]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/ira-int.h
re PR middle-end/37790 (limits-fnargs.c takes very long time to compile at -O2)
[thirdparty/gcc.git] / gcc / ira-int.h
1 /* Integrated Register Allocator (IRA) intercommunication header file.
2 Copyright (C) 2006, 2007, 2008
3 Free Software Foundation, Inc.
4 Contributed by Vladimir Makarov <vmakarov@redhat.com>.
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
12
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
21
22 #include "cfgloop.h"
23 #include "ira.h"
24 #include "alloc-pool.h"
25
26 /* To provide consistency in naming, all IRA external variables,
27 functions, common typedefs start with prefix ira_. */
28
29 #ifdef ENABLE_CHECKING
30 #define ENABLE_IRA_CHECKING
31 #endif
32
33 #ifdef ENABLE_IRA_CHECKING
34 #define ira_assert(c) gcc_assert (c)
35 #else
36 #define ira_assert(c)
37 #endif
38
39 /* Compute register frequency from edge frequency FREQ. It is
40 analogous to REG_FREQ_FROM_BB. When optimizing for size, or
41 profile driven feedback is available and the function is never
42 executed, frequency is always equivalent. Otherwise rescale the
43 edge frequency. */
44 #define REG_FREQ_FROM_EDGE_FREQ(freq) \
45 (optimize_size || (flag_branch_probabilities && !ENTRY_BLOCK_PTR->count) \
46 ? REG_FREQ_MAX : (freq * REG_FREQ_MAX / BB_FREQ_MAX) \
47 ? (freq * REG_FREQ_MAX / BB_FREQ_MAX) : 1)
48
49 /* All natural loops. */
50 extern struct loops ira_loops;
51
52 /* A modified value of flag `-fira-verbose' used internally. */
53 extern int internal_flag_ira_verbose;
54
55 /* Dump file of the allocator if it is not NULL. */
56 extern FILE *ira_dump_file;
57
58 /* Typedefs for pointers to allocno live range, allocno, and copy of
59 allocnos. */
60 typedef struct ira_allocno_live_range *allocno_live_range_t;
61 typedef struct ira_allocno *ira_allocno_t;
62 typedef struct ira_allocno_copy *ira_copy_t;
63
64 /* Definition of vector of allocnos and copies. */
65 DEF_VEC_P(ira_allocno_t);
66 DEF_VEC_ALLOC_P(ira_allocno_t, heap);
67 DEF_VEC_P(ira_copy_t);
68 DEF_VEC_ALLOC_P(ira_copy_t, heap);
69
70 /* Typedef for pointer to the subsequent structure. */
71 typedef struct ira_loop_tree_node *ira_loop_tree_node_t;
72
73 /* In general case, IRA is a regional allocator. The regions are
74 nested and form a tree. Currently regions are natural loops. The
75 following structure describes loop tree node (representing basic
76 block or loop). We need such tree because the loop tree from
77 cfgloop.h is not convenient for the optimization: basic blocks are
78 not a part of the tree from cfgloop.h. We also use the nodes for
79 storing additional information about basic blocks/loops for the
80 register allocation purposes. */
81 struct ira_loop_tree_node
82 {
83 /* The node represents basic block if children == NULL. */
84 basic_block bb; /* NULL for loop. */
85 struct loop *loop; /* NULL for BB. */
86 /* NEXT/SUBLOOP_NEXT is the next node/loop-node of the same parent.
87 SUBLOOP_NEXT is always NULL for BBs. */
88 ira_loop_tree_node_t subloop_next, next;
89 /* CHILDREN/SUBLOOPS is the first node/loop-node immediately inside
90 the node. They are NULL for BBs. */
91 ira_loop_tree_node_t subloops, children;
92 /* The node immediately containing given node. */
93 ira_loop_tree_node_t parent;
94
95 /* Loop level in range [0, ira_loop_tree_height). */
96 int level;
97
98 /* All the following members are defined only for nodes representing
99 loops. */
100
101 /* Allocnos in the loop corresponding to their regnos. If it is
102 NULL the loop does not form a separate register allocation region
103 (e.g. because it has abnormal enter/exit edges and we can not put
104 code for register shuffling on the edges if a different
105 allocation is used for a pseudo-register on different sides of
106 the edges). Caps are not in the map (remember we can have more
107 one cap with the same regno in a region). */
108 ira_allocno_t *regno_allocno_map;
109
110 /* Maximal register pressure inside loop for given register class
111 (defined only for the cover classes). */
112 int reg_pressure[N_REG_CLASSES];
113
114 /* Numbers of allocnos referred or living in the loop node (except
115 for its subloops). */
116 bitmap all_allocnos;
117
118 /* Numbers of allocnos living at the loop borders. */
119 bitmap border_allocnos;
120
121 /* Regnos of pseudos modified in the loop node (including its
122 subloops). */
123 bitmap modified_regnos;
124
125 /* Numbers of copies referred in the corresponding loop. */
126 bitmap local_copies;
127 };
128
129 /* The root of the loop tree corresponding to the all function. */
130 extern ira_loop_tree_node_t ira_loop_tree_root;
131
132 /* Height of the loop tree. */
133 extern int ira_loop_tree_height;
134
135 /* All nodes representing basic blocks are referred through the
136 following array. We can not use basic block member `aux' for this
137 because it is used for insertion of insns on edges. */
138 extern ira_loop_tree_node_t ira_bb_nodes;
139
140 /* Two access macros to the nodes representing basic blocks. */
141 #if defined ENABLE_IRA_CHECKING && (GCC_VERSION >= 2007)
142 #define IRA_BB_NODE_BY_INDEX(index) __extension__ \
143 (({ ira_loop_tree_node_t _node = (&ira_bb_nodes[index]); \
144 if (_node->children != NULL || _node->loop != NULL || _node->bb == NULL)\
145 { \
146 fprintf (stderr, \
147 "\n%s: %d: error in %s: it is not a block node\n", \
148 __FILE__, __LINE__, __FUNCTION__); \
149 gcc_unreachable (); \
150 } \
151 _node; }))
152 #else
153 #define IRA_BB_NODE_BY_INDEX(index) (&ira_bb_nodes[index])
154 #endif
155
156 #define IRA_BB_NODE(bb) IRA_BB_NODE_BY_INDEX ((bb)->index)
157
158 /* All nodes representing loops are referred through the following
159 array. */
160 extern ira_loop_tree_node_t ira_loop_nodes;
161
162 /* Two access macros to the nodes representing loops. */
163 #if defined ENABLE_IRA_CHECKING && (GCC_VERSION >= 2007)
164 #define IRA_LOOP_NODE_BY_INDEX(index) __extension__ \
165 (({ ira_loop_tree_node_t const _node = (&ira_loop_nodes[index]);\
166 if (_node->children == NULL || _node->bb != NULL || _node->loop == NULL)\
167 { \
168 fprintf (stderr, \
169 "\n%s: %d: error in %s: it is not a loop node\n", \
170 __FILE__, __LINE__, __FUNCTION__); \
171 gcc_unreachable (); \
172 } \
173 _node; }))
174 #else
175 #define IRA_LOOP_NODE_BY_INDEX(index) (&ira_loop_nodes[index])
176 #endif
177
178 #define IRA_LOOP_NODE(loop) IRA_LOOP_NODE_BY_INDEX ((loop)->num)
179
180 \f
181
182 /* The structure describes program points where a given allocno lives.
