]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/ipa-fnsummary.c
ipa-fnsummary.c (remap_edge_change_prob): Do not ICE when changes are not streamed in.
[thirdparty/gcc.git] / gcc / ipa-fnsummary.c
1 /* Function summary pass.
2 Copyright (C) 2003-2018 Free Software Foundation, Inc.
3 Contributed by Jan Hubicka
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
10 version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
20
21 /* Analysis of function bodies used by inter-procedural passes
22
23 We estimate for each function
24 - function body size and size after specializing into given context
25 - average function execution time in a given context
26 - function frame size
27 For each call
28 - call statement size, time and how often the parameters change
29
30 ipa_fn_summary data structures store above information locally (i.e.
31 parameters of the function itself) and globally (i.e. parameters of
32 the function created by applying all the inline decisions already
33 present in the callgraph).
34
35 We provide access to the ipa_fn_summary data structure and
36 basic logic updating the parameters when inlining is performed.
37
38 The summaries are context sensitive. Context means
39 1) partial assignment of known constant values of operands
40 2) whether function is inlined into the call or not.
41 It is easy to add more variants. To represent function size and time
42 that depends on context (i.e. it is known to be optimized away when
43 context is known either by inlining or from IP-CP and cloning),
44 we use predicates.
45
46 estimate_edge_size_and_time can be used to query
47 function size/time in the given context. ipa_merge_fn_summary_after_inlining merges
48 properties of caller and callee after inlining.
49
50 Finally pass_inline_parameters is exported. This is used to drive
51 computation of function parameters used by the early inliner. IPA
52 inlined performs analysis via its analyze_function method. */
53
54 #include "config.h"
55 #include "system.h"
56 #include "coretypes.h"
57 #include "backend.h"
58 #include "tree.h"
59 #include "gimple.h"
60 #include "alloc-pool.h"
61 #include "tree-pass.h"
62 #include "ssa.h"
63 #include "tree-streamer.h"
64 #include "cgraph.h"
65 #include "diagnostic.h"
66 #include "fold-const.h"
67 #include "print-tree.h"
68 #include "tree-inline.h"
69 #include "gimple-pretty-print.h"
70 #include "params.h"
71 #include "cfganal.h"
72 #include "gimple-iterator.h"
73 #include "tree-cfg.h"
74 #include "tree-ssa-loop-niter.h"
75 #include "tree-ssa-loop.h"
76 #include "symbol-summary.h"
77 #include "ipa-prop.h"
78 #include "ipa-fnsummary.h"
79 #include "cfgloop.h"
80 #include "tree-scalar-evolution.h"
81 #include "ipa-utils.h"
82 #include "cfgexpand.h"
83 #include "gimplify.h"
84 #include "stringpool.h"
85 #include "attribs.h"
86
87 /* Summaries. */
88 function_summary <ipa_fn_summary *> *ipa_fn_summaries;
89 call_summary <ipa_call_summary *> *ipa_call_summaries;
90
91 /* Edge predicates goes here. */
92 static object_allocator<predicate> edge_predicate_pool ("edge predicates");
93
94
95 /* Dump IPA hints. */
96 void
97 ipa_dump_hints (FILE *f, ipa_hints hints)
98 {
99 if (!hints)
100 return;
101 fprintf (f, "IPA hints:");
102 if (hints & INLINE_HINT_indirect_call)
103 {
104 hints &= ~INLINE_HINT_indirect_call;
105 fprintf (f, " indirect_call");
106 }
107 if (hints & INLINE_HINT_loop_iterations)
108 {
109 hints &= ~INLINE_HINT_loop_iterations;
110 fprintf (f, " loop_iterations");
111 }
112 if (hints & INLINE_HINT_loop_stride)
113 {
114 hints &= ~INLINE_HINT_loop_stride;
115 fprintf (f, " loop_stride");
116 }
117 if (hints & INLINE_HINT_same_scc)
118 {
119 hints &= ~INLINE_HINT_same_scc;
120 fprintf (f, " same_scc");
121 }
122 if (hints & INLINE_HINT_in_scc)
123 {
124 hints &= ~INLINE_HINT_in_scc;
125 fprintf (f, " in_scc");
126 }
127 if (hints & INLINE_HINT_cross_module)
128 {
129 hints &= ~INLINE_HINT_cross_module;
130 fprintf (f, " cross_module");
131 }
132 if (hints & INLINE_HINT_declared_inline)
133 {
134 hints &= ~INLINE_HINT_declared_inline;
135 fprintf (f, " declared_inline");
136 }
137 if (hints & INLINE_HINT_array_index)
138 {
139 hints &= ~INLINE_HINT_array_index;
140 fprintf (f, " array_index");
141 }
142 if (hints & INLINE_HINT_known_hot)
143 {
144 hints &= ~INLINE_HINT_known_hot;
145 fprintf (f, " known_hot");
146 }
147 gcc_assert (!hints);
148 }
149
150
151 /* Record SIZE and TIME to SUMMARY.
152 The accounted code will be executed when EXEC_PRED is true.
153 When NONCONST_PRED is false the code will evaulate to constant and
154 will get optimized out in specialized clones of the function. */
155
156 void
157 ipa_fn_summary::account_size_time (int size, sreal time,
158 const predicate &exec_pred,
159 const predicate &nonconst_pred_in)
160 {
161 size_time_entry *e;
162 bool found = false;
163 int i;
164 predicate nonconst_pred;
165
166 if (exec_pred == false)
167 return;
168
169 nonconst_pred = nonconst_pred_in & exec_pred;
170
171 if (nonconst_pred == false)
172 return;
173
174 /* We need to create initial empty unconitional clause, but otherwie
175 we don't need to account empty times and sizes. */
176 if (!size && time == 0 && size_time_table)
177 return;
178
179 gcc_assert (time >= 0);
180
181 for (i = 0; vec_safe_iterate (size_time_table, i, &e); i++)
182 if (e->exec_predicate == exec_pred
183 && e->nonconst_predicate == nonconst_pred)
184 {
185 found = true;
186 break;
187 }
188 if (i == 256)
189 {
190 i = 0;
191 found = true;
192 e = &(*size_time_table)[0];
193 if (dump_file && (dump_flags & TDF_DETAILS))
194 fprintf (dump_file,
195 "\t\tReached limit on number of entries, "
196 "ignoring the predicate.");
197 }
198 if (dump_file && (dump_flags & TDF_DETAILS) && (time != 0 || size))
199 {
200 fprintf (dump_file,
201 "\t\tAccounting size:%3.2f, time:%3.2f on %spredicate exec:",
202 ((double) size) / ipa_fn_summary::size_scale,
203 (time.to_double ()), found ? "" : "new ");
204 exec_pred.dump (dump_file, conds, 0);
205 if (exec_pred != nonconst_pred)
206 {
207 fprintf (dump_file, " nonconst:");
208 nonconst_pred.dump (dump_file, conds);
209 }
210 else
211 fprintf (dump_file, "\n");
212 }
213 if (!found)
214 {
215 struct size_time_entry new_entry;
216 new_entry.size = size;
217 new_entry.time = time;
218 new_entry.exec_predicate = exec_pred;
219 new_entry.nonconst_predicate = nonconst_pred;
220 vec_safe_push (size_time_table, new_entry);
221 }
222 else
223 {
224 e->size += size;
225 e->time += time;
226 }
227 }
228
229 /* We proved E to be unreachable, redirect it to __bultin_unreachable. */
230
231 static struct cgraph_edge *
232 redirect_to_unreachable (struct cgraph_edge *e)
233 {
234 struct cgraph_node *callee = !e->inline_failed ? e->callee : NULL;
235 struct cgraph_node *target = cgraph_node::get_create
236 (builtin_decl_implicit (BUILT_IN_UNREACHABLE));
237
238 if (e->speculative)
239 e = e->resolve_speculation (target->decl);
240 else if (!e->callee)
241 e->make_direct (target);
242 else
243 e->redirect_callee (target);
244 struct ipa_call_summary *es = ipa_call_summaries->get (e);
245 e->inline_failed = CIF_UNREACHABLE;
246 e->count = profile_count::zero ();
247 es->call_stmt_size = 0;
248 es->call_stmt_time = 0;
249 if (callee)
250 callee->remove_symbol_and_inline_clones ();
251 return e;
252 }
253
254 /* Set predicate for edge E. */
255
256 static void
257 edge_set_predicate (struct cgraph_edge *e, predicate *predicate)
258 {
259 /* If the edge is determined to be never executed, redirect it
260 to BUILTIN_UNREACHABLE to make it clear to IPA passes the call will
261 be optimized out. */
262 if (predicate && *predicate == false
263 /* When handling speculative edges, we need to do the redirection
264 just once. Do it always on the direct edge, so we do not
265 attempt to resolve speculation while duplicating the edge. */
266 && (!e->speculative || e->callee))
267 e = redirect_to_unreachable (e);
268
269 struct ipa_call_summary *es = ipa_call_summaries->get (e);
270 if (predicate && *predicate != true)
271 {
272 if (!es->predicate)
273 es->predicate = edge_predicate_pool.allocate ();
274 *es->predicate = *predicate;
275 }
276 else
277 {
278 if (es->predicate)
279 edge_predicate_pool.remove (es->predicate);
280 es->predicate = NULL;
281 }
282 }
283
284 /* Set predicate for hint *P. */
285
286 static void
287 set_hint_predicate (predicate **p, predicate new_predicate)
288 {
289 if (new_predicate == false || new_predicate == true)
290 {
291 if (*p)
292 edge_predicate_pool.remove (*p);
293 *p = NULL;
294 }
295 else
296 {
297 if (!*p)
298 *p = edge_predicate_pool.allocate ();
299 **p = new_predicate;
300 }
301 }
302
303
304 /* Compute what conditions may or may not hold given invormation about
305 parameters. RET_CLAUSE returns truths that may hold in a specialized copy,
306 whie RET_NONSPEC_CLAUSE returns truths that may hold in an nonspecialized
307 copy when called in a given context. It is a bitmask of conditions. Bit
308 0 means that condition is known to be false, while bit 1 means that condition
309 may or may not be true. These differs - for example NOT_INLINED condition
310 is always false in the second and also builtin_constant_p tests can not use
311 the fact that parameter is indeed a constant.
312
313 KNOWN_VALS is partial mapping of parameters of NODE to constant values.
314 KNOWN_AGGS is a vector of aggreggate jump functions for each parameter.
315 Return clause of possible truths. When INLINE_P is true, assume that we are
316 inlining.
317
318 ERROR_MARK means compile time invariant. */
319
320 static void
321 evaluate_conditions_for_known_args (struct cgraph_node *node,
322 bool inline_p,
323 vec<tree> known_vals,
324 vec<ipa_agg_jump_function_p>
325 known_aggs,
326 clause_t *ret_clause,
327 clause_t *ret_nonspec_clause)
328 {
329 clause_t clause = inline_p ? 0 : 1 << predicate::not_inlined_condition;
330 clause_t nonspec_clause = 1 << predicate::not_inlined_condition;
331 struct ipa_fn_summary *info = ipa_fn_summaries->get (node);
332 int i;
333 struct condition *c;
334
335 for (i = 0; vec_safe_iterate (info->conds, i, &c); i++)
336 {
337 tree val;
338 tree res;
339
340 /* We allow call stmt to have fewer arguments than the callee function
341 (especially for K&R style programs). So bound check here (we assume
342 known_aggs vector, if non-NULL, has the same length as
343 known_vals). */
344 gcc_checking_assert (!known_aggs.exists ()
345 || (known_vals.length () == known_aggs.length ()));
346 if (c->operand_num >= (int) known_vals.length ())
347 {
348 clause |= 1 << (i + predicate::first_dynamic_condition);
349 nonspec_clause |= 1 << (i + predicate::first_dynamic_condition);
350 continue;
351 }
352
353 if (c->agg_contents)
354 {
355 struct ipa_agg_jump_function *agg;
356
357 if (c->code == predicate::changed
358 && !c->by_ref
359 && (known_vals[c->operand_num] == error_mark_node))
360 continue;
361
362 if (known_aggs.exists ())
363 {
364 agg = known_aggs[c->operand_num];
365 val = ipa_find_agg_cst_for_param (agg, known_vals[c->operand_num],
366 c->offset, c->by_ref);
367 }
368 else
369 val = NULL_TREE;
370 }
371 else
372 {
373 val = known_vals[c->operand_num];
374 if (val == error_mark_node && c->code != predicate::changed)
375 val = NULL_TREE;
376 }
377
378 if (!val)
379 {
380 clause |= 1 << (i + predicate::first_dynamic_condition);
381 nonspec_clause |= 1 << (i + predicate::first_dynamic_condition);
382 continue;
383 }
384 if (c->code == predicate::changed)
385 {
386 nonspec_clause |= 1 << (i + predicate::first_dynamic_condition);
387 continue;
388 }
389
390 if (tree_to_shwi (TYPE_SIZE (TREE_TYPE (val))) != c->size)
391 {
392 clause |= 1 << (i + predicate::first_dynamic_condition);
393 nonspec_clause |= 1 << (i + predicate::first_dynamic_condition);
394 continue;
395 }
396 if (c->code == predicate::is_not_constant)
397 {
398 nonspec_clause |= 1 << (i + predicate::first_dynamic_condition);
399 continue;
400 }
401
402 val = fold_unary (VIEW_CONVERT_EXPR, TREE_TYPE (c->val), val);
403 res = val
404 ? fold_binary_to_constant (c->code, boolean_type_node, val, c->val)
405 : NULL;
406
407 if (res && integer_zerop (res))
408 continue;
409
410 clause |= 1 << (i + predicate::first_dynamic_condition);
411 nonspec_clause |= 1 << (i + predicate::first_dynamic_condition);
412 }
413 *ret_clause = clause;
414 if (ret_nonspec_clause)
415 *ret_nonspec_clause = nonspec_clause;
416 }
417
418
419 /* Work out what conditions might be true at invocation of E. */
420
421 void
422 evaluate_properties_for_edge (struct cgraph_edge *e, bool inline_p,
423 clause_t *clause_ptr,
424 clause_t *nonspec_clause_ptr,
425 vec<tree> *known_vals_ptr,
426 vec<ipa_polymorphic_call_context>
427 *known_contexts_ptr,
428 vec<ipa_agg_jump_function_p> *known_aggs_ptr)
429 {
430 struct cgraph_node *callee = e->callee->ultimate_alias_target ();
431 struct ipa_fn_summary *info = ipa_fn_summaries->get (callee);
432 vec<tree> known_vals = vNULL;
433 vec<ipa_agg_jump_function_p> known_aggs = vNULL;
434
435 if (clause_ptr)
436 *clause_ptr = inline_p ? 0 : 1 << predicate::not_inlined_condition;
437 if (known_vals_ptr)
438 known_vals_ptr->create (0);
439 if (known_contexts_ptr)
440 known_contexts_ptr->create (0);
441
442 if (ipa_node_params_sum
443 && !e->call_stmt_cannot_inline_p
444 && ((clause_ptr && info->conds) || known_vals_ptr || known_contexts_ptr))
445 {
446 struct ipa_node_params *caller_parms_info, *callee_pi;
447 struct ipa_edge_args *args = IPA_EDGE_REF (e);
448 struct ipa_call_summary *es = ipa_call_summaries->get (e);
449 int i, count = ipa_get_cs_argument_count (args);
450
451 if (e->caller->global.inlined_to)
452 caller_parms_info = IPA_NODE_REF (e->caller->global.inlined_to);
453 else
454 caller_parms_info = IPA_NODE_REF (e->caller);
455 callee_pi = IPA_NODE_REF (e->callee);
456
457 if (count && (info->conds || known_vals_ptr))
458 known_vals.safe_grow_cleared (count);
459 if (count && (info->conds || known_aggs_ptr))
460 known_aggs.safe_grow_cleared (count);
461 if (count && known_contexts_ptr)
462 known_contexts_ptr->safe_grow_cleared (count);
463
464 for (i = 0; i < count; i++)
465 {
466 struct ipa_jump_func *jf = ipa_get_ith_jump_func (args, i);
467 tree cst = ipa_value_from_jfunc (caller_parms_info, jf,
468 ipa_get_type (callee_pi, i));
469
470 if (!cst && e->call_stmt
471 && i < (int)gimple_call_num_args (e->call_stmt))
472 {
473 cst = gimple_call_arg (e->call_stmt, i);
474 if (!is_gimple_min_invariant (cst))
475 cst = NULL;
476 }
477 if (cst)
478 {
479 gcc_checking_assert (TREE_CODE (cst) != TREE_BINFO);
480 if (known_vals.exists ())
481 known_vals[i] = cst;
482 }
483 else if (inline_p && !es->param[i].change_prob)
484 known_vals[i] = error_mark_node;
485
486 if (known_contexts_ptr)
487 (*known_contexts_ptr)[i]
488 = ipa_context_from_jfunc (caller_parms_info, e, i, jf);
489 /* TODO: When IPA-CP starts propagating and merging aggregate jump
490 functions, use its knowledge of the caller too, just like the
491 scalar case above. */
492 known_aggs[i] = &jf->agg;
493 }
494 }
495 else if (e->call_stmt && !e->call_stmt_cannot_inline_p
496 && ((clause_ptr && info->conds) || known_vals_ptr))
497 {
498 int i, count = (int)gimple_call_num_args (e->call_stmt);
499
500 if (count && (info->conds || known_vals_ptr))
501 known_vals.safe_grow_cleared (count);
502 for (i = 0; i < count; i++)
503 {
504 tree cst = gimple_call_arg (e->call_stmt, i);
505 if (!is_gimple_min_invariant (cst))
506 cst = NULL;
507 if (cst)
508 known_vals[i] = cst;
509 }
510 }
511
512 evaluate_conditions_for_known_args (callee, inline_p,
513 known_vals, known_aggs, clause_ptr,
514 nonspec_clause_ptr);
515
516 if (known_vals_ptr)
517 *known_vals_ptr = known_vals;
518 else
519 known_vals.release ();
520
521 if (known_aggs_ptr)
522 *known_aggs_ptr = known_aggs;
523 else
524 known_aggs.release ();
525 }
526
527
528 /* Allocate the function summary. */
529
530 static void
531 ipa_fn_summary_alloc (void)
532 {
533 gcc_checking_assert (!ipa_fn_summaries);
534 ipa_fn_summaries = ipa_fn_summary_t::create_ggc (symtab);
535 ipa_call_summaries = new ipa_call_summary_t (symtab, false);
536 }
537
538 ipa_call_summary::~ipa_call_summary ()
539 {
540 if (predicate)
541 edge_predicate_pool.remove (predicate);
542
543 param.release ();
544 }
545
546 ipa_fn_summary::~ipa_fn_summary ()
547 {
548 if (loop_iterations)
549 edge_predicate_pool.remove (loop_iterations);
550 if (loop_stride)
551 edge_predicate_pool.remove (loop_stride);
552 if (array_index)
553 edge_predicate_pool.remove (array_index);
554 vec_free (conds);
555 vec_free (size_time_table);
556 }
557
558 void
559 ipa_fn_summary_t::remove_callees (cgraph_node *node)
560 {
561 cgraph_edge *e;
562 for (e = node->callees; e; e = e->next_callee)
563 ipa_call_summaries->remove (e);
564 for (e = node->indirect_calls; e; e = e->next_callee)
565 ipa_call_summaries->remove (e);
566 }
567
568 /* Same as remap_predicate_after_duplication but handle hint predicate *P.
