]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/ipa-inline.c
ipa-fnsummary.c (record_modified_bb_info): Use sreal frequencies.
[thirdparty/gcc.git] / gcc / ipa-inline.c
1 /* Inlining decision heuristics.
2 Copyright (C) 2003-2017 Free Software Foundation, Inc.
3 Contributed by Jan Hubicka
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
10 version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
20
21 /* Inlining decision heuristics
22
23 The implementation of inliner is organized as follows:
24
25 inlining heuristics limits
26
27 can_inline_edge_p allow to check that particular inlining is allowed
28 by the limits specified by user (allowed function growth, growth and so
29 on).
30
31 Functions are inlined when it is obvious the result is profitable (such
32 as functions called once or when inlining reduce code size).
33 In addition to that we perform inlining of small functions and recursive
34 inlining.
35
36 inlining heuristics
37
38 The inliner itself is split into two passes:
39
40 pass_early_inlining
41
42 Simple local inlining pass inlining callees into current function.
43 This pass makes no use of whole unit analysis and thus it can do only
44 very simple decisions based on local properties.
45
46 The strength of the pass is that it is run in topological order
47 (reverse postorder) on the callgraph. Functions are converted into SSA
48 form just before this pass and optimized subsequently. As a result, the
49 callees of the function seen by the early inliner was already optimized
50 and results of early inlining adds a lot of optimization opportunities
51 for the local optimization.
52
53 The pass handle the obvious inlining decisions within the compilation
54 unit - inlining auto inline functions, inlining for size and
55 flattening.
56
57 main strength of the pass is the ability to eliminate abstraction
58 penalty in C++ code (via combination of inlining and early
59 optimization) and thus improve quality of analysis done by real IPA
60 optimizers.
61
62 Because of lack of whole unit knowledge, the pass can not really make
63 good code size/performance tradeoffs. It however does very simple
64 speculative inlining allowing code size to grow by
65 EARLY_INLINING_INSNS when callee is leaf function. In this case the
66 optimizations performed later are very likely to eliminate the cost.
67
68 pass_ipa_inline
69
70 This is the real inliner able to handle inlining with whole program
71 knowledge. It performs following steps:
72
73 1) inlining of small functions. This is implemented by greedy
74 algorithm ordering all inlinable cgraph edges by their badness and
75 inlining them in this order as long as inline limits allows doing so.
76
77 This heuristics is not very good on inlining recursive calls. Recursive
78 calls can be inlined with results similar to loop unrolling. To do so,
79 special purpose recursive inliner is executed on function when
80 recursive edge is met as viable candidate.
81
82 2) Unreachable functions are removed from callgraph. Inlining leads
83 to devirtualization and other modification of callgraph so functions
84 may become unreachable during the process. Also functions declared as
85 extern inline or virtual functions are removed, since after inlining
86 we no longer need the offline bodies.
87
88 3) Functions called once and not exported from the unit are inlined.
89 This should almost always lead to reduction of code size by eliminating
90 the need for offline copy of the function. */
91
92 #include "config.h"
93 #include "system.h"
94 #include "coretypes.h"
95 #include "backend.h"
96 #include "target.h"
97 #include "rtl.h"
98 #include "tree.h"
99 #include "gimple.h"
100 #include "alloc-pool.h"
101 #include "tree-pass.h"
102 #include "gimple-ssa.h"
103 #include "cgraph.h"
104 #include "lto-streamer.h"
105 #include "trans-mem.h"
106 #include "calls.h"
107 #include "tree-inline.h"
108 #include "params.h"
109 #include "profile.h"
110 #include "symbol-summary.h"
111 #include "tree-vrp.h"
112 #include "ipa-prop.h"
113 #include "ipa-fnsummary.h"
114 #include "ipa-inline.h"
115 #include "ipa-utils.h"
116 #include "sreal.h"
117 #include "auto-profile.h"
118 #include "builtins.h"
119 #include "fibonacci_heap.h"
120 #include "stringpool.h"
121 #include "attribs.h"
122 #include "asan.h"
123
124 typedef fibonacci_heap <sreal, cgraph_edge> edge_heap_t;
125 typedef fibonacci_node <sreal, cgraph_edge> edge_heap_node_t;
126
127 /* Statistics we collect about inlining algorithm. */
128 static int overall_size;
129 static profile_count max_count;
130 static profile_count spec_rem;
131
132 /* Return false when inlining edge E would lead to violating
133 limits on function unit growth or stack usage growth.
134
135 The relative function body growth limit is present generally
136 to avoid problems with non-linear behavior of the compiler.
137 To allow inlining huge functions into tiny wrapper, the limit
138 is always based on the bigger of the two functions considered.
139
140 For stack growth limits we always base the growth in stack usage
141 of the callers. We want to prevent applications from segfaulting
142 on stack overflow when functions with huge stack frames gets
143 inlined. */
144
145 static bool
146 caller_growth_limits (struct cgraph_edge *e)
147 {
148 struct cgraph_node *to = e->caller;
149 struct cgraph_node *what = e->callee->ultimate_alias_target ();
150 int newsize;
151 int limit = 0;
152 HOST_WIDE_INT stack_size_limit = 0, inlined_stack;
153 ipa_fn_summary *info, *what_info, *outer_info = ipa_fn_summaries->get (to);
154
155 /* Look for function e->caller is inlined to. While doing
156 so work out the largest function body on the way. As
157 described above, we want to base our function growth
158 limits based on that. Not on the self size of the
159 outer function, not on the self size of inline code
160 we immediately inline to. This is the most relaxed
161 interpretation of the rule "do not grow large functions
162 too much in order to prevent compiler from exploding". */
163 while (true)
164 {
165 info = ipa_fn_summaries->get (to);
166 if (limit < info->self_size)
167 limit = info->self_size;
168 if (stack_size_limit < info->estimated_self_stack_size)
169 stack_size_limit = info->estimated_self_stack_size;
170 if (to->global.inlined_to)
171 to = to->callers->caller;
172 else
173 break;
174 }
175
176 what_info = ipa_fn_summaries->get (what);
177
178 if (limit < what_info->self_size)
179 limit = what_info->self_size;
180
181 limit += limit * PARAM_VALUE (PARAM_LARGE_FUNCTION_GROWTH) / 100;
182
183 /* Check the size after inlining against the function limits. But allow
184 the function to shrink if it went over the limits by forced inlining. */
185 newsize = estimate_size_after_inlining (to, e);
186 if (newsize >= info->size
187 && newsize > PARAM_VALUE (PARAM_LARGE_FUNCTION_INSNS)
188 && newsize > limit)
189 {
190 e->inline_failed = CIF_LARGE_FUNCTION_GROWTH_LIMIT;
191 return false;
192 }
193
194 if (!what_info->estimated_stack_size)
195 return true;
196
197 /* FIXME: Stack size limit often prevents inlining in Fortran programs
198 due to large i/o datastructures used by the Fortran front-end.
199 We ought to ignore this limit when we know that the edge is executed
200 on every invocation of the caller (i.e. its call statement dominates
201 exit block). We do not track this information, yet. */
202 stack_size_limit += ((gcov_type)stack_size_limit
203 * PARAM_VALUE (PARAM_STACK_FRAME_GROWTH) / 100);
204
205 inlined_stack = (outer_info->stack_frame_offset
206 + outer_info->estimated_self_stack_size
207 + what_info->estimated_stack_size);
208 /* Check new stack consumption with stack consumption at the place
209 stack is used. */
210 if (inlined_stack > stack_size_limit
211 /* If function already has large stack usage from sibling
212 inline call, we can inline, too.
213 This bit overoptimistically assume that we are good at stack
214 packing. */
215 && inlined_stack > info->estimated_stack_size
216 && inlined_stack > PARAM_VALUE (PARAM_LARGE_STACK_FRAME))
217 {
218 e->inline_failed = CIF_LARGE_STACK_FRAME_GROWTH_LIMIT;
219 return false;
220 }
221 return true;
222 }
223
224 /* Dump info about why inlining has failed. */
225
226 static void
227 report_inline_failed_reason (struct cgraph_edge *e)
228 {
229 if (dump_file)
230 {
231 fprintf (dump_file, " not inlinable: %s -> %s, %s\n",
232 e->caller->dump_name (),
233 e->callee->dump_name (),
234 cgraph_inline_failed_string (e->inline_failed));
235 if ((e->inline_failed == CIF_TARGET_OPTION_MISMATCH
236 || e->inline_failed == CIF_OPTIMIZATION_MISMATCH)
237 && e->caller->lto_file_data
238 && e->callee->ultimate_alias_target ()->lto_file_data)
239 {
240 fprintf (dump_file, " LTO objects: %s, %s\n",
241 e->caller->lto_file_data->file_name,
242 e->callee->ultimate_alias_target ()->lto_file_data->file_name);
243 }
244 if (e->inline_failed == CIF_TARGET_OPTION_MISMATCH)
245 cl_target_option_print_diff
246 (dump_file, 2, target_opts_for_fn (e->caller->decl),
247 target_opts_for_fn (e->callee->ultimate_alias_target ()->decl));
248 if (e->inline_failed == CIF_OPTIMIZATION_MISMATCH)
249 cl_optimization_print_diff
250 (dump_file, 2, opts_for_fn (e->caller->decl),
251 opts_for_fn (e->callee->ultimate_alias_target ()->decl));
252 }
253 }
254
255 /* Decide whether sanitizer-related attributes allow inlining. */
256
257 static bool
258 sanitize_attrs_match_for_inline_p (const_tree caller, const_tree callee)
259 {
260 if (!caller || !callee)
261 return true;
262
263 return sanitize_flags_p (SANITIZE_ADDRESS, caller)
264 == sanitize_flags_p (SANITIZE_ADDRESS, callee);
265 }
266
267 /* Used for flags where it is safe to inline when caller's value is
268 grater than callee's. */
269 #define check_maybe_up(flag) \
270 (opts_for_fn (caller->decl)->x_##flag \
271 != opts_for_fn (callee->decl)->x_##flag \
272 && (!always_inline \
273 || opts_for_fn (caller->decl)->x_##flag \
274 < opts_for_fn (callee->decl)->x_##flag))
275 /* Used for flags where it is safe to inline when caller's value is
276 smaller than callee's. */
277 #define check_maybe_down(flag) \
278 (opts_for_fn (caller->decl)->x_##flag \
279 != opts_for_fn (callee->decl)->x_##flag \
280 && (!always_inline \
281 || opts_for_fn (caller->decl)->x_##flag \
282 > opts_for_fn (callee->decl)->x_##flag))
283 /* Used for flags where exact match is needed for correctness. */
284 #define check_match(flag) \
285 (opts_for_fn (caller->decl)->x_##flag \
286 != opts_for_fn (callee->decl)->x_##flag)
287
288 /* Decide if we can inline the edge and possibly update
289 inline_failed reason.
290 We check whether inlining is possible at all and whether
291 caller growth limits allow doing so.
292
293 if REPORT is true, output reason to the dump file.
294
295 if DISREGARD_LIMITS is true, ignore size limits.*/
296
297 static bool
298 can_inline_edge_p (struct cgraph_edge *e, bool report,
299 bool disregard_limits = false, bool early = false)
300 {
301 gcc_checking_assert (e->inline_failed);
302
303 if (cgraph_inline_failed_type (e->inline_failed) == CIF_FINAL_ERROR)
304 {
305 if (report)
306 report_inline_failed_reason (e);
307 return false;
308 }
309
310 bool inlinable = true;
311 enum availability avail;
312 cgraph_node *caller = e->caller->global.inlined_to
313 ? e->caller->global.inlined_to : e->caller;
314 cgraph_node *callee = e->callee->ultimate_alias_target (&avail, caller);
315 tree caller_tree = DECL_FUNCTION_SPECIFIC_OPTIMIZATION (caller->decl);
316 tree callee_tree
317 = callee ? DECL_FUNCTION_SPECIFIC_OPTIMIZATION (callee->decl) : NULL;
318
319 if (!callee->definition)
320 {
321 e->inline_failed = CIF_BODY_NOT_AVAILABLE;
322 inlinable = false;
323 }
324 if (!early && (!opt_for_fn (callee->decl, optimize)
325 || !opt_for_fn (caller->decl, optimize)))
326 {
327 e->inline_failed = CIF_FUNCTION_NOT_OPTIMIZED;
328 inlinable = false;
329 }
330 else if (callee->calls_comdat_local)
331 {
332 e->inline_failed = CIF_USES_COMDAT_LOCAL;
333 inlinable = false;
334 }
335 else if (avail <= AVAIL_INTERPOSABLE)
336 {
337 e->inline_failed = CIF_OVERWRITABLE;
338 inlinable = false;
339 }
340 /* All edges with call_stmt_cannot_inline_p should have inline_failed
341 initialized to one of FINAL_ERROR reasons. */
342 else if (e->call_stmt_cannot_inline_p)
343 gcc_unreachable ();
344 /* Don't inline if the functions have different EH personalities. */
345 else if (DECL_FUNCTION_PERSONALITY (caller->decl)
346 && DECL_FUNCTION_PERSONALITY (callee->decl)
347 && (DECL_FUNCTION_PERSONALITY (caller->decl)
348 != DECL_FUNCTION_PERSONALITY (callee->decl)))
349 {
350 e->inline_failed = CIF_EH_PERSONALITY;
351 inlinable = false;
352 }
353 /* TM pure functions should not be inlined into non-TM_pure
354 functions. */
355 else if (is_tm_pure (callee->decl) && !is_tm_pure (caller->decl))
356 {
357 e->inline_failed = CIF_UNSPECIFIED;
358 inlinable = false;
359 }
360 /* Check compatibility of target optimization options. */
361 else if (!targetm.target_option.can_inline_p (caller->decl,
362 callee->decl))
363 {
364 e->inline_failed = CIF_TARGET_OPTION_MISMATCH;
365 inlinable = false;
366 }
367 else if (!ipa_fn_summaries->get (callee)->inlinable)
368 {
369 e->inline_failed = CIF_FUNCTION_NOT_INLINABLE;
370 inlinable = false;
371 }
372 /* Don't inline a function with mismatched sanitization attributes. */
373 else if (!sanitize_attrs_match_for_inline_p (caller->decl, callee->decl))
374 {
375 e->inline_failed = CIF_ATTRIBUTE_MISMATCH;
376 inlinable = false;
377 }
378 /* Check if caller growth allows the inlining. */
379 else if (!DECL_DISREGARD_INLINE_LIMITS (callee->decl)
380 && !disregard_limits
381 && !lookup_attribute ("flatten",
382 DECL_ATTRIBUTES (caller->decl))
383 && !caller_growth_limits (e))
384 inlinable = false;
385 /* Don't inline a function with a higher optimization level than the
386 caller. FIXME: this is really just tip of iceberg of handling
387 optimization attribute. */
388 else if (caller_tree != callee_tree)
389 {
390 bool always_inline =
391 (DECL_DISREGARD_INLINE_LIMITS (callee->decl)
392 && lookup_attribute ("always_inline",
393 DECL_ATTRIBUTES (callee->decl)));
394 ipa_fn_summary *caller_info = ipa_fn_summaries->get (caller);
395 ipa_fn_summary *callee_info = ipa_fn_summaries->get (callee);
396
397 /* Until GCC 4.9 we did not check the semantics alterning flags
398 bellow and inline across optimization boundry.