183 To save memory we store allocno conflicts only for the same cover
184 class allocnos which is enough to assign hard registers. To find
185 conflicts for other allocnos (e.g. to assign stack memory slot) we
186 use the live ranges. If the live ranges of two allocnos are
187 intersected, the allocnos are in conflict. */
188 struct ira_allocno_live_range
189 {
190 /* Allocno whose live range is described by given structure. */
191 ira_allocno_t allocno;
192 /* Program point range. */
193 int start, finish;
194 /* Next structure describing program points where the allocno
195 lives. */
196 allocno_live_range_t next;
197 /* Pointer to structures with the same start/finish. */
198 allocno_live_range_t start_next, finish_next;
199 };
200
201 /* Program points are enumerated by numbers from range
202 0..IRA_MAX_POINT-1. There are approximately two times more program
203 points than insns. Program points are places in the program where
204 liveness info can be changed. In most general case (there are more
205 complicated cases too) some program points correspond to places
206 where input operand dies and other ones correspond to places where
207 output operands are born. */
208 extern int ira_max_point;
209
210 /* Arrays of size IRA_MAX_POINT mapping a program point to the allocno
211 live ranges with given start/finish point. */
212 extern allocno_live_range_t *ira_start_point_ranges, *ira_finish_point_ranges;
213
214 /* A structure representing an allocno (allocation entity). Allocno
215 represents a pseudo-register in an allocation region. If
216 pseudo-register does not live in a region but it lives in the
217 nested regions, it is represented in the region by special allocno
218 called *cap*. There may be more one cap representing the same
219 pseudo-register in region. It means that the corresponding
220 pseudo-register lives in more one non-intersected subregion. */
221 struct ira_allocno
222 {
223 /* The allocno order number starting with 0. Each allocno has an
224 unique number and the number is never changed for the
225 allocno. */
226 int num;
227 /* Regno for allocno or cap. */
228 int regno;
229 /* Mode of the allocno which is the mode of the corresponding
230 pseudo-register. */
231 enum machine_mode mode;
232 /* Final rtx representation of the allocno. */
233 rtx reg;
234 /* Hard register assigned to given allocno. Negative value means
235 that memory was allocated to the allocno. During the reload,
236 spilled allocno has value equal to the corresponding stack slot
237 number (0, ...) - 2. Value -1 is used for allocnos spilled by the
238 reload (at this point pseudo-register has only one allocno) which
239 did not get stack slot yet. */
240 int hard_regno;
241 /* Allocnos with the same regno are linked by the following member.
242 Allocnos corresponding to inner loops are first in the list (it
243 corresponds to depth-first traverse of the loops). */
244 ira_allocno_t next_regno_allocno;
245 /* There may be different allocnos with the same regno in different
246 regions. Allocnos are bound to the corresponding loop tree node.
247 Pseudo-register may have only one regular allocno with given loop
248 tree node but more than one cap (see comments above). */
249 ira_loop_tree_node_t loop_tree_node;
250 /* Accumulated usage references of the allocno. Here and below,
251 word 'accumulated' means info for given region and all nested
252 subregions. In this case, 'accumulated' means sum of references
253 of the corresponding pseudo-register in this region and in all
254 nested subregions recursively. */
255 int nrefs;
256 /* Accumulated frequency of usage of the allocno. */
257 int freq;
258 /* Register class which should be used for allocation for given
259 allocno. NO_REGS means that we should use memory. */
260 enum reg_class cover_class;
261 /* Minimal accumulated and updated costs of usage register of the
262 cover class for the allocno. */
263 int cover_class_cost, updated_cover_class_cost;
264 /* Minimal accumulated, and updated costs of memory for the allocno.
265 At the allocation start, the original and updated costs are
266 equal. The updated cost may be changed after finishing
267 allocation in a region and starting allocation in a subregion.
268 The change reflects the cost of spill/restore code on the
269 subregion border if we assign memory to the pseudo in the
270 subregion. */
271 int memory_cost, updated_memory_cost;
272 /* Accumulated number of points where the allocno lives and there is
273 excess pressure for its class. Excess pressure for a register
274 class at some point means that there are more allocnos of given
275 register class living at the point than number of hard-registers
276 of the class available for the allocation. */
277 int excess_pressure_points_num;
278 /* Copies to other non-conflicting allocnos. The copies can
279 represent move insn or potential move insn usually because of two
280 operand insn constraints. */
281 ira_copy_t allocno_copies;
282 /* It is a allocno (cap) representing given allocno on upper loop tree
283 level. */
284 ira_allocno_t cap;
285 /* It is a link to allocno (cap) on lower loop level represented by
286 given cap. Null if given allocno is not a cap. */
287 ira_allocno_t cap_member;
288 /* Coalesced allocnos form a cyclic list. One allocno given by
289 FIRST_COALESCED_ALLOCNO represents all coalesced allocnos. The
290 list is chained by NEXT_COALESCED_ALLOCNO. */
291 ira_allocno_t first_coalesced_allocno;
292 ira_allocno_t next_coalesced_allocno;
293 /* Pointer to structures describing at what program point the
294 allocno lives. We always maintain the list in such way that *the
295 ranges in the list are not intersected and ordered by decreasing
296 their program points*. */
297 allocno_live_range_t live_ranges;
298 /* Before building conflicts the two member values are
299 correspondingly minimal and maximal points of the accumulated
300 allocno live ranges. After building conflicts the values are
301 correspondingly minimal and maximal conflict ids of allocnos with
302 which given allocno can conflict. */
303 int min, max;
304 /* The unique member value represents given allocno in conflict bit
305 vectors. */
306 int conflict_id;
307 /* Vector of accumulated conflicting allocnos with NULL end marker
308 (if CONFLICT_VEC_P is true) or conflict bit vector otherwise.
309 Only allocnos with the same cover class are in the vector or in
310 the bit vector. */
311 void *conflict_allocno_array;
312 /* Allocated size of the previous array. */
313 unsigned int conflict_allocno_array_size;
314 /* Number of accumulated conflicts in the vector of conflicting
315 allocnos. */
316 int conflict_allocnos_num;
317 /* Initial and accumulated hard registers conflicting with this
318 allocno and as a consequences can not be assigned to the allocno.