569 Additionally care about allocating new memory slot for updated predicate
570 and set it to NULL when it becomes true or false (and thus uninteresting).
571 */
572
573 static void
574 remap_hint_predicate_after_duplication (predicate **p,
575 clause_t possible_truths)
576 {
577 predicate new_predicate;
578
579 if (!*p)
580 return;
581
582 new_predicate = (*p)->remap_after_duplication (possible_truths);
583 /* We do not want to free previous predicate; it is used by node origin. */
584 *p = NULL;
585 set_hint_predicate (p, new_predicate);
586 }
587
588
589 /* Hook that is called by cgraph.c when a node is duplicated. */
590 void
591 ipa_fn_summary_t::duplicate (cgraph_node *src,
592 cgraph_node *dst,
593 ipa_fn_summary *,
594 ipa_fn_summary *info)
595 {
596 new (info) ipa_fn_summary (*ipa_fn_summaries->get (src));
597 /* TODO: as an optimization, we may avoid copying conditions
598 that are known to be false or true. */
599 info->conds = vec_safe_copy (info->conds);
600
601 /* When there are any replacements in the function body, see if we can figure
602 out that something was optimized out. */
603 if (ipa_node_params_sum && dst->clone.tree_map)
604 {
605 vec<size_time_entry, va_gc> *entry = info->size_time_table;
606 /* Use SRC parm info since it may not be copied yet. */
607 struct ipa_node_params *parms_info = IPA_NODE_REF (src);
608 vec<tree> known_vals = vNULL;
609 int count = ipa_get_param_count (parms_info);
610 int i, j;
611 clause_t possible_truths;
612 predicate true_pred = true;
613 size_time_entry *e;
614 int optimized_out_size = 0;
615 bool inlined_to_p = false;
616 struct cgraph_edge *edge, *next;
617
618 info->size_time_table = 0;
619 known_vals.safe_grow_cleared (count);
620 for (i = 0; i < count; i++)
621 {
622 struct ipa_replace_map *r;
623
624 for (j = 0; vec_safe_iterate (dst->clone.tree_map, j, &r); j++)
625 {
626 if (((!r->old_tree && r->parm_num == i)
627 || (r->old_tree && r->old_tree == ipa_get_param (parms_info, i)))
628 && r->replace_p && !r->ref_p)
629 {
630 known_vals[i] = r->new_tree;
631 break;
632 }
633 }
634 }
635 evaluate_conditions_for_known_args (dst, false,
636 known_vals,
637 vNULL,
638 &possible_truths,
639 /* We are going to specialize,
640 so ignore nonspec truths. */
641 NULL);
642 known_vals.release ();
643
644 info->account_size_time (0, 0, true_pred, true_pred);
645
646 /* Remap size_time vectors.
647 Simplify the predicate by prunning out alternatives that are known
648 to be false.
649 TODO: as on optimization, we can also eliminate conditions known
650 to be true. */
651 for (i = 0; vec_safe_iterate (entry, i, &e); i++)
652 {
653 predicate new_exec_pred;
654 predicate new_nonconst_pred;
655 new_exec_pred = e->exec_predicate.remap_after_duplication
656 (possible_truths);
657 new_nonconst_pred = e->nonconst_predicate.remap_after_duplication
658 (possible_truths);
659 if (new_exec_pred == false || new_nonconst_pred == false)
660 optimized_out_size += e->size;
661 else
662 info->account_size_time (e->size, e->time, new_exec_pred,
663 new_nonconst_pred);
664 }
665
666 /* Remap edge predicates with the same simplification as above.
667 Also copy constantness arrays. */
668 for (edge = dst->callees; edge; edge = next)
669 {
670 predicate new_predicate;
671 struct ipa_call_summary *es = ipa_call_summaries->get_create (edge);
672 next = edge->next_callee;
673
674 if (!edge->inline_failed)
675 inlined_to_p = true;
676 if (!es->predicate)
677 continue;
678 new_predicate = es->predicate->remap_after_duplication
679 (possible_truths);
680 if (new_predicate == false && *es->predicate != false)
681 optimized_out_size += es->call_stmt_size * ipa_fn_summary::size_scale;
682 edge_set_predicate (edge, &new_predicate);
683 }
684
685 /* Remap indirect edge predicates with the same simplificaiton as above.
686 Also copy constantness arrays. */
687 for (edge = dst->indirect_calls; edge; edge = next)
688 {
689 predicate new_predicate;
690 struct ipa_call_summary *es = ipa_call_summaries->get_create (edge);
691 next = edge->next_callee;
692
693 gcc_checking_assert (edge->inline_failed);
694 if (!es->predicate)
695 continue;
696 new_predicate = es->predicate->remap_after_duplication
697 (possible_truths);
698 if (new_predicate == false && *es->predicate != false)
699 optimized_out_size += es->call_stmt_size * ipa_fn_summary::size_scale;
700 edge_set_predicate (edge, &new_predicate);
701 }
702 remap_hint_predicate_after_duplication (&info->loop_iterations,
703 possible_truths);
704 remap_hint_predicate_after_duplication (&info->loop_stride,
705 possible_truths);
706 remap_hint_predicate_after_duplication (&info->array_index,
707 possible_truths);
708
709 /* If inliner or someone after inliner will ever start producing
710 non-trivial clones, we will get trouble with lack of information
711 about updating self sizes, because size vectors already contains
712 sizes of the calees. */
713 gcc_assert (!inlined_to_p || !optimized_out_size);
714 }
715 else
716 {
717 info->size_time_table = vec_safe_copy (info->size_time_table);
718 if (info->loop_iterations)
719 {
720 predicate p = *info->loop_iterations;
721 info->loop_iterations = NULL;
722 set_hint_predicate (&info->loop_iterations, p);
723 }
724 if (info->loop_stride)
725 {
726 predicate p = *info->loop_stride;
727 info->loop_stride = NULL;
728 set_hint_predicate (&info->loop_stride, p);
729 }
730 if (info->array_index)
731 {
732 predicate p = *info->array_index;
733 info->array_index = NULL;
734 set_hint_predicate (&info->array_index, p);
735 }
736 }
737 if (!dst->global.inlined_to)
738 ipa_update_overall_fn_summary (dst);
739 }
740
741
742 /* Hook that is called by cgraph.c when a node is duplicated. */
743
744 void
745 ipa_call_summary_t::duplicate (struct cgraph_edge *src,
746 struct cgraph_edge *dst,
747 struct ipa_call_summary *srcinfo,
748 struct ipa_call_summary *info)
749 {
750 new (info) ipa_call_summary (*srcinfo);
751 info->predicate = NULL;
752 edge_set_predicate (dst, srcinfo->predicate);
753 info->param = srcinfo->param.copy ();
754 if (!dst->indirect_unknown_callee && src->indirect_unknown_callee)
755 {
756 info->call_stmt_size -= (eni_size_weights.indirect_call_cost
757 - eni_size_weights.call_cost);
758 info->call_stmt_time -= (eni_time_weights.indirect_call_cost
759 - eni_time_weights.call_cost);
760 }
761 }
762
763 /* Dump edge summaries associated to NODE and recursively to all clones.
764 Indent by INDENT. */
765
766 static void
767 dump_ipa_call_summary (FILE *f, int indent, struct cgraph_node *node,
768 struct ipa_fn_summary *info)
769 {
770 struct cgraph_edge *edge;
771 for (edge = node->callees; edge; edge = edge->next_callee)
772 {
773 struct ipa_call_summary *es = ipa_call_summaries->get (edge);
774 struct cgraph_node *callee = edge->callee->ultimate_alias_target ();
775 int i;
776
777 fprintf (f,
778 "%*s%s/%i %s\n%*s loop depth:%2i freq:%4.2f size:%2i time: %2i",
779 indent, "", callee->name (), callee->order,
780 !edge->inline_failed
781 ? "inlined" : cgraph_inline_failed_string (edge-> inline_failed),
782 indent, "", es->loop_depth, edge->sreal_frequency ().to_double (),
783 es->call_stmt_size, es->call_stmt_time);
784
785 ipa_fn_summary *s = ipa_fn_summaries->get (callee);
786 if (s != NULL)
787 fprintf (f, "callee size:%2i stack:%2i",
788 (int) (s->size / ipa_fn_summary::size_scale),
789 (int) s->estimated_stack_size);
790
791 if (es->predicate)
792 {
793 fprintf (f, " predicate: ");
794 es->predicate->dump (f, info->conds);
795 }
796 else
797 fprintf (f, "\n");
798 if (es->param.exists ())
799 for (i = 0; i < (int) es->param.length (); i++)
800 {
801 int prob = es->param[i].change_prob;
802
803 if (!prob)
804 fprintf (f, "%*s op%i is compile time invariant\n",
805 indent + 2, "", i);
806 else if (prob != REG_BR_PROB_BASE)
807 fprintf (f, "%*s op%i change %f%% of time\n", indent + 2, "", i,
808 prob * 100.0 / REG_BR_PROB_BASE);
809 }
810 if (!edge->inline_failed)
811 {
812 ipa_fn_summary *s = ipa_fn_summaries->get (callee);
813 fprintf (f, "%*sStack frame offset %i, callee self size %i,"
814 " callee size %i\n",
815 indent + 2, "",
816 (int) s->stack_frame_offset,
817 (int) s->estimated_self_stack_size,
818 (int) s->estimated_stack_size);
819 dump_ipa_call_summary (f, indent + 2, callee, info);
820 }
821 }
822 for (edge = node->indirect_calls; edge; edge = edge->next_callee)
823 {
824 struct ipa_call_summary *es = ipa_call_summaries->get (edge);
825 fprintf (f, "%*sindirect call loop depth:%2i freq:%4.2f size:%2i"
826 " time: %2i",
827 indent, "",
828 es->loop_depth,
829 edge->sreal_frequency ().to_double (), es->call_stmt_size,
830 es->call_stmt_time);
831 if (es->predicate)
832 {
833 fprintf (f, "predicate: ");
834 es->predicate->dump (f, info->conds);
835 }
836 else
837 fprintf (f, "\n");
838 }
839 }
840
841
842 void
843 ipa_dump_fn_summary (FILE *f, struct cgraph_node *node)
844 {
845 if (node->definition)
846 {
847 struct ipa_fn_summary *s = ipa_fn_summaries->get (node);
848 if (s != NULL)
849 {
850 size_time_entry *e;
851 int i;
852 fprintf (f, "IPA function summary for %s", node->dump_name ());
853 if (DECL_DISREGARD_INLINE_LIMITS (node->decl))
854 fprintf (f, " always_inline");
855 if (s->inlinable)
856 fprintf (f, " inlinable");
857 if (s->fp_expressions)
858 fprintf (f, " fp_expression");
859 fprintf (f, "\n global time: %f\n", s->time.to_double ());
860 fprintf (f, " self size: %i\n", s->self_size);
861 fprintf (f, " global size: %i\n", s->size);
862 fprintf (f, " min size: %i\n", s->min_size);
863 fprintf (f, " self stack: %i\n",
864 (int) s->estimated_self_stack_size);
865 fprintf (f, " global stack: %i\n", (int) s->estimated_stack_size);
866 if (s->growth)
867 fprintf (f, " estimated growth:%i\n", (int) s->growth);
868 if (s->scc_no)
869 fprintf (f, " In SCC: %i\n", (int) s->scc_no);
870 for (i = 0; vec_safe_iterate (s->size_time_table, i, &e); i++)
871 {
872 fprintf (f, " size:%f, time:%f",
873 (double) e->size / ipa_fn_summary::size_scale,
874 e->time.to_double ());
875 if (e->exec_predicate != true)
876 {
877 fprintf (f, ", executed if:");
878 e->exec_predicate.dump (f, s->conds, 0);
879 }
880 if (e->exec_predicate != e->nonconst_predicate)
881 {
882 fprintf (f, ", nonconst if:");
883 e->nonconst_predicate.dump (f, s->conds, 0);
884 }
885 fprintf (f, "\n");
886 }
887 if (s->loop_iterations)
888 {
889 fprintf (f, " loop iterations:");
890 s->loop_iterations->dump (f, s->conds);
891 }
892 if (s->loop_stride)
893 {
894 fprintf (f, " loop stride:");
895 s->loop_stride->dump (f, s->conds);
896 }
897 if (s->array_index)
898 {
899 fprintf (f, " array index:");
900 s->array_index->dump (f, s->conds);
901 }
902 fprintf (f, " calls:\n");
903 dump_ipa_call_summary (f, 4, node, s);
904 fprintf (f, "\n");
905 }
906 else
907 fprintf (f, "IPA summary for %s is missing.\n", node->dump_name ());
908 }
909 }
910
911 DEBUG_FUNCTION void
912 ipa_debug_fn_summary (struct cgraph_node *node)
913 {
914 ipa_dump_fn_summary (stderr, node);
915 }
916
917 void
918 ipa_dump_fn_summaries (FILE *f)
919 {
920 struct cgraph_node *node;
921
922 FOR_EACH_DEFINED_FUNCTION (node)
923 if (!node->global.inlined_to)
924 ipa_dump_fn_summary (f, node);
925 }
926
927 /* Callback of walk_aliased_vdefs. Flags that it has been invoked to the
928 boolean variable pointed to by DATA. */
929
930 static bool
931 mark_modified (ao_ref *ao ATTRIBUTE_UNUSED, tree vdef ATTRIBUTE_UNUSED,
932 void *data)
933 {
934 bool *b = (bool *) data;
935 *b = true;
936 return true;
937 }
938
939 /* If OP refers to value of function parameter, return the corresponding
940 parameter. If non-NULL, the size of the memory load (or the SSA_NAME of the
941 PARM_DECL) will be stored to *SIZE_P in that case too. */
942
943 static tree
944 unmodified_parm_1 (gimple *stmt, tree op, HOST_WIDE_INT *size_p)
945 {
946 /* SSA_NAME referring to parm default def? */
947 if (TREE_CODE (op) == SSA_NAME
948 && SSA_NAME_IS_DEFAULT_DEF (op)
949 && TREE_CODE (SSA_NAME_VAR (op)) == PARM_DECL)
950 {
951 if (size_p)
952 *size_p = tree_to_shwi (TYPE_SIZE (TREE_TYPE (op)));
953 return SSA_NAME_VAR (op);
954 }
955 /* Non-SSA parm reference? */
956 if (TREE_CODE (op) == PARM_DECL)
957 {
958 bool modified = false;
959
960 ao_ref refd;
961 ao_ref_init (&refd, op);
962 walk_aliased_vdefs (&refd, gimple_vuse (stmt), mark_modified, &modified,
963 NULL);
964 if (!modified)
965 {
966 if (size_p)
967 *size_p = tree_to_shwi (TYPE_SIZE (TREE_TYPE (op)));
968 return op;
969 }
970 }
971 return NULL_TREE;
972 }
973
974 /* If OP refers to value of function parameter, return the corresponding
975 parameter. Also traverse chains of SSA register assignments. If non-NULL,
976 the size of the memory load (or the SSA_NAME of the PARM_DECL) will be
977 stored to *SIZE_P in that case too. */
978
979 static tree
980 unmodified_parm (gimple *stmt, tree op, HOST_WIDE_INT *size_p)
981 {
982 tree res = unmodified_parm_1 (stmt, op, size_p);
983 if (res)
984 return res;
985
986 if (TREE_CODE (op) == SSA_NAME
987 && !SSA_NAME_IS_DEFAULT_DEF (op)
988 && gimple_assign_single_p (SSA_NAME_DEF_STMT (op)))
989 return unmodified_parm (SSA_NAME_DEF_STMT (op),
990 gimple_assign_rhs1 (SSA_NAME_DEF_STMT (op)),
991 size_p);
992 return NULL_TREE;
993 }
994
995 /* If OP refers to a value of a function parameter or value loaded from an
996 aggregate passed to a parameter (either by value or reference), return TRUE
997 and store the number of the parameter to *INDEX_P, the access size into
998 *SIZE_P, and information whether and how it has been loaded from an
999 aggregate into *AGGPOS. INFO describes the function parameters, STMT is the
1000 statement in which OP is used or loaded. */
1001
1002 static bool
1003 unmodified_parm_or_parm_agg_item (struct ipa_func_body_info *fbi,
1004 gimple *stmt, tree op, int *index_p,
1005 HOST_WIDE_INT *size_p,
1006 struct agg_position_info *aggpos)
1007 {
1008 tree res = unmodified_parm_1 (stmt, op, size_p);
1009
1010 gcc_checking_assert (aggpos);
1011 if (res)
1012 {
1013 *index_p = ipa_get_param_decl_index (fbi->info, res);
1014 if (*index_p < 0)
1015 return false;
1016 aggpos->agg_contents = false;
1017 aggpos->by_ref = false;
1018 return true;
1019 }
1020
1021 if (TREE_CODE (op) == SSA_NAME)
1022 {
1023 if (SSA_NAME_IS_DEFAULT_DEF (op)
1024 || !gimple_assign_single_p (SSA_NAME_DEF_STMT (op)))
1025 return false;
1026 stmt = SSA_NAME_DEF_STMT (op);
1027 op = gimple_assign_rhs1 (stmt);
1028 if (!REFERENCE_CLASS_P (op))
1029 return unmodified_parm_or_parm_agg_item (fbi, stmt, op, index_p, size_p,
1030 aggpos);
1031 }
1032
1033 aggpos->agg_contents = true;
1034 return ipa_load_from_parm_agg (fbi, fbi->info->descriptors,
1035 stmt, op, index_p, &aggpos->offset,
1036 size_p, &aggpos->by_ref);
1037 }
1038
1039 /* See if statement might disappear after inlining.
