]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/ipa-inline.c
Support for value ranges in IPA predicates
[thirdparty/gcc.git] / gcc / ipa-inline.c
1 /* Inlining decision heuristics.
2 Copyright (C) 2003-2019 Free Software Foundation, Inc.
3 Contributed by Jan Hubicka
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
10 version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
20
21 /* Inlining decision heuristics
22
23 The implementation of inliner is organized as follows:
24
25 inlining heuristics limits
26
27 can_inline_edge_p allow to check that particular inlining is allowed
28 by the limits specified by user (allowed function growth, growth and so
29 on).
30
31 Functions are inlined when it is obvious the result is profitable (such
32 as functions called once or when inlining reduce code size).
33 In addition to that we perform inlining of small functions and recursive
34 inlining.
35
36 inlining heuristics
37
38 The inliner itself is split into two passes:
39
40 pass_early_inlining
41
42 Simple local inlining pass inlining callees into current function.
43 This pass makes no use of whole unit analysis and thus it can do only
44 very simple decisions based on local properties.
45
46 The strength of the pass is that it is run in topological order
47 (reverse postorder) on the callgraph. Functions are converted into SSA
48 form just before this pass and optimized subsequently. As a result, the
49 callees of the function seen by the early inliner was already optimized
50 and results of early inlining adds a lot of optimization opportunities
51 for the local optimization.
52
53 The pass handle the obvious inlining decisions within the compilation
54 unit - inlining auto inline functions, inlining for size and
55 flattening.
56
57 main strength of the pass is the ability to eliminate abstraction
58 penalty in C++ code (via combination of inlining and early
59 optimization) and thus improve quality of analysis done by real IPA
60 optimizers.
61
62 Because of lack of whole unit knowledge, the pass cannot really make
63 good code size/performance tradeoffs. It however does very simple
64 speculative inlining allowing code size to grow by
65 EARLY_INLINING_INSNS when callee is leaf function. In this case the
66 optimizations performed later are very likely to eliminate the cost.
67
68 pass_ipa_inline
69
70 This is the real inliner able to handle inlining with whole program
71 knowledge. It performs following steps:
72
73 1) inlining of small functions. This is implemented by greedy
74 algorithm ordering all inlinable cgraph edges by their badness and
75 inlining them in this order as long as inline limits allows doing so.
76
77 This heuristics is not very good on inlining recursive calls. Recursive
78 calls can be inlined with results similar to loop unrolling. To do so,
79 special purpose recursive inliner is executed on function when
80 recursive edge is met as viable candidate.
81
82 2) Unreachable functions are removed from callgraph. Inlining leads
83 to devirtualization and other modification of callgraph so functions
84 may become unreachable during the process. Also functions declared as
85 extern inline or virtual functions are removed, since after inlining
86 we no longer need the offline bodies.
87
88 3) Functions called once and not exported from the unit are inlined.
89 This should almost always lead to reduction of code size by eliminating
90 the need for offline copy of the function. */
91
92 #include "config.h"
93 #include "system.h"
94 #include "coretypes.h"
95 #include "backend.h"
96 #include "target.h"
97 #include "rtl.h"
98 #include "tree.h"
99 #include "gimple.h"
100 #include "alloc-pool.h"
101 #include "tree-pass.h"
102 #include "gimple-ssa.h"
103 #include "cgraph.h"
104 #include "lto-streamer.h"
105 #include "trans-mem.h"
106 #include "calls.h"
107 #include "tree-inline.h"
108 #include "profile.h"
109 #include "symbol-summary.h"
110 #include "tree-vrp.h"
111 #include "ipa-prop.h"
112 #include "ipa-fnsummary.h"
113 #include "ipa-inline.h"
114 #include "ipa-utils.h"
115 #include "sreal.h"
116 #include "auto-profile.h"
117 #include "builtins.h"
118 #include "fibonacci_heap.h"
119 #include "stringpool.h"
120 #include "attribs.h"
121 #include "asan.h"
122
123 typedef fibonacci_heap <sreal, cgraph_edge> edge_heap_t;
124 typedef fibonacci_node <sreal, cgraph_edge> edge_heap_node_t;
125
126 /* Statistics we collect about inlining algorithm. */
127 static int overall_size;
128 static profile_count max_count;
129 static profile_count spec_rem;
130
131 /* Return false when inlining edge E would lead to violating
132 limits on function unit growth or stack usage growth.
133
134 The relative function body growth limit is present generally
135 to avoid problems with non-linear behavior of the compiler.
136 To allow inlining huge functions into tiny wrapper, the limit
137 is always based on the bigger of the two functions considered.
138
139 For stack growth limits we always base the growth in stack usage
140 of the callers. We want to prevent applications from segfaulting
141 on stack overflow when functions with huge stack frames gets
142 inlined. */
143
144 static bool
145 caller_growth_limits (struct cgraph_edge *e)
146 {
147 struct cgraph_node *to = e->caller;
148 struct cgraph_node *what = e->callee->ultimate_alias_target ();
149 int newsize;
150 int limit = 0;
151 HOST_WIDE_INT stack_size_limit = 0, inlined_stack;
152 ipa_size_summary *outer_info = ipa_size_summaries->get (to);
153
154 /* Look for function e->caller is inlined to. While doing
155 so work out the largest function body on the way. As
156 described above, we want to base our function growth
157 limits based on that. Not on the self size of the
158 outer function, not on the self size of inline code
159 we immediately inline to. This is the most relaxed
160 interpretation of the rule "do not grow large functions
161 too much in order to prevent compiler from exploding". */
162 while (true)
163 {
164 ipa_size_summary *size_info = ipa_size_summaries->get (to);
165 if (limit < size_info->self_size)
166 limit = size_info->self_size;
167 if (stack_size_limit < size_info->estimated_self_stack_size)
168 stack_size_limit = size_info->estimated_self_stack_size;
169 if (to->inlined_to)
170 to = to->callers->caller;
171 else
172 break;
173 }
174
175 ipa_fn_summary *what_info = ipa_fn_summaries->get (what);
176 ipa_size_summary *what_size_info = ipa_size_summaries->get (what);
177
178 if (limit < what_size_info->self_size)
179 limit = what_size_info->self_size;
180
181 limit += limit * param_large_function_growth / 100;
182
183 /* Check the size after inlining against the function limits. But allow
184 the function to shrink if it went over the limits by forced inlining. */
185 newsize = estimate_size_after_inlining (to, e);
186 if (newsize >= ipa_size_summaries->get (what)->size
187 && newsize > param_large_function_insns
188 && newsize > limit)
189 {
190 e->inline_failed = CIF_LARGE_FUNCTION_GROWTH_LIMIT;
191 return false;
192 }
193
194 if (!what_info->estimated_stack_size)
195 return true;
196
197 /* FIXME: Stack size limit often prevents inlining in Fortran programs
198 due to large i/o datastructures used by the Fortran front-end.
199 We ought to ignore this limit when we know that the edge is executed
200 on every invocation of the caller (i.e. its call statement dominates
201 exit block). We do not track this information, yet. */
202 stack_size_limit += ((gcov_type)stack_size_limit
203 * param_stack_frame_growth / 100);
204
205 inlined_stack = (ipa_get_stack_frame_offset (to)
206 + outer_info->estimated_self_stack_size
207 + what_info->estimated_stack_size);
208 /* Check new stack consumption with stack consumption at the place
209 stack is used. */
210 if (inlined_stack > stack_size_limit
211 /* If function already has large stack usage from sibling
212 inline call, we can inline, too.
213 This bit overoptimistically assume that we are good at stack
214 packing. */
215 && inlined_stack > ipa_fn_summaries->get (to)->estimated_stack_size
216 && inlined_stack > param_large_stack_frame)
217 {
218 e->inline_failed = CIF_LARGE_STACK_FRAME_GROWTH_LIMIT;
219 return false;
220 }
221 return true;
222 }
223
224 /* Dump info about why inlining has failed. */
225
226 static void
227 report_inline_failed_reason (struct cgraph_edge *e)
228 {
229 if (dump_enabled_p ())
230 {
231 dump_printf_loc (MSG_MISSED_OPTIMIZATION, e->call_stmt,
232 " not inlinable: %C -> %C, %s\n",
233 e->caller, e->callee,
234 cgraph_inline_failed_string (e->inline_failed));
235 if ((e->inline_failed == CIF_TARGET_OPTION_MISMATCH
236 || e->inline_failed == CIF_OPTIMIZATION_MISMATCH)
237 && e->caller->lto_file_data
238 && e->callee->ultimate_alias_target ()->lto_file_data)
239 {
240 dump_printf_loc (MSG_MISSED_OPTIMIZATION, e->call_stmt,
241 " LTO objects: %s, %s\n",
242 e->caller->lto_file_data->file_name,
243 e->callee->ultimate_alias_target ()->lto_file_data->file_name);
244 }
245 if (e->inline_failed == CIF_TARGET_OPTION_MISMATCH)
246 if (dump_file)
247 cl_target_option_print_diff
248 (dump_file, 2, target_opts_for_fn (e->caller->decl),
249 target_opts_for_fn (e->callee->ultimate_alias_target ()->decl));
250 if (e->inline_failed == CIF_OPTIMIZATION_MISMATCH)
251 if (dump_file)
252 cl_optimization_print_diff
253 (dump_file, 2, opts_for_fn (e->caller->decl),
254 opts_for_fn (e->callee->ultimate_alias_target ()->decl));
255 }
256 }
257
258 /* Decide whether sanitizer-related attributes allow inlining. */
259
260 static bool
261 sanitize_attrs_match_for_inline_p (const_tree caller, const_tree callee)
262 {
263 if (!caller || !callee)
264 return true;
265
266 /* Allow inlining always_inline functions into no_sanitize_address
267 functions. */
268 if (!sanitize_flags_p (SANITIZE_ADDRESS, caller)
269 && lookup_attribute ("always_inline", DECL_ATTRIBUTES (callee)))
270 return true;
271
272 return ((sanitize_flags_p (SANITIZE_ADDRESS, caller)
273 == sanitize_flags_p (SANITIZE_ADDRESS, callee))
274 && (sanitize_flags_p (SANITIZE_POINTER_COMPARE, caller)
275 == sanitize_flags_p (SANITIZE_POINTER_COMPARE, callee))
276 && (sanitize_flags_p (SANITIZE_POINTER_SUBTRACT, caller)
277 == sanitize_flags_p (SANITIZE_POINTER_SUBTRACT, callee)));
278 }
279
280 /* Used for flags where it is safe to inline when caller's value is
281 grater than callee's. */
282 #define check_maybe_up(flag) \
283 (opts_for_fn (caller->decl)->x_##flag \
284 != opts_for_fn (callee->decl)->x_##flag \
285 && (!always_inline \
286 || opts_for_fn (caller->decl)->x_##flag \
287 < opts_for_fn (callee->decl)->x_##flag))
288 /* Used for flags where it is safe to inline when caller's value is
289 smaller than callee's. */
290 #define check_maybe_down(flag) \
291 (opts_for_fn (caller->decl)->x_##flag \
292 != opts_for_fn (callee->decl)->x_##flag \
293 && (!always_inline \
294 || opts_for_fn (caller->decl)->x_##flag \
295 > opts_for_fn (callee->decl)->x_##flag))
296 /* Used for flags where exact match is needed for correctness. */
297 #define check_match(flag) \
298 (opts_for_fn (caller->decl)->x_##flag \
299 != opts_for_fn (callee->decl)->x_##flag)
300
301 /* Decide if we can inline the edge and possibly update
302 inline_failed reason.
303 We check whether inlining is possible at all and whether
304 caller growth limits allow doing so.
305
306 if REPORT is true, output reason to the dump file. */
307
308 static bool
309 can_inline_edge_p (struct cgraph_edge *e, bool report,
310 bool early = false)
311 {
312 gcc_checking_assert (e->inline_failed);
313
314 if (cgraph_inline_failed_type (e->inline_failed) == CIF_FINAL_ERROR)
315 {
316 if (report)
317 report_inline_failed_reason (e);
318 return false;
319 }
320
321 bool inlinable = true;
322 enum availability avail;
323 cgraph_node *caller = (e->caller->inlined_to
324 ? e->caller->inlined_to : e->caller);
325 cgraph_node *callee = e->callee->ultimate_alias_target (&avail, caller);
326
327 if (!callee->definition)
328 {
329 e->inline_failed = CIF_BODY_NOT_AVAILABLE;
330 inlinable = false;
331 }
332 if (!early && (!opt_for_fn (callee->decl, optimize)
333 || !opt_for_fn (caller->decl, optimize)))
334 {
335 e->inline_failed = CIF_FUNCTION_NOT_OPTIMIZED;
336 inlinable = false;
337 }
338 else if (callee->calls_comdat_local)
339 {
340 e->inline_failed = CIF_USES_COMDAT_LOCAL;
341 inlinable = false;
342 }
343 else if (avail <= AVAIL_INTERPOSABLE)
344 {
345 e->inline_failed = CIF_OVERWRITABLE;
346 inlinable = false;
347 }
348 /* All edges with call_stmt_cannot_inline_p should have inline_failed
349 initialized to one of FINAL_ERROR reasons. */
350 else if (e->call_stmt_cannot_inline_p)
351 gcc_unreachable ();
352 /* Don't inline if the functions have different EH personalities. */
353 else if (DECL_FUNCTION_PERSONALITY (caller->decl)
354 && DECL_FUNCTION_PERSONALITY (callee->decl)
355 && (DECL_FUNCTION_PERSONALITY (caller->decl)
356 != DECL_FUNCTION_PERSONALITY (callee->decl)))
357 {
358 e->inline_failed = CIF_EH_PERSONALITY;
359 inlinable = false;
360 }
361 /* TM pure functions should not be inlined into non-TM_pure
362 functions. */
363 else if (is_tm_pure (callee->decl) && !is_tm_pure (caller->decl))
364 {
365 e->inline_failed = CIF_UNSPECIFIED;
366 inlinable = false;
367 }
368 /* Check compatibility of target optimization options. */
369 else if (!targetm.target_option.can_inline_p (caller->decl,
370 callee->decl))
371 {
372 e->inline_failed = CIF_TARGET_OPTION_MISMATCH;
373 inlinable = false;
374 }
375 else if (ipa_fn_summaries->get (callee) == NULL
376 || !ipa_fn_summaries->get (callee)->inlinable)
377 {
378 e->inline_failed = CIF_FUNCTION_NOT_INLINABLE;
379 inlinable = false;
380 }
381 /* Don't inline a function with mismatched sanitization attributes. */
382 else if (!sanitize_attrs_match_for_inline_p (caller->decl, callee->decl))
383 {
384 e->inline_failed = CIF_ATTRIBUTE_MISMATCH;
385 inlinable = false;
386 }
387 if (!inlinable && report)
388 report_inline_failed_reason (e);
389 return inlinable;
390 }
391
392 /* Return inlining_insns_single limit for function N. If HINT is true
393 scale up the bound. */
394
395 static int
396 inline_insns_single (cgraph_node *n, bool hint)
397 {
398 if (opt_for_fn (n->decl, optimize) >= 3)
399 {
400 if (hint)
401 return param_max_inline_insns_single
402 * param_inline_heuristics_hint_percent / 100;
403 return param_max_inline_insns_single;
404 }
405 else
406 {
407 if (hint)
408 return param_max_inline_insns_single_o2
409 * param_inline_heuristics_hint_percent_o2 / 100;
410 return param_max_inline_insns_single_o2;
411 }
412 }
413
414 /* Return inlining_insns_auto limit for function N. If HINT is true
415 scale up the bound. */
416
417 static int
418 inline_insns_auto (cgraph_node *n, bool hint)
419 {
420 int max_inline_insns_auto = opt_for_fn (n->decl, param_max_inline_insns_auto);
421 if (hint)
422 return max_inline_insns_auto * param_inline_heuristics_hint_percent / 100;
423 return max_inline_insns_auto;
424 }
425
426 /* Decide if we can inline the edge and possibly update
427 inline_failed reason.
