]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/ira-lives.c
Remove trailing white spaces.
[thirdparty/gcc.git] / gcc / ira-lives.c
1 /* IRA processing allocno lives to build allocno live ranges.
2 Copyright (C) 2006, 2007, 2008, 2009
3 Free Software Foundation, Inc.
4 Contributed by Vladimir Makarov <vmakarov@redhat.com>.
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
12
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
21
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "tm.h"
26 #include "regs.h"
27 #include "rtl.h"
28 #include "tm_p.h"
29 #include "target.h"
30 #include "flags.h"
31 #include "except.h"
32 #include "hard-reg-set.h"
33 #include "basic-block.h"
34 #include "insn-config.h"
35 #include "recog.h"
36 #include "toplev.h"
37 #include "params.h"
38 #include "df.h"
39 #include "sparseset.h"
40 #include "ira-int.h"
41
42 /* The code in this file is similar to one in global but the code
43 works on the allocno basis and creates live ranges instead of
44 pseudo-register conflicts. */
45
46 /* Program points are enumerated by numbers from range
47 0..IRA_MAX_POINT-1. There are approximately two times more program
48 points than insns. Program points are places in the program where
49 liveness info can be changed. In most general case (there are more
50 complicated cases too) some program points correspond to places
51 where input operand dies and other ones correspond to places where
52 output operands are born. */
53 int ira_max_point;
54
55 /* Arrays of size IRA_MAX_POINT mapping a program point to the allocno
56 live ranges with given start/finish point. */
57 allocno_live_range_t *ira_start_point_ranges, *ira_finish_point_ranges;
58
59 /* Number of the current program point. */
60 static int curr_point;
61
62 /* Point where register pressure excess started or -1 if there is no
63 register pressure excess. Excess pressure for a register class at
64 some point means that there are more allocnos of given register
65 class living at the point than number of hard-registers of the
66 class available for the allocation. It is defined only for cover
67 classes. */
68 static int high_pressure_start_point[N_REG_CLASSES];
69
70 /* Allocnos live at current point in the scan. */
71 static sparseset allocnos_live;
72
73 /* Set of hard regs (except eliminable ones) currently live. */
74 static HARD_REG_SET hard_regs_live;
75
76 /* The loop tree node corresponding to the current basic block. */
77 static ira_loop_tree_node_t curr_bb_node;
78
79 /* The number of the last processed call. */
80 static int last_call_num;
81 /* The number of last call at which given allocno was saved. */
82 static int *allocno_saved_at_call;
83
84 /* The function processing birth of register REGNO. It updates living
85 hard regs and conflict hard regs for living allocnos or starts a
86 new live range for the allocno corresponding to REGNO if it is
87 necessary. */
88 static void
89 make_regno_born (int regno)
90 {
91 unsigned int i;
92 ira_allocno_t a;
93 allocno_live_range_t p;
94
95 if (regno < FIRST_PSEUDO_REGISTER)
96 {
97 SET_HARD_REG_BIT (hard_regs_live, regno);
98 EXECUTE_IF_SET_IN_SPARSESET (allocnos_live, i)
99 {
100 SET_HARD_REG_BIT (ALLOCNO_CONFLICT_HARD_REGS (ira_allocnos[i]),
101 regno);
102 SET_HARD_REG_BIT (ALLOCNO_TOTAL_CONFLICT_HARD_REGS (ira_allocnos[i]),
103 regno);
104 }
105 return;
106 }
107 a = ira_curr_regno_allocno_map[regno];
108 if (a == NULL)
109 return;
110 if ((p = ALLOCNO_LIVE_RANGES (a)) == NULL
111 || (p->finish != curr_point && p->finish + 1 != curr_point))