1040 0 - means not eliminated
1041 1 - half of statements goes away
1042 2 - for sure it is eliminated.
1043 We are not terribly sophisticated, basically looking for simple abstraction
1044 penalty wrappers. */
1045
1046 static int
1047 eliminated_by_inlining_prob (gimple *stmt)
1048 {
1049 enum gimple_code code = gimple_code (stmt);
1050 enum tree_code rhs_code;
1051
1052 if (!optimize)
1053 return 0;
1054
1055 switch (code)
1056 {
1057 case GIMPLE_RETURN:
1058 return 2;
1059 case GIMPLE_ASSIGN:
1060 if (gimple_num_ops (stmt) != 2)
1061 return 0;
1062
1063 rhs_code = gimple_assign_rhs_code (stmt);
1064
1065 /* Casts of parameters, loads from parameters passed by reference
1066 and stores to return value or parameters are often free after
1067 inlining dua to SRA and further combining.
1068 Assume that half of statements goes away. */
1069 if (CONVERT_EXPR_CODE_P (rhs_code)
1070 || rhs_code == VIEW_CONVERT_EXPR
1071 || rhs_code == ADDR_EXPR
1072 || gimple_assign_rhs_class (stmt) == GIMPLE_SINGLE_RHS)
1073 {
1074 tree rhs = gimple_assign_rhs1 (stmt);
1075 tree lhs = gimple_assign_lhs (stmt);
1076 tree inner_rhs = get_base_address (rhs);
1077 tree inner_lhs = get_base_address (lhs);
1078 bool rhs_free = false;
1079 bool lhs_free = false;
1080
1081 if (!inner_rhs)
1082 inner_rhs = rhs;
1083 if (!inner_lhs)
1084 inner_lhs = lhs;
1085
1086 /* Reads of parameter are expected to be free. */
1087 if (unmodified_parm (stmt, inner_rhs, NULL))
1088 rhs_free = true;
1089 /* Match expressions of form &this->field. Those will most likely
1090 combine with something upstream after inlining. */
1091 else if (TREE_CODE (inner_rhs) == ADDR_EXPR)
1092 {
1093 tree op = get_base_address (TREE_OPERAND (inner_rhs, 0));
1094 if (TREE_CODE (op) == PARM_DECL)
1095 rhs_free = true;
1096 else if (TREE_CODE (op) == MEM_REF
1097 && unmodified_parm (stmt, TREE_OPERAND (op, 0), NULL))
1098 rhs_free = true;
1099 }
1100
1101 /* When parameter is not SSA register because its address is taken
1102 and it is just copied into one, the statement will be completely
1103 free after inlining (we will copy propagate backward). */
1104 if (rhs_free && is_gimple_reg (lhs))
1105 return 2;
1106
1107 /* Reads of parameters passed by reference
1108 expected to be free (i.e. optimized out after inlining). */
1109 if (TREE_CODE (inner_rhs) == MEM_REF
1110 && unmodified_parm (stmt, TREE_OPERAND (inner_rhs, 0), NULL))
1111 rhs_free = true;
1112
1113 /* Copying parameter passed by reference into gimple register is
1114 probably also going to copy propagate, but we can't be quite
1115 sure. */
1116 if (rhs_free && is_gimple_reg (lhs))
1117 lhs_free = true;
1118
1119 /* Writes to parameters, parameters passed by value and return value
1120 (either dirrectly or passed via invisible reference) are free.
1121
1122 TODO: We ought to handle testcase like
1123 struct a {int a,b;};
1124 struct a
1125 retrurnsturct (void)
1126 {
1127 struct a a ={1,2};
1128 return a;
1129 }
1130
1131 This translate into:
1132
1133 retrurnsturct ()
1134 {
1135 int a$b;
1136 int a$a;
1137 struct a a;
1138 struct a D.2739;
1139
1140 <bb 2>:
1141 D.2739.a = 1;
1142 D.2739.b = 2;
1143 return D.2739;
1144
1145 }
1146 For that we either need to copy ipa-split logic detecting writes
1147 to return value. */
1148 if (TREE_CODE (inner_lhs) == PARM_DECL
1149 || TREE_CODE (inner_lhs) == RESULT_DECL
1150 || (TREE_CODE (inner_lhs) == MEM_REF
1151 && (unmodified_parm (stmt, TREE_OPERAND (inner_lhs, 0), NULL)
1152 || (TREE_CODE (TREE_OPERAND (inner_lhs, 0)) == SSA_NAME
1153 && SSA_NAME_VAR (TREE_OPERAND (inner_lhs, 0))
1154 && TREE_CODE (SSA_NAME_VAR (TREE_OPERAND
1155 (inner_lhs,
1156 0))) == RESULT_DECL))))
1157 lhs_free = true;
1158 if (lhs_free
1159 && (is_gimple_reg (rhs) || is_gimple_min_invariant (rhs)))
1160 rhs_free = true;
1161 if (lhs_free && rhs_free)
1162 return 1;
1163 }
1164 return 0;
1165 default:
1166 return 0;
1167 }
1168 }
1169
1170
1171 /* If BB ends by a conditional we can turn into predicates, attach corresponding
1172 predicates to the CFG edges. */
1173
1174 static void
1175 set_cond_stmt_execution_predicate (struct ipa_func_body_info *fbi,
1176 struct ipa_fn_summary *summary,
1177 basic_block bb)
1178 {
1179 gimple *last;
1180 tree op;
1181 int index;
1182 HOST_WIDE_INT size;
1183 struct agg_position_info aggpos;
1184 enum tree_code code, inverted_code;
1185 edge e;
1186 edge_iterator ei;
1187 gimple *set_stmt;
1188 tree op2;
1189
1190 last = last_stmt (bb);
1191 if (!last || gimple_code (last) != GIMPLE_COND)
1192 return;
1193 if (!is_gimple_ip_invariant (gimple_cond_rhs (last)))
1194 return;
1195 op = gimple_cond_lhs (last);
1196 /* TODO: handle conditionals like
1197 var = op0 < 4;
1198 if (var != 0). */
1199 if (unmodified_parm_or_parm_agg_item (fbi, last, op, &index, &size, &aggpos))
1200 {
1201 code = gimple_cond_code (last);
1202 inverted_code = invert_tree_comparison (code, HONOR_NANS (op));
1203
1204 FOR_EACH_EDGE (e, ei, bb->succs)
1205 {
1206 enum tree_code this_code = (e->flags & EDGE_TRUE_VALUE
1207 ? code : inverted_code);
1208 /* invert_tree_comparison will return ERROR_MARK on FP
1209 comparsions that are not EQ/NE instead of returning proper
1210 unordered one. Be sure it is not confused with NON_CONSTANT. */
1211 if (this_code != ERROR_MARK)
1212 {
1213 predicate p
1214 = add_condition (summary, index, size, &aggpos, this_code,
1215 unshare_expr_without_location
1216 (gimple_cond_rhs (last)));
1217 e->aux = edge_predicate_pool.allocate ();
1218 *(predicate *) e->aux = p;
1219 }
1220 }
1221 }
1222
1223 if (TREE_CODE (op) != SSA_NAME)
1224 return;
1225 /* Special case
1226 if (builtin_constant_p (op))
1227 constant_code
1228 else
1229 nonconstant_code.
1230 Here we can predicate nonconstant_code. We can't
1231 really handle constant_code since we have no predicate
1232 for this and also the constant code is not known to be
1233 optimized away when inliner doen't see operand is constant.
1234 Other optimizers might think otherwise. */
1235 if (gimple_cond_code (last) != NE_EXPR
1236 || !integer_zerop (gimple_cond_rhs (last)))
1237 return;
1238 set_stmt = SSA_NAME_DEF_STMT (op);
1239 if (!gimple_call_builtin_p (set_stmt, BUILT_IN_CONSTANT_P)
1240 || gimple_call_num_args (set_stmt) != 1)
1241 return;
1242 op2 = gimple_call_arg (set_stmt, 0);
1243 if (!unmodified_parm_or_parm_agg_item (fbi, set_stmt, op2, &index, &size,
1244 &aggpos))
1245 return;
1246 FOR_EACH_EDGE (e, ei, bb->succs) if (e->flags & EDGE_FALSE_VALUE)
1247 {
1248 predicate p = add_condition (summary, index, size, &aggpos,
1249 predicate::is_not_constant, NULL_TREE);
1250 e->aux = edge_predicate_pool.allocate ();
1251 *(predicate *) e->aux = p;
1252 }
1253 }
1254
1255
1256 /* If BB ends by a switch we can turn into predicates, attach corresponding
1257 predicates to the CFG edges. */
1258
1259 static void
1260 set_switch_stmt_execution_predicate (struct ipa_func_body_info *fbi,
1261 struct ipa_fn_summary *summary,
1262 basic_block bb)
1263 {
1264 gimple *lastg;
1265 tree op;
1266 int index;
1267 HOST_WIDE_INT size;
1268 struct agg_position_info aggpos;
1269 edge e;
1270 edge_iterator ei;
1271 size_t n;
1272 size_t case_idx;
1273
1274 lastg = last_stmt (bb);
1275 if (!lastg || gimple_code (lastg) != GIMPLE_SWITCH)
1276 return;
1277 gswitch *last = as_a <gswitch *> (lastg);
1278 op = gimple_switch_index (last);
1279 if (!unmodified_parm_or_parm_agg_item (fbi, last, op, &index, &size, &aggpos))
1280 return;
1281
1282 FOR_EACH_EDGE (e, ei, bb->succs)
1283 {
1284 e->aux = edge_predicate_pool.allocate ();
1285 *(predicate *) e->aux = false;
1286 }
1287 n = gimple_switch_num_labels (last);
1288 for (case_idx = 0; case_idx < n; ++case_idx)
1289 {
1290 tree cl = gimple_switch_label (last, case_idx);
1291 tree min, max;
1292 predicate p;
1293
1294 e = gimple_switch_edge (cfun, last, case_idx);
1295 min = CASE_LOW (cl);
1296 max = CASE_HIGH (cl);
1297
1298 /* For default we might want to construct predicate that none
1299 of cases is met, but it is bit hard to do not having negations
1300 of conditionals handy. */
1301 if (!min && !max)
1302 p = true;
1303 else if (!max)
1304 p = add_condition (summary, index, size, &aggpos, EQ_EXPR,
1305 unshare_expr_without_location (min));
1306 else
1307 {
1308 predicate p1, p2;
1309 p1 = add_condition (summary, index, size, &aggpos, GE_EXPR,
1310 unshare_expr_without_location (min));
1311 p2 = add_condition (summary, index, size, &aggpos, LE_EXPR,
1312 unshare_expr_without_location (max));
1313 p = p1 & p2;
1314 }
1315 *(struct predicate *) e->aux
1316 = p.or_with (summary->conds, *(struct predicate *) e->aux);
1317 }
1318 }
1319
1320
1321 /* For each BB in NODE attach to its AUX pointer predicate under
1322 which it is executable. */
1323
1324 static void
1325 compute_bb_predicates (struct ipa_func_body_info *fbi,
1326 struct cgraph_node *node,
1327 struct ipa_fn_summary *summary)
1328 {
1329 struct function *my_function = DECL_STRUCT_FUNCTION (node->decl);
1330 bool done = false;
1331 basic_block bb;
1332
1333 FOR_EACH_BB_FN (bb, my_function)
1334 {
1335 set_cond_stmt_execution_predicate (fbi, summary, bb);
1336 set_switch_stmt_execution_predicate (fbi, summary, bb);
1337 }
1338
1339 /* Entry block is always executable. */
1340 ENTRY_BLOCK_PTR_FOR_FN (my_function)->aux
1341 = edge_predicate_pool.allocate ();
1342 *(predicate *) ENTRY_BLOCK_PTR_FOR_FN (my_function)->aux = true;
1343
1344 /* A simple dataflow propagation of predicates forward in the CFG.