319 All non-allocatable hard regs and hard regs of cover classes
320 different from given allocno one are included in the sets. */
321 HARD_REG_SET conflict_hard_regs, total_conflict_hard_regs;
322 /* Accumulated frequency of calls which given allocno
323 intersects. */
324 int call_freq;
325 /* Length of the previous array (number of the intersected calls). */
326 int calls_crossed_num;
327 /* Non NULL if we remove restoring value from given allocno to
328 MEM_OPTIMIZED_DEST at loop exit (see ira-emit.c) because the
329 allocno value is not changed inside the loop. */
330 ira_allocno_t mem_optimized_dest;
331 /* TRUE if the allocno assigned to memory was a destination of
332 removed move (see ira-emit.c) at loop exit because the value of
333 the corresponding pseudo-register is not changed inside the
334 loop. */
335 unsigned int mem_optimized_dest_p : 1;
336 /* TRUE if the corresponding pseudo-register has disjoint live
337 ranges and the other allocnos of the pseudo-register except this
338 one changed REG. */
339 unsigned int somewhere_renamed_p : 1;
340 /* TRUE if allocno with the same REGNO in a subregion has been
341 renamed, in other words, got a new pseudo-register. */
342 unsigned int child_renamed_p : 1;
343 /* During the reload, value TRUE means that we should not reassign a
344 hard register to the allocno got memory earlier. It is set up
345 when we removed memory-memory move insn before each iteration of
346 the reload. */
347 unsigned int dont_reassign_p : 1;
348 #ifdef STACK_REGS
349 /* Set to TRUE if allocno can't be assigned to the stack hard
350 register correspondingly in this region and area including the
351 region and all its subregions recursively. */
352 unsigned int no_stack_reg_p : 1, total_no_stack_reg_p : 1;
353 #endif
354 /* TRUE value means that there is no sense to spill the allocno
355 during coloring because the spill will result in additional
356 reloads in reload pass. */
357 unsigned int bad_spill_p : 1;
358 /* TRUE value means that the allocno was not removed yet from the
359 conflicting graph during colouring. */
360 unsigned int in_graph_p : 1;
361 /* TRUE if a hard register or memory has been assigned to the
362 allocno. */
363 unsigned int assigned_p : 1;
364 /* TRUE if it is put on the stack to make other allocnos
365 colorable. */
366 unsigned int may_be_spilled_p : 1;
367 /* TRUE if the allocno was removed from the splay tree used to
368 choose allocn for spilling (see ira-color.c::. */
369 unsigned int splay_removed_p : 1;
370 /* TRUE if conflicts for given allocno are represented by vector of
371 pointers to the conflicting allocnos. Otherwise, we use a bit
372 vector where a bit with given index represents allocno with the
373 same number. */
374 unsigned int conflict_vec_p : 1;
375 /* Array of usage costs (accumulated and the one updated during
376 coloring) for each hard register of the allocno cover class. The
377 member value can be NULL if all costs are the same and equal to
378 COVER_CLASS_COST. For example, the costs of two different hard
379 registers can be different if one hard register is callee-saved
380 and another one is callee-used and the allocno lives through
381 calls. Another example can be case when for some insn the
382 corresponding pseudo-register value should be put in specific
383 register class (e.g. AREG for x86) which is a strict subset of
384 the allocno cover class (GENERAL_REGS for x86). We have updated
385 costs to reflect the situation when the usage cost of a hard
386 register is decreased because the allocno is connected to another
387 allocno by a copy and the another allocno has been assigned to
388 the hard register. */
389 int *hard_reg_costs, *updated_hard_reg_costs;
390 /* Array of decreasing costs (accumulated and the one updated during
391 coloring) for allocnos conflicting with given allocno for hard
392 regno of the allocno cover class. The member value can be NULL
393 if all costs are the same. These costs are used to reflect
394 preferences of other allocnos not assigned yet during assigning
395 to given allocno. */
396 int *conflict_hard_reg_costs, *updated_conflict_hard_reg_costs;
397 /* Number of the same cover class allocnos with TRUE in_graph_p
398 value and conflicting with given allocno during each point of
399 graph coloring. */
400 int left_conflicts_num;
401 /* Number of hard registers of the allocno cover class really
402 available for the allocno allocation. */
403 int available_regs_num;
404 /* Allocnos in a bucket (used in coloring) chained by the following
405 two members. */
406 ira_allocno_t next_bucket_allocno;
407 ira_allocno_t prev_bucket_allocno;
408 /* Used for temporary purposes. */
409 int temp;
410 };
411
412 /* All members of the allocno structures should be accessed only
413 through the following macros. */
414 #define ALLOCNO_NUM(A) ((A)->num)
415 #define ALLOCNO_REGNO(A) ((A)->regno)
416 #define ALLOCNO_REG(A) ((A)->reg)
417 #define ALLOCNO_NEXT_REGNO_ALLOCNO(A) ((A)->next_regno_allocno)
418 #define ALLOCNO_LOOP_TREE_NODE(A) ((A)->loop_tree_node)
419 #define ALLOCNO_CAP(A) ((A)->cap)
420 #define ALLOCNO_CAP_MEMBER(A) ((A)->cap_member)
421 #define ALLOCNO_CONFLICT_ALLOCNO_ARRAY(A) ((A)->conflict_allocno_array)
422 #define ALLOCNO_CONFLICT_ALLOCNO_ARRAY_SIZE(A) \
423 ((A)->conflict_allocno_array_size)
424 #define ALLOCNO_CONFLICT_ALLOCNOS_NUM(A) \
425 ((A)->conflict_allocnos_num)
426 #define ALLOCNO_CONFLICT_HARD_REGS(A) ((A)->conflict_hard_regs)
427 #define ALLOCNO_TOTAL_CONFLICT_HARD_REGS(A) ((A)->total_conflict_hard_regs)
428 #define ALLOCNO_NREFS(A) ((A)->nrefs)
429 #define ALLOCNO_FREQ(A) ((A)->freq)
430 #define ALLOCNO_HARD_REGNO(A) ((A)->hard_regno)
431 #define ALLOCNO_CALL_FREQ(A) ((A)->call_freq)
432 #define ALLOCNO_CALLS_CROSSED_NUM(A) ((A)->calls_crossed_num)
433 #define ALLOCNO_MEM_OPTIMIZED_DEST(A) ((A)->mem_optimized_dest)