399 Enabling checks bellow breaks several packages by refusing
400 to inline library always_inline functions. See PR65873.
401 Disable the check for early inlining for now until better solution
402 is found. */
403 if (always_inline && early)
404 ;
405 /* There are some options that change IL semantics which means
406 we cannot inline in these cases for correctness reason.
407 Not even for always_inline declared functions. */
408 else if (check_match (flag_wrapv)
409 || check_match (flag_trapv)
410 || check_match (flag_pcc_struct_return)
411 /* When caller or callee does FP math, be sure FP codegen flags
412 compatible. */
413 || ((caller_info->fp_expressions && callee_info->fp_expressions)
414 && (check_maybe_up (flag_rounding_math)
415 || check_maybe_up (flag_trapping_math)
416 || check_maybe_down (flag_unsafe_math_optimizations)
417 || check_maybe_down (flag_finite_math_only)
418 || check_maybe_up (flag_signaling_nans)
419 || check_maybe_down (flag_cx_limited_range)
420 || check_maybe_up (flag_signed_zeros)
421 || check_maybe_down (flag_associative_math)
422 || check_maybe_down (flag_reciprocal_math)
423 || check_maybe_down (flag_fp_int_builtin_inexact)
424 /* Strictly speaking only when the callee contains function
425 calls that may end up setting errno. */
426 || check_maybe_up (flag_errno_math)))
427 /* We do not want to make code compiled with exceptions to be
428 brought into a non-EH function unless we know that the callee
429 does not throw.
430 This is tracked by DECL_FUNCTION_PERSONALITY. */
431 || (check_maybe_up (flag_non_call_exceptions)
432 && DECL_FUNCTION_PERSONALITY (callee->decl))
433 || (check_maybe_up (flag_exceptions)
434 && DECL_FUNCTION_PERSONALITY (callee->decl))
435 /* When devirtualization is diabled for callee, it is not safe
436 to inline it as we possibly mangled the type info.
437 Allow early inlining of always inlines. */
438 || (!early && check_maybe_down (flag_devirtualize)))
439 {
440 e->inline_failed = CIF_OPTIMIZATION_MISMATCH;
441 inlinable = false;
442 }
443 /* gcc.dg/pr43564.c. Apply user-forced inline even at -O0. */
444 else if (always_inline)
445 ;
446 /* When user added an attribute to the callee honor it. */
447 else if (lookup_attribute ("optimize", DECL_ATTRIBUTES (callee->decl))
448 && opts_for_fn (caller->decl) != opts_for_fn (callee->decl))
449 {
450 e->inline_failed = CIF_OPTIMIZATION_MISMATCH;
451 inlinable = false;
452 }
453 /* If explicit optimize attribute are not used, the mismatch is caused
454 by different command line options used to build different units.
455 Do not care about COMDAT functions - those are intended to be
456 optimized with the optimization flags of module they are used in.
457 Also do not care about mixing up size/speed optimization when
458 DECL_DISREGARD_INLINE_LIMITS is set. */
459 else if ((callee->merged_comdat
460 && !lookup_attribute ("optimize",
461 DECL_ATTRIBUTES (caller->decl)))
462 || DECL_DISREGARD_INLINE_LIMITS (callee->decl))
463 ;
464 /* If mismatch is caused by merging two LTO units with different
465 optimizationflags we want to be bit nicer. However never inline
466 if one of functions is not optimized at all. */
467 else if (!opt_for_fn (callee->decl, optimize)
468 || !opt_for_fn (caller->decl, optimize))
469 {
470 e->inline_failed = CIF_OPTIMIZATION_MISMATCH;
471 inlinable = false;
472 }
473 /* If callee is optimized for size and caller is not, allow inlining if
474 code shrinks or we are in MAX_INLINE_INSNS_SINGLE limit and callee
475 is inline (and thus likely an unified comdat). This will allow caller
476 to run faster. */
477 else if (opt_for_fn (callee->decl, optimize_size)
478 > opt_for_fn (caller->decl, optimize_size))
479 {
480 int growth = estimate_edge_growth (e);
481 if (growth > 0
482 && (!DECL_DECLARED_INLINE_P (callee->decl)
483 && growth >= MAX (MAX_INLINE_INSNS_SINGLE,
484 MAX_INLINE_INSNS_AUTO)))
485 {
486 e->inline_failed = CIF_OPTIMIZATION_MISMATCH;
487 inlinable = false;
488 }
489 }
490 /* If callee is more aggressively optimized for performance than caller,
491 we generally want to inline only cheap (runtime wise) functions. */
492 else if (opt_for_fn (callee->decl, optimize_size)
493 < opt_for_fn (caller->decl, optimize_size)
494 || (opt_for_fn (callee->decl, optimize)
495 > opt_for_fn (caller->decl, optimize)))
496 {
497 if (estimate_edge_time (e)
498 >= 20 + ipa_call_summaries->get (e)->call_stmt_time)
499 {
500 e->inline_failed = CIF_OPTIMIZATION_MISMATCH;
501 inlinable = false;
502 }
503 }
504
505 }
506
507 if (!inlinable && report)
508 report_inline_failed_reason (e);
509 return inlinable;
510 }
511
512
513 /* Return true if the edge E is inlinable during early inlining. */
514
515 static bool
516 can_early_inline_edge_p (struct cgraph_edge *e)
517 {
518 struct cgraph_node *callee = e->callee->ultimate_alias_target ();
519 /* Early inliner might get called at WPA stage when IPA pass adds new
520 function. In this case we can not really do any of early inlining
521 because function bodies are missing. */
522 if (cgraph_inline_failed_type (e->inline_failed) == CIF_FINAL_ERROR)
523 return false;
524 if (!gimple_has_body_p (callee->decl))
525 {
526 e->inline_failed = CIF_BODY_NOT_AVAILABLE;
527 return false;
528 }
529 /* In early inliner some of callees may not be in SSA form yet
530 (i.e. the callgraph is cyclic and we did not process
531 the callee by early inliner, yet). We don't have CIF code for this
532 case; later we will re-do the decision in the real inliner. */
533 if (!gimple_in_ssa_p (DECL_STRUCT_FUNCTION (e->caller->decl))
534 || !gimple_in_ssa_p (DECL_STRUCT_FUNCTION (callee->decl)))
535 {
536 if (dump_file)
537 fprintf (dump_file, " edge not inlinable: not in SSA form\n");
538 return false;
539 }
540 if (!can_inline_edge_p (e, true, false, true))
541 return false;
542 return true;
543 }
544
545
546 /* Return number of calls in N. Ignore cheap builtins. */
547
548 static int
549 num_calls (struct cgraph_node *n)
550 {
551 struct cgraph_edge *e;
552 int num = 0;
553
554 for (e = n->callees; e; e = e->next_callee)
555 if (!is_inexpensive_builtin (e->callee->decl))
556 num++;
557 return num;
558 }
559
560
561 /* Return true if we are interested in inlining small function. */
562
563 static bool
564 want_early_inline_function_p (struct cgraph_edge *e)
565 {
566 bool want_inline = true;
567 struct cgraph_node *callee = e->callee->ultimate_alias_target ();
568
569 if (DECL_DISREGARD_INLINE_LIMITS (callee->decl))
570 ;
571 /* For AutoFDO, we need to make sure that before profile summary, all
572 hot paths' IR look exactly the same as profiled binary. As a result,
573 in einliner, we will disregard size limit and inline those callsites
574 that are:
575 * inlined in the profiled binary, and
576 * the cloned callee has enough samples to be considered "hot". */
577 else if (flag_auto_profile && afdo_callsite_hot_enough_for_early_inline (e))
578 ;
579 else if (!DECL_DECLARED_INLINE_P (callee->decl)
580 && !opt_for_fn (e->caller->decl, flag_inline_small_functions))
581 {
582 e->inline_failed = CIF_FUNCTION_NOT_INLINE_CANDIDATE;
583 report_inline_failed_reason (e);
584 want_inline = false;
585 }
586 else
587 {
588 int growth = estimate_edge_growth (e);
589 int n;
590
591 if (growth <= 0)
592 ;
593 else if (!e->maybe_hot_p ()
594 && growth > 0)
595 {
596 if (dump_file)
597 fprintf (dump_file, " will not early inline: %s->%s, "
598 "call is cold and code would grow by %i\n",
599 e->caller->dump_name (),
600 callee->dump_name (),
601 growth);
602 want_inline = false;
603 }
604 else if (growth > PARAM_VALUE (PARAM_EARLY_INLINING_INSNS))
605 {
606 if (dump_file)
607 fprintf (dump_file, " will not early inline: %s->%s, "
608 "growth %i exceeds --param early-inlining-insns\n",
609 e->caller->dump_name (),
610 callee->dump_name (),
611 growth);
612 want_inline = false;
613 }
614 else if ((n = num_calls (callee)) != 0
615 && growth * (n + 1) > PARAM_VALUE (PARAM_EARLY_INLINING_INSNS))
616 {
617 if (dump_file)
618 fprintf (dump_file, " will not early inline: %s->%s, "
619 "growth %i exceeds --param early-inlining-insns "
620 "divided by number of calls\n",
621 e->caller->dump_name (),
622 callee->dump_name (),
623 growth);
624 want_inline = false;
625 }
626 }
627 return want_inline;
628 }
629
630 /* Compute time of the edge->caller + edge->callee execution when inlining
631 does not happen. */
632
633 inline sreal
634 compute_uninlined_call_time (struct cgraph_edge *edge,
635 sreal uninlined_call_time)
636 {
637 cgraph_node *caller = (edge->caller->global.inlined_to
638 ? edge->caller->global.inlined_to
639 : edge->caller);
640
641 sreal freq = edge->sreal_frequency ();
642 if (freq > 0)
643 uninlined_call_time *= freq;
644 else
645 uninlined_call_time = uninlined_call_time >> 11;
646
647 sreal caller_time = ipa_fn_summaries->get (caller)->time;
648 return uninlined_call_time + caller_time;
649 }
650
651 /* Same as compute_uinlined_call_time but compute time when inlining
652 does happen. */
653
654 inline sreal
655 compute_inlined_call_time (struct cgraph_edge *edge,
656 sreal time)
657 {
658 cgraph_node *caller = (edge->caller->global.inlined_to
659 ? edge->caller->global.inlined_to
660 : edge->caller);
661 sreal caller_time = ipa_fn_summaries->get (caller)->time;
662
663 sreal freq = edge->sreal_frequency ();
664 if (freq > 0)
665 time *= freq;
666 else
667 time = time >> 11;
668
669 /* This calculation should match one in ipa-inline-analysis.c
670 (estimate_edge_size_and_time). */
671 time -= (sreal)ipa_call_summaries->get (edge)->call_stmt_time * freq;
672 time += caller_time;
673 if (time <= 0)
674 time = ((sreal) 1) >> 8;
675 gcc_checking_assert (time >= 0);
676 return time;
677 }
678
679 /* Return true if the speedup for inlining E is bigger than
680 PARAM_MAX_INLINE_MIN_SPEEDUP. */
681
682 static bool
683 big_speedup_p (struct cgraph_edge *e)
684 {
685 sreal unspec_time;
686 sreal spec_time = estimate_edge_time (e, &unspec_time);
687 sreal time = compute_uninlined_call_time (e, unspec_time);
688 sreal inlined_time = compute_inlined_call_time (e, spec_time);
689
690 if (time - inlined_time * 100
691 > (sreal) (time * PARAM_VALUE (PARAM_INLINE_MIN_SPEEDUP)))
692 return true;
693 return false;
694 }
695
696 /* Return true if we are interested in inlining small function.