1345 TODO: work in reverse postorder. */
1346 while (!done)
1347 {
1348 done = true;
1349 FOR_EACH_BB_FN (bb, my_function)
1350 {
1351 predicate p = false;
1352 edge e;
1353 edge_iterator ei;
1354 FOR_EACH_EDGE (e, ei, bb->preds)
1355 {
1356 if (e->src->aux)
1357 {
1358 predicate this_bb_predicate
1359 = *(predicate *) e->src->aux;
1360 if (e->aux)
1361 this_bb_predicate &= (*(struct predicate *) e->aux);
1362 p = p.or_with (summary->conds, this_bb_predicate);
1363 if (p == true)
1364 break;
1365 }
1366 }
1367 if (p == false)
1368 gcc_checking_assert (!bb->aux);
1369 else
1370 {
1371 if (!bb->aux)
1372 {
1373 done = false;
1374 bb->aux = edge_predicate_pool.allocate ();
1375 *((predicate *) bb->aux) = p;
1376 }
1377 else if (p != *(predicate *) bb->aux)
1378 {
1379 /* This OR operation is needed to ensure monotonous data flow
1380 in the case we hit the limit on number of clauses and the
1381 and/or operations above give approximate answers. */
1382 p = p.or_with (summary->conds, *(predicate *)bb->aux);
1383 if (p != *(predicate *) bb->aux)
1384 {
1385 done = false;
1386 *((predicate *) bb->aux) = p;
1387 }
1388 }
1389 }
1390 }
1391 }
1392 }
1393
1394
1395 /* Return predicate specifying when the STMT might have result that is not
1396 a compile time constant. */
1397
1398 static predicate
1399 will_be_nonconstant_expr_predicate (struct ipa_node_params *info,
1400 struct ipa_fn_summary *summary,
1401 tree expr,
1402 vec<predicate> nonconstant_names)
1403 {
1404 tree parm;
1405 int index;
1406 HOST_WIDE_INT size;
1407
1408 while (UNARY_CLASS_P (expr))
1409 expr = TREE_OPERAND (expr, 0);
1410
1411 parm = unmodified_parm (NULL, expr, &size);
1412 if (parm && (index = ipa_get_param_decl_index (info, parm)) >= 0)
1413 return add_condition (summary, index, size, NULL, predicate::changed,
1414 NULL_TREE);
1415 if (is_gimple_min_invariant (expr))
1416 return false;
1417 if (TREE_CODE (expr) == SSA_NAME)
1418 return nonconstant_names[SSA_NAME_VERSION (expr)];
1419 if (BINARY_CLASS_P (expr) || COMPARISON_CLASS_P (expr))
1420 {
1421 predicate p1 = will_be_nonconstant_expr_predicate
1422 (info, summary, TREE_OPERAND (expr, 0),
1423 nonconstant_names);
1424 if (p1 == true)
1425 return p1;
1426
1427 predicate p2;
1428 p2 = will_be_nonconstant_expr_predicate (info, summary,
1429 TREE_OPERAND (expr, 1),
1430 nonconstant_names);
1431 return p1.or_with (summary->conds, p2);
1432 }
1433 else if (TREE_CODE (expr) == COND_EXPR)
1434 {
1435 predicate p1 = will_be_nonconstant_expr_predicate
1436 (info, summary, TREE_OPERAND (expr, 0),
1437 nonconstant_names);
1438 if (p1 == true)
1439 return p1;
1440
1441 predicate p2;
1442 p2 = will_be_nonconstant_expr_predicate (info, summary,
1443 TREE_OPERAND (expr, 1),
1444 nonconstant_names);
1445 if (p2 == true)
1446 return p2;
1447 p1 = p1.or_with (summary->conds, p2);
1448 p2 = will_be_nonconstant_expr_predicate (info, summary,
1449 TREE_OPERAND (expr, 2),
1450 nonconstant_names);
1451 return p2.or_with (summary->conds, p1);
1452 }
1453 else if (TREE_CODE (expr) == CALL_EXPR)
1454 return true;
1455 else
1456 {
1457 debug_tree (expr);
1458 gcc_unreachable ();
1459 }
1460 return false;
1461 }
1462
1463
1464 /* Return predicate specifying when the STMT might have result that is not
1465 a compile time constant. */
1466
1467 static predicate
1468 will_be_nonconstant_predicate (struct ipa_func_body_info *fbi,
1469 struct ipa_fn_summary *summary,
1470 gimple *stmt,
1471 vec<predicate> nonconstant_names)
1472 {
1473 predicate p = true;
1474 ssa_op_iter iter;
1475 tree use;
1476 predicate op_non_const;
1477 bool is_load;
1478 int base_index;
1479 HOST_WIDE_INT size;
1480 struct agg_position_info aggpos;
1481
1482 /* What statments might be optimized away
1483 when their arguments are constant. */
1484 if (gimple_code (stmt) != GIMPLE_ASSIGN
1485 && gimple_code (stmt) != GIMPLE_COND
1486 && gimple_code (stmt) != GIMPLE_SWITCH
1487 && (gimple_code (stmt) != GIMPLE_CALL
1488 || !(gimple_call_flags (stmt) & ECF_CONST)))
1489 return p;
1490
1491 /* Stores will stay anyway. */
1492 if (gimple_store_p (stmt))
1493 return p;
1494
1495 is_load = gimple_assign_load_p (stmt);
1496
1497 /* Loads can be optimized when the value is known. */
1498 if (is_load)
1499 {
1500 tree op;
1501 gcc_assert (gimple_assign_single_p (stmt));
1502 op = gimple_assign_rhs1 (stmt);
1503 if (!unmodified_parm_or_parm_agg_item (fbi, stmt, op, &base_index, &size,
1504 &aggpos))
1505 return p;
1506 }
1507 else
1508 base_index = -1;
1509
1510 /* See if we understand all operands before we start
1511 adding conditionals. */
1512 FOR_EACH_SSA_TREE_OPERAND (use, stmt, iter, SSA_OP_USE)
1513 {
1514 tree parm = unmodified_parm (stmt, use, NULL);
1515 /* For arguments we can build a condition. */
1516 if (parm && ipa_get_param_decl_index (fbi->info, parm) >= 0)
1517 continue;
1518 if (TREE_CODE (use) != SSA_NAME)
1519 return p;
1520 /* If we know when operand is constant,
1521 we still can say something useful. */
1522 if (nonconstant_names[SSA_NAME_VERSION (use)] != true)
1523 continue;
1524 return p;
1525 }
1526
1527 if (is_load)
1528 op_non_const =
1529 add_condition (summary, base_index, size, &aggpos, predicate::changed,
1530 NULL);
1531 else
1532 op_non_const = false;
1533 FOR_EACH_SSA_TREE_OPERAND (use, stmt, iter, SSA_OP_USE)
1534 {
1535 HOST_WIDE_INT size;
1536 tree parm = unmodified_parm (stmt, use, &size);
1537 int index;
1538
1539 if (parm && (index = ipa_get_param_decl_index (fbi->info, parm)) >= 0)
1540 {
1541 if (index != base_index)
1542 p = add_condition (summary, index, size, NULL, predicate::changed,
1543 NULL_TREE);
1544 else
1545 continue;
1546 }
1547 else
1548 p = nonconstant_names[SSA_NAME_VERSION (use)];
1549 op_non_const = p.or_with (summary->conds, op_non_const);
1550 }
1551 if ((gimple_code (stmt) == GIMPLE_ASSIGN || gimple_code (stmt) == GIMPLE_CALL)
1552 && gimple_op (stmt, 0)
1553 && TREE_CODE (gimple_op (stmt, 0)) == SSA_NAME)
1554 nonconstant_names[SSA_NAME_VERSION (gimple_op (stmt, 0))]
1555 = op_non_const;
1556 return op_non_const;
1557 }
1558
1559 struct record_modified_bb_info
1560 {
1561 tree op;
1562 bitmap bb_set;
1563 gimple *stmt;
1564 };
1565
1566 /* Value is initialized in INIT_BB and used in USE_BB. We want to copute
1567 probability how often it changes between USE_BB.
1568 INIT_BB->count/USE_BB->count is an estimate, but if INIT_BB
1569 is in different loop nest, we can do better.
1570 This is all just estimate. In theory we look for minimal cut separating
1571 INIT_BB and USE_BB, but we only want to anticipate loop invariant motion
1572 anyway. */
1573
1574 static basic_block
1575 get_minimal_bb (basic_block init_bb, basic_block use_bb)
1576 {
1577 struct loop *l = find_common_loop (init_bb->loop_father, use_bb->loop_father);
1578 if (l && l->header->count < init_bb->count)
1579 return l->header;
1580 return init_bb;
1581 }
1582
1583 /* Callback of walk_aliased_vdefs. Records basic blocks where the value may be
1584 set except for info->stmt. */
1585
1586 static bool
1587 record_modified (ao_ref *ao ATTRIBUTE_UNUSED, tree vdef, void *data)
1588 {
1589 struct record_modified_bb_info *info =
1590 (struct record_modified_bb_info *) data;
1591 if (SSA_NAME_DEF_STMT (vdef) == info->stmt)
1592 return false;
1593 if (gimple_clobber_p (SSA_NAME_DEF_STMT (vdef)))
1594 return false;
1595 bitmap_set_bit (info->bb_set,
1596 SSA_NAME_IS_DEFAULT_DEF (vdef)
1597 ? ENTRY_BLOCK_PTR_FOR_FN (cfun)->index
1598 : get_minimal_bb
1599 (gimple_bb (SSA_NAME_DEF_STMT (vdef)),
1600 gimple_bb (info->stmt))->index);
1601 if (dump_file)
1602 {
1603 fprintf (dump_file, " Param ");
1604 print_generic_expr (dump_file, info->op, TDF_SLIM);
1605 fprintf (dump_file, " changed at bb %i, minimal: %i stmt: ",
1606 gimple_bb (SSA_NAME_DEF_STMT (vdef))->index,
1607 get_minimal_bb
1608 (gimple_bb (SSA_NAME_DEF_STMT (vdef)),
1609 gimple_bb (info->stmt))->index);
1610 print_gimple_stmt (dump_file, SSA_NAME_DEF_STMT (vdef), 0);
1611 }
1612 return false;
1613 }
1614
1615 /* Return probability (based on REG_BR_PROB_BASE) that I-th parameter of STMT
1616 will change since last invocation of STMT.
1617
1618 Value 0 is reserved for compile time invariants.
1619 For common parameters it is REG_BR_PROB_BASE. For loop invariants it
1620 ought to be REG_BR_PROB_BASE / estimated_iters. */
1621
1622 static int
1623 param_change_prob (gimple *stmt, int i)
1624 {
1625 tree op = gimple_call_arg (stmt, i);
1626 basic_block bb = gimple_bb (stmt);
1627
1628 if (TREE_CODE (op) == WITH_SIZE_EXPR)
1629 op = TREE_OPERAND (op, 0);
1630
1631 tree base = get_base_address (op);
1632
1633 /* Global invariants never change. */
1634 if (is_gimple_min_invariant (base))
1635 return 0;
1636
1637 /* We would have to do non-trivial analysis to really work out what
1638 is the probability of value to change (i.e. when init statement
1639 is in a sibling loop of the call).
1640
1641 We do an conservative estimate: when call is executed N times more often
1642 than the statement defining value, we take the frequency 1/N. */
1643 if (TREE_CODE (base) == SSA_NAME)
1644 {
1645 profile_count init_count;
1646
1647 if (!bb->count.nonzero_p ())
1648 return REG_BR_PROB_BASE;
1649
1650 if (SSA_NAME_IS_DEFAULT_DEF (base))
1651 init_count = ENTRY_BLOCK_PTR_FOR_FN (cfun)->count;
1652 else
1653 init_count = get_minimal_bb
1654 (gimple_bb (SSA_NAME_DEF_STMT (base)),
1655 gimple_bb (stmt))->count;
1656
1657 if (init_count < bb->count)
1658 return MAX ((init_count.to_sreal_scale (bb->count)
1659 * REG_BR_PROB_BASE).to_int (), 1);
1660 return REG_BR_PROB_BASE;
1661 }
1662 else
1663 {
1664 ao_ref refd;
1665 profile_count max = ENTRY_BLOCK_PTR_FOR_FN (cfun)->count;
1666 struct record_modified_bb_info info;
1667 tree init = ctor_for_folding (base);
1668
1669 if (init != error_mark_node)
1670 return 0;
1671 if (!bb->count.nonzero_p ())
1672 return REG_BR_PROB_BASE;
1673 if (dump_file)
1674 {
1675 fprintf (dump_file, " Analyzing param change probablity of ");
1676 print_generic_expr (dump_file, op, TDF_SLIM);
1677 fprintf (dump_file, "\n");
1678 }
1679 ao_ref_init (&refd, op);
1680 info.op = op;
1681 info.stmt = stmt;
1682 info.bb_set = BITMAP_ALLOC (NULL);
1683 walk_aliased_vdefs (&refd, gimple_vuse (stmt), record_modified, &info,
1684 NULL);
1685 if (bitmap_bit_p (info.bb_set, bb->index))
1686 {
1687 if (dump_file)
1688 fprintf (dump_file, " Set in same BB as used.\n");
1689 BITMAP_FREE (info.bb_set);
1690 return REG_BR_PROB_BASE;
1691 }
1692
1693 bitmap_iterator bi;
1694 unsigned index;
1695 /* Lookup the most frequent update of the value and believe that
1696 it dominates all the other; precise analysis here is difficult. */
1697 EXECUTE_IF_SET_IN_BITMAP (info.bb_set, 0, index, bi)
1698 max = max.max (BASIC_BLOCK_FOR_FN (cfun, index)->count);
1699 if (dump_file)
1700 {
1701 fprintf (dump_file, " Set with count ");
1702 max.dump (dump_file);
1703 fprintf (dump_file, " and used with count ");
1704 bb->count.dump (dump_file);
1705 fprintf (dump_file, " freq %f\n",
1706 max.to_sreal_scale (bb->count).to_double ());
1707 }
1708
1709 BITMAP_FREE (info.bb_set);
1710 if (max < bb->count)
1711 return MAX ((max.to_sreal_scale (bb->count)
1712 * REG_BR_PROB_BASE).to_int (), 1);
1713 return REG_BR_PROB_BASE;
1714 }
1715 }
1716
1717 /* Find whether a basic block BB is the final block of a (half) diamond CFG
1718 sub-graph and if the predicate the condition depends on is known. If so,
1719 return true and store the pointer the predicate in *P. */
1720
1721 static bool
1722 phi_result_unknown_predicate (struct ipa_node_params *info,
1723 ipa_fn_summary *summary, basic_block bb,
1724 predicate *p,
1725 vec<predicate> nonconstant_names)
1726 {
1727 edge e;
1728 edge_iterator ei;
1729 basic_block first_bb = NULL;
1730 gimple *stmt;
1731
1732 if (single_pred_p (bb))
1733 {
1734 *p = false;
1735 return true;
1736 }
1737
1738 FOR_EACH_EDGE (e, ei, bb->preds)
1739 {
1740 if (single_succ_p (e->src))
1741 {
1742 if (!single_pred_p (e->src))
1743 return false;
1744 if (!first_bb)
1745 first_bb = single_pred (e->src);
1746 else if (single_pred (e->src) != first_bb)
1747 return false;
1748 }
1749 else
1750 {
1751 if (!first_bb)
1752 first_bb = e->src;
1753 else if (e->src != first_bb)
1754 return false;
1755 }
1756 }
1757
1758 if (!first_bb)
1759 return false;
1760
1761 stmt = last_stmt (first_bb);
1762 if (!stmt
1763 || gimple_code (stmt) != GIMPLE_COND
1764 || !is_gimple_ip_invariant (gimple_cond_rhs (stmt)))
1765 return false;
1766
1767 *p = will_be_nonconstant_expr_predicate (info, summary,
1768 gimple_cond_lhs (stmt),
1769 nonconstant_names);
1770 if (*p == true)
1771 return false;
1772 else
1773 return true;
1774 }
1775
1776 /* Given a PHI statement in a function described by inline properties SUMMARY
1777 and *P being the predicate describing whether the selected PHI argument is
1778 known, store a predicate for the result of the PHI statement into
1779 NONCONSTANT_NAMES, if possible. */
1780
1781 static void
1782 predicate_for_phi_result (struct ipa_fn_summary *summary, gphi *phi,
1783 predicate *p,
1784 vec<predicate> nonconstant_names)
1785 {
1786 unsigned i;
1787
1788 for (i = 0; i < gimple_phi_num_args (phi); i++)
1789 {
1790 tree arg = gimple_phi_arg (phi, i)->def;
1791 if (!is_gimple_min_invariant (arg))
1792 {
1793 gcc_assert (TREE_CODE (arg) == SSA_NAME);
1794 *p = p->or_with (summary->conds,
1795 nonconstant_names[SSA_NAME_VERSION (arg)]);
1796 if (*p == true)
1797 return;
1798 }
1799 }
1800
1801 if (dump_file && (dump_flags & TDF_DETAILS))
1802 {
1803 fprintf (dump_file, "\t\tphi predicate: ");
1804 p->dump (dump_file, summary->conds);
1805 }
1806 nonconstant_names[SSA_NAME_VERSION (gimple_phi_result (phi))] = *p;
1807 }
1808
1809 /* Return predicate specifying when array index in access OP becomes non-constant. */
1810
1811 static predicate
1812 array_index_predicate (ipa_fn_summary *info,
1813 vec< predicate> nonconstant_names, tree op)
1814 {
1815 predicate p = false;
1816 while (handled_component_p (op))
1817 {
1818 if (TREE_CODE (op) == ARRAY_REF || TREE_CODE (op) == ARRAY_RANGE_REF)
1819 {
1820 if (TREE_CODE (TREE_OPERAND (op, 1)) == SSA_NAME)
1821 p = p.or_with (info->conds,
1822 nonconstant_names[SSA_NAME_VERSION
1823 (TREE_OPERAND (op, 1))]);
1824 }
1825 op = TREE_OPERAND (op, 0);
1826 }
1827 return p;
1828 }
1829
1830 /* For a typical usage of __builtin_expect (a<b, 1), we
1831 may introduce an extra relation stmt:
1832 With the builtin, we have
1833 t1 = a <= b;
1834 t2 = (long int) t1;
1835 t3 = __builtin_expect (t2, 1);
1836 if (t3 != 0)
1837 goto ...
1838 Without the builtin, we have
1839 if (a<=b)
1840 goto...
1841 This affects the size/time estimation and may have
1842 an impact on the earlier inlining.
1843 Here find this pattern and fix it up later. */
1844
1845 static gimple *
1846 find_foldable_builtin_expect (basic_block bb)
1847 {
1848 gimple_stmt_iterator bsi;
1849
1850 for (bsi = gsi_start_bb (bb); !gsi_end_p (bsi); gsi_next (&bsi))
1851 {
1852 gimple *stmt = gsi_stmt (bsi);
1853 if (gimple_call_builtin_p (stmt, BUILT_IN_EXPECT)
1854 || gimple_call_builtin_p (stmt, BUILT_IN_EXPECT_WITH_PROBABILITY)
1855 || gimple_call_internal_p (stmt, IFN_BUILTIN_EXPECT))
1856 {
1857 tree var = gimple_call_lhs (stmt);
1858 tree arg = gimple_call_arg (stmt, 0);
1859 use_operand_p use_p;
1860 gimple *use_stmt;
1861 bool match = false;
1862 bool done = false;
1863
1864 if (!var || !arg)
1865 continue;
1866 gcc_assert (TREE_CODE (var) == SSA_NAME);
1867
1868 while (TREE_CODE (arg) == SSA_NAME)
1869 {
1870 gimple *stmt_tmp = SSA_NAME_DEF_STMT (arg);
1871 if (!is_gimple_assign (stmt_tmp))
1872 break;
1873 switch (gimple_assign_rhs_code (stmt_tmp))
1874 {
1875 case LT_EXPR:
1876 case LE_EXPR:
1877 case GT_EXPR:
1878 case GE_EXPR:
1879 case EQ_EXPR:
1880 case NE_EXPR:
1881 match = true;
1882 done = true;
1883 break;
1884 CASE_CONVERT:
1885 break;
1886 default:
1887 done = true;
1888 break;
1889 }
1890 if (done)
1891 break;
1892 arg = gimple_assign_rhs1 (stmt_tmp);
1893 }
1894
1895 if (match && single_imm_use (var, &use_p, &use_stmt)
1896 && gimple_code (use_stmt) == GIMPLE_COND)
1897 return use_stmt;
1898 }
1899 }
1900 return NULL;
1901 }
1902
1903 /* Return true when the basic blocks contains only clobbers followed by RESX.