434 #define ALLOCNO_MEM_OPTIMIZED_DEST_P(A) ((A)->mem_optimized_dest_p)
435 #define ALLOCNO_SOMEWHERE_RENAMED_P(A) ((A)->somewhere_renamed_p)
436 #define ALLOCNO_CHILD_RENAMED_P(A) ((A)->child_renamed_p)
437 #define ALLOCNO_DONT_REASSIGN_P(A) ((A)->dont_reassign_p)
438 #ifdef STACK_REGS
439 #define ALLOCNO_NO_STACK_REG_P(A) ((A)->no_stack_reg_p)
440 #define ALLOCNO_TOTAL_NO_STACK_REG_P(A) ((A)->total_no_stack_reg_p)
441 #endif
442 #define ALLOCNO_BAD_SPILL_P(A) ((A)->bad_spill_p)
443 #define ALLOCNO_IN_GRAPH_P(A) ((A)->in_graph_p)
444 #define ALLOCNO_ASSIGNED_P(A) ((A)->assigned_p)
445 #define ALLOCNO_MAY_BE_SPILLED_P(A) ((A)->may_be_spilled_p)
446 #define ALLOCNO_SPLAY_REMOVED_P(A) ((A)->splay_removed_p)
447 #define ALLOCNO_CONFLICT_VEC_P(A) ((A)->conflict_vec_p)
448 #define ALLOCNO_MODE(A) ((A)->mode)
449 #define ALLOCNO_COPIES(A) ((A)->allocno_copies)
450 #define ALLOCNO_HARD_REG_COSTS(A) ((A)->hard_reg_costs)
451 #define ALLOCNO_UPDATED_HARD_REG_COSTS(A) ((A)->updated_hard_reg_costs)
452 #define ALLOCNO_CONFLICT_HARD_REG_COSTS(A) \
453 ((A)->conflict_hard_reg_costs)
454 #define ALLOCNO_UPDATED_CONFLICT_HARD_REG_COSTS(A) \
455 ((A)->updated_conflict_hard_reg_costs)
456 #define ALLOCNO_LEFT_CONFLICTS_NUM(A) ((A)->left_conflicts_num)
457 #define ALLOCNO_COVER_CLASS(A) ((A)->cover_class)
458 #define ALLOCNO_COVER_CLASS_COST(A) ((A)->cover_class_cost)
459 #define ALLOCNO_UPDATED_COVER_CLASS_COST(A) ((A)->updated_cover_class_cost)
460 #define ALLOCNO_MEMORY_COST(A) ((A)->memory_cost)
461 #define ALLOCNO_UPDATED_MEMORY_COST(A) ((A)->updated_memory_cost)
462 #define ALLOCNO_EXCESS_PRESSURE_POINTS_NUM(A) ((A)->excess_pressure_points_num)
463 #define ALLOCNO_AVAILABLE_REGS_NUM(A) ((A)->available_regs_num)
464 #define ALLOCNO_NEXT_BUCKET_ALLOCNO(A) ((A)->next_bucket_allocno)
465 #define ALLOCNO_PREV_BUCKET_ALLOCNO(A) ((A)->prev_bucket_allocno)
466 #define ALLOCNO_TEMP(A) ((A)->temp)
467 #define ALLOCNO_FIRST_COALESCED_ALLOCNO(A) ((A)->first_coalesced_allocno)
468 #define ALLOCNO_NEXT_COALESCED_ALLOCNO(A) ((A)->next_coalesced_allocno)
469 #define ALLOCNO_LIVE_RANGES(A) ((A)->live_ranges)
470 #define ALLOCNO_MIN(A) ((A)->min)
471 #define ALLOCNO_MAX(A) ((A)->max)
472 #define ALLOCNO_CONFLICT_ID(A) ((A)->conflict_id)
473
474 /* Map regno -> allocnos with given regno (see comments for
475 allocno member `next_regno_allocno'). */
476 extern ira_allocno_t *ira_regno_allocno_map;
477
478 /* Array of references to all allocnos. The order number of the
479 allocno corresponds to the index in the array. Removed allocnos
480 have NULL element value. */
481 extern ira_allocno_t *ira_allocnos;
482
483 /* Sizes of the previous array. */
484 extern int ira_allocnos_num;
485
486 /* Map conflict id -> allocno with given conflict id (see comments for
487 allocno member `conflict_id'). */
488 extern ira_allocno_t *ira_conflict_id_allocno_map;
489
490 /* The following structure represents a copy of two allocnos. The
491 copies represent move insns or potential move insns usually because
492 of two operand insn constraints. To remove register shuffle, we
493 also create copies between allocno which is output of an insn and
494 allocno becoming dead in the insn. */
495 struct ira_allocno_copy
496 {
497 /* The unique order number of the copy node starting with 0. */
498 int num;
499 /* Allocnos connected by the copy. The first allocno should have
500 smaller order number than the second one. */
501 ira_allocno_t first, second;
502 /* Execution frequency of the copy. */
503 int freq;
504 bool constraint_p;
505 /* It is a move insn which is an origin of the copy. The member
506 value for the copy representing two operand insn constraints or
507 for the copy created to remove register shuffle is NULL. In last
508 case the copy frequency is smaller than the corresponding insn
509 execution frequency. */
510 rtx insn;
511 /* All copies with the same allocno as FIRST are linked by the two
512 following members. */
513 ira_copy_t prev_first_allocno_copy, next_first_allocno_copy;
514 /* All copies with the same allocno as SECOND are linked by the two
515 following members. */
516 ira_copy_t prev_second_allocno_copy, next_second_allocno_copy;
517 /* Region from which given copy is originated. */
518 ira_loop_tree_node_t loop_tree_node;
519 };
520
521 /* Array of references to all copies. The order number of the copy
522 corresponds to the index in the array. Removed copies have NULL
523 element value. */
524 extern ira_copy_t *ira_copies;
525
526 /* Size of the previous array. */
527 extern int ira_copies_num;
528
529 /* The following structure describes a stack slot used for spilled
530 pseudo-registers. */
531 struct ira_spilled_reg_stack_slot
532 {
533 /* pseudo-registers assigned to the stack slot. */
534 regset_head spilled_regs;
535 /* RTL representation of the stack slot. */
536 rtx mem;
537 /* Size of the stack slot. */
538 unsigned int width;
539 };
540
541 /* The number of elements in the following array. */
542 extern int ira_spilled_reg_stack_slots_num;
543
544 /* The following array contains info about spilled pseudo-registers
545 stack slots used in current function so far. */
546 extern struct ira_spilled_reg_stack_slot *ira_spilled_reg_stack_slots;
547
548 /* Correspondingly overall cost of the allocation, cost of the
549 allocnos assigned to hard-registers, cost of the allocnos assigned
550 to memory, cost of loads, stores and register move insns generated
551 for pseudo-register live range splitting (see ira-emit.c). */
552 extern int ira_overall_cost;
553 extern int ira_reg_cost, ira_mem_cost;
554 extern int ira_load_cost, ira_store_cost, ira_shuffle_cost;
555 extern int ira_move_loops_num, ira_additional_jumps_num;
556
557 /* Map: hard register number -> cover class it belongs to. If the
558 corresponding class is NO_REGS, the hard register is not available
