the insns in the block as
2926 conditional moves. If ELSE_BLOCK is true, THEN_BB was already
2927 processed. The caller has started a sequence for the conversion.
2928 Return true if successful, false if something goes wrong. */
2929
2930 static bool
2931 cond_move_convert_if_block (struct noce_if_info *if_infop,
2932 basic_block bb, rtx cond,
2933 hash_map<rtx, rtx> *then_vals,
2934 hash_map<rtx, rtx> *else_vals,
2935 bool else_block_p)
2936 {
2937 enum rtx_code code;
2938 rtx_insn *insn;
2939 rtx cond_arg0, cond_arg1;
2940
2941 code = GET_CODE (cond);
2942 cond_arg0 = XEXP (cond, 0);
2943 cond_arg1 = XEXP (cond, 1);
2944
2945 FOR_BB_INSNS (bb, insn)
2946 {
2947 rtx set, target, dest, t, e;
2948
2949 /* ??? Maybe emit conditional debug insn? */
2950 if (!NONDEBUG_INSN_P (insn) || JUMP_P (insn))
2951 continue;
2952 set = single_set (insn);
2953 gcc_assert (set && REG_P (SET_DEST (set)));
2954
2955 dest = SET_DEST (set);
2956
2957 rtx *then_slot = then_vals->get (dest);
2958 rtx *else_slot = else_vals->get (dest);
2959 t = then_slot ? *then_slot : NULL_RTX;
2960 e = else_slot ? *else_slot : NULL_RTX;
2961
2962 if (else_block_p)
2963 {
2964 /* If this register was set in the then block, we already
2965 handled this case there. */
2966 if (t)
2967 continue;
2968 t = dest;
2969 gcc_assert (e);
2970 }
2971 else
2972 {
2973 gcc_assert (t);
2974 if (!e)
2975 e = dest;
2976 }
2977
2978 target = noce_emit_cmove (if_infop, dest, code, cond_arg0, cond_arg1,
2979 t, e);
2980 if (!target)
2981 return false;
2982
2983 if (target != dest)
2984 noce_emit_move_insn (dest, target);
2985 }
2986
2987 return true;
2988 }
2989
2990 /* Given a simple IF-THEN-JOIN or IF-THEN-ELSE-JOIN block, attempt to convert
2991 it using only conditional moves. Return TRUE if we were successful at
2992 converting the block. */
2993
2994 static int
2995 cond_move_process_if_block (struct noce_if_info *if_info)
2996 {
2997 basic_block test_bb = if_info->test_bb;
2998 basic_block then_bb = if_info->then_bb;
2999 basic_block else_bb = if_info->else_bb;
3000 basic_block join_bb = if_info->join_bb;
3001 rtx_insn *jump = if_info->jump;
3002 rtx cond = if_info->cond;
3003 rtx_insn *seq, *loc_insn;
3004 rtx reg;
3005 int c;
3006 vec<rtx> then_regs = vNULL;
3007 vec<rtx> else_regs = vNULL;
3008 unsigned int i;
3009 int success_p = FALSE;
3010
3011 /* Build a mapping for each block to the value used for each
3012 register. */
3013 hash_map<rtx, rtx> then_vals;
3014 hash_map<rtx, rtx> else_vals;
3015
3016 /* Make sure the blocks are suitable. */
3017 if (!check_cond_move_block (then_bb, &then_vals, &then_regs, cond)
3018 || (else_bb
3019 && !check_cond_move_block (else_bb, &else_vals, &else_regs, cond)))
3020 goto done;
3021
3022 /* Make sure the blocks can be used together. If the same register
3023 is set in both blocks, and is not set to a constant in both
3024 cases, then both blocks must set it to the same register. We
3025 have already verified that if it is set to a register, that the
3026 source register does not change after the assignment. Also count
3027 the number of registers set in only one of the blocks. */
3028 c = 0;
3029 FOR_EACH_VEC_ELT (then_regs, i, reg)
3030 {
3031 rtx *then_slot = then_vals.get (reg);
3032 rtx *else_slot = else_vals.get (reg);
3033
3034 gcc_checking_assert (then_slot);
3035 if (!else_slot)
3036 ++c;
3037 else
3038 {
3039 rtx then_val = *then_slot;
3040 rtx else_val = *else_slot;
3041 if (!CONSTANT_P (then_val) && !CONSTANT_P (else_val)
3042 && !rtx_equal_p (then_val, else_val))
3043 goto done;
3044 }
3045 }
3046
3047 /* Finish off c for MAX_CONDITIONAL_EXECUTE. */
3048 FOR_EACH_VEC_ELT (else_regs, i, reg)
3049 {
3050 gcc_checking_assert (else_vals.get (reg));
3051 if (!then_vals.get (reg))
3052 ++c;
3053 }
3054
3055 /* Make sure it is reasonable to convert this block. What matters
3056 is the number of assignments currently made in only one of the
3057 branches, since if we convert we are going to always execute
3058 them. */
3059 if (c > MAX_CONDITIONAL_EXECUTE)
3060 goto done;
3061
3062 /* Try to emit the conditional moves. First do the then block,
3063 then do anything left in the else blocks. */
3064 start_sequence ();
3065 if (!cond_move_convert_if_block (if_info, then_bb, cond,
3066 &then_vals, &else_vals, false)
3067 || (else_bb
3068 && !cond_move_convert_if_block (if_info, else_bb, cond,
3069 &then_vals, &else_vals, true)))
3070 {
3071 end_sequence ();
3072 goto done;
3073 }
3074 seq = end_ifcvt_sequence (if_info);
3075 if (!seq)
3076 goto done;
3077
3078 loc_insn = first_active_insn (then_bb);
3079 if (!loc_insn)
3080 {
3081 loc_insn = first_active_insn (else_bb);
3082 gcc_assert (loc_insn);
3083 }
3084 emit_insn_before_setloc (seq, jump, INSN_LOCATION (loc_insn));
3085
3086 if (else_bb)
3087 {
3088 delete_basic_block (else_bb);
3089 num_true_changes++;
3090 }
3091 else
3092 remove_edge (find_edge (test_bb, join_bb));
3093
3094 remove_edge (find_edge (then_bb, join_bb));
3095 redirect_edge_and_branch_force (single_succ_edge (test_bb), join_bb);
3096 delete_basic_block (then_bb);
3097 num_true_changes++;
3098
3099 if (can_merge_blocks_p (test_bb, join_bb))
3100 {
3101 merge_blocks (test_bb, join_bb);
3102 num_true_changes++;
3103 }
3104
3105 num_updated_if_blocks++;
3106
3107 success_p = TRUE;
3108
3109 done:
3110 then_regs.release ();
3111 else_regs.release ();
3112 return success_p;
3113 }
3114
3115 \f
3116 /* Determine if a given basic block heads a simple IF-THEN-JOIN or an
3117 IF-THEN-ELSE-JOIN block.
3118
3119 If so, we'll try to convert the insns to not require the branch,
3120 using only transformations that do not require conditional execution.
3121
3122 Return TRUE if we were successful at converting the block. */
3123
3124 static int
3125 noce_find_if_block (basic_block test_bb, edge then_edge, edge else_edge,
3126 int pass)
3127 {
3128 basic_block then_bb, else_bb, join_bb;
3129 bool then_else_reversed = false;
3130 rtx_insn *jump;
3131 rtx cond;
3132 rtx_insn *cond_earliest;
3133 struct noce_if_info if_info;
3134
3135 /* We only ever should get here before reload. */
3136 gcc_assert (!reload_completed);
3137
3138 /* Recognize an IF-THEN-ELSE-JOIN block. */
3139 if (single_pred_p (then_edge->dest)
3140 && single_succ_p (then_edge->dest)
3141 && single_pred_p (else_edge->dest)
3142 && single_succ_p (else_edge->dest)
3143 && single_succ (then_edge->dest) == single_succ (else_edge->dest))
3144 {
3145 then_bb = then_edge->dest;
3146 else_bb = else_edge->dest;
3147 join_bb = single_succ (then_bb);
3148 }
3149 /* Recognize an IF-THEN-JOIN block. */
3150 else if (single_pred_p (then_edge->dest)
3151 && single_succ_p (then_edge->dest)
3152 && single_succ (then_edge->dest) == else_edge->dest)
3153 {
3154 then_bb = then_edge->dest;
3155 else_bb = NULL_BLOCK;
3156 join_bb = else_edge->dest;
3157 }
3158 /* Recognize an IF-ELSE-JOIN block. We can have those because the order
3159 of basic blocks in cfglayout mode does not matter, so the fallthrough
3160 edge can go to any basic block (and not just to bb->next_bb, like in
3161 cfgrtl mode). */
3162 else if (single_pred_p (else_edge->dest)
3163 && single_succ_p (else_edge->dest)
3164 && single_succ (else_edge->dest) == then_edge->dest)
3165 {
3166 /* The noce transformations do not apply to IF-ELSE-JOIN blocks.
