]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/ipa-profile.c
Fix double word typos.
[thirdparty/gcc.git] / gcc / ipa-profile.c
1 /* Basic IPA optimizations based on profile.
2 Copyright (C) 2003-2015 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20 /* ipa-profile pass implements the following analysis propagating profille
21 inter-procedurally.
22
23 - Count histogram construction. This is a histogram analyzing how much
24 time is spent executing statements with a given execution count read
25 from profile feedback. This histogram is complete only with LTO,
26 otherwise it contains information only about the current unit.
27
28 Similar histogram is also estimated by coverage runtime. This histogram
29 is not dependent on LTO, but it suffers from various defects; first
30 gcov runtime is not weighting individual basic block by estimated execution
31 time and second the merging of multiple runs makes assumption that the
32 histogram distribution did not change. Consequentely histogram constructed
33 here may be more precise.
34
35 The information is used to set hot/cold thresholds.
36 - Next speculative indirect call resolution is performed: the local
37 profile pass assigns profile-id to each function and provide us with a
38 histogram specifying the most common target. We look up the callgraph
39 node corresponding to the target and produce a speculative call.
40
41 This call may or may not survive through IPA optimization based on decision
42 of inliner.
43 - Finally we propagate the following flags: unlikely executed, executed
44 once, executed at startup and executed at exit. These flags are used to
45 control code size/performance threshold and code placement (by producing
46 .text.unlikely/.text.hot/.text.startup/.text.exit subsections). */
47 #include "config.h"
48 #include "system.h"
49 #include "coretypes.h"
50 #include "backend.h"
51 #include "predict.h"
52 #include "tree.h"
53 #include "gimple.h"
54 #include "hard-reg-set.h"
55 #include "alias.h"
56 #include "fold-const.h"
57 #include "cgraph.h"
58 #include "tree-pass.h"
59 #include "internal-fn.h"
60 #include "gimple-iterator.h"
61 #include "flags.h"
62 #include "target.h"
63 #include "tree-iterator.h"
64 #include "ipa-utils.h"
65 #include "profile.h"
66 #include "params.h"
67 #include "value-prof.h"
68 #include "alloc-pool.h"
69 #include "tree-inline.h"
70 #include "lto-streamer.h"
71 #include "data-streamer.h"
72 #include "symbol-summary.h"
73 #include "ipa-prop.h"
74 #include "ipa-inline.h"
75
76 /* Entry in the histogram. */
77
78 struct histogram_entry
79 {
80 gcov_type count;
81 int time;
82 int size;
83 };
84
85 /* Histogram of profile values.
86 The histogram is represented as an ordered vector of entries allocated via
87 histogram_pool. During construction a separate hashtable is kept to lookup
88 duplicate entries. */
89
90 vec<histogram_entry *> histogram;
91 static pool_allocator<histogram_entry> histogram_pool
92 ("IPA histogram", 10);
93
94 /* Hashtable support for storing SSA names hashed by their SSA_NAME_VAR. */
95
96 struct histogram_hash : nofree_ptr_hash <histogram_entry>
97 {
98 static inline hashval_t hash (const histogram_entry *);
99 static inline int equal (const histogram_entry *, const histogram_entry *);
100 };
101
102 inline hashval_t
103 histogram_hash::hash (const histogram_entry *val)
104 {
105 return val->count;
106 }
107
108 inline int
109 histogram_hash::equal (const histogram_entry *val, const histogram_entry *val2)
110 {
111 return val->count == val2->count;
112 }
113
114 /* Account TIME and SIZE executed COUNT times into HISTOGRAM.