697 When REPORT is true, report reason to dump file. */
698
699 static bool
700 want_inline_small_function_p (struct cgraph_edge *e, bool report)
701 {
702 bool want_inline = true;
703 struct cgraph_node *callee = e->callee->ultimate_alias_target ();
704
705 if (DECL_DISREGARD_INLINE_LIMITS (callee->decl))
706 ;
707 else if (!DECL_DECLARED_INLINE_P (callee->decl)
708 && !opt_for_fn (e->caller->decl, flag_inline_small_functions))
709 {
710 e->inline_failed = CIF_FUNCTION_NOT_INLINE_CANDIDATE;
711 want_inline = false;
712 }
713 /* Do fast and conservative check if the function can be good
714 inline candidate. At the moment we allow inline hints to
715 promote non-inline functions to inline and we increase
716 MAX_INLINE_INSNS_SINGLE 16-fold for inline functions. */
717 else if ((!DECL_DECLARED_INLINE_P (callee->decl)
718 && (!e->count.ipa ().initialized_p () || !e->maybe_hot_p ()))
719 && ipa_fn_summaries->get (callee)->min_size
720 - ipa_call_summaries->get (e)->call_stmt_size
721 > MAX (MAX_INLINE_INSNS_SINGLE, MAX_INLINE_INSNS_AUTO))
722 {
723 e->inline_failed = CIF_MAX_INLINE_INSNS_AUTO_LIMIT;
724 want_inline = false;
725 }
726 else if ((DECL_DECLARED_INLINE_P (callee->decl)
727 || e->count.ipa ().nonzero_p ())
728 && ipa_fn_summaries->get (callee)->min_size
729 - ipa_call_summaries->get (e)->call_stmt_size
730 > 16 * MAX_INLINE_INSNS_SINGLE)
731 {
732 e->inline_failed = (DECL_DECLARED_INLINE_P (callee->decl)
733 ? CIF_MAX_INLINE_INSNS_SINGLE_LIMIT
734 : CIF_MAX_INLINE_INSNS_AUTO_LIMIT);
735 want_inline = false;
736 }
737 else
738 {
739 int growth = estimate_edge_growth (e);
740 ipa_hints hints = estimate_edge_hints (e);
741 bool big_speedup = big_speedup_p (e);
742
743 if (growth <= 0)
744 ;
745 /* Apply MAX_INLINE_INSNS_SINGLE limit. Do not do so when
746 hints suggests that inlining given function is very profitable. */
747 else if (DECL_DECLARED_INLINE_P (callee->decl)
748 && growth >= MAX_INLINE_INSNS_SINGLE
749 && ((!big_speedup
750 && !(hints & (INLINE_HINT_indirect_call
751 | INLINE_HINT_known_hot
752 | INLINE_HINT_loop_iterations
753 | INLINE_HINT_array_index
754 | INLINE_HINT_loop_stride)))
755 || growth >= MAX_INLINE_INSNS_SINGLE * 16))
756 {
757 e->inline_failed = CIF_MAX_INLINE_INSNS_SINGLE_LIMIT;
758 want_inline = false;
759 }
760 else if (!DECL_DECLARED_INLINE_P (callee->decl)
761 && !opt_for_fn (e->caller->decl, flag_inline_functions))
762 {
763 /* growth_likely_positive is expensive, always test it last. */
764 if (growth >= MAX_INLINE_INSNS_SINGLE
765 || growth_likely_positive (callee, growth))
766 {
767 e->inline_failed = CIF_NOT_DECLARED_INLINED;
768 want_inline = false;
769 }
770 }
771 /* Apply MAX_INLINE_INSNS_AUTO limit for functions not declared inline
772 Upgrade it to MAX_INLINE_INSNS_SINGLE when hints suggests that
773 inlining given function is very profitable. */
774 else if (!DECL_DECLARED_INLINE_P (callee->decl)
775 && !big_speedup
776 && !(hints & INLINE_HINT_known_hot)
777 && growth >= ((hints & (INLINE_HINT_indirect_call
778 | INLINE_HINT_loop_iterations
779 | INLINE_HINT_array_index
780 | INLINE_HINT_loop_stride))
781 ? MAX (MAX_INLINE_INSNS_AUTO,
782 MAX_INLINE_INSNS_SINGLE)
783 : MAX_INLINE_INSNS_AUTO))
784 {
785 /* growth_likely_positive is expensive, always test it last. */
786 if (growth >= MAX_INLINE_INSNS_SINGLE
787 || growth_likely_positive (callee, growth))
788 {
789 e->inline_failed = CIF_MAX_INLINE_INSNS_AUTO_LIMIT;
790 want_inline = false;
791 }
792 }
793 /* If call is cold, do not inline when function body would grow. */
794 else if (!e->maybe_hot_p ()
795 && (growth >= MAX_INLINE_INSNS_SINGLE
796 || growth_likely_positive (callee, growth)))
797 {
798 e->inline_failed = CIF_UNLIKELY_CALL;
799 want_inline = false;
800 }
801 }
802 if (!want_inline && report)
803 report_inline_failed_reason (e);
804 return want_inline;
805 }
806
807 /* EDGE is self recursive edge.
808 We hand two cases - when function A is inlining into itself
809 or when function A is being inlined into another inliner copy of function
810 A within function B.
811
812 In first case OUTER_NODE points to the toplevel copy of A, while
813 in the second case OUTER_NODE points to the outermost copy of A in B.
814
815 In both cases we want to be extra selective since
816 inlining the call will just introduce new recursive calls to appear. */
817
818 static bool
819 want_inline_self_recursive_call_p (struct cgraph_edge *edge,
820 struct cgraph_node *outer_node,
821 bool peeling,
822 int depth)
823 {
824 char const *reason = NULL;
825 bool want_inline = true;
826 sreal caller_freq = 1;
827 int max_depth = PARAM_VALUE (PARAM_MAX_INLINE_RECURSIVE_DEPTH_AUTO);
828
829 if (DECL_DECLARED_INLINE_P (edge->caller->decl))
830 max_depth = PARAM_VALUE (PARAM_MAX_INLINE_RECURSIVE_DEPTH);
831
832 if (!edge->maybe_hot_p ())
833 {
834 reason = "recursive call is cold";
835 want_inline = false;
836 }
837 else if (depth > max_depth)
838 {
839 reason = "--param max-inline-recursive-depth exceeded.";
840 want_inline = false;
841 }
842 else if (outer_node->global.inlined_to
843 && (caller_freq = outer_node->callers->sreal_frequency ()) == 0)
844 {
845 reason = "caller frequency is 0";
846 want_inline = false;
847 }
848
849 if (!want_inline)
850 ;
851 /* Inlining of self recursive function into copy of itself within other
852 function is transformation similar to loop peeling.
853
854 Peeling is profitable if we can inline enough copies to make probability
855 of actual call to the self recursive function very small. Be sure that
856 the probability of recursion is small.
857
858 We ensure that the frequency of recursing is at most 1 - (1/max_depth).
859 This way the expected number of recursion is at most max_depth. */
860 else if (peeling)
861 {
862 sreal max_prob = (sreal)1 - ((sreal)1 / (sreal)max_depth);
863 int i;
864 for (i = 1; i < depth; i++)
865 max_prob = max_prob * max_prob;
866 if (edge->sreal_frequency () >= max_prob * caller_freq)
867 {
868 reason = "frequency of recursive call is too large";
869 want_inline = false;
870 }
871 }
872 /* Recursive inlining, i.e. equivalent of unrolling, is profitable if
873 recursion depth is large. We reduce function call overhead and increase
874 chances that things fit in hardware return predictor.
875
876 Recursive inlining might however increase cost of stack frame setup
877 actually slowing down functions whose recursion tree is wide rather than
878 deep.
879
880 Deciding reliably on when to do recursive inlining without profile feedback
881 is tricky. For now we disable recursive inlining when probability of self
882 recursion is low.
883
884 Recursive inlining of self recursive call within loop also results in
885 large loop depths that generally optimize badly. We may want to throttle
886 down inlining in those cases. In particular this seems to happen in one
887 of libstdc++ rb tree methods. */
888 else
889 {
890 if (edge->sreal_frequency () * 100
891 <= caller_freq
892 * PARAM_VALUE (PARAM_MIN_INLINE_RECURSIVE_PROBABILITY))
893 {
894 reason = "frequency of recursive call is too small";
895 want_inline = false;
896 }
897 }
898 if (!want_inline && dump_file)
899 fprintf (dump_file, " not inlining recursively: %s\n", reason);
900 return want_inline;
901 }
902
903 /* Return true when NODE has uninlinable caller;
904 set HAS_HOT_CALL if it has hot call.
905 Worker for cgraph_for_node_and_aliases. */
906
907 static bool
908 check_callers (struct cgraph_node *node, void *has_hot_call)
909 {
910 struct cgraph_edge *e;
911 for (e = node->callers; e; e = e->next_caller)
912 {
913 if (!opt_for_fn (e->caller->decl, flag_inline_functions_called_once)
914 || !opt_for_fn (e->caller->decl, optimize))
915 return true;
916 if (!can_inline_edge_p (e, true))
917 return true;
918 if (e->recursive_p ())
919 return true;
920 if (!(*(bool *)has_hot_call) && e->maybe_hot_p ())
921 *(bool *)has_hot_call = true;
922 }
923 return false;
924 }
925
926 /* If NODE has a caller, return true. */
927
928 static bool
929 has_caller_p (struct cgraph_node *node, void *data ATTRIBUTE_UNUSED)
930 {
931 if (node->callers)
932 return true;
933 return false;
934 }
935
936 /* Decide if inlining NODE would reduce unit size by eliminating
937 the offline copy of function.
938 When COLD is true the cold calls are considered, too. */
939
940 static bool
941 want_inline_function_to_all_callers_p (struct cgraph_node *node, bool cold)
942 {
943 bool has_hot_call = false;
944
945 /* Aliases gets inlined along with the function they alias. */
946 if (node->alias)
947 return false;
948 /* Already inlined? */
949 if (node->global.inlined_to)
950 return false;
951 /* Does it have callers? */
952 if (!node->call_for_symbol_and_aliases (has_caller_p, NULL, true))
953 return false;
954 /* Inlining into all callers would increase size? */
955 if (estimate_growth (node) > 0)
956 return false;
957 /* All inlines must be possible. */
958 if (node->call_for_symbol_and_aliases (check_callers, &has_hot_call,
959 true))
960 return false;
961 if (!cold && !has_hot_call)
962 return false;
963 return true;
964 }
965
966 /* A cost model driving the inlining heuristics in a way so the edges with
967 smallest badness are inlined first. After each inlining is performed
968 the costs of all caller edges of nodes affected are recomputed so the
969 metrics may accurately depend on values such as number of inlinable callers
970 of the function or function body size. */
971
972 static sreal
973 edge_badness (struct cgraph_edge *edge, bool dump)
974 {
975 sreal badness;
976 int growth;
977 sreal edge_time, unspec_edge_time;
978 struct cgraph_node *callee = edge->callee->ultimate_alias_target ();
979 struct ipa_fn_summary *callee_info = ipa_fn_summaries->get (callee);
980 ipa_hints hints;
981 cgraph_node *caller = (edge->caller->global.inlined_to
982 ? edge->caller->global.inlined_to
983 : edge->caller);
984
985 growth = estimate_edge_growth (edge);
986 edge_time = estimate_edge_time (edge, &unspec_edge_time);
987 hints = estimate_edge_hints (edge);
988 gcc_checking_assert (edge_time >= 0);
989 /* Check that inlined time is better, but tolerate some roundoff issues.
990 FIXME: When callee profile drops to 0 we account calls more. This
991 should be fixed by never doing that. */
992 gcc_checking_assert ((edge_time - callee_info->time).to_int () <= 0
993 || callee->count.ipa ().initialized_p ());
994 gcc_checking_assert (growth <= callee_info->size);
995
996 if (dump)
997 {
998 fprintf (dump_file, " Badness calculation for %s -> %s\n",
999 edge->caller->dump_name (),
1000 edge->callee->dump_name ());
1001 fprintf (dump_file, " size growth %i, time %f unspec %f ",
1002 growth,
1003 edge_time.to_double (),
1004 unspec_edge_time.to_double ());
1005 ipa_dump_hints (dump_file, hints);
1006 if (big_speedup_p (edge))
1007 fprintf (dump_file, " big_speedup");
1008 fprintf (dump_file, "\n");
1009 }
1010
1011 /* Always prefer inlining saving code size. */
1012 if (growth <= 0)
1013 {
1014 badness = (sreal) (-SREAL_MIN_SIG + growth) << (SREAL_MAX_EXP / 256);
1015 if (dump)
1016 fprintf (dump_file, " %f: Growth %d <= 0\n", badness.to_double (),
1017 growth);
1018 }
1019 /* Inlining into EXTERNAL functions is not going to change anything unless
1020 they are themselves inlined. */
1021 else if (DECL_EXTERNAL (caller->decl))
1022 {
1023 if (dump)
1024 fprintf (dump_file, " max: function is external\n");
1025 return sreal::max ();
1026 }
1027 /* When profile is available. Compute badness as:
1028
1029 time_saved * caller_count
1030 goodness = -------------------------------------------------
1031 growth_of_caller * overall_growth * combined_size
1032
1033 badness = - goodness
1034
1035 Again use negative value to make calls with profile appear hotter
1036 then calls without.