428 We check whether inlining is possible at all and whether
429 caller growth limits allow doing so.
430
431 if REPORT is true, output reason to the dump file.
432
433 if DISREGARD_LIMITS is true, ignore size limits. */
434
435 static bool
436 can_inline_edge_by_limits_p (struct cgraph_edge *e, bool report,
437 bool disregard_limits = false, bool early = false)
438 {
439 gcc_checking_assert (e->inline_failed);
440
441 if (cgraph_inline_failed_type (e->inline_failed) == CIF_FINAL_ERROR)
442 {
443 if (report)
444 report_inline_failed_reason (e);
445 return false;
446 }
447
448 bool inlinable = true;
449 enum availability avail;
450 cgraph_node *caller = (e->caller->inlined_to
451 ? e->caller->inlined_to : e->caller);
452 cgraph_node *callee = e->callee->ultimate_alias_target (&avail, caller);
453 tree caller_tree = DECL_FUNCTION_SPECIFIC_OPTIMIZATION (caller->decl);
454 tree callee_tree
455 = callee ? DECL_FUNCTION_SPECIFIC_OPTIMIZATION (callee->decl) : NULL;
456 /* Check if caller growth allows the inlining. */
457 if (!DECL_DISREGARD_INLINE_LIMITS (callee->decl)
458 && !disregard_limits
459 && !lookup_attribute ("flatten",
460 DECL_ATTRIBUTES (caller->decl))
461 && !caller_growth_limits (e))
462 inlinable = false;
463 else if (callee->externally_visible
464 && !DECL_DISREGARD_INLINE_LIMITS (callee->decl)
465 && flag_live_patching == LIVE_PATCHING_INLINE_ONLY_STATIC)
466 {
467 e->inline_failed = CIF_EXTERN_LIVE_ONLY_STATIC;
468 inlinable = false;
469 }
470 /* Don't inline a function with a higher optimization level than the
471 caller. FIXME: this is really just tip of iceberg of handling
472 optimization attribute. */
473 else if (caller_tree != callee_tree)
474 {
475 bool always_inline =
476 (DECL_DISREGARD_INLINE_LIMITS (callee->decl)
477 && lookup_attribute ("always_inline",
478 DECL_ATTRIBUTES (callee->decl)));
479 ipa_fn_summary *caller_info = ipa_fn_summaries->get (caller);
480 ipa_fn_summary *callee_info = ipa_fn_summaries->get (callee);
481
482 /* Until GCC 4.9 we did not check the semantics-altering flags
483 below and inlined across optimization boundaries.
484 Enabling checks below breaks several packages by refusing
485 to inline library always_inline functions. See PR65873.
486 Disable the check for early inlining for now until better solution
487 is found. */
488 if (always_inline && early)
489 ;
490 /* There are some options that change IL semantics which means
491 we cannot inline in these cases for correctness reason.
492 Not even for always_inline declared functions. */
493 else if (check_match (flag_wrapv)
494 || check_match (flag_trapv)
495 || check_match (flag_pcc_struct_return)
496 /* When caller or callee does FP math, be sure FP codegen flags
497 compatible. */
498 || ((caller_info->fp_expressions && callee_info->fp_expressions)
499 && (check_maybe_up (flag_rounding_math)
500 || check_maybe_up (flag_trapping_math)
501 || check_maybe_down (flag_unsafe_math_optimizations)
502 || check_maybe_down (flag_finite_math_only)
503 || check_maybe_up (flag_signaling_nans)
504 || check_maybe_down (flag_cx_limited_range)
505 || check_maybe_up (flag_signed_zeros)
506 || check_maybe_down (flag_associative_math)
507 || check_maybe_down (flag_reciprocal_math)
508 || check_maybe_down (flag_fp_int_builtin_inexact)
509 /* Strictly speaking only when the callee contains function
510 calls that may end up setting errno. */
511 || check_maybe_up (flag_errno_math)))
512 /* We do not want to make code compiled with exceptions to be
513 brought into a non-EH function unless we know that the callee
514 does not throw.
515 This is tracked by DECL_FUNCTION_PERSONALITY. */
516 || (check_maybe_up (flag_non_call_exceptions)
517 && DECL_FUNCTION_PERSONALITY (callee->decl))
518 || (check_maybe_up (flag_exceptions)
519 && DECL_FUNCTION_PERSONALITY (callee->decl))
520 /* When devirtualization is diabled for callee, it is not safe
521 to inline it as we possibly mangled the type info.
522 Allow early inlining of always inlines. */
523 || (!early && check_maybe_down (flag_devirtualize)))
524 {
525 e->inline_failed = CIF_OPTIMIZATION_MISMATCH;
526 inlinable = false;
527 }
528 /* gcc.dg/pr43564.c. Apply user-forced inline even at -O0. */
529 else if (always_inline)
530 ;
531 /* When user added an attribute to the callee honor it. */
532 else if (lookup_attribute ("optimize", DECL_ATTRIBUTES (callee->decl))
533 && opts_for_fn (caller->decl) != opts_for_fn (callee->decl))
534 {
535 e->inline_failed = CIF_OPTIMIZATION_MISMATCH;
536 inlinable = false;
537 }
538 /* If explicit optimize attribute are not used, the mismatch is caused
539 by different command line options used to build different units.
540 Do not care about COMDAT functions - those are intended to be
541 optimized with the optimization flags of module they are used in.
542 Also do not care about mixing up size/speed optimization when
543 DECL_DISREGARD_INLINE_LIMITS is set. */
544 else if ((callee->merged_comdat
545 && !lookup_attribute ("optimize",
546 DECL_ATTRIBUTES (caller->decl)))
547 || DECL_DISREGARD_INLINE_LIMITS (callee->decl))
548 ;
549 /* If mismatch is caused by merging two LTO units with different
550 optimizationflags we want to be bit nicer. However never inline
551 if one of functions is not optimized at all. */
552 else if (!opt_for_fn (callee->decl, optimize)
553 || !opt_for_fn (caller->decl, optimize))
554 {
555 e->inline_failed = CIF_OPTIMIZATION_MISMATCH;
556 inlinable = false;
557 }
558 /* If callee is optimized for size and caller is not, allow inlining if
559 code shrinks or we are in param_max_inline_insns_single limit and
560 callee is inline (and thus likely an unified comdat).
561 This will allow caller to run faster. */
562 else if (opt_for_fn (callee->decl, optimize_size)
563 > opt_for_fn (caller->decl, optimize_size))
564 {
565 int growth = estimate_edge_growth (e);
566 if (growth > param_max_inline_insns_size
567 && (!DECL_DECLARED_INLINE_P (callee->decl)
568 && growth >= MAX (inline_insns_single (caller, false),
569 inline_insns_auto (caller, false))))
570 {
571 e->inline_failed = CIF_OPTIMIZATION_MISMATCH;
572 inlinable = false;
573 }
574 }
575 /* If callee is more aggressively optimized for performance than caller,
576 we generally want to inline only cheap (runtime wise) functions. */
577 else if (opt_for_fn (callee->decl, optimize_size)
578 < opt_for_fn (caller->decl, optimize_size)
579 || (opt_for_fn (callee->decl, optimize)
580 > opt_for_fn (caller->decl, optimize)))
581 {
582 if (estimate_edge_time (e)
583 >= 20 + ipa_call_summaries->get (e)->call_stmt_time)
584 {
585 e->inline_failed = CIF_OPTIMIZATION_MISMATCH;
586 inlinable = false;
587 }
588 }
589
590 }
591
592 if (!inlinable && report)
593 report_inline_failed_reason (e);
594 return inlinable;
595 }
596
597
598 /* Return true if the edge E is inlinable during early inlining. */
599
600 static bool
601 can_early_inline_edge_p (struct cgraph_edge *e)
602 {
603 struct cgraph_node *callee = e->callee->ultimate_alias_target ();
604 /* Early inliner might get called at WPA stage when IPA pass adds new
605 function. In this case we cannot really do any of early inlining
606 because function bodies are missing. */
607 if (cgraph_inline_failed_type (e->inline_failed) == CIF_FINAL_ERROR)
608 return false;
609 if (!gimple_has_body_p (callee->decl))
610 {
611 e->inline_failed = CIF_BODY_NOT_AVAILABLE;
612 return false;
613 }
614 /* In early inliner some of callees may not be in SSA form yet
615 (i.e. the callgraph is cyclic and we did not process
616 the callee by early inliner, yet). We don't have CIF code for this
617 case; later we will re-do the decision in the real inliner. */
618 if (!gimple_in_ssa_p (DECL_STRUCT_FUNCTION (e->caller->decl))
619 || !gimple_in_ssa_p (DECL_STRUCT_FUNCTION (callee->decl)))
620 {
621 if (dump_enabled_p ())
622 dump_printf_loc (MSG_MISSED_OPTIMIZATION, e->call_stmt,
623 " edge not inlinable: not in SSA form\n");
624 return false;
625 }
626 if (!can_inline_edge_p (e, true, true)
627 || !can_inline_edge_by_limits_p (e, true, false, true))
628 return false;
629 return true;
630 }
631
632
633 /* Return number of calls in N. Ignore cheap builtins. */
634
635 static int
636 num_calls (struct cgraph_node *n)
637 {
638 struct cgraph_edge *e;
639 int num = 0;
640
641 for (e = n->callees; e; e = e->next_callee)
642 if (!is_inexpensive_builtin (e->callee->decl))
643 num++;
644 return num;
645 }
646
647
648 /* Return true if we are interested in inlining small function. */
649
650 static bool
651 want_early_inline_function_p (struct cgraph_edge *e)
652 {
653 bool want_inline = true;
654 struct cgraph_node *callee = e->callee->ultimate_alias_target ();
655
656 if (DECL_DISREGARD_INLINE_LIMITS (callee->decl))
657 ;
658 /* For AutoFDO, we need to make sure that before profile summary, all
659 hot paths' IR look exactly the same as profiled binary. As a result,
660 in einliner, we will disregard size limit and inline those callsites
661 that are:
662 * inlined in the profiled binary, and
663 * the cloned callee has enough samples to be considered "hot". */
664 else if (flag_auto_profile && afdo_callsite_hot_enough_for_early_inline (e))
665 ;
666 else if (!DECL_DECLARED_INLINE_P (callee->decl)
667 && !opt_for_fn (e->caller->decl, flag_inline_small_functions))
668 {
669 e->inline_failed = CIF_FUNCTION_NOT_INLINE_CANDIDATE;
670 report_inline_failed_reason (e);
671 want_inline = false;
672 }
673 else
674 {
675 int growth = estimate_edge_growth (e);
676 int n;
677 int early_inlining_insns = opt_for_fn (e->caller->decl, optimize) >= 3
678 ? param_early_inlining_insns
679 : param_early_inlining_insns_o2;
680
681
682 if (growth <= param_max_inline_insns_size)
683 ;
684 else if (!e->maybe_hot_p ())
685 {
686 if (dump_enabled_p ())
687 dump_printf_loc (MSG_MISSED_OPTIMIZATION, e->call_stmt,
688 " will not early inline: %C->%C, "
689 "call is cold and code would grow by %i\n",
690 e->caller, callee,
691 growth);
692 want_inline = false;
693 }
694 else if (growth > early_inlining_insns)
695 {
696 if (dump_enabled_p ())
697 dump_printf_loc (MSG_MISSED_OPTIMIZATION, e->call_stmt,
698 " will not early inline: %C->%C, "
699 "growth %i exceeds --param early-inlining-insns%s\n",
700 e->caller, callee, growth,
701 opt_for_fn (e->caller->decl, optimize) >= 3
702 ? "" : "-O2");
703 want_inline = false;
704 }
705 else if ((n = num_calls (callee)) != 0
706 && growth * (n + 1) > early_inlining_insns)
707 {
708 if (dump_enabled_p ())
709 dump_printf_loc (MSG_MISSED_OPTIMIZATION, e->call_stmt,
710 " will not early inline: %C->%C, "
711 "growth %i exceeds --param early-inlining-insns%s "
712 "divided by number of calls\n",
713 e->caller, callee, growth,
714 opt_for_fn (e->caller->decl, optimize) >= 3
715 ? "" : "-O2");
716 want_inline = false;
717 }
718 }
719 return want_inline;
720 }
721
722 /* Compute time of the edge->caller + edge->callee execution when inlining
723 does not happen. */
724
725 inline sreal
726 compute_uninlined_call_time (struct cgraph_edge *edge,
727 sreal uninlined_call_time,
728 sreal freq)
729 {
730 cgraph_node *caller = (edge->caller->inlined_to
731 ? edge->caller->inlined_to
732 : edge->caller);
733
734 if (freq > 0)
735 uninlined_call_time *= freq;
736 else
737 uninlined_call_time = uninlined_call_time >> 11;
738
739 sreal caller_time = ipa_fn_summaries->get (caller)->time;
740 return uninlined_call_time + caller_time;
741 }
742
743 /* Same as compute_uinlined_call_time but compute time when inlining
744 does happen. */
745
746 inline sreal
747 compute_inlined_call_time (struct cgraph_edge *edge,
748 sreal time,
749 sreal freq)
750 {
751 cgraph_node *caller = (edge->caller->inlined_to
752 ? edge->caller->inlined_to
753 : edge->caller);
754 sreal caller_time = ipa_fn_summaries->get (caller)->time;
755
756 if (freq > 0)
757 time *= freq;
758 else
759 time = time >> 11;
760
761 /* This calculation should match one in ipa-inline-analysis.c
762 (estimate_edge_size_and_time). */
763 time -= (sreal)ipa_call_summaries->get (edge)->call_stmt_time * freq;
764 time += caller_time;
765 if (time <= 0)
766 time = ((sreal) 1) >> 8;
767 gcc_checking_assert (time >= 0);
768 return time;
769 }
770
771 /* Return true if the speedup for inlining E is bigger than
772 PARAM_MAX_INLINE_MIN_SPEEDUP. */
773
774 static bool
775 big_speedup_p (struct cgraph_edge *e)
776 {
777 sreal unspec_time;
778 sreal spec_time = estimate_edge_time (e, &unspec_time);
779 sreal freq = e->sreal_frequency ();
780 sreal time = compute_uninlined_call_time (e, unspec_time, freq);
781 sreal inlined_time = compute_inlined_call_time (e, spec_time, freq);
782 cgraph_node *caller = (e->caller->inlined_to
783 ? e->caller->inlined_to
784 : e->caller);
785 int limit = opt_for_fn (caller->decl, optimize) >= 3
786 ? param_inline_min_speedup
787 : param_inline_min_speedup_o2;
788
789 if ((time - inlined_time) * 100 > time * limit)
790 return true;
791 return false;
792 }
793
794 /* Return true if we are interested in inlining small function.
