]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/ira-costs.c
re PR target/79404 (h8300: ICE at gcc/ira.c:5541 whilst building libgcc)
[thirdparty/gcc.git] / gcc / ira-costs.c
1 /* IRA hard register and memory cost calculation for allocnos or pseudos.
2 Copyright (C) 2006-2017 Free Software Foundation, Inc.
3 Contributed by Vladimir Makarov <vmakarov@redhat.com>.
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
10 version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
20
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "backend.h"
25 #include "target.h"
26 #include "rtl.h"
27 #include "tree.h"
28 #include "predict.h"
29 #include "memmodel.h"
30 #include "tm_p.h"
31 #include "insn-config.h"
32 #include "regs.h"
33 #include "ira.h"
34 #include "ira-int.h"
35 #include "addresses.h"
36 #include "reload.h"
37
38 /* The flags is set up every time when we calculate pseudo register
39 classes through function ira_set_pseudo_classes. */
40 static bool pseudo_classes_defined_p = false;
41
42 /* TRUE if we work with allocnos. Otherwise we work with pseudos. */
43 static bool allocno_p;
44
45 /* Number of elements in array `costs'. */
46 static int cost_elements_num;
47
48 /* The `costs' struct records the cost of using hard registers of each
49 class considered for the calculation and of using memory for each
50 allocno or pseudo. */
51 struct costs
52 {
53 int mem_cost;
54 /* Costs for register classes start here. We process only some
55 allocno classes. */
56 int cost[1];
57 };
58
59 #define max_struct_costs_size \
60 (this_target_ira_int->x_max_struct_costs_size)
61 #define init_cost \
62 (this_target_ira_int->x_init_cost)
63 #define temp_costs \
64 (this_target_ira_int->x_temp_costs)
65 #define op_costs \
66 (this_target_ira_int->x_op_costs)
67 #define this_op_costs \
68 (this_target_ira_int->x_this_op_costs)
69
70 /* Costs of each class for each allocno or pseudo. */
71 static struct costs *costs;
72
73 /* Accumulated costs of each class for each allocno. */
74 static struct costs *total_allocno_costs;
75
76 /* It is the current size of struct costs. */
77 static size_t struct_costs_size;
78
79 /* Return pointer to structure containing costs of allocno or pseudo
80 with given NUM in array ARR. */
81 #define COSTS(arr, num) \
82 ((struct costs *) ((char *) (arr) + (num) * struct_costs_size))
83
84 /* Return index in COSTS when processing reg with REGNO. */
85 #define COST_INDEX(regno) (allocno_p \
86 ? ALLOCNO_NUM (ira_curr_regno_allocno_map[regno]) \
87 : (int) regno)
88
89 /* Record register class preferences of each allocno or pseudo. Null
90 value means no preferences. It happens on the 1st iteration of the
91 cost calculation. */
92 static enum reg_class *pref;
93
94 /* Allocated buffers for pref. */
95 static enum reg_class *pref_buffer;
96
97 /* Record allocno class of each allocno with the same regno. */
98 static enum reg_class *regno_aclass;
99
100 /* Record cost gains for not allocating a register with an invariant
101 equivalence. */
102 static int *regno_equiv_gains;
103
104 /* Execution frequency of the current insn. */
105 static int frequency;
106
107 \f
108
109 /* Info about reg classes whose costs are calculated for a pseudo. */
110 struct cost_classes
111 {
112 /* Number of the cost classes in the subsequent array. */
113 int num;
114 /* Container of the cost classes. */
115 enum reg_class classes[N_REG_CLASSES];
116 /* Map reg class -> index of the reg class in the previous array.
117 -1 if it is not a cost class. */
118 int index[N_REG_CLASSES];
119 /* Map hard regno index of first class in array CLASSES containing
120 the hard regno, -1 otherwise. */
121 int hard_regno_index[FIRST_PSEUDO_REGISTER];
122 };
123
124 /* Types of pointers to the structure above. */
125 typedef struct cost_classes *cost_classes_t;
126 typedef const struct cost_classes *const_cost_classes_t;
127
128 /* Info about cost classes for each pseudo. */
129 static cost_classes_t *regno_cost_classes;
130
131 /* Helper for cost_classes hashing. */
132
133 struct cost_classes_hasher : pointer_hash <cost_classes>
134 {
135 static inline hashval_t hash (const cost_classes *);
136 static inline bool equal (const cost_classes *, const cost_classes *);
137 static inline void remove (cost_classes *);
138 };
139
140 /* Returns hash value for cost classes info HV. */
141 inline hashval_t
142 cost_classes_hasher::hash (const cost_classes *hv)
143 {
144 return iterative_hash (&hv->classes, sizeof (enum reg_class) * hv->num, 0);
145 }
146
147 /* Compares cost classes info HV1 and HV2. */
148 inline bool
149 cost_classes_hasher::equal (const cost_classes *hv1, const cost_classes *hv2)
150 {
151 return (hv1->num == hv2->num
152 && memcmp (hv1->classes, hv2->classes,
153 sizeof (enum reg_class) * hv1->num) == 0);
154 }
155
156 /* Delete cost classes info V from the hash table. */
157 inline void
158 cost_classes_hasher::remove (cost_classes *v)
159 {
160 ira_free (v);
161 }
162
163 /* Hash table of unique cost classes. */
164 static hash_table<cost_classes_hasher> *cost_classes_htab;
165
166 /* Map allocno class -> cost classes for pseudo of given allocno
167 class. */
168 static cost_classes_t cost_classes_aclass_cache[N_REG_CLASSES];
169
170 /* Map mode -> cost classes for pseudo of give mode. */
171 static cost_classes_t cost_classes_mode_cache[MAX_MACHINE_MODE];
172
173 /* Cost classes that include all classes in ira_important_classes. */
174 static cost_classes all_cost_classes;
175
176 /* Use the array of classes in CLASSES_PTR to fill out the rest of
177 the structure. */
178 static void
179 complete_cost_classes (cost_classes_t classes_ptr)
180 {
181 for (int i = 0; i < N_REG_CLASSES; i++)
182 classes_ptr->index[i] = -1;
183 for (int i = 0; i < FIRST_PSEUDO_REGISTER; i++)
184 classes_ptr->hard_regno_index[i] = -1;
185 for (int i = 0; i < classes_ptr->num; i++)
186 {
187 enum reg_class cl = classes_ptr->classes[i];
188 classes_ptr->index[cl] = i;
189 for (int j = ira_class_hard_regs_num[cl] - 1; j >= 0; j--)
190 {
191 unsigned int hard_regno = ira_class_hard_regs[cl][j];
192 if (classes_ptr->hard_regno_index[hard_regno] < 0)
193 classes_ptr->hard_regno_index[hard_regno] = i;
194 }
195 }
196 }
197
198 /* Initialize info about the cost classes for each pseudo. */
199 static void
200 initiate_regno_cost_classes (void)
201 {
202 int size = sizeof (cost_classes_t) * max_reg_num ();
203
204 regno_cost_classes = (cost_classes_t *) ira_allocate (size);
205 memset (regno_cost_classes, 0, size);
206 memset (cost_classes_aclass_cache, 0,
207 sizeof (cost_classes_t) * N_REG_CLASSES);
208 memset (cost_classes_mode_cache, 0,
209 sizeof (cost_classes_t) * MAX_MACHINE_MODE);
210 cost_classes_htab = new hash_table<cost_classes_hasher> (200);
211 all_cost_classes.num = ira_important_classes_num;
212 for (int i = 0; i < ira_important_classes_num; i++)
213 all_cost_classes.classes[i] = ira_important_classes[i];
214 complete_cost_classes (&all_cost_classes);
215 }
216
217 /* Create new cost classes from cost classes FROM and set up members
218 index and hard_regno_index. Return the new classes. The function
219 implements some common code of two functions
220 setup_regno_cost_classes_by_aclass and
221 setup_regno_cost_classes_by_mode. */
222 static cost_classes_t
223 setup_cost_classes (cost_classes_t from)
224 {
225 cost_classes_t classes_ptr;
226
227 classes_ptr = (cost_classes_t) ira_allocate (sizeof (struct cost_classes));
228 classes_ptr->num = from->num;
229 for (int i = 0; i < from->num; i++)
230 classes_ptr->classes[i] = from->classes[i];
231 complete_cost_classes (classes_ptr);
232 return classes_ptr;
233 }
234
235 /* Return a version of FULL that only considers registers in REGS that are
236 valid for mode MODE. Both FULL and the returned class are globally
237 allocated. */
238 static cost_classes_t
239 restrict_cost_classes (cost_classes_t full, machine_mode mode,
240 const HARD_REG_SET &regs)
241 {
242 static struct cost_classes narrow;
243 int map[N_REG_CLASSES];
244 narrow.num = 0;
245 for (int i = 0; i < full->num; i++)
246 {
247 /* Assume that we'll drop the class. */
248 map[i] = -1;
249
250 /* Ignore classes that are too small for the mode. */
251 enum reg_class cl = full->classes[i];
252 if (!contains_reg_of_mode[cl][mode])
253 continue;
254
255 /* Calculate the set of registers in CL that belong to REGS and
256 are valid for MODE. */
257 HARD_REG_SET valid_for_cl;
258 COPY_HARD_REG_SET (valid_for_cl, reg_class_contents[cl]);
259 AND_HARD_REG_SET (valid_for_cl, regs);
260 AND_COMPL_HARD_REG_SET (valid_for_cl,
261 ira_prohibited_class_mode_regs[cl][mode]);
262 AND_COMPL_HARD_REG_SET (valid_for_cl, ira_no_alloc_regs);
263 if (hard_reg_set_empty_p (valid_for_cl))
264 continue;
265
266 /* Don't use this class if the set of valid registers is a subset
267 of an existing class. For example, suppose we have two classes
268 GR_REGS and FR_REGS and a union class GR_AND_FR_REGS. Suppose
269 that the mode changes allowed by FR_REGS are not as general as
270 the mode changes allowed by GR_REGS.
271
272 In this situation, the mode changes for GR_AND_FR_REGS could
273 either be seen as the union or the intersection of the mode
274 changes allowed by the two subclasses. The justification for
275 the union-based definition would be that, if you want a mode
276 change that's only allowed by GR_REGS, you can pick a register
277 from the GR_REGS subclass. The justification for the
278 intersection-based definition would be that every register
279 from the class would allow the mode change.
280
281 However, if we have a register that needs to be in GR_REGS,
282 using GR_AND_FR_REGS with the intersection-based definition
283 would be too pessimistic, since it would bring in restrictions
284 that only apply to FR_REGS. Conversely, if we have a register
285 that needs to be in FR_REGS, using GR_AND_FR_REGS with the
286 union-based definition would lose the extra restrictions
287 placed on FR_REGS. GR_AND_FR_REGS is therefore only useful
288 for cases where GR_REGS and FP_REGS are both valid. */
289 int pos;
290 for (pos = 0; pos < narrow.num; ++pos)
291 {
292 enum reg_class cl2 = narrow.classes[pos];
293 if (hard_reg_set_subset_p (valid_for_cl, reg_class_contents[cl2]))
294 break;
295 }
296 map[i] = pos;
297 if (pos == narrow.num)
298 {
299 /* If several classes are equivalent, prefer to use the one
300 that was chosen as the allocno class. */
301 enum reg_class cl2 = ira_allocno_class_translate[cl];
302 if (ira_class_hard_regs_num[cl] == ira_class_hard_regs_num[cl2])
303 cl = cl2;
304 narrow.classes[narrow.num++] = cl;
305 }
306 }
307 if (narrow.num == full->num)
308 return full;
309
310 cost_classes **slot = cost_classes_htab->find_slot (&narrow, INSERT);
311 if (*slot == NULL)
312 {
313 cost_classes_t classes = setup_cost_classes (&narrow);
314 /* Map equivalent classes to the representative that we chose above. */
315 for (int i = 0; i < ira_important_classes_num; i++)
316 {
317 enum reg_class cl = ira_important_classes[i];
318 int index = full->index[cl];
319 if (index >= 0)
320 classes->index[cl] = map[index];
321 }
322 *slot = classes;
323 }
324 return *slot;
325 }
326
327 /* Setup cost classes for pseudo REGNO whose allocno class is ACLASS.