1037 */
1038 else if (opt_for_fn (caller->decl, flag_guess_branch_prob)
1039 || caller->count.ipa ().nonzero_p ())
1040 {
1041 sreal numerator, denominator;
1042 int overall_growth;
1043 sreal inlined_time = compute_inlined_call_time (edge, edge_time);
1044
1045 numerator = (compute_uninlined_call_time (edge, unspec_edge_time)
1046 - inlined_time);
1047 if (numerator <= 0)
1048 numerator = ((sreal) 1 >> 8);
1049 if (caller->count.ipa ().nonzero_p ())
1050 numerator *= caller->count.ipa ().to_gcov_type ();
1051 else if (caller->count.ipa ().initialized_p ())
1052 numerator = numerator >> 11;
1053 denominator = growth;
1054
1055 overall_growth = callee_info->growth;
1056
1057 /* Look for inliner wrappers of the form:
1058
1059 inline_caller ()
1060 {
1061 do_fast_job...
1062 if (need_more_work)
1063 noninline_callee ();
1064 }
1065 Withhout panilizing this case, we usually inline noninline_callee
1066 into the inline_caller because overall_growth is small preventing
1067 further inlining of inline_caller.
1068
1069 Penalize only callgraph edges to functions with small overall
1070 growth ...
1071 */
1072 if (growth > overall_growth
1073 /* ... and having only one caller which is not inlined ... */
1074 && callee_info->single_caller
1075 && !edge->caller->global.inlined_to
1076 /* ... and edges executed only conditionally ... */
1077 && edge->sreal_frequency () < 1
1078 /* ... consider case where callee is not inline but caller is ... */
1079 && ((!DECL_DECLARED_INLINE_P (edge->callee->decl)
1080 && DECL_DECLARED_INLINE_P (caller->decl))
1081 /* ... or when early optimizers decided to split and edge
1082 frequency still indicates splitting is a win ... */
1083 || (callee->split_part && !caller->split_part
1084 && edge->sreal_frequency () * 100
1085 < PARAM_VALUE
1086 (PARAM_PARTIAL_INLINING_ENTRY_PROBABILITY)
1087 /* ... and do not overwrite user specified hints. */
1088 && (!DECL_DECLARED_INLINE_P (edge->callee->decl)
1089 || DECL_DECLARED_INLINE_P (caller->decl)))))
1090 {
1091 struct ipa_fn_summary *caller_info = ipa_fn_summaries->get (caller);
1092 int caller_growth = caller_info->growth;
1093
1094 /* Only apply the penalty when caller looks like inline candidate,
1095 and it is not called once and. */
1096 if (!caller_info->single_caller && overall_growth < caller_growth
1097 && caller_info->inlinable
1098 && caller_info->size
1099 < (DECL_DECLARED_INLINE_P (caller->decl)
1100 ? MAX_INLINE_INSNS_SINGLE : MAX_INLINE_INSNS_AUTO))
1101 {
1102 if (dump)
1103 fprintf (dump_file,
1104 " Wrapper penalty. Increasing growth %i to %i\n",
1105 overall_growth, caller_growth);
1106 overall_growth = caller_growth;
1107 }
1108 }
1109 if (overall_growth > 0)
1110 {
1111 /* Strongly preffer functions with few callers that can be inlined
1112 fully. The square root here leads to smaller binaries at average.
1113 Watch however for extreme cases and return to linear function
1114 when growth is large. */
1115 if (overall_growth < 256)
1116 overall_growth *= overall_growth;
1117 else
1118 overall_growth += 256 * 256 - 256;
1119 denominator *= overall_growth;
1120 }
1121 /*denominator *= inlined_time;*/
1122
1123 badness = - numerator / denominator;
1124
1125 if (dump)
1126 {
1127 fprintf (dump_file,
1128 " %f: guessed profile. frequency %f, count %" PRId64
1129 " caller count %" PRId64
1130 " time w/o inlining %f, time with inlining %f"
1131 " overall growth %i (current) %i (original)"
1132 " %i (compensated)\n",
1133 badness.to_double (),
1134 edge->sreal_frequency ().to_double (),
1135 edge->count.ipa ().initialized_p () ? edge->count.ipa ().to_gcov_type () : -1,
1136 caller->count.ipa ().initialized_p () ? caller->count.ipa ().to_gcov_type () : -1,
1137 compute_uninlined_call_time (edge,
1138 unspec_edge_time).to_double (),
1139 inlined_time.to_double (),
1140 estimate_growth (callee),
1141 callee_info->growth, overall_growth);
1142 }
1143 }
1144 /* When function local profile is not available or it does not give
1145 useful information (ie frequency is zero), base the cost on
1146 loop nest and overall size growth, so we optimize for overall number
1147 of functions fully inlined in program. */
1148 else
1149 {
1150 int nest = MIN (ipa_call_summaries->get (edge)->loop_depth, 8);
1151 badness = growth;
1152
1153 /* Decrease badness if call is nested. */
1154 if (badness > 0)
1155 badness = badness >> nest;
1156 else
1157 badness = badness << nest;
1158 if (dump)
1159 fprintf (dump_file, " %f: no profile. nest %i\n",
1160 badness.to_double (), nest);
1161 }
1162 gcc_checking_assert (badness != 0);
1163
1164 if (edge->recursive_p ())
1165 badness = badness.shift (badness > 0 ? 4 : -4);
1166 if ((hints & (INLINE_HINT_indirect_call
1167 | INLINE_HINT_loop_iterations
1168 | INLINE_HINT_array_index
1169 | INLINE_HINT_loop_stride))
1170 || callee_info->growth <= 0)
1171 badness = badness.shift (badness > 0 ? -2 : 2);
1172 if (hints & (INLINE_HINT_same_scc))
1173 badness = badness.shift (badness > 0 ? 3 : -3);
1174 else if (hints & (INLINE_HINT_in_scc))
1175 badness = badness.shift (badness > 0 ? 2 : -2);
1176 else if (hints & (INLINE_HINT_cross_module))
1177 badness = badness.shift (badness > 0 ? 1 : -1);
1178 if (DECL_DISREGARD_INLINE_LIMITS (callee->decl))
1179 badness = badness.shift (badness > 0 ? -4 : 4);
1180 else if ((hints & INLINE_HINT_declared_inline))
1181 badness = badness.shift (badness > 0 ? -3 : 3);
1182 if (dump)
1183 fprintf (dump_file, " Adjusted by hints %f\n", badness.to_double ());
1184 return badness;
1185 }
1186
1187 /* Recompute badness of EDGE and update its key in HEAP if needed. */
1188 static inline void
1189 update_edge_key (edge_heap_t *heap, struct cgraph_edge *edge)
1190 {
1191 sreal badness = edge_badness (edge, false);
1192 if (edge->aux)
1193 {
1194 edge_heap_node_t *n = (edge_heap_node_t *) edge->aux;
1195 gcc_checking_assert (n->get_data () == edge);
1196
1197 /* fibonacci_heap::replace_key does busy updating of the
1198 heap that is unnecesarily expensive.
1199 We do lazy increases: after extracting minimum if the key
1200 turns out to be out of date, it is re-inserted into heap
1201 with correct value. */
1202 if (badness < n->get_key ())
1203 {
1204 if (dump_file && (dump_flags & TDF_DETAILS))
1205 {
1206 fprintf (dump_file,
1207 " decreasing badness %s -> %s, %f to %f\n",
1208 edge->caller->dump_name (),
1209 edge->callee->dump_name (),
1210 n->get_key ().to_double (),
1211 badness.to_double ());
1212 }
1213 heap->decrease_key (n, badness);
1214 }
1215 }
1216 else
1217 {
1218 if (dump_file && (dump_flags & TDF_DETAILS))
1219 {
1220 fprintf (dump_file,
1221 " enqueuing call %s -> %s, badness %f\n",
1222 edge->caller->dump_name (),
1223 edge->callee->dump_name (),
1224 badness.to_double ());
1225 }
1226 edge->aux = heap->insert (badness, edge);
1227 }
1228 }
1229
1230
1231 /* NODE was inlined.
1232 All caller edges needs to be resetted because
1233 size estimates change. Similarly callees needs reset
1234 because better context may be known. */
1235
1236 static void
1237 reset_edge_caches (struct cgraph_node *node)
1238 {
1239 struct cgraph_edge *edge;
1240 struct cgraph_edge *e = node->callees;
1241 struct cgraph_node *where = node;
1242 struct ipa_ref *ref;
1243
1244 if (where->global.inlined_to)
1245 where = where->global.inlined_to;
1246
1247 for (edge = where->callers; edge; edge = edge->next_caller)
1248 if (edge->inline_failed)
1249 reset_edge_growth_cache (edge);
1250
1251 FOR_EACH_ALIAS (where, ref)
1252 reset_edge_caches (dyn_cast <cgraph_node *> (ref->referring));
1253
1254 if (!e)
1255 return;
1256
1257 while (true)
1258 if (!e->inline_failed && e->callee->callees)
1259 e = e->callee->callees;
1260 else
1261 {
1262 if (e->inline_failed)
1263 reset_edge_growth_cache (e);
1264 if (e->next_callee)
1265 e = e->next_callee;
1266 else
1267 {
1268 do
1269 {
1270 if (e->caller == node)
1271 return;
1272 e = e->caller->callers;
1273 }
1274 while (!e->next_callee);
1275 e = e->next_callee;
1276 }
1277 }
1278 }
1279
1280 /* Recompute HEAP nodes for each of caller of NODE.
1281 UPDATED_NODES track nodes we already visited, to avoid redundant work.
1282 When CHECK_INLINABLITY_FOR is set, re-check for specified edge that
1283 it is inlinable. Otherwise check all edges. */
1284
1285 static void
1286 update_caller_keys (edge_heap_t *heap, struct cgraph_node *node,
1287 bitmap updated_nodes,
1288 struct cgraph_edge *check_inlinablity_for)
1289 {
1290 struct cgraph_edge *edge;
1291 struct ipa_ref *ref;
1292
1293 if ((!node->alias && !ipa_fn_summaries->get (node)->inlinable)
1294 || node->global.inlined_to)
1295 return;
1296 if (!bitmap_set_bit (updated_nodes, node->uid))
1297 return;
1298
1299 FOR_EACH_ALIAS (node, ref)
1300 {
1301 struct cgraph_node *alias = dyn_cast <cgraph_node *> (ref->referring);
1302 update_caller_keys (heap, alias, updated_nodes, check_inlinablity_for);
1303 }
1304
1305 for (edge = node->callers; edge; edge = edge->next_caller)
1306 if (edge->inline_failed)
1307 {
1308 if (!check_inlinablity_for
1309 || check_inlinablity_for == edge)
1310 {
1311 if (can_inline_edge_p (edge, false)
1312 && want_inline_small_function_p (edge, false))
1313 update_edge_key (heap, edge);
1314 else if (edge->aux)
1315 {
1316 report_inline_failed_reason (edge);
1317 heap->delete_node ((edge_heap_node_t *) edge->aux);
1318 edge->aux = NULL;
1319 }
1320 }
1321 else if (edge->aux)
1322 update_edge_key (heap, edge);
1323 }
1324 }
1325
1326 /* Recompute HEAP nodes for each uninlined call in NODE.