1904 Such BBs are kept around to make removal of dead stores possible with
1905 presence of EH and will be optimized out by optimize_clobbers later in the
1906 game.
1907
1908 NEED_EH is used to recurse in case the clobber has non-EH predecestors
1909 that can be clobber only, too.. When it is false, the RESX is not necessary
1910 on the end of basic block. */
1911
1912 static bool
1913 clobber_only_eh_bb_p (basic_block bb, bool need_eh = true)
1914 {
1915 gimple_stmt_iterator gsi = gsi_last_bb (bb);
1916 edge_iterator ei;
1917 edge e;
1918
1919 if (need_eh)
1920 {
1921 if (gsi_end_p (gsi))
1922 return false;
1923 if (gimple_code (gsi_stmt (gsi)) != GIMPLE_RESX)
1924 return false;
1925 gsi_prev (&gsi);
1926 }
1927 else if (!single_succ_p (bb))
1928 return false;
1929
1930 for (; !gsi_end_p (gsi); gsi_prev (&gsi))
1931 {
1932 gimple *stmt = gsi_stmt (gsi);
1933 if (is_gimple_debug (stmt))
1934 continue;
1935 if (gimple_clobber_p (stmt))
1936 continue;
1937 if (gimple_code (stmt) == GIMPLE_LABEL)
1938 break;
1939 return false;
1940 }
1941
1942 /* See if all predecestors are either throws or clobber only BBs. */
1943 FOR_EACH_EDGE (e, ei, bb->preds)
1944 if (!(e->flags & EDGE_EH)
1945 && !clobber_only_eh_bb_p (e->src, false))
1946 return false;
1947
1948 return true;
1949 }
1950
1951 /* Return true if STMT compute a floating point expression that may be affected
1952 by -ffast-math and similar flags. */
1953
1954 static bool
1955 fp_expression_p (gimple *stmt)
1956 {
1957 ssa_op_iter i;
1958 tree op;
1959
1960 FOR_EACH_SSA_TREE_OPERAND (op, stmt, i, SSA_OP_DEF|SSA_OP_USE)
1961 if (FLOAT_TYPE_P (TREE_TYPE (op)))
1962 return true;
1963 return false;
1964 }
1965
1966 /* Analyze function body for NODE.
1967 EARLY indicates run from early optimization pipeline. */
1968
1969 static void
1970 analyze_function_body (struct cgraph_node *node, bool early)
1971 {
1972 sreal time = 0;
1973 /* Estimate static overhead for function prologue/epilogue and alignment. */
1974 int size = 2;
1975 /* Benefits are scaled by probability of elimination that is in range
1976 <0,2>. */
1977 basic_block bb;
1978 struct function *my_function = DECL_STRUCT_FUNCTION (node->decl);
1979 sreal freq;
1980 struct ipa_fn_summary *info = ipa_fn_summaries->get_create (node);
1981 predicate bb_predicate;
1982 struct ipa_func_body_info fbi;
1983 vec<predicate> nonconstant_names = vNULL;
1984 int nblocks, n;
1985 int *order;
1986 predicate array_index = true;
1987 gimple *fix_builtin_expect_stmt;
1988
1989 gcc_assert (my_function && my_function->cfg);
1990 gcc_assert (cfun == my_function);
1991
1992 memset(&fbi, 0, sizeof(fbi));
1993 vec_free (info->conds);
1994 info->conds = NULL;
1995 vec_free (info->size_time_table);
1996 info->size_time_table = NULL;
1997
1998 /* When optimizing and analyzing for IPA inliner, initialize loop optimizer
1999 so we can produce proper inline hints.
2000
2001 When optimizing and analyzing for early inliner, initialize node params
2002 so we can produce correct BB predicates. */
2003
2004 if (opt_for_fn (node->decl, optimize))
2005 {
2006 calculate_dominance_info (CDI_DOMINATORS);
2007 if (!early)
2008 loop_optimizer_init (LOOPS_NORMAL | LOOPS_HAVE_RECORDED_EXITS);
2009 else
2010 {
2011 ipa_check_create_node_params ();
2012 ipa_initialize_node_params (node);
2013 }
2014
2015 if (ipa_node_params_sum)
2016 {
2017 fbi.node = node;
2018 fbi.info = IPA_NODE_REF (node);
2019 fbi.bb_infos = vNULL;
2020 fbi.bb_infos.safe_grow_cleared (last_basic_block_for_fn (cfun));
2021 fbi.param_count = count_formal_params(node->decl);
2022 nonconstant_names.safe_grow_cleared
2023 (SSANAMES (my_function)->length ());
2024 }
2025 }
2026
2027 if (dump_file)
2028 fprintf (dump_file, "\nAnalyzing function body size: %s\n",
2029 node->name ());
2030
2031 /* When we run into maximal number of entries, we assign everything to the
2032 constant truth case. Be sure to have it in list. */
2033 bb_predicate = true;
2034 info->account_size_time (0, 0, bb_predicate, bb_predicate);
2035
2036 bb_predicate = predicate::not_inlined ();
2037 info->account_size_time (2 * ipa_fn_summary::size_scale, 0, bb_predicate,
2038 bb_predicate);
2039
2040 if (fbi.info)
2041 compute_bb_predicates (&fbi, node, info);
2042 order = XNEWVEC (int, n_basic_blocks_for_fn (cfun));
2043 nblocks = pre_and_rev_post_order_compute (NULL, order, false);
2044 for (n = 0; n < nblocks; n++)
2045 {
2046 bb = BASIC_BLOCK_FOR_FN (cfun, order[n]);
2047 freq = bb->count.to_sreal_scale (ENTRY_BLOCK_PTR_FOR_FN (cfun)->count);
2048 if (clobber_only_eh_bb_p (bb))
2049 {
2050 if (dump_file && (dump_flags & TDF_DETAILS))
2051 fprintf (dump_file, "\n Ignoring BB %i;"
2052 " it will be optimized away by cleanup_clobbers\n",
2053 bb->index);
2054 continue;
2055 }
2056
2057 /* TODO: Obviously predicates can be propagated down across CFG. */
2058 if (fbi.info)
2059 {
2060 if (bb->aux)
2061 bb_predicate = *(predicate *) bb->aux;
2062 else
2063 bb_predicate = false;
2064 }
2065 else
2066 bb_predicate = true;
2067
2068 if (dump_file && (dump_flags & TDF_DETAILS))
2069 {
2070 fprintf (dump_file, "\n BB %i predicate:", bb->index);
2071 bb_predicate.dump (dump_file, info->conds);
2072 }
2073
2074 if (fbi.info && nonconstant_names.exists ())
2075 {
2076 predicate phi_predicate;
2077 bool first_phi = true;
2078
2079 for (gphi_iterator bsi = gsi_start_phis (bb); !gsi_end_p (bsi);
2080 gsi_next (&bsi))
2081 {
2082 if (first_phi
2083 && !phi_result_unknown_predicate (fbi.info, info, bb,
2084 &phi_predicate,
2085 nonconstant_names))
2086 break;
2087 first_phi = false;
2088 if (dump_file && (dump_flags & TDF_DETAILS))
2089 {
2090 fprintf (dump_file, " ");
2091 print_gimple_stmt (dump_file, gsi_stmt (bsi), 0);
2092 }
2093 predicate_for_phi_result (info, bsi.phi (), &phi_predicate,
2094 nonconstant_names);
2095 }
2096 }
2097
2098 fix_builtin_expect_stmt = find_foldable_builtin_expect (bb);
2099
2100 for (gimple_stmt_iterator bsi = gsi_start_bb (bb); !gsi_end_p (bsi);
2101 gsi_next (&bsi))
2102 {
2103 gimple *stmt = gsi_stmt (bsi);
2104 int this_size = estimate_num_insns (stmt, &eni_size_weights);
2105 int this_time = estimate_num_insns (stmt, &eni_time_weights);
2106 int prob;
2107 predicate will_be_nonconstant;
2108
2109 /* This relation stmt should be folded after we remove
2110 buildin_expect call. Adjust the cost here. */
2111 if (stmt == fix_builtin_expect_stmt)
2112 {
2113 this_size--;
2114 this_time--;
2115 }
2116
2117 if (dump_file && (dump_flags & TDF_DETAILS))
2118 {
2119 fprintf (dump_file, " ");
2120 print_gimple_stmt (dump_file, stmt, 0);
2121 fprintf (dump_file, "\t\tfreq:%3.2f size:%3i time:%3i\n",
2122 freq.to_double (), this_size,
2123 this_time);
2124 }
2125
2126 if (gimple_assign_load_p (stmt) && nonconstant_names.exists ())
2127 {
2128 predicate this_array_index;
2129 this_array_index =
2130 array_index_predicate (info, nonconstant_names,
2131 gimple_assign_rhs1 (stmt));
2132 if (this_array_index != false)
2133 array_index &= this_array_index;
2134 }
2135 if (gimple_store_p (stmt) && nonconstant_names.exists ())
2136 {
2137 predicate this_array_index;
2138 this_array_index =
2139 array_index_predicate (info, nonconstant_names,
2140 gimple_get_lhs (stmt));
2141 if (this_array_index != false)
2142 array_index &= this_array_index;
2143 }
2144
2145
2146 if (is_gimple_call (stmt)
2147 && !gimple_call_internal_p (stmt))
2148 {
2149 struct cgraph_edge *edge = node->get_edge (stmt);
2150 ipa_call_summary *es = ipa_call_summaries->get_create (edge);
2151
2152 /* Special case: results of BUILT_IN_CONSTANT_P will be always
2153 resolved as constant. We however don't want to optimize
2154 out the cgraph edges. */
2155 if (nonconstant_names.exists ()
2156 && gimple_call_builtin_p (stmt, BUILT_IN_CONSTANT_P)
2157 && gimple_call_lhs (stmt)
2158 && TREE_CODE (gimple_call_lhs (stmt)) == SSA_NAME)
2159 {
2160 predicate false_p = false;
2161 nonconstant_names[SSA_NAME_VERSION (gimple_call_lhs (stmt))]
2162 = false_p;
2163 }
2164 if (ipa_node_params_sum)
2165 {
2166 int count = gimple_call_num_args (stmt);
2167 int i;
2168
2169 if (count)
2170 es->param.safe_grow_cleared (count);
2171 for (i = 0; i < count; i++)
2172 {
2173 int prob = param_change_prob (stmt, i);
2174 gcc_assert (prob >= 0 && prob <= REG_BR_PROB_BASE);
2175 es->param[i].change_prob = prob;
2176 }
2177 }
2178
2179 es->call_stmt_size = this_size;
2180 es->call_stmt_time = this_time;
2181 es->loop_depth = bb_loop_depth (bb);
2182 edge_set_predicate (edge, &bb_predicate);
2183 }
2184
2185 /* TODO: When conditional jump or swithc is known to be constant, but
2186 we did not translate it into the predicates, we really can account
2187 just maximum of the possible paths. */
2188 if (fbi.info)
2189 will_be_nonconstant
2190 = will_be_nonconstant_predicate (&fbi, info,
2191 stmt, nonconstant_names);
2192 else
2193 will_be_nonconstant = true;
2194 if (this_time || this_size)
2195 {
2196 sreal final_time = (sreal)this_time * freq;
2197
2198 prob = eliminated_by_inlining_prob (stmt);
2199 if (prob == 1 && dump_file && (dump_flags & TDF_DETAILS))
2200 fprintf (dump_file,
2201 "\t\t50%% will be eliminated by inlining\n");
2202 if (prob == 2 && dump_file && (dump_flags & TDF_DETAILS))
2203 fprintf (dump_file, "\t\tWill be eliminated by inlining\n");
2204
2205 struct predicate p = bb_predicate & will_be_nonconstant;
2206
2207 /* We can ignore statement when we proved it is never going
2208 to happen, but we can not do that for call statements
2209 because edges are accounted specially. */
2210
2211 if (*(is_gimple_call (stmt) ? &bb_predicate : &p) != false)
2212 {
2213 time += final_time;
2214 size += this_size;
2215 }
2216
2217 /* We account everything but the calls. Calls have their own
2218 size/time info attached to cgraph edges. This is necessary
2219 in order to make the cost disappear after inlining. */
2220 if (!is_gimple_call (stmt))
2221 {
2222 if (prob)
2223 {
2224 predicate ip = bb_predicate & predicate::not_inlined ();
2225 info->account_size_time (this_size * prob,
2226 (this_time * prob) / 2, ip,
2227 p);
2228 }
2229 if (prob != 2)
2230 info->account_size_time (this_size * (2 - prob),
2231 (this_time * (2 - prob) / 2),
2232 bb_predicate,
2233 p);
2234 }
2235
2236 if (!info->fp_expressions && fp_expression_p (stmt))
2237 {
2238 info->fp_expressions = true;
2239 if (dump_file)
2240 fprintf (dump_file, " fp_expression set\n");
2241 }
2242
2243 gcc_assert (time >= 0);
2244 gcc_assert (size >= 0);
2245 }
2246 }
2247 }
2248 set_hint_predicate (&ipa_fn_summaries->get_create (node)->array_index,
2249 array_index);
2250 free (order);
2251
2252 if (nonconstant_names.exists () && !early)
2253 {
2254 struct loop *loop;
2255 predicate loop_iterations = true;
2256 predicate loop_stride = true;
2257
2258 if (dump_file && (dump_flags & TDF_DETAILS))
2259 flow_loops_dump (dump_file, NULL, 0);
2260 scev_initialize ();
2261 FOR_EACH_LOOP (loop, 0)
2262 {
2263 vec<edge> exits;
2264 edge ex;
2265 unsigned int j;
2266 struct tree_niter_desc niter_desc;
2267 bb_predicate = *(predicate *) loop->header->aux;
2268
2269 exits = get_loop_exit_edges (loop);
2270 FOR_EACH_VEC_ELT (exits, j, ex)
2271 if (number_of_iterations_exit (loop, ex, &niter_desc, false)
2272 && !is_gimple_min_invariant (niter_desc.niter))
2273 {
2274 predicate will_be_nonconstant
2275 = will_be_nonconstant_expr_predicate (fbi.info, info,
2276 niter_desc.niter,
2277 nonconstant_names);
2278 if (will_be_nonconstant != true)
2279 will_be_nonconstant = bb_predicate & will_be_nonconstant;
2280 if (will_be_nonconstant != true
2281 && will_be_nonconstant != false)
2282 /* This is slightly inprecise. We may want to represent each
2283 loop with independent predicate. */
2284 loop_iterations &= will_be_nonconstant;
2285 }
2286 exits.release ();
2287 }
2288
2289 /* To avoid quadratic behavior we analyze stride predicates only
2290 with respect to the containing loop. Thus we simply iterate
2291 over all defs in the outermost loop body. */
2292 for (loop = loops_for_fn (cfun)->tree_root->inner;
2293 loop != NULL; loop = loop->next)
2294 {
2295 basic_block *body = get_loop_body (loop);
2296 for (unsigned i = 0; i < loop->num_nodes; i++)
2297 {
2298 gimple_stmt_iterator gsi;
2299 bb_predicate = *(predicate *) body[i]->aux;
2300 for (gsi = gsi_start_bb (body[i]); !gsi_end_p (gsi);
2301 gsi_next (&gsi))
2302 {
2303 gimple *stmt = gsi_stmt (gsi);
2304
2305 if (!is_gimple_assign (stmt))
2306 continue;
2307
2308 tree def = gimple_assign_lhs (stmt);
2309 if (TREE_CODE (def) != SSA_NAME)
2310 continue;
2311
2312 affine_iv iv;
2313 if (!simple_iv (loop_containing_stmt (stmt),
2314 loop_containing_stmt (stmt),
2315 def, &iv, true)
2316 || is_gimple_min_invariant (iv.step))
2317 continue;
2318
2319 predicate will_be_nonconstant
2320 = will_be_nonconstant_expr_predicate (fbi.info, info,
2321 iv.step,
2322 nonconstant_names);
2323 if (will_be_nonconstant != true)
2324 will_be_nonconstant = bb_predicate & will_be_nonconstant;
2325 if (will_be_nonconstant != true
2326 && will_be_nonconstant != false)
2327 /* This is slightly inprecise. We may want to represent
2328 each loop with independent predicate. */
2329 loop_stride = loop_stride & will_be_nonconstant;
2330 }
2331 }
2332 free (body);
2333 }
2334 ipa_fn_summary *s = ipa_fn_summaries->get (node);
2335 set_hint_predicate (&s->loop_iterations, loop_iterations);
2336 set_hint_predicate (&s->loop_stride, loop_stride);
2337 scev_finalize ();
2338 }
2339 FOR_ALL_BB_FN (bb, my_function)
2340 {
2341 edge e;
2342 edge_iterator ei;
2343
2344 if (bb->aux)
2345 edge_predicate_pool.remove ((predicate *)bb->aux);
2346 bb->aux = NULL;
2347 FOR_EACH_EDGE (e, ei, bb->succs)
2348 {
2349 if (e->aux)
2350 edge_predicate_pool.remove ((predicate *) e->aux);
2351 e->aux = NULL;
2352 }
2353 }
2354 ipa_fn_summary *s = ipa_fn_summaries->get (node);
2355 s->time = time;
2356 s->self_size = size;
2357 nonconstant_names.release ();
2358 ipa_release_body_info (&fbi);
2359 if (opt_for_fn (node->decl, optimize))
2360 {
2361 if (!early)
2362 loop_optimizer_finalize ();
2363 else if (!ipa_edge_args_sum)
2364 ipa_free_all_node_params ();
2365 free_dominance_info (CDI_DOMINATORS);
2366 }
2367 if (dump_file)
2368 {
2369 fprintf (dump_file, "\n");
2370 ipa_dump_fn_summary (dump_file, node);
2371 }
2372 }
2373
2374
2375 /* Compute function summary.