3167 To make this work, we have to invert the THEN and ELSE blocks
3168 and reverse the jump condition. */
3169 then_bb = else_edge->dest;
3170 else_bb = NULL_BLOCK;
3171 join_bb = single_succ (then_bb);
3172 then_else_reversed = true;
3173 }
3174 else
3175 /* Not a form we can handle. */
3176 return FALSE;
3177
3178 /* The edges of the THEN and ELSE blocks cannot have complex edges. */
3179 if (single_succ_edge (then_bb)->flags & EDGE_COMPLEX)
3180 return FALSE;
3181 if (else_bb
3182 && single_succ_edge (else_bb)->flags & EDGE_COMPLEX)
3183 return FALSE;
3184
3185 num_possible_if_blocks++;
3186
3187 if (dump_file)
3188 {
3189 fprintf (dump_file,
3190 "\nIF-THEN%s-JOIN block found, pass %d, test %d, then %d",
3191 (else_bb) ? "-ELSE" : "",
3192 pass, test_bb->index, then_bb->index);
3193
3194 if (else_bb)
3195 fprintf (dump_file, ", else %d", else_bb->index);
3196
3197 fprintf (dump_file, ", join %d\n", join_bb->index);
3198 }
3199
3200 /* If the conditional jump is more than just a conditional
3201 jump, then we can not do if-conversion on this block. */
3202 jump = BB_END (test_bb);
3203 if (! onlyjump_p (jump))
3204 return FALSE;
3205
3206 /* If this is not a standard conditional jump, we can't parse it. */
3207 cond = noce_get_condition (jump, &cond_earliest, then_else_reversed);
3208 if (!cond)
3209 return FALSE;
3210
3211 /* We must be comparing objects whose modes imply the size. */
3212 if (GET_MODE (XEXP (cond, 0)) == BLKmode)
3213 return FALSE;
3214
3215 /* Initialize an IF_INFO struct to pass around. */
3216 memset (&if_info, 0, sizeof if_info);
3217 if_info.test_bb = test_bb;
3218 if_info.then_bb = then_bb;
3219 if_info.else_bb = else_bb;
3220 if_info.join_bb = join_bb;
3221 if_info.cond = cond;
3222 if_info.cond_earliest = cond_earliest;
3223 if_info.jump = jump;
3224 if_info.then_else_reversed = then_else_reversed;
3225 if_info.branch_cost = BRANCH_COST (optimize_bb_for_speed_p (test_bb),
3226 predictable_edge_p (then_edge));
3227
3228 /* Do the real work. */
3229
3230 if (noce_process_if_block (&if_info))
3231 return TRUE;
3232
3233 if (HAVE_conditional_move
3234 && cond_move_process_if_block (&if_info))
3235 return TRUE;
3236
3237 return FALSE;
3238 }
3239 \f
3240
3241 /* Merge the blocks and mark for local life update. */
3242
3243 static void
3244 merge_if_block (struct ce_if_block * ce_info)
3245 {
3246 basic_block test_bb = ce_info->test_bb; /* last test block */
3247 basic_block then_bb = ce_info->then_bb; /* THEN */
3248 basic_block else_bb = ce_info->else_bb; /* ELSE or NULL */
3249 basic_block join_bb = ce_info->join_bb; /* join block */
3250 basic_block combo_bb;
3251
3252 /* All block merging is done into the lower block numbers. */
3253
3254 combo_bb = test_bb;
3255 df_set_bb_dirty (test_bb);
3256
3257 /* Merge any basic blocks to handle && and || subtests. Each of
3258 the blocks are on the fallthru path from the predecessor block. */
3259 if (ce_info->num_multiple_test_blocks > 0)
3260 {
3261 basic_block bb = test_bb;
3262 basic_block last_test_bb = ce_info->last_test_bb;
3263 basic_block fallthru = block_fallthru (bb);
3264
3265 do
3266 {
3267 bb = fallthru;
3268 fallthru = block_fallthru (bb);
3269 merge_blocks (combo_bb, bb);
3270 num_true_changes++;
3271 }
3272 while (bb != last_test_bb);
3273 }
3274
3275 /* Merge TEST block into THEN block. Normally the THEN block won't have a
3276 label, but it might if there were || tests. That label's count should be
3277 zero, and it normally should be removed. */
3278
3279 if (then_bb)
3280 {
3281 /* If THEN_BB has no successors, then there's a BARRIER after it.
3282 If COMBO_BB has more than one successor (THEN_BB), then that BARRIER
3283 is no longer needed, and in fact it is incorrect to leave it in
3284 the insn stream. */
3285 if (EDGE_COUNT (then_bb->succs) == 0
3286 && EDGE_COUNT (combo_bb->succs) > 1)
3287 {
3288 rtx_insn *end = NEXT_INSN (BB_END (then_bb));
3289 while (end && NOTE_P (end) && !NOTE_INSN_BASIC_BLOCK_P (end))
3290 end = NEXT_INSN (end);
3291
3292 if (end && BARRIER_P (end))
3293 delete_insn (end);
3294 }
3295 merge_blocks (combo_bb, then_bb);
3296 num_true_changes++;
3297 }
3298
3299 /* The ELSE block, if it existed, had a label. That label count
3300 will almost always be zero, but odd things can happen when labels
3301 get their addresses taken. */
3302 if (else_bb)
3303 {
3304 /* If ELSE_BB has no successors, then there's a BARRIER after it.
3305 If COMBO_BB has more than one successor (ELSE_BB), then that BARRIER
3306 is no longer needed, and in fact it is incorrect to leave it in
3307 the insn stream. */
3308 if (EDGE_COUNT (else_bb->succs) == 0
3309 && EDGE_COUNT (combo_bb->succs) > 1)
3310 {
3311 rtx_insn *end = NEXT_INSN (BB_END (else_bb));
3312 while (end && NOTE_P (end) && !NOTE_INSN_BASIC_BLOCK_P (end))
3313 end = NEXT_INSN (end);
3314
3315 if (end && BARRIER_P (end))
3316 delete_insn (end);
3317 }
3318 merge_blocks (combo_bb, else_bb);
3319 num_true_changes++;
3320 }
3321
3322 /* If there was no join block reported, that means it was not adjacent
3323 to the others, and so we cannot merge them. */
3324
3325 if (! join_bb)
3326 {
3327 rtx_insn *last = BB_END (combo_bb);
3328
3329 /* The outgoing edge for the current COMBO block should already
3330 be correct. Verify this. */
3331 if (EDGE_COUNT (combo_bb->succs) == 0)
3332 gcc_assert (find_reg_note (last, REG_NORETURN, NULL)
3333 || (NONJUMP_INSN_P (last)
3334 && GET_CODE (PATTERN (last)) == TRAP_IF
3335 && (TRAP_CONDITION (PATTERN (last))
3336 == const_true_rtx)));
3337
3338 else
3339 /* There should still be something at the end of the THEN or ELSE
3340 blocks taking us to our final destination. */
3341 gcc_assert (JUMP_P (last)
3342 || (EDGE_SUCC (combo_bb, 0)->dest
3343 == EXIT_BLOCK_PTR_FOR_FN (cfun)
3344 && CALL_P (last)
3345 && SIBLING_CALL_P (last))
3346 || ((EDGE_SUCC (combo_bb, 0)->flags & EDGE_EH)
3347 && can_throw_internal (last)));
3348 }
3349
3350 /* The JOIN block may have had quite a number of other predecessors too.