1327 This is used when we know that edge badnesses are going only to increase
1328 (we introduced new call site) and thus all we need is to insert newly
1329 created edges into heap. */
1330
1331 static void
1332 update_callee_keys (edge_heap_t *heap, struct cgraph_node *node,
1333 bitmap updated_nodes)
1334 {
1335 struct cgraph_edge *e = node->callees;
1336
1337 if (!e)
1338 return;
1339 while (true)
1340 if (!e->inline_failed && e->callee->callees)
1341 e = e->callee->callees;
1342 else
1343 {
1344 enum availability avail;
1345 struct cgraph_node *callee;
1346 /* We do not reset callee growth cache here. Since we added a new call,
1347 growth chould have just increased and consequentely badness metric
1348 don't need updating. */
1349 if (e->inline_failed
1350 && (callee = e->callee->ultimate_alias_target (&avail, e->caller))
1351 && ipa_fn_summaries->get (callee)->inlinable
1352 && avail >= AVAIL_AVAILABLE
1353 && !bitmap_bit_p (updated_nodes, callee->uid))
1354 {
1355 if (can_inline_edge_p (e, false)
1356 && want_inline_small_function_p (e, false))
1357 update_edge_key (heap, e);
1358 else if (e->aux)
1359 {
1360 report_inline_failed_reason (e);
1361 heap->delete_node ((edge_heap_node_t *) e->aux);
1362 e->aux = NULL;
1363 }
1364 }
1365 if (e->next_callee)
1366 e = e->next_callee;
1367 else
1368 {
1369 do
1370 {
1371 if (e->caller == node)
1372 return;
1373 e = e->caller->callers;
1374 }
1375 while (!e->next_callee);
1376 e = e->next_callee;
1377 }
1378 }
1379 }
1380
1381 /* Enqueue all recursive calls from NODE into priority queue depending on
1382 how likely we want to recursively inline the call. */
1383
1384 static void
1385 lookup_recursive_calls (struct cgraph_node *node, struct cgraph_node *where,
1386 edge_heap_t *heap)
1387 {
1388 struct cgraph_edge *e;
1389 enum availability avail;
1390
1391 for (e = where->callees; e; e = e->next_callee)
1392 if (e->callee == node
1393 || (e->callee->ultimate_alias_target (&avail, e->caller) == node
1394 && avail > AVAIL_INTERPOSABLE))
1395 heap->insert (-e->sreal_frequency (), e);
1396 for (e = where->callees; e; e = e->next_callee)
1397 if (!e->inline_failed)
1398 lookup_recursive_calls (node, e->callee, heap);
1399 }
1400
1401 /* Decide on recursive inlining: in the case function has recursive calls,
1402 inline until body size reaches given argument. If any new indirect edges
1403 are discovered in the process, add them to *NEW_EDGES, unless NEW_EDGES
1404 is NULL. */
1405
1406 static bool
1407 recursive_inlining (struct cgraph_edge *edge,
1408 vec<cgraph_edge *> *new_edges)
1409 {
1410 int limit = PARAM_VALUE (PARAM_MAX_INLINE_INSNS_RECURSIVE_AUTO);
1411 edge_heap_t heap (sreal::min ());
1412 struct cgraph_node *node;
1413 struct cgraph_edge *e;
1414 struct cgraph_node *master_clone = NULL, *next;
1415 int depth = 0;
1416 int n = 0;
1417
1418 node = edge->caller;
1419 if (node->global.inlined_to)
1420 node = node->global.inlined_to;
1421
1422 if (DECL_DECLARED_INLINE_P (node->decl))
1423 limit = PARAM_VALUE (PARAM_MAX_INLINE_INSNS_RECURSIVE);
1424
1425 /* Make sure that function is small enough to be considered for inlining. */
1426 if (estimate_size_after_inlining (node, edge) >= limit)
1427 return false;
1428 lookup_recursive_calls (node, node, &heap);
1429 if (heap.empty ())
1430 return false;
1431
1432 if (dump_file)
1433 fprintf (dump_file,
1434 " Performing recursive inlining on %s\n",
1435 node->name ());
1436
1437 /* Do the inlining and update list of recursive call during process. */
1438 while (!heap.empty ())
1439 {
1440 struct cgraph_edge *curr = heap.extract_min ();
1441 struct cgraph_node *cnode, *dest = curr->callee;
1442
1443 if (!can_inline_edge_p (curr, true))
1444 continue;
1445
1446 /* MASTER_CLONE is produced in the case we already started modified
1447 the function. Be sure to redirect edge to the original body before
1448 estimating growths otherwise we will be seeing growths after inlining
1449 the already modified body. */
1450 if (master_clone)
1451 {
1452 curr->redirect_callee (master_clone);
1453 reset_edge_growth_cache (curr);
1454 }
1455
1456 if (estimate_size_after_inlining (node, curr) > limit)
1457 {
1458 curr->redirect_callee (dest);
1459 reset_edge_growth_cache (curr);
1460 break;
1461 }
1462
1463 depth = 1;
1464 for (cnode = curr->caller;
1465 cnode->global.inlined_to; cnode = cnode->callers->caller)
1466 if (node->decl
1467 == curr->callee->ultimate_alias_target ()->decl)
1468 depth++;
1469
1470 if (!want_inline_self_recursive_call_p (curr, node, false, depth))
1471 {
1472 curr->redirect_callee (dest);
1473 reset_edge_growth_cache (curr);
1474 continue;
1475 }
1476
1477 if (dump_file)
1478 {
1479 fprintf (dump_file,
1480 " Inlining call of depth %i", depth);
1481 if (node->count.nonzero_p ())
1482 {
1483 fprintf (dump_file, " called approx. %.2f times per call",
1484 (double)curr->count.to_gcov_type ()
1485 / node->count.to_gcov_type ());
1486 }
1487 fprintf (dump_file, "\n");
1488 }
1489 if (!master_clone)
1490 {
1491 /* We need original clone to copy around. */
1492 master_clone = node->create_clone (node->decl, node->count,
1493 false, vNULL, true, NULL, NULL);
1494 for (e = master_clone->callees; e; e = e->next_callee)
1495 if (!e->inline_failed)
1496 clone_inlined_nodes (e, true, false, NULL);
1497 curr->redirect_callee (master_clone);
1498 reset_edge_growth_cache (curr);
1499 }
1500
1501 inline_call (curr, false, new_edges, &overall_size, true);
1502 lookup_recursive_calls (node, curr->callee, &heap);
1503 n++;
1504 }
1505
1506 if (!heap.empty () && dump_file)
1507 fprintf (dump_file, " Recursive inlining growth limit met.\n");
1508
1509 if (!master_clone)
1510 return false;
1511
1512 if (dump_file)
1513 fprintf (dump_file,
1514 "\n Inlined %i times, "
1515 "body grown from size %i to %i, time %f to %f\n", n,
1516 ipa_fn_summaries->get (master_clone)->size,
1517 ipa_fn_summaries->get (node)->size,
1518 ipa_fn_summaries->get (master_clone)->time.to_double (),
1519 ipa_fn_summaries->get (node)->time.to_double ());
1520
1521 /* Remove master clone we used for inlining. We rely that clones inlined
1522 into master clone gets queued just before master clone so we don't
1523 need recursion. */
1524 for (node = symtab->first_function (); node != master_clone;
1525 node = next)
1526 {
1527 next = symtab->next_function (node);
1528 if (node->global.inlined_to == master_clone)
1529 node->remove ();
1530 }
1531 master_clone->remove ();
1532 return true;
1533 }
1534
1535
1536 /* Given whole compilation unit estimate of INSNS, compute how large we can
1537 allow the unit to grow. */
1538
1539 static int
1540 compute_max_insns (int insns)
1541 {
1542 int max_insns = insns;
1543 if (max_insns < PARAM_VALUE (PARAM_LARGE_UNIT_INSNS))
1544 max_insns = PARAM_VALUE (PARAM_LARGE_UNIT_INSNS);
1545
1546 return ((int64_t) max_insns
1547 * (100 + PARAM_VALUE (PARAM_INLINE_UNIT_GROWTH)) / 100);
1548 }
1549
1550
1551 /* Compute badness of all edges in NEW_EDGES and add them to the HEAP. */
1552
1553 static void
1554 add_new_edges_to_heap (edge_heap_t *heap, vec<cgraph_edge *> new_edges)
1555 {
1556 while (new_edges.length () > 0)
1557 {
1558 struct cgraph_edge *edge = new_edges.pop ();
1559
1560 gcc_assert (!edge->aux);
1561 if (edge->inline_failed
1562 && can_inline_edge_p (edge, true)
1563 && want_inline_small_function_p (edge, true))
1564 edge->aux = heap->insert (edge_badness (edge, false), edge);
1565 }
1566 }
1567
1568 /* Remove EDGE from the fibheap. */
1569
1570 static void
1571 heap_edge_removal_hook (struct cgraph_edge *e, void *data)
1572 {
1573 if (e->aux)
1574 {
1575 ((edge_heap_t *)data)->delete_node ((edge_heap_node_t *)e->aux);
1576 e->aux = NULL;
1577 }
1578 }
1579
1580 /* Return true if speculation of edge E seems useful.
1581 If ANTICIPATE_INLINING is true, be conservative and hope that E
1582 may get inlined. */
1583
1584 bool
1585 speculation_useful_p (struct cgraph_edge *e, bool anticipate_inlining)
1586 {
1587 enum availability avail;
1588 struct cgraph_node *target = e->callee->ultimate_alias_target (&avail,
1589 e->caller);
1590 struct cgraph_edge *direct, *indirect;
1591 struct ipa_ref *ref;
1592
1593 gcc_assert (e->speculative && !e->indirect_unknown_callee);
1594
1595 if (!e->maybe_hot_p ())
1596 return false;
1597
1598 /* See if IP optimizations found something potentially useful about the
1599 function. For now we look only for CONST/PURE flags. Almost everything
1600 else we propagate is useless. */
1601 if (avail >= AVAIL_AVAILABLE)
1602 {
1603 int ecf_flags = flags_from_decl_or_type (target->decl);
1604 if (ecf_flags & ECF_CONST)
1605 {
1606 e->speculative_call_info (direct, indirect, ref);
1607 if (!(indirect->indirect_info->ecf_flags & ECF_CONST))
1608 return true;
1609 }
1610 else if (ecf_flags & ECF_PURE)
1611 {
1612 e->speculative_call_info (direct, indirect, ref);
1613 if (!(indirect->indirect_info->ecf_flags & ECF_PURE))
1614 return true;
1615 }
1616 }
1617 /* If we did not managed to inline the function nor redirect
1618 to an ipa-cp clone (that are seen by having local flag set),
1619 it is probably pointless to inline it unless hardware is missing
1620 indirect call predictor. */
1621 if (!anticipate_inlining && e->inline_failed && !target->local.local)
1622 return false;
1623 /* For overwritable targets there is not much to do. */
1624 if (e->inline_failed && !can_inline_edge_p (e, false, true))
1625 return false;
1626 /* OK, speculation seems interesting. */
1627 return true;
1628 }
1629
1630 /* We know that EDGE is not going to be inlined.
1631 See if we can remove speculation. */
1632
1633 static void
1634 resolve_noninline_speculation (edge_heap_t *edge_heap, struct cgraph_edge *edge)
1635 {
1636 if (edge->speculative && !speculation_useful_p (edge, false))
1637 {
1638 struct cgraph_node *node = edge->caller;
1639 struct cgraph_node *where = node->global.inlined_to
1640 ? node->global.inlined_to : node;
1641 auto_bitmap updated_nodes;
1642
1643 if (edge->count.ipa ().initialized_p ())
1644 spec_rem += edge->count.ipa ();
1645 edge->resolve_speculation ();
1646 reset_edge_caches (where);
1647 ipa_update_overall_fn_summary (where);
1648 update_caller_keys (edge_heap, where,
1649 updated_nodes, NULL);
1650 update_callee_keys (edge_heap, where,
1651 updated_nodes);
1652 }
1653 }
1654
1655 /* Return true if NODE should be accounted for overall size estimate.
1656 Skip all nodes optimized for size so we can measure the growth of hot
1657 part of program no matter of the padding. */
1658
1659 bool
1660 inline_account_function_p (struct cgraph_node *node)
1661 {
1662 return (!DECL_EXTERNAL (node->decl)
1663 && !opt_for_fn (node->decl, optimize_size)
1664 && node->frequency != NODE_FREQUENCY_UNLIKELY_EXECUTED);
1665 }
1666
1667 /* Count number of callers of NODE and store it into DATA (that
1668 points to int. Worker for cgraph_for_node_and_aliases. */
1669
1670 static bool
1671 sum_callers (struct cgraph_node *node, void *data)
1672 {
1673 struct cgraph_edge *e;
1674 int *num_calls = (int *)data;
1675
1676 for (e = node->callers; e; e = e->next_caller)
1677 (*num_calls)++;
1678 return false;
1679 }
1680
1681 /* We use greedy algorithm for inlining of small functions:
1682 All inline candidates are put into prioritized heap ordered in
1683 increasing badness.