559 for allocation. */
560 extern enum reg_class ira_hard_regno_cover_class[FIRST_PSEUDO_REGISTER];
561
562 /* Map: register class x machine mode -> number of hard registers of
563 given class needed to store value of given mode. If the number for
564 some hard-registers of the register class is different, the size
565 will be negative. */
566 extern int ira_reg_class_nregs[N_REG_CLASSES][MAX_MACHINE_MODE];
567
568 /* Maximal value of the previous array elements. */
569 extern int ira_max_nregs;
570
571 /* The number of bits in each element of array used to implement a bit
572 vector of allocnos and what type that element has. We use the
573 largest integer format on the host machine. */
574 #define IRA_INT_BITS HOST_BITS_PER_WIDE_INT
575 #define IRA_INT_TYPE HOST_WIDE_INT
576
577 /* Set, clear or test bit number I in R, a bit vector of elements with
578 minimal index and maximal index equal correspondingly to MIN and
579 MAX. */
580 #if defined ENABLE_IRA_CHECKING && (GCC_VERSION >= 2007)
581
582 #define SET_ALLOCNO_SET_BIT(R, I, MIN, MAX) __extension__ \
583 (({ int _min = (MIN), _max = (MAX), _i = (I); \
584 if (_i < _min || _i > _max) \
585 { \
586 fprintf (stderr, \
587 "\n%s: %d: error in %s: %d not in range [%d,%d]\n", \
588 __FILE__, __LINE__, __FUNCTION__, _i, _min, _max); \
589 gcc_unreachable (); \
590 } \
591 ((R)[(unsigned) (_i - _min) / IRA_INT_BITS] \
592 |= ((IRA_INT_TYPE) 1 << ((unsigned) (_i - _min) % IRA_INT_BITS))); }))
593
594
595 #define CLEAR_ALLOCNO_SET_BIT(R, I, MIN, MAX) __extension__ \
596 (({ int _min = (MIN), _max = (MAX), _i = (I); \
597 if (_i < _min || _i > _max) \
598 { \
599 fprintf (stderr, \
600 "\n%s: %d: error in %s: %d not in range [%d,%d]\n", \
601 __FILE__, __LINE__, __FUNCTION__, _i, _min, _max); \
602 gcc_unreachable (); \
603 } \
604 ((R)[(unsigned) (_i - _min) / IRA_INT_BITS] \
605 &= ~((IRA_INT_TYPE) 1 << ((unsigned) (_i - _min) % IRA_INT_BITS))); }))
606
607 #define TEST_ALLOCNO_SET_BIT(R, I, MIN, MAX) __extension__ \
608 (({ int _min = (MIN), _max = (MAX), _i = (I); \
609 if (_i < _min || _i > _max) \
610 { \
611 fprintf (stderr, \
612 "\n%s: %d: error in %s: %d not in range [%d,%d]\n", \
613 __FILE__, __LINE__, __FUNCTION__, _i, _min, _max); \
614 gcc_unreachable (); \
615 } \
616 ((R)[(unsigned) (_i - _min) / IRA_INT_BITS] \
617 & ((IRA_INT_TYPE) 1 << ((unsigned) (_i - _min) % IRA_INT_BITS))); }))
618
619 #else
620
621 #define SET_ALLOCNO_SET_BIT(R, I, MIN, MAX) \
622 ((R)[(unsigned) ((I) - (MIN)) / IRA_INT_BITS] \
623 |= ((IRA_INT_TYPE) 1 << ((unsigned) ((I) - (MIN)) % IRA_INT_BITS)))
624
625 #define CLEAR_ALLOCNO_SET_BIT(R, I, MIN, MAX) \
626 ((R)[(unsigned) ((I) - (MIN)) / IRA_INT_BITS] \
627 &= ~((IRA_INT_TYPE) 1 << ((unsigned) ((I) - (MIN)) % IRA_INT_BITS)))
628
629 #define TEST_ALLOCNO_SET_BIT(R, I, MIN, MAX) \
630 ((R)[(unsigned) ((I) - (MIN)) / IRA_INT_BITS] \
631 & ((IRA_INT_TYPE) 1 << ((unsigned) ((I) - (MIN)) % IRA_INT_BITS)))
632
633 #endif
634
635 /* The iterator for allocno set implemented ed as allocno bit
636 vector. */
637 typedef struct {
638
639 /* Array containing the allocno bit vector. */
640 IRA_INT_TYPE *vec;
641
642 /* The number of the current element in the vector. */
643 unsigned int word_num;
644
645 /* The number of bits in the bit vector. */
646 unsigned int nel;
647
648 /* The current bit index of the bit vector. */
649 unsigned int bit_num;
650
651 /* Index corresponding to the 1st bit of the bit vector. */
652 int start_val;
653
654 /* The word of the bit vector currently visited. */
655 unsigned IRA_INT_TYPE word;
656 } ira_allocno_set_iterator;
657
658 /* Initialize the iterator I for allocnos bit vector VEC containing
659 minimal and maximal values MIN and MAX. */
660 static inline void
661 ira_allocno_set_iter_init (ira_allocno_set_iterator *i,
662 IRA_INT_TYPE *vec, int min, int max)
663 {
664 i->vec = vec;
665 i->word_num = 0;
666 i->nel = max < min ? 0 : max - min + 1;
667 i->start_val = min;
668 i->bit_num = 0;
669 i->word = i->nel == 0 ? 0 : vec[0];
670 }
671
672 /* Return TRUE if we have more allocnos to visit, in which case *N is
673 set to the allocno number to be visited. Otherwise, return
674 FALSE. */
675 static inline bool
676 ira_allocno_set_iter_cond (ira_allocno_set_iterator *i, int *n)
677 {
678 /* Skip words that are zeros. */
679 for (; i->word == 0; i->word = i->vec[i->word_num])
680 {
681 i->word_num++;
682 i->bit_num = i->word_num * IRA_INT_BITS;
683
684 /* If we have reached the end, break. */
685 if (i->bit_num >= i->nel)
686 return false;
687 }
688
689 /* Skip bits that are zero. */
690 for (; (i->word & 1) == 0; i->word >>= 1)
691 i->bit_num++;
692
693 *n = (int) i->bit_num + i->start_val;
694
695 return true;
696 }
697
698 /* Advance to the next allocno in the set. */
699 static inline void
700 ira_allocno_set_iter_next (ira_allocno_set_iterator *i)
701 {
702 i->word >>= 1;
703 i->bit_num++;
704 }
705
706 /* Loop over all elements of allocno set given by bit vector VEC and
707 their minimal and maximal values MIN and MAX. In each iteration, N
708 is set to the number of next allocno. ITER is an instance of
709 ira_allocno_set_iterator used to iterate the allocnos in the set. */
710 #define FOR_EACH_ALLOCNO_IN_SET(VEC, MIN, MAX, N, ITER) \
711 for (ira_allocno_set_iter_init (&(ITER), (VEC), (MIN), (MAX)); \
712 ira_allocno_set_iter_cond (&(ITER), &(N)); \
713 ira_allocno_set_iter_next (&(ITER)))
714
715 /* ira.c: */
716
717 /* Map: hard regs X modes -> set of hard registers for storing value
718 of given mode starting with given hard register. */
719 extern HARD_REG_SET ira_reg_mode_hard_regset
720 [FIRST_PSEUDO_REGISTER][NUM_MACHINE_MODES];
721
722 /* Arrays analogous to macros MEMORY_MOVE_COST and
723 REGISTER_MOVE_COST. */
724 extern short ira_memory_move_cost[MAX_MACHINE_MODE][N_REG_CLASSES][2];