112 ALLOCNO_LIVE_RANGES (a)
113 = ira_create_allocno_live_range (a, curr_point, -1,
114 ALLOCNO_LIVE_RANGES (a));
115 }
116
117 /* Update ALLOCNO_EXCESS_PRESSURE_POINTS_NUM for allocno A. */
118 static void
119 update_allocno_pressure_excess_length (ira_allocno_t a)
120 {
121 int start, i;
122 enum reg_class cover_class, cl;
123 allocno_live_range_t p;
124
125 cover_class = ALLOCNO_COVER_CLASS (a);
126 for (i = 0;
127 (cl = ira_reg_class_super_classes[cover_class][i]) != LIM_REG_CLASSES;
128 i++)
129 {
130 if (high_pressure_start_point[cl] < 0)
131 continue;
132 p = ALLOCNO_LIVE_RANGES (a);
133 ira_assert (p != NULL);
134 start = (high_pressure_start_point[cl] > p->start
135 ? high_pressure_start_point[cl] : p->start);
136 ALLOCNO_EXCESS_PRESSURE_POINTS_NUM (a) += curr_point - start + 1;
137 }
138 }
139
140 /* Process the death of register REGNO. This updates hard_regs_live
141 or finishes the current live range for the allocno corresponding to
142 REGNO. */
143 static void
144 make_regno_dead (int regno)
145 {
146 ira_allocno_t a;
147 allocno_live_range_t p;
148
149 if (regno < FIRST_PSEUDO_REGISTER)
150 {
151 CLEAR_HARD_REG_BIT (hard_regs_live, regno);
152 return;
153 }
154 a = ira_curr_regno_allocno_map[regno];
155 if (a == NULL)
156 return;
157 p = ALLOCNO_LIVE_RANGES (a);
158 ira_assert (p != NULL);
159 p->finish = curr_point;
160 update_allocno_pressure_excess_length (a);
161 }
162
163 /* The current register pressures for each cover class for the current
164 basic block. */
165 static int curr_reg_pressure[N_REG_CLASSES];
166
167 /* Mark allocno A as currently living and update current register
168 pressure, maximal register pressure for the current BB, start point
169 of the register pressure excess, and conflicting hard registers of
170 A. */
171 static void
172 set_allocno_live (ira_allocno_t a)
173 {
174 int i;
175 enum reg_class cover_class, cl;
176
177 /* Invalidate because it is referenced. */
178 allocno_saved_at_call[ALLOCNO_NUM (a)] = 0;
179 if (sparseset_bit_p (allocnos_live, ALLOCNO_NUM (a)))
180 return;
181 sparseset_set_bit (allocnos_live, ALLOCNO_NUM (a));
182 IOR_HARD_REG_SET (ALLOCNO_CONFLICT_HARD_REGS (a), hard_regs_live);
183 IOR_HARD_REG_SET (ALLOCNO_TOTAL_CONFLICT_HARD_REGS (a), hard_regs_live);
184 cover_class = ALLOCNO_COVER_CLASS (a);
185 for (i = 0;
186 (cl = ira_reg_class_super_classes[cover_class][i]) != LIM_REG_CLASSES;
187 i++)
188 {
189 curr_reg_pressure[cl] += ira_reg_class_nregs[cl][ALLOCNO_MODE (a)];
190 if (high_pressure_start_point[cl] < 0
191 && (curr_reg_pressure[cl] > ira_available_class_regs[cl]))
192 high_pressure_start_point[cl] = curr_point;
193 if (curr_bb_node->reg_pressure[cl] < curr_reg_pressure[cl])
194 curr_bb_node->reg_pressure[cl] = curr_reg_pressure[cl];
195 }
196 }
197
198 /* Mark allocno A as currently not living and update current register
199 pressure, start point of the register pressure excess, and register
200 pressure excess length for living allocnos. */
201 static void
202 clear_allocno_live (ira_allocno_t a)
203 {
204 int i;
205 unsigned int j;
206 enum reg_class cover_class, cl;
207 bool set_p;
208
209 /* Invalidate because it is referenced. */
210 allocno_saved_at_call[ALLOCNO_NUM (a)] = 0;
211 if (sparseset_bit_p (allocnos_live, ALLOCNO_NUM (a)))
212 {
213 cover_class = ALLOCNO_COVER_CLASS (a);
214 set_p = false;
215 for (i = 0;
216 (cl = ira_reg_class_super_classes[cover_class][i])
217 != LIM_REG_CLASSES;
218 i++)
219 {
220 curr_reg_pressure[cl] -= ira_reg_class_nregs[cl][ALLOCNO_MODE (a)];