1684
1685 The inlining of small functions is bounded by unit growth parameters. */
1686
1687 static void
1688 inline_small_functions (void)
1689 {
1690 struct cgraph_node *node;
1691 struct cgraph_edge *edge;
1692 edge_heap_t edge_heap (sreal::min ());
1693 auto_bitmap updated_nodes;
1694 int min_size, max_size;
1695 auto_vec<cgraph_edge *> new_indirect_edges;
1696 int initial_size = 0;
1697 struct cgraph_node **order = XCNEWVEC (cgraph_node *, symtab->cgraph_count);
1698 struct cgraph_edge_hook_list *edge_removal_hook_holder;
1699 new_indirect_edges.create (8);
1700
1701 edge_removal_hook_holder
1702 = symtab->add_edge_removal_hook (&heap_edge_removal_hook, &edge_heap);
1703
1704 /* Compute overall unit size and other global parameters used by badness
1705 metrics. */
1706
1707 max_count = profile_count::uninitialized ();
1708 ipa_reduced_postorder (order, true, true, NULL);
1709 free (order);
1710
1711 FOR_EACH_DEFINED_FUNCTION (node)
1712 if (!node->global.inlined_to)
1713 {
1714 if (!node->alias && node->analyzed
1715 && (node->has_gimple_body_p () || node->thunk.thunk_p)
1716 && opt_for_fn (node->decl, optimize))
1717 {
1718 struct ipa_fn_summary *info = ipa_fn_summaries->get (node);
1719 struct ipa_dfs_info *dfs = (struct ipa_dfs_info *) node->aux;
1720
1721 /* Do not account external functions, they will be optimized out
1722 if not inlined. Also only count the non-cold portion of program. */
1723 if (inline_account_function_p (node))
1724 initial_size += info->size;
1725 info->growth = estimate_growth (node);
1726
1727 int num_calls = 0;
1728 node->call_for_symbol_and_aliases (sum_callers, &num_calls,
1729 true);
1730 if (num_calls == 1)
1731 info->single_caller = true;
1732 if (dfs && dfs->next_cycle)
1733 {
1734 struct cgraph_node *n2;
1735 int id = dfs->scc_no + 1;
1736 for (n2 = node; n2;
1737 n2 = ((struct ipa_dfs_info *) node->aux)->next_cycle)
1738 if (opt_for_fn (n2->decl, optimize))
1739 {
1740 struct ipa_fn_summary *info2 = ipa_fn_summaries->get (n2);
1741 if (info2->scc_no)
1742 break;
1743 info2->scc_no = id;
1744 }
1745 }
1746 }
1747
1748 for (edge = node->callers; edge; edge = edge->next_caller)
1749 max_count = max_count.max (edge->count.ipa ());
1750 }
1751 ipa_free_postorder_info ();
1752 initialize_growth_caches ();
1753
1754 if (dump_file)
1755 fprintf (dump_file,
1756 "\nDeciding on inlining of small functions. Starting with size %i.\n",
1757 initial_size);
1758
1759 overall_size = initial_size;
1760 max_size = compute_max_insns (overall_size);
1761 min_size = overall_size;
1762
1763 /* Populate the heap with all edges we might inline. */
1764
1765 FOR_EACH_DEFINED_FUNCTION (node)
1766 {
1767 bool update = false;
1768 struct cgraph_edge *next = NULL;
1769 bool has_speculative = false;
1770
1771 if (!opt_for_fn (node->decl, optimize))
1772 continue;
1773
1774 if (dump_file)
1775 fprintf (dump_file, "Enqueueing calls in %s.\n", node->dump_name ());
1776
1777 for (edge = node->callees; edge; edge = next)
1778 {
1779 next = edge->next_callee;
1780 if (edge->inline_failed
1781 && !edge->aux
1782 && can_inline_edge_p (edge, true)
1783 && want_inline_small_function_p (edge, true)
1784 && edge->inline_failed)
1785 {
1786 gcc_assert (!edge->aux);
1787 update_edge_key (&edge_heap, edge);
1788 }
1789 if (edge->speculative)
1790 has_speculative = true;
1791 }
1792 if (has_speculative)
1793 for (edge = node->callees; edge; edge = next)
1794 if (edge->speculative && !speculation_useful_p (edge,
1795 edge->aux != NULL))
1796 {
1797 edge->resolve_speculation ();
1798 update = true;
1799 }
1800 if (update)
1801 {
1802 struct cgraph_node *where = node->global.inlined_to
1803 ? node->global.inlined_to : node;
1804 ipa_update_overall_fn_summary (where);
1805 reset_edge_caches (where);
1806 update_caller_keys (&edge_heap, where,
1807 updated_nodes, NULL);
1808 update_callee_keys (&edge_heap, where,
1809 updated_nodes);
1810 bitmap_clear (updated_nodes);
1811 }
1812 }
1813
1814 gcc_assert (in_lto_p
1815 || !(max_count > 0)
1816 || (profile_info && flag_branch_probabilities));
1817
1818 while (!edge_heap.empty ())
1819 {
1820 int old_size = overall_size;
1821 struct cgraph_node *where, *callee;
1822 sreal badness = edge_heap.min_key ();
1823 sreal current_badness;
1824 int growth;
1825
1826 edge = edge_heap.extract_min ();
1827 gcc_assert (edge->aux);
1828 edge->aux = NULL;
1829 if (!edge->inline_failed || !edge->callee->analyzed)
1830 continue;
1831
1832 #if CHECKING_P
1833 /* Be sure that caches are maintained consistent.
1834 This check is affected by scaling roundoff errors when compiling for
1835 IPA this we skip it in that case. */
1836 if (!edge->callee->count.ipa_p ()
1837 && (!max_count.initialized_p () || !max_count.nonzero_p ()))
1838 {
1839 sreal cached_badness = edge_badness (edge, false);
1840
1841 int old_size_est = estimate_edge_size (edge);
1842 sreal old_time_est = estimate_edge_time (edge);
1843 int old_hints_est = estimate_edge_hints (edge);
1844
1845 reset_edge_growth_cache (edge);
1846 gcc_assert (old_size_est == estimate_edge_size (edge));
1847 gcc_assert (old_time_est == estimate_edge_time (edge));
1848 /* FIXME:
1849
1850 gcc_assert (old_hints_est == estimate_edge_hints (edge));
1851
1852 fails with profile feedback because some hints depends on
1853 maybe_hot_edge_p predicate and because callee gets inlined to other
1854 calls, the edge may become cold.
1855 This ought to be fixed by computing relative probabilities
1856 for given invocation but that will be better done once whole
1857 code is converted to sreals. Disable for now and revert to "wrong"
1858 value so enable/disable checking paths agree. */
1859 edge_growth_cache[edge->uid].hints = old_hints_est + 1;
1860
1861 /* When updating the edge costs, we only decrease badness in the keys.
1862 Increases of badness are handled lazilly; when we see key with out
1863 of date value on it, we re-insert it now. */
1864 current_badness = edge_badness (edge, false);
1865 gcc_assert (cached_badness == current_badness);
1866 gcc_assert (current_badness >= badness);
1867 }
1868 #else
1869 current_badness = edge_badness (edge, false);
1870 #endif
1871 if (current_badness != badness)
1872 {
1873 if (edge_heap.min () && current_badness > edge_heap.min_key ())
1874 {
1875 edge->aux = edge_heap.insert (current_badness, edge);
1876 continue;
1877 }
1878 else
1879 badness = current_badness;
1880 }
1881
1882 if (!can_inline_edge_p (edge, true))
1883 {
1884 resolve_noninline_speculation (&edge_heap, edge);
1885 continue;
1886 }
1887
1888 callee = edge->callee->ultimate_alias_target ();
1889 growth = estimate_edge_growth (edge);
1890 if (dump_file)
1891 {
1892 fprintf (dump_file,
1893 "\nConsidering %s with %i size\n",
1894 callee->dump_name (),
1895 ipa_fn_summaries->get (callee)->size);
1896 fprintf (dump_file,
1897 " to be inlined into %s in %s:%i\n"
1898 " Estimated badness is %f, frequency %.2f.\n",
1899 edge->caller->dump_name (),
1900 edge->call_stmt
1901 && (LOCATION_LOCUS (gimple_location ((const gimple *)
1902 edge->call_stmt))
1903 > BUILTINS_LOCATION)
1904 ? gimple_filename ((const gimple *) edge->call_stmt)
1905 : "unknown",
1906 edge->call_stmt
1907 ? gimple_lineno ((const gimple *) edge->call_stmt)
1908 : -1,
1909 badness.to_double (),
1910 edge->sreal_frequency ().to_double ());
1911 if (edge->count.ipa ().initialized_p ())
1912 {
1913 fprintf (dump_file, " Called ");
1914 edge->count.ipa ().dump (dump_file);
1915 fprintf (dump_file, " times\n");
1916 }
1917 if (dump_flags & TDF_DETAILS)
1918 edge_badness (edge, true);
1919 }
1920
1921 if (overall_size + growth > max_size
1922 && !DECL_DISREGARD_INLINE_LIMITS (callee->decl))
1923 {
1924 edge->inline_failed = CIF_INLINE_UNIT_GROWTH_LIMIT;
1925 report_inline_failed_reason (edge);
1926 resolve_noninline_speculation (&edge_heap, edge);
1927 continue;
1928 }
1929
1930 if (!want_inline_small_function_p (edge, true))
1931 {
1932 resolve_noninline_speculation (&edge_heap, edge);
1933 continue;
1934 }
1935
1936 /* Heuristics for inlining small functions work poorly for
1937 recursive calls where we do effects similar to loop unrolling.
1938 When inlining such edge seems profitable, leave decision on
1939 specific inliner. */
1940 if (edge->recursive_p ())
1941 {
1942 where = edge->caller;
1943 if (where->global.inlined_to)
1944 where = where->global.inlined_to;
1945 if (!recursive_inlining (edge,
1946 opt_for_fn (edge->caller->decl,
1947 flag_indirect_inlining)
1948 ? &new_indirect_edges : NULL))
1949 {
1950 edge->inline_failed = CIF_RECURSIVE_INLINING;
1951 resolve_noninline_speculation (&edge_heap, edge);
1952 continue;
1953 }
1954 reset_edge_caches (where);
1955 /* Recursive inliner inlines all recursive calls of the function
1956 at once. Consequently we need to update all callee keys. */
1957 if (opt_for_fn (edge->caller->decl, flag_indirect_inlining))
1958 add_new_edges_to_heap (&edge_heap, new_indirect_edges);
1959 update_callee_keys (&edge_heap, where, updated_nodes);
1960 bitmap_clear (updated_nodes);
1961 }
1962 else
1963 {
1964 struct cgraph_node *outer_node = NULL;
1965 int depth = 0;
1966
1967 /* Consider the case where self recursive function A is inlined
1968 into B. This is desired optimization in some cases, since it
1969 leads to effect similar of loop peeling and we might completely
1970 optimize out the recursive call. However we must be extra
1971 selective. */
1972
1973 where = edge->caller;
1974 while (where->global.inlined_to)
1975 {
1976 if (where->decl == callee->decl)
1977 outer_node = where, depth++;
1978 where = where->callers->caller;
1979 }
1980 if (outer_node
1981 && !want_inline_self_recursive_call_p (edge, outer_node,
1982 true, depth))
1983 {
1984 edge->inline_failed
1985 = (DECL_DISREGARD_INLINE_LIMITS (edge->callee->decl)
1986 ? CIF_RECURSIVE_INLINING : CIF_UNSPECIFIED);
1987 resolve_noninline_speculation (&edge_heap, edge);
1988 continue;
1989 }
1990 else if (depth && dump_file)
1991 fprintf (dump_file, " Peeling recursion with depth %i\n", depth);
1992
1993 gcc_checking_assert (!callee->global.inlined_to);
1994 inline_call (edge, true, &new_indirect_edges, &overall_size, true);
1995 add_new_edges_to_heap (&edge_heap, new_indirect_edges);
1996
1997 reset_edge_caches (edge->callee);
1998
1999 update_callee_keys (&edge_heap, where, updated_nodes);
2000 }
2001 where = edge->caller;
2002 if (where->global.inlined_to)
2003 where = where->global.inlined_to;
2004
2005 /* Our profitability metric can depend on local properties
2006 such as number of inlinable calls and size of the function body.
2007 After inlining these properties might change for the function we
2008 inlined into (since it's body size changed) and for the functions
2009 called by function we inlined (since number of it inlinable callers
2010 might change). */
2011 update_caller_keys (&edge_heap, where, updated_nodes, NULL);
2012 /* Offline copy count has possibly changed, recompute if profile is
2013 available. */
2014 struct cgraph_node *n = cgraph_node::get (edge->callee->decl);
2015 if (n != edge->callee && n->analyzed && n->count.ipa ().initialized_p ())
2016 update_callee_keys (&edge_heap, n, updated_nodes);
2017 bitmap_clear (updated_nodes);
2018
2019 if (dump_file)
2020 {
2021 fprintf (dump_file,
2022 " Inlined %s into %s which now has time %f and size %i, "
2023 "net change of %+i.\n",
2024 xstrdup_for_dump (edge->callee->name ()),
2025 xstrdup_for_dump (edge->caller->name ()),
2026 ipa_fn_summaries->get (edge->caller)->time.to_double (),
2027 ipa_fn_summaries->get (edge->caller)->size,
2028 overall_size - old_size);
2029 }
2030 if (min_size > overall_size)
2031 {
2032 min_size = overall_size;
2033 max_size = compute_max_insns (min_size);
2034
2035 if (dump_file)
2036 fprintf (dump_file, "New minimal size reached: %i\n", min_size);
2037 }
2038 }
2039
2040 free_growth_caches ();
2041 if (dump_file)
2042 fprintf (dump_file,
2043 "Unit growth for small function inlining: %i->%i (%i%%)\n",
2044 initial_size, overall_size,
2045 initial_size ? overall_size * 100 / (initial_size) - 100: 0);
2046 symtab->remove_edge_removal_hook (edge_removal_hook_holder);
2047 }
2048
2049 /* Flatten NODE. Performed both during early inlining and
2050 at IPA inlining time. */
2051
2052 static void
2053 flatten_function (struct cgraph_node *node, bool early)
2054 {
2055 struct cgraph_edge *e;
2056
2057 /* We shouldn't be called recursively when we are being processed. */
2058 gcc_assert (node->aux == NULL);
2059
2060 node->aux = (void *) node;
2061
2062 for (e = node->callees; e; e = e->next_callee)
2063 {
2064 struct cgraph_node *orig_callee;
2065 struct cgraph_node *callee = e->callee->ultimate_alias_target ();
2066
2067 /* We've hit cycle? It is time to give up. */
2068 if (callee->aux)
2069 {
2070 if (dump_file)
2071 fprintf (dump_file,
2072 "Not inlining %s into %s to avoid cycle.\n",
2073 xstrdup_for_dump (callee->name ()),
2074 xstrdup_for_dump (e->caller->name ()));
2075 e->inline_failed = CIF_RECURSIVE_INLINING;
2076 continue;
2077 }
2078
2079 /* When the edge is already inlined, we just need to recurse into
2080 it in order to fully flatten the leaves. */
2081 if (!e->inline_failed)
2082 {
2083 flatten_function (callee, early);
2084 continue;
2085 }
2086
2087 /* Flatten attribute needs to be processed during late inlining. For
2088 extra code quality we however do flattening during early optimization,
2089 too. */
2090 if (!early
2091 ? !can_inline_edge_p (e, true)
2092 : !can_early_inline_edge_p (e))
2093 continue;
2094
2095 if (e->recursive_p ())
2096 {
2097 if (dump_file)
2098 fprintf (dump_file, "Not inlining: recursive call.\n");
2099 continue;
2100 }
2101
2102 if (gimple_in_ssa_p (DECL_STRUCT_FUNCTION (node->decl))
2103 != gimple_in_ssa_p (DECL_STRUCT_FUNCTION (callee->decl)))
2104 {
2105 if (dump_file)
2106 fprintf (dump_file, "Not inlining: SSA form does not match.\n");
2107 continue;
2108 }
2109
2110 /* Inline the edge and flatten the inline clone. Avoid
2111 recursing through the original node if the node was cloned. */
2112 if (dump_file)
2113 fprintf (dump_file, " Inlining %s into %s.\n",
2114 xstrdup_for_dump (callee->name ()),
2115 xstrdup_for_dump (e->caller->name ()));
2116 orig_callee = callee;
2117 inline_call (e, true, NULL, NULL, false);
2118 if (e->callee != orig_callee)
2119 orig_callee->aux = (void *) node;
2120 flatten_function (e->callee, early);
2121 if (e->callee != orig_callee)
2122 orig_callee->aux = NULL;
2123 }
2124
2125 node->aux = NULL;
2126 if (!node->global.inlined_to)
2127 ipa_update_overall_fn_summary (node);
2128 }
2129
2130 /* Inline NODE to all callers. Worker for cgraph_for_node_and_aliases.