328 This function is used when we know an initial approximation of
329 allocno class of the pseudo already, e.g. on the second iteration
330 of class cost calculation or after class cost calculation in
331 register-pressure sensitive insn scheduling or register-pressure
332 sensitive loop-invariant motion. */
333 static void
334 setup_regno_cost_classes_by_aclass (int regno, enum reg_class aclass)
335 {
336 static struct cost_classes classes;
337 cost_classes_t classes_ptr;
338 enum reg_class cl;
339 int i;
340 cost_classes **slot;
341 HARD_REG_SET temp, temp2;
342 bool exclude_p;
343
344 if ((classes_ptr = cost_classes_aclass_cache[aclass]) == NULL)
345 {
346 COPY_HARD_REG_SET (temp, reg_class_contents[aclass]);
347 AND_COMPL_HARD_REG_SET (temp, ira_no_alloc_regs);
348 /* We exclude classes from consideration which are subsets of
349 ACLASS only if ACLASS is an uniform class. */
350 exclude_p = ira_uniform_class_p[aclass];
351 classes.num = 0;
352 for (i = 0; i < ira_important_classes_num; i++)
353 {
354 cl = ira_important_classes[i];
355 if (exclude_p)
356 {
357 /* Exclude non-uniform classes which are subsets of
358 ACLASS. */
359 COPY_HARD_REG_SET (temp2, reg_class_contents[cl]);
360 AND_COMPL_HARD_REG_SET (temp2, ira_no_alloc_regs);
361 if (hard_reg_set_subset_p (temp2, temp) && cl != aclass)
362 continue;
363 }
364 classes.classes[classes.num++] = cl;
365 }
366 slot = cost_classes_htab->find_slot (&classes, INSERT);
367 if (*slot == NULL)
368 {
369 classes_ptr = setup_cost_classes (&classes);
370 *slot = classes_ptr;
371 }
372 classes_ptr = cost_classes_aclass_cache[aclass] = (cost_classes_t) *slot;
373 }
374 if (regno_reg_rtx[regno] != NULL_RTX)
375 {
376 /* Restrict the classes to those that are valid for REGNO's mode
377 (which might for example exclude singleton classes if the mode
378 requires two registers). Also restrict the classes to those that
379 are valid for subregs of REGNO. */
380 const HARD_REG_SET *valid_regs = valid_mode_changes_for_regno (regno);
381 if (!valid_regs)
382 valid_regs = &reg_class_contents[ALL_REGS];
383 classes_ptr = restrict_cost_classes (classes_ptr,
384 PSEUDO_REGNO_MODE (regno),
385 *valid_regs);
386 }
387 regno_cost_classes[regno] = classes_ptr;
388 }
389
390 /* Setup cost classes for pseudo REGNO with MODE. Usage of MODE can
391 decrease number of cost classes for the pseudo, if hard registers
392 of some important classes can not hold a value of MODE. So the
393 pseudo can not get hard register of some important classes and cost
394 calculation for such important classes is only wasting CPU
395 time. */
396 static void
397 setup_regno_cost_classes_by_mode (int regno, machine_mode mode)
398 {
399 if (const HARD_REG_SET *valid_regs = valid_mode_changes_for_regno (regno))
400 regno_cost_classes[regno] = restrict_cost_classes (&all_cost_classes,
401 mode, *valid_regs);
402 else
403 {
404 if (cost_classes_mode_cache[mode] == NULL)
405 cost_classes_mode_cache[mode]
406 = restrict_cost_classes (&all_cost_classes, mode,
407 reg_class_contents[ALL_REGS]);
408 regno_cost_classes[regno] = cost_classes_mode_cache[mode];
409 }
410 }
411
412 /* Finalize info about the cost classes for each pseudo. */
413 static void
414 finish_regno_cost_classes (void)
415 {
416 ira_free (regno_cost_classes);
417 delete cost_classes_htab;
418 cost_classes_htab = NULL;
419 }
420
421 \f
422
423 /* Compute the cost of loading X into (if TO_P is TRUE) or from (if
424 TO_P is FALSE) a register of class RCLASS in mode MODE. X must not
425 be a pseudo register. */
426 static int
427 copy_cost (rtx x, machine_mode mode, reg_class_t rclass, bool to_p,
428 secondary_reload_info *prev_sri)
429 {
430 secondary_reload_info sri;
431 reg_class_t secondary_class = NO_REGS;
432
433 /* If X is a SCRATCH, there is actually nothing to move since we are
434 assuming optimal allocation. */
435 if (GET_CODE (x) == SCRATCH)
436 return 0;
437
438 /* Get the class we will actually use for a reload. */
439 rclass = targetm.preferred_reload_class (x, rclass);
440
441 /* If we need a secondary reload for an intermediate, the cost is
442 that to load the input into the intermediate register, then to
443 copy it. */
444 sri.prev_sri = prev_sri;
445 sri.extra_cost = 0;
446 /* PR 68770: Secondary reload might examine the t_icode field. */
447 sri.t_icode = CODE_FOR_nothing;
448
449 secondary_class = targetm.secondary_reload (to_p, x, rclass, mode, &sri);
450
451 if (secondary_class != NO_REGS)
452 {
453 ira_init_register_move_cost_if_necessary (mode);
454 return (ira_register_move_cost[mode][(int) secondary_class][(int) rclass]
455 + sri.extra_cost
456 + copy_cost (x, mode, secondary_class, to_p, &sri));
457 }
458
459 /* For memory, use the memory move cost, for (hard) registers, use
460 the cost to move between the register classes, and use 2 for
461 everything else (constants). */
462 if (MEM_P (x) || rclass == NO_REGS)
463 return sri.extra_cost
464 + ira_memory_move_cost[mode][(int) rclass][to_p != 0];
465 else if (REG_P (x))
466 {
467 reg_class_t x_class = REGNO_REG_CLASS (REGNO (x));
468
469 ira_init_register_move_cost_if_necessary (mode);
470 return (sri.extra_cost
471 + ira_register_move_cost[mode][(int) x_class][(int) rclass]);
472 }
473 else
474 /* If this is a constant, we may eventually want to call rtx_cost
475 here. */
476 return sri.extra_cost + COSTS_N_INSNS (1);
477 }
478
479 \f
480
481 /* Record the cost of using memory or hard registers of various
482 classes for the operands in INSN.
483
484 N_ALTS is the number of alternatives.
485 N_OPS is the number of operands.
486 OPS is an array of the operands.
487 MODES are the modes of the operands, in case any are VOIDmode.
488 CONSTRAINTS are the constraints to use for the operands. This array
489 is modified by this procedure.
490
491 This procedure works alternative by alternative. For each
492 alternative we assume that we will be able to allocate all allocnos
493 to their ideal register class and calculate the cost of using that
494 alternative. Then we compute, for each operand that is a
495 pseudo-register, the cost of having the allocno allocated to each
496 register class and using it in that alternative. To this cost is
497 added the cost of the alternative.
498
499 The cost of each class for this insn is its lowest cost among all
500 the alternatives. */
501 static void
502 record_reg_classes (int n_alts, int n_ops, rtx *ops,
503 machine_mode *modes, const char **constraints,
504 rtx_insn *insn, enum reg_class *pref)
505 {
506 int alt;
507 int i, j, k;
508 int insn_allows_mem[MAX_RECOG_OPERANDS];
509 move_table *move_in_cost, *move_out_cost;
510 short (*mem_cost)[2];
511
512 for (i = 0; i < n_ops; i++)
513 insn_allows_mem[i] = 0;
514
515 /* Process each alternative, each time minimizing an operand's cost
516 with the cost for each operand in that alternative. */
517 alternative_mask preferred = get_preferred_alternatives (insn);
518 for (alt = 0; alt < n_alts; alt++)
519 {
520 enum reg_class classes[MAX_RECOG_OPERANDS];
521 int allows_mem[MAX_RECOG_OPERANDS];
522 enum reg_class rclass;
523 int alt_fail = 0;
524 int alt_cost = 0, op_cost_add;
525
526 if (!TEST_BIT (preferred, alt))
527 {
528 for (i = 0; i < recog_data.n_operands; i++)
529 constraints[i] = skip_alternative (constraints[i]);
530
531 continue;
532 }
533
534 for (i = 0; i < n_ops; i++)
535 {
536 unsigned char c;
537 const char *p = constraints[i];
538 rtx op = ops[i];
539 machine_mode mode = modes[i];
540 int allows_addr = 0;
541 int win = 0;
542
543 /* Initially show we know nothing about the register class. */
544 classes[i] = NO_REGS;
545 allows_mem[i] = 0;
546
547 /* If this operand has no constraints at all, we can
548 conclude nothing about it since anything is valid. */
549 if (*p == 0)
550 {
551 if (REG_P (op) && REGNO (op) >= FIRST_PSEUDO_REGISTER)
552 memset (this_op_costs[i], 0, struct_costs_size);
553 continue;
554 }
555
556 /* If this alternative is only relevant when this operand
557 matches a previous operand, we do different things
558 depending on whether this operand is a allocno-reg or not.
559 We must process any modifiers for the operand before we
560 can make this test. */
561 while (*p == '%' || *p == '=' || *p == '+' || *p == '&')
562 p++;
563
564 if (p[0] >= '0' && p[0] <= '0' + i)
565 {
566 /* Copy class and whether memory is allowed from the
567 matching alternative. Then perform any needed cost
568 computations and/or adjustments. */
569 j = p[0] - '0';
570 classes[i] = classes[j];
571 allows_mem[i] = allows_mem[j];
572 if (allows_mem[i])
573 insn_allows_mem[i] = 1;
574
575 if (! REG_P (op) || REGNO (op) < FIRST_PSEUDO_REGISTER)
576 {
577 /* If this matches the other operand, we have no
578 added cost and we win. */
579 if (rtx_equal_p (ops[j], op))
580 win = 1;
581 /* If we can put the other operand into a register,
582 add to the cost of this alternative the cost to
583 copy this operand to the register used for the
584 other operand. */
585 else if (classes[j] != NO_REGS)
586 {
587 alt_cost += copy_cost (op, mode, classes[j], 1, NULL);
588 win = 1;
589 }
590 }
591 else if (! REG_P (ops[j])
592 || REGNO (ops[j]) < FIRST_PSEUDO_REGISTER)
593 {
594 /* This op is an allocno but the one it matches is
595 not. */
596
597 /* If we can't put the other operand into a
598 register, this alternative can't be used. */
599
600 if (classes[j] == NO_REGS)
601 alt_fail = 1;
602 /* Otherwise, add to the cost of this alternative
603 the cost to copy the other operand to the hard
604 register used for this operand. */
605 else
606 alt_cost += copy_cost (ops[j], mode, classes[j], 1, NULL);
607 }
608 else
609 {
610 /* The costs of this operand are not the same as the
611 other operand since move costs are not symmetric.