3351 Since we've already merged the TEST, THEN and ELSE blocks, we should
3352 have only one remaining edge from our if-then-else diamond. If there
3353 is more than one remaining edge, it must come from elsewhere. There
3354 may be zero incoming edges if the THEN block didn't actually join
3355 back up (as with a call to a non-return function). */
3356 else if (EDGE_COUNT (join_bb->preds) < 2
3357 && join_bb != EXIT_BLOCK_PTR_FOR_FN (cfun))
3358 {
3359 /* We can merge the JOIN cleanly and update the dataflow try
3360 again on this pass.*/
3361 merge_blocks (combo_bb, join_bb);
3362 num_true_changes++;
3363 }
3364 else
3365 {
3366 /* We cannot merge the JOIN. */
3367
3368 /* The outgoing edge for the current COMBO block should already
3369 be correct. Verify this. */
3370 gcc_assert (single_succ_p (combo_bb)
3371 && single_succ (combo_bb) == join_bb);
3372
3373 /* Remove the jump and cruft from the end of the COMBO block. */
3374 if (join_bb != EXIT_BLOCK_PTR_FOR_FN (cfun))
3375 tidy_fallthru_edge (single_succ_edge (combo_bb));
3376 }
3377
3378 num_updated_if_blocks++;
3379 }
3380 \f
3381 /* Find a block ending in a simple IF condition and try to transform it
3382 in some way. When converting a multi-block condition, put the new code
3383 in the first such block and delete the rest. Return a pointer to this
3384 first block if some transformation was done. Return NULL otherwise. */
3385
3386 static basic_block
3387 find_if_header (basic_block test_bb, int pass)
3388 {
3389 ce_if_block ce_info;
3390 edge then_edge;
3391 edge else_edge;
3392
3393 /* The kind of block we're looking for has exactly two successors. */
3394 if (EDGE_COUNT (test_bb->succs) != 2)
3395 return NULL;
3396
3397 then_edge = EDGE_SUCC (test_bb, 0);
3398 else_edge = EDGE_SUCC (test_bb, 1);
3399
3400 if (df_get_bb_dirty (then_edge->dest))
3401 return NULL;
3402 if (df_get_bb_dirty (else_edge->dest))
3403 return NULL;
3404
3405 /* Neither edge should be abnormal. */
3406 if ((then_edge->flags & EDGE_COMPLEX)
3407 || (else_edge->flags & EDGE_COMPLEX))
3408 return NULL;
3409
3410 /* Nor exit the loop. */
3411 if ((then_edge->flags & EDGE_LOOP_EXIT)
3412 || (else_edge->flags & EDGE_LOOP_EXIT))
3413 return NULL;
3414
3415 /* The THEN edge is canonically the one that falls through. */
3416 if (then_edge->flags & EDGE_FALLTHRU)
3417 ;
3418 else if (else_edge->flags & EDGE_FALLTHRU)
3419 {
3420 edge e = else_edge;
3421 else_edge = then_edge;
3422 then_edge = e;
3423 }
3424 else
3425 /* Otherwise this must be a multiway branch of some sort. */
3426 return NULL;
3427
3428 memset (&ce_info, 0, sizeof (ce_info));
3429 ce_info.test_bb = test_bb;
3430 ce_info.then_bb = then_edge->dest;
3431 ce_info.else_bb = else_edge->dest;
3432 ce_info.pass = pass;
3433
3434 #ifdef IFCVT_MACHDEP_INIT
3435 IFCVT_MACHDEP_INIT (&ce_info);
3436 #endif
3437
3438 if (!reload_completed
3439 && noce_find_if_block (test_bb, then_edge, else_edge, pass))
3440 goto success;
3441
3442 if (reload_completed
3443 && targetm.have_conditional_execution ()
3444 && cond_exec_find_if_block (&ce_info))
3445 goto success;
3446
3447 if (HAVE_trap
3448 && optab_handler (ctrap_optab, word_mode) != CODE_FOR_nothing
3449 && find_cond_trap (test_bb, then_edge, else_edge))
3450 goto success;
3451
3452 if (dom_info_state (CDI_POST_DOMINATORS) >= DOM_NO_FAST_QUERY
3453 && (reload_completed || !targetm.have_conditional_execution ()))
3454 {
3455 if (find_if_case_1 (test_bb, then_edge, else_edge))
3456 goto success;
3457 if (find_if_case_2 (test_bb, then_edge, else_edge))
3458 goto success;
3459 }
3460
3461 return NULL;
3462
3463 success:
3464 if (dump_file)
3465 fprintf (dump_file, "Conversion succeeded on pass %d.\n", pass);
3466 /* Set this so we continue looking. */
3467 cond_exec_changed_p = TRUE;
3468 return ce_info.test_bb;
3469 }
3470
3471 /* Return true if a block has two edges, one of which falls through to the next
3472 block, and the other jumps to a specific block, so that we can tell if the
3473 block is part of an && test or an || test. Returns either -1 or the number
3474 of non-note, non-jump, non-USE/CLOBBER insns in the block. */
3475
3476 static int
3477 block_jumps_and_fallthru_p (basic_block cur_bb, basic_block target_bb)
3478 {
3479 edge cur_edge;
3480 int fallthru_p = FALSE;
3481 int jump_p = FALSE;
3482 rtx_insn *insn;
3483 rtx_insn *end;
3484 int n_insns = 0;
3485 edge_iterator ei;
3486
3487 if (!cur_bb || !target_bb)
3488 return -1;
3489
3490 /* If no edges, obviously it doesn't jump or fallthru. */
3491 if (EDGE_COUNT (cur_bb->succs) == 0)
3492 return FALSE;
3493
3494 FOR_EACH_EDGE (cur_edge, ei, cur_bb->succs)
3495 {
3496 if (cur_edge->flags & EDGE_COMPLEX)
3497 /* Anything complex isn't what we want. */
3498 return -1;
3499
3500 else if (cur_edge->flags & EDGE_FALLTHRU)
3501 fallthru_p = TRUE;
3502
3503 else if (cur_edge->dest == target_bb)
3504 jump_p = TRUE;
3505
3506 else
3507 return -1;
3508 }
3509
3510 if ((jump_p & fallthru_p) == 0)
3511 return -1;
3512
3513 /* Don't allow calls in the block, since this is used to group && and ||
3514 together for conditional execution support. ??? we should support
3515 conditional execution support across calls for IA-64 some day, but
3516 for now it makes the code simpler. */
3517 end = BB_END (cur_bb);
3518 insn = BB_HEAD (cur_bb);
3519
3520 while (insn != NULL_RTX)
3521 {
3522 if (CALL_P (insn))
3523 return -1;
3524
3525 if (INSN_P (insn)
3526 && !JUMP_P (insn)
3527 && !DEBUG_INSN_P (insn)
3528 && GET_CODE (PATTERN (insn)) != USE
3529 && GET_CODE (PATTERN (insn)) != CLOBBER)
3530 n_insns++;
3531
3532 if (insn == end)
3533 break;
3534
3535 insn = NEXT_INSN (insn);
3536 }
3537
3538 return n_insns;
3539 }
3540
3541 /* Determine if a given basic block heads a simple IF-THEN or IF-THEN-ELSE
3542 block. If so, we'll try to convert the insns to not require the branch.
3543 Return TRUE if we were successful at converting the block. */
3544
3545 static int
3546 cond_exec_find_if_block (struct ce_if_block * ce_info)
3547 {
3548 basic_block test_bb = ce_info->test_bb;
3549 basic_block then_bb = ce_info->then_bb;
3550 basic_block else_bb = ce_info->else_bb;
3551 basic_block join_bb = NULL_BLOCK;
3552 edge cur_edge;
3553 basic_block next;
3554 edge_iterator ei;
3555
3556 ce_info->last_test_bb = test_bb;
3557
3558 /* We only ever should get here after reload,
3559 and if we have conditional execution. */
3560 gcc_assert (reload_completed && targetm.have_conditional_execution ());
3561
3562 /* Discover if any fall through predecessors of the current test basic block
3563 were && tests (which jump to the else block) or || tests (which jump to
3564 the then block). */
3565 if (single_pred_p (test_bb)
3566 && single_pred_edge (test_bb)->flags == EDGE_FALLTHRU)
3567 {
3568 basic_block bb = single_pred (test_bb);
3569 basic_block target_bb;
3570 int max_insns = MAX_CONDITIONAL_EXECUTE;
3571 int n_insns;
3572
3573 /* Determine if the preceding block is an && or || block. */
3574 if ((n_insns = block_jumps_and_fallthru_p (bb, else_bb)) >= 0)
3575 {
3576 ce_info->and_and_p = TRUE;
3577 target_bb = else_bb;
3578 }
3579 else if ((n_insns = block_jumps_and_fallthru_p (bb, then_bb)) >= 0)
3580 {
3581 ce_info->and_and_p = FALSE;
3582 target_bb = then_bb;
3583 }
3584 else
3585 target_bb = NULL_BLOCK;
3586
3587 if (target_bb && n_insns <= max_insns)
3588 {
3589 int total_insns = 0;
3590 int blocks = 0;
3591
3592 ce_info->last_test_bb = test_bb;
3593
3594 /* Found at least one && or || block, look for more. */
3595 do
3596 {
3597 ce_info->test_bb = test_bb = bb;
3598 total_insns += n_insns;
3599 blocks++;
3600
3601 if (!single_pred_p (bb))
3602 break;
3603
3604 bb = single_pred (bb);
3605 n_insns = block_jumps_and_fallthru_p (bb, target_bb);
3606 }
3607 while (n_insns >= 0 && (total_insns + n_insns) <= max_insns);
3608
3609 ce_info->num_multiple_test_blocks = blocks;
3610 ce_info->num_multiple_test_insns = total_insns;
3611
3612 if (ce_info->and_and_p)
3613 ce_info->num_and_and_blocks = blocks;
3614 else
3615 ce_info->num_or_or_blocks = blocks;
3616 }
3617 }
3618
3619 /* The THEN block of an IF-THEN combo must have exactly one predecessor,
3620 other than any || blocks which jump to the THEN block. */
3621 if ((EDGE_COUNT (then_bb->preds) - ce_info->num_or_or_blocks) != 1)
3622 return FALSE;
3623
3624 /* The edges of the THEN and ELSE blocks cannot have complex edges. */
3625 FOR_EACH_EDGE (cur_edge, ei, then_bb->preds)
3626 {
3627 if (cur_edge->flags & EDGE_COMPLEX)
3628 return FALSE;
3629 }
3630
3631 FOR_EACH_EDGE (cur_edge, ei, else_bb->preds)
3632 {
3633 if (cur_edge->flags & EDGE_COMPLEX)
3634 return FALSE;
3635 }
3636
3637 /* The THEN block of an IF-THEN combo must have zero or one successors. */
3638 if (EDGE_COUNT (then_bb->succs) > 0
3639 && (!single_succ_p (then_bb)
3640 || (single_succ_edge (then_bb)->flags & EDGE_COMPLEX)
3641 || (epilogue_completed
3642 && tablejump_p (BB_END (then_bb), NULL, NULL))))
3643 return FALSE;
3644
3645 /* If the THEN block has no successors, conditional execution can still
3646 make a conditional call. Don't do this unless the ELSE block has
3647 only one incoming edge -- the CFG manipulation is too ugly otherwise.