2376 EARLY is true when we compute parameters during early opts. */
2377
2378 void
2379 compute_fn_summary (struct cgraph_node *node, bool early)
2380 {
2381 HOST_WIDE_INT self_stack_size;
2382 struct cgraph_edge *e;
2383 struct ipa_fn_summary *info;
2384
2385 gcc_assert (!node->global.inlined_to);
2386
2387 if (!ipa_fn_summaries)
2388 ipa_fn_summary_alloc ();
2389
2390 /* Create a new ipa_fn_summary. */
2391 ((ipa_fn_summary_t *)ipa_fn_summaries)->remove_callees (node);
2392 ipa_fn_summaries->remove (node);
2393 info = ipa_fn_summaries->get_create (node);
2394
2395 /* Estimate the stack size for the function if we're optimizing. */
2396 self_stack_size = optimize && !node->thunk.thunk_p
2397 ? estimated_stack_frame_size (node) : 0;
2398 info->estimated_self_stack_size = self_stack_size;
2399 info->estimated_stack_size = self_stack_size;
2400 info->stack_frame_offset = 0;
2401
2402 if (node->thunk.thunk_p)
2403 {
2404 ipa_call_summary *es = ipa_call_summaries->get_create (node->callees);
2405 predicate t = true;
2406
2407 node->local.can_change_signature = false;
2408 es->call_stmt_size = eni_size_weights.call_cost;
2409 es->call_stmt_time = eni_time_weights.call_cost;
2410 info->account_size_time (ipa_fn_summary::size_scale * 2, 2, t, t);
2411 t = predicate::not_inlined ();
2412 info->account_size_time (2 * ipa_fn_summary::size_scale, 0, t, t);
2413 ipa_update_overall_fn_summary (node);
2414 info->self_size = info->size;
2415 /* We can not inline instrumentation clones. */
2416 if (node->thunk.add_pointer_bounds_args)
2417 {
2418 info->inlinable = false;
2419 node->callees->inline_failed = CIF_CHKP;
2420 }
2421 else if (stdarg_p (TREE_TYPE (node->decl)))
2422 {
2423 info->inlinable = false;
2424 node->callees->inline_failed = CIF_VARIADIC_THUNK;
2425 }
2426 else
2427 info->inlinable = true;
2428 }
2429 else
2430 {
2431 /* Even is_gimple_min_invariant rely on current_function_decl. */
2432 push_cfun (DECL_STRUCT_FUNCTION (node->decl));
2433
2434 /* Can this function be inlined at all? */
2435 if (!opt_for_fn (node->decl, optimize)
2436 && !lookup_attribute ("always_inline",
2437 DECL_ATTRIBUTES (node->decl)))
2438 info->inlinable = false;
2439 else
2440 info->inlinable = tree_inlinable_function_p (node->decl);
2441
2442 /* Type attributes can use parameter indices to describe them. */
2443 if (TYPE_ATTRIBUTES (TREE_TYPE (node->decl))
2444 /* Likewise for #pragma omp declare simd functions or functions
2445 with simd attribute. */
2446 || lookup_attribute ("omp declare simd",
2447 DECL_ATTRIBUTES (node->decl)))
2448 node->local.can_change_signature = false;
2449 else
2450 {
2451 /* Otherwise, inlinable functions always can change signature. */
2452 if (info->inlinable)
2453 node->local.can_change_signature = true;
2454 else
2455 {
2456 /* Functions calling builtin_apply can not change signature. */
2457 for (e = node->callees; e; e = e->next_callee)
2458 {
2459 tree cdecl = e->callee->decl;
2460 if (fndecl_built_in_p (cdecl, BUILT_IN_APPLY_ARGS)
2461 || fndecl_built_in_p (cdecl, BUILT_IN_VA_START))
2462 break;
2463 }
2464 node->local.can_change_signature = !e;
2465 }
2466 }
2467 /* Functions called by instrumentation thunk can't change signature
2468 because instrumentation thunk modification is not supported. */
2469 if (node->local.can_change_signature)
2470 for (e = node->callers; e; e = e->next_caller)
2471 if (e->caller->thunk.thunk_p
2472 && e->caller->thunk.add_pointer_bounds_args)
2473 {
2474 node->local.can_change_signature = false;
2475 break;
2476 }
2477 analyze_function_body (node, early);
2478 pop_cfun ();
2479 }
2480 for (e = node->callees; e; e = e->next_callee)
2481 if (e->callee->comdat_local_p ())
2482 break;
2483 node->calls_comdat_local = (e != NULL);
2484
2485 /* Inlining characteristics are maintained by the cgraph_mark_inline. */
2486 info->size = info->self_size;
2487 info->stack_frame_offset = 0;
2488 info->estimated_stack_size = info->estimated_self_stack_size;
2489
2490 /* Code above should compute exactly the same result as
2491 ipa_update_overall_fn_summary but because computation happens in
2492 different order the roundoff errors result in slight changes. */
2493 ipa_update_overall_fn_summary (node);
2494 gcc_assert (info->size == info->self_size);
2495 }
2496
2497
2498 /* Compute parameters of functions used by inliner using
2499 current_function_decl. */
2500
2501 static unsigned int
2502 compute_fn_summary_for_current (void)
2503 {
2504 compute_fn_summary (cgraph_node::get (current_function_decl), true);
2505 return 0;
2506 }
2507
2508 /* Estimate benefit devirtualizing indirect edge IE, provided KNOWN_VALS,
2509 KNOWN_CONTEXTS and KNOWN_AGGS. */
2510
2511 static bool
2512 estimate_edge_devirt_benefit (struct cgraph_edge *ie,
2513 int *size, int *time,
2514 vec<tree> known_vals,
2515 vec<ipa_polymorphic_call_context> known_contexts,
2516 vec<ipa_agg_jump_function_p> known_aggs)
2517 {
2518 tree target;
2519 struct cgraph_node *callee;
2520 struct ipa_fn_summary *isummary;
2521 enum availability avail;
2522 bool speculative;
2523
2524 if (!known_vals.exists () && !known_contexts.exists ())
2525 return false;
2526 if (!opt_for_fn (ie->caller->decl, flag_indirect_inlining))
2527 return false;
2528
2529 target = ipa_get_indirect_edge_target (ie, known_vals, known_contexts,
2530 known_aggs, &speculative);
2531 if (!target || speculative)
2532 return false;
2533
2534 /* Account for difference in cost between indirect and direct calls. */
2535 *size -= (eni_size_weights.indirect_call_cost - eni_size_weights.call_cost);
2536 *time -= (eni_time_weights.indirect_call_cost - eni_time_weights.call_cost);
2537 gcc_checking_assert (*time >= 0);
2538 gcc_checking_assert (*size >= 0);
2539
2540 callee = cgraph_node::get (target);
2541 if (!callee || !callee->definition)
2542 return false;
2543 callee = callee->function_symbol (&avail);
2544 if (avail < AVAIL_AVAILABLE)
2545 return false;
2546 isummary = ipa_fn_summaries->get (callee);
2547 return isummary->inlinable;
2548 }
2549
2550 /* Increase SIZE, MIN_SIZE (if non-NULL) and TIME for size and time needed to
2551 handle edge E with probability PROB.
2552 Set HINTS if edge may be devirtualized.
2553 KNOWN_VALS, KNOWN_AGGS and KNOWN_CONTEXTS describe context of the call
2554 site. */
2555
2556 static inline void
2557 estimate_edge_size_and_time (struct cgraph_edge *e, int *size, int *min_size,
2558 sreal *time,
2559 int prob,
2560 vec<tree> known_vals,
2561 vec<ipa_polymorphic_call_context> known_contexts,
2562 vec<ipa_agg_jump_function_p> known_aggs,
2563 ipa_hints *hints)
2564 {
2565 struct ipa_call_summary *es = ipa_call_summaries->get (e);
2566 int call_size = es->call_stmt_size;
2567 int call_time = es->call_stmt_time;
2568 int cur_size;
2569 if (!e->callee
2570 && estimate_edge_devirt_benefit (e, &call_size, &call_time,
2571 known_vals, known_contexts, known_aggs)
2572 && hints && e->maybe_hot_p ())
2573 *hints |= INLINE_HINT_indirect_call;
2574 cur_size = call_size * ipa_fn_summary::size_scale;
2575 *size += cur_size;
2576 if (min_size)
2577 *min_size += cur_size;
2578 if (prob == REG_BR_PROB_BASE)
2579 *time += ((sreal)call_time) * e->sreal_frequency ();
2580 else
2581 *time += ((sreal)call_time * prob) * e->sreal_frequency ();
2582 }
2583
2584
2585
2586 /* Increase SIZE, MIN_SIZE and TIME for size and time needed to handle all
2587 calls in NODE. POSSIBLE_TRUTHS, KNOWN_VALS, KNOWN_AGGS and KNOWN_CONTEXTS
2588 describe context of the call site. */
2589
2590 static void
2591 estimate_calls_size_and_time (struct cgraph_node *node, int *size,
2592 int *min_size, sreal *time,
2593 ipa_hints *hints,
2594 clause_t possible_truths,
2595 vec<tree> known_vals,
2596 vec<ipa_polymorphic_call_context> known_contexts,
2597 vec<ipa_agg_jump_function_p> known_aggs)
2598 {
2599 struct cgraph_edge *e;
2600 for (e = node->callees; e; e = e->next_callee)
2601 {
2602 struct ipa_call_summary *es = ipa_call_summaries->get_create (e);
2603
2604 /* Do not care about zero sized builtins. */
2605 if (e->inline_failed && !es->call_stmt_size)
2606 {
2607 gcc_checking_assert (!es->call_stmt_time);
2608 continue;
2609 }
2610 if (!es->predicate
2611 || es->predicate->evaluate (possible_truths))
2612 {
2613 if (e->inline_failed)
2614 {
2615 /* Predicates of calls shall not use NOT_CHANGED codes,
2616 sowe do not need to compute probabilities. */
2617 estimate_edge_size_and_time (e, size,
2618 es->predicate ? NULL : min_size,
2619 time, REG_BR_PROB_BASE,
2620 known_vals, known_contexts,
2621 known_aggs, hints);
2622 }
2623 else
2624 estimate_calls_size_and_time (e->callee, size, min_size, time,
2625 hints,
2626 possible_truths,
2627 known_vals, known_contexts,
2628 known_aggs);
2629 }
2630 }
2631 for (e = node->indirect_calls; e; e = e->next_callee)
2632 {
2633 struct ipa_call_summary *es = ipa_call_summaries->get_create (e);
2634 if (!es->predicate
2635 || es->predicate->evaluate (possible_truths))
2636 estimate_edge_size_and_time (e, size,
2637 es->predicate ? NULL : min_size,
2638 time, REG_BR_PROB_BASE,
2639 known_vals, known_contexts, known_aggs,
2640 hints);
2641 }
2642 }
2643
2644
2645 /* Estimate size and time needed to execute NODE assuming
2646 POSSIBLE_TRUTHS clause, and KNOWN_VALS, KNOWN_AGGS and KNOWN_CONTEXTS
2647 information about NODE's arguments. If non-NULL use also probability
2648 information present in INLINE_PARAM_SUMMARY vector.
2649 Additionally detemine hints determined by the context. Finally compute
2650 minimal size needed for the call that is independent on the call context and
2651 can be used for fast estimates. Return the values in RET_SIZE,
2652 RET_MIN_SIZE, RET_TIME and RET_HINTS. */
2653
2654 void
2655 estimate_node_size_and_time (struct cgraph_node *node,
2656 clause_t possible_truths,
2657 clause_t nonspec_possible_truths,
2658 vec<tree> known_vals,
2659 vec<ipa_polymorphic_call_context> known_contexts,
2660 vec<ipa_agg_jump_function_p> known_aggs,
2661 int *ret_size, int *ret_min_size,
2662 sreal *ret_time,
2663 sreal *ret_nonspecialized_time,
2664 ipa_hints *ret_hints,
2665 vec<inline_param_summary>
2666 inline_param_summary)
2667 {
2668 struct ipa_fn_summary *info = ipa_fn_summaries->get_create (node);
2669 size_time_entry *e;
2670 int size = 0;
2671 sreal time = 0;
2672 int min_size = 0;
2673 ipa_hints hints = 0;
2674 int i;
2675
2676 if (dump_file && (dump_flags & TDF_DETAILS))
2677 {
2678 bool found = false;
2679 fprintf (dump_file, " Estimating body: %s/%i\n"
2680 " Known to be false: ", node->name (),
2681 node->order);
2682
2683 for (i = predicate::not_inlined_condition;
2684 i < (predicate::first_dynamic_condition
2685 + (int) vec_safe_length (info->conds)); i++)
2686 if (!(possible_truths & (1 << i)))
2687 {
2688 if (found)
2689 fprintf (dump_file, ", ");
2690 found = true;
2691 dump_condition (dump_file, info->conds, i);
2692 }
2693 }
2694
2695 estimate_calls_size_and_time (node, &size, &min_size, &time, &hints, possible_truths,
2696 known_vals, known_contexts, known_aggs);
2697 sreal nonspecialized_time = time;
2698
2699 for (i = 0; vec_safe_iterate (info->size_time_table, i, &e); i++)
2700 {
2701 bool exec = e->exec_predicate.evaluate (nonspec_possible_truths);
2702
2703 /* Because predicates are conservative, it can happen that nonconst is 1
2704 but exec is 0. */
2705 if (exec)
2706 {
2707 bool nonconst = e->nonconst_predicate.evaluate (possible_truths);
2708
2709 gcc_checking_assert (e->time >= 0);
2710 gcc_checking_assert (time >= 0);
2711
2712 /* We compute specialized size only because size of nonspecialized
2713 copy is context independent.
2714
2715 The difference between nonspecialized execution and specialized is
2716 that nonspecialized is not going to have optimized out computations
2717 known to be constant in a specialized setting. */
2718 if (nonconst)
2719 size += e->size;
2720 nonspecialized_time += e->time;
2721 if (!nonconst)
2722 ;
2723 else if (!inline_param_summary.exists ())
2724 {
2725 if (nonconst)
2726 time += e->time;
2727 }
2728 else
2729 {
2730 int prob = e->nonconst_predicate.probability
2731 (info->conds, possible_truths,
2732 inline_param_summary);
2733 gcc_checking_assert (prob >= 0);
2734 gcc_checking_assert (prob <= REG_BR_PROB_BASE);
2735 time += e->time * prob / REG_BR_PROB_BASE;
2736 }
2737 gcc_checking_assert (time >= 0);
2738 }
2739 }
2740 gcc_checking_assert ((*info->size_time_table)[0].exec_predicate == true);
2741 gcc_checking_assert ((*info->size_time_table)[0].nonconst_predicate == true);
2742 min_size = (*info->size_time_table)[0].size;
2743 gcc_checking_assert (size >= 0);
2744 gcc_checking_assert (time >= 0);
2745 /* nonspecialized_time should be always bigger than specialized time.
2746 Roundoff issues however may get into the way. */
2747 gcc_checking_assert ((nonspecialized_time - time * 99 / 100) >= -1);
2748
2749 /* Roundoff issues may make specialized time bigger than nonspecialized
2750 time. We do not really want that to happen because some heurstics
2751 may get confused by seeing negative speedups. */
2752 if (time > nonspecialized_time)
2753 time = nonspecialized_time;
2754
2755 if (info->loop_iterations
2756 && !info->loop_iterations->evaluate (possible_truths))
2757 hints |= INLINE_HINT_loop_iterations;
2758 if (info->loop_stride
2759 && !info->loop_stride->evaluate (possible_truths))
2760 hints |= INLINE_HINT_loop_stride;
2761 if (info->array_index
2762 && !info->array_index->evaluate (possible_truths))
2763 hints |= INLINE_HINT_array_index;
2764 if (info->scc_no)
2765 hints |= INLINE_HINT_in_scc;
2766 if (DECL_DECLARED_INLINE_P (node->decl))
2767 hints |= INLINE_HINT_declared_inline;
2768
2769 size = RDIV (size, ipa_fn_summary::size_scale);
2770 min_size = RDIV (min_size, ipa_fn_summary::size_scale);
2771
2772 if (dump_file && (dump_flags & TDF_DETAILS))
2773 fprintf (dump_file, "\n size:%i time:%f nonspec time:%f\n", (int) size,
2774 time.to_double (), nonspecialized_time.to_double ());
2775 if (ret_time)
2776 *ret_time = time;
2777 if (ret_nonspecialized_time)
2778 *ret_nonspecialized_time = nonspecialized_time;
2779 if (ret_size)
2780 *ret_size = size;
2781 if (ret_min_size)
2782 *ret_min_size = min_size;
2783 if (ret_hints)
2784 *ret_hints = hints;
2785 return;
2786 }
2787
2788
2789 /* Estimate size and time needed to execute callee of EDGE assuming that
2790 parameters known to be constant at caller of EDGE are propagated.