221 ira_assert (curr_reg_pressure[cl] >= 0);
222 if (high_pressure_start_point[cl] >= 0
223 && curr_reg_pressure[cl] <= ira_available_class_regs[cl])
224 set_p = true;
225 }
226 if (set_p)
227 {
228 EXECUTE_IF_SET_IN_SPARSESET (allocnos_live, j)
229 update_allocno_pressure_excess_length (ira_allocnos[j]);
230 for (i = 0;
231 (cl = ira_reg_class_super_classes[cover_class][i])
232 != LIM_REG_CLASSES;
233 i++)
234 if (high_pressure_start_point[cl] >= 0
235 && curr_reg_pressure[cl] <= ira_available_class_regs[cl])
236 high_pressure_start_point[cl] = -1;
237
238 }
239 }
240 sparseset_clear_bit (allocnos_live, ALLOCNO_NUM (a));
241 }
242
243 /* Mark the register REG as live. Store a 1 in hard_regs_live or
244 allocnos_live for this register or the corresponding allocno,
245 record how many consecutive hardware registers it actually
246 needs. */
247 static void
248 mark_reg_live (rtx reg)
249 {
250 int i, regno;
251
252 gcc_assert (REG_P (reg));
253 regno = REGNO (reg);
254
255 if (regno >= FIRST_PSEUDO_REGISTER)
256 {
257 ira_allocno_t a = ira_curr_regno_allocno_map[regno];
258
259 if (a != NULL)
260 {
261 if (sparseset_bit_p (allocnos_live, ALLOCNO_NUM (a)))
262 {
263 /* Invalidate because it is referenced. */
264 allocno_saved_at_call[ALLOCNO_NUM (a)] = 0;
265 return;
266 }
267 set_allocno_live (a);
268 }
269 make_regno_born (regno);
270 }
271 else if (! TEST_HARD_REG_BIT (ira_no_alloc_regs, regno))
272 {
273 int last = regno + hard_regno_nregs[regno][GET_MODE (reg)];
274 enum reg_class cover_class, cl;
275
276 while (regno < last)
277 {
278 if (! TEST_HARD_REG_BIT (hard_regs_live, regno)
279 && ! TEST_HARD_REG_BIT (eliminable_regset, regno))
280 {
281 cover_class = ira_hard_regno_cover_class[regno];
282 for (i = 0;
283 (cl = ira_reg_class_super_classes[cover_class][i])
284 != LIM_REG_CLASSES;
285 i++)
286 {
287 curr_reg_pressure[cl]++;
288 if (high_pressure_start_point[cl] < 0
289 && (curr_reg_pressure[cl]
290 > ira_available_class_regs[cl]))
291 high_pressure_start_point[cl] = curr_point;
292 }
293 make_regno_born (regno);
294 for (i = 0;
295 (cl = ira_reg_class_super_classes[cover_class][i])
296 != LIM_REG_CLASSES;
297 i++)
298 {
299 if (curr_bb_node->reg_pressure[cl] < curr_reg_pressure[cl])
300 curr_bb_node->reg_pressure[cl] = curr_reg_pressure[cl];
301 }
302 }
303 regno++;
304 }
305 }
306 }
307
308 /* Mark the register referenced by use or def REF as live. */
309 static void
310 mark_ref_live (df_ref ref)
311 {
312 rtx reg;
313
314 reg = DF_REF_REG (ref);
315 if (GET_CODE (reg) == SUBREG)
316 reg = SUBREG_REG (reg);
317 mark_reg_live (reg);
318 }
319
320 /* Mark the register REG as dead. Store a 0 in hard_regs_live or
321 allocnos_live for the register. */
322 static void
323 mark_reg_dead (rtx reg)
324 {
325 int regno;
326
327 gcc_assert (REG_P (reg));
328 regno = REGNO (reg);
329
330 if (regno >= FIRST_PSEUDO_REGISTER)
331 {
332 ira_allocno_t a = ira_curr_regno_allocno_map[regno];
333
334 if (a != NULL)
335 {
336 if (! sparseset_bit_p (allocnos_live, ALLOCNO_NUM (a)))
337 {
338 /* Invalidate because it is referenced. */
339 allocno_saved_at_call[ALLOCNO_NUM (a)] = 0;
340 return;
341 }
342 clear_allocno_live (a);
343 }
344 make_regno_dead (regno);
345 }
346 else if (! TEST_HARD_REG_BIT (ira_no_alloc_regs, regno))
347 {
348 int i;
349 unsigned int j;
350 int last = regno + hard_regno_nregs[regno][GET_MODE (reg)];
351 enum reg_class cover_class, cl;
352 bool set_p;
353
354 while (regno < last)
355 {
356 if (TEST_HARD_REG_BIT (hard_regs_live, regno))
357 {
358 set_p = false;