725 extern move_table *ira_register_move_cost[MAX_MACHINE_MODE];
726
727 /* Similar to may_move_in_cost but it is calculated in IRA instead of
728 regclass. Another difference we take only available hard registers
729 into account to figure out that one register class is a subset of
730 the another one. */
731 extern move_table *ira_may_move_in_cost[MAX_MACHINE_MODE];
732
733 /* Similar to may_move_out_cost but it is calculated in IRA instead of
734 regclass. Another difference we take only available hard registers
735 into account to figure out that one register class is a subset of
736 the another one. */
737 extern move_table *ira_may_move_out_cost[MAX_MACHINE_MODE];
738
739 /* Register class subset relation: TRUE if the first class is a subset
740 of the second one considering only hard registers available for the
741 allocation. */
742 extern int ira_class_subset_p[N_REG_CLASSES][N_REG_CLASSES];
743
744 /* Array of number of hard registers of given class which are
745 available for the allocation. The order is defined by the
746 allocation order. */
747 extern short ira_class_hard_regs[N_REG_CLASSES][FIRST_PSEUDO_REGISTER];
748
749 /* The number of elements of the above array for given register
750 class. */
751 extern int ira_class_hard_regs_num[N_REG_CLASSES];
752
753 /* Index (in ira_class_hard_regs) for given register class and hard
754 register (in general case a hard register can belong to several
755 register classes). The index is negative for hard registers
756 unavailable for the allocation. */
757 extern short ira_class_hard_reg_index[N_REG_CLASSES][FIRST_PSEUDO_REGISTER];
758
759 /* Function specific hard registers can not be used for the register
760 allocation. */
761 extern HARD_REG_SET ira_no_alloc_regs;
762
763 /* Number of given class hard registers available for the register
764 allocation for given classes. */
765 extern int ira_available_class_regs[N_REG_CLASSES];
766
767 /* Array whose values are hard regset of hard registers available for
768 the allocation of given register class whose HARD_REGNO_MODE_OK
769 values for given mode are zero. */
770 extern HARD_REG_SET prohibited_class_mode_regs
771 [N_REG_CLASSES][NUM_MACHINE_MODES];
772
773 /* Array whose values are hard regset of hard registers for which
774 move of the hard register in given mode into itself is
775 prohibited. */
776 extern HARD_REG_SET ira_prohibited_mode_move_regs[NUM_MACHINE_MODES];
777
778 /* Number of cover classes. Cover classes is non-intersected register
779 classes containing all hard-registers available for the
780 allocation. */
781 extern int ira_reg_class_cover_size;
782
783 /* The array containing cover classes (see also comments for macro
784 IRA_COVER_CLASSES). Only first IRA_REG_CLASS_COVER_SIZE elements are
785 used for this. */
786 extern enum reg_class ira_reg_class_cover[N_REG_CLASSES];
787
788 /* The value is number of elements in the subsequent array. */
789 extern int ira_important_classes_num;
790
791 /* The array containing non-empty classes (including non-empty cover
792 classes) which are subclasses of cover classes. Such classes is
793 important for calculation of the hard register usage costs. */
794 extern enum reg_class ira_important_classes[N_REG_CLASSES];
795
796 /* The array containing indexes of important classes in the previous
797 array. The array elements are defined only for important
798 classes. */
799 extern int ira_important_class_nums[N_REG_CLASSES];
800
801 /* Map of all register classes to corresponding cover class containing
802 the given class. If given class is not a subset of a cover class,
803 we translate it into the cheapest cover class. */
804 extern enum reg_class ira_class_translate[N_REG_CLASSES];
805
806 /* The biggest important class inside of intersection of the two
807 classes (that is calculated taking only hard registers available
808 for allocation into account). If the both classes contain no hard
809 registers available for allocation, the value is calculated with
810 taking all hard-registers including fixed ones into account. */
811 extern enum reg_class ira_reg_class_intersect[N_REG_CLASSES][N_REG_CLASSES];
812
813 /* The biggest important class inside of union of the two classes
814 (that is calculated taking only hard registers available for
815 allocation into account). If the both classes contain no hard
816 registers available for allocation, the value is calculated with
817 taking all hard-registers including fixed ones into account. In
818 other words, the value is the corresponding reg_class_subunion
819 value. */
820 extern enum reg_class ira_reg_class_union[N_REG_CLASSES][N_REG_CLASSES];
821
822 extern void *ira_allocate (size_t);
823 extern void *ira_reallocate (void *, size_t);
824 extern void ira_free (void *addr);
825 extern bitmap ira_allocate_bitmap (void);
826 extern void ira_free_bitmap (bitmap);
827 extern void ira_print_disposition (FILE *);
828 extern void ira_debug_disposition (void);
829 extern void ira_debug_class_cover (void);
830 extern void ira_init_register_move_cost (enum machine_mode);
831
832 /* The length of the two following arrays. */
833 extern int ira_reg_equiv_len;
834
835 /* The element value is TRUE if the corresponding regno value is
836 invariant. */
837 extern bool *ira_reg_equiv_invariant_p;
838
839 /* The element value is equiv constant of given pseudo-register or
840 NULL_RTX. */
841 extern rtx *ira_reg_equiv_const;
842
843 /* ira-build.c */
844
845 /* The current loop tree node and its regno allocno map. */
846 extern ira_loop_tree_node_t ira_curr_loop_tree_node;
847 extern ira_allocno_t *ira_curr_regno_allocno_map;
848
849 extern void ira_debug_copy (ira_copy_t);
850 extern void ira_debug_copies (void);
851 extern void ira_debug_allocno_copies (ira_allocno_t);
852
853 extern void ira_traverse_loop_tree (bool, ira_loop_tree_node_t,
854 void (*) (ira_loop_tree_node_t),