115 HASHTABLE is the on-side hash kept to avoid duplicates. */
116
117 static void
118 account_time_size (hash_table<histogram_hash> *hashtable,
119 vec<histogram_entry *> &histogram,
120 gcov_type count, int time, int size)
121 {
122 histogram_entry key = {count, 0, 0};
123 histogram_entry **val = hashtable->find_slot (&key, INSERT);
124
125 if (!*val)
126 {
127 *val = histogram_pool.allocate ();
128 **val = key;
129 histogram.safe_push (*val);
130 }
131 (*val)->time += time;
132 (*val)->size += size;
133 }
134
135 int
136 cmp_counts (const void *v1, const void *v2)
137 {
138 const histogram_entry *h1 = *(const histogram_entry * const *)v1;
139 const histogram_entry *h2 = *(const histogram_entry * const *)v2;
140 if (h1->count < h2->count)
141 return 1;
142 if (h1->count > h2->count)
143 return -1;
144 return 0;
145 }
146
147 /* Dump HISTOGRAM to FILE. */
148
149 static void
150 dump_histogram (FILE *file, vec<histogram_entry *> histogram)
151 {
152 unsigned int i;
153 gcov_type overall_time = 0, cumulated_time = 0, cumulated_size = 0, overall_size = 0;
154
155 fprintf (dump_file, "Histogram:\n");
156 for (i = 0; i < histogram.length (); i++)
157 {
158 overall_time += histogram[i]->count * histogram[i]->time;
159 overall_size += histogram[i]->size;
160 }
161 if (!overall_time)
162 overall_time = 1;
163 if (!overall_size)
164 overall_size = 1;
165 for (i = 0; i < histogram.length (); i++)
166 {
167 cumulated_time += histogram[i]->count * histogram[i]->time;
168 cumulated_size += histogram[i]->size;
169 fprintf (file, " %" PRId64": time:%i (%2.2f) size:%i (%2.2f)\n",
170 (int64_t) histogram[i]->count,
171 histogram[i]->time,
172 cumulated_time * 100.0 / overall_time,
173 histogram[i]->size,
174 cumulated_size * 100.0 / overall_size);
175 }
176 }
177
178 /* Collect histogram from CFG profiles. */
179
180 static void
181 ipa_profile_generate_summary (void)
182 {
183 struct cgraph_node *node;
184 gimple_stmt_iterator gsi;
185 basic_block bb;
186
187 hash_table<histogram_hash> hashtable (10);
188
189 FOR_EACH_FUNCTION_WITH_GIMPLE_BODY (node)
190 FOR_EACH_BB_FN (bb, DECL_STRUCT_FUNCTION (node->decl))
191 {
192 int time = 0;
193 int size = 0;
194 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
195 {
196 gimple stmt = gsi_stmt (gsi);
197 if (gimple_code (stmt) == GIMPLE_CALL
198 && !gimple_call_fndecl (stmt))
199 {
200 histogram_value h;
201 h = gimple_histogram_value_of_type
202 (DECL_STRUCT_FUNCTION (node->decl),
203 stmt, HIST_TYPE_INDIR_CALL);
204 /* No need to do sanity check: gimple_ic_transform already
205 takes away bad histograms. */
206 if (h)
207 {
208 /* counter 0 is target, counter 1 is number of execution we called target,
209 counter 2 is total number of executions. */
210 if (h->hvalue.counters[2])
211 {
212 struct cgraph_edge * e = node->get_edge (stmt);
213 if (e && !e->indirect_unknown_callee)
214 continue;
215 e->indirect_info->common_target_id
216 = h->hvalue.counters [0];
217 e->indirect_info->common_target_probability
218 = GCOV_COMPUTE_SCALE (h->hvalue.counters [1], h->hvalue.counters [2]);