359 cover_class = ira_hard_regno_cover_class[regno];
360 for (i = 0;
361 (cl = ira_reg_class_super_classes[cover_class][i])
362 != LIM_REG_CLASSES;
363 i++)
364 {
365 curr_reg_pressure[cl]--;
366 if (high_pressure_start_point[cl] >= 0
367 && curr_reg_pressure[cl] <= ira_available_class_regs[cl])
368 set_p = true;
369 ira_assert (curr_reg_pressure[cl] >= 0);
370 }
371 if (set_p)
372 {
373 EXECUTE_IF_SET_IN_SPARSESET (allocnos_live, j)
374 update_allocno_pressure_excess_length (ira_allocnos[j]);
375 for (i = 0;
376 (cl = ira_reg_class_super_classes[cover_class][i])
377 != LIM_REG_CLASSES;
378 i++)
379 if (high_pressure_start_point[cl] >= 0
380 && (curr_reg_pressure[cl]
381 <= ira_available_class_regs[cl]))
382 high_pressure_start_point[cl] = -1;
383 }
384 make_regno_dead (regno);
385 }
386 regno++;
387 }
388 }
389 }
390
391 /* Mark the register referenced by definition DEF as dead, if the
392 definition is a total one. */
393 static void
394 mark_ref_dead (df_ref def)
395 {
396 rtx reg;
397
398 if (DF_REF_FLAGS_IS_SET (def, DF_REF_PARTIAL)
399 || DF_REF_FLAGS_IS_SET (def, DF_REF_CONDITIONAL))
400 return;
401
402 reg = DF_REF_REG (def);
403 if (GET_CODE (reg) == SUBREG)
404 reg = SUBREG_REG (reg);
405 mark_reg_dead (reg);
406 }
407
408 /* Make pseudo REG conflicting with pseudo DREG, if the 1st pseudo
409 class is intersected with class CL. Advance the current program
410 point before making the conflict if ADVANCE_P. Return TRUE if we
411 will need to advance the current program point. */
412 static bool
413 make_pseudo_conflict (rtx reg, enum reg_class cl, rtx dreg, bool advance_p)
414 {
415 ira_allocno_t a;
416
417 if (GET_CODE (reg) == SUBREG)
418 reg = SUBREG_REG (reg);
419
420 if (! REG_P (reg) || REGNO (reg) < FIRST_PSEUDO_REGISTER)
421 return advance_p;
422
423 a = ira_curr_regno_allocno_map[REGNO (reg)];
424 if (! reg_classes_intersect_p (cl, ALLOCNO_COVER_CLASS (a)))
425 return advance_p;
426
427 if (advance_p)
428 curr_point++;
429
430 mark_reg_live (reg);
431 mark_reg_live (dreg);
432 mark_reg_dead (reg);
433 mark_reg_dead (dreg);
434
435 return false;
436 }
437
438 /* Check and make if necessary conflicts for pseudo DREG of class
439 DEF_CL of the current insn with input operand USE of class USE_CL.
440 Advance the current program point before making the conflict if
441 ADVANCE_P. Return TRUE if we will need to advance the current
442 program point. */
443 static bool
444 check_and_make_def_use_conflict (rtx dreg, enum reg_class def_cl,
445 int use, enum reg_class use_cl,
446 bool advance_p)
447 {
448 if (! reg_classes_intersect_p (def_cl, use_cl))
449 return advance_p;
450
451 advance_p = make_pseudo_conflict (recog_data.operand[use],
452 use_cl, dreg, advance_p);
453 /* Reload may end up swapping commutative operands, so you
454 have to take both orderings into account. The
455 constraints for the two operands can be completely
456 different. (Indeed, if the constraints for the two
457 operands are the same for all alternatives, there's no
458 point marking them as commutative.) */
459 if (use < recog_data.n_operands + 1
460 && recog_data.constraints[use][0] == '%')
461 advance_p
462 = make_pseudo_conflict (recog_data.operand[use + 1],
463 use_cl, dreg, advance_p);
464 if (use >= 1
465 && recog_data.constraints[use - 1][0] == '%')
466 advance_p
467 = make_pseudo_conflict (recog_data.operand[use - 1],
468 use_cl, dreg, advance_p);
469 return advance_p;
470 }
471
472 /* Check and make if necessary conflicts for definition DEF of class
473 DEF_CL of the current insn with input operands. Process only