3648 Check for the last insn of the THEN block being an indirect jump, which
3649 is listed as not having any successors, but confuses the rest of the CE
3650 code processing. ??? we should fix this in the future. */
3651 if (EDGE_COUNT (then_bb->succs) == 0)
3652 {
3653 if (single_pred_p (else_bb) && else_bb != EXIT_BLOCK_PTR_FOR_FN (cfun))
3654 {
3655 rtx_insn *last_insn = BB_END (then_bb);
3656
3657 while (last_insn
3658 && NOTE_P (last_insn)
3659 && last_insn != BB_HEAD (then_bb))
3660 last_insn = PREV_INSN (last_insn);
3661
3662 if (last_insn
3663 && JUMP_P (last_insn)
3664 && ! simplejump_p (last_insn))
3665 return FALSE;
3666
3667 join_bb = else_bb;
3668 else_bb = NULL_BLOCK;
3669 }
3670 else
3671 return FALSE;
3672 }
3673
3674 /* If the THEN block's successor is the other edge out of the TEST block,
3675 then we have an IF-THEN combo without an ELSE. */
3676 else if (single_succ (then_bb) == else_bb)
3677 {
3678 join_bb = else_bb;
3679 else_bb = NULL_BLOCK;
3680 }
3681
3682 /* If the THEN and ELSE block meet in a subsequent block, and the ELSE
3683 has exactly one predecessor and one successor, and the outgoing edge
3684 is not complex, then we have an IF-THEN-ELSE combo. */
3685 else if (single_succ_p (else_bb)
3686 && single_succ (then_bb) == single_succ (else_bb)
3687 && single_pred_p (else_bb)
3688 && !(single_succ_edge (else_bb)->flags & EDGE_COMPLEX)
3689 && !(epilogue_completed
3690 && tablejump_p (BB_END (else_bb), NULL, NULL)))
3691 join_bb = single_succ (else_bb);
3692
3693 /* Otherwise it is not an IF-THEN or IF-THEN-ELSE combination. */
3694 else
3695 return FALSE;
3696
3697 num_possible_if_blocks++;
3698
3699 if (dump_file)
3700 {
3701 fprintf (dump_file,
3702 "\nIF-THEN%s block found, pass %d, start block %d "
3703 "[insn %d], then %d [%d]",
3704 (else_bb) ? "-ELSE" : "",
3705 ce_info->pass,
3706 test_bb->index,
3707 BB_HEAD (test_bb) ? (int)INSN_UID (BB_HEAD (test_bb)) : -1,
3708 then_bb->index,
3709 BB_HEAD (then_bb) ? (int)INSN_UID (BB_HEAD (then_bb)) : -1);
3710
3711 if (else_bb)
3712 fprintf (dump_file, ", else %d [%d]",
3713 else_bb->index,
3714 BB_HEAD (else_bb) ? (int)INSN_UID (BB_HEAD (else_bb)) : -1);
3715
3716 fprintf (dump_file, ", join %d [%d]",
3717 join_bb->index,
3718 BB_HEAD (join_bb) ? (int)INSN_UID (BB_HEAD (join_bb)) : -1);
3719
3720 if (ce_info->num_multiple_test_blocks > 0)
3721 fprintf (dump_file, ", %d %s block%s last test %d [%d]",
3722 ce_info->num_multiple_test_blocks,
3723 (ce_info->and_and_p) ? "&&" : "||",
3724 (ce_info->num_multiple_test_blocks == 1) ? "" : "s",
3725 ce_info->last_test_bb->index,
3726 ((BB_HEAD (ce_info->last_test_bb))
3727 ? (int)INSN_UID (BB_HEAD (ce_info->last_test_bb))
3728 : -1));
3729
3730 fputc ('\n', dump_file);
3731 }
3732
3733 /* Make sure IF, THEN, and ELSE, blocks are adjacent. Actually, we get the
3734 first condition for free, since we've already asserted that there's a
3735 fallthru edge from IF to THEN. Likewise for the && and || blocks, since
3736 we checked the FALLTHRU flag, those are already adjacent to the last IF
3737 block. */
3738 /* ??? As an enhancement, move the ELSE block. Have to deal with
3739 BLOCK notes, if by no other means than backing out the merge if they
3740 exist. Sticky enough I don't want to think about it now. */
3741 next = then_bb;
3742 if (else_bb && (next = next->next_bb) != else_bb)
3743 return FALSE;
3744 if ((next = next->next_bb) != join_bb
3745 && join_bb != EXIT_BLOCK_PTR_FOR_FN (cfun))
3746 {
3747 if (else_bb)
3748 join_bb = NULL;
3749 else
3750 return FALSE;
3751 }
3752
3753 /* Do the real work. */
3754
3755 ce_info->else_bb = else_bb;
3756 ce_info->join_bb = join_bb;
3757
3758 /* If we have && and || tests, try to first handle combining the && and ||
3759 tests into the conditional code, and if that fails, go back and handle
3760 it without the && and ||, which at present handles the && case if there
3761 was no ELSE block. */
3762 if (cond_exec_process_if_block (ce_info, TRUE))
3763 return TRUE;
3764
3765 if (ce_info->num_multiple_test_blocks)
3766 {
3767 cancel_changes (0);
3768
3769 if (cond_exec_process_if_block (ce_info, FALSE))
3770 return TRUE;
3771 }
3772
3773 return FALSE;
3774 }
3775
3776 /* Convert a branch over a trap, or a branch
3777 to a trap, into a conditional trap. */
3778
3779 static int
3780 find_cond_trap (basic_block test_bb, edge then_edge, edge else_edge)
3781 {
3782 basic_block then_bb = then_edge->dest;
3783 basic_block else_bb = else_edge->dest;
3784 basic_block other_bb, trap_bb;
3785 rtx_insn *trap, *jump;
3786 rtx cond, seq;
3787 rtx_insn *cond_earliest;
3788 enum rtx_code code;
3789
3790 /* Locate the block with the trap instruction. */
3791 /* ??? While we look for no successors, we really ought to allow
3792 EH successors. Need to fix merge_if_block for that to work. */
3793 if ((trap = block_has_only_trap (then_bb)) != NULL)
3794 trap_bb = then_bb, other_bb = else_bb;
3795 else if ((trap = block_has_only_trap (else_bb)) != NULL)
3796 trap_bb = else_bb, other_bb = then_bb;
3797 else
3798 return FALSE;
3799
3800 if (dump_file)
3801 {
3802 fprintf (dump_file, "\nTRAP-IF block found, start %d, trap %d\n",
3803 test_bb->index, trap_bb->index);
3804 }
3805
3806 /* If this is not a standard conditional jump, we can't parse it. */
3807 jump = BB_END (test_bb);
3808 cond = noce_get_condition (jump, &cond_earliest, false);
3809 if (! cond)
3810 return FALSE;
3811
3812 /* If the conditional jump is more than just a conditional jump, then
3813 we can not do if-conversion on this block. */
3814 if (! onlyjump_p (jump))
3815 return FALSE;
3816
3817 /* We must be comparing objects whose modes imply the size. */
3818 if (GET_MODE (XEXP (cond, 0)) == BLKmode)
3819 return FALSE;
3820
3821 /* Reverse the comparison code, if necessary. */
3822 code = GET_CODE (cond);
3823 if (then_bb == trap_bb)
3824 {
3825 code = reversed_comparison_code (cond, jump);
3826 if (code == UNKNOWN)
3827 return FALSE;
3828 }
3829
3830 /* Attempt to generate the conditional trap. */
3831 seq = gen_cond_trap (code, copy_rtx (XEXP (cond, 0)),
3832 copy_rtx (XEXP (cond, 1)),
3833 TRAP_CODE (PATTERN (trap)));
3834 if (seq == NULL)
3835 return FALSE;
3836
3837 /* Emit the new insns before cond_earliest. */
3838 emit_insn_before_setloc (seq, cond_earliest, INSN_LOCATION (trap));
3839
3840 /* Delete the trap block if possible. */
3841 remove_edge (trap_bb == then_bb ? then_edge : else_edge);
3842 df_set_bb_dirty (test_bb);
3843 df_set_bb_dirty (then_bb);
3844 df_set_bb_dirty (else_bb);
3845
3846 if (EDGE_COUNT (trap_bb->preds) == 0)
3847 {
3848 delete_basic_block (trap_bb);
3849 num_true_changes++;
3850 }
3851
3852 /* Wire together the blocks again. */
3853 if (current_ir_type () == IR_RTL_CFGLAYOUT)
3854 single_succ_edge (test_bb)->flags |= EDGE_FALLTHRU;
3855 else if (trap_bb == then_bb)
3856 {
3857 rtx lab;
3858 rtx_insn *newjump;
3859
3860 lab = JUMP_LABEL (jump);
3861 newjump = emit_jump_insn_after (gen_jump (lab), jump);
3862 LABEL_NUSES (lab) += 1;
3863 JUMP_LABEL (newjump) = lab;
3864 emit_barrier_after (newjump);
3865 }
3866 delete_insn (jump);
3867
3868 if (can_merge_blocks_p (test_bb, other_bb))
3869 {