2791 KNOWN_VALS and KNOWN_CONTEXTS are vectors of assumed known constant values
2792 and types for parameters. */
2793
2794 void
2795 estimate_ipcp_clone_size_and_time (struct cgraph_node *node,
2796 vec<tree> known_vals,
2797 vec<ipa_polymorphic_call_context>
2798 known_contexts,
2799 vec<ipa_agg_jump_function_p> known_aggs,
2800 int *ret_size, sreal *ret_time,
2801 sreal *ret_nonspec_time,
2802 ipa_hints *hints)
2803 {
2804 clause_t clause, nonspec_clause;
2805
2806 evaluate_conditions_for_known_args (node, false, known_vals, known_aggs,
2807 &clause, &nonspec_clause);
2808 estimate_node_size_and_time (node, clause, nonspec_clause,
2809 known_vals, known_contexts,
2810 known_aggs, ret_size, NULL, ret_time,
2811 ret_nonspec_time, hints, vNULL);
2812 }
2813
2814
2815 /* Update summary information of inline clones after inlining.
2816 Compute peak stack usage. */
2817
2818 static void
2819 inline_update_callee_summaries (struct cgraph_node *node, int depth)
2820 {
2821 struct cgraph_edge *e;
2822 ipa_fn_summary *callee_info = ipa_fn_summaries->get (node);
2823 ipa_fn_summary *caller_info = ipa_fn_summaries->get (node->callers->caller);
2824 HOST_WIDE_INT peak;
2825
2826 callee_info->stack_frame_offset
2827 = caller_info->stack_frame_offset
2828 + caller_info->estimated_self_stack_size;
2829 peak = callee_info->stack_frame_offset
2830 + callee_info->estimated_self_stack_size;
2831
2832 ipa_fn_summary *s = ipa_fn_summaries->get (node->global.inlined_to);
2833 if (s->estimated_stack_size < peak)
2834 s->estimated_stack_size = peak;
2835 ipa_propagate_frequency (node);
2836 for (e = node->callees; e; e = e->next_callee)
2837 {
2838 if (!e->inline_failed)
2839 inline_update_callee_summaries (e->callee, depth);
2840 ipa_call_summaries->get (e)->loop_depth += depth;
2841 }
2842 for (e = node->indirect_calls; e; e = e->next_callee)
2843 ipa_call_summaries->get (e)->loop_depth += depth;
2844 }
2845
2846 /* Update change_prob of EDGE after INLINED_EDGE has been inlined.
2847 When functoin A is inlined in B and A calls C with parameter that
2848 changes with probability PROB1 and C is known to be passthroug
2849 of argument if B that change with probability PROB2, the probability
2850 of change is now PROB1*PROB2. */
2851
2852 static void
2853 remap_edge_change_prob (struct cgraph_edge *inlined_edge,
2854 struct cgraph_edge *edge)
2855 {
2856 if (ipa_node_params_sum)
2857 {
2858 int i;
2859 struct ipa_edge_args *args = IPA_EDGE_REF (edge);
2860 struct ipa_call_summary *es = ipa_call_summaries->get (edge);
2861 struct ipa_call_summary *inlined_es
2862 = ipa_call_summaries->get (inlined_edge);
2863
2864 if (es->param.length () == 0)
2865 return;
2866
2867 for (i = 0; i < ipa_get_cs_argument_count (args); i++)
2868 {
2869 struct ipa_jump_func *jfunc = ipa_get_ith_jump_func (args, i);
2870 if (jfunc->type == IPA_JF_PASS_THROUGH
2871 || jfunc->type == IPA_JF_ANCESTOR)
2872 {
2873 int id = jfunc->type == IPA_JF_PASS_THROUGH
2874 ? ipa_get_jf_pass_through_formal_id (jfunc)
2875 : ipa_get_jf_ancestor_formal_id (jfunc);
2876 if (id < (int) inlined_es->param.length ())
2877 {
2878 int prob1 = es->param[i].change_prob;
2879 int prob2 = inlined_es->param[id].change_prob;
2880 int prob = combine_probabilities (prob1, prob2);
2881
2882 if (prob1 && prob2 && !prob)
2883 prob = 1;
2884
2885 es->param[i].change_prob = prob;
2886 }
2887 }
2888 }
2889 }
2890 }
2891
2892 /* Update edge summaries of NODE after INLINED_EDGE has been inlined.
2893
2894 Remap predicates of callees of NODE. Rest of arguments match
2895 remap_predicate.
2896
2897 Also update change probabilities. */
2898
2899 static void
2900 remap_edge_summaries (struct cgraph_edge *inlined_edge,
2901 struct cgraph_node *node,
2902 struct ipa_fn_summary *info,
2903 struct ipa_fn_summary *callee_info,
2904 vec<int> operand_map,
2905 vec<int> offset_map,
2906 clause_t possible_truths,
2907 predicate *toplev_predicate)
2908 {
2909 struct cgraph_edge *e, *next;
2910 for (e = node->callees; e; e = next)
2911 {
2912 struct ipa_call_summary *es = ipa_call_summaries->get (e);
2913 predicate p;
2914 next = e->next_callee;
2915
2916 if (e->inline_failed)
2917 {
2918 remap_edge_change_prob (inlined_edge, e);
2919
2920 if (es->predicate)
2921 {
2922 p = es->predicate->remap_after_inlining
2923 (info, callee_info, operand_map,
2924 offset_map, possible_truths,
2925 *toplev_predicate);
2926 edge_set_predicate (e, &p);
2927 }
2928 else
2929 edge_set_predicate (e, toplev_predicate);
2930 }
2931 else
2932 remap_edge_summaries (inlined_edge, e->callee, info, callee_info,
2933 operand_map, offset_map, possible_truths,
2934 toplev_predicate);
2935 }
2936 for (e = node->indirect_calls; e; e = next)
2937 {
2938 struct ipa_call_summary *es = ipa_call_summaries->get (e);
2939 predicate p;
2940 next = e->next_callee;
2941
2942 remap_edge_change_prob (inlined_edge, e);
2943 if (es->predicate)
2944 {
2945 p = es->predicate->remap_after_inlining
2946 (info, callee_info, operand_map, offset_map,
2947 possible_truths, *toplev_predicate);
2948 edge_set_predicate (e, &p);
2949 }
2950 else
2951 edge_set_predicate (e, toplev_predicate);
2952 }
2953 }
2954
2955 /* Same as remap_predicate, but set result into hint *HINT. */
2956
2957 static void
2958 remap_hint_predicate (struct ipa_fn_summary *info,
2959 struct ipa_fn_summary *callee_info,
2960 predicate **hint,
2961 vec<int> operand_map,
2962 vec<int> offset_map,
2963 clause_t possible_truths,
2964 predicate *toplev_predicate)
2965 {
2966 predicate p;
2967
2968 if (!*hint)
2969 return;
2970 p = (*hint)->remap_after_inlining
2971 (info, callee_info,
2972 operand_map, offset_map,
2973 possible_truths, *toplev_predicate);
2974 if (p != false && p != true)
2975 {
2976 if (!*hint)
2977 set_hint_predicate (hint, p);
2978 else
2979 **hint &= p;
2980 }
2981 }
2982
2983 /* We inlined EDGE. Update summary of the function we inlined into. */
2984
2985 void
2986 ipa_merge_fn_summary_after_inlining (struct cgraph_edge *edge)
2987 {
2988 ipa_fn_summary *callee_info = ipa_fn_summaries->get (edge->callee);
2989 struct cgraph_node *to = (edge->caller->global.inlined_to
2990 ? edge->caller->global.inlined_to : edge->caller);
2991 struct ipa_fn_summary *info = ipa_fn_summaries->get (to);
2992 clause_t clause = 0; /* not_inline is known to be false. */
2993 size_time_entry *e;
2994 vec<int> operand_map = vNULL;
2995 vec<int> offset_map = vNULL;
2996 int i;
2997 predicate toplev_predicate;
2998 predicate true_p = true;
2999 struct ipa_call_summary *es = ipa_call_summaries->get (edge);
3000
3001 if (es->predicate)
3002 toplev_predicate = *es->predicate;
3003 else
3004 toplev_predicate = true;
3005
3006 info->fp_expressions |= callee_info->fp_expressions;
3007
3008 if (callee_info->conds)
3009 evaluate_properties_for_edge (edge, true, &clause, NULL, NULL, NULL, NULL);
3010 if (ipa_node_params_sum && callee_info->conds)
3011 {
3012 struct ipa_edge_args *args = IPA_EDGE_REF (edge);
3013 int count = ipa_get_cs_argument_count (args);
3014 int i;
3015
3016 if (count)
3017 {
3018 operand_map.safe_grow_cleared (count);
3019 offset_map.safe_grow_cleared (count);
3020 }
3021 for (i = 0; i < count; i++)
3022 {
3023 struct ipa_jump_func *jfunc = ipa_get_ith_jump_func (args, i);
3024 int map = -1;
3025
3026 /* TODO: handle non-NOPs when merging. */
3027 if (jfunc->type == IPA_JF_PASS_THROUGH)
3028 {
3029 if (ipa_get_jf_pass_through_operation (jfunc) == NOP_EXPR)
3030 map = ipa_get_jf_pass_through_formal_id (jfunc);
3031 if (!ipa_get_jf_pass_through_agg_preserved (jfunc))
3032 offset_map[i] = -1;
3033 }
3034 else if (jfunc->type == IPA_JF_ANCESTOR)
3035 {
3036 HOST_WIDE_INT offset = ipa_get_jf_ancestor_offset (jfunc);
3037 if (offset >= 0 && offset < INT_MAX)
3038 {
3039 map = ipa_get_jf_ancestor_formal_id (jfunc);
3040 if (!ipa_get_jf_ancestor_agg_preserved (jfunc))
3041 offset = -1;
3042 offset_map[i] = offset;
3043 }
3044 }
3045 operand_map[i] = map;
3046 gcc_assert (map < ipa_get_param_count (IPA_NODE_REF (to)));
3047 }
3048 }
3049 for (i = 0; vec_safe_iterate (callee_info->size_time_table, i, &e); i++)
3050 {
3051 predicate p;
3052 p = e->exec_predicate.remap_after_inlining
3053 (info, callee_info, operand_map,
3054 offset_map, clause,
3055 toplev_predicate);
3056 predicate nonconstp;
3057 nonconstp = e->nonconst_predicate.remap_after_inlining
3058 (info, callee_info, operand_map,
3059 offset_map, clause,
3060 toplev_predicate);
3061 if (p != false && nonconstp != false)
3062 {
3063 sreal add_time = ((sreal)e->time * edge->sreal_frequency ());
3064 int prob = e->nonconst_predicate.probability (callee_info->conds,
3065 clause, es->param);
3066 add_time = add_time * prob / REG_BR_PROB_BASE;
3067 if (prob != REG_BR_PROB_BASE
3068 && dump_file && (dump_flags & TDF_DETAILS))
3069 {
3070 fprintf (dump_file, "\t\tScaling time by probability:%f\n",
3071 (double) prob / REG_BR_PROB_BASE);
3072 }
3073 info->account_size_time (e->size, add_time, p, nonconstp);
3074 }
3075 }
3076 remap_edge_summaries (edge, edge->callee, info, callee_info, operand_map,
3077 offset_map, clause, &toplev_predicate);
3078 remap_hint_predicate (info, callee_info,
3079 &callee_info->loop_iterations,
3080 operand_map, offset_map, clause, &toplev_predicate);
3081 remap_hint_predicate (info, callee_info,
3082 &callee_info->loop_stride,
3083 operand_map, offset_map, clause, &toplev_predicate);
3084 remap_hint_predicate (info, callee_info,
3085 &callee_info->array_index,
3086 operand_map, offset_map, clause, &toplev_predicate);
3087
3088 ipa_call_summary *s = ipa_call_summaries->get (edge);
3089 inline_update_callee_summaries (edge->callee, s->loop_depth);
3090
3091 /* We do not maintain predicates of inlined edges, free it. */
3092 edge_set_predicate (edge, &true_p);
3093 /* Similarly remove param summaries. */
3094 es->param.release ();
3095 operand_map.release ();
3096 offset_map.release ();
3097 }
3098
3099 /* For performance reasons ipa_merge_fn_summary_after_inlining is not updating overall size
3100 and time. Recompute it. */
3101
3102 void
3103 ipa_update_overall_fn_summary (struct cgraph_node *node)
3104 {
3105 struct ipa_fn_summary *info = ipa_fn_summaries->get_create (node);
3106 size_time_entry *e;
3107 int i;
3108
3109 info->size = 0;
3110 info->time = 0;
3111 for (i = 0; vec_safe_iterate (info->size_time_table, i, &e); i++)
3112 {
3113 info->size += e->size;
3114 info->time += e->time;
3115 }
3116 estimate_calls_size_and_time (node, &info->size, &info->min_size,
3117 &info->time, NULL,
3118 ~(clause_t) (1 << predicate::false_condition),
3119 vNULL, vNULL, vNULL);
3120 info->size = (info->size + ipa_fn_summary::size_scale / 2) / ipa_fn_summary::size_scale;
3121 }
3122
3123
3124 /* This function performs intraprocedural analysis in NODE that is required to
3125 inline indirect calls. */
3126
3127 static void
3128 inline_indirect_intraprocedural_analysis (struct cgraph_node *node)
3129 {
3130 ipa_analyze_node (node);
3131 if (dump_file && (dump_flags & TDF_DETAILS))
3132 {
3133 ipa_print_node_params (dump_file, node);
3134 ipa_print_node_jump_functions (dump_file, node);
3135 }
3136 }
3137
3138
3139 /* Note function body size. */
3140
3141 void
3142 inline_analyze_function (struct cgraph_node *node)
3143 {
3144 push_cfun (DECL_STRUCT_FUNCTION (node->decl));
3145
3146 if (dump_file)
3147 fprintf (dump_file, "\nAnalyzing function: %s/%u\n",
3148 node->name (), node->order);
3149 if (opt_for_fn (node->decl, optimize) && !node->thunk.thunk_p)
3150 inline_indirect_intraprocedural_analysis (node);
3151 compute_fn_summary (node, false);
3152 if (!optimize)
3153 {
3154 struct cgraph_edge *e;
3155 for (e = node->callees; e; e = e->next_callee)
3156 e->inline_failed = CIF_FUNCTION_NOT_OPTIMIZED;
3157 for (e = node->indirect_calls; e; e = e->next_callee)
3158 e->inline_failed = CIF_FUNCTION_NOT_OPTIMIZED;
3159 }
3160
3161 pop_cfun ();
3162 }
3163
3164
3165 /* Called when new function is inserted to callgraph late. */
3166
3167 void
3168 ipa_fn_summary_t::insert (struct cgraph_node *node, ipa_fn_summary *)
3169 {
3170 inline_analyze_function (node);
3171 }
3172
3173 /* Note function body size. */
3174
3175 static void
3176 ipa_fn_summary_generate (void)
3177 {
3178 struct cgraph_node *node;
3179
3180 FOR_EACH_DEFINED_FUNCTION (node)
3181 if (DECL_STRUCT_FUNCTION (node->decl))
3182 node->local.versionable = tree_versionable_function_p (node->decl);
3183
3184 ipa_fn_summary_alloc ();
3185
3186 ipa_fn_summaries->enable_insertion_hook ();
3187
3188 ipa_register_cgraph_hooks ();
3189
3190 FOR_EACH_DEFINED_FUNCTION (node)
3191 if (!node->alias
3192 && (flag_generate_lto || flag_generate_offload|| flag_wpa
3193 || opt_for_fn (node->decl, optimize)))
3194 inline_analyze_function (node);
3195 }
3196
3197
3198 /* Write inline summary for edge E to OB. */
3199
3200 static void
3201 read_ipa_call_summary (struct lto_input_block *ib, struct cgraph_edge *e,
3202 bool prevails)
3203 {
3204 struct ipa_call_summary *es = prevails
3205 ? ipa_call_summaries->get_create (e) : NULL;
3206 predicate p;
3207 int length, i;
3208
3209 int size = streamer_read_uhwi (ib);
3210 int time = streamer_read_uhwi (ib);
3211 int depth = streamer_read_uhwi (ib);
3212
3213 if (es)
3214 {
3215 es->call_stmt_size = size;
3216 es->call_stmt_time = time;
3217 es->loop_depth = depth;
3218 }
3219
3220 bitpack_d bp = streamer_read_bitpack (ib);
3221 if (es)
3222 es->is_return_callee_uncaptured = bp_unpack_value (&bp, 1);
3223 else
3224 bp_unpack_value (&bp, 1);
3225
3226 p.stream_in (ib);
3227 if (es)
3228 edge_set_predicate (e, &p);