219 if (e->indirect_info->common_target_probability > REG_BR_PROB_BASE)
220 {
221 if (dump_file)
222 fprintf (dump_file, "Probability capped to 1\n");
223 e->indirect_info->common_target_probability = REG_BR_PROB_BASE;
224 }
225 }
226 gimple_remove_histogram_value (DECL_STRUCT_FUNCTION (node->decl),
227 stmt, h);
228 }
229 }
230 time += estimate_num_insns (stmt, &eni_time_weights);
231 size += estimate_num_insns (stmt, &eni_size_weights);
232 }
233 account_time_size (&hashtable, histogram, bb->count, time, size);
234 }
235 histogram.qsort (cmp_counts);
236 }
237
238 /* Serialize the ipa info for lto. */
239
240 static void
241 ipa_profile_write_summary (void)
242 {
243 struct lto_simple_output_block *ob
244 = lto_create_simple_output_block (LTO_section_ipa_profile);
245 unsigned int i;
246
247 streamer_write_uhwi_stream (ob->main_stream, histogram.length ());
248 for (i = 0; i < histogram.length (); i++)
249 {
250 streamer_write_gcov_count_stream (ob->main_stream, histogram[i]->count);
251 streamer_write_uhwi_stream (ob->main_stream, histogram[i]->time);
252 streamer_write_uhwi_stream (ob->main_stream, histogram[i]->size);
253 }
254 lto_destroy_simple_output_block (ob);
255 }
256
257 /* Deserialize the ipa info for lto. */
258
259 static void
260 ipa_profile_read_summary (void)
261 {
262 struct lto_file_decl_data ** file_data_vec
263 = lto_get_file_decl_data ();
264 struct lto_file_decl_data * file_data;
265 int j = 0;
266
267 hash_table<histogram_hash> hashtable (10);
268
269 while ((file_data = file_data_vec[j++]))
270 {
271 const char *data;
272 size_t len;
273 struct lto_input_block *ib
274 = lto_create_simple_input_block (file_data,
275 LTO_section_ipa_profile,
276 &data, &len);
277 if (ib)
278 {
279 unsigned int num = streamer_read_uhwi (ib);
280 unsigned int n;
281 for (n = 0; n < num; n++)
282 {
283 gcov_type count = streamer_read_gcov_count (ib);
284 int time = streamer_read_uhwi (ib);
285 int size = streamer_read_uhwi (ib);
286 account_time_size (&hashtable, histogram,
287 count, time, size);
288 }
289 lto_destroy_simple_input_block (file_data,
290 LTO_section_ipa_profile,
291 ib, data, len);
292 }
293 }
294 histogram.qsort (cmp_counts);
295 }
296
297 /* Data used by ipa_propagate_frequency. */
298
299 struct ipa_propagate_frequency_data
300 {
301 cgraph_node *function_symbol;
302 bool maybe_unlikely_executed;
303 bool maybe_executed_once;
304 bool only_called_at_startup;
305 bool only_called_at_exit;
306 };
307
308 /* Worker for ipa_propagate_frequency_1. */
309
310 static bool
311 ipa_propagate_frequency_1 (struct cgraph_node *node, void *data)
312 {
313 struct ipa_propagate_frequency_data *d;
314 struct cgraph_edge *edge;
315
316 d = (struct ipa_propagate_frequency_data *)data;
317 for (edge = node->callers;
318 edge && (d->maybe_unlikely_executed || d->maybe_executed_once
319 || d->only_called_at_startup || d->only_called_at_exit);
320 edge = edge->next_caller)
321 {
322 if (edge->caller != d->function_symbol)
323 {
324 d->only_called_at_startup &= edge->caller->only_called_at_startup;
325 /* It makes sense to put main() together with the static constructors.