3870 merge_blocks (test_bb, other_bb);
3871 num_true_changes++;
3872 }
3873
3874 num_updated_if_blocks++;
3875 return TRUE;
3876 }
3877
3878 /* Subroutine of find_cond_trap: if BB contains only a trap insn,
3879 return it. */
3880
3881 static rtx_insn *
3882 block_has_only_trap (basic_block bb)
3883 {
3884 rtx_insn *trap;
3885
3886 /* We're not the exit block. */
3887 if (bb == EXIT_BLOCK_PTR_FOR_FN (cfun))
3888 return NULL;
3889
3890 /* The block must have no successors. */
3891 if (EDGE_COUNT (bb->succs) > 0)
3892 return NULL;
3893
3894 /* The only instruction in the THEN block must be the trap. */
3895 trap = first_active_insn (bb);
3896 if (! (trap == BB_END (bb)
3897 && GET_CODE (PATTERN (trap)) == TRAP_IF
3898 && TRAP_CONDITION (PATTERN (trap)) == const_true_rtx))
3899 return NULL;
3900
3901 return trap;
3902 }
3903
3904 /* Look for IF-THEN-ELSE cases in which one of THEN or ELSE is
3905 transformable, but not necessarily the other. There need be no
3906 JOIN block.
3907
3908 Return TRUE if we were successful at converting the block.
3909
3910 Cases we'd like to look at:
3911
3912 (1)
3913 if (test) goto over; // x not live
3914 x = a;
3915 goto label;
3916 over:
3917
3918 becomes
3919
3920 x = a;
3921 if (! test) goto label;
3922
3923 (2)
3924 if (test) goto E; // x not live
3925 x = big();
3926 goto L;
3927 E:
3928 x = b;
3929 goto M;
3930
3931 becomes
3932
3933 x = b;
3934 if (test) goto M;
3935 x = big();
3936 goto L;
3937
3938 (3) // This one's really only interesting for targets that can do
3939 // multiway branching, e.g. IA-64 BBB bundles. For other targets
3940 // it results in multiple branches on a cache line, which often
3941 // does not sit well with predictors.
3942
3943 if (test1) goto E; // predicted not taken
3944 x = a;
3945 if (test2) goto F;
3946 ...
3947 E:
3948 x = b;
3949 J:
3950
3951 becomes
3952
3953 x = a;
3954 if (test1) goto E;
3955 if (test2) goto F;
3956
3957 Notes:
3958
3959 (A) Don't do (2) if the branch is predicted against the block we're
3960 eliminating. Do it anyway if we can eliminate a branch; this requires
3961 that the sole successor of the eliminated block postdominate the other
3962 side of the if.
3963
3964 (B) With CE, on (3) we can steal from both sides of the if, creating
3965
3966 if (test1) x = a;
3967 if (!test1) x = b;
3968 if (test1) goto J;
3969 if (test2) goto F;
3970 ...
3971 J:
3972
3973 Again, this is most useful if J postdominates.
3974
3975 (C) CE substitutes for helpful life information.
3976
3977 (D) These heuristics need a lot of work. */
3978
3979 /* Tests for case 1 above. */
3980
3981 static int
3982 find_if_case_1 (basic_block test_bb, edge then_edge, edge else_edge)
3983 {
3984 basic_block then_bb = then_edge->dest;
3985 basic_block else_bb = else_edge->dest;
3986 basic_block new_bb;
3987 int then_bb_index, then_prob;
3988 rtx else_target = NULL_RTX;
3989
3990 /* If we are partitioning hot/cold basic blocks, we don't want to
3991 mess up unconditional or indirect jumps that cross between hot
3992 and cold sections.
3993
3994 Basic block partitioning may result in some jumps that appear to
3995 be optimizable (or blocks that appear to be mergeable), but which really
3996 must be left untouched (they are required to make it safely across
3997 partition boundaries). See the comments at the top of
3998 bb-reorder.c:partition_hot_cold_basic_blocks for complete details. */
3999
4000 if ((BB_END (then_bb)
4001 && JUMP_P (BB_END (then_bb))
4002 && CROSSING_JUMP_P (BB_END (then_bb)))
4003 || (BB_END (test_bb)
4004 && JUMP_P (BB_END (test_bb))
4005 && CROSSING_JUMP_P (BB_END (test_bb)))
4006 || (BB_END (else_bb)
4007 && JUMP_P (BB_END (else_bb))
4008 && CROSSING_JUMP_P (BB_END (else_bb))))
4009 return FALSE;
4010
4011 /* THEN has one successor. */
4012 if (!single_succ_p (then_bb))
4013 return FALSE;
4014
4015 /* THEN does not fall through, but is not strange either. */
4016 if (single_succ_edge (then_bb)->flags & (EDGE_COMPLEX | EDGE_FALLTHRU))
4017 return FALSE;
4018
4019 /* THEN has one predecessor. */
4020 if (!single_pred_p (then_bb))
4021 return FALSE;
4022
4023 /* THEN must do something. */
4024 if (forwarder_block_p (then_bb))
4025 return FALSE;
4026
4027 num_possible_if_blocks++;
4028 if (dump_file)
4029 fprintf (dump_file,
4030 "\nIF-CASE-1 found, start %d, then %d\n",
4031 test_bb->index, then_bb->index);
4032
4033 if (then_edge->probability)
4034 then_prob = REG_BR_PROB_BASE - then_edge->probability;
4035 else
4036 then_prob = REG_BR_PROB_BASE / 2;
4037
4038 /* We're speculating from the THEN path, we want to make sure the cost
4039 of speculation is within reason. */
4040 if (! cheap_bb_rtx_cost_p (then_bb, then_prob,
4041 COSTS_N_INSNS (BRANCH_COST (optimize_bb_for_speed_p (then_edge->src),
4042 predictable_edge_p (then_edge)))))
4043 return FALSE;
4044
4045 if (else_bb == EXIT_BLOCK_PTR_FOR_FN (cfun))
4046 {
4047 rtx_insn *jump = BB_END (else_edge->src);
4048 gcc_assert (JUMP_P (jump));
4049 else_target = JUMP_LABEL (jump);
4050 }
4051
4052 /* Registers set are dead, or are predicable. */
4053 if (! dead_or_predicable (test_bb, then_bb, else_bb,
4054 single_succ_edge (then_bb), 1))
4055 return FALSE;
4056
4057 /* Conversion went ok, including moving the insns and fixing up the
4058 jump. Adjust the CFG to match. */
4059
4060 /* We can avoid creating a new basic block if then_bb is immediately
4061 followed by else_bb, i.e. deleting then_bb allows test_bb to fall
4062 through to else_bb. */
4063
4064 if (then_bb->next_bb == else_bb
4065 && then_bb->prev_bb == test_bb
4066 && else_bb != EXIT_BLOCK_PTR_FOR_FN (cfun))
4067 {
4068 redirect_edge_succ (FALLTHRU_EDGE (test_bb), else_bb);
4069 new_bb = 0;
4070 }
4071 else if (else_bb == EXIT_BLOCK_PTR_FOR_FN (cfun))
4072 new_bb = force_nonfallthru_and_redirect (FALLTHRU_EDGE (test_bb),
4073 else_bb, else_target);
4074 else
4075 new_bb = redirect_edge_and_branch_force (FALLTHRU_EDGE (test_bb),
4076 else_bb);
4077
4078 df_set_bb_dirty (test_bb);
4079 df_set_bb_dirty (else_bb);
4080
4081 then_bb_index = then_bb->index;
4082 delete_basic_block (then_bb);
4083
4084 /* Make rest of code believe that the newly created block is the THEN_BB
4085 block we removed. */
4086 if (new_bb)
4087 {
4088 df_bb_replace (then_bb_index, new_bb);
4089 /* This should have been done above via force_nonfallthru_and_redirect
4090 (possibly called from redirect_edge_and_branch_force). */
4091 gcc_checking_assert (BB_PARTITION (new_bb) == BB_PARTITION (test_bb));
4092 }
4093
4094 num_true_changes++;
4095 num_updated_if_blocks++;
4096
4097 return TRUE;
4098 }
4099
4100 /* Test for case 2 above. */
4101
4102 static int
4103 find_if_case_2 (basic_block test_bb, edge then_edge, edge else_edge)
4104 {
4105 basic_block then_bb = then_edge->dest;
4106 basic_block else_bb = else_edge->dest;
4107 edge else_succ;
4108 int then_prob, else_prob;
4109
4110 /* We do not want to speculate (empty) loop latches. */
4111 if (current_loops
4112 && else_bb->loop_father->latch == else_bb)
4113 return FALSE;
4114
4115 /* If we are partitioning hot/cold basic blocks, we don't want to
4116 mess up unconditional or indirect jumps that cross between hot
4117 and cold sections.