855 void (*) (ira_loop_tree_node_t));
856 extern ira_allocno_t ira_create_allocno (int, bool, ira_loop_tree_node_t);
857 extern void ira_set_allocno_cover_class (ira_allocno_t, enum reg_class);
858 extern bool ira_conflict_vector_profitable_p (ira_allocno_t, int);
859 extern void ira_allocate_allocno_conflict_vec (ira_allocno_t, int);
860 extern void ira_allocate_allocno_conflicts (ira_allocno_t, int);
861 extern void ira_add_allocno_conflict (ira_allocno_t, ira_allocno_t);
862 extern void ira_print_expanded_allocno (ira_allocno_t);
863 extern allocno_live_range_t ira_create_allocno_live_range
864 (ira_allocno_t, int, int, allocno_live_range_t);
865 extern allocno_live_range_t ira_copy_allocno_live_range_list
866 (allocno_live_range_t);
867 extern allocno_live_range_t ira_merge_allocno_live_ranges
868 (allocno_live_range_t, allocno_live_range_t);
869 extern bool ira_allocno_live_ranges_intersect_p (allocno_live_range_t,
870 allocno_live_range_t);
871 extern void ira_finish_allocno_live_range (allocno_live_range_t);
872 extern void ira_finish_allocno_live_range_list (allocno_live_range_t);
873 extern void ira_free_allocno_updated_costs (ira_allocno_t);
874 extern ira_copy_t ira_create_copy (ira_allocno_t, ira_allocno_t,
875 int, bool, rtx, ira_loop_tree_node_t);
876 extern void ira_add_allocno_copy_to_list (ira_copy_t);
877 extern void ira_swap_allocno_copy_ends_if_necessary (ira_copy_t);
878 extern void ira_remove_allocno_copy_from_list (ira_copy_t);
879 extern ira_copy_t ira_add_allocno_copy (ira_allocno_t, ira_allocno_t, int,
880 bool, rtx, ira_loop_tree_node_t);
881
882 extern int *ira_allocate_cost_vector (enum reg_class);
883 extern void ira_free_cost_vector (int *, enum reg_class);
884
885 extern void ira_flattening (int, int);
886 extern bool ira_build (bool);
887 extern void ira_destroy (void);
888
889 /* ira-costs.c */
890 extern void ira_init_costs_once (void);
891 extern void ira_init_costs (void);
892 extern void ira_finish_costs_once (void);
893 extern void ira_costs (void);
894 extern void ira_tune_allocno_costs_and_cover_classes (void);
895
896 /* ira-lives.c */
897
898 extern void ira_rebuild_start_finish_chains (void);
899 extern void ira_print_live_range_list (FILE *, allocno_live_range_t);
900 extern void ira_debug_live_range_list (allocno_live_range_t);
901 extern void ira_debug_allocno_live_ranges (ira_allocno_t);
902 extern void ira_debug_live_ranges (void);
903 extern void ira_create_allocno_live_ranges (void);
904 extern void ira_compress_allocno_live_ranges (void);
905 extern void ira_finish_allocno_live_ranges (void);
906
907 /* ira-conflicts.c */
908 extern void ira_debug_conflicts (bool);
909 extern void ira_build_conflicts (void);
910
911 /* ira-color.c */
912 extern int ira_loop_edge_freq (ira_loop_tree_node_t, int, bool);
913 extern void ira_reassign_conflict_allocnos (int);
914 extern void ira_initiate_assign (void);
915 extern void ira_finish_assign (void);
916 extern void ira_color (void);
917
918 /* ira-emit.c */
919 extern void ira_emit (bool);
920
921 \f
922
923 /* The iterator for all allocnos. */
924 typedef struct {
925 /* The number of the current element in IRA_ALLOCNOS. */
926 int n;
927 } ira_allocno_iterator;
928
929 /* Initialize the iterator I. */
930 static inline void
931 ira_allocno_iter_init (ira_allocno_iterator *i)
932 {
933 i->n = 0;
934 }
935
936 /* Return TRUE if we have more allocnos to visit, in which case *A is
937 set to the allocno to be visited. Otherwise, return FALSE. */
938 static inline bool
939 ira_allocno_iter_cond (ira_allocno_iterator *i, ira_allocno_t *a)
940 {
941 int n;
942
943 for (n = i->n; n < ira_allocnos_num; n++)
944 if (ira_allocnos[n] != NULL)
945 {
946 *a = ira_allocnos[n];
947 i->n = n + 1;
948 return true;
949 }
950 return false;
951 }
952
953 /* Loop over all allocnos. In each iteration, A is set to the next
954 allocno. ITER is an instance of ira_allocno_iterator used to iterate
955 the allocnos. */
956 #define FOR_EACH_ALLOCNO(A, ITER) \
957 for (ira_allocno_iter_init (&(ITER)); \
958 ira_allocno_iter_cond (&(ITER), &(A));)
959
960
961 \f
962
963 /* The iterator for copies. */
964 typedef struct {
965 /* The number of the current element in IRA_COPIES. */
966 int n;
967 } ira_copy_iterator;
968
969 /* Initialize the iterator I. */
970 static inline void
971 ira_copy_iter_init (ira_copy_iterator *i)
972 {
973 i->n = 0;
974 }
975
976 /* Return TRUE if we have more copies to visit, in which case *CP is
977 set to the copy to be visited. Otherwise, return FALSE. */
978 static inline bool
979 ira_copy_iter_cond (ira_copy_iterator *i, ira_copy_t *cp)
980 {
981 int n;
982
983 for (n = i->n; n < ira_copies_num; n++)
984 if (ira_copies[n] != NULL)
985 {
986 *cp = ira_copies[n];
987 i->n = n + 1;
988 return true;
989 }
990 return false;
991 }
992
993 /* Loop over all copies. In each iteration, C is set to the next
994 copy. ITER is an instance of ira_copy_iterator used to iterate
995 the copies. */
996 #define FOR_EACH_COPY(C, ITER) \
997 for (ira_copy_iter_init (&(ITER)); \
998 ira_copy_iter_cond (&(ITER), &(C));)
999
1000
1001 \f
1002
1003 /* The iterator for allocno conflicts. */
1004 typedef struct {
1005
1006 /* TRUE if the conflicts are represented by vector of allocnos. */
1007 bool allocno_conflict_vec_p;
1008
1009 /* The conflict vector or conflict bit vector. */
1010 void *vec;
1011
1012 /* The number of the current element in the vector (of type
1013 ira_allocno_t or IRA_INT_TYPE). */
1014 unsigned int word_num;
1015
1016 /* The bit vector size. It is defined only if
1017 ALLOCNO_CONFLICT_VEC_P is FALSE. */
1018 unsigned int size;
1019
1020 /* The current bit index of bit vector. It is defined only if
1021 ALLOCNO_CONFLICT_VEC_P is FALSE. */
1022 unsigned int bit_num;
1023
1024 /* Allocno conflict id corresponding to the 1st bit of the bit