612 Moreover, if we cannot tie them, this alternative
613 needs to do a copy, which is one insn. */
614 struct costs *pp = this_op_costs[i];
615 int *pp_costs = pp->cost;
616 cost_classes_t cost_classes_ptr
617 = regno_cost_classes[REGNO (op)];
618 enum reg_class *cost_classes = cost_classes_ptr->classes;
619 bool in_p = recog_data.operand_type[i] != OP_OUT;
620 bool out_p = recog_data.operand_type[i] != OP_IN;
621 enum reg_class op_class = classes[i];
622
623 ira_init_register_move_cost_if_necessary (mode);
624 if (! in_p)
625 {
626 ira_assert (out_p);
627 if (op_class == NO_REGS)
628 {
629 mem_cost = ira_memory_move_cost[mode];
630 for (k = cost_classes_ptr->num - 1; k >= 0; k--)
631 {
632 rclass = cost_classes[k];
633 pp_costs[k] = mem_cost[rclass][0] * frequency;
634 }
635 }
636 else
637 {
638 move_out_cost = ira_may_move_out_cost[mode];
639 for (k = cost_classes_ptr->num - 1; k >= 0; k--)
640 {
641 rclass = cost_classes[k];
642 pp_costs[k]
643 = move_out_cost[op_class][rclass] * frequency;
644 }
645 }
646 }
647 else if (! out_p)
648 {
649 ira_assert (in_p);
650 if (op_class == NO_REGS)
651 {
652 mem_cost = ira_memory_move_cost[mode];
653 for (k = cost_classes_ptr->num - 1; k >= 0; k--)
654 {
655 rclass = cost_classes[k];
656 pp_costs[k] = mem_cost[rclass][1] * frequency;
657 }
658 }
659 else
660 {
661 move_in_cost = ira_may_move_in_cost[mode];
662 for (k = cost_classes_ptr->num - 1; k >= 0; k--)
663 {
664 rclass = cost_classes[k];
665 pp_costs[k]
666 = move_in_cost[rclass][op_class] * frequency;
667 }
668 }
669 }
670 else
671 {
672 if (op_class == NO_REGS)
673 {
674 mem_cost = ira_memory_move_cost[mode];
675 for (k = cost_classes_ptr->num - 1; k >= 0; k--)
676 {
677 rclass = cost_classes[k];
678 pp_costs[k] = ((mem_cost[rclass][0]
679 + mem_cost[rclass][1])
680 * frequency);
681 }
682 }
683 else
684 {
685 move_in_cost = ira_may_move_in_cost[mode];
686 move_out_cost = ira_may_move_out_cost[mode];
687 for (k = cost_classes_ptr->num - 1; k >= 0; k--)
688 {
689 rclass = cost_classes[k];
690 pp_costs[k] = ((move_in_cost[rclass][op_class]
691 + move_out_cost[op_class][rclass])
692 * frequency);
693 }
694 }
695 }
696
697 /* If the alternative actually allows memory, make
698 things a bit cheaper since we won't need an extra
699 insn to load it. */
700 pp->mem_cost
701 = ((out_p ? ira_memory_move_cost[mode][op_class][0] : 0)
702 + (in_p ? ira_memory_move_cost[mode][op_class][1] : 0)
703 - allows_mem[i]) * frequency;
704
705 /* If we have assigned a class to this allocno in
706 our first pass, add a cost to this alternative
707 corresponding to what we would add if this
708 allocno were not in the appropriate class. */
709 if (pref)
710 {
711 enum reg_class pref_class = pref[COST_INDEX (REGNO (op))];
712
713 if (pref_class == NO_REGS)
714 alt_cost
715 += ((out_p
716 ? ira_memory_move_cost[mode][op_class][0] : 0)
717 + (in_p
718 ? ira_memory_move_cost[mode][op_class][1]
719 : 0));
720 else if (ira_reg_class_intersect
721 [pref_class][op_class] == NO_REGS)
722 alt_cost
723 += ira_register_move_cost[mode][pref_class][op_class];
724 }
725 if (REGNO (ops[i]) != REGNO (ops[j])
726 && ! find_reg_note (insn, REG_DEAD, op))
727 alt_cost += 2;
728
729 p++;
730 }
731 }
732
733 /* Scan all the constraint letters. See if the operand
734 matches any of the constraints. Collect the valid
735 register classes and see if this operand accepts
736 memory. */
737 while ((c = *p))
738 {
739 switch (c)
740 {
741 case '*':
742 /* Ignore the next letter for this pass. */
743 c = *++p;
744 break;
745
746 case '^':
747 alt_cost += 2;
748 break;
749
750 case '?':
751 alt_cost += 2;
752 break;
753
754 case 'g':
755 if (MEM_P (op)
756 || (CONSTANT_P (op)
757 && (! flag_pic || LEGITIMATE_PIC_OPERAND_P (op))))
758 win = 1;
759 insn_allows_mem[i] = allows_mem[i] = 1;
760 classes[i] = ira_reg_class_subunion[classes[i]][GENERAL_REGS];
761 break;
762
763 default:
764 enum constraint_num cn = lookup_constraint (p);
765 enum reg_class cl;
766 switch (get_constraint_type (cn))
767 {
768 case CT_REGISTER:
769 cl = reg_class_for_constraint (cn);
770 if (cl != NO_REGS)
771 classes[i] = ira_reg_class_subunion[classes[i]][cl];
772 break;
773
774 case CT_CONST_INT:
775 if (CONST_INT_P (op)
776 && insn_const_int_ok_for_constraint (INTVAL (op), cn))
777 win = 1;
778 break;
779
780 case CT_MEMORY:
781 /* Every MEM can be reloaded to fit. */
782 insn_allows_mem[i] = allows_mem[i] = 1;
783 if (MEM_P (op))
784 win = 1;
785 break;
786
787 case CT_SPECIAL_MEMORY:
788 insn_allows_mem[i] = allows_mem[i] = 1;
789 if (MEM_P (op) && constraint_satisfied_p (op, cn))
790 win = 1;
791 break;
792
793 case CT_ADDRESS:
794 /* Every address can be reloaded to fit. */
795 allows_addr = 1;
796 if (address_operand (op, GET_MODE (op))
797 || constraint_satisfied_p (op, cn))
798 win = 1;
799 /* We know this operand is an address, so we
800 want it to be allocated to a hard register
801 that can be the base of an address,
802 i.e. BASE_REG_CLASS. */
803 classes[i]
804 = ira_reg_class_subunion[classes[i]]
805 [base_reg_class (VOIDmode, ADDR_SPACE_GENERIC,
806 ADDRESS, SCRATCH)];
807 break;
808
809 case CT_FIXED_FORM:
810 if (constraint_satisfied_p (op, cn))
811 win = 1;
812 break;
813 }
814 break;
815 }
816 p += CONSTRAINT_LEN (c, p);
817 if (c == ',')
818 break;
819 }
820
821 constraints[i] = p;
822
823 if (alt_fail)
824 break;
825
826 /* How we account for this operand now depends on whether it
827 is a pseudo register or not. If it is, we first check if
828 any register classes are valid. If not, we ignore this
829 alternative, since we want to assume that all allocnos get
830 allocated for register preferencing. If some register
831 class is valid, compute the costs of moving the allocno
832 into that class. */
833 if (REG_P (op) && REGNO (op) >= FIRST_PSEUDO_REGISTER)
834 {
835 if (classes[i] == NO_REGS && ! allows_mem[i])
836 {
837 /* We must always fail if the operand is a REG, but
838 we did not find a suitable class and memory is
839 not allowed.
840
841 Otherwise we may perform an uninitialized read
842 from this_op_costs after the `continue' statement
843 below. */
844 alt_fail = 1;
845 }
846 else
847 {
848 unsigned int regno = REGNO (op);
849 struct costs *pp = this_op_costs[i];
850 int *pp_costs = pp->cost;
851 cost_classes_t cost_classes_ptr = regno_cost_classes[regno];
852 enum reg_class *cost_classes = cost_classes_ptr->classes;
853 bool in_p = recog_data.operand_type[i] != OP_OUT;
854 bool out_p = recog_data.operand_type[i] != OP_IN;
855 enum reg_class op_class = classes[i];
856
857 ira_init_register_move_cost_if_necessary (mode);
858 if (! in_p)
859 {
860 ira_assert (out_p);
861 if (op_class == NO_REGS)
862 {
863 mem_cost = ira_memory_move_cost[mode];
864 for (k = cost_classes_ptr->num - 1; k >= 0; k--)
865 {
866 rclass = cost_classes[k];
867 pp_costs[k] = mem_cost[rclass][0] * frequency;
868 }
869 }
870 else
871 {
872 move_out_cost = ira_may_move_out_cost[mode];
873 for (k = cost_classes_ptr->num - 1; k >= 0; k--)
874 {
875 rclass = cost_classes[k];
876 pp_costs[k]
877 = move_out_cost[op_class][rclass] * frequency;
878 }
879 }
880 }
881 else if (! out_p)
882 {
883 ira_assert (in_p);
884 if (op_class == NO_REGS)
885 {
886 mem_cost = ira_memory_move_cost[mode];
887 for (k = cost_classes_ptr->num - 1; k >= 0; k--)
888 {
889 rclass = cost_classes[k];
890 pp_costs[k] = mem_cost[rclass][1] * frequency;
891 }
892 }
893 else
894 {
895 move_in_cost = ira_may_move_in_cost[mode];
896 for (k = cost_classes_ptr->num - 1; k >= 0; k--)
897 {
898 rclass = cost_classes[k];
899 pp_costs[k]
900 = move_in_cost[rclass][op_class] * frequency;
901 }
902 }
903 }
904 else
905 {
906 if (op_class == NO_REGS)
907 {
908 mem_cost = ira_memory_move_cost[mode];
909 for (k = cost_classes_ptr->num - 1; k >= 0; k--)
910 {
911 rclass = cost_classes[k];
912 pp_costs[k] = ((mem_cost[rclass][0]
913 + mem_cost[rclass][1])
914 * frequency);
915 }
916 }
917 else
918 {
919 move_in_cost = ira_may_move_in_cost[mode];
920 move_out_cost = ira_may_move_out_cost[mode];
921 for (k = cost_classes_ptr->num - 1; k >= 0; k--)
922 {
923 rclass = cost_classes[k];
924 pp_costs[k] = ((move_in_cost[rclass][op_class]
925 + move_out_cost[op_class][rclass])
926 * frequency);
927 }
928 }
929 }
930
931 if (op_class == NO_REGS)
932 /* Although we don't need insn to reload from
933 memory, still accessing memory is usually more
934 expensive than a register. */
935 pp->mem_cost = frequency;
936 else
937 /* If the alternative actually allows memory, make
938 things a bit cheaper since we won't need an
939 extra insn to load it. */
940 pp->mem_cost
941 = ((out_p ? ira_memory_move_cost[mode][op_class][0] : 0)
942 + (in_p ? ira_memory_move_cost[mode][op_class][1] : 0)
943 - allows_mem[i]) * frequency;
944 /* If we have assigned a class to this allocno in
945 our first pass, add a cost to this alternative
946 corresponding to what we would add if this
947 allocno were not in the appropriate class. */
948 if (pref)
949 {
950 enum reg_class pref_class = pref[COST_INDEX (REGNO (op))];
951
952 if (pref_class == NO_REGS)
953 {
954 if (op_class != NO_REGS)
955 alt_cost
956 += ((out_p
957 ? ira_memory_move_cost[mode][op_class][0]
958 : 0)
959 + (in_p
960 ? ira_memory_move_cost[mode][op_class][1]
961 : 0));
962 }
963 else if (op_class == NO_REGS)
964 alt_cost
965 += ((out_p
966 ? ira_memory_move_cost[mode][pref_class][1]
967 : 0)
968 + (in_p
969 ? ira_memory_move_cost[mode][pref_class][0]
970 : 0));
971 else if (ira_reg_class_intersect[pref_class][op_class]
972 == NO_REGS)
973 alt_cost += (ira_register_move_cost
974 [mode][pref_class][op_class]);
975 }
976 }
977 }
978
979 /* Otherwise, if this alternative wins, either because we
980 have already determined that or if we have a hard
981 register of the proper class, there is no cost for this
982 alternative. */
983 else if (win || (REG_P (op)
984 && reg_fits_class_p (op, classes[i],
985 0, GET_MODE (op))))
986 ;
987
988 /* If registers are valid, the cost of this alternative
989 includes copying the object to and/or from a
990 register. */
991 else if (classes[i] != NO_REGS)
992 {
993 if (recog_data.operand_type[i] != OP_OUT)
994 alt_cost += copy_cost (op, mode, classes[i], 1, NULL);
995
996 if (recog_data.operand_type[i] != OP_IN)
997 alt_cost += copy_cost (op, mode, classes[i], 0, NULL);
998 }
999 /* The only other way this alternative can be used is if
1000 this is a constant that could be placed into memory. */
1001 else if (CONSTANT_P (op) && (allows_addr || allows_mem[i]))
1002 alt_cost += ira_memory_move_cost[mode][classes[i]][1];
1003 else
1004 alt_fail = 1;
1005
1006 if (alt_fail)
1007 break;
1008 }
1009
1010 if (alt_fail)
1011 {
1012 /* The loop above might have exited early once the failure
1013 was seen. Skip over the constraints for the remaining
1014 operands. */
1015 i += 1;
1016 for (; i < n_ops; ++i)
1017 constraints[i] = skip_alternative (constraints[i]);
1018 continue;
1019 }
1020
1021 op_cost_add = alt_cost * frequency;
1022 /* Finally, update the costs with the information we've
1023 calculated about this alternative. */
1024 for (i = 0; i < n_ops; i++)
1025 if (REG_P (ops[i]) && REGNO (ops[i]) >= FIRST_PSEUDO_REGISTER)
1026 {
1027 struct costs *pp = op_costs[i], *qq = this_op_costs[i];
1028 int *pp_costs = pp->cost, *qq_costs = qq->cost;
1029 int scale = 1 + (recog_data.operand_type[i] == OP_INOUT);
1030 cost_classes_t cost_classes_ptr
1031 = regno_cost_classes[REGNO (ops[i])];
1032
1033 pp->mem_cost = MIN (pp->mem_cost,
1034 (qq->mem_cost + op_cost_add) * scale);
1035
1036 for (k = cost_classes_ptr->num - 1; k >= 0; k--)
1037 pp_costs[k]
1038 = MIN (pp_costs[k], (qq_costs[k] + op_cost_add) * scale);
1039 }
1040 }
1041
1042 if (allocno_p)
1043 for (i = 0; i < n_ops; i++)
1044 {
1045 ira_allocno_t a;
1046 rtx op = ops[i];
1047
1048 if (! REG_P (op) || REGNO (op) < FIRST_PSEUDO_REGISTER)
1049 continue;
1050 a = ira_curr_regno_allocno_map [REGNO (op)];
1051 if (! ALLOCNO_BAD_SPILL_P (a) && insn_allows_mem[i] == 0)
1052 ALLOCNO_BAD_SPILL_P (a) = true;
1053 }
1054
1055 }
1056
1057 \f
1058
1059 /* Wrapper around REGNO_OK_FOR_INDEX_P, to allow pseudo registers. */
1060 static inline bool
1061 ok_for_index_p_nonstrict (rtx reg)
1062 {
1063 unsigned regno = REGNO (reg);
1064
1065 return regno >= FIRST_PSEUDO_REGISTER || REGNO_OK_FOR_INDEX_P (regno);
1066 }
1067
1068 /* A version of regno_ok_for_base_p for use here, when all
1069 pseudo-registers should count as OK. Arguments as for
1070 regno_ok_for_base_p. */
1071 static inline bool
1072 ok_for_base_p_nonstrict (rtx reg, machine_mode mode, addr_space_t as,
1073 enum rtx_code outer_code, enum rtx_code index_code)
1074 {
1075 unsigned regno = REGNO (reg);
1076
1077 if (regno >= FIRST_PSEUDO_REGISTER)
1078 return true;
1079 return ok_for_base_p_1 (regno, mode, as, outer_code, index_code);
1080 }
1081
1082 /* Record the pseudo registers we must reload into hard registers in a
1083 subexpression of a memory address, X.