474 constraints of alternative ALT. */
475 static void
476 check_and_make_def_conflict (int alt, int def, enum reg_class def_cl)
477 {
478 int use, use_match;
479 ira_allocno_t a;
480 enum reg_class use_cl, acl;
481 bool advance_p;
482 rtx dreg = recog_data.operand[def];
483
484 if (def_cl == NO_REGS)
485 return;
486
487 if (GET_CODE (dreg) == SUBREG)
488 dreg = SUBREG_REG (dreg);
489
490 if (! REG_P (dreg) || REGNO (dreg) < FIRST_PSEUDO_REGISTER)
491 return;
492
493 a = ira_curr_regno_allocno_map[REGNO (dreg)];
494 acl = ALLOCNO_COVER_CLASS (a);
495 if (! reg_classes_intersect_p (acl, def_cl))
496 return;
497
498 advance_p = true;
499
500 for (use = 0; use < recog_data.n_operands; use++)
501 {
502 if (use == def || recog_data.operand_type[use] == OP_OUT)
503 continue;
504
505 if (recog_op_alt[use][alt].anything_ok)
506 use_cl = ALL_REGS;
507 else
508 use_cl = recog_op_alt[use][alt].cl;
509
510 advance_p = check_and_make_def_use_conflict (dreg, def_cl, use,
511 use_cl, advance_p);
512
513 if ((use_match = recog_op_alt[use][alt].matches) >= 0)
514 {
515 if (use_match == def)
516 continue;
517
518 if (recog_op_alt[use_match][alt].anything_ok)
519 use_cl = ALL_REGS;
520 else
521 use_cl = recog_op_alt[use_match][alt].cl;
522 advance_p = check_and_make_def_use_conflict (dreg, def_cl, use,
523 use_cl, advance_p);
524 }
525 }
526 }
527
528 /* Make conflicts of early clobber pseudo registers of the current
529 insn with its inputs. Avoid introducing unnecessary conflicts by
530 checking classes of the constraints and pseudos because otherwise
531 significant code degradation is possible for some targets. */
532 static void
533 make_early_clobber_and_input_conflicts (void)
534 {
535 int alt;
536 int def, def_match;
537 enum reg_class def_cl;
538
539 for (alt = 0; alt < recog_data.n_alternatives; alt++)
540 for (def = 0; def < recog_data.n_operands; def++)
541 {
542 def_cl = NO_REGS;
543 if (recog_op_alt[def][alt].earlyclobber)
544 {
545 if (recog_op_alt[def][alt].anything_ok)
546 def_cl = ALL_REGS;
547 else
548 def_cl = recog_op_alt[def][alt].cl;
549 check_and_make_def_conflict (alt, def, def_cl);
550 }
551 if ((def_match = recog_op_alt[def][alt].matches) >= 0
552 && (recog_op_alt[def_match][alt].earlyclobber
553 || recog_op_alt[def][alt].earlyclobber))
554 {
555 if (recog_op_alt[def_match][alt].anything_ok)
556 def_cl = ALL_REGS;
557 else
558 def_cl = recog_op_alt[def_match][alt].cl;
559 check_and_make_def_conflict (alt, def, def_cl);
560 }
561 }
562 }
563
564 /* Mark early clobber hard registers of the current INSN as live (if
565 LIVE_P) or dead. Return true if there are such registers. */
566 static bool
567 mark_hard_reg_early_clobbers (rtx insn, bool live_p)
568 {
569 df_ref *def_rec;
570 bool set_p = false;
571
572 for (def_rec = DF_INSN_DEFS (insn); *def_rec; def_rec++)
573 if (DF_REF_FLAGS_IS_SET (*def_rec, DF_REF_MUST_CLOBBER))
574 {
575 rtx dreg = DF_REF_REG (*def_rec);
576
577 if (GET_CODE (dreg) == SUBREG)
578 dreg = SUBREG_REG (dreg);
579 if (! REG_P (dreg) || REGNO (dreg) >= FIRST_PSEUDO_REGISTER)
580 continue;
581
582 /* Hard register clobbers are believed to be early clobber
583 because there is no way to say that non-operand hard
584 register clobbers are not early ones. */
585 if (live_p)
586 mark_ref_live (*def_rec);
587 else
588 mark_ref_dead (*def_rec);
589 set_p = true;
590 }
591
592 return set_p;
593 }
594
595 /* Checks that CONSTRAINTS permits to use only one hard register. If
596 it is so, the function returns the class of the hard register.