3229 length = streamer_read_uhwi (ib);
3230 if (length && es && e->possibly_call_in_translation_unit_p ())
3231 {
3232 es->param.safe_grow_cleared (length);
3233 for (i = 0; i < length; i++)
3234 es->param[i].change_prob = streamer_read_uhwi (ib);
3235 }
3236 else
3237 {
3238 for (i = 0; i < length; i++)
3239 streamer_read_uhwi (ib);
3240 }
3241 }
3242
3243
3244 /* Stream in inline summaries from the section. */
3245
3246 static void
3247 inline_read_section (struct lto_file_decl_data *file_data, const char *data,
3248 size_t len)
3249 {
3250 const struct lto_function_header *header =
3251 (const struct lto_function_header *) data;
3252 const int cfg_offset = sizeof (struct lto_function_header);
3253 const int main_offset = cfg_offset + header->cfg_size;
3254 const int string_offset = main_offset + header->main_size;
3255 struct data_in *data_in;
3256 unsigned int i, count2, j;
3257 unsigned int f_count;
3258
3259 lto_input_block ib ((const char *) data + main_offset, header->main_size,
3260 file_data->mode_table);
3261
3262 data_in =
3263 lto_data_in_create (file_data, (const char *) data + string_offset,
3264 header->string_size, vNULL);
3265 f_count = streamer_read_uhwi (&ib);
3266 for (i = 0; i < f_count; i++)
3267 {
3268 unsigned int index;
3269 struct cgraph_node *node;
3270 struct ipa_fn_summary *info;
3271 lto_symtab_encoder_t encoder;
3272 struct bitpack_d bp;
3273 struct cgraph_edge *e;
3274 predicate p;
3275
3276 index = streamer_read_uhwi (&ib);
3277 encoder = file_data->symtab_node_encoder;
3278 node = dyn_cast<cgraph_node *> (lto_symtab_encoder_deref (encoder,
3279 index));
3280 info = node->prevailing_p () ? ipa_fn_summaries->get_create (node) : NULL;
3281
3282 int stack_size = streamer_read_uhwi (&ib);
3283 int size = streamer_read_uhwi (&ib);
3284 sreal time = sreal::stream_in (&ib);
3285
3286 if (info)
3287 {
3288 info->estimated_stack_size
3289 = info->estimated_self_stack_size = stack_size;
3290 info->size = info->self_size = size;
3291 info->time = time;
3292 }
3293
3294 bp = streamer_read_bitpack (&ib);
3295 if (info)
3296 {
3297 info->inlinable = bp_unpack_value (&bp, 1);
3298 info->fp_expressions = bp_unpack_value (&bp, 1);
3299 }
3300 else
3301 {
3302 bp_unpack_value (&bp, 1);
3303 bp_unpack_value (&bp, 1);
3304 }
3305
3306 count2 = streamer_read_uhwi (&ib);
3307 gcc_assert (!info || !info->conds);
3308 for (j = 0; j < count2; j++)
3309 {
3310 struct condition c;
3311 c.operand_num = streamer_read_uhwi (&ib);
3312 c.size = streamer_read_uhwi (&ib);
3313 c.code = (enum tree_code) streamer_read_uhwi (&ib);
3314 c.val = stream_read_tree (&ib, data_in);
3315 bp = streamer_read_bitpack (&ib);
3316 c.agg_contents = bp_unpack_value (&bp, 1);
3317 c.by_ref = bp_unpack_value (&bp, 1);
3318 if (c.agg_contents)
3319 c.offset = streamer_read_uhwi (&ib);
3320 if (info)
3321 vec_safe_push (info->conds, c);
3322 }
3323 count2 = streamer_read_uhwi (&ib);
3324 gcc_assert (!info || !info->size_time_table);
3325 for (j = 0; j < count2; j++)
3326 {
3327 struct size_time_entry e;
3328
3329 e.size = streamer_read_uhwi (&ib);
3330 e.time = sreal::stream_in (&ib);
3331 e.exec_predicate.stream_in (&ib);
3332 e.nonconst_predicate.stream_in (&ib);
3333
3334 if (info)
3335 vec_safe_push (info->size_time_table, e);
3336 }
3337
3338 p.stream_in (&ib);
3339 if (info)
3340 set_hint_predicate (&info->loop_iterations, p);
3341 p.stream_in (&ib);
3342 if (info)
3343 set_hint_predicate (&info->loop_stride, p);
3344 p.stream_in (&ib);
3345 if (info)
3346 set_hint_predicate (&info->array_index, p);
3347 for (e = node->callees; e; e = e->next_callee)
3348 read_ipa_call_summary (&ib, e, info != NULL);
3349 for (e = node->indirect_calls; e; e = e->next_callee)
3350 read_ipa_call_summary (&ib, e, info != NULL);
3351 }
3352
3353 lto_free_section_data (file_data, LTO_section_ipa_fn_summary, NULL, data,
3354 len);
3355 lto_data_in_delete (data_in);
3356 }
3357
3358
3359 /* Read inline summary. Jump functions are shared among ipa-cp
3360 and inliner, so when ipa-cp is active, we don't need to write them
3361 twice. */
3362
3363 static void
3364 ipa_fn_summary_read (void)
3365 {
3366 struct lto_file_decl_data **file_data_vec = lto_get_file_decl_data ();
3367 struct lto_file_decl_data *file_data;
3368 unsigned int j = 0;
3369
3370 ipa_fn_summary_alloc ();
3371
3372 while ((file_data = file_data_vec[j++]))
3373 {
3374 size_t len;
3375 const char *data = lto_get_section_data (file_data,
3376 LTO_section_ipa_fn_summary,
3377 NULL, &len);
3378 if (data)
3379 inline_read_section (file_data, data, len);
3380 else
3381 /* Fatal error here. We do not want to support compiling ltrans units
3382 with different version of compiler or different flags than the WPA
3383 unit, so this should never happen. */
3384 fatal_error (input_location,
3385 "ipa inline summary is missing in input file");
3386 }
3387 ipa_register_cgraph_hooks ();
3388 if (!flag_ipa_cp)
3389 ipa_prop_read_jump_functions ();
3390
3391 gcc_assert (ipa_fn_summaries);
3392 ipa_fn_summaries->enable_insertion_hook ();
3393 }
3394
3395
3396 /* Write inline summary for edge E to OB. */
3397
3398 static void
3399 write_ipa_call_summary (struct output_block *ob, struct cgraph_edge *e)
3400 {
3401 struct ipa_call_summary *es = ipa_call_summaries->get (e);
3402 int i;
3403
3404 streamer_write_uhwi (ob, es->call_stmt_size);
3405 streamer_write_uhwi (ob, es->call_stmt_time);
3406 streamer_write_uhwi (ob, es->loop_depth);
3407
3408 bitpack_d bp = bitpack_create (ob->main_stream);
3409 bp_pack_value (&bp, es->is_return_callee_uncaptured, 1);
3410 streamer_write_bitpack (&bp);
3411
3412 if (es->predicate)
3413 es->predicate->stream_out (ob);
3414 else
3415 streamer_write_uhwi (ob, 0);
3416 streamer_write_uhwi (ob, es->param.length ());
3417 for (i = 0; i < (int) es->param.length (); i++)
3418 streamer_write_uhwi (ob, es->param[i].change_prob);
3419 }
3420
3421
3422 /* Write inline summary for node in SET.
3423 Jump functions are shared among ipa-cp and inliner, so when ipa-cp is
3424 active, we don't need to write them twice. */
3425
3426 static void
3427 ipa_fn_summary_write (void)
3428 {
3429 struct output_block *ob = create_output_block (LTO_section_ipa_fn_summary);
3430 lto_symtab_encoder_t encoder = ob->decl_state->symtab_node_encoder;
3431 unsigned int count = 0;
3432 int i;
3433
3434 for (i = 0; i < lto_symtab_encoder_size (encoder); i++)
3435 {
3436 symtab_node *snode = lto_symtab_encoder_deref (encoder, i);
3437 cgraph_node *cnode = dyn_cast <cgraph_node *> (snode);
3438 if (cnode && cnode->definition && !cnode->alias)
3439 count++;
3440 }
3441 streamer_write_uhwi (ob, count);
3442
3443 for (i = 0; i < lto_symtab_encoder_size (encoder); i++)
3444 {
3445 symtab_node *snode = lto_symtab_encoder_deref (encoder, i);
3446 cgraph_node *cnode = dyn_cast <cgraph_node *> (snode);
3447 if (cnode && cnode->definition && !cnode->alias)
3448 {
3449 struct ipa_fn_summary *info = ipa_fn_summaries->get (cnode);
3450 struct bitpack_d bp;
3451 struct cgraph_edge *edge;
3452 int i;
3453 size_time_entry *e;
3454 struct condition *c;
3455
3456 streamer_write_uhwi (ob, lto_symtab_encoder_encode (encoder, cnode));
3457 streamer_write_hwi (ob, info->estimated_self_stack_size);
3458 streamer_write_hwi (ob, info->self_size);
3459 info->time.stream_out (ob);
3460 bp = bitpack_create (ob->main_stream);
3461 bp_pack_value (&bp, info->inlinable, 1);
3462 bp_pack_value (&bp, false, 1);
3463 bp_pack_value (&bp, info->fp_expressions, 1);
3464 streamer_write_bitpack (&bp);
3465 streamer_write_uhwi (ob, vec_safe_length (info->conds));
3466 for (i = 0; vec_safe_iterate (info->conds, i, &c); i++)
3467 {
3468 streamer_write_uhwi (ob, c->operand_num);
3469 streamer_write_uhwi (ob, c->size);
3470 streamer_write_uhwi (ob, c->code);
3471 stream_write_tree (ob, c->val, true);
3472 bp = bitpack_create (ob->main_stream);
3473 bp_pack_value (&bp, c->agg_contents, 1);
3474 bp_pack_value (&bp, c->by_ref, 1);
3475 streamer_write_bitpack (&bp);
3476 if (c->agg_contents)
3477 streamer_write_uhwi (ob, c->offset);
3478 }
3479 streamer_write_uhwi (ob, vec_safe_length (info->size_time_table));
3480 for (i = 0; vec_safe_iterate (info->size_time_table, i, &e); i++)
3481 {
3482 streamer_write_uhwi (ob, e->size);
3483 e->time.stream_out (ob);
3484 e->exec_predicate.stream_out (ob);
3485 e->nonconst_predicate.stream_out (ob);
3486 }
3487 if (info->loop_iterations)
3488 info->loop_iterations->stream_out (ob);
3489 else
3490 streamer_write_uhwi (ob, 0);
3491 if (info->loop_stride)
3492 info->loop_stride->stream_out (ob);
3493 else
3494 streamer_write_uhwi (ob, 0);
3495 if (info->array_index)
3496 info->array_index->stream_out (ob);
3497 else
3498 streamer_write_uhwi (ob, 0);
3499 for (edge = cnode->callees; edge; edge = edge->next_callee)
3500 write_ipa_call_summary (ob, edge);
3501 for (edge = cnode->indirect_calls; edge; edge = edge->next_callee)
3502 write_ipa_call_summary (ob, edge);
3503 }
3504 }
3505 streamer_write_char_stream (ob->main_stream, 0);
3506 produce_asm (ob, NULL);
3507 destroy_output_block (ob);
3508
3509 if (!flag_ipa_cp)
3510 ipa_prop_write_jump_functions ();
3511 }
3512
3513
3514 /* Release inline summary. */
3515
3516 void
3517 ipa_free_fn_summary (void)
3518 {
3519 struct cgraph_node *node;
3520 if (!ipa_call_summaries)
3521 return;
3522 FOR_EACH_DEFINED_FUNCTION (node)
3523 if (!node->alias)
3524 ipa_fn_summaries->remove (node);
3525 ipa_fn_summaries->release ();
3526 ipa_fn_summaries = NULL;
3527 ipa_call_summaries->release ();
3528 delete ipa_call_summaries;
3529 ipa_call_summaries = NULL;
3530 edge_predicate_pool.release ();
3531 }
3532
3533 namespace {
3534
3535 const pass_data pass_data_local_fn_summary =
3536 {
3537 GIMPLE_PASS, /* type */
3538 "local-fnsummary", /* name */
3539 OPTGROUP_INLINE, /* optinfo_flags */
3540 TV_INLINE_PARAMETERS, /* tv_id */
3541 0, /* properties_required */
3542 0, /* properties_provided */
3543 0, /* properties_destroyed */
3544 0, /* todo_flags_start */
3545 0, /* todo_flags_finish */
3546 };
3547
3548 class pass_local_fn_summary : public gimple_opt_pass
3549 {
3550 public:
3551 pass_local_fn_summary (gcc::context *ctxt)
3552 : gimple_opt_pass (pass_data_local_fn_summary, ctxt)
3553 {}
3554
3555 /* opt_pass methods: */
3556 opt_pass * clone () { return new pass_local_fn_summary (m_ctxt); }
3557 virtual unsigned int execute (function *)
3558 {
3559 return compute_fn_summary_for_current ();
3560 }
3561
3562 }; // class pass_local_fn_summary
3563
3564 } // anon namespace
3565
3566 gimple_opt_pass *
3567 make_pass_local_fn_summary (gcc::context *ctxt)
3568 {
3569 return new pass_local_fn_summary (ctxt);
3570 }
3571
3572
3573 /* Free inline summary. */
3574
3575 namespace {
3576
3577 const pass_data pass_data_ipa_free_fn_summary =
3578 {
3579 SIMPLE_IPA_PASS, /* type */
3580 "free-fnsummary", /* name */
3581 OPTGROUP_NONE, /* optinfo_flags */
3582 TV_IPA_FREE_INLINE_SUMMARY, /* tv_id */
3583 0, /* properties_required */
3584 0, /* properties_provided */
3585 0, /* properties_destroyed */
3586 0, /* todo_flags_start */
3587 0, /* todo_flags_finish */
3588 };
3589
3590 class pass_ipa_free_fn_summary : public simple_ipa_opt_pass
3591 {
3592 public:
3593 pass_ipa_free_fn_summary (gcc::context *ctxt)
3594 : simple_ipa_opt_pass (pass_data_ipa_free_fn_summary, ctxt),
3595 small_p (false)
3596 {}
3597
3598 /* opt_pass methods: */
3599 opt_pass *clone () { return new pass_ipa_free_fn_summary (m_ctxt); }
3600 void set_pass_param (unsigned int n, bool param)
3601 {
3602 gcc_assert (n == 0);
3603 small_p = param;
3604 }
3605 virtual bool gate (function *) { return small_p || !flag_wpa; }
3606 virtual unsigned int execute (function *)
3607 {
3608 ipa_free_fn_summary ();
3609 return 0;
3610 }
3611
3612 private:
3613 bool small_p;
3614 }; // class pass_ipa_free_fn_summary
3615
3616 } // anon namespace
3617
3618 simple_ipa_opt_pass *
3619 make_pass_ipa_free_fn_summary (gcc::context *ctxt)
3620 {
3621 return new pass_ipa_free_fn_summary (ctxt);
3622 }
3623
3624 namespace {
3625
3626 const pass_data pass_data_ipa_fn_summary =
3627 {
3628 IPA_PASS, /* type */
3629 "fnsummary", /* name */
3630 OPTGROUP_INLINE, /* optinfo_flags */
3631 TV_IPA_FNSUMMARY, /* tv_id */
3632 0, /* properties_required */
3633 0, /* properties_provided */
3634 0, /* properties_destroyed */
3635 0, /* todo_flags_start */
3636 ( TODO_dump_symtab ), /* todo_flags_finish */
3637 };
3638
3639 class pass_ipa_fn_summary : public ipa_opt_pass_d
3640 {
3641 public:
3642 pass_ipa_fn_summary (gcc::context *ctxt)
3643 : ipa_opt_pass_d (pass_data_ipa_fn_summary, ctxt,
3644 ipa_fn_summary_generate, /* generate_summary */
3645 ipa_fn_summary_write, /* write_summary */
3646 ipa_fn_summary_read, /* read_summary */
3647 NULL, /* write_optimization_summary */
3648 NULL, /* read_optimization_summary */
3649 NULL, /* stmt_fixup */
3650 0, /* function_transform_todo_flags_start */
3651 NULL, /* function_transform */
3652 NULL) /* variable_transform */
3653 {}
3654
3655 /* opt_pass methods: */
3656 virtual unsigned int execute (function *) { return 0; }
3657
3658 }; // class pass_ipa_fn_summary
3659
3660 } // anon namespace
3661
3662 ipa_opt_pass_d *
3663 make_pass_ipa_fn_summary (gcc::context *ctxt)
3664 {
3665 return new pass_ipa_fn_summary (ctxt);
3666 }
3667
3668 /* Reset all state within ipa-fnsummary.c so that we can rerun the compiler
3669 within the same process. For use by toplev::finalize. */
3670
3671 void
3672 ipa_fnsummary_c_finalize (void)
3673 {
3674 ipa_free_fn_summary ();
3675 }