1084
1085 If CONTEXT is 0, we are looking at the base part of an address,
1086 otherwise we are looking at the index part.
1087
1088 MODE and AS are the mode and address space of the memory reference;
1089 OUTER_CODE and INDEX_CODE give the context that the rtx appears in.
1090 These four arguments are passed down to base_reg_class.
1091
1092 SCALE is twice the amount to multiply the cost by (it is twice so
1093 we can represent half-cost adjustments). */
1094 static void
1095 record_address_regs (machine_mode mode, addr_space_t as, rtx x,
1096 int context, enum rtx_code outer_code,
1097 enum rtx_code index_code, int scale)
1098 {
1099 enum rtx_code code = GET_CODE (x);
1100 enum reg_class rclass;
1101
1102 if (context == 1)
1103 rclass = INDEX_REG_CLASS;
1104 else
1105 rclass = base_reg_class (mode, as, outer_code, index_code);
1106
1107 switch (code)
1108 {
1109 case CONST_INT:
1110 case CONST:
1111 case CC0:
1112 case PC:
1113 case SYMBOL_REF:
1114 case LABEL_REF:
1115 return;
1116
1117 case PLUS:
1118 /* When we have an address that is a sum, we must determine
1119 whether registers are "base" or "index" regs. If there is a
1120 sum of two registers, we must choose one to be the "base".
1121 Luckily, we can use the REG_POINTER to make a good choice
1122 most of the time. We only need to do this on machines that
1123 can have two registers in an address and where the base and
1124 index register classes are different.
1125
1126 ??? This code used to set REGNO_POINTER_FLAG in some cases,
1127 but that seems bogus since it should only be set when we are
1128 sure the register is being used as a pointer. */
1129 {
1130 rtx arg0 = XEXP (x, 0);
1131 rtx arg1 = XEXP (x, 1);
1132 enum rtx_code code0 = GET_CODE (arg0);
1133 enum rtx_code code1 = GET_CODE (arg1);
1134
1135 /* Look inside subregs. */
1136 if (code0 == SUBREG)
1137 arg0 = SUBREG_REG (arg0), code0 = GET_CODE (arg0);
1138 if (code1 == SUBREG)
1139 arg1 = SUBREG_REG (arg1), code1 = GET_CODE (arg1);
1140
1141 /* If this machine only allows one register per address, it
1142 must be in the first operand. */
1143 if (MAX_REGS_PER_ADDRESS == 1)
1144 record_address_regs (mode, as, arg0, 0, PLUS, code1, scale);
1145
1146 /* If index and base registers are the same on this machine,
1147 just record registers in any non-constant operands. We
1148 assume here, as well as in the tests below, that all
1149 addresses are in canonical form. */
1150 else if (INDEX_REG_CLASS
1151 == base_reg_class (VOIDmode, as, PLUS, SCRATCH))
1152 {
1153 record_address_regs (mode, as, arg0, context, PLUS, code1, scale);
1154 if (! CONSTANT_P (arg1))
1155 record_address_regs (mode, as, arg1, context, PLUS, code0, scale);
1156 }
1157
1158 /* If the second operand is a constant integer, it doesn't
1159 change what class the first operand must be. */
1160 else if (CONST_SCALAR_INT_P (arg1))
1161 record_address_regs (mode, as, arg0, context, PLUS, code1, scale);
1162 /* If the second operand is a symbolic constant, the first
1163 operand must be an index register. */
1164 else if (code1 == SYMBOL_REF || code1 == CONST || code1 == LABEL_REF)
1165 record_address_regs (mode, as, arg0, 1, PLUS, code1, scale);
1166 /* If both operands are registers but one is already a hard
1167 register of index or reg-base class, give the other the
1168 class that the hard register is not. */
1169 else if (code0 == REG && code1 == REG
1170 && REGNO (arg0) < FIRST_PSEUDO_REGISTER
1171 && (ok_for_base_p_nonstrict (arg0, mode, as, PLUS, REG)
1172 || ok_for_index_p_nonstrict (arg0)))
1173 record_address_regs (mode, as, arg1,
1174 ok_for_base_p_nonstrict (arg0, mode, as,
1175 PLUS, REG) ? 1 : 0,
1176 PLUS, REG, scale);
1177 else if (code0 == REG && code1 == REG
1178 && REGNO (arg1) < FIRST_PSEUDO_REGISTER
1179 && (ok_for_base_p_nonstrict (arg1, mode, as, PLUS, REG)
1180 || ok_for_index_p_nonstrict (arg1)))
1181 record_address_regs (mode, as, arg0,
1182 ok_for_base_p_nonstrict (arg1, mode, as,
1183 PLUS, REG) ? 1 : 0,
1184 PLUS, REG, scale);
1185 /* If one operand is known to be a pointer, it must be the
1186 base with the other operand the index. Likewise if the
1187 other operand is a MULT. */
1188 else if ((code0 == REG && REG_POINTER (arg0)) || code1 == MULT)
1189 {
1190 record_address_regs (mode, as, arg0, 0, PLUS, code1, scale);
1191 record_address_regs (mode, as, arg1, 1, PLUS, code0, scale);
1192 }
1193 else if ((code1 == REG && REG_POINTER (arg1)) || code0 == MULT)
1194 {
1195 record_address_regs (mode, as, arg0, 1, PLUS, code1, scale);
1196 record_address_regs (mode, as, arg1, 0, PLUS, code0, scale);
1197 }
1198 /* Otherwise, count equal chances that each might be a base or
1199 index register. This case should be rare. */
1200 else
1201 {
1202 record_address_regs (mode, as, arg0, 0, PLUS, code1, scale / 2);
1203 record_address_regs (mode, as, arg0, 1, PLUS, code1, scale / 2);
1204 record_address_regs (mode, as, arg1, 0, PLUS, code0, scale / 2);
1205 record_address_regs (mode, as, arg1, 1, PLUS, code0, scale / 2);
1206 }
1207 }
1208 break;
1209
1210 /* Double the importance of an allocno that is incremented or
1211 decremented, since it would take two extra insns if it ends
1212 up in the wrong place. */
1213 case POST_MODIFY:
1214 case PRE_MODIFY:
1215 record_address_regs (mode, as, XEXP (x, 0), 0, code,
1216 GET_CODE (XEXP (XEXP (x, 1), 1)), 2 * scale);
1217 if (REG_P (XEXP (XEXP (x, 1), 1)))
1218 record_address_regs (mode, as, XEXP (XEXP (x, 1), 1), 1, code, REG,
1219 2 * scale);
1220 break;
1221
1222 case POST_INC:
1223 case PRE_INC:
1224 case POST_DEC:
1225 case PRE_DEC:
1226 /* Double the importance of an allocno that is incremented or
1227 decremented, since it would take two extra insns if it ends
1228 up in the wrong place. */
1229 record_address_regs (mode, as, XEXP (x, 0), 0, code, SCRATCH, 2 * scale);
1230 break;
1231
1232 case REG:
1233 {
1234 struct costs *pp;
1235 int *pp_costs;
1236 enum reg_class i;
1237 int k, regno, add_cost;
1238 cost_classes_t cost_classes_ptr;
1239 enum reg_class *cost_classes;
1240 move_table *move_in_cost;
1241
1242 if (REGNO (x) < FIRST_PSEUDO_REGISTER)
1243 break;
1244
1245 regno = REGNO (x);
1246 if (allocno_p)
1247 ALLOCNO_BAD_SPILL_P (ira_curr_regno_allocno_map[regno]) = true;
1248 pp = COSTS (costs, COST_INDEX (regno));
1249 add_cost = (ira_memory_move_cost[Pmode][rclass][1] * scale) / 2;
1250 if (INT_MAX - add_cost < pp->mem_cost)
1251 pp->mem_cost = INT_MAX;
1252 else
1253 pp->mem_cost += add_cost;
1254 cost_classes_ptr = regno_cost_classes[regno];
1255 cost_classes = cost_classes_ptr->classes;
1256 pp_costs = pp->cost;
1257 ira_init_register_move_cost_if_necessary (Pmode);
1258 move_in_cost = ira_may_move_in_cost[Pmode];
1259 for (k = cost_classes_ptr->num - 1; k >= 0; k--)
1260 {
1261 i = cost_classes[k];
1262 add_cost = (move_in_cost[i][rclass] * scale) / 2;
1263 if (INT_MAX - add_cost < pp_costs[k])
1264 pp_costs[k] = INT_MAX;
1265 else
1266 pp_costs[k] += add_cost;
1267 }
1268 }
1269 break;
1270
1271 default:
1272 {
1273 const char *fmt = GET_RTX_FORMAT (code);
1274 int i;
1275 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1276 if (fmt[i] == 'e')
1277 record_address_regs (mode, as, XEXP (x, i), context, code, SCRATCH,
1278 scale);
1279 }
1280 }
1281 }
1282
1283 \f
1284
1285 /* Calculate the costs of insn operands. */
1286 static void
1287 record_operand_costs (rtx_insn *insn, enum reg_class *pref)
1288 {
1289 const char *constraints[MAX_RECOG_OPERANDS];
1290 machine_mode modes[MAX_RECOG_OPERANDS];
1291 rtx ops[MAX_RECOG_OPERANDS];
1292 rtx set;
1293 int i;
1294
1295 for (i = 0; i < recog_data.n_operands; i++)
1296 {
1297 constraints[i] = recog_data.constraints[i];
1298 modes[i] = recog_data.operand_mode[i];
1299 }
1300
1301 /* If we get here, we are set up to record the costs of all the
1302 operands for this insn. Start by initializing the costs. Then
1303 handle any address registers. Finally record the desired classes
1304 for any allocnos, doing it twice if some pair of operands are
1305 commutative. */
1306 for (i = 0; i < recog_data.n_operands; i++)
1307 {
1308 memcpy (op_costs[i], init_cost, struct_costs_size);
1309
1310 ops[i] = recog_data.operand[i];
1311 if (GET_CODE (recog_data.operand[i]) == SUBREG)
1312 recog_data.operand[i] = SUBREG_REG (recog_data.operand[i]);
1313
1314 if (MEM_P (recog_data.operand[i]))
1315 record_address_regs (GET_MODE (recog_data.operand[i]),
1316 MEM_ADDR_SPACE (recog_data.operand[i]),
1317 XEXP (recog_data.operand[i], 0),
1318 0, MEM, SCRATCH, frequency * 2);
1319 else if (constraints[i][0] == 'p'
1320 || (insn_extra_address_constraint
1321 (lookup_constraint (constraints[i]))))
1322 record_address_regs (VOIDmode, ADDR_SPACE_GENERIC,
1323 recog_data.operand[i], 0, ADDRESS, SCRATCH,
1324 frequency * 2);
1325 }
1326
1327 /* Check for commutative in a separate loop so everything will have
1328 been initialized. We must do this even if one operand is a
1329 constant--see addsi3 in m68k.md. */
1330 for (i = 0; i < (int) recog_data.n_operands - 1; i++)
1331 if (constraints[i][0] == '%')
1332 {
1333 const char *xconstraints[MAX_RECOG_OPERANDS];
1334 int j;
1335
1336 /* Handle commutative operands by swapping the constraints.