326 It will be executed for sure, but rest of functions called from
327 main are definitely not at startup only. */
328 if (MAIN_NAME_P (DECL_NAME (edge->caller->decl)))
329 d->only_called_at_startup = 0;
330 d->only_called_at_exit &= edge->caller->only_called_at_exit;
331 }
332
333 /* When profile feedback is available, do not try to propagate too hard;
334 counts are already good guide on function frequencies and roundoff
335 errors can make us to push function into unlikely section even when
336 it is executed by the train run. Transfer the function only if all
337 callers are unlikely executed. */
338 if (profile_info
339 && opt_for_fn (d->function_symbol->decl, flag_branch_probabilities)
340 /* Thunks are not profiled. This is more or less implementation
341 bug. */
342 && !d->function_symbol->thunk.thunk_p
343 && (edge->caller->frequency != NODE_FREQUENCY_UNLIKELY_EXECUTED
344 || (edge->caller->global.inlined_to
345 && edge->caller->global.inlined_to->frequency
346 != NODE_FREQUENCY_UNLIKELY_EXECUTED)))
347 d->maybe_unlikely_executed = false;
348 if (!edge->frequency)
349 continue;
350 switch (edge->caller->frequency)
351 {
352 case NODE_FREQUENCY_UNLIKELY_EXECUTED:
353 break;
354 case NODE_FREQUENCY_EXECUTED_ONCE:
355 if (dump_file && (dump_flags & TDF_DETAILS))
356 fprintf (dump_file, " Called by %s that is executed once\n",
357 edge->caller->name ());
358 d->maybe_unlikely_executed = false;
359 if (inline_edge_summary (edge)->loop_depth)
360 {
361 d->maybe_executed_once = false;
362 if (dump_file && (dump_flags & TDF_DETAILS))
363 fprintf (dump_file, " Called in loop\n");
364 }
365 break;
366 case NODE_FREQUENCY_HOT:
367 case NODE_FREQUENCY_NORMAL:
368 if (dump_file && (dump_flags & TDF_DETAILS))
369 fprintf (dump_file, " Called by %s that is normal or hot\n",
370 edge->caller->name ());
371 d->maybe_unlikely_executed = false;
372 d->maybe_executed_once = false;
373 break;
374 }
375 }
376 return edge != NULL;
377 }
378
379 /* Return ture if NODE contains hot calls. */
380
381 bool
382 contains_hot_call_p (struct cgraph_node *node)
383 {
384 struct cgraph_edge *e;
385 for (e = node->callees; e; e = e->next_callee)
386 if (e->maybe_hot_p ())
387 return true;
388 else if (!e->inline_failed
389 && contains_hot_call_p (e->callee))
390 return true;
391 for (e = node->indirect_calls; e; e = e->next_callee)
392 if (e->maybe_hot_p ())
393 return true;
394 return false;
395 }
396
397 /* See if the frequency of NODE can be updated based on frequencies of its
398 callers. */
399 bool
400 ipa_propagate_frequency (struct cgraph_node *node)
401 {
402 struct ipa_propagate_frequency_data d = {node, true, true, true, true};
403 bool changed = false;
404
405 /* We can not propagate anything useful about externally visible functions
406 nor about virtuals. */
407 if (!node->local.local
408 || node->alias
409 || (opt_for_fn (node->decl, flag_devirtualize)
410 && DECL_VIRTUAL_P (node->decl)))
411 return false;
412 gcc_assert (node->analyzed);
413 if (dump_file && (dump_flags & TDF_DETAILS))
414 fprintf (dump_file, "Processing frequency %s\n", node->name ());
415
416 node->call_for_symbol_and_aliases (ipa_propagate_frequency_1, &d,
417 true);
418
419 if ((d.only_called_at_startup && !d.only_called_at_exit)
420 && !node->only_called_at_startup)
421 {
422 node->only_called_at_startup = true;
423 if (dump_file)
424 fprintf (dump_file, "Node %s promoted to only called at startup.\n",