2131 DATA points to number of calls originally found so we avoid infinite
2132 recursion. */
2133
2134 static bool
2135 inline_to_all_callers_1 (struct cgraph_node *node, void *data,
2136 hash_set<cgraph_node *> *callers)
2137 {
2138 int *num_calls = (int *)data;
2139 bool callee_removed = false;
2140
2141 while (node->callers && !node->global.inlined_to)
2142 {
2143 struct cgraph_node *caller = node->callers->caller;
2144
2145 if (!can_inline_edge_p (node->callers, true)
2146 || node->callers->recursive_p ())
2147 {
2148 if (dump_file)
2149 fprintf (dump_file, "Uninlinable call found; giving up.\n");
2150 *num_calls = 0;
2151 return false;
2152 }
2153
2154 if (dump_file)
2155 {
2156 fprintf (dump_file,
2157 "\nInlining %s size %i.\n",
2158 node->name (),
2159 ipa_fn_summaries->get (node)->size);
2160 fprintf (dump_file,
2161 " Called once from %s %i insns.\n",
2162 node->callers->caller->name (),
2163 ipa_fn_summaries->get (node->callers->caller)->size);
2164 }
2165
2166 /* Remember which callers we inlined to, delaying updating the
2167 overall summary. */
2168 callers->add (node->callers->caller);
2169 inline_call (node->callers, true, NULL, NULL, false, &callee_removed);
2170 if (dump_file)
2171 fprintf (dump_file,
2172 " Inlined into %s which now has %i size\n",
2173 caller->name (),
2174 ipa_fn_summaries->get (caller)->size);
2175 if (!(*num_calls)--)
2176 {
2177 if (dump_file)
2178 fprintf (dump_file, "New calls found; giving up.\n");
2179 return callee_removed;
2180 }
2181 if (callee_removed)
2182 return true;
2183 }
2184 return false;
2185 }
2186
2187 /* Wrapper around inline_to_all_callers_1 doing delayed overall summary
2188 update. */
2189
2190 static bool
2191 inline_to_all_callers (struct cgraph_node *node, void *data)
2192 {
2193 hash_set<cgraph_node *> callers;
2194 bool res = inline_to_all_callers_1 (node, data, &callers);
2195 /* Perform the delayed update of the overall summary of all callers
2196 processed. This avoids quadratic behavior in the cases where
2197 we have a lot of calls to the same function. */
2198 for (hash_set<cgraph_node *>::iterator i = callers.begin ();
2199 i != callers.end (); ++i)
2200 ipa_update_overall_fn_summary (*i);
2201 return res;
2202 }
2203
2204 /* Output overall time estimate. */
2205 static void
2206 dump_overall_stats (void)
2207 {
2208 sreal sum_weighted = 0, sum = 0;
2209 struct cgraph_node *node;
2210
2211 FOR_EACH_DEFINED_FUNCTION (node)
2212 if (!node->global.inlined_to
2213 && !node->alias)
2214 {
2215 sreal time = ipa_fn_summaries->get (node)->time;
2216 sum += time;
2217 if (node->count.ipa ().initialized_p ())
2218 sum_weighted += time * node->count.ipa ().to_gcov_type ();
2219 }
2220 fprintf (dump_file, "Overall time estimate: "
2221 "%f weighted by profile: "
2222 "%f\n", sum.to_double (), sum_weighted.to_double ());
2223 }
2224
2225 /* Output some useful stats about inlining. */
2226
2227 static void
2228 dump_inline_stats (void)
2229 {
2230 int64_t inlined_cnt = 0, inlined_indir_cnt = 0;
2231 int64_t inlined_virt_cnt = 0, inlined_virt_indir_cnt = 0;
2232 int64_t noninlined_cnt = 0, noninlined_indir_cnt = 0;
2233 int64_t noninlined_virt_cnt = 0, noninlined_virt_indir_cnt = 0;
2234 int64_t inlined_speculative = 0, inlined_speculative_ply = 0;
2235 int64_t indirect_poly_cnt = 0, indirect_cnt = 0;
2236 int64_t reason[CIF_N_REASONS][2];
2237 sreal reason_freq[CIF_N_REASONS];
2238 int i;
2239 struct cgraph_node *node;
2240
2241 memset (reason, 0, sizeof (reason));
2242 for (i=0; i < CIF_N_REASONS; i++)
2243 reason_freq[i] = 0;
2244 FOR_EACH_DEFINED_FUNCTION (node)
2245 {
2246 struct cgraph_edge *e;
2247 for (e = node->callees; e; e = e->next_callee)
2248 {
2249 if (e->inline_failed)
2250 {
2251 if (e->count.ipa ().initialized_p ())
2252 reason[(int) e->inline_failed][0] += e->count.ipa ().to_gcov_type ();
2253 reason_freq[(int) e->inline_failed] += e->sreal_frequency ();
2254 reason[(int) e->inline_failed][1] ++;
2255 if (DECL_VIRTUAL_P (e->callee->decl)
2256 && e->count.ipa ().initialized_p ())
2257 {
2258 if (e->indirect_inlining_edge)
2259 noninlined_virt_indir_cnt += e->count.ipa ().to_gcov_type ();
2260 else
2261 noninlined_virt_cnt += e->count.ipa ().to_gcov_type ();
2262 }
2263 else if (e->count.ipa ().initialized_p ())
2264 {
2265 if (e->indirect_inlining_edge)
2266 noninlined_indir_cnt += e->count.ipa ().to_gcov_type ();
2267 else
2268 noninlined_cnt += e->count.ipa ().to_gcov_type ();
2269 }
2270 }
2271 else if (e->count.ipa ().initialized_p ())
2272 {
2273 if (e->speculative)
2274 {
2275 if (DECL_VIRTUAL_P (e->callee->decl))
2276 inlined_speculative_ply += e->count.ipa ().to_gcov_type ();
2277 else
2278 inlined_speculative += e->count.ipa ().to_gcov_type ();
2279 }
2280 else if (DECL_VIRTUAL_P (e->callee->decl))
2281 {
2282 if (e->indirect_inlining_edge)
2283 inlined_virt_indir_cnt += e->count.ipa ().to_gcov_type ();
2284 else
2285 inlined_virt_cnt += e->count.ipa ().to_gcov_type ();
2286 }
2287 else
2288 {
2289 if (e->indirect_inlining_edge)
2290 inlined_indir_cnt += e->count.ipa ().to_gcov_type ();
2291 else
2292 inlined_cnt += e->count.ipa ().to_gcov_type ();
2293 }
2294 }
2295 }
2296 for (e = node->indirect_calls; e; e = e->next_callee)
2297 if (e->indirect_info->polymorphic
2298 & e->count.ipa ().initialized_p ())
2299 indirect_poly_cnt += e->count.ipa ().to_gcov_type ();
2300 else if (e->count.ipa ().initialized_p ())
2301 indirect_cnt += e->count.ipa ().to_gcov_type ();
2302 }
2303 if (max_count.initialized_p ())
2304 {
2305 fprintf (dump_file,
2306 "Inlined %" PRId64 " + speculative "
2307 "%" PRId64 " + speculative polymorphic "
2308 "%" PRId64 " + previously indirect "
2309 "%" PRId64 " + virtual "
2310 "%" PRId64 " + virtual and previously indirect "
2311 "%" PRId64 "\n" "Not inlined "
2312 "%" PRId64 " + previously indirect "
2313 "%" PRId64 " + virtual "
2314 "%" PRId64 " + virtual and previously indirect "
2315 "%" PRId64 " + stil indirect "
2316 "%" PRId64 " + still indirect polymorphic "
2317 "%" PRId64 "\n", inlined_cnt,
2318 inlined_speculative, inlined_speculative_ply,
2319 inlined_indir_cnt, inlined_virt_cnt, inlined_virt_indir_cnt,
2320 noninlined_cnt, noninlined_indir_cnt, noninlined_virt_cnt,
2321 noninlined_virt_indir_cnt, indirect_cnt, indirect_poly_cnt);
2322 fprintf (dump_file, "Removed speculations ");
2323 spec_rem.dump (dump_file);
2324 fprintf (dump_file, "\n");
2325 }
2326 dump_overall_stats ();
2327 fprintf (dump_file, "\nWhy inlining failed?\n");
2328 for (i = 0; i < CIF_N_REASONS; i++)
2329 if (reason[i][1])
2330 fprintf (dump_file, "%-50s: %8i calls, %8f freq, %" PRId64" count\n",
2331 cgraph_inline_failed_string ((cgraph_inline_failed_t) i),
2332 (int) reason[i][1], reason_freq[i].to_double (), reason[i][0]);
2333 }
2334
2335 /* Decide on the inlining. We do so in the topological order to avoid
2336 expenses on updating data structures. */
2337
2338 static unsigned int
2339 ipa_inline (void)
2340 {
2341 struct cgraph_node *node;
2342 int nnodes;
2343 struct cgraph_node **order;
2344 int i;
2345 int cold;
2346 bool remove_functions = false;
2347
2348 order = XCNEWVEC (struct cgraph_node *, symtab->cgraph_count);
2349
2350 if (dump_file)
2351 ipa_dump_fn_summaries (dump_file);
2352
2353 nnodes = ipa_reverse_postorder (order);
2354 spec_rem = profile_count::zero ();
2355
2356 FOR_EACH_FUNCTION (node)
2357 {
2358 node->aux = 0;
2359
2360 /* Recompute the default reasons for inlining because they may have
2361 changed during merging. */
2362 if (in_lto_p)
2363 {
2364 for (cgraph_edge *e = node->callees; e; e = e->next_callee)
2365 {
2366 gcc_assert (e->inline_failed);
2367 initialize_inline_failed (e);
2368 }
2369 for (cgraph_edge *e = node->indirect_calls; e; e = e->next_callee)
2370 initialize_inline_failed (e);
2371 }
2372 }
2373
2374 if (dump_file)
2375 fprintf (dump_file, "\nFlattening functions:\n");
2376
2377 /* In the first pass handle functions to be flattened. Do this with
2378 a priority so none of our later choices will make this impossible. */
2379 for (i = nnodes - 1; i >= 0; i--)
2380 {
2381 node = order[i];
2382
2383 /* Handle nodes to be flattened.
2384 Ideally when processing callees we stop inlining at the
2385 entry of cycles, possibly cloning that entry point and
2386 try to flatten itself turning it into a self-recursive
2387 function. */
2388 if (lookup_attribute ("flatten",
2389 DECL_ATTRIBUTES (node->decl)) != NULL)
2390 {
2391 if (dump_file)
2392 fprintf (dump_file,
2393 "Flattening %s\n", node->name ());
2394 flatten_function (node, false);
2395 }
2396 }
2397 if (dump_file)
2398 dump_overall_stats ();
2399
2400 inline_small_functions ();
2401
2402 gcc_assert (symtab->state == IPA_SSA);
2403 symtab->state = IPA_SSA_AFTER_INLINING;
2404 /* Do first after-inlining removal. We want to remove all "stale" extern
2405 inline functions and virtual functions so we really know what is called
2406 once. */
2407 symtab->remove_unreachable_nodes (dump_file);
2408 free (order);
2409
2410 /* Inline functions with a property that after inlining into all callers the
2411 code size will shrink because the out-of-line copy is eliminated.
2412 We do this regardless on the callee size as long as function growth limits
2413 are met. */
2414 if (dump_file)
2415 fprintf (dump_file,
2416 "\nDeciding on functions to be inlined into all callers and "
2417 "removing useless speculations:\n");
2418
2419 /* Inlining one function called once has good chance of preventing
2420 inlining other function into the same callee. Ideally we should
2421 work in priority order, but probably inlining hot functions first
2422 is good cut without the extra pain of maintaining the queue.
2423
2424 ??? this is not really fitting the bill perfectly: inlining function
2425 into callee often leads to better optimization of callee due to
2426 increased context for optimization.
2427 For example if main() function calls a function that outputs help
2428 and then function that does the main optmization, we should inline
2429 the second with priority even if both calls are cold by themselves.