1337 We assume the modes are the same. */
1338 for (j = 0; j < recog_data.n_operands; j++)
1339 xconstraints[j] = constraints[j];
1340
1341 xconstraints[i] = constraints[i+1];
1342 xconstraints[i+1] = constraints[i];
1343 record_reg_classes (recog_data.n_alternatives, recog_data.n_operands,
1344 recog_data.operand, modes,
1345 xconstraints, insn, pref);
1346 }
1347 record_reg_classes (recog_data.n_alternatives, recog_data.n_operands,
1348 recog_data.operand, modes,
1349 constraints, insn, pref);
1350
1351 /* If this insn is a single set copying operand 1 to operand 0 and
1352 one operand is an allocno with the other a hard reg or an allocno
1353 that prefers a hard register that is in its own register class
1354 then we may want to adjust the cost of that register class to -1.
1355
1356 Avoid the adjustment if the source does not die to avoid
1357 stressing of register allocator by preferencing two colliding
1358 registers into single class.
1359
1360 Also avoid the adjustment if a copy between hard registers of the
1361 class is expensive (ten times the cost of a default copy is
1362 considered arbitrarily expensive). This avoids losing when the
1363 preferred class is very expensive as the source of a copy
1364 instruction. */
1365 if ((set = single_set (insn)) != NULL_RTX
1366 /* In rare cases the single set insn might have less 2 operands
1367 as the source can be a fixed special reg. */
1368 && recog_data.n_operands > 1
1369 && ops[0] == SET_DEST (set) && ops[1] == SET_SRC (set))
1370 {
1371 int regno, other_regno;
1372 rtx dest = SET_DEST (set);
1373 rtx src = SET_SRC (set);
1374
1375 if (GET_CODE (dest) == SUBREG
1376 && (GET_MODE_SIZE (GET_MODE (dest))
1377 == GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest)))))
1378 dest = SUBREG_REG (dest);
1379 if (GET_CODE (src) == SUBREG
1380 && (GET_MODE_SIZE (GET_MODE (src))
1381 == GET_MODE_SIZE (GET_MODE (SUBREG_REG (src)))))
1382 src = SUBREG_REG (src);
1383 if (REG_P (src) && REG_P (dest)
1384 && find_regno_note (insn, REG_DEAD, REGNO (src))
1385 && (((regno = REGNO (src)) >= FIRST_PSEUDO_REGISTER
1386 && (other_regno = REGNO (dest)) < FIRST_PSEUDO_REGISTER)
1387 || ((regno = REGNO (dest)) >= FIRST_PSEUDO_REGISTER
1388 && (other_regno = REGNO (src)) < FIRST_PSEUDO_REGISTER)))
1389 {
1390 machine_mode mode = GET_MODE (src);
1391 cost_classes_t cost_classes_ptr = regno_cost_classes[regno];
1392 enum reg_class *cost_classes = cost_classes_ptr->classes;
1393 reg_class_t rclass;
1394 int k, nr;
1395
1396 i = regno == (int) REGNO (src) ? 1 : 0;
1397 for (k = cost_classes_ptr->num - 1; k >= 0; k--)
1398 {
1399 rclass = cost_classes[k];
1400 if (TEST_HARD_REG_BIT (reg_class_contents[rclass], other_regno)
1401 && (reg_class_size[(int) rclass]
1402 == ira_reg_class_max_nregs [(int) rclass][(int) mode]))
1403 {
1404 if (reg_class_size[rclass] == 1)
1405 op_costs[i]->cost[k] = -frequency;
1406 else
1407 {
1408 for (nr = 0;
1409 nr < hard_regno_nregs[other_regno][mode];
1410 nr++)
1411 if (! TEST_HARD_REG_BIT (reg_class_contents[rclass],
1412 other_regno + nr))
1413 break;
1414
1415 if (nr == hard_regno_nregs[other_regno][mode])
1416 op_costs[i]->cost[k] = -frequency;
1417 }
1418 }
1419 }
1420 }
1421 }
1422 }
1423
1424 \f
1425
1426 /* Process one insn INSN. Scan it and record each time it would save
1427 code to put a certain allocnos in a certain class. Return the last
1428 insn processed, so that the scan can be continued from there. */
1429 static rtx_insn *
1430 scan_one_insn (rtx_insn *insn)
1431 {
1432 enum rtx_code pat_code;
1433 rtx set, note;
1434 int i, k;
1435 bool counted_mem;
1436
1437 if (!NONDEBUG_INSN_P (insn))
1438 return insn;
1439
1440 pat_code = GET_CODE (PATTERN (insn));
1441 if (pat_code == ASM_INPUT)
1442 return insn;
1443
1444 /* If INSN is a USE/CLOBBER of a pseudo in a mode M then go ahead
1445 and initialize the register move costs of mode M.
1446
1447 The pseudo may be related to another pseudo via a copy (implicit or
1448 explicit) and if there are no mode M uses/sets of the original
1449 pseudo, then we may leave the register move costs uninitialized for
1450 mode M. */
1451 if (pat_code == USE || pat_code == CLOBBER)
1452 {
1453 rtx x = XEXP (PATTERN (insn), 0);
1454 if (GET_CODE (x) == REG
1455 && REGNO (x) >= FIRST_PSEUDO_REGISTER)
1456 ira_init_register_move_cost_if_necessary (GET_MODE (x));
1457 return insn;
1458 }
1459
1460 counted_mem = false;
1461 set = single_set (insn);
1462 extract_insn (insn);
1463
1464 /* If this insn loads a parameter from its stack slot, then it
1465 represents a savings, rather than a cost, if the parameter is
1466 stored in memory. Record this fact.
1467
1468 Similarly if we're loading other constants from memory (constant
1469 pool, TOC references, small data areas, etc) and this is the only
1470 assignment to the destination pseudo.
1471
1472 Don't do this if SET_SRC (set) isn't a general operand, if it is
1473 a memory requiring special instructions to load it, decreasing
1474 mem_cost might result in it being loaded using the specialized
1475 instruction into a register, then stored into stack and loaded
1476 again from the stack. See PR52208.