597 Otherwise it returns NO_REGS. */
598 static enum reg_class
599 single_reg_class (const char *constraints, rtx op, rtx equiv_const)
600 {
601 int ignore_p;
602 enum reg_class cl, next_cl;
603 int c;
604
605 cl = NO_REGS;
606 for (ignore_p = false;
607 (c = *constraints);
608 constraints += CONSTRAINT_LEN (c, constraints))
609 if (c == '#')
610 ignore_p = true;
611 else if (c == ',')
612 ignore_p = false;
613 else if (! ignore_p)
614 switch (c)
615 {
616 case ' ':
617 case '\t':
618 case '=':
619 case '+':
620 case '*':
621 case '&':
622 case '%':
623 case '!':
624 case '?':
625 break;
626 case 'i':
627 if (CONSTANT_P (op)
628 || (equiv_const != NULL_RTX && CONSTANT_P (equiv_const)))
629 return NO_REGS;
630 break;
631
632 case 'n':
633 if (CONST_INT_P (op)
634 || (GET_CODE (op) == CONST_DOUBLE && GET_MODE (op) == VOIDmode)
635 || (equiv_const != NULL_RTX
636 && (CONST_INT_P (equiv_const)
637 || (GET_CODE (equiv_const) == CONST_DOUBLE
638 && GET_MODE (equiv_const) == VOIDmode))))
639 return NO_REGS;
640 break;
641
642 case 's':
643 if ((CONSTANT_P (op) && !CONST_INT_P (op)
644 && (GET_CODE (op) != CONST_DOUBLE || GET_MODE (op) != VOIDmode))
645 || (equiv_const != NULL_RTX
646 && CONSTANT_P (equiv_const)
647 && !CONST_INT_P (equiv_const)
648 && (GET_CODE (equiv_const) != CONST_DOUBLE
649 || GET_MODE (equiv_const) != VOIDmode)))
650 return NO_REGS;
651 break;
652
653 case 'I':
654 case 'J':
655 case 'K':
656 case 'L':
657 case 'M':
658 case 'N':
659 case 'O':
660 case 'P':
661 if ((CONST_INT_P (op)
662 && CONST_OK_FOR_CONSTRAINT_P (INTVAL (op), c, constraints))
663 || (equiv_const != NULL_RTX
664 && CONST_INT_P (equiv_const)
665 && CONST_OK_FOR_CONSTRAINT_P (INTVAL (equiv_const),
666 c, constraints)))
667 return NO_REGS;
668 break;
669
670 case 'E':
671 case 'F':
672 if (GET_CODE (op) == CONST_DOUBLE
673 || (GET_CODE (op) == CONST_VECTOR
674 && GET_MODE_CLASS (GET_MODE (op)) == MODE_VECTOR_FLOAT)
675 || (equiv_const != NULL_RTX
676 && (GET_CODE (equiv_const) == CONST_DOUBLE
677 || (GET_CODE (equiv_const) == CONST_VECTOR
678 && (GET_MODE_CLASS (GET_MODE (equiv_const))
679 == MODE_VECTOR_FLOAT)))))
680 return NO_REGS;
681 break;
682
683 case 'G':
684 case 'H':
685 if ((GET_CODE (op) == CONST_DOUBLE
686 && CONST_DOUBLE_OK_FOR_CONSTRAINT_P (op, c, constraints))
687 || (equiv_const != NULL_RTX
688 && GET_CODE (equiv_const) == CONST_DOUBLE
689 && CONST_DOUBLE_OK_FOR_CONSTRAINT_P (equiv_const,
690 c, constraints)))
691 return NO_REGS;
692 /* ??? what about memory */
693 case 'r':
694 case 'a': case 'b': case 'c': case 'd': case 'e': case 'f':
695 case 'h': case 'j': case 'k': case 'l':
696 case 'q': case 't': case 'u':
697 case 'v': case 'w': case 'x': case 'y': case 'z':
698 case 'A': case 'B': case 'C': case 'D':
699 case 'Q': case 'R': case 'S': case 'T': case 'U':
700 case 'W': case 'Y': case 'Z':
701 next_cl = (c == 'r'
702 ? GENERAL_REGS
703 : REG_CLASS_FROM_CONSTRAINT (c, constraints));
704 if ((cl != NO_REGS && next_cl != cl)
705 || (ira_available_class_regs[next_cl]
706 > ira_reg_class_nregs[next_cl][GET_MODE (op)]))
707 return NO_REGS;
708 cl = next_cl;
709 break;
710
711 case '0': case '1': case '2': case '3': case '4':
712 case '5': case '6': case '7': case '8': case '9':
713 next_cl
714 = single_reg_class (recog_data.constraints[c - '0'],
715 recog_data.operand[c - '0'], NULL_RTX);
716 if ((cl != NO_REGS && next_cl != cl)
717 || next_cl == NO_REGS
718 || (ira_available_class_regs[next_cl]
719 > ira_reg_class_nregs[next_cl][GET_MODE (op)]))
720 return NO_REGS;
721 cl = next_cl;
722 break;
723
724 default:
725 return NO_REGS;
726 }
727 return cl;
728 }
729
730 /* The function checks that operand OP_NUM of the current insn can use
731 only one hard register. If it is so, the function returns the
732 class of the hard register. Otherwise it returns NO_REGS. */
733 static enum reg_class
734 single_reg_operand_class (int op_num)
735 {
736 if (op_num < 0 || recog_data.n_alternatives == 0)
737 return NO_REGS;
738 return single_reg_class (recog_data.constraints[op_num],
739 recog_data.operand[op_num], NULL_RTX);
740 }
741
742 /* The function sets up hard register set *SET to hard registers which
743 might be used by insn reloads because the constraints are too
744 strict. */
745 void
746 ira_implicitly_set_insn_hard_regs (HARD_REG_SET *set)
747 {
748 int i, c, regno = 0;
749 bool ignore_p;
750 enum reg_class cl;
751 rtx op;
752 enum machine_mode mode;
753
754 CLEAR_HARD_REG_SET (*set);
755 for (i = 0; i < recog_data.n_operands; i++)
756 {
757 op = recog_data.operand[i];
758
759 if (GET_CODE (op) == SUBREG)
760 op = SUBREG_REG (op);
761
762 if (GET_CODE (op) == SCRATCH
763 || (REG_P (op) && (regno = REGNO (op)) >= FIRST_PSEUDO_REGISTER))
764 {
765 const char *p = recog_data.constraints[i];
766
767 mode = (GET_CODE (op) == SCRATCH
768 ? GET_MODE (op) : PSEUDO_REGNO_MODE (regno));
769 cl = NO_REGS;
770 for (ignore_p = false; (c = *p); p += CONSTRAINT_LEN (c, p))
771 if (c == '#')
772 ignore_p = true;
773 else if (c == ',')
774 ignore_p = false;
775 else if (! ignore_p)
776 switch (c)
777 {
778 case 'r':
779 case 'a': case 'b': case 'c': case 'd': case 'e': case 'f':
780 case 'h': case 'j': case 'k': case 'l':
781 case 'q': case 't': case 'u':
782 case 'v': case 'w': case 'x': case 'y': case 'z':
783 case 'A': case 'B': case 'C': case 'D':
784 case 'Q': case 'R': case 'S': case 'T': case 'U':
785 case 'W': case 'Y': case 'Z':
786 cl = (c == 'r'
787 ? GENERAL_REGS
788 : REG_CLASS_FROM_CONSTRAINT (c, p));
789 if (cl != NO_REGS
790 && (ira_available_class_regs[cl]
791 <= ira_reg_class_nregs[cl][mode]))
792 IOR_HARD_REG_SET (*set, reg_class_contents[cl]);
793 break;
794 }
795 }
796 }
797 }
798 /* Processes input operands, if IN_P, or output operands otherwise of
799 the current insn with FREQ to find allocno which can use only one
800 hard register and makes other currently living allocnos conflicting
801 with the hard register. */
802 static void
803 process_single_reg_class_operands (bool in_p, int freq)
804 {
805 int i, regno, cost;
806 unsigned int px;
807 enum reg_class cl, cover_class;
808 rtx operand;
809 ira_allocno_t operand_a, a;
810
811 for (i = 0; i < recog_data.n_operands; i++)
812 {
813 operand = recog_data.operand[i];
814 if (in_p && recog_data.operand_type[i] != OP_IN
815 && recog_data.operand_type[i] != OP_INOUT)
816 continue;
817 if (! in_p && recog_data.operand_type[i] != OP_OUT
818 && recog_data.operand_type[i] != OP_INOUT)
819 continue;
820 cl = single_reg_operand_class (i);
821 if (cl == NO_REGS)
822 continue;
823
824 operand_a = NULL;
825
826 if (GET_CODE (operand) == SUBREG)
827 operand = SUBREG_REG (operand);
828
829 if (REG_P (operand)
830 && (regno = REGNO (operand)) >= FIRST_PSEUDO_REGISTER)
831 {
832 enum machine_mode mode;
833 enum reg_class cover_class;
834
835 operand_a = ira_curr_regno_allocno_map[regno];
836 mode = ALLOCNO_MODE (operand_a);
837 cover_class = ALLOCNO_COVER_CLASS (operand_a);
838 if (ira_class_subset_p[cl][cover_class]
839 && ira_class_hard_regs_num[cl] != 0
840 && (ira_class_hard_reg_index[cover_class]
841 [ira_class_hard_regs[cl][0]]) >= 0
842 && reg_class_size[cl] <= (unsigned) CLASS_MAX_NREGS (cl, mode))
843 {
844 int i, size;
845 cost
846 = (freq
847 * (in_p
848 ? ira_get_register_move_cost (mode, cover_class, cl)
849 : ira_get_register_move_cost (mode, cl, cover_class)));
850 ira_allocate_and_set_costs
851 (&ALLOCNO_CONFLICT_HARD_REG_COSTS (operand_a), cover_class, 0);
852 size = ira_reg_class_nregs[cover_class][mode];
853 for (i = 0; i < size; i++)
854 ALLOCNO_CONFLICT_HARD_REG_COSTS (operand_a)
855 [ira_class_hard_reg_index
856 [cover_class][ira_class_hard_regs[cl][i]]]
857 -= cost;
858 }
859 }
860
861 EXECUTE_IF_SET_IN_SPARSESET (allocnos_live, px)
862 {
863 a = ira_allocnos[px];
864 cover_class = ALLOCNO_COVER_CLASS (a);
865 if (a != operand_a)
866 {
867 /* We could increase costs of A instead of making it
868 conflicting with the hard register. But it works worse
869 because it will be spilled in reload in anyway. */
870 IOR_HARD_REG_SET (ALLOCNO_CONFLICT_HARD_REGS (a),
871 reg_class_contents[cl]);
872 IOR_HARD_REG_SET (ALLOCNO_TOTAL_CONFLICT_HARD_REGS (a),
873 reg_class_contents[cl]);
874 }
875 }
876 }
877 }
878
879 /* Return true when one of the predecessor edges of BB is marked with
880 EDGE_ABNORMAL_CALL or EDGE_EH. */
881 static bool
882 bb_has_abnormal_call_pred (basic_block bb)
883 {
884 edge e;
885 edge_iterator ei;
886
887 FOR_EACH_EDGE (e, ei, bb->preds)
888 {
889 if (e->flags & (EDGE_ABNORMAL_CALL | EDGE_EH))
890 return true;
891 }
892 return false;
893 }
894
895 /* Process insns of the basic block given by its LOOP_TREE_NODE to
896 update allocno live ranges, allocno hard register conflicts,
897 intersected calls, and register pressure info for allocnos for the
898 basic block for and regions containing the basic block. */
899 static void
900 process_bb_node_lives (ira_loop_tree_node_t loop_tree_node)
901 {
902 int i, freq;
903 unsigned int j;
904 basic_block bb;
905 rtx insn;
906 bitmap_iterator bi;
907 bitmap reg_live_out;
908 unsigned int px;
909 bool set_p;
910
911 bb = loop_tree_node->bb;
912 if (bb != NULL)
913 {
914 for (i = 0; i < ira_reg_class_cover_size; i++)
915 {
916 curr_reg_pressure[ira_reg_class_cover[i]] = 0;
917 high_pressure_start_point[ira_reg_class_cover[i]] = -1;
918 }
919 curr_bb_node = loop_tree_node;
920 reg_live_out = DF_LR_OUT (bb);
921 sparseset_clear (allocnos_live);
922 REG_SET_TO_HARD_REG_SET (hard_regs_live, reg_live_out);
923 AND_COMPL_HARD_REG_SET (hard_regs_live, eliminable_regset);
924 AND_COMPL_HARD_REG_SET (hard_regs_live, ira_no_alloc_regs);
925 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
926 if (TEST_HARD_REG_BIT (hard_regs_live, i))
927 {
928 enum reg_class cover_class, cl;
929
930 cover_class = ira_class_translate[REGNO_REG_CLASS (i)];
931 for (j = 0;
932 (cl = ira_reg_class_super_classes[cover_class][j])
933 != LIM_REG_CLASSES;
934 j++)
935 {
936 curr_reg_pressure[cl]++;
937 if (curr_bb_node->reg_pressure[cl] < curr_reg_pressure[cl])
938 curr_bb_node->reg_pressure[cl] = curr_reg_pressure[cl];
939 ira_assert (curr_reg_pressure[cl]
940 <= ira_available_class_regs[cl]);
941 }
942 }
943 EXECUTE_IF_SET_IN_BITMAP (reg_live_out, FIRST_PSEUDO_REGISTER, j, bi)
944 {
945 ira_allocno_t a = ira_curr_regno_allocno_map[j];
946
947 if (a == NULL)
948 continue;
949 ira_assert (! sparseset_bit_p (allocnos_live, ALLOCNO_NUM (a)));
950 set_allocno_live (a);
951 make_regno_born (j);
952 }
953
954 freq = REG_FREQ_FROM_BB (bb);
955 if (freq == 0)
956 freq = 1;
957
958 /* Invalidate all allocno_saved_at_call entries. */
959 last_call_num++;
960
961 /* Scan the code of this basic block, noting which allocnos and
962 hard regs are born or die.
963
964 Note that this loop treats uninitialized values as live until
965 the beginning of the block. For example, if an instruction
966 uses (reg:DI foo), and only (subreg:SI (reg:DI foo) 0) is ever
967 set, FOO will remain live