2430
2431 We probably want to implement new predicate replacing our use of
2432 maybe_hot_edge interpreted as maybe_hot_edge || callee is known
2433 to be hot. */
2434 for (cold = 0; cold <= 1; cold ++)
2435 {
2436 FOR_EACH_DEFINED_FUNCTION (node)
2437 {
2438 struct cgraph_edge *edge, *next;
2439 bool update=false;
2440
2441 if (!opt_for_fn (node->decl, optimize)
2442 || !opt_for_fn (node->decl, flag_inline_functions_called_once))
2443 continue;
2444
2445 for (edge = node->callees; edge; edge = next)
2446 {
2447 next = edge->next_callee;
2448 if (edge->speculative && !speculation_useful_p (edge, false))
2449 {
2450 if (edge->count.ipa ().initialized_p ())
2451 spec_rem += edge->count.ipa ();
2452 edge->resolve_speculation ();
2453 update = true;
2454 remove_functions = true;
2455 }
2456 }
2457 if (update)
2458 {
2459 struct cgraph_node *where = node->global.inlined_to
2460 ? node->global.inlined_to : node;
2461 reset_edge_caches (where);
2462 ipa_update_overall_fn_summary (where);
2463 }
2464 if (want_inline_function_to_all_callers_p (node, cold))
2465 {
2466 int num_calls = 0;
2467 node->call_for_symbol_and_aliases (sum_callers, &num_calls,
2468 true);
2469 while (node->call_for_symbol_and_aliases
2470 (inline_to_all_callers, &num_calls, true))
2471 ;
2472 remove_functions = true;
2473 }
2474 }
2475 }
2476
2477 /* Free ipa-prop structures if they are no longer needed. */
2478 ipa_free_all_structures_after_iinln ();
2479
2480 if (dump_file)
2481 {
2482 fprintf (dump_file,
2483 "\nInlined %i calls, eliminated %i functions\n\n",
2484 ncalls_inlined, nfunctions_inlined);
2485 dump_inline_stats ();
2486 }
2487
2488 if (dump_file)
2489 ipa_dump_fn_summaries (dump_file);
2490 return remove_functions ? TODO_remove_functions : 0;
2491 }
2492
2493 /* Inline always-inline function calls in NODE. */
2494
2495 static bool
2496 inline_always_inline_functions (struct cgraph_node *node)
2497 {
2498 struct cgraph_edge *e;
2499 bool inlined = false;
2500
2501 for (e = node->callees; e; e = e->next_callee)
2502 {
2503 struct cgraph_node *callee = e->callee->ultimate_alias_target ();
2504 if (!DECL_DISREGARD_INLINE_LIMITS (callee->decl))
2505 continue;
2506
2507 if (e->recursive_p ())
2508 {
2509 if (dump_file)
2510 fprintf (dump_file, " Not inlining recursive call to %s.\n",
2511 e->callee->name ());
2512 e->inline_failed = CIF_RECURSIVE_INLINING;
2513 continue;
2514 }
2515
2516 if (!can_early_inline_edge_p (e))
2517 {
2518 /* Set inlined to true if the callee is marked "always_inline" but
2519 is not inlinable. This will allow flagging an error later in
2520 expand_call_inline in tree-inline.c. */
2521 if (lookup_attribute ("always_inline",
2522 DECL_ATTRIBUTES (callee->decl)) != NULL)
2523 inlined = true;
2524 continue;
2525 }
2526
2527 if (dump_file)
2528 fprintf (dump_file, " Inlining %s into %s (always_inline).\n",
2529 xstrdup_for_dump (e->callee->name ()),
2530 xstrdup_for_dump (e->caller->name ()));
2531 inline_call (e, true, NULL, NULL, false);
2532 inlined = true;
2533 }
2534 if (inlined)
2535 ipa_update_overall_fn_summary (node);
2536
2537 return inlined;
2538 }
2539
2540 /* Decide on the inlining. We do so in the topological order to avoid
2541 expenses on updating data structures. */
2542
2543 static bool
2544 early_inline_small_functions (struct cgraph_node *node)
2545 {
2546 struct cgraph_edge *e;
2547 bool inlined = false;
2548
2549 for (e = node->callees; e; e = e->next_callee)
2550 {
2551 struct cgraph_node *callee = e->callee->ultimate_alias_target ();
2552 if (!ipa_fn_summaries->get (callee)->inlinable
2553 || !e->inline_failed)
2554 continue;
2555
2556 /* Do not consider functions not declared inline. */
2557 if (!DECL_DECLARED_INLINE_P (callee->decl)
2558 && !opt_for_fn (node->decl, flag_inline_small_functions)
2559 && !opt_for_fn (node->decl, flag_inline_functions))
2560 continue;
2561
2562 if (dump_file)
2563 fprintf (dump_file, "Considering inline candidate %s.\n",
2564 callee->name ());
2565
2566 if (!can_early_inline_edge_p (e))
2567 continue;
2568
2569 if (e->recursive_p ())
2570 {
2571 if (dump_file)
2572 fprintf (dump_file, " Not inlining: recursive call.\n");
2573 continue;
2574 }
2575
2576 if (!want_early_inline_function_p (e))
2577 continue;
2578
2579 if (dump_file)
2580 fprintf (dump_file, " Inlining %s into %s.\n",
2581 xstrdup_for_dump (callee->name ()),
2582 xstrdup_for_dump (e->caller->name ()));
2583 inline_call (e, true, NULL, NULL, false);
2584 inlined = true;
2585 }
2586
2587 if (inlined)
2588 ipa_update_overall_fn_summary (node);
2589
2590 return inlined;
2591 }
2592
2593 unsigned int
2594 early_inliner (function *fun)
2595 {
2596 struct cgraph_node *node = cgraph_node::get (current_function_decl);
2597 struct cgraph_edge *edge;
2598 unsigned int todo = 0;
2599 int iterations = 0;
2600 bool inlined = false;
2601
2602 if (seen_error ())
2603 return 0;
2604
2605 /* Do nothing if datastructures for ipa-inliner are already computed. This
2606 happens when some pass decides to construct new function and
2607 cgraph_add_new_function calls lowering passes and early optimization on
2608 it. This may confuse ourself when early inliner decide to inline call to
2609 function clone, because function clones don't have parameter list in
2610 ipa-prop matching their signature. */
2611 if (ipa_node_params_sum)
2612 return 0;
2613
2614 if (flag_checking)
2615 node->verify ();
2616 node->remove_all_references ();
2617
2618 /* Rebuild this reference because it dosn't depend on
2619 function's body and it's required to pass cgraph_node
2620 verification. */
2621 if (node->instrumented_version
2622 && !node->instrumentation_clone)
2623 node->create_reference (node->instrumented_version, IPA_REF_CHKP, NULL);
2624
2625 /* Even when not optimizing or not inlining inline always-inline
2626 functions. */
2627 inlined = inline_always_inline_functions (node);
2628
2629 if (!optimize
2630 || flag_no_inline
2631 || !flag_early_inlining
2632 /* Never inline regular functions into always-inline functions
2633 during incremental inlining. This sucks as functions calling
2634 always inline functions will get less optimized, but at the
2635 same time inlining of functions calling always inline
2636 function into an always inline function might introduce
2637 cycles of edges to be always inlined in the callgraph.
2638
2639 We might want to be smarter and just avoid this type of inlining. */
2640 || (DECL_DISREGARD_INLINE_LIMITS (node->decl)
2641 && lookup_attribute ("always_inline",
2642 DECL_ATTRIBUTES (node->decl))))
2643 ;
2644 else if (lookup_attribute ("flatten",
2645 DECL_ATTRIBUTES (node->decl)) != NULL)
2646 {
2647 /* When the function is marked to be flattened, recursively inline
2648 all calls in it. */
2649 if (dump_file)
2650 fprintf (dump_file,
2651 "Flattening %s\n", node->name ());
2652 flatten_function (node, true);
2653 inlined = true;
2654 }
2655 else
2656 {
2657 /* If some always_inline functions was inlined, apply the changes.
2658 This way we will not account always inline into growth limits and
2659 moreover we will inline calls from always inlines that we skipped
2660 previously because of conditional above. */
2661 if (inlined)
2662 {
2663 timevar_push (TV_INTEGRATION);
2664 todo |= optimize_inline_calls (current_function_decl);
2665 /* optimize_inline_calls call above might have introduced new
2666 statements that don't have inline parameters computed. */
2667 for (edge = node->callees; edge; edge = edge->next_callee)
2668 {
2669 struct ipa_call_summary *es = ipa_call_summaries->get (edge);
2670 es->call_stmt_size
2671 = estimate_num_insns (edge->call_stmt, &eni_size_weights);
2672 es->call_stmt_time
2673 = estimate_num_insns (edge->call_stmt, &eni_time_weights);
2674 }
2675 ipa_update_overall_fn_summary (node);
2676 inlined = false;
2677 timevar_pop (TV_INTEGRATION);
2678 }
2679 /* We iterate incremental inlining to get trivial cases of indirect
2680 inlining. */
2681 while (iterations < PARAM_VALUE (PARAM_EARLY_INLINER_MAX_ITERATIONS)
2682 && early_inline_small_functions (node))
2683 {
2684 timevar_push (TV_INTEGRATION);
2685 todo |= optimize_inline_calls (current_function_decl);
2686
2687 /* Technically we ought to recompute inline parameters so the new
2688 iteration of early inliner works as expected. We however have
2689 values approximately right and thus we only need to update edge
2690 info that might be cleared out for newly discovered edges. */
2691 for (edge = node->callees; edge; edge = edge->next_callee)
2692 {
2693 /* We have no summary for new bound store calls yet. */
2694 struct ipa_call_summary *es = ipa_call_summaries->get (edge);
2695 es->call_stmt_size
2696 = estimate_num_insns (edge->call_stmt, &eni_size_weights);
2697 es->call_stmt_time
2698 = estimate_num_insns (edge->call_stmt, &eni_time_weights);
2699
2700 if (edge->callee->decl
2701 && !gimple_check_call_matching_types (
2702 edge->call_stmt, edge->callee->decl, false))
2703 {
2704 edge->inline_failed = CIF_MISMATCHED_ARGUMENTS;
2705 edge->call_stmt_cannot_inline_p = true;
2706 }
2707 }
2708 if (iterations < PARAM_VALUE (PARAM_EARLY_INLINER_MAX_ITERATIONS) - 1)
2709 ipa_update_overall_fn_summary (node);
2710 timevar_pop (TV_INTEGRATION);
2711 iterations++;
2712 inlined = false;
2713 }
2714 if (dump_file)
2715 fprintf (dump_file, "Iterations: %i\n", iterations);
2716 }
2717
2718 if (inlined)
2719 {
2720 timevar_push (TV_INTEGRATION);
2721 todo |= optimize_inline_calls (current_function_decl);
2722 timevar_pop (TV_INTEGRATION);
2723 }
2724
2725 fun->always_inline_functions_inlined = true;
2726
2727 return todo;
2728 }
2729
2730 /* Do inlining of small functions. Doing so early helps profiling and other
2731 passes to be somewhat more effective and avoids some code duplication in
2732 later real inlining pass for testcases with very many function calls. */
2733
2734 namespace {
2735
2736 const pass_data pass_data_early_inline =
2737 {
2738 GIMPLE_PASS, /* type */
2739 "einline", /* name */
2740 OPTGROUP_INLINE, /* optinfo_flags */
2741 TV_EARLY_INLINING, /* tv_id */
2742 PROP_ssa, /* properties_required */
2743 0, /* properties_provided */
2744 0, /* properties_destroyed */
2745 0, /* todo_flags_start */
2746 0, /* todo_flags_finish */
2747 };
2748
2749 class pass_early_inline : public gimple_opt_pass
2750 {
2751 public:
2752 pass_early_inline (gcc::context *ctxt)
2753 : gimple_opt_pass (pass_data_early_inline, ctxt)
2754 {}
2755
2756 /* opt_pass methods: */
2757 virtual unsigned int execute (function *);
2758
2759 }; // class pass_early_inline
2760
2761 unsigned int
2762 pass_early_inline::execute (function *fun)
2763 {
2764 return early_inliner (fun);
2765 }
2766
2767 } // anon namespace
2768
2769 gimple_opt_pass *
2770 make_pass_early_inline (gcc::context *ctxt)
2771 {
2772 return new pass_early_inline (ctxt);
2773 }
2774
2775 namespace {
2776
2777 const pass_data pass_data_ipa_inline =
2778 {
2779 IPA_PASS, /* type */
2780 "inline", /* name */
2781 OPTGROUP_INLINE, /* optinfo_flags */
2782 TV_IPA_INLINING, /* tv_id */
2783 0, /* properties_required */
2784 0, /* properties_provided */
2785 0, /* properties_destroyed */
2786 0, /* todo_flags_start */
2787 ( TODO_dump_symtab ), /* todo_flags_finish */
2788 };
2789
2790 class pass_ipa_inline : public ipa_opt_pass_d
2791 {
2792 public:
2793 pass_ipa_inline (gcc::context *ctxt)
2794 : ipa_opt_pass_d (pass_data_ipa_inline, ctxt,
2795 NULL, /* generate_summary */
2796 NULL, /* write_summary */
2797 NULL, /* read_summary */
2798 NULL, /* write_optimization_summary */
2799 NULL, /* read_optimization_summary */
2800 NULL, /* stmt_fixup */
2801 0, /* function_transform_todo_flags_start */
2802 inline_transform, /* function_transform */
2803 NULL) /* variable_transform */
2804 {}
2805
2806 /* opt_pass methods: */
2807 virtual unsigned int execute (function *) { return ipa_inline (); }
2808
2809 }; // class pass_ipa_inline
2810
2811 } // anon namespace
2812
2813 ipa_opt_pass_d *
2814 make_pass_ipa_inline (gcc::context *ctxt)
2815 {
2816 return new pass_ipa_inline (ctxt);
2817 }