4118
4119 Basic block partitioning may result in some jumps that appear to
4120 be optimizable (or blocks that appear to be mergeable), but which really
4121 must be left untouched (they are required to make it safely across
4122 partition boundaries). See the comments at the top of
4123 bb-reorder.c:partition_hot_cold_basic_blocks for complete details. */
4124
4125 if ((BB_END (then_bb)
4126 && JUMP_P (BB_END (then_bb))
4127 && CROSSING_JUMP_P (BB_END (then_bb)))
4128 || (BB_END (test_bb)
4129 && JUMP_P (BB_END (test_bb))
4130 && CROSSING_JUMP_P (BB_END (test_bb)))
4131 || (BB_END (else_bb)
4132 && JUMP_P (BB_END (else_bb))
4133 && CROSSING_JUMP_P (BB_END (else_bb))))
4134 return FALSE;
4135
4136 /* ELSE has one successor. */
4137 if (!single_succ_p (else_bb))
4138 return FALSE;
4139 else
4140 else_succ = single_succ_edge (else_bb);
4141
4142 /* ELSE outgoing edge is not complex. */
4143 if (else_succ->flags & EDGE_COMPLEX)
4144 return FALSE;
4145
4146 /* ELSE has one predecessor. */
4147 if (!single_pred_p (else_bb))
4148 return FALSE;
4149
4150 /* THEN is not EXIT. */
4151 if (then_bb->index < NUM_FIXED_BLOCKS)
4152 return FALSE;
4153
4154 if (else_edge->probability)
4155 {
4156 else_prob = else_edge->probability;
4157 then_prob = REG_BR_PROB_BASE - else_prob;
4158 }
4159 else
4160 {
4161 else_prob = REG_BR_PROB_BASE / 2;
4162 then_prob = REG_BR_PROB_BASE / 2;
4163 }
4164
4165 /* ELSE is predicted or SUCC(ELSE) postdominates THEN. */
4166 if (else_prob > then_prob)
4167 ;
4168 else if (else_succ->dest->index < NUM_FIXED_BLOCKS
4169 || dominated_by_p (CDI_POST_DOMINATORS, then_bb,
4170 else_succ->dest))
4171 ;
4172 else
4173 return FALSE;
4174
4175 num_possible_if_blocks++;
4176 if (dump_file)
4177 fprintf (dump_file,
4178 "\nIF-CASE-2 found, start %d, else %d\n",
4179 test_bb->index, else_bb->index);
4180
4181 /* We're speculating from the ELSE path, we want to make sure the cost
4182 of speculation is within reason. */
4183 if (! cheap_bb_rtx_cost_p (else_bb, else_prob,
4184 COSTS_N_INSNS (BRANCH_COST (optimize_bb_for_speed_p (else_edge->src),
4185 predictable_edge_p (else_edge)))))
4186 return FALSE;
4187
4188 /* Registers set are dead, or are predicable. */
4189 if (! dead_or_predicable (test_bb, else_bb, then_bb, else_succ, 0))
4190 return FALSE;
4191
4192 /* Conversion went ok, including moving the insns and fixing up the
4193 jump. Adjust the CFG to match. */
4194
4195 df_set_bb_dirty (test_bb);
4196 df_set_bb_dirty (then_bb);
4197 delete_basic_block (else_bb);
4198
4199 num_true_changes++;
4200 num_updated_if_blocks++;
4201
4202 /* ??? We may now fallthru from one of THEN's successors into a join
4203 block. Rerun cleanup_cfg? Examine things manually? Wait? */
4204
4205 return TRUE;
4206 }
4207
4208 /* Used by the code above to perform the actual rtl transformations.
4209 Return TRUE if successful.
4210
4211 TEST_BB is the block containing the conditional branch. MERGE_BB
4212 is the block containing the code to manipulate. DEST_EDGE is an
4213 edge representing a jump to the join block; after the conversion,
4214 TEST_BB should be branching to its destination.
4215 REVERSEP is true if the sense of the branch should be reversed. */
4216
4217 static int
4218 dead_or_predicable (basic_block test_bb, basic_block merge_bb,
4219 basic_block other_bb, edge dest_edge, int reversep)
4220 {
4221 basic_block new_dest = dest_edge->dest;
4222 rtx_insn *head, *end, *jump;
4223 rtx_insn *earliest = NULL;
4224 rtx old_dest;
4225 bitmap merge_set = NULL;
4226 /* Number of pending changes. */
4227 int n_validated_changes = 0;
4228 rtx new_dest_label = NULL_RTX;
4229
4230 jump = BB_END (test_bb);
4231
4232 /* Find the extent of the real code in the merge block. */
4233 head = BB_HEAD (merge_bb);
4234 end = BB_END (merge_bb);
4235
4236 while (DEBUG_INSN_P (end) && end != head)
4237 end = PREV_INSN (end);
4238
4239 /* If merge_bb ends with a tablejump, predicating/moving insn's
4240 into test_bb and then deleting merge_bb will result in the jumptable
4241 that follows merge_bb being removed along with merge_bb and then we
4242 get an unresolved reference to the jumptable. */
4243 if (tablejump_p (end, NULL, NULL))
4244 return FALSE;
4245
4246 if (LABEL_P (head))
4247 head = NEXT_INSN (head);
4248 while (DEBUG_INSN_P (head) && head != end)
4249 head = NEXT_INSN (head);
4250 if (NOTE_P (head))
4251 {
4252 if (head == end)
4253 {
4254 head = end = NULL;
4255 goto no_body;
4256 }
4257 head = NEXT_INSN (head);
4258 while (DEBUG_INSN_P (head) && head != end)
4259 head = NEXT_INSN (head);
4260 }
4261
4262 if (JUMP_P (end))
4263 {
4264 if (!onlyjump_p (end))
4265 return FALSE;
4266 if (head == end)
4267 {
4268 head = end = NULL;
4269 goto no_body;
4270 }
4271 end = PREV_INSN (end);
4272 while (DEBUG_INSN_P (end) && end != head)
4273 end = PREV_INSN (end);
4274 }
4275
4276 /* Don't move frame-related insn across the conditional branch. This
4277 can lead to one of the paths of the branch having wrong unwind info. */
4278 if (epilogue_completed)
4279 {
4280 rtx_insn *insn = head;
4281 while (1)
4282 {
4283 if (INSN_P (insn) && RTX_FRAME_RELATED_P (insn))
4284 return FALSE;
4285 if (insn == end)
4286 break;
4287 insn = NEXT_INSN (insn);
4288 }
4289 }
4290
4291 /* Disable handling dead code by conditional execution if the machine needs
4292 to do anything funny with the tests, etc. */
4293 #ifndef IFCVT_MODIFY_TESTS
4294 if (targetm.have_conditional_execution ())
4295 {
4296 /* In the conditional execution case, we have things easy. We know
4297 the condition is reversible. We don't have to check life info
4298 because we're going to conditionally execute the code anyway.