1477
1478 Don't do this if SET_SRC (set) has side effect. See PR56124. */
1479 if (set != 0 && REG_P (SET_DEST (set)) && MEM_P (SET_SRC (set))
1480 && (note = find_reg_note (insn, REG_EQUIV, NULL_RTX)) != NULL_RTX
1481 && ((MEM_P (XEXP (note, 0))
1482 && !side_effects_p (SET_SRC (set)))
1483 || (CONSTANT_P (XEXP (note, 0))
1484 && targetm.legitimate_constant_p (GET_MODE (SET_DEST (set)),
1485 XEXP (note, 0))
1486 && REG_N_SETS (REGNO (SET_DEST (set))) == 1))
1487 && general_operand (SET_SRC (set), GET_MODE (SET_SRC (set))))
1488 {
1489 enum reg_class cl = GENERAL_REGS;
1490 rtx reg = SET_DEST (set);
1491 int num = COST_INDEX (REGNO (reg));
1492
1493 COSTS (costs, num)->mem_cost
1494 -= ira_memory_move_cost[GET_MODE (reg)][cl][1] * frequency;
1495 record_address_regs (GET_MODE (SET_SRC (set)),
1496 MEM_ADDR_SPACE (SET_SRC (set)),
1497 XEXP (SET_SRC (set), 0), 0, MEM, SCRATCH,
1498 frequency * 2);
1499 counted_mem = true;
1500 }
1501
1502 record_operand_costs (insn, pref);
1503
1504 /* Now add the cost for each operand to the total costs for its
1505 allocno. */
1506 for (i = 0; i < recog_data.n_operands; i++)
1507 if (REG_P (recog_data.operand[i])
1508 && REGNO (recog_data.operand[i]) >= FIRST_PSEUDO_REGISTER)
1509 {
1510 int regno = REGNO (recog_data.operand[i]);
1511 struct costs *p = COSTS (costs, COST_INDEX (regno));
1512 struct costs *q = op_costs[i];
1513 int *p_costs = p->cost, *q_costs = q->cost;
1514 cost_classes_t cost_classes_ptr = regno_cost_classes[regno];
1515 int add_cost;
1516
1517 /* If the already accounted for the memory "cost" above, don't
1518 do so again. */
1519 if (!counted_mem)
1520 {
1521 add_cost = q->mem_cost;
1522 if (add_cost > 0 && INT_MAX - add_cost < p->mem_cost)
1523 p->mem_cost = INT_MAX;
1524 else
1525 p->mem_cost += add_cost;
1526 }
1527 for (k = cost_classes_ptr->num - 1; k >= 0; k--)
1528 {
1529 add_cost = q_costs[k];
1530 if (add_cost > 0 && INT_MAX - add_cost < p_costs[k])
1531 p_costs[k] = INT_MAX;
1532 else
1533 p_costs[k] += add_cost;
1534 }
1535 }
1536
1537 return insn;
1538 }
1539
1540 \f
1541
1542 /* Print allocnos costs to file F. */
1543 static void
1544 print_allocno_costs (FILE *f)
1545 {
1546 int k;
1547 ira_allocno_t a;
1548 ira_allocno_iterator ai;
1549
1550 ira_assert (allocno_p);
1551 fprintf (f, "\n");
1552 FOR_EACH_ALLOCNO (a, ai)
1553 {
1554 int i, rclass;
1555 basic_block bb;
1556 int regno = ALLOCNO_REGNO (a);
1557 cost_classes_t cost_classes_ptr = regno_cost_classes[regno];
1558 enum reg_class *cost_classes = cost_classes_ptr->classes;
1559
1560 i = ALLOCNO_NUM (a);
1561 fprintf (f, " a%d(r%d,", i, regno);
1562 if ((bb = ALLOCNO_LOOP_TREE_NODE (a)->bb) != NULL)
1563 fprintf (f, "b%d", bb->index);
1564 else
1565 fprintf (f, "l%d", ALLOCNO_LOOP_TREE_NODE (a)->loop_num);
1566 fprintf (f, ") costs:");
1567 for (k = 0; k < cost_classes_ptr->num; k++)
1568 {
1569 rclass = cost_classes[k];
1570 fprintf (f, " %s:%d", reg_class_names[rclass],
1571 COSTS (costs, i)->cost[k]);
1572 if (flag_ira_region == IRA_REGION_ALL
1573 || flag_ira_region == IRA_REGION_MIXED)
1574 fprintf (f, ",%d", COSTS (total_allocno_costs, i)->cost[k]);
1575 }
1576 fprintf (f, " MEM:%i", COSTS (costs, i)->mem_cost);
1577 if (flag_ira_region == IRA_REGION_ALL
1578 || flag_ira_region == IRA_REGION_MIXED)
1579 fprintf (f, ",%d", COSTS (total_allocno_costs, i)->mem_cost);
1580 fprintf (f, "\n");
1581 }
1582 }
1583
1584 /* Print pseudo costs to file F. */
1585 static void
1586 print_pseudo_costs (FILE *f)
1587 {
1588 int regno, k;
1589 int rclass;
1590 cost_classes_t cost_classes_ptr;
1591 enum reg_class *cost_classes;
1592
1593 ira_assert (! allocno_p);
1594 fprintf (f, "\n");
1595 for (regno = max_reg_num () - 1; regno >= FIRST_PSEUDO_REGISTER; regno--)
1596 {
1597 if (REG_N_REFS (regno) <= 0)
1598 continue;
1599 cost_classes_ptr = regno_cost_classes[regno];
1600 cost_classes = cost_classes_ptr->classes;
1601 fprintf (f, " r%d costs:", regno);
1602 for (k = 0; k < cost_classes_ptr->num; k++)
1603 {
1604 rclass = cost_classes[k];
1605 fprintf (f, " %s:%d", reg_class_names[rclass],
1606 COSTS (costs, regno)->cost[k]);
1607 }
1608 fprintf (f, " MEM:%i\n", COSTS (costs, regno)->mem_cost);
1609 }
1610 }
1611
1612 /* Traverse the BB represented by LOOP_TREE_NODE to update the allocno
1613 costs. */
1614 static void
1615 process_bb_for_costs (basic_block bb)
1616 {
1617 rtx_insn *insn;
1618
1619 frequency = REG_FREQ_FROM_BB (bb);
1620 if (frequency == 0)
1621 frequency = 1;
1622 FOR_BB_INSNS (bb, insn)
1623 insn = scan_one_insn (insn);
1624 }
1625
1626 /* Traverse the BB represented by LOOP_TREE_NODE to update the allocno
1627 costs. */
1628 static void
1629 process_bb_node_for_costs (ira_loop_tree_node_t loop_tree_node)
1630 {
1631 basic_block bb;
1632
1633 bb = loop_tree_node->bb;
1634 if (bb != NULL)
1635 process_bb_for_costs (bb);
1636 }
1637
1638 /* Find costs of register classes and memory for allocnos or pseudos
1639 and their best costs. Set up preferred, alternative and allocno
1640 classes for pseudos. */
1641 static void
1642 find_costs_and_classes (FILE *dump_file)
1643 {
1644 int i, k, start, max_cost_classes_num;
1645 int pass;
1646 basic_block bb;
1647 enum reg_class *regno_best_class, new_class;
1648
1649 init_recog ();
1650 regno_best_class
1651 = (enum reg_class *) ira_allocate (max_reg_num ()
1652 * sizeof (enum reg_class));
1653 for (i = max_reg_num () - 1; i >= FIRST_PSEUDO_REGISTER; i--)
1654 regno_best_class[i] = NO_REGS;
1655 if (!resize_reg_info () && allocno_p
1656 && pseudo_classes_defined_p && flag_expensive_optimizations)
1657 {
1658 ira_allocno_t a;
1659 ira_allocno_iterator ai;
1660
1661 pref = pref_buffer;
1662 max_cost_classes_num = 1;
1663 FOR_EACH_ALLOCNO (a, ai)
1664 {
1665 pref[ALLOCNO_NUM (a)] = reg_preferred_class (ALLOCNO_REGNO (a));
1666 setup_regno_cost_classes_by_aclass
1667 (ALLOCNO_REGNO (a), pref[ALLOCNO_NUM (a)]);
1668 max_cost_classes_num
1669 = MAX (max_cost_classes_num,
1670 regno_cost_classes[ALLOCNO_REGNO (a)]->num);
1671 }
1672 start = 1;
1673 }
1674 else
1675 {
1676 pref = NULL;
1677 max_cost_classes_num = ira_important_classes_num;
1678 for (i = max_reg_num () - 1; i >= FIRST_PSEUDO_REGISTER; i--)
1679 if (regno_reg_rtx[i] != NULL_RTX)
1680 setup_regno_cost_classes_by_mode (i, PSEUDO_REGNO_MODE (i));
1681 else
1682 setup_regno_cost_classes_by_aclass (i, ALL_REGS);
1683 start = 0;
1684 }
1685 if (allocno_p)
1686 /* Clear the flag for the next compiled function. */
1687 pseudo_classes_defined_p = false;
1688 /* Normally we scan the insns once and determine the best class to
1689 use for each allocno. However, if -fexpensive-optimizations are
1690 on, we do so twice, the second time using the tentative best
1691 classes to guide the selection. */
1692 for (pass = start; pass <= flag_expensive_optimizations; pass++)
1693 {
1694 if ((!allocno_p || internal_flag_ira_verbose > 0) && dump_file)
1695 fprintf (dump_file,
1696 "\nPass %i for finding pseudo/allocno costs\n\n", pass);
1697
1698 if (pass != start)
1699 {
1700 max_cost_classes_num = 1;
1701 for (i = max_reg_num () - 1; i >= FIRST_PSEUDO_REGISTER; i--)
1702 {
1703 setup_regno_cost_classes_by_aclass (i, regno_best_class[i]);
1704 max_cost_classes_num
1705 = MAX (max_cost_classes_num, regno_cost_classes[i]->num);
1706 }
1707 }
1708
1709 struct_costs_size
1710 = sizeof (struct costs) + sizeof (int) * (max_cost_classes_num - 1);
1711 /* Zero out our accumulation of the cost of each class for each
1712 allocno. */
1713 memset (costs, 0, cost_elements_num * struct_costs_size);
1714
1715 if (allocno_p)
1716 {
1717 /* Scan the instructions and record each time it would save code
1718 to put a certain allocno in a certain class. */
1719 ira_traverse_loop_tree (true, ira_loop_tree_root,
1720 process_bb_node_for_costs, NULL);
1721
1722 memcpy (total_allocno_costs, costs,
1723 max_struct_costs_size * ira_allocnos_num);
1724 }
1725 else
1726 {
1727 basic_block bb;
1728
1729 FOR_EACH_BB_FN (bb, cfun)
1730 process_bb_for_costs (bb);
1731 }
1732
1733 if (pass == 0)
1734 pref = pref_buffer;
1735
1736 /* Now for each allocno look at how desirable each class is and
1737 find which class is preferred. */
1738 for (i = max_reg_num () - 1; i >= FIRST_PSEUDO_REGISTER; i--)
1739 {
1740 ira_allocno_t a, parent_a;
1741 int rclass, a_num, parent_a_num, add_cost;
1742 ira_loop_tree_node_t parent;
1743 int best_cost, allocno_cost;
1744 enum reg_class best, alt_class;
1745 cost_classes_t cost_classes_ptr = regno_cost_classes[i];
1746 enum reg_class *cost_classes = cost_classes_ptr->classes;
1747 int *i_costs = temp_costs->cost;
1748 int i_mem_cost;
1749 int equiv_savings = regno_equiv_gains[i];
1750
1751 if (! allocno_p)
1752 {
1753 if (regno_reg_rtx[i] == NULL_RTX)
1754 continue;
1755 memcpy (temp_costs, COSTS (costs, i), struct_costs_size);
1756 i_mem_cost = temp_costs->mem_cost;
1757 }
1758 else
1759 {
1760 if (ira_regno_allocno_map[i] == NULL)
1761 continue;
1762 memset (temp_costs, 0, struct_costs_size);
1763 i_mem_cost = 0;
1764 /* Find cost of all allocnos with the same regno. */
1765 for (a = ira_regno_allocno_map[i];
1766 a != NULL;
1767 a = ALLOCNO_NEXT_REGNO_ALLOCNO (a))
1768 {
1769 int *a_costs, *p_costs;
1770
1771 a_num = ALLOCNO_NUM (a);
1772 if ((flag_ira_region == IRA_REGION_ALL
1773 || flag_ira_region == IRA_REGION_MIXED)
1774 && (parent = ALLOCNO_LOOP_TREE_NODE (a)->parent) != NULL
1775 && (parent_a = parent->regno_allocno_map[i]) != NULL
1776 /* There are no caps yet. */
1777 && bitmap_bit_p (ALLOCNO_LOOP_TREE_NODE
1778 (a)->border_allocnos,
1779 ALLOCNO_NUM (a)))
1780 {
1781 /* Propagate costs to upper levels in the region
1782 tree. */
1783 parent_a_num = ALLOCNO_NUM (parent_a);
1784 a_costs = COSTS (total_allocno_costs, a_num)->cost;
1785 p_costs = COSTS (total_allocno_costs, parent_a_num)->cost;
1786 for (k = cost_classes_ptr->num - 1; k >= 0; k--)
1787 {
1788 add_cost = a_costs[k];
1789 if (add_cost > 0 && INT_MAX - add_cost < p_costs[k])
1790 p_costs[k] = INT_MAX;
1791 else
1792 p_costs[k] += add_cost;
1793 }
1794 add_cost = COSTS (total_allocno_costs, a_num)->mem_cost;
1795 if (add_cost > 0
1796 && (INT_MAX - add_cost
1797 < COSTS (total_allocno_costs,
1798 parent_a_num)->mem_cost))
1799 COSTS (total_allocno_costs, parent_a_num)->mem_cost
1800 = INT_MAX;
1801 else
1802 COSTS (total_allocno_costs, parent_a_num)->mem_cost
1803 += add_cost;
1804
1805 if (i >= first_moveable_pseudo && i < last_moveable_pseudo)
1806 COSTS (total_allocno_costs, parent_a_num)->mem_cost = 0;
1807 }
1808 a_costs = COSTS (costs, a_num)->cost;
1809 for (k = cost_classes_ptr->num - 1; k >= 0; k--)
1810 {
1811 add_cost = a_costs[k];
1812 if (add_cost > 0 && INT_MAX - add_cost < i_costs[k])
1813 i_costs[k] = INT_MAX;
1814 else
1815 i_costs[k] += add_cost;
1816 }
1817 add_cost = COSTS (costs, a_num)->mem_cost;
1818 if (add_cost > 0 && INT_MAX - add_cost < i_mem_cost)
1819 i_mem_cost = INT_MAX;
1820 else
1821 i_mem_cost += add_cost;
1822 }
1823 }
1824 if (i >= first_moveable_pseudo && i < last_moveable_pseudo)
1825 i_mem_cost = 0;
1826 else if (equiv_savings < 0)
1827 i_mem_cost = -equiv_savings;
1828 else if (equiv_savings > 0)
1829 {
1830 i_mem_cost = 0;
1831 for (k = cost_classes_ptr->num - 1; k >= 0; k--)
1832 i_costs[k] += equiv_savings;
1833 }
1834
1835 best_cost = (1 << (HOST_BITS_PER_INT - 2)) - 1;
1836 best = ALL_REGS;
1837 alt_class = NO_REGS;
1838 /* Find best common class for all allocnos with the same
1839 regno. */
1840 for (k = 0; k < cost_classes_ptr->num; k++)
1841 {
1842 rclass = cost_classes[k];
1843 if (i_costs[k] < best_cost)
1844 {
1845 best_cost = i_costs[k];
1846 best = (enum reg_class) rclass;
1847 }
1848 else if (i_costs[k] == best_cost)
1849 best = ira_reg_class_subunion[best][rclass];
1850 if (pass == flag_expensive_optimizations
1851 /* We still prefer registers to memory even at this
1852 stage if their costs are the same. We will make
1853 a final decision during assigning hard registers
1854 when we have all info including more accurate
1855 costs which might be affected by assigning hard
1856 registers to other pseudos because the pseudos
1857 involved in moves can be coalesced. */
1858 && i_costs[k] <= i_mem_cost
1859 && (reg_class_size[reg_class_subunion[alt_class][rclass]]
1860 > reg_class_size[alt_class]))
1861 alt_class = reg_class_subunion[alt_class][rclass];
1862 }
1863 alt_class = ira_allocno_class_translate[alt_class];
1864 if (best_cost > i_mem_cost
1865 && ! non_spilled_static_chain_regno_p (i))
1866 regno_aclass[i] = NO_REGS;
1867 else if (!optimize && !targetm.class_likely_spilled_p (best))
1868 /* Registers in the alternative class are likely to need
1869 longer or slower sequences than registers in the best class.