425 node->name ());
426 changed = true;
427 }
428 if ((d.only_called_at_exit && !d.only_called_at_startup)
429 && !node->only_called_at_exit)
430 {
431 node->only_called_at_exit = true;
432 if (dump_file)
433 fprintf (dump_file, "Node %s promoted to only called at exit.\n",
434 node->name ());
435 changed = true;
436 }
437
438 /* With profile we can decide on hot/normal based on count. */
439 if (node->count)
440 {
441 bool hot = false;
442 if (node->count >= get_hot_bb_threshold ())
443 hot = true;
444 if (!hot)
445 hot |= contains_hot_call_p (node);
446 if (hot)
447 {
448 if (node->frequency != NODE_FREQUENCY_HOT)
449 {
450 if (dump_file)
451 fprintf (dump_file, "Node %s promoted to hot.\n",
452 node->name ());
453 node->frequency = NODE_FREQUENCY_HOT;
454 return true;
455 }
456 return false;
457 }
458 else if (node->frequency == NODE_FREQUENCY_HOT)
459 {
460 if (dump_file)
461 fprintf (dump_file, "Node %s reduced to normal.\n",
462 node->name ());
463 node->frequency = NODE_FREQUENCY_NORMAL;
464 changed = true;
465 }
466 }
467 /* These come either from profile or user hints; never update them. */
468 if (node->frequency == NODE_FREQUENCY_HOT
469 || node->frequency == NODE_FREQUENCY_UNLIKELY_EXECUTED)
470 return changed;
471 if (d.maybe_unlikely_executed)
472 {
473 node->frequency = NODE_FREQUENCY_UNLIKELY_EXECUTED;
474 if (dump_file)
475 fprintf (dump_file, "Node %s promoted to unlikely executed.\n",
476 node->name ());
477 changed = true;
478 }
479 else if (d.maybe_executed_once && node->frequency != NODE_FREQUENCY_EXECUTED_ONCE)
480 {
481 node->frequency = NODE_FREQUENCY_EXECUTED_ONCE;
482 if (dump_file)
483 fprintf (dump_file, "Node %s promoted to executed once.\n",
484 node->name ());
485 changed = true;
486 }
487 return changed;
488 }
489
490 /* Simple ipa profile pass propagating frequencies across the callgraph. */
491
492 static unsigned int
493 ipa_profile (void)
494 {
495 struct cgraph_node **order;
496 struct cgraph_edge *e;
497 int order_pos;
498 bool something_changed = false;
499 int i;
500 gcov_type overall_time = 0, cutoff = 0, cumulated = 0, overall_size = 0;
501 struct cgraph_node *n,*n2;
502 int nindirect = 0, ncommon = 0, nunknown = 0, nuseless = 0, nconverted = 0;
503 int nmismatch = 0, nimpossible = 0;
504 bool node_map_initialized = false;
505
506 if (dump_file)
507 dump_histogram (dump_file, histogram);
508 for (i = 0; i < (int)histogram.length (); i++)
509 {
510 overall_time += histogram[i]->count * histogram[i]->time;
511 overall_size += histogram[i]->size;
512 }
513 if (overall_time)
514 {
515 gcov_type threshold;
516
517 gcc_assert (overall_size);
518 if (dump_file)
519 {
520 gcov_type min, cumulated_time = 0, cumulated_size = 0;
521
522 fprintf (dump_file, "Overall time: %" PRId64"\n",
523 (int64_t)overall_time);
524 min = get_hot_bb_threshold ();
525 for (i = 0; i < (int)histogram.length () && histogram[i]->count >= min;
526 i++)
527 {
528 cumulated_time += histogram[i]->count * histogram[i]->time;
529 cumulated_size += histogram[i]->size;
530 }
531 fprintf (dump_file, "GCOV min count: %" PRId64
532 " Time:%3.2f%% Size:%3.2f%%\n",
533 (int64_t)min,
534 cumulated_time * 100.0 / overall_time,
535 cumulated_size * 100.0 / overall_size);
536 }
537 cutoff = (overall_time * PARAM_VALUE (HOT_BB_COUNT_WS_PERMILLE) + 500) / 1000;
538 threshold = 0;
539 for (i = 0; cumulated < cutoff; i++)
540 {
541 cumulated += histogram[i]->count * histogram[i]->time;