4299 All that's left is making sure the insns involved can actually
4300 be predicated. */
4301
4302 rtx cond;
4303
4304 cond = cond_exec_get_condition (jump);
4305 if (! cond)
4306 return FALSE;
4307
4308 rtx note = find_reg_note (jump, REG_BR_PROB, NULL_RTX);
4309 int prob_val = (note ? XINT (note, 0) : -1);
4310
4311 if (reversep)
4312 {
4313 enum rtx_code rev = reversed_comparison_code (cond, jump);
4314 if (rev == UNKNOWN)
4315 return FALSE;
4316 cond = gen_rtx_fmt_ee (rev, GET_MODE (cond), XEXP (cond, 0),
4317 XEXP (cond, 1));
4318 if (prob_val >= 0)
4319 prob_val = REG_BR_PROB_BASE - prob_val;
4320 }
4321
4322 if (cond_exec_process_insns (NULL, head, end, cond, prob_val, 0)
4323 && verify_changes (0))
4324 n_validated_changes = num_validated_changes ();
4325 else
4326 cancel_changes (0);
4327
4328 earliest = jump;
4329 }
4330 #endif
4331
4332 /* If we allocated new pseudos (e.g. in the conditional move
4333 expander called from noce_emit_cmove), we must resize the
4334 array first. */
4335 if (max_regno < max_reg_num ())
4336 max_regno = max_reg_num ();
4337
4338 /* Try the NCE path if the CE path did not result in any changes. */
4339 if (n_validated_changes == 0)
4340 {
4341 rtx cond;
4342 rtx_insn *insn;
4343 regset live;
4344 bool success;
4345
4346 /* In the non-conditional execution case, we have to verify that there
4347 are no trapping operations, no calls, no references to memory, and
4348 that any registers modified are dead at the branch site. */
4349
4350 if (!any_condjump_p (jump))
4351 return FALSE;
4352
4353 /* Find the extent of the conditional. */
4354 cond = noce_get_condition (jump, &earliest, false);
4355 if (!cond)
4356 return FALSE;
4357
4358 live = BITMAP_ALLOC (&reg_obstack);
4359 simulate_backwards_to_point (merge_bb, live, end);
4360 success = can_move_insns_across (head, end, earliest, jump,
4361 merge_bb, live,
4362 df_get_live_in (other_bb), NULL);
4363 BITMAP_FREE (live);
4364 if (!success)
4365 return FALSE;
4366
4367 /* Collect the set of registers set in MERGE_BB. */
4368 merge_set = BITMAP_ALLOC (&reg_obstack);
4369
4370 FOR_BB_INSNS (merge_bb, insn)
4371 if (NONDEBUG_INSN_P (insn))
4372 df_simulate_find_defs (insn, merge_set);
4373
4374 /* If shrink-wrapping, disable this optimization when test_bb is
4375 the first basic block and merge_bb exits. The idea is to not
4376 move code setting up a return register as that may clobber a
4377 register used to pass function parameters, which then must be
4378 saved in caller-saved regs. A caller-saved reg requires the
4379 prologue, killing a shrink-wrap opportunity. */
4380 if ((SHRINK_WRAPPING_ENABLED && !epilogue_completed)
4381 && ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb == test_bb
4382 && single_succ_p (new_dest)
4383 && single_succ (new_dest) == EXIT_BLOCK_PTR_FOR_FN (cfun)
4384 && bitmap_intersect_p (df_get_live_in (new_dest), merge_set))
4385 {
4386 regset return_regs;
4387 unsigned int i;
4388
4389 return_regs = BITMAP_ALLOC (&reg_obstack);
4390
4391 /* Start off with the intersection of regs used to pass
4392 params and regs used to return values. */
4393 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
4394 if (FUNCTION_ARG_REGNO_P (i)
4395 && targetm.calls.function_value_regno_p (i))
4396 bitmap_set_bit (return_regs, INCOMING_REGNO (i));
4397
4398 bitmap_and_into (return_regs,
4399 df_get_live_out (ENTRY_BLOCK_PTR_FOR_FN (cfun)));
4400 bitmap_and_into (return_regs,
4401 df_get_live_in (EXIT_BLOCK_PTR_FOR_FN (cfun)));
4402 if (!bitmap_empty_p (return_regs))
4403 {
4404 FOR_BB_INSNS_REVERSE (new_dest, insn)
4405 if (NONDEBUG_INSN_P (insn))
4406 {
4407 df_ref def;
4408
4409 /* If this insn sets any reg in return_regs, add all
4410 reg uses to the set of regs we're interested in. */
4411 FOR_EACH_INSN_DEF (def, insn)
4412 if (bitmap_bit_p (return_regs, DF_REF_REGNO (def)))
4413 {
4414 df_simulate_uses (insn, return_regs);
4415 break;
4416 }
4417 }
4418 if (bitmap_intersect_p (merge_set, return_regs))
4419 {
4420 BITMAP_FREE (return_regs);
4421 BITMAP_FREE (merge_set);
4422 return FALSE;
4423 }
4424 }
4425 BITMAP_FREE (return_regs);
4426 }
4427 }
4428
4429 no_body:
4430 /* We don't want to use normal invert_jump or redirect_jump because
4431 we don't want to delete_insn called. Also, we want to do our own
4432 change group management. */
4433
4434 old_dest = JUMP_LABEL (jump);
4435 if (other_bb != new_dest)
4436 {
4437 if (!any_condjump_p (jump))
4438 goto cancel;
4439
4440 if (JUMP_P (BB_END (dest_edge->src)))
4441 new_dest_label = JUMP_LABEL (BB_END (dest_edge->src));
4442 else if (new_dest == EXIT_BLOCK_PTR_FOR_FN (cfun))
4443 new_dest_label = ret_rtx;
4444 else
4445 new_dest_label = block_label (new_dest);
4446
4447 if (reversep
4448 ? ! invert_jump_1 (jump, new_dest_label)
4449 : ! redirect_jump_1 (jump, new_dest_label))
4450 goto cancel;
4451 }
4452
4453 if (verify_changes (n_validated_changes))
4454 confirm_change_group ();
4455 else
4456 goto cancel;
4457
4458 if (other_bb != new_dest)
4459 {
4460 redirect_jump_2 (jump, old_dest, new_dest_label, 0, reversep);
4461
4462 redirect_edge_succ (BRANCH_EDGE (test_bb), new_dest);
4463 if (reversep)
4464 {
4465 gcov_type count, probability;
4466 count = BRANCH_EDGE (test_bb)->count;
4467 BRANCH_EDGE (test_bb)->count = FALLTHRU_EDGE (test_bb)->count;
4468 FALLTHRU_EDGE (test_bb)->count = count;
4469 probability = BRANCH_EDGE (test_bb)->probability;
4470 BRANCH_EDGE (test_bb)->probability
4471 = FALLTHRU_EDGE (test_bb)->probability;
4472 FALLTHRU_EDGE (test_bb)->probability = probability;
4473 update_br_prob_note (test_bb);
4474 }
4475 }
4476
4477 /* Move the insns out of MERGE_BB to before the branch. */
4478 if (head != NULL)
4479 {
4480 rtx_insn *insn;
4481
4482 if (end == BB_END (merge_bb))
4483 BB_END (merge_bb) = PREV_INSN (head);
4484
4485 /* PR 21767: when moving insns above a conditional branch, the REG_EQUAL
4486 notes being moved might become invalid. */
4487 insn = head;
4488 do
4489 {
4490 rtx note;
4491
4492 if (! INSN_P (insn))
4493 continue;
4494 note = find_reg_note (insn, REG_EQUAL, NULL_RTX);
4495 if (! note)
4496 continue;
4497 remove_note (insn, note);
4498 } while (insn != end && (insn = NEXT_INSN (insn)));
4499
4500 /* PR46315: when moving insns above a conditional branch, the REG_EQUAL
4501 notes referring to the registers being set might become invalid. */
4502 if (merge_set)
4503 {
4504 unsigned i;
4505 bitmap_iterator bi;
4506
4507 EXECUTE_IF_SET_IN_BITMAP (merge_set, 0, i, bi)
4508 remove_reg_equal_equiv_notes_for_regno (i);
4509
4510 BITMAP_FREE (merge_set);
4511 }
4512
4513 reorder_insns (head, end, PREV_INSN (earliest));
4514 }
4515
4516 /* Remove the jump and edge if we can. */
4517 if (other_bb == new_dest)
4518 {
4519 delete_insn (jump);
4520 remove_edge (BRANCH_EDGE (test_bb));
4521 /* ??? Can't merge blocks here, as then_bb is still in use.