1025 vector. It is defined only if ALLOCNO_CONFLICT_VEC_P is
1026 FALSE. */
1027 int base_conflict_id;
1028
1029 /* The word of bit vector currently visited. It is defined only if
1030 ALLOCNO_CONFLICT_VEC_P is FALSE. */
1031 unsigned IRA_INT_TYPE word;
1032 } ira_allocno_conflict_iterator;
1033
1034 /* Initialize the iterator I with ALLOCNO conflicts. */
1035 static inline void
1036 ira_allocno_conflict_iter_init (ira_allocno_conflict_iterator *i,
1037 ira_allocno_t allocno)
1038 {
1039 i->allocno_conflict_vec_p = ALLOCNO_CONFLICT_VEC_P (allocno);
1040 i->vec = ALLOCNO_CONFLICT_ALLOCNO_ARRAY (allocno);
1041 i->word_num = 0;
1042 if (i->allocno_conflict_vec_p)
1043 i->size = i->bit_num = i->base_conflict_id = i->word = 0;
1044 else
1045 {
1046 if (ALLOCNO_MIN (allocno) > ALLOCNO_MAX (allocno))
1047 i->size = 0;
1048 else
1049 i->size = ((ALLOCNO_MAX (allocno) - ALLOCNO_MIN (allocno)
1050 + IRA_INT_BITS)
1051 / IRA_INT_BITS) * sizeof (IRA_INT_TYPE);
1052 i->bit_num = 0;
1053 i->base_conflict_id = ALLOCNO_MIN (allocno);
1054 i->word = (i->size == 0 ? 0 : ((IRA_INT_TYPE *) i->vec)[0]);
1055 }
1056 }
1057
1058 /* Return TRUE if we have more conflicting allocnos to visit, in which
1059 case *A is set to the allocno to be visited. Otherwise, return
1060 FALSE. */
1061 static inline bool
1062 ira_allocno_conflict_iter_cond (ira_allocno_conflict_iterator *i,
1063 ira_allocno_t *a)
1064 {
1065 ira_allocno_t conflict_allocno;
1066
1067 if (i->allocno_conflict_vec_p)
1068 {
1069 conflict_allocno = ((ira_allocno_t *) i->vec)[i->word_num];
1070 if (conflict_allocno == NULL)
1071 return false;
1072 *a = conflict_allocno;
1073 return true;
1074 }
1075 else
1076 {
1077 /* Skip words that are zeros. */
1078 for (; i->word == 0; i->word = ((IRA_INT_TYPE *) i->vec)[i->word_num])
1079 {
1080 i->word_num++;
1081
1082 /* If we have reached the end, break. */
1083 if (i->word_num * sizeof (IRA_INT_TYPE) >= i->size)
1084 return false;
1085
1086 i->bit_num = i->word_num * IRA_INT_BITS;
1087 }
1088
1089 /* Skip bits that are zero. */
1090 for (; (i->word & 1) == 0; i->word >>= 1)
1091 i->bit_num++;
1092
1093 *a = ira_conflict_id_allocno_map[i->bit_num + i->base_conflict_id];
1094
1095 return true;
1096 }
1097 }
1098
1099 /* Advance to the next conflicting allocno. */
1100 static inline void
1101 ira_allocno_conflict_iter_next (ira_allocno_conflict_iterator *i)
1102 {
1103 if (i->allocno_conflict_vec_p)
1104 i->word_num++;
1105 else
1106 {
1107 i->word >>= 1;
1108 i->bit_num++;
1109 }
1110 }
1111
1112 /* Loop over all allocnos conflicting with ALLOCNO. In each
1113 iteration, A is set to the next conflicting allocno. ITER is an
1114 instance of ira_allocno_conflict_iterator used to iterate the
1115 conflicts. */
1116 #define FOR_EACH_ALLOCNO_CONFLICT(ALLOCNO, A, ITER) \
1117 for (ira_allocno_conflict_iter_init (&(ITER), (ALLOCNO)); \
1118 ira_allocno_conflict_iter_cond (&(ITER), &(A)); \
1119 ira_allocno_conflict_iter_next (&(ITER)))
1120
1121 \f
1122
1123 /* The function returns TRUE if hard registers starting with
1124 HARD_REGNO and containing value of MODE are not in set
1125 HARD_REGSET. */
1126 static inline bool
1127 ira_hard_reg_not_in_set_p (int hard_regno, enum machine_mode mode,
1128 HARD_REG_SET hard_regset)
1129 {
1130 int i;
1131
1132 ira_assert (hard_regno >= 0);
1133 for (i = hard_regno_nregs[hard_regno][mode] - 1; i >= 0; i--)
1134 if (TEST_HARD_REG_BIT (hard_regset, hard_regno + i))
1135 return false;
1136 return true;
1137 }
1138
1139 \f
1140
1141 /* To save memory we use a lazy approach for allocation and
1142 initialization of the cost vectors. We do this only when it is
1143 really necessary. */
1144
1145 /* Allocate cost vector *VEC for hard registers of COVER_CLASS and
1146 initialize the elements by VAL if it is necessary */
1147 static inline void
1148 ira_allocate_and_set_costs (int **vec, enum reg_class cover_class, int val)
1149 {
1150 int i, *reg_costs;
1151 int len;
1152
1153 if (*vec != NULL)
1154 return;
1155 *vec = reg_costs = ira_allocate_cost_vector (cover_class);
1156 len = ira_class_hard_regs_num[cover_class];
1157 for (i = 0; i < len; i++)
1158 reg_costs[i] = val;
1159 }
1160
1161 /* Allocate cost vector *VEC for hard registers of COVER_CLASS and
1162 copy values of vector SRC into the vector if it is necessary */
1163 static inline void
1164 ira_allocate_and_copy_costs (int **vec, enum reg_class cover_class, int *src)
1165 {
1166 int len;
1167
1168 if (*vec != NULL || src == NULL)
1169 return;
1170 *vec = ira_allocate_cost_vector (cover_class);
1171 len = ira_class_hard_regs_num[cover_class];
1172 memcpy (*vec, src, sizeof (int) * len);
1173 }
1174
1175 /* Allocate cost vector *VEC for hard registers of COVER_CLASS and
1176 add values of vector SRC into the vector if it is necessary */
1177 static inline void
1178 ira_allocate_and_accumulate_costs (int **vec, enum reg_class cover_class,
1179 int *src)
1180 {
1181 int i, len;
1182
1183 if (src == NULL)
1184 return;
1185 len = ira_class_hard_regs_num[cover_class];
1186 if (*vec == NULL)
1187 {
1188 *vec = ira_allocate_cost_vector (cover_class);
1189 memset (*vec, 0, sizeof (int) * len);
1190 }
1191 for (i = 0; i < len; i++)
1192 (*vec)[i] += src[i];
1193 }
1194
1195 /* Allocate cost vector *VEC for hard registers of COVER_CLASS and
1196 copy values of vector SRC into the vector or initialize it by VAL
1197 (if SRC is null). */
1198 static inline void
1199 ira_allocate_and_set_or_copy_costs (int **vec, enum reg_class cover_class,
1200 int val, int *src)
1201 {
1202 int i, *reg_costs;
1203 int len;
1204
1205 if (*vec != NULL)
1206 return;
1207 *vec = reg_costs = ira_allocate_cost_vector (cover_class);
1208 len = ira_class_hard_regs_num[cover_class];
1209 if (src != NULL)
1210 memcpy (reg_costs, src, sizeof (int) * len);
1211 else
1212 {
1213 for (i = 0; i < len; i++)
1214 reg_costs[i] = val;
1215 }
1216 }