542 threshold = histogram[i]->count;
543 }
544 if (!threshold)
545 threshold = 1;
546 if (dump_file)
547 {
548 gcov_type cumulated_time = 0, cumulated_size = 0;
549
550 for (i = 0;
551 i < (int)histogram.length () && histogram[i]->count >= threshold;
552 i++)
553 {
554 cumulated_time += histogram[i]->count * histogram[i]->time;
555 cumulated_size += histogram[i]->size;
556 }
557 fprintf (dump_file, "Determined min count: %" PRId64
558 " Time:%3.2f%% Size:%3.2f%%\n",
559 (int64_t)threshold,
560 cumulated_time * 100.0 / overall_time,
561 cumulated_size * 100.0 / overall_size);
562 }
563 if (threshold > get_hot_bb_threshold ()
564 || in_lto_p)
565 {
566 if (dump_file)
567 fprintf (dump_file, "Threshold updated.\n");
568 set_hot_bb_threshold (threshold);
569 }
570 }
571 histogram.release ();
572 histogram_pool.release ();
573
574 /* Produce speculative calls: we saved common traget from porfiling into
575 e->common_target_id. Now, at link time, we can look up corresponding
576 function node and produce speculative call. */
577
578 FOR_EACH_DEFINED_FUNCTION (n)
579 {
580 bool update = false;
581
582 if (!opt_for_fn (n->decl, flag_ipa_profile))
583 continue;
584
585 for (e = n->indirect_calls; e; e = e->next_callee)
586 {
587 if (n->count)
588 nindirect++;
589 if (e->indirect_info->common_target_id)
590 {
591 if (!node_map_initialized)
592 init_node_map (false);
593 node_map_initialized = true;
594 ncommon++;
595 n2 = find_func_by_profile_id (e->indirect_info->common_target_id);
596 if (n2)
597 {
598 if (dump_file)
599 {
600 fprintf (dump_file, "Indirect call -> direct call from"
601 " other module %s/%i => %s/%i, prob %3.2f\n",
602 xstrdup_for_dump (n->name ()), n->order,
603 xstrdup_for_dump (n2->name ()), n2->order,
604 e->indirect_info->common_target_probability
605 / (float)REG_BR_PROB_BASE);
606 }
607 if (e->indirect_info->common_target_probability
608 < REG_BR_PROB_BASE / 2)
609 {
610 nuseless++;
611 if (dump_file)
612 fprintf (dump_file,
613 "Not speculating: probability is too low.\n");
614 }
615 else if (!e->maybe_hot_p ())
616 {
617 nuseless++;
618 if (dump_file)
619 fprintf (dump_file,
620 "Not speculating: call is cold.\n");
621 }
622 else if (n2->get_availability () <= AVAIL_INTERPOSABLE
623 && n2->can_be_discarded_p ())
624 {
625 nuseless++;
626 if (dump_file)
627 fprintf (dump_file,
628 "Not speculating: target is overwritable "
629 "and can be discarded.\n");
630 }
631 else if (ipa_node_params_sum && ipa_edge_args_vector
632 && !IPA_NODE_REF (n2)->descriptors.is_empty ()
633 && ipa_get_param_count (IPA_NODE_REF (n2))
634 != ipa_get_cs_argument_count (IPA_EDGE_REF (e))
635 && (ipa_get_param_count (IPA_NODE_REF (n2))
636 >= ipa_get_cs_argument_count (IPA_EDGE_REF (e))
637 || !stdarg_p (TREE_TYPE (n2->decl))))
638 {
639 nmismatch++;
640 if (dump_file)
641 fprintf (dump_file,
642 "Not speculating: "
643 "parameter count mistmatch\n");
644 }
645 else if (e->indirect_info->polymorphic
646 && !opt_for_fn (n->decl, flag_devirtualize)
647 && !possible_polymorphic_call_target_p (e, n2))
648 {
649 nimpossible++;
650 if (dump_file)
651 fprintf (dump_file,
652 "Not speculating: "
653 "function is not in the polymorphic "
654 "call target list\n");
655 }
656 else
657 {
658 /* Target may be overwritable, but profile says that
659 control flow goes to this particular implementation
660 of N2. Speculate on the local alias to allow inlining.
661 */
662 if (!n2->can_be_discarded_p ())
663 {
664 cgraph_node *alias;
665 alias = dyn_cast<cgraph_node *> (n2->noninterposable_alias ());
666 if (alias)
667 n2 = alias;
668 }
669 nconverted++;
670 e->make_speculative
671 (n2,
672 apply_scale (e->count,
673 e->indirect_info->common_target_probability),
674 apply_scale (e->frequency,
675 e->indirect_info->common_target_probability));
676 update = true;
677 }
678 }
679 else
680 {
681 if (dump_file)
682 fprintf (dump_file, "Function with profile-id %i not found.\n",
683 e->indirect_info->common_target_id);
684 nunknown++;
685 }
686 }
687 }
688 if (update)
689 inline_update_overall_summary (n);
690 }
691 if (node_map_initialized)
692 del_node_map ();
693 if (dump_file && nindirect)
694 fprintf (dump_file,
695 "%i indirect calls trained.\n"
696 "%i (%3.2f%%) have common target.\n"
697 "%i (%3.2f%%) targets was not found.\n"
698 "%i (%3.2f%%) targets had parameter count mismatch.\n"
699 "%i (%3.2f%%) targets was not in polymorphic call target list.\n"
700 "%i (%3.2f%%) speculations seems useless.\n"
701 "%i (%3.2f%%) speculations produced.\n",
702 nindirect,
703 ncommon, ncommon * 100.0 / nindirect,
704 nunknown, nunknown * 100.0 / nindirect,
705 nmismatch, nmismatch * 100.0 / nindirect,
706 nimpossible, nimpossible * 100.0 / nindirect,
707 nuseless, nuseless * 100.0 / nindirect,
708 nconverted, nconverted * 100.0 / nindirect);
709
710 order = XCNEWVEC (struct cgraph_node *, symtab->cgraph_count);
711 order_pos = ipa_reverse_postorder (order);
712 for (i = order_pos - 1; i >= 0; i--)
713 {
714 if (order[i]->local.local
715 && opt_for_fn (order[i]->decl, flag_ipa_profile)
716 && ipa_propagate_frequency (order[i]))
717 {
718 for (e = order[i]->callees; e; e = e->next_callee)
719 if (e->callee->local.local && !e->callee->aux)
720 {
721 something_changed = true;
722 e->callee->aux = (void *)1;
723 }
724 }
725 order[i]->aux = NULL;
726 }
727
728 while (something_changed)
729 {
730 something_changed = false;
731 for (i = order_pos - 1; i >= 0; i--)
732 {
733 if (order[i]->aux
734 && opt_for_fn (order[i]->decl, flag_ipa_profile)
735 && ipa_propagate_frequency (order[i]))
736 {
737 for (e = order[i]->callees; e; e = e->next_callee)
738 if (e->callee->local.local && !e->callee->aux)
739 {
740 something_changed = true;
741 e->callee->aux = (void *)1;
742 }
743 }
744 order[i]->aux = NULL;
745 }
746 }
747 free (order);
748 return 0;
749 }
750
751 namespace {
752
753 const pass_data pass_data_ipa_profile =
754 {
755 IPA_PASS, /* type */
756 "profile_estimate", /* name */
757 OPTGROUP_NONE, /* optinfo_flags */
758 TV_IPA_PROFILE, /* tv_id */
759 0, /* properties_required */
760 0, /* properties_provided */
761 0, /* properties_destroyed */
762 0, /* todo_flags_start */
763 0, /* todo_flags_finish */
764 };
765
766 class pass_ipa_profile : public ipa_opt_pass_d
767 {
768 public:
769 pass_ipa_profile (gcc::context *ctxt)
770 : ipa_opt_pass_d (pass_data_ipa_profile, ctxt,
771 ipa_profile_generate_summary, /* generate_summary */
772 ipa_profile_write_summary, /* write_summary */
773 ipa_profile_read_summary, /* read_summary */
774 NULL, /* write_optimization_summary */
775 NULL, /* read_optimization_summary */
776 NULL, /* stmt_fixup */
777 0, /* function_transform_todo_flags_start */
778 NULL, /* function_transform */
779 NULL) /* variable_transform */
780 {}
781
782 /* opt_pass methods: */
783 virtual bool gate (function *) { return flag_ipa_profile || in_lto_p; }
784 virtual unsigned int execute (function *) { return ipa_profile (); }
785
786 }; // class pass_ipa_profile
787
788 } // anon namespace
789
790 ipa_opt_pass_d *
791 make_pass_ipa_profile (gcc::context *ctxt)
792 {
793 return new pass_ipa_profile (ctxt);
794 }