1870 When optimizing we make some effort to use the best class
1871 over the alternative class where possible, but at -O0 we
1872 effectively give the alternative class equal weight.
1873 We then run the risk of using slower alternative registers
1874 when plenty of registers from the best class are still free.
1875 This is especially true because live ranges tend to be very
1876 short in -O0 code and so register pressure tends to be low.
1877
1878 Avoid that by ignoring the alternative class if the best
1879 class has plenty of registers.
1880
1881 The union class arrays give important classes and only
1882 part of it are allocno classes. So translate them into
1883 allocno classes. */
1884 regno_aclass[i] = ira_allocno_class_translate[best];
1885 else
1886 {
1887 /* Make the common class the biggest class of best and
1888 alt_class. Translate the common class into an
1889 allocno class too. */
1890 regno_aclass[i] = (ira_allocno_class_translate
1891 [ira_reg_class_superunion[best][alt_class]]);
1892 ira_assert (regno_aclass[i] != NO_REGS
1893 && ira_reg_allocno_class_p[regno_aclass[i]]);
1894 }
1895 if ((new_class
1896 = (reg_class) (targetm.ira_change_pseudo_allocno_class
1897 (i, regno_aclass[i], best))) != regno_aclass[i])
1898 {
1899 regno_aclass[i] = new_class;
1900 if (hard_reg_set_subset_p (reg_class_contents[new_class],
1901 reg_class_contents[best]))
1902 best = new_class;
1903 if (hard_reg_set_subset_p (reg_class_contents[new_class],
1904 reg_class_contents[alt_class]))
1905 alt_class = new_class;
1906 }
1907 if (pass == flag_expensive_optimizations)
1908 {
1909 if (best_cost > i_mem_cost
1910 /* Do not assign NO_REGS to static chain pointer
1911 pseudo when non-local goto is used. */
1912 && ! non_spilled_static_chain_regno_p (i))
1913 best = alt_class = NO_REGS;
1914 else if (best == alt_class)
1915 alt_class = NO_REGS;
1916 setup_reg_classes (i, best, alt_class, regno_aclass[i]);
1917 if ((!allocno_p || internal_flag_ira_verbose > 2)
1918 && dump_file != NULL)
1919 fprintf (dump_file,
1920 " r%d: preferred %s, alternative %s, allocno %s\n",
1921 i, reg_class_names[best], reg_class_names[alt_class],
1922 reg_class_names[regno_aclass[i]]);
1923 }
1924 regno_best_class[i] = best;
1925 if (! allocno_p)
1926 {
1927 pref[i] = (best_cost > i_mem_cost
1928 && ! non_spilled_static_chain_regno_p (i)
1929 ? NO_REGS : best);
1930 continue;
1931 }
1932 for (a = ira_regno_allocno_map[i];
1933 a != NULL;
1934 a = ALLOCNO_NEXT_REGNO_ALLOCNO (a))
1935 {
1936 enum reg_class aclass = regno_aclass[i];
1937 int a_num = ALLOCNO_NUM (a);
1938 int *total_a_costs = COSTS (total_allocno_costs, a_num)->cost;
1939 int *a_costs = COSTS (costs, a_num)->cost;
1940
1941 if (aclass == NO_REGS)
1942 best = NO_REGS;
1943 else
1944 {
1945 /* Finding best class which is subset of the common
1946 class. */
1947 best_cost = (1 << (HOST_BITS_PER_INT - 2)) - 1;
1948 allocno_cost = best_cost;
1949 best = ALL_REGS;
1950 for (k = 0; k < cost_classes_ptr->num; k++)
1951 {
1952 rclass = cost_classes[k];
1953 if (! ira_class_subset_p[rclass][aclass])
1954 continue;
1955 if (total_a_costs[k] < best_cost)
1956 {
1957 best_cost = total_a_costs[k];
1958 allocno_cost = a_costs[k];
1959 best = (enum reg_class) rclass;
1960 }
1961 else if (total_a_costs[k] == best_cost)
1962 {
1963 best = ira_reg_class_subunion[best][rclass];
1964 allocno_cost = MAX (allocno_cost, a_costs[k]);
1965 }
1966 }
1967 ALLOCNO_CLASS_COST (a) = allocno_cost;
1968 }
1969 if (internal_flag_ira_verbose > 2 && dump_file != NULL
1970 && (pass == 0 || pref[a_num] != best))
1971 {
1972 fprintf (dump_file, " a%d (r%d,", a_num, i);
1973 if ((bb = ALLOCNO_LOOP_TREE_NODE (a)->bb) != NULL)
1974 fprintf (dump_file, "b%d", bb->index);
1975 else
1976 fprintf (dump_file, "l%d",
1977 ALLOCNO_LOOP_TREE_NODE (a)->loop_num);
1978 fprintf (dump_file, ") best %s, allocno %s\n",
1979 reg_class_names[best],
1980 reg_class_names[aclass]);
1981 }
1982 pref[a_num] = best;
1983 if (pass == flag_expensive_optimizations && best != aclass
1984 && ira_class_hard_regs_num[best] > 0
1985 && (ira_reg_class_max_nregs[best][ALLOCNO_MODE (a)]
1986 >= ira_class_hard_regs_num[best]))
1987 {
1988 int ind = cost_classes_ptr->index[aclass];
1989
1990 ira_assert (ind >= 0);
1991 ira_init_register_move_cost_if_necessary (ALLOCNO_MODE (a));
1992 ira_add_allocno_pref (a, ira_class_hard_regs[best][0],
1993 (a_costs[ind] - ALLOCNO_CLASS_COST (a))
1994 / (ira_register_move_cost
1995 [ALLOCNO_MODE (a)][best][aclass]));
1996 for (k = 0; k < cost_classes_ptr->num; k++)
1997 if (ira_class_subset_p[cost_classes[k]][best])
1998 a_costs[k] = a_costs[ind];
1999 }
2000 }
2001 }
2002
2003 if (internal_flag_ira_verbose > 4 && dump_file)
2004 {
2005 if (allocno_p)
2006 print_allocno_costs (dump_file);
2007 else
2008 print_pseudo_costs (dump_file);
2009 fprintf (dump_file,"\n");
2010 }
2011 }
2012 ira_free (regno_best_class);
2013 }
2014
2015 \f
2016
2017 /* Process moves involving hard regs to modify allocno hard register
2018 costs. We can do this only after determining allocno class. If a
2019 hard register forms a register class, then moves with the hard
2020 register are already taken into account in class costs for the
2021 allocno. */
2022 static void
2023 process_bb_node_for_hard_reg_moves (ira_loop_tree_node_t loop_tree_node)
2024 {
2025 int i, freq, src_regno, dst_regno, hard_regno, a_regno;
2026 bool to_p;
2027 ira_allocno_t a, curr_a;
2028 ira_loop_tree_node_t curr_loop_tree_node;
2029 enum reg_class rclass;
2030 basic_block bb;
2031 rtx_insn *insn;
2032 rtx set, src, dst;
2033
2034 bb = loop_tree_node->bb;
2035 if (bb == NULL)
2036 return;
2037 freq = REG_FREQ_FROM_BB (bb);
2038 if (freq == 0)
2039 freq = 1;
2040 FOR_BB_INSNS (bb, insn)
2041 {
2042 if (!NONDEBUG_INSN_P (insn))
2043 continue;
2044 set = single_set (insn);
2045 if (set == NULL_RTX)
2046 continue;
2047 dst = SET_DEST (set);
2048 src = SET_SRC (set);
2049 if (! REG_P (dst) || ! REG_P (src))
2050 continue;
2051 dst_regno = REGNO (dst);
2052 src_regno = REGNO (src);
2053 if (dst_regno >= FIRST_PSEUDO_REGISTER
2054 && src_regno < FIRST_PSEUDO_REGISTER)
2055 {
2056 hard_regno = src_regno;
2057 a = ira_curr_regno_allocno_map[dst_regno];
2058 to_p = true;
2059 }
2060 else if (src_regno >= FIRST_PSEUDO_REGISTER
2061 && dst_regno < FIRST_PSEUDO_REGISTER)
2062 {
2063 hard_regno = dst_regno;
2064 a = ira_curr_regno_allocno_map[src_regno];
2065 to_p = false;
2066 }
2067 else
2068 continue;
2069 rclass = ALLOCNO_CLASS (a);
2070 if (! TEST_HARD_REG_BIT (reg_class_contents[rclass], hard_regno))
2071 continue;
2072 i = ira_class_hard_reg_index[rclass][hard_regno];
2073 if (i < 0)
2074 continue;
2075 a_regno = ALLOCNO_REGNO (a);
2076 for (curr_loop_tree_node = ALLOCNO_LOOP_TREE_NODE (a);
2077 curr_loop_tree_node != NULL;
2078 curr_loop_tree_node = curr_loop_tree_node->parent)
2079 if ((curr_a = curr_loop_tree_node->regno_allocno_map[a_regno]) != NULL)
2080 ira_add_allocno_pref (curr_a, hard_regno, freq);
2081 {
2082 int cost;
2083 enum reg_class hard_reg_class;
2084 machine_mode mode;
2085
2086 mode = ALLOCNO_MODE (a);
2087 hard_reg_class = REGNO_REG_CLASS (hard_regno);
2088 ira_init_register_move_cost_if_necessary (mode);
2089 cost = (to_p ? ira_register_move_cost[mode][hard_reg_class][rclass]
2090 : ira_register_move_cost[mode][rclass][hard_reg_class]) * freq;
2091 ira_allocate_and_set_costs (&ALLOCNO_HARD_REG_COSTS (a), rclass,
2092 ALLOCNO_CLASS_COST (a));
2093 ira_allocate_and_set_costs (&ALLOCNO_CONFLICT_HARD_REG_COSTS (a),
2094 rclass, 0);
2095 ALLOCNO_HARD_REG_COSTS (a)[i] -= cost;
2096 ALLOCNO_CONFLICT_HARD_REG_COSTS (a)[i] -= cost;
2097 ALLOCNO_CLASS_COST (a) = MIN (ALLOCNO_CLASS_COST (a),
2098 ALLOCNO_HARD_REG_COSTS (a)[i]);
2099 }
2100 }
2101 }
2102
2103 /* After we find hard register and memory costs for allocnos, define
2104 its class and modify hard register cost because insns moving
2105 allocno to/from hard registers. */
2106 static void
2107 setup_allocno_class_and_costs (void)
2108 {
2109 int i, j, n, regno, hard_regno, num;
2110 int *reg_costs;
2111 enum reg_class aclass, rclass;
2112 ira_allocno_t a;
2113 ira_allocno_iterator ai;
2114 cost_classes_t cost_classes_ptr;
2115
2116 ira_assert (allocno_p);
2117 FOR_EACH_ALLOCNO (a, ai)
2118 {
2119 i = ALLOCNO_NUM (a);
2120 regno = ALLOCNO_REGNO (a);
2121 aclass = regno_aclass[regno];
2122 cost_classes_ptr = regno_cost_classes[regno];