4522 At minimum, the merge will get done just before bb-reorder. */
4523 }
4524
4525 return TRUE;
4526
4527 cancel:
4528 cancel_changes (0);
4529
4530 if (merge_set)
4531 BITMAP_FREE (merge_set);
4532
4533 return FALSE;
4534 }
4535 \f
4536 /* Main entry point for all if-conversion. AFTER_COMBINE is true if
4537 we are after combine pass. */
4538
4539 static void
4540 if_convert (bool after_combine)
4541 {
4542 basic_block bb;
4543 int pass;
4544
4545 if (optimize == 1)
4546 {
4547 df_live_add_problem ();
4548 df_live_set_all_dirty ();
4549 }
4550
4551 /* Record whether we are after combine pass. */
4552 ifcvt_after_combine = after_combine;
4553 num_possible_if_blocks = 0;
4554 num_updated_if_blocks = 0;
4555 num_true_changes = 0;
4556
4557 loop_optimizer_init (AVOID_CFG_MODIFICATIONS);
4558 mark_loop_exit_edges ();
4559 loop_optimizer_finalize ();
4560 free_dominance_info (CDI_DOMINATORS);
4561
4562 /* Compute postdominators. */
4563 calculate_dominance_info (CDI_POST_DOMINATORS);
4564
4565 df_set_flags (DF_LR_RUN_DCE);
4566
4567 /* Go through each of the basic blocks looking for things to convert. If we
4568 have conditional execution, we make multiple passes to allow us to handle
4569 IF-THEN{-ELSE} blocks within other IF-THEN{-ELSE} blocks. */
4570 pass = 0;
4571 do
4572 {
4573 df_analyze ();
4574 /* Only need to do dce on the first pass. */
4575 df_clear_flags (DF_LR_RUN_DCE);
4576 cond_exec_changed_p = FALSE;
4577 pass++;
4578
4579 #ifdef IFCVT_MULTIPLE_DUMPS
4580 if (dump_file && pass > 1)
4581 fprintf (dump_file, "\n\n========== Pass %d ==========\n", pass);
4582 #endif
4583
4584 FOR_EACH_BB_FN (bb, cfun)
4585 {
4586 basic_block new_bb;
4587 while (!df_get_bb_dirty (bb)
4588 && (new_bb = find_if_header (bb, pass)) != NULL)
4589 bb = new_bb;
4590 }
4591
4592 #ifdef IFCVT_MULTIPLE_DUMPS
4593 if (dump_file && cond_exec_changed_p)
4594 print_rtl_with_bb (dump_file, get_insns (), dump_flags);
4595 #endif
4596 }
4597 while (cond_exec_changed_p);
4598
4599 #ifdef IFCVT_MULTIPLE_DUMPS
4600 if (dump_file)
4601 fprintf (dump_file, "\n\n========== no more changes\n");
4602 #endif
4603
4604 free_dominance_info (CDI_POST_DOMINATORS);
4605
4606 if (dump_file)
4607 fflush (dump_file);
4608
4609 clear_aux_for_blocks ();
4610
4611 /* If we allocated new pseudos, we must resize the array for sched1. */
4612 if (max_regno < max_reg_num ())
4613 max_regno = max_reg_num ();
4614
4615 /* Write the final stats. */
4616 if (dump_file && num_possible_if_blocks > 0)
4617 {
4618 fprintf (dump_file,
4619 "\n%d possible IF blocks searched.\n",
4620 num_possible_if_blocks);
4621 fprintf (dump_file,
4622 "%d IF blocks converted.\n",
4623 num_updated_if_blocks);
4624 fprintf (dump_file,
4625 "%d true changes made.\n\n\n",
4626 num_true_changes);
4627 }
4628
4629 if (optimize == 1)
4630 df_remove_problem (df_live);
4631
4632 #ifdef ENABLE_CHECKING
4633 verify_flow_info ();
4634 #endif
4635 }
4636 \f
4637 /* If-conversion and CFG cleanup. */
4638 static unsigned int
4639 rest_of_handle_if_conversion (void)
4640 {
4641 if (flag_if_conversion)
4642 {
4643 if (dump_file)
4644 {
4645 dump_reg_info (dump_file);
4646 dump_flow_info (dump_file, dump_flags);
4647 }
4648 cleanup_cfg (CLEANUP_EXPENSIVE);
4649 if_convert (false);
4650 }
4651
4652 cleanup_cfg (0);
4653 return 0;
4654 }
4655
4656 namespace {
4657
4658 const pass_data pass_data_rtl_ifcvt =
4659 {
4660 RTL_PASS, /* type */
4661 "ce1", /* name */
4662 OPTGROUP_NONE, /* optinfo_flags */
4663 TV_IFCVT, /* tv_id */
4664 0, /* properties_required */
4665 0, /* properties_provided */
4666 0, /* properties_destroyed */
4667 0, /* todo_flags_start */
4668 TODO_df_finish, /* todo_flags_finish */
4669 };
4670
4671 class pass_rtl_ifcvt : public rtl_opt_pass
4672 {
4673 public:
4674 pass_rtl_ifcvt (gcc::context *ctxt)
4675 : rtl_opt_pass (pass_data_rtl_ifcvt, ctxt)
4676 {}
4677
4678 /* opt_pass methods: */
4679 virtual bool gate (function *)
4680 {
4681 return (optimize > 0) && dbg_cnt (if_conversion);
4682 }
4683
4684 virtual unsigned int execute (function *)
4685 {
4686 return rest_of_handle_if_conversion ();
4687 }
4688
4689 }; // class pass_rtl_ifcvt
4690
4691 } // anon namespace
4692
4693 rtl_opt_pass *
4694 make_pass_rtl_ifcvt (gcc::context *ctxt)
4695 {
4696 return new pass_rtl_ifcvt (ctxt);
4697 }
4698
4699
4700 /* Rerun if-conversion, as combine may have simplified things enough
4701 to now meet sequence length restrictions. */
4702
4703 namespace {
4704
4705 const pass_data pass_data_if_after_combine =
4706 {
4707 RTL_PASS, /* type */
4708 "ce2", /* name */
4709 OPTGROUP_NONE, /* optinfo_flags */
4710 TV_IFCVT, /* tv_id */
4711 0, /* properties_required */
4712 0, /* properties_provided */
4713 0, /* properties_destroyed */
4714 0, /* todo_flags_start */
4715 TODO_df_finish, /* todo_flags_finish */
4716 };
4717
4718 class pass_if_after_combine : public rtl_opt_pass
4719 {
4720 public:
4721 pass_if_after_combine (gcc::context *ctxt)
4722 : rtl_opt_pass (pass_data_if_after_combine, ctxt)
4723 {}
4724
4725 /* opt_pass methods: */
4726 virtual bool gate (function *)
4727 {
4728 return optimize > 0 && flag_if_conversion
4729 && dbg_cnt (if_after_combine);
4730 }
4731
4732 virtual unsigned int execute (function *)
4733 {
4734 if_convert (true);
4735 return 0;
4736 }
4737
4738 }; // class pass_if_after_combine
4739
4740 } // anon namespace
4741
4742 rtl_opt_pass *
4743 make_pass_if_after_combine (gcc::context *ctxt)
4744 {
4745 return new pass_if_after_combine (ctxt);
4746 }
4747
4748
4749 namespace {
4750
4751 const pass_data pass_data_if_after_reload =
4752 {
4753 RTL_PASS, /* type */
4754 "ce3", /* name */
4755 OPTGROUP_NONE, /* optinfo_flags */
4756 TV_IFCVT2, /* tv_id */
4757 0, /* properties_required */
4758 0, /* properties_provided */
4759 0, /* properties_destroyed */
4760 0, /* todo_flags_start */
4761 TODO_df_finish, /* todo_flags_finish */
4762 };
4763
4764 class pass_if_after_reload : public rtl_opt_pass
4765 {
4766 public:
4767 pass_if_after_reload (gcc::context *ctxt)
4768 : rtl_opt_pass (pass_data_if_after_reload, ctxt)
4769 {}
4770
4771 /* opt_pass methods: */
4772 virtual bool gate (function *)
4773 {
4774 return optimize > 0 && flag_if_conversion2
4775 && dbg_cnt (if_after_reload);
4776 }
4777
4778 virtual unsigned int execute (function *)
4779 {
4780 if_convert (true);
4781 return 0;
4782 }
4783
4784 }; // class pass_if_after_reload
4785
4786 } // anon namespace
4787
4788 rtl_opt_pass *
4789 make_pass_if_after_reload (gcc::context *ctxt)
4790 {
4791 return new pass_if_after_reload (ctxt);
4792 }