795 When REPORT is true, report reason to dump file. */
796
797 static bool
798 want_inline_small_function_p (struct cgraph_edge *e, bool report)
799 {
800 bool want_inline = true;
801 struct cgraph_node *callee = e->callee->ultimate_alias_target ();
802
803 /* Allow this function to be called before can_inline_edge_p,
804 since it's usually cheaper. */
805 if (cgraph_inline_failed_type (e->inline_failed) == CIF_FINAL_ERROR)
806 want_inline = false;
807 else if (DECL_DISREGARD_INLINE_LIMITS (callee->decl))
808 ;
809 else if (!DECL_DECLARED_INLINE_P (callee->decl)
810 && !opt_for_fn (e->caller->decl, flag_inline_small_functions))
811 {
812 e->inline_failed = CIF_FUNCTION_NOT_INLINE_CANDIDATE;
813 want_inline = false;
814 }
815 /* Do fast and conservative check if the function can be good
816 inline candidate. */
817 else if ((!DECL_DECLARED_INLINE_P (callee->decl)
818 && (!e->count.ipa ().initialized_p () || !e->maybe_hot_p ()))
819 && ipa_fn_summaries->get (callee)->min_size
820 - ipa_call_summaries->get (e)->call_stmt_size
821 > inline_insns_auto (e->caller, true))
822 {
823 e->inline_failed = CIF_MAX_INLINE_INSNS_AUTO_LIMIT;
824 want_inline = false;
825 }
826 else if ((DECL_DECLARED_INLINE_P (callee->decl)
827 || e->count.ipa ().nonzero_p ())
828 && ipa_fn_summaries->get (callee)->min_size
829 - ipa_call_summaries->get (e)->call_stmt_size
830 > inline_insns_single (e->caller, true))
831 {
832 if (opt_for_fn (e->caller->decl, optimize) >= 3)
833 e->inline_failed = (DECL_DECLARED_INLINE_P (callee->decl)
834 ? CIF_MAX_INLINE_INSNS_SINGLE_LIMIT
835 : CIF_MAX_INLINE_INSNS_AUTO_LIMIT);
836 else
837 e->inline_failed = (DECL_DECLARED_INLINE_P (callee->decl)
838 ? CIF_MAX_INLINE_INSNS_SINGLE_O2_LIMIT
839 : CIF_MAX_INLINE_INSNS_AUTO_LIMIT);
840 want_inline = false;
841 }
842 else
843 {
844 int growth = estimate_edge_growth (e);
845 ipa_hints hints = estimate_edge_hints (e);
846 bool apply_hints = (hints & (INLINE_HINT_indirect_call
847 | INLINE_HINT_known_hot
848 | INLINE_HINT_loop_iterations
849 | INLINE_HINT_loop_stride));
850
851 if (growth <= param_max_inline_insns_size)
852 ;
853 /* Apply param_max_inline_insns_single limit. Do not do so when
854 hints suggests that inlining given function is very profitable.
855 Avoid computation of big_speedup_p when not necessary to change
856 outcome of decision. */
857 else if (DECL_DECLARED_INLINE_P (callee->decl)
858 && growth >= inline_insns_single (e->caller, apply_hints)
859 && (apply_hints
860 || growth >= inline_insns_single (e->caller, true)
861 || !big_speedup_p (e)))
862 {
863 if (opt_for_fn (e->caller->decl, optimize) >= 3)
864 e->inline_failed = CIF_MAX_INLINE_INSNS_SINGLE_LIMIT;
865 else
866 e->inline_failed = CIF_MAX_INLINE_INSNS_SINGLE_O2_LIMIT;
867 want_inline = false;
868 }
869 else if (!DECL_DECLARED_INLINE_P (callee->decl)
870 && !opt_for_fn (e->caller->decl, flag_inline_functions)
871 && growth >= param_max_inline_insns_small)
872 {
873 /* growth_positive_p is expensive, always test it last. */
874 if (growth >= inline_insns_single (e->caller, false)
875 || growth_positive_p (callee, e, growth))
876 {
877 e->inline_failed = CIF_NOT_DECLARED_INLINED;
878 want_inline = false;
879 }
880 }
881 /* Apply param_max_inline_insns_auto limit for functions not declared
882 inline. Bypass the limit when speedup seems big. */
883 else if (!DECL_DECLARED_INLINE_P (callee->decl)
884 && growth >= inline_insns_auto (e->caller, apply_hints)
885 && (apply_hints
886 || growth >= inline_insns_auto (e->caller, true)
887 || !big_speedup_p (e)))
888 {
889 /* growth_positive_p is expensive, always test it last. */
890 if (growth >= inline_insns_single (e->caller, false)
891 || growth_positive_p (callee, e, growth))
892 {
893 e->inline_failed = CIF_MAX_INLINE_INSNS_AUTO_LIMIT;
894 want_inline = false;
895 }
896 }
897 /* If call is cold, do not inline when function body would grow. */
898 else if (!e->maybe_hot_p ()
899 && (growth >= inline_insns_single (e->caller, false)
900 || growth_positive_p (callee, e, growth)))
901 {
902 e->inline_failed = CIF_UNLIKELY_CALL;
903 want_inline = false;
904 }
905 }
906 if (!want_inline && report)
907 report_inline_failed_reason (e);
908 return want_inline;
909 }
910
911 /* EDGE is self recursive edge.
912 We hand two cases - when function A is inlining into itself
913 or when function A is being inlined into another inliner copy of function
914 A within function B.
915
916 In first case OUTER_NODE points to the toplevel copy of A, while
917 in the second case OUTER_NODE points to the outermost copy of A in B.
918
919 In both cases we want to be extra selective since
920 inlining the call will just introduce new recursive calls to appear. */
921
922 static bool
923 want_inline_self_recursive_call_p (struct cgraph_edge *edge,
924 struct cgraph_node *outer_node,
925 bool peeling,
926 int depth)
927 {
928 char const *reason = NULL;
929 bool want_inline = true;
930 sreal caller_freq = 1;
931 int max_depth = param_max_inline_recursive_depth_auto;
932
933 if (DECL_DECLARED_INLINE_P (edge->caller->decl))
934 max_depth = param_max_inline_recursive_depth;
935
936 if (!edge->maybe_hot_p ())
937 {
938 reason = "recursive call is cold";
939 want_inline = false;
940 }
941 else if (depth > max_depth)
942 {
943 reason = "--param max-inline-recursive-depth exceeded.";
944 want_inline = false;
945 }
946 else if (outer_node->inlined_to
947 && (caller_freq = outer_node->callers->sreal_frequency ()) == 0)
948 {
949 reason = "caller frequency is 0";
950 want_inline = false;
951 }
952
953 if (!want_inline)
954 ;
955 /* Inlining of self recursive function into copy of itself within other
956 function is transformation similar to loop peeling.
957
958 Peeling is profitable if we can inline enough copies to make probability
959 of actual call to the self recursive function very small. Be sure that
960 the probability of recursion is small.
961
962 We ensure that the frequency of recursing is at most 1 - (1/max_depth).
963 This way the expected number of recursion is at most max_depth. */
964 else if (peeling)
965 {
966 sreal max_prob = (sreal)1 - ((sreal)1 / (sreal)max_depth);
967 int i;
968 for (i = 1; i < depth; i++)
969 max_prob = max_prob * max_prob;
970 if (edge->sreal_frequency () >= max_prob * caller_freq)
971 {
972 reason = "frequency of recursive call is too large";
973 want_inline = false;
974 }
975 }
976 /* Recursive inlining, i.e. equivalent of unrolling, is profitable if
977 recursion depth is large. We reduce function call overhead and increase
978 chances that things fit in hardware return predictor.
979
980 Recursive inlining might however increase cost of stack frame setup
981 actually slowing down functions whose recursion tree is wide rather than
982 deep.
983
984 Deciding reliably on when to do recursive inlining without profile feedback
985 is tricky. For now we disable recursive inlining when probability of self
986 recursion is low.
987
988 Recursive inlining of self recursive call within loop also results in
989 large loop depths that generally optimize badly. We may want to throttle
990 down inlining in those cases. In particular this seems to happen in one
991 of libstdc++ rb tree methods. */
992 else
993 {
994 if (edge->sreal_frequency () * 100
995 <= caller_freq
996 * param_min_inline_recursive_probability)
997 {
998 reason = "frequency of recursive call is too small";
999 want_inline = false;
1000 }
1001 }
1002 if (!want_inline && dump_enabled_p ())
1003 dump_printf_loc (MSG_MISSED_OPTIMIZATION, edge->call_stmt,
1004 " not inlining recursively: %s\n", reason);
1005 return want_inline;
1006 }
1007
1008 /* Return true when NODE has uninlinable caller;
1009 set HAS_HOT_CALL if it has hot call.
1010 Worker for cgraph_for_node_and_aliases. */
1011
1012 static bool
1013 check_callers (struct cgraph_node *node, void *has_hot_call)
1014 {
1015 struct cgraph_edge *e;
1016 for (e = node->callers; e; e = e->next_caller)
1017 {
1018 if (!opt_for_fn (e->caller->decl, flag_inline_functions_called_once)
1019 || !opt_for_fn (e->caller->decl, optimize))
1020 return true;
1021 if (!can_inline_edge_p (e, true))
1022 return true;
1023 if (e->recursive_p ())
1024 return true;
1025 if (!can_inline_edge_by_limits_p (e, true))
1026 return true;
1027 if (!(*(bool *)has_hot_call) && e->maybe_hot_p ())
1028 *(bool *)has_hot_call = true;
1029 }
1030 return false;
1031 }
1032
1033 /* If NODE has a caller, return true. */
1034
1035 static bool
1036 has_caller_p (struct cgraph_node *node, void *data ATTRIBUTE_UNUSED)
1037 {
1038 if (node->callers)
1039 return true;
1040 return false;
1041 }
1042
1043 /* Decide if inlining NODE would reduce unit size by eliminating
1044 the offline copy of function.
1045 When COLD is true the cold calls are considered, too. */
1046
1047 static bool
1048 want_inline_function_to_all_callers_p (struct cgraph_node *node, bool cold)
1049 {
1050 bool has_hot_call = false;
1051
1052 /* Aliases gets inlined along with the function they alias. */
1053 if (node->alias)
1054 return false;
1055 /* Already inlined? */
1056 if (node->inlined_to)
1057 return false;
1058 /* Does it have callers? */
1059 if (!node->call_for_symbol_and_aliases (has_caller_p, NULL, true))
1060 return false;
1061 /* Inlining into all callers would increase size? */
1062 if (growth_positive_p (node, NULL, INT_MIN) > 0)
1063 return false;
1064 /* All inlines must be possible. */
1065 if (node->call_for_symbol_and_aliases (check_callers, &has_hot_call,
1066 true))
1067 return false;
1068 if (!cold && !has_hot_call)
1069 return false;
1070 return true;
1071 }
1072
1073 /* A cost model driving the inlining heuristics in a way so the edges with
1074 smallest badness are inlined first. After each inlining is performed
1075 the costs of all caller edges of nodes affected are recomputed so the
1076 metrics may accurately depend on values such as number of inlinable callers
1077 of the function or function body size. */
1078
1079 static sreal
1080 edge_badness (struct cgraph_edge *edge, bool dump)
1081 {
1082 sreal badness;
1083 int growth;
1084 sreal edge_time, unspec_edge_time;
1085 struct cgraph_node *callee = edge->callee->ultimate_alias_target ();
1086 class ipa_fn_summary *callee_info = ipa_fn_summaries->get (callee);
1087 ipa_hints hints;
1088 cgraph_node *caller = (edge->caller->inlined_to
1089 ? edge->caller->inlined_to
1090 : edge->caller);
1091
1092 growth = estimate_edge_growth (edge);
1093 edge_time = estimate_edge_time (edge, &unspec_edge_time);
1094 hints = estimate_edge_hints (edge);
1095 gcc_checking_assert (edge_time >= 0);
1096 /* Check that inlined time is better, but tolerate some roundoff issues.
1097 FIXME: When callee profile drops to 0 we account calls more. This
1098 should be fixed by never doing that. */
1099 gcc_checking_assert ((edge_time * 100
1100 - callee_info->time * 101).to_int () <= 0
1101 || callee->count.ipa ().initialized_p ());
1102 gcc_checking_assert (growth <= ipa_size_summaries->get (callee)->size);
1103
1104 if (dump)
1105 {
1106 fprintf (dump_file, " Badness calculation for %s -> %s\n",
1107 edge->caller->dump_name (),
1108 edge->callee->dump_name ());
1109 fprintf (dump_file, " size growth %i, time %f unspec %f ",
1110 growth,
1111 edge_time.to_double (),
1112 unspec_edge_time.to_double ());
1113 ipa_dump_hints (dump_file, hints);
1114 if (big_speedup_p (edge))
1115 fprintf (dump_file, " big_speedup");
1116 fprintf (dump_file, "\n");
1117 }
1118
1119 /* Always prefer inlining saving code size. */
1120 if (growth <= 0)
1121 {
1122 badness = (sreal) (-SREAL_MIN_SIG + growth) << (SREAL_MAX_EXP / 256);
1123 if (dump)
1124 fprintf (dump_file, " %f: Growth %d <= 0\n", badness.to_double (),
1125 growth);
1126 }
1127 /* Inlining into EXTERNAL functions is not going to change anything unless
1128 they are themselves inlined. */
1129 else if (DECL_EXTERNAL (caller->decl))
1130 {
1131 if (dump)
1132 fprintf (dump_file, " max: function is external\n");
1133 return sreal::max ();
1134 }
1135 /* When profile is available. Compute badness as:
1136
1137 time_saved * caller_count
1138 goodness = -------------------------------------------------
1139 growth_of_caller * overall_growth * combined_size
1140
1141 badness = - goodness
1142
1143 Again use negative value to make calls with profile appear hotter
1144 then calls without.
1145 */
1146 else if (opt_for_fn (caller->decl, flag_guess_branch_prob)
1147 || caller->count.ipa ().nonzero_p ())
1148 {
1149 sreal numerator, denominator;
1150 int overall_growth;
1151 sreal freq = edge->sreal_frequency ();
1152 sreal inlined_time = compute_inlined_call_time (edge, edge_time, freq);
1153
1154 numerator = (compute_uninlined_call_time (edge, unspec_edge_time, freq)
1155 - inlined_time);
1156 if (numerator <= 0)
1157 numerator = ((sreal) 1 >> 8);
1158 if (caller->count.ipa ().nonzero_p ())
1159 numerator *= caller->count.ipa ().to_gcov_type ();
1160 else if (caller->count.ipa ().initialized_p ())
1161 numerator = numerator >> 11;
1162 denominator = growth;
1163
1164 overall_growth = callee_info->growth;
1165
1166 #if 1
1167 /* Look for inliner wrappers of the form:
1168
1169 inline_caller ()
1170 {
1171 do_fast_job...
1172 if (need_more_work)
1173 noninline_callee ();
1174 }
1175 Withhout penalizing this case, we usually inline noninline_callee
1176 into the inline_caller because overall_growth is small preventing
1177 further inlining of inline_caller.
1178
1179 Penalize only callgraph edges to functions with small overall
1180 growth ...
1181 */
1182 if (growth > overall_growth
1183 /* ... and having only one caller which is not inlined ... */
1184 && callee_info->single_caller
1185 && !edge->caller->inlined_to
1186 /* ... and edges executed only conditionally ... */
1187 && freq < 1
1188 /* ... consider case where callee is not inline but caller is ... */
1189 && ((!DECL_DECLARED_INLINE_P (edge->callee->decl)
1190 && DECL_DECLARED_INLINE_P (caller->decl))
1191 /* ... or when early optimizers decided to split and edge
1192 frequency still indicates splitting is a win ... */
1193 || (callee->split_part && !caller->split_part
1194 && freq * 100 < param_partial_inlining_entry_probability
1195 /* ... and do not overwrite user specified hints. */
1196 && (!DECL_DECLARED_INLINE_P (edge->callee->decl)
1197 || DECL_DECLARED_INLINE_P (caller->decl)))))
1198 {
1199 ipa_fn_summary *caller_info = ipa_fn_summaries->get (caller);
1200 int caller_growth = caller_info->growth;
1201
1202 /* Only apply the penalty when caller looks like inline candidate,
1203 and it is not called once. */
1204 if (!caller_info->single_caller && overall_growth < caller_growth
1205 && caller_info->inlinable
1206 && ipa_size_summaries->get (caller)->size
1207 < (DECL_DECLARED_INLINE_P (caller->decl)
1208 ? inline_insns_single (caller, false)
1209 : inline_insns_auto (caller, false)))
1210 {
1211 if (dump)
1212 fprintf (dump_file,
1213 " Wrapper penalty. Increasing growth %i to %i\n",
1214 overall_growth, caller_growth);
1215 overall_growth = caller_growth;
1216 }
1217 }
1218 #endif
1219 if (overall_growth > 0)
1220 {
1221 /* Strongly preffer functions with few callers that can be inlined
1222 fully. The square root here leads to smaller binaries at average.
1223 Watch however for extreme cases and return to linear function
1224 when growth is large. */
1225 if (overall_growth < 256)
1226 overall_growth *= overall_growth;
1227 else
1228 overall_growth += 256 * 256 - 256;
1229 denominator *= overall_growth;
1230 }
1231 denominator *= ipa_size_summaries->get (caller)->size + growth;
1232
1233 badness = - numerator / denominator;
1234
1235 if (dump)
1236 {
1237 fprintf (dump_file,
1238 " %f: guessed profile. frequency %f, count %" PRId64
1239 " caller count %" PRId64
1240 " time w/o inlining %f, time with inlining %f"
1241 " overall growth %i (current) %i (original)"
1242 " %i (compensated)\n",
1243 badness.to_double (),
1244 freq.to_double (),
1245 edge->count.ipa ().initialized_p () ? edge->count.ipa ().to_gcov_type () : -1,
1246 caller->count.ipa ().initialized_p () ? caller->count.ipa ().to_gcov_type () : -1,
1247 compute_uninlined_call_time (edge,
1248 unspec_edge_time, freq).to_double (),
1249 inlined_time.to_double (),
1250 estimate_growth (callee),
1251 callee_info->growth, overall_growth);
1252 }
1253 }
1254 /* When function local profile is not available or it does not give
1255 useful information (ie frequency is zero), base the cost on
1256 loop nest and overall size growth, so we optimize for overall number
1257 of functions fully inlined in program. */
1258 else
1259 {
1260 int nest = MIN (ipa_call_summaries->get (edge)->loop_depth, 8);
1261 badness = growth;
1262
1263 /* Decrease badness if call is nested. */
1264 if (badness > 0)
1265 badness = badness >> nest;
1266 else
1267 badness = badness << nest;
1268 if (dump)
1269 fprintf (dump_file, " %f: no profile. nest %i\n",
1270 badness.to_double (), nest);
1271 }
1272 gcc_checking_assert (badness != 0);
1273
1274 if (edge->recursive_p ())
1275 badness = badness.shift (badness > 0 ? 4 : -4);
1276 if ((hints & (INLINE_HINT_indirect_call
1277 | INLINE_HINT_loop_iterations
1278 | INLINE_HINT_loop_stride))
1279 || callee_info->growth <= 0)
1280 badness = badness.shift (badness > 0 ? -2 : 2);
1281 if (hints & (INLINE_HINT_same_scc))
1282 badness = badness.shift (badness > 0 ? 3 : -3);
1283 else if (hints & (INLINE_HINT_in_scc))
1284 badness = badness.shift (badness > 0 ? 2 : -2);
1285 else if (hints & (INLINE_HINT_cross_module))
1286 badness = badness.shift (badness > 0 ? 1 : -1);
1287 if (DECL_DISREGARD_INLINE_LIMITS (callee->decl))
1288 badness = badness.shift (badness > 0 ? -4 : 4);
1289 else if ((hints & INLINE_HINT_declared_inline))
1290 badness = badness.shift (badness > 0 ? -3 : 3);
1291 if (dump)
1292 fprintf (dump_file, " Adjusted by hints %f\n", badness.to_double ());
1293 return badness;
1294 }
1295
1296 /* Recompute badness of EDGE and update its key in HEAP if needed. */
1297 static inline void
1298 update_edge_key (edge_heap_t *heap, struct cgraph_edge *edge)
1299 {
1300 sreal badness = edge_badness (edge, false);
1301 if (edge->aux)
1302 {
1303 edge_heap_node_t *n = (edge_heap_node_t *) edge->aux;
1304 gcc_checking_assert (n->get_data () == edge);
1305
1306 /* fibonacci_heap::replace_key does busy updating of the
1307 heap that is unnecesarily expensive.
1308 We do lazy increases: after extracting minimum if the key
1309 turns out to be out of date, it is re-inserted into heap
1310 with correct value. */
1311 if (badness < n->get_key ())
1312 {
1313 if (dump_file && (dump_flags & TDF_DETAILS))
1314 {
1315 fprintf (dump_file,
1316 " decreasing badness %s -> %s, %f to %f\n",
1317 edge->caller->dump_name (),
1318 edge->callee->dump_name (),
1319 n->get_key ().to_double (),
1320 badness.to_double ());
1321 }
1322 heap->decrease_key (n, badness);
1323 }
1324 }
1325 else
1326 {
1327 if (dump_file && (dump_flags & TDF_DETAILS))
1328 {
1329 fprintf (dump_file,
1330 " enqueuing call %s -> %s, badness %f\n",
1331 edge->caller->dump_name (),
1332 edge->callee->dump_name (),
1333 badness.to_double ());
1334 }
1335 edge->aux = heap->insert (badness, edge);
1336 }
1337 }
1338
1339
1340 /* NODE was inlined.
1341 All caller edges needs to be resetted because
1342 size estimates change. Similarly callees needs reset
1343 because better context may be known. */
1344
1345 static void
1346 reset_edge_caches (struct cgraph_node *node)
1347 {
1348 struct cgraph_edge *edge;
1349 struct cgraph_edge *e = node->callees;
1350 struct cgraph_node *where = node;
1351 struct ipa_ref *ref;
1352
1353 if (where->inlined_to)
1354 where = where->inlined_to;
1355
1356 reset_node_cache (where);
1357
1358 if (edge_growth_cache != NULL)
1359 for (edge = where->callers; edge; edge = edge->next_caller)
1360 if (edge->inline_failed)
1361 edge_growth_cache->remove (edge);
1362
1363 FOR_EACH_ALIAS (where, ref)
1364 reset_edge_caches (dyn_cast <cgraph_node *> (ref->referring));
1365
1366 if (!e)
1367 return;
1368
1369 while (true)
1370 if (!e->inline_failed && e->callee->callees)
1371 e = e->callee->callees;
1372 else
1373 {
1374 if (edge_growth_cache != NULL && e->inline_failed)
1375 edge_growth_cache->remove (e);
1376 if (e->next_callee)
1377 e = e->next_callee;
1378 else
1379 {
1380 do
1381 {
1382 if (e->caller == node)
1383 return;
1384 e = e->caller->callers;
1385 }
1386 while (!e->next_callee);
1387 e = e->next_callee;
1388 }
1389 }
1390 }
1391
1392 /* Recompute HEAP nodes for each of caller of NODE.
1393 UPDATED_NODES track nodes we already visited, to avoid redundant work.
1394 When CHECK_INLINABLITY_FOR is set, re-check for specified edge that
1395 it is inlinable. Otherwise check all edges. */
1396
1397 static void
1398 update_caller_keys (edge_heap_t *heap, struct cgraph_node *node,
1399 bitmap updated_nodes,
1400 struct cgraph_edge *check_inlinablity_for)
1401 {
1402 struct cgraph_edge *edge;
1403 struct ipa_ref *ref;
1404
1405 if ((!node->alias && !ipa_fn_summaries->get (node)->inlinable)
1406 || node->inlined_to)
1407 return;
1408 if (!bitmap_set_bit (updated_nodes, node->get_uid ()))
1409 return;
1410
1411 FOR_EACH_ALIAS (node, ref)
1412 {
1413 struct cgraph_node *alias = dyn_cast <cgraph_node *> (ref->referring);
1414 update_caller_keys (heap, alias, updated_nodes, check_inlinablity_for);
1415 }
1416
1417 for (edge = node->callers; edge; edge = edge->next_caller)
1418 if (edge->inline_failed)
1419 {
1420 if (!check_inlinablity_for
1421 || check_inlinablity_for == edge)
1422 {
1423 if (can_inline_edge_p (edge, false)
1424 && want_inline_small_function_p (edge, false)
1425 && can_inline_edge_by_limits_p (edge, false))
1426 update_edge_key (heap, edge);
1427 else if (edge->aux)
1428 {
1429 report_inline_failed_reason (edge);
1430 heap->delete_node ((edge_heap_node_t *) edge->aux);
1431 edge->aux = NULL;
1432 }
1433 }
1434 else if (edge->aux)
1435 update_edge_key (heap, edge);
1436 }
1437 }
1438
1439 /* Recompute HEAP nodes for each uninlined call in NODE.
1440 This is used when we know that edge badnesses are going only to increase
1441 (we introduced new call site) and thus all we need is to insert newly
1442 created edges into heap. */
1443
1444 static void
1445 update_callee_keys (edge_heap_t *heap, struct cgraph_node *node,
1446 bitmap updated_nodes)
1447 {
1448 struct cgraph_edge *e = node->callees;
1449
1450 if (!e)
1451 return;
1452 while (true)
1453 if (!e->inline_failed && e->callee->callees)
1454 e = e->callee->callees;
1455 else
1456 {
1457 enum availability avail;
1458 struct cgraph_node *callee;
1459 /* We do not reset callee growth cache here. Since we added a new call,
1460 growth chould have just increased and consequentely badness metric
1461 don't need updating. */
1462 if (e->inline_failed
1463 && (callee = e->callee->ultimate_alias_target (&avail, e->caller))
1464 && ipa_fn_summaries->get (callee) != NULL
1465 && ipa_fn_summaries->get (callee)->inlinable
1466 && avail >= AVAIL_AVAILABLE
1467 && !bitmap_bit_p (updated_nodes, callee->get_uid ()))
1468 {
1469 if (can_inline_edge_p (e, false)
1470 && want_inline_small_function_p (e, false)
1471 && can_inline_edge_by_limits_p (e, false))
1472 update_edge_key (heap, e);
1473 else if (e->aux)
1474 {
1475 report_inline_failed_reason (e);
1476 heap->delete_node ((edge_heap_node_t *) e->aux);
1477 e->aux = NULL;
1478 }
1479 }
1480 if (e->next_callee)
1481 e = e->next_callee;
1482 else
1483 {
1484 do
1485 {
1486 if (e->caller == node)
1487 return;
1488 e = e->caller->callers;
1489 }
1490 while (!e->next_callee);
1491 e = e->next_callee;
1492 }
1493 }
1494 }
1495
1496 /* Enqueue all recursive calls from NODE into priority queue depending on
1497 how likely we want to recursively inline the call. */
1498
1499 static void
1500 lookup_recursive_calls (struct cgraph_node *node, struct cgraph_node *where,
1501 edge_heap_t *heap)
1502 {
1503 struct cgraph_edge *e;
1504 enum availability avail;
1505
1506 for (e = where->callees; e; e = e->next_callee)
1507 if (e->callee == node
1508 || (e->callee->ultimate_alias_target (&avail, e->caller) == node
1509 && avail > AVAIL_INTERPOSABLE))
1510 heap->insert (-e->sreal_frequency (), e);
1511 for (e = where->callees; e; e = e->next_callee)
1512 if (!e->inline_failed)
1513 lookup_recursive_calls (node, e->callee, heap);
1514 }
1515
1516 /* Decide on recursive inlining: in the case function has recursive calls,
1517 inline until body size reaches given argument. If any new indirect edges
1518 are discovered in the process, add them to *NEW_EDGES, unless NEW_EDGES
1519 is NULL. */
1520
1521 static bool
1522 recursive_inlining (struct cgraph_edge *edge,
1523 vec<cgraph_edge *> *new_edges)
1524 {
1525 int limit = param_max_inline_insns_recursive_auto;
1526 edge_heap_t heap (sreal::min ());
1527 struct cgraph_node *node;
1528 struct cgraph_edge *e;
1529 struct cgraph_node *master_clone = NULL, *next;
1530 int depth = 0;
1531 int n = 0;
1532
1533 node = edge->caller;
1534 if (node->inlined_to)
1535 node = node->inlined_to;
1536
1537 if (DECL_DECLARED_INLINE_P (node->decl))
1538 limit = param_max_inline_insns_recursive;
1539
1540 /* Make sure that function is small enough to be considered for inlining. */
1541 if (estimate_size_after_inlining (node, edge) >= limit)
1542 return false;
1543 lookup_recursive_calls (node, node, &heap);
1544 if (heap.empty ())
1545 return false;
1546
1547 if (dump_file)
1548 fprintf (dump_file,
1549 " Performing recursive inlining on %s\n",
1550 node->name ());
1551
1552 /* Do the inlining and update list of recursive call during process. */
1553 while (!heap.empty ())
1554 {
1555 struct cgraph_edge *curr = heap.extract_min ();
1556 struct cgraph_node *cnode, *dest = curr->callee;
1557
1558 if (!can_inline_edge_p (curr, true)
1559 || !can_inline_edge_by_limits_p (curr, true))
1560 continue;
1561
1562 /* MASTER_CLONE is produced in the case we already started modified
1563 the function. Be sure to redirect edge to the original body before
1564 estimating growths otherwise we will be seeing growths after inlining
1565 the already modified body. */
1566 if (master_clone)
1567 {
1568 curr->redirect_callee (master_clone);
1569 if (edge_growth_cache != NULL)
1570 edge_growth_cache->remove (curr);
1571 }
1572
1573 if (estimate_size_after_inlining (node, curr) > limit)
1574 {
1575 curr->redirect_callee (dest);
1576 if (edge_growth_cache != NULL)
1577 edge_growth_cache->remove (curr);
1578 break;
1579 }
1580
1581 depth = 1;
1582 for (cnode = curr->caller;
1583 cnode->inlined_to; cnode = cnode->callers->caller)
1584 if (node->decl
1585 == curr->callee->ultimate_alias_target ()->decl)
1586 depth++;
1587
1588 if (!want_inline_self_recursive_call_p (curr, node, false, depth))
1589 {
1590 curr->redirect_callee (dest);
1591 if (edge_growth_cache != NULL)
1592 edge_growth_cache->remove (curr);
1593 continue;
1594 }
1595
1596 if (dump_file)
1597 {
1598 fprintf (dump_file,
1599 " Inlining call of depth %i", depth);
1600 if (node->count.nonzero_p () && curr->count.initialized_p ())
1601 {
1602 fprintf (dump_file, " called approx. %.2f times per call",
1603 (double)curr->count.to_gcov_type ()
1604 / node->count.to_gcov_type ());
1605 }
1606 fprintf (dump_file, "\n");
1607 }
1608 if (!master_clone)
1609 {
1610 /* We need original clone to copy around. */
1611 master_clone = node->create_clone (node->decl, node->count,
1612 false, vNULL, true, NULL, NULL);
1613 for (e = master_clone->callees; e; e = e->next_callee)
1614 if (!e->inline_failed)
1615 clone_inlined_nodes (e, true, false, NULL);
1616 curr->redirect_callee (master_clone);
1617 if (edge_growth_cache != NULL)
1618 edge_growth_cache->remove (curr);
1619 }
1620
1621 inline_call (curr, false, new_edges, &overall_size, true);
1622 reset_node_cache (node);
1623 lookup_recursive_calls (node, curr->callee, &heap);
1624 n++;
1625 }
1626
1627 if (!heap.empty () && dump_file)
1628 fprintf (dump_file, " Recursive inlining growth limit met.\n");
1629
1630 if (!master_clone)
1631 return false;
1632
1633 if (dump_enabled_p ())
1634 dump_printf_loc (MSG_NOTE, edge->call_stmt,
1635 "\n Inlined %i times, "
1636 "body grown from size %i to %i, time %f to %f\n", n,
1637 ipa_size_summaries->get (master_clone)->size,
1638 ipa_size_summaries->get (node)->size,
1639 ipa_fn_summaries->get (master_clone)->time.to_double (),
1640 ipa_fn_summaries->get (node)->time.to_double ());
1641
1642 /* Remove master clone we used for inlining. We rely that clones inlined
1643 into master clone gets queued just before master clone so we don't
1644 need recursion. */
1645 for (node = symtab->first_function (); node != master_clone;
1646 node = next)
1647 {
1648 next = symtab->next_function (node);
1649 if (node->inlined_to == master_clone)
1650 node->remove ();
1651 }
1652 master_clone->remove ();
1653 return true;
1654 }
1655
1656
1657 /* Given whole compilation unit estimate of INSNS, compute how large we can
1658 allow the unit to grow. */
1659
1660 static int
1661 compute_max_insns (int insns)
1662 {
1663 int max_insns = insns;
1664 if (max_insns < param_large_unit_insns)
1665 max_insns = param_large_unit_insns;
1666
1667 return ((int64_t) max_insns
1668 * (100 + param_inline_unit_growth) / 100);
1669 }
1670
1671
1672 /* Compute badness of all edges in NEW_EDGES and add them to the HEAP. */
1673
1674 static void
1675 add_new_edges_to_heap (edge_heap_t *heap, vec<cgraph_edge *> new_edges)
1676 {
1677 while (new_edges.length () > 0)
1678 {
1679 struct cgraph_edge *edge = new_edges.pop ();
1680
1681 gcc_assert (!edge->aux);
1682 gcc_assert (edge->callee);
1683 if (edge->inline_failed
1684 && can_inline_edge_p (edge, true)
1685 && want_inline_small_function_p (edge, true)
1686 && can_inline_edge_by_limits_p (edge, true))
1687 edge->aux = heap->insert (edge_badness (edge, false), edge);
1688 }
1689 }
1690
1691 /* Remove EDGE from the fibheap. */
1692
1693 static void
1694 heap_edge_removal_hook (struct cgraph_edge *e, void *data)
1695 {
1696 if (e->aux)
1697 {
1698 ((edge_heap_t *)data)->delete_node ((edge_heap_node_t *)e->aux);
1699 e->aux = NULL;
1700 }
1701 }
1702
1703 /* Return true if speculation of edge E seems useful.
1704 If ANTICIPATE_INLINING is true, be conservative and hope that E
1705 may get inlined. */
1706
1707 bool
1708 speculation_useful_p (struct cgraph_edge *e, bool anticipate_inlining)
1709 {
1710 /* If we have already decided to inline the edge, it seems useful. */
1711 if (!e->inline_failed)
1712 return true;
1713
1714 enum availability avail;
1715 struct cgraph_node *target = e->callee->ultimate_alias_target (&avail,
1716 e->caller);
1717 struct cgraph_edge *direct, *indirect;
1718 struct ipa_ref *ref;
1719
1720 gcc_assert (e->speculative && !e->indirect_unknown_callee);
1721
1722 if (!e->maybe_hot_p ())
1723 return false;
1724
1725 /* See if IP optimizations found something potentially useful about the
1726 function. For now we look only for CONST/PURE flags. Almost everything
1727 else we propagate is useless. */
1728 if (avail >= AVAIL_AVAILABLE)
1729 {
1730 int ecf_flags = flags_from_decl_or_type (target->decl);
1731 if (ecf_flags & ECF_CONST)
1732 {
1733 e->speculative_call_info (direct, indirect, ref);
1734 if (!(indirect->indirect_info->ecf_flags & ECF_CONST))
1735 return true;
1736 }
1737 else if (ecf_flags & ECF_PURE)
1738 {
1739 e->speculative_call_info (direct, indirect, ref);
1740 if (!(indirect->indirect_info->ecf_flags & ECF_PURE))
1741 return true;
1742 }
1743 }
1744 /* If we did not managed to inline the function nor redirect
1745 to an ipa-cp clone (that are seen by having local flag set),
1746 it is probably pointless to inline it unless hardware is missing
1747 indirect call predictor. */
1748 if (!anticipate_inlining && !target->local)
1749 return false;
1750 /* For overwritable targets there is not much to do. */
1751 if (!can_inline_edge_p (e, false)
1752 || !can_inline_edge_by_limits_p (e, false, true))
1753 return false;
1754 /* OK, speculation seems interesting. */
1755 return true;
1756 }
1757
1758 /* We know that EDGE is not going to be inlined.
1759 See if we can remove speculation. */
1760
1761 static void
1762 resolve_noninline_speculation (edge_heap_t *edge_heap, struct cgraph_edge *edge)
1763 {
1764 if (edge->speculative && !speculation_useful_p (edge, false))
1765 {
1766 struct cgraph_node *node = edge->caller;
1767 struct cgraph_node *where = node->inlined_to
1768 ? node->inlined_to : node;
1769 auto_bitmap updated_nodes;
1770
1771 if (edge->count.ipa ().initialized_p ())
1772 spec_rem += edge->count.ipa ();
1773 edge->resolve_speculation ();
1774 reset_edge_caches (where);
1775 ipa_update_overall_fn_summary (where);
1776 update_caller_keys (edge_heap, where,
1777 updated_nodes, NULL);
1778 update_callee_keys (edge_heap, where,
1779 updated_nodes);
1780 }
1781 }
1782
1783 /* Return true if NODE should be accounted for overall size estimate.
1784 Skip all nodes optimized for size so we can measure the growth of hot
1785 part of program no matter of the padding. */
1786
1787 bool
1788 inline_account_function_p (struct cgraph_node *node)
1789 {
1790 return (!DECL_EXTERNAL (node->decl)
1791 && !opt_for_fn (node->decl, optimize_size)
1792 && node->frequency != NODE_FREQUENCY_UNLIKELY_EXECUTED);
1793 }
1794
1795 /* Count number of callers of NODE and store it into DATA (that
1796 points to int. Worker for cgraph_for_node_and_aliases. */
1797
1798 static bool
1799 sum_callers (struct cgraph_node *node, void *data)
1800 {
1801 struct cgraph_edge *e;
1802 int *num_calls = (int *)data;
1803
1804 for (e = node->callers; e; e = e->next_caller)
1805 (*num_calls)++;
1806 return false;
1807 }
1808
1809 /* We only propagate across edges with non-interposable callee. */
1810
1811 inline bool
1812 ignore_edge_p (struct cgraph_edge *e)
1813 {
1814 enum availability avail;
1815 e->callee->function_or_virtual_thunk_symbol (&avail, e->caller);
1816 return (avail <= AVAIL_INTERPOSABLE);
1817 }
1818
1819 /* We use greedy algorithm for inlining of small functions:
1820 All inline candidates are put into prioritized heap ordered in
1821 increasing badness.
1822
1823 The inlining of small functions is bounded by unit growth parameters. */
1824
1825 static void
1826 inline_small_functions (void)
1827 {
1828 struct cgraph_node *node;
1829 struct cgraph_edge *edge;
1830 edge_heap_t edge_heap (sreal::min ());
1831 auto_bitmap updated_nodes;
1832 int min_size, max_size;
1833 auto_vec<cgraph_edge *> new_indirect_edges;
1834 int initial_size = 0;
1835 struct cgraph_node **order = XCNEWVEC (cgraph_node *, symtab->cgraph_count);
1836 struct cgraph_edge_hook_list *edge_removal_hook_holder;
1837 new_indirect_edges.create (8);
1838
1839 edge_removal_hook_holder
1840 = symtab->add_edge_removal_hook (&heap_edge_removal_hook, &edge_heap);
1841
1842 /* Compute overall unit size and other global parameters used by badness
1843 metrics. */
1844
1845 max_count = profile_count::uninitialized ();
1846 ipa_reduced_postorder (order, true, ignore_edge_p);
1847 free (order);
1848
1849 FOR_EACH_DEFINED_FUNCTION (node)
1850 if (!node->inlined_to)
1851 {
1852 if (!node->alias && node->analyzed
1853 && (node->has_gimple_body_p () || node->thunk.thunk_p)
1854 && opt_for_fn (node->decl, optimize))
1855 {
1856 class ipa_fn_summary *info = ipa_fn_summaries->get (node);
1857 struct ipa_dfs_info *dfs = (struct ipa_dfs_info *) node->aux;
1858
1859 /* Do not account external functions, they will be optimized out
1860 if not inlined. Also only count the non-cold portion of program. */
1861 if (inline_account_function_p (node))
1862 initial_size += ipa_size_summaries->get (node)->size;
1863 info->growth = estimate_growth (node);
1864
1865 int num_calls = 0;
1866 node->call_for_symbol_and_aliases (sum_callers, &num_calls,
1867 true);
1868 if (num_calls == 1)
1869 info->single_caller = true;
1870 if (dfs && dfs->next_cycle)
1871 {
1872 struct cgraph_node *n2;
1873 int id = dfs->scc_no + 1;
1874 for (n2 = node; n2;
1875 n2 = ((struct ipa_dfs_info *) n2->aux)->next_cycle)
1876 if (opt_for_fn (n2->decl, optimize))
1877 {
1878 ipa_fn_summary *info2 = ipa_fn_summaries->get
1879 (n2->inlined_to ? n2->inlined_to : n2);
1880 if (info2->scc_no)
1881 break;
1882 info2->scc_no = id;
1883 }
1884 }
1885 }
1886
1887 for (edge = node->callers; edge; edge = edge->next_caller)
1888 max_count = max_count.max (edge->count.ipa ());
1889 }
1890 ipa_free_postorder_info ();
1891 initialize_growth_caches ();
1892
1893 if (dump_file)
1894 fprintf (dump_file,
1895 "\nDeciding on inlining of small functions. Starting with size %i.\n",
1896 initial_size);
1897
1898 overall_size = initial_size;
1899 max_size = compute_max_insns (overall_size);
1900 min_size = overall_size;
1901
1902 /* Populate the heap with all edges we might inline. */
1903
1904 FOR_EACH_DEFINED_FUNCTION (node)
1905 {
1906 bool update = false;
1907 struct cgraph_edge *next = NULL;
1908 bool has_speculative = false;
1909
1910 if (!opt_for_fn (node->decl, optimize))
1911 continue;
1912
1913 if (dump_file)
1914 fprintf (dump_file, "Enqueueing calls in %s.\n", node->dump_name ());
1915
1916 for (edge = node->callees; edge; edge = next)
1917 {
1918 next = edge->next_callee;
1919 if (edge->inline_failed
1920 && !edge->aux
1921 && can_inline_edge_p (edge, true)
1922 && want_inline_small_function_p (edge, true)
1923 && can_inline_edge_by_limits_p (edge, true)
1924 && edge->inline_failed)
1925 {
1926 gcc_assert (!edge->aux);
1927 update_edge_key (&edge_heap, edge);
1928 }
1929 if (edge->speculative)
1930 has_speculative = true;
1931 }
1932 if (has_speculative)
1933 for (edge = node->callees; edge; edge = next)
1934 if (edge->speculative && !speculation_useful_p (edge,
1935 edge->aux != NULL))
1936 {
1937 edge->resolve_speculation ();
1938 update = true;
1939 }
1940 if (update)
1941 {
1942 struct cgraph_node *where = node->inlined_to
1943 ? node->inlined_to : node;
1944 ipa_update_overall_fn_summary (where);
1945 reset_edge_caches (where);
1946 update_caller_keys (&edge_heap, where,
1947 updated_nodes, NULL);
1948 update_callee_keys (&edge_heap, where,
1949 updated_nodes);
1950 bitmap_clear (updated_nodes);
1951 }
1952 }
1953
1954 gcc_assert (in_lto_p
1955 || !(max_count > 0)
1956 || (profile_info && flag_branch_probabilities));
1957
1958 while (!edge_heap.empty ())
1959 {
1960 int old_size = overall_size;
1961 struct cgraph_node *where, *callee;
1962 sreal badness = edge_heap.min_key ();
1963 sreal current_badness;
1964 int growth;
1965
1966 edge = edge_heap.extract_min ();
1967 gcc_assert (edge->aux);
1968 edge->aux = NULL;
1969 if (!edge->inline_failed || !edge->callee->analyzed)
1970 continue;
1971
1972 /* Be sure that caches are maintained consistent.
1973 This check is affected by scaling roundoff errors when compiling for
1974 IPA this we skip it in that case. */
1975 if (flag_checking && !edge->callee->count.ipa_p ()
1976 && (!max_count.initialized_p () || !max_count.nonzero_p ()))
1977 {
1978 sreal cached_badness = edge_badness (edge, false);
1979
1980 int old_size_est = estimate_edge_size (edge);
1981 sreal old_time_est = estimate_edge_time (edge);
1982 int old_hints_est = estimate_edge_hints (edge);
1983
1984 if (edge_growth_cache != NULL)
1985 edge_growth_cache->remove (edge);
1986 reset_node_cache (edge->caller->inlined_to
1987 ? edge->caller->inlined_to
1988 : edge->caller);
1989 gcc_assert (old_size_est == estimate_edge_size (edge));
1990 gcc_assert (old_time_est == estimate_edge_time (edge));
1991 /* FIXME:
1992
1993 gcc_assert (old_hints_est == estimate_edge_hints (edge));
1994
1995 fails with profile feedback because some hints depends on
1996 maybe_hot_edge_p predicate and because callee gets inlined to other
1997 calls, the edge may become cold.
1998 This ought to be fixed by computing relative probabilities
1999 for given invocation but that will be better done once whole
2000 code is converted to sreals. Disable for now and revert to "wrong"
2001 value so enable/disable checking paths agree. */
2002 edge_growth_cache->get (edge)->hints = old_hints_est + 1;
2003
2004 /* When updating the edge costs, we only decrease badness in the keys.
2005 Increases of badness are handled lazilly; when we see key with out
2006 of date value on it, we re-insert it now. */
2007 current_badness = edge_badness (edge, false);
2008 gcc_assert (cached_badness == current_badness);
2009 gcc_assert (current_badness >= badness);
2010 }
2011 else
2012 current_badness = edge_badness (edge, false);
2013 if (current_badness != badness)
2014 {
2015 if (edge_heap.min () && current_badness > edge_heap.min_key ())
2016 {
2017 edge->aux = edge_heap.insert (current_badness, edge);
2018 continue;
2019 }
2020 else
2021 badness = current_badness;
2022 }
2023
2024 if (!can_inline_edge_p (edge, true)
2025 || !can_inline_edge_by_limits_p (edge, true))
2026 {
2027 resolve_noninline_speculation (&edge_heap, edge);
2028 continue;
2029 }
2030
2031 callee = edge->callee->ultimate_alias_target ();
2032 growth = estimate_edge_growth (edge);
2033 if (dump_file)
2034 {
2035 fprintf (dump_file,
2036 "\nConsidering %s with %i size\n",
2037 callee->dump_name (),
2038 ipa_size_summaries->get (callee)->size);
2039 fprintf (dump_file,
2040 " to be inlined into %s in %s:%i\n"
2041 " Estimated badness is %f, frequency %.2f.\n",
2042 edge->caller->dump_name (),
2043 edge->call_stmt
2044 && (LOCATION_LOCUS (gimple_location ((const gimple *)
2045 edge->call_stmt))
2046 > BUILTINS_LOCATION)
2047 ? gimple_filename ((const gimple *) edge->call_stmt)
2048 : "unknown",
2049 edge->call_stmt
2050 ? gimple_lineno ((const gimple *) edge->call_stmt)
2051 : -1,
2052 badness.to_double (),
2053 edge->sreal_frequency ().to_double ());
2054 if (edge->count.ipa ().initialized_p ())
2055 {
2056 fprintf (dump_file, " Called ");
2057 edge->count.ipa ().dump (dump_file);
2058 fprintf (dump_file, " times\n");
2059 }
2060 if (dump_flags & TDF_DETAILS)
2061 edge_badness (edge, true);
2062 }
2063
2064 if (overall_size + growth > max_size
2065 && !DECL_DISREGARD_INLINE_LIMITS (callee->decl))
2066 {
2067 edge->inline_failed = CIF_INLINE_UNIT_GROWTH_LIMIT;
2068 report_inline_failed_reason (edge);
2069 resolve_noninline_speculation (&edge_heap, edge);
2070 continue;
2071 }
2072
2073 if (!want_inline_small_function_p (edge, true))
2074 {
2075 resolve_noninline_speculation (&edge_heap, edge);
2076 continue;
2077 }
2078
2079 /* Heuristics for inlining small functions work poorly for
2080 recursive calls where we do effects similar to loop unrolling.
2081 When inlining such edge seems profitable, leave decision on
2082 specific inliner. */
2083 if (edge->recursive_p ())
2084 {
2085 where = edge->caller;
2086 if (where->inlined_to)
2087 where = where->inlined_to;
2088 if (!recursive_inlining (edge,
2089 opt_for_fn (edge->caller->decl,
2090 flag_indirect_inlining)
2091 ? &new_indirect_edges : NULL))
2092 {
2093 edge->inline_failed = CIF_RECURSIVE_INLINING;
2094 resolve_noninline_speculation (&edge_heap, edge);
2095 continue;
2096 }
2097 reset_edge_caches (where);
2098 /* Recursive inliner inlines all recursive calls of the function
2099 at once. Consequently we need to update all callee keys. */
2100 if (opt_for_fn (edge->caller->decl, flag_indirect_inlining))
2101 add_new_edges_to_heap (&edge_heap, new_indirect_edges);
2102 update_callee_keys (&edge_heap, where, updated_nodes);
2103 bitmap_clear (updated_nodes);
2104 }
2105 else
2106 {
2107 struct cgraph_node *outer_node = NULL;
2108 int depth = 0;
2109
2110 /* Consider the case where self recursive function A is inlined
2111 into B. This is desired optimization in some cases, since it
2112 leads to effect similar of loop peeling and we might completely
2113 optimize out the recursive call. However we must be extra
2114 selective. */
2115
2116 where = edge->caller;
2117 while (where->inlined_to)
2118 {
2119 if (where->decl == callee->decl)
2120 outer_node = where, depth++;
2121 where = where->callers->caller;
2122 }
2123 if (outer_node
2124 && !want_inline_self_recursive_call_p (edge, outer_node,
2125 true, depth))
2126 {
2127 edge->inline_failed
2128 = (DECL_DISREGARD_INLINE_LIMITS (edge->callee->decl)
2129 ? CIF_RECURSIVE_INLINING : CIF_UNSPECIFIED);
2130 resolve_noninline_speculation (&edge_heap, edge);
2131 continue;
2132 }
2133 else if (depth && dump_file)
2134 fprintf (dump_file, " Peeling recursion with depth %i\n", depth);
2135
2136 gcc_checking_assert (!callee->inlined_to);
2137
2138 int old_size = ipa_size_summaries->get (where)->size;
2139 sreal old_time = ipa_fn_summaries->get (where)->time;
2140
2141 inline_call (edge, true, &new_indirect_edges, &overall_size, true);
2142 add_new_edges_to_heap (&edge_heap, new_indirect_edges);
2143
2144 reset_edge_caches (edge->callee);
2145
2146 /* If caller's size and time increased we do not need to update
2147 all edges becuase badness is not going to decrease. */
2148 if (old_size <= ipa_size_summaries->get (where)->size
2149 && old_time <= ipa_fn_summaries->get (where)->time
2150 && 0)
2151 update_callee_keys (&edge_heap, edge->callee, updated_nodes);
2152 else
2153 update_callee_keys (&edge_heap, where, updated_nodes);
2154 }
2155 where = edge->caller;
2156 if (where->inlined_to)
2157 where = where->inlined_to;
2158
2159 /* Our profitability metric can depend on local properties
2160 such as number of inlinable calls and size of the function body.
2161 After inlining these properties might change for the function we
2162 inlined into (since it's body size changed) and for the functions
2163 called by function we inlined (since number of it inlinable callers
2164 might change). */
2165 update_caller_keys (&edge_heap, where, updated_nodes, NULL);
2166 /* Offline copy count has possibly changed, recompute if profile is
2167 available. */
2168 struct cgraph_node *n = cgraph_node::get (edge->callee->decl);
2169 if (n != edge->callee && n->analyzed && n->count.ipa ().initialized_p ())
2170 update_callee_keys (&edge_heap, n, updated_nodes);
2171 bitmap_clear (updated_nodes);
2172
2173 if (dump_enabled_p ())
2174 {
2175 ipa_fn_summary *s = ipa_fn_summaries->get (where);
2176
2177 /* dump_printf can't handle %+i. */
2178 char buf_net_change[100];
2179 snprintf (buf_net_change, sizeof buf_net_change, "%+i",
2180 overall_size - old_size);
2181
2182 dump_printf_loc (MSG_OPTIMIZED_LOCATIONS, edge->call_stmt,
2183 " Inlined %C into %C which now has time %f and "
2184 "size %i, net change of %s.\n",
2185 edge->callee, edge->caller,
2186 s->time.to_double (),
2187 ipa_size_summaries->get (edge->caller)->size,
2188 buf_net_change);
2189 }
2190 if (min_size > overall_size)
2191 {
2192 min_size = overall_size;
2193 max_size = compute_max_insns (min_size);
2194
2195 if (dump_file)
2196 fprintf (dump_file, "New minimal size reached: %i\n", min_size);
2197 }
2198 }
2199
2200 free_growth_caches ();
2201 if (dump_enabled_p ())
2202 dump_printf (MSG_NOTE,
2203 "Unit growth for small function inlining: %i->%i (%i%%)\n",
2204 initial_size, overall_size,
2205 initial_size ? overall_size * 100 / (initial_size) - 100: 0);
2206 symtab->remove_edge_removal_hook (edge_removal_hook_holder);
2207 }
2208
2209 /* Flatten NODE. Performed both during early inlining and
2210 at IPA inlining time. */
2211
2212 static void
2213 flatten_function (struct cgraph_node *node, bool early, bool update)
2214 {
2215 struct cgraph_edge *e;
2216
2217 /* We shouldn't be called recursively when we are being processed. */
2218 gcc_assert (node->aux == NULL);
2219
2220 node->aux = (void *) node;
2221
2222 for (e = node->callees; e; e = e->next_callee)
2223 {
2224 struct cgraph_node *orig_callee;
2225 struct cgraph_node *callee = e->callee->ultimate_alias_target ();
2226
2227 /* We've hit cycle? It is time to give up. */
2228 if (callee->aux)
2229 {
2230 if (dump_enabled_p ())
2231 dump_printf_loc (MSG_MISSED_OPTIMIZATION, e->call_stmt,
2232 "Not inlining %C into %C to avoid cycle.\n",
2233 callee, e->caller);
2234 if (cgraph_inline_failed_type (e->inline_failed) != CIF_FINAL_ERROR)
2235 e->inline_failed = CIF_RECURSIVE_INLINING;
2236 continue;
2237 }
2238
2239 /* When the edge is already inlined, we just need to recurse into
2240 it in order to fully flatten the leaves. */
2241 if (!e->inline_failed)
2242 {
2243 flatten_function (callee, early, false);
2244 continue;
2245 }
2246
2247 /* Flatten attribute needs to be processed during late inlining. For
2248 extra code quality we however do flattening during early optimization,
2249 too. */
2250 if (!early
2251 ? !can_inline_edge_p (e, true)
2252 && !can_inline_edge_by_limits_p (e, true)
2253 : !can_early_inline_edge_p (e))
2254 continue;
2255
2256 if (e->recursive_p ())
2257 {
2258 if (dump_enabled_p ())
2259 dump_printf_loc (MSG_MISSED_OPTIMIZATION, e->call_stmt,
2260 "Not inlining: recursive call.\n");
2261 continue;
2262 }
2263
2264 if (gimple_in_ssa_p (DECL_STRUCT_FUNCTION (node->decl))
2265 != gimple_in_ssa_p (DECL_STRUCT_FUNCTION (callee->decl)))
2266 {
2267 if (dump_enabled_p ())
2268 dump_printf_loc (MSG_MISSED_OPTIMIZATION, e->call_stmt,
2269 "Not inlining: SSA form does not match.\n");
2270 continue;
2271 }
2272
2273 /* Inline the edge and flatten the inline clone. Avoid
2274 recursing through the original node if the node was cloned. */
2275 if (dump_enabled_p ())
2276 dump_printf_loc (MSG_OPTIMIZED_LOCATIONS, e->call_stmt,
2277 " Inlining %C into %C.\n",
2278 callee, e->caller);
2279 orig_callee = callee;
2280 inline_call (e, true, NULL, NULL, false);
2281 if (e->callee != orig_callee)
2282 orig_callee->aux = (void *) node;
2283 flatten_function (e->callee, early, false);
2284 if (e->callee != orig_callee)
2285 orig_callee->aux = NULL;
2286 }
2287
2288 node->aux = NULL;
2289 cgraph_node *where = node->inlined_to ? node->inlined_to : node;
2290 if (update && opt_for_fn (where->decl, optimize))
2291 ipa_update_overall_fn_summary (where);
2292 }
2293
2294 /* Inline NODE to all callers. Worker for cgraph_for_node_and_aliases.
2295 DATA points to number of calls originally found so we avoid infinite
2296 recursion. */
2297
2298 static bool
2299 inline_to_all_callers_1 (struct cgraph_node *node, void *data,
2300 hash_set<cgraph_node *> *callers)
2301 {
2302 int *num_calls = (int *)data;
2303 bool callee_removed = false;
2304
2305 while (node->callers && !node->inlined_to)
2306 {
2307 struct cgraph_node *caller = node->callers->caller;
2308
2309 if (!can_inline_edge_p (node->callers, true)
2310 || !can_inline_edge_by_limits_p (node->callers, true)
2311 || node->callers->recursive_p ())
2312 {
2313 if (dump_file)
2314 fprintf (dump_file, "Uninlinable call found; giving up.\n");
2315 *num_calls = 0;
2316 return false;
2317 }
2318
2319 if (dump_file)
2320 {
2321 cgraph_node *ultimate = node->ultimate_alias_target ();
2322 fprintf (dump_file,
2323 "\nInlining %s size %i.\n",
2324 ultimate->name (),
2325 ipa_size_summaries->get (ultimate)->size);
2326 fprintf (dump_file,
2327 " Called once from %s %i insns.\n",
2328 node->callers->caller->name (),
2329 ipa_size_summaries->get (node->callers->caller)->size);
2330 }
2331
2332 /* Remember which callers we inlined to, delaying updating the
2333 overall summary. */
2334 callers->add (node->callers->caller);
2335 inline_call (node->callers, true, NULL, NULL, false, &callee_removed);
2336 if (dump_file)
2337 fprintf (dump_file,
2338 " Inlined into %s which now has %i size\n",
2339 caller->name (),
2340 ipa_size_summaries->get (caller)->size);
2341 if (!(*num_calls)--)
2342 {
2343 if (dump_file)
2344 fprintf (dump_file, "New calls found; giving up.\n");
2345 return callee_removed;
2346 }
2347 if (callee_removed)
2348 return true;
2349 }
2350 return false;
2351 }
2352
2353 /* Wrapper around inline_to_all_callers_1 doing delayed overall summary
2354 update. */
2355
2356 static bool
2357 inline_to_all_callers (struct cgraph_node *node, void *data)
2358 {
2359 hash_set<cgraph_node *> callers;
2360 bool res = inline_to_all_callers_1 (node, data, &callers);
2361 /* Perform the delayed update of the overall summary of all callers
2362 processed. This avoids quadratic behavior in the cases where
2363 we have a lot of calls to the same function. */
2364 for (hash_set<cgraph_node *>::iterator i = callers.begin ();
2365 i != callers.end (); ++i)
2366 ipa_update_overall_fn_summary ((*i)->inlined_to ? (*i)->inlined_to : *i);
2367 return res;
2368 }
2369
2370 /* Output overall time estimate. */
2371 static void
2372 dump_overall_stats (void)
2373 {
2374 sreal sum_weighted = 0, sum = 0;
2375 struct cgraph_node *node;
2376
2377 FOR_EACH_DEFINED_FUNCTION (node)
2378 if (!node->inlined_to
2379 && !node->alias)
2380 {
2381 ipa_fn_summary *s = ipa_fn_summaries->get (node);
2382 if (s != NULL)
2383 {
2384 sum += s->time;
2385 if (node->count.ipa ().initialized_p ())
2386 sum_weighted += s->time * node->count.ipa ().to_gcov_type ();
2387 }
2388 }
2389 fprintf (dump_file, "Overall time estimate: "
2390 "%f weighted by profile: "
2391 "%f\n", sum.to_double (), sum_weighted.to_double ());
2392 }
2393
2394 /* Output some useful stats about inlining. */
2395
2396 static void
2397 dump_inline_stats (void)
2398 {
2399 int64_t inlined_cnt = 0, inlined_indir_cnt = 0;
2400 int64_t inlined_virt_cnt = 0, inlined_virt_indir_cnt = 0;
2401 int64_t noninlined_cnt = 0, noninlined_indir_cnt = 0;
2402 int64_t noninlined_virt_cnt = 0, noninlined_virt_indir_cnt = 0;
2403 int64_t inlined_speculative = 0, inlined_speculative_ply = 0;
2404 int64_t indirect_poly_cnt = 0, indirect_cnt = 0;
2405 int64_t reason[CIF_N_REASONS][2];
2406 sreal reason_freq[CIF_N_REASONS];
2407 int i;
2408 struct cgraph_node *node;
2409
2410 memset (reason, 0, sizeof (reason));
2411 for (i=0; i < CIF_N_REASONS; i++)
2412 reason_freq[i] = 0;
2413 FOR_EACH_DEFINED_FUNCTION (node)
2414 {
2415 struct cgraph_edge *e;
2416 for (e = node->callees; e; e = e->next_callee)
2417 {
2418 if (e->inline_failed)
2419 {
2420 if (e->count.ipa ().initialized_p ())
2421 reason[(int) e->inline_failed][0] += e->count.ipa ().to_gcov_type ();
2422 reason_freq[(int) e->inline_failed] += e->sreal_frequency ();
2423 reason[(int) e->inline_failed][1] ++;
2424 if (DECL_VIRTUAL_P (e->callee->decl)
2425 && e->count.ipa ().initialized_p ())
2426 {
2427 if (e->indirect_inlining_edge)
2428 noninlined_virt_indir_cnt += e->count.ipa ().to_gcov_type ();
2429 else
2430 noninlined_virt_cnt += e->count.ipa ().to_gcov_type ();
2431 }
2432 else if (e->count.ipa ().initialized_p ())
2433 {
2434 if (e->indirect_inlining_edge)
2435 noninlined_indir_cnt += e->count.ipa ().to_gcov_type ();
2436 else
2437 noninlined_cnt += e->count.ipa ().to_gcov_type ();
2438 }
2439 }
2440 else if (e->count.ipa ().initialized_p ())
2441 {
2442 if (e->speculative)
2443 {
2444 if (DECL_VIRTUAL_P (e->callee->decl))
2445 inlined_speculative_ply += e->count.ipa ().to_gcov_type ();
2446 else
2447 inlined_speculative += e->count.ipa ().to_gcov_type ();
2448 }
2449 else if (DECL_VIRTUAL_P (e->callee->decl))
2450 {
2451 if (e->indirect_inlining_edge)
2452 inlined_virt_indir_cnt += e->count.ipa ().to_gcov_type ();
2453 else
2454 inlined_virt_cnt += e->count.ipa ().to_gcov_type ();
2455 }
2456 else
2457 {
2458 if (e->indirect_inlining_edge)
2459 inlined_indir_cnt += e->count.ipa ().to_gcov_type ();
2460 else
2461 inlined_cnt += e->count.ipa ().to_gcov_type ();
2462 }
2463 }
2464 }
2465 for (e = node->indirect_calls; e; e = e->next_callee)
2466 if (e->indirect_info->polymorphic
2467 & e->count.ipa ().initialized_p ())
2468 indirect_poly_cnt += e->count.ipa ().to_gcov_type ();
2469 else if (e->count.ipa ().initialized_p ())
2470 indirect_cnt += e->count.ipa ().to_gcov_type ();
2471 }
2472 if (max_count.initialized_p ())
2473 {
2474 fprintf (dump_file,
2475 "Inlined %" PRId64 " + speculative "
2476 "%" PRId64 " + speculative polymorphic "
2477 "%" PRId64 " + previously indirect "
2478 "%" PRId64 " + virtual "
2479 "%" PRId64 " + virtual and previously indirect "
2480 "%" PRId64 "\n" "Not inlined "
2481 "%" PRId64 " + previously indirect "
2482 "%" PRId64 " + virtual "
2483 "%" PRId64 " + virtual and previously indirect "
2484 "%" PRId64 " + stil indirect "
2485 "%" PRId64 " + still indirect polymorphic "
2486 "%" PRId64 "\n", inlined_cnt,
2487 inlined_speculative, inlined_speculative_ply,
2488 inlined_indir_cnt, inlined_virt_cnt, inlined_virt_indir_cnt,
2489 noninlined_cnt, noninlined_indir_cnt, noninlined_virt_cnt,
2490 noninlined_virt_indir_cnt, indirect_cnt, indirect_poly_cnt);
2491 fprintf (dump_file, "Removed speculations ");
2492 spec_rem.dump (dump_file);
2493 fprintf (dump_file, "\n");
2494 }
2495 dump_overall_stats ();
2496 fprintf (dump_file, "\nWhy inlining failed?\n");
2497 for (i = 0; i < CIF_N_REASONS; i++)
2498 if (reason[i][1])
2499 fprintf (dump_file, "%-50s: %8i calls, %8f freq, %" PRId64" count\n",
2500 cgraph_inline_failed_string ((cgraph_inline_failed_t) i),
2501 (int) reason[i][1], reason_freq[i].to_double (), reason[i][0]);
2502 }
2503
2504 /* Called when node is removed. */
2505
2506 static void
2507 flatten_remove_node_hook (struct cgraph_node *node, void *data)
2508 {
2509 if (lookup_attribute ("flatten", DECL_ATTRIBUTES (node->decl)) == NULL)
2510 return;
2511
2512 hash_set<struct cgraph_node *> *removed
2513 = (hash_set<struct cgraph_node *> *) data;
2514 removed->add (node);
2515 }
2516
2517 /* Decide on the inlining. We do so in the topological order to avoid
2518 expenses on updating data structures. */
2519
2520 static unsigned int
2521 ipa_inline (void)
2522 {
2523 struct cgraph_node *node;
2524 int nnodes;
2525 struct cgraph_node **order;
2526 int i, j;
2527 int cold;
2528 bool remove_functions = false;
2529
2530 order = XCNEWVEC (struct cgraph_node *, symtab->cgraph_count);
2531
2532 if (dump_file)
2533 ipa_dump_fn_summaries (dump_file);
2534
2535 nnodes = ipa_reverse_postorder (order);
2536 spec_rem = profile_count::zero ();
2537
2538 FOR_EACH_FUNCTION (node)
2539 {
2540 node->aux = 0;
2541
2542 /* Recompute the default reasons for inlining because they may have
2543 changed during merging. */
2544 if (in_lto_p)
2545 {
2546 for (cgraph_edge *e = node->callees; e; e = e->next_callee)
2547 {
2548 gcc_assert (e->inline_failed);
2549 initialize_inline_failed (e);
2550 }
2551 for (cgraph_edge *e = node->indirect_calls; e; e = e->next_callee)
2552 initialize_inline_failed (e);
2553 }
2554 }
2555
2556 if (dump_file)
2557 fprintf (dump_file, "\nFlattening functions:\n");
2558
2559 /* First shrink order array, so that it only contains nodes with
2560 flatten attribute. */
2561 for (i = nnodes - 1, j = i; i >= 0; i--)
2562 {
2563 node = order[i];
2564 if (node->definition
2565 && lookup_attribute ("flatten",
2566 DECL_ATTRIBUTES (node->decl)) != NULL)
2567 order[j--] = order[i];
2568 }
2569
2570 /* After the above loop, order[j + 1] ... order[nnodes - 1] contain
2571 nodes with flatten attribute. If there is more than one such
2572 node, we need to register a node removal hook, as flatten_function
2573 could remove other nodes with flatten attribute. See PR82801. */
2574 struct cgraph_node_hook_list *node_removal_hook_holder = NULL;
2575 hash_set<struct cgraph_node *> *flatten_removed_nodes = NULL;
2576 if (j < nnodes - 2)
2577 {
2578 flatten_removed_nodes = new hash_set<struct cgraph_node *>;
2579 node_removal_hook_holder
2580 = symtab->add_cgraph_removal_hook (&flatten_remove_node_hook,
2581 flatten_removed_nodes);
2582 }
2583
2584 /* In the first pass handle functions to be flattened. Do this with
2585 a priority so none of our later choices will make this impossible. */
2586 for (i = nnodes - 1; i > j; i--)
2587 {
2588 node = order[i];
2589 if (flatten_removed_nodes
2590 && flatten_removed_nodes->contains (node))
2591 continue;
2592
2593 /* Handle nodes to be flattened.
2594 Ideally when processing callees we stop inlining at the
2595 entry of cycles, possibly cloning that entry point and
2596 try to flatten itself turning it into a self-recursive
2597 function. */
2598 if (dump_file)
2599 fprintf (dump_file, "Flattening %s\n", node->name ());
2600 flatten_function (node, false, true);
2601 }
2602
2603 if (j < nnodes - 2)
2604 {
2605 symtab->remove_cgraph_removal_hook (node_removal_hook_holder);
2606 delete flatten_removed_nodes;
2607 }
2608 free (order);
2609
2610 if (dump_file)
2611 dump_overall_stats ();
2612
2613 inline_small_functions ();
2614
2615 gcc_assert (symtab->state == IPA_SSA);
2616 symtab->state = IPA_SSA_AFTER_INLINING;
2617 /* Do first after-inlining removal. We want to remove all "stale" extern
2618 inline functions and virtual functions so we really know what is called
2619 once. */
2620 symtab->remove_unreachable_nodes (dump_file);
2621
2622 /* Inline functions with a property that after inlining into all callers the
2623 code size will shrink because the out-of-line copy is eliminated.
2624 We do this regardless on the callee size as long as function growth limits
2625 are met. */
2626 if (dump_file)
2627 fprintf (dump_file,
2628 "\nDeciding on functions to be inlined into all callers and "
2629 "removing useless speculations:\n");
2630
2631 /* Inlining one function called once has good chance of preventing
2632 inlining other function into the same callee. Ideally we should
2633 work in priority order, but probably inlining hot functions first
2634 is good cut without the extra pain of maintaining the queue.
2635
2636 ??? this is not really fitting the bill perfectly: inlining function
2637 into callee often leads to better optimization of callee due to
2638 increased context for optimization.
2639 For example if main() function calls a function that outputs help
2640 and then function that does the main optmization, we should inline
2641 the second with priority even if both calls are cold by themselves.
2642
2643 We probably want to implement new predicate replacing our use of
2644 maybe_hot_edge interpreted as maybe_hot_edge || callee is known
2645 to be hot. */
2646 for (cold = 0; cold <= 1; cold ++)
2647 {
2648 FOR_EACH_DEFINED_FUNCTION (node)
2649 {
2650 struct cgraph_edge *edge, *next;
2651 bool update=false;
2652
2653 if (!opt_for_fn (node->decl, optimize)
2654 || !opt_for_fn (node->decl, flag_inline_functions_called_once))
2655 continue;
2656
2657 for (edge = node->callees; edge; edge = next)
2658 {
2659 next = edge->next_callee;
2660 if (edge->speculative && !speculation_useful_p (edge, false))
2661 {
2662 if (edge->count.ipa ().initialized_p ())
2663 spec_rem += edge->count.ipa ();
2664 edge->resolve_speculation ();
2665 update = true;
2666 remove_functions = true;
2667 }
2668 }
2669 if (update)
2670 {
2671 struct cgraph_node *where = node->inlined_to
2672 ? node->inlined_to : node;
2673 reset_edge_caches (where);
2674 ipa_update_overall_fn_summary (where);
2675 }
2676 if (want_inline_function_to_all_callers_p (node, cold))
2677 {
2678 int num_calls = 0;
2679 node->call_for_symbol_and_aliases (sum_callers, &num_calls,
2680 true);
2681 while (node->call_for_symbol_and_aliases
2682 (inline_to_all_callers, &num_calls, true))
2683 ;
2684 remove_functions = true;
2685 }
2686 }
2687 }
2688
2689 /* Free ipa-prop structures if they are no longer needed. */
2690 ipa_free_all_structures_after_iinln ();
2691
2692 if (dump_enabled_p ())
2693 dump_printf (MSG_NOTE,
2694 "\nInlined %i calls, eliminated %i functions\n\n",
2695 ncalls_inlined, nfunctions_inlined);
2696 if (dump_file)
2697 dump_inline_stats ();
2698
2699 if (dump_file)
2700 ipa_dump_fn_summaries (dump_file);
2701 return remove_functions ? TODO_remove_functions : 0;
2702 }
2703
2704 /* Inline always-inline function calls in NODE. */
2705
2706 static bool
2707 inline_always_inline_functions (struct cgraph_node *node)
2708 {
2709 struct cgraph_edge *e;
2710 bool inlined = false;
2711
2712 for (e = node->callees; e; e = e->next_callee)
2713 {
2714 struct cgraph_node *callee = e->callee->ultimate_alias_target ();
2715 if (!DECL_DISREGARD_INLINE_LIMITS (callee->decl))
2716 continue;
2717
2718 if (e->recursive_p ())
2719 {
2720 if (dump_enabled_p ())
2721 dump_printf_loc (MSG_MISSED_OPTIMIZATION, e->call_stmt,
2722 " Not inlining recursive call to %C.\n",
2723 e->callee);
2724 e->inline_failed = CIF_RECURSIVE_INLINING;
2725 continue;
2726 }
2727
2728 if (!can_early_inline_edge_p (e))
2729 {
2730 /* Set inlined to true if the callee is marked "always_inline" but
2731 is not inlinable. This will allow flagging an error later in
2732 expand_call_inline in tree-inline.c. */
2733 if (lookup_attribute ("always_inline",
2734 DECL_ATTRIBUTES (callee->decl)) != NULL)
2735 inlined = true;
2736 continue;
2737 }
2738
2739 if (dump_enabled_p ())
2740 dump_printf_loc (MSG_OPTIMIZED_LOCATIONS, e->call_stmt,
2741 " Inlining %C into %C (always_inline).\n",
2742 e->callee, e->caller);
2743 inline_call (e, true, NULL, NULL, false);
2744 inlined = true;
2745 }
2746 if (inlined)
2747 ipa_update_overall_fn_summary (node);
2748
2749 return inlined;
2750 }
2751
2752 /* Decide on the inlining. We do so in the topological order to avoid
2753 expenses on updating data structures. */
2754
2755 static bool
2756 early_inline_small_functions (struct cgraph_node *node)
2757 {
2758 struct cgraph_edge *e;
2759 bool inlined = false;
2760
2761 for (e = node->callees; e; e = e->next_callee)
2762 {
2763 struct cgraph_node *callee = e->callee->ultimate_alias_target ();
2764
2765 /* We can enounter not-yet-analyzed function during
2766 early inlining on callgraphs with strongly
2767 connected components. */
2768 ipa_fn_summary *s = ipa_fn_summaries->get (callee);
2769 if (s == NULL || !s->inlinable || !e->inline_failed)
2770 continue;
2771
2772 /* Do not consider functions not declared inline. */
2773 if (!DECL_DECLARED_INLINE_P (callee->decl)
2774 && !opt_for_fn (node->decl, flag_inline_small_functions)
2775 && !opt_for_fn (node->decl, flag_inline_functions))
2776 continue;
2777
2778 if (dump_enabled_p ())
2779 dump_printf_loc (MSG_NOTE, e->call_stmt,
2780 "Considering inline candidate %C.\n",
2781 callee);
2782
2783 if (!can_early_inline_edge_p (e))
2784 continue;
2785
2786 if (e->recursive_p ())
2787 {
2788 if (dump_enabled_p ())
2789 dump_printf_loc (MSG_MISSED_OPTIMIZATION, e->call_stmt,
2790 " Not inlining: recursive call.\n");
2791 continue;
2792 }
2793
2794 if (!want_early_inline_function_p (e))
2795 continue;
2796
2797 if (dump_enabled_p ())
2798 dump_printf_loc (MSG_OPTIMIZED_LOCATIONS, e->call_stmt,
2799 " Inlining %C into %C.\n",
2800 callee, e->caller);
2801 inline_call (e, true, NULL, NULL, false);
2802 inlined = true;
2803 }
2804
2805 if (inlined)
2806 ipa_update_overall_fn_summary (node);
2807
2808 return inlined;
2809 }
2810
2811 unsigned int
2812 early_inliner (function *fun)
2813 {
2814 struct cgraph_node *node = cgraph_node::get (current_function_decl);
2815 struct cgraph_edge *edge;
2816 unsigned int todo = 0;
2817 int iterations = 0;
2818 bool inlined = false;
2819
2820 if (seen_error ())
2821 return 0;
2822
2823 /* Do nothing if datastructures for ipa-inliner are already computed. This
2824 happens when some pass decides to construct new function and
2825 cgraph_add_new_function calls lowering passes and early optimization on
2826 it. This may confuse ourself when early inliner decide to inline call to
2827 function clone, because function clones don't have parameter list in
2828 ipa-prop matching their signature. */
2829 if (ipa_node_params_sum)
2830 return 0;
2831
2832 if (flag_checking)
2833 node->verify ();
2834 node->remove_all_references ();
2835
2836 /* Even when not optimizing or not inlining inline always-inline
2837 functions. */
2838 inlined = inline_always_inline_functions (node);
2839
2840 if (!optimize
2841 || flag_no_inline
2842 || !flag_early_inlining
2843 /* Never inline regular functions into always-inline functions
2844 during incremental inlining. This sucks as functions calling
2845 always inline functions will get less optimized, but at the
2846 same time inlining of functions calling always inline
2847 function into an always inline function might introduce
2848 cycles of edges to be always inlined in the callgraph.
2849
2850 We might want to be smarter and just avoid this type of inlining. */
2851 || (DECL_DISREGARD_INLINE_LIMITS (node->decl)
2852 && lookup_attribute ("always_inline",
2853 DECL_ATTRIBUTES (node->decl))))
2854 ;
2855 else if (lookup_attribute ("flatten",
2856 DECL_ATTRIBUTES (node->decl)) != NULL)
2857 {
2858 /* When the function is marked to be flattened, recursively inline
2859 all calls in it. */
2860 if (dump_enabled_p ())
2861 dump_printf (MSG_OPTIMIZED_LOCATIONS,
2862 "Flattening %C\n", node);
2863 flatten_function (node, true, true);
2864 inlined = true;
2865 }
2866 else
2867 {
2868 /* If some always_inline functions was inlined, apply the changes.
2869 This way we will not account always inline into growth limits and
2870 moreover we will inline calls from always inlines that we skipped
2871 previously because of conditional above. */
2872 if (inlined)
2873 {
2874 timevar_push (TV_INTEGRATION);
2875 todo |= optimize_inline_calls (current_function_decl);
2876 /* optimize_inline_calls call above might have introduced new
2877 statements that don't have inline parameters computed. */
2878 for (edge = node->callees; edge; edge = edge->next_callee)
2879 {
2880 /* We can enounter not-yet-analyzed function during
2881 early inlining on callgraphs with strongly
2882 connected components. */
2883 ipa_call_summary *es = ipa_call_summaries->get_create (edge);
2884 es->call_stmt_size
2885 = estimate_num_insns (edge->call_stmt, &eni_size_weights);
2886 es->call_stmt_time
2887 = estimate_num_insns (edge->call_stmt, &eni_time_weights);
2888 }
2889 ipa_update_overall_fn_summary (node);
2890 inlined = false;
2891 timevar_pop (TV_INTEGRATION);
2892 }
2893 /* We iterate incremental inlining to get trivial cases of indirect
2894 inlining. */
2895 while (iterations < param_early_inliner_max_iterations
2896 && early_inline_small_functions (node))
2897 {
2898 timevar_push (TV_INTEGRATION);
2899 todo |= optimize_inline_calls (current_function_decl);
2900
2901 /* Technically we ought to recompute inline parameters so the new
2902 iteration of early inliner works as expected. We however have
2903 values approximately right and thus we only need to update edge
2904 info that might be cleared out for newly discovered edges. */
2905 for (edge = node->callees; edge; edge = edge->next_callee)
2906 {
2907 /* We have no summary for new bound store calls yet. */
2908 ipa_call_summary *es = ipa_call_summaries->get_create (edge);
2909 es->call_stmt_size
2910 = estimate_num_insns (edge->call_stmt, &eni_size_weights);
2911 es->call_stmt_time
2912 = estimate_num_insns (edge->call_stmt, &eni_time_weights);
2913 }
2914 if (iterations < param_early_inliner_max_iterations - 1)
2915 ipa_update_overall_fn_summary (node);
2916 timevar_pop (TV_INTEGRATION);
2917 iterations++;
2918 inlined = false;
2919 }
2920 if (dump_file)
2921 fprintf (dump_file, "Iterations: %i\n", iterations);
2922 }
2923
2924 if (inlined)
2925 {
2926 timevar_push (TV_INTEGRATION);
2927 todo |= optimize_inline_calls (current_function_decl);
2928 timevar_pop (TV_INTEGRATION);
2929 }
2930
2931 fun->always_inline_functions_inlined = true;
2932
2933 return todo;
2934 }
2935
2936 /* Do inlining of small functions. Doing so early helps profiling and other
2937 passes to be somewhat more effective and avoids some code duplication in
2938 later real inlining pass for testcases with very many function calls. */
2939
2940 namespace {
2941
2942 const pass_data pass_data_early_inline =
2943 {
2944 GIMPLE_PASS, /* type */
2945 "einline", /* name */
2946 OPTGROUP_INLINE, /* optinfo_flags */
2947 TV_EARLY_INLINING, /* tv_id */
2948 PROP_ssa, /* properties_required */
2949 0, /* properties_provided */
2950 0, /* properties_destroyed */
2951 0, /* todo_flags_start */
2952 0, /* todo_flags_finish */
2953 };
2954
2955 class pass_early_inline : public gimple_opt_pass
2956 {
2957 public:
2958 pass_early_inline (gcc::context *ctxt)
2959 : gimple_opt_pass (pass_data_early_inline, ctxt)
2960 {}
2961
2962 /* opt_pass methods: */
2963 virtual unsigned int execute (function *);
2964
2965 }; // class pass_early_inline
2966
2967 unsigned int
2968 pass_early_inline::execute (function *fun)
2969 {
2970 return early_inliner (fun);
2971 }
2972
2973 } // anon namespace
2974
2975 gimple_opt_pass *
2976 make_pass_early_inline (gcc::context *ctxt)
2977 {
2978 return new pass_early_inline (ctxt);
2979 }
2980
2981 namespace {
2982
2983 const pass_data pass_data_ipa_inline =
2984 {
2985 IPA_PASS, /* type */
2986 "inline", /* name */
2987 OPTGROUP_INLINE, /* optinfo_flags */
2988 TV_IPA_INLINING, /* tv_id */
2989 0, /* properties_required */
2990 0, /* properties_provided */
2991 0, /* properties_destroyed */
2992 0, /* todo_flags_start */
2993 ( TODO_dump_symtab ), /* todo_flags_finish */
2994 };
2995
2996 class pass_ipa_inline : public ipa_opt_pass_d
2997 {
2998 public:
2999 pass_ipa_inline (gcc::context *ctxt)
3000 : ipa_opt_pass_d (pass_data_ipa_inline, ctxt,
3001 NULL, /* generate_summary */
3002 NULL, /* write_summary */
3003 NULL, /* read_summary */
3004 NULL, /* write_optimization_summary */
3005 NULL, /* read_optimization_summary */
3006 NULL, /* stmt_fixup */
3007 0, /* function_transform_todo_flags_start */
3008 inline_transform, /* function_transform */
3009 NULL) /* variable_transform */
3010 {}
3011
3012 /* opt_pass methods: */
3013 virtual unsigned int execute (function *) { return ipa_inline (); }
3014
3015 }; // class pass_ipa_inline
3016
3017 } // anon namespace
3018
3019 ipa_opt_pass_d *
3020 make_pass_ipa_inline (gcc::context *ctxt)
3021 {
3022 return new pass_ipa_inline (ctxt);
3023 }