2123 ira_assert (pref[i] == NO_REGS || aclass != NO_REGS);
2124 ALLOCNO_MEMORY_COST (a) = COSTS (costs, i)->mem_cost;
2125 ira_set_allocno_class (a, aclass);
2126 if (aclass == NO_REGS)
2127 continue;
2128 if (optimize && ALLOCNO_CLASS (a) != pref[i])
2129 {
2130 n = ira_class_hard_regs_num[aclass];
2131 ALLOCNO_HARD_REG_COSTS (a)
2132 = reg_costs = ira_allocate_cost_vector (aclass);
2133 for (j = n - 1; j >= 0; j--)
2134 {
2135 hard_regno = ira_class_hard_regs[aclass][j];
2136 if (TEST_HARD_REG_BIT (reg_class_contents[pref[i]], hard_regno))
2137 reg_costs[j] = ALLOCNO_CLASS_COST (a);
2138 else
2139 {
2140 rclass = REGNO_REG_CLASS (hard_regno);
2141 num = cost_classes_ptr->index[rclass];
2142 if (num < 0)
2143 {
2144 num = cost_classes_ptr->hard_regno_index[hard_regno];
2145 ira_assert (num >= 0);
2146 }
2147 reg_costs[j] = COSTS (costs, i)->cost[num];
2148 }
2149 }
2150 }
2151 }
2152 if (optimize)
2153 ira_traverse_loop_tree (true, ira_loop_tree_root,
2154 process_bb_node_for_hard_reg_moves, NULL);
2155 }
2156
2157 \f
2158
2159 /* Function called once during compiler work. */
2160 void
2161 ira_init_costs_once (void)
2162 {
2163 int i;
2164
2165 init_cost = NULL;
2166 for (i = 0; i < MAX_RECOG_OPERANDS; i++)
2167 {
2168 op_costs[i] = NULL;
2169 this_op_costs[i] = NULL;
2170 }
2171 temp_costs = NULL;
2172 }
2173
2174 /* Free allocated temporary cost vectors. */
2175 void
2176 target_ira_int::free_ira_costs ()
2177 {
2178 int i;
2179
2180 free (x_init_cost);
2181 x_init_cost = NULL;
2182 for (i = 0; i < MAX_RECOG_OPERANDS; i++)
2183 {
2184 free (x_op_costs[i]);
2185 free (x_this_op_costs[i]);
2186 x_op_costs[i] = x_this_op_costs[i] = NULL;
2187 }
2188 free (x_temp_costs);
2189 x_temp_costs = NULL;
2190 }
2191
2192 /* This is called each time register related information is
2193 changed. */
2194 void
2195 ira_init_costs (void)
2196 {
2197 int i;
2198
2199 this_target_ira_int->free_ira_costs ();
2200 max_struct_costs_size
2201 = sizeof (struct costs) + sizeof (int) * (ira_important_classes_num - 1);
2202 /* Don't use ira_allocate because vectors live through several IRA
2203 calls. */
2204 init_cost = (struct costs *) xmalloc (max_struct_costs_size);
2205 init_cost->mem_cost = 1000000;
2206 for (i = 0; i < ira_important_classes_num; i++)
2207 init_cost->cost[i] = 1000000;
2208 for (i = 0; i < MAX_RECOG_OPERANDS; i++)
2209 {
2210 op_costs[i] = (struct costs *) xmalloc (max_struct_costs_size);
2211 this_op_costs[i] = (struct costs *) xmalloc (max_struct_costs_size);
2212 }
2213 temp_costs = (struct costs *) xmalloc (max_struct_costs_size);
2214 }
2215
2216 \f
2217
2218 /* Common initialization function for ira_costs and
2219 ira_set_pseudo_classes. */
2220 static void
2221 init_costs (void)
2222 {
2223 init_subregs_of_mode ();
2224 costs = (struct costs *) ira_allocate (max_struct_costs_size
2225 * cost_elements_num);
2226 pref_buffer = (enum reg_class *) ira_allocate (sizeof (enum reg_class)
2227 * cost_elements_num);
2228 regno_aclass = (enum reg_class *) ira_allocate (sizeof (enum reg_class)
2229 * max_reg_num ());
2230 regno_equiv_gains = (int *) ira_allocate (sizeof (int) * max_reg_num ());
2231 memset (regno_equiv_gains, 0, sizeof (int) * max_reg_num ());
2232 }
2233
2234 /* Common finalization function for ira_costs and
2235 ira_set_pseudo_classes. */
2236 static void
2237 finish_costs (void)
2238 {
2239 finish_subregs_of_mode ();
2240 ira_free (regno_equiv_gains);
2241 ira_free (regno_aclass);
2242 ira_free (pref_buffer);
2243 ira_free (costs);
2244 }
2245
2246 /* Entry function which defines register class, memory and hard
2247 register costs for each allocno. */
2248 void
2249 ira_costs (void)
2250 {
2251 allocno_p = true;
2252 cost_elements_num = ira_allocnos_num;
2253 init_costs ();
2254 total_allocno_costs = (struct costs *) ira_allocate (max_struct_costs_size
2255 * ira_allocnos_num);
2256 initiate_regno_cost_classes ();
2257 calculate_elim_costs_all_insns ();
2258 find_costs_and_classes (ira_dump_file);
2259 setup_allocno_class_and_costs ();
2260 finish_regno_cost_classes ();
2261 finish_costs ();
2262 ira_free (total_allocno_costs);
2263 }
2264
2265 /* Entry function which defines classes for pseudos.
2266 Set pseudo_classes_defined_p only if DEFINE_PSEUDO_CLASSES is true. */
2267 void
2268 ira_set_pseudo_classes (bool define_pseudo_classes, FILE *dump_file)
2269 {
2270 allocno_p = false;
2271 internal_flag_ira_verbose = flag_ira_verbose;
2272 cost_elements_num = max_reg_num ();
2273 init_costs ();
2274 initiate_regno_cost_classes ();
2275 find_costs_and_classes (dump_file);
2276 finish_regno_cost_classes ();
2277 if (define_pseudo_classes)
2278 pseudo_classes_defined_p = true;
2279
2280 finish_costs ();
2281 }
2282
2283 \f
2284
2285 /* Change hard register costs for allocnos which lives through
2286 function calls. This is called only when we found all intersected
2287 calls during building allocno live ranges. */
2288 void
2289 ira_tune_allocno_costs (void)
2290 {
2291 int j, n, regno;
2292 int cost, min_cost, *reg_costs;
2293 enum reg_class aclass, rclass;
2294 machine_mode mode;
2295 ira_allocno_t a;
2296 ira_allocno_iterator ai;
2297 ira_allocno_object_iterator oi;
2298 ira_object_t obj;
2299 bool skip_p;
2300 HARD_REG_SET *crossed_calls_clobber_regs;
2301
2302 FOR_EACH_ALLOCNO (a, ai)
2303 {
2304 aclass = ALLOCNO_CLASS (a);
2305 if (aclass == NO_REGS)
2306 continue;
2307 mode = ALLOCNO_MODE (a);
2308 n = ira_class_hard_regs_num[aclass];
2309 min_cost = INT_MAX;
2310 if (ALLOCNO_CALLS_CROSSED_NUM (a)
2311 != ALLOCNO_CHEAP_CALLS_CROSSED_NUM (a))
2312 {
2313 ira_allocate_and_set_costs
2314 (&ALLOCNO_HARD_REG_COSTS (a), aclass,
2315 ALLOCNO_CLASS_COST (a));
2316 reg_costs = ALLOCNO_HARD_REG_COSTS (a);
2317 for (j = n - 1; j >= 0; j--)
2318 {
2319 regno = ira_class_hard_regs[aclass][j];
2320 skip_p = false;
2321 FOR_EACH_ALLOCNO_OBJECT (a, obj, oi)
2322 {
2323 if (ira_hard_reg_set_intersection_p (regno, mode,
2324 OBJECT_CONFLICT_HARD_REGS
2325 (obj)))
2326 {
2327 skip_p = true;
2328 break;
2329 }
2330 }
2331 if (skip_p)
2332 continue;
2333 rclass = REGNO_REG_CLASS (regno);
2334 cost = 0;
2335 crossed_calls_clobber_regs
2336 = &(ALLOCNO_CROSSED_CALLS_CLOBBERED_REGS (a));
2337 if (ira_hard_reg_set_intersection_p (regno, mode,
2338 *crossed_calls_clobber_regs)
2339 && (ira_hard_reg_set_intersection_p (regno, mode,
2340 call_used_reg_set)
2341 || HARD_REGNO_CALL_PART_CLOBBERED (regno, mode)))
2342 cost += (ALLOCNO_CALL_FREQ (a)
2343 * (ira_memory_move_cost[mode][rclass][0]
2344 + ira_memory_move_cost[mode][rclass][1]));
2345 #ifdef IRA_HARD_REGNO_ADD_COST_MULTIPLIER
2346 cost += ((ira_memory_move_cost[mode][rclass][0]
2347 + ira_memory_move_cost[mode][rclass][1])
2348 * ALLOCNO_FREQ (a)
2349 * IRA_HARD_REGNO_ADD_COST_MULTIPLIER (regno) / 2);
2350 #endif
2351 if (INT_MAX - cost < reg_costs[j])
2352 reg_costs[j] = INT_MAX;
2353 else
2354 reg_costs[j] += cost;
2355 if (min_cost > reg_costs[j])
2356 min_cost = reg_costs[j];
2357 }
2358 }
2359 if (min_cost != INT_MAX)
2360 ALLOCNO_CLASS_COST (a) = min_cost;
2361
2362 /* Some targets allow pseudos to be allocated to unaligned sequences
2363 of hard registers. However, selecting an unaligned sequence can
2364 unnecessarily restrict later allocations. So increase the cost of
2365 unaligned hard regs to encourage the use of aligned hard regs. */
2366 {
2367 const int nregs = ira_reg_class_max_nregs[aclass][ALLOCNO_MODE (a)];
2368
2369 if (nregs > 1)
2370 {
2371 ira_allocate_and_set_costs
2372 (&ALLOCNO_HARD_REG_COSTS (a), aclass, ALLOCNO_CLASS_COST (a));
2373 reg_costs = ALLOCNO_HARD_REG_COSTS (a);
2374 for (j = n - 1; j >= 0; j--)
2375 {
2376 regno = ira_non_ordered_class_hard_regs[aclass][j];
2377 if ((regno % nregs) != 0)
2378 {
2379 int index = ira_class_hard_reg_index[aclass][regno];
2380 ira_assert (index != -1);
2381 reg_costs[index] += ALLOCNO_FREQ (a);
2382 }
2383 }
2384 }
2385 }
2386 }
2387 }
2388
2389 /* Add COST to the estimated gain for eliminating REGNO with its
2390 equivalence. If COST is zero, record that no such elimination is
2391 possible. */
2392
2393 void
2394 ira_adjust_equiv_reg_cost (unsigned regno, int cost)
2395 {
2396 if (cost == 0)
2397 regno_equiv_gains[regno] = 0;
2398 else
2399 regno_equiv_gains[regno] += cost;
2400 }
2401
2402 void
2403 ira_costs_c_finalize (void)
2404 {
2405 this_target_ira_int->free_ira_costs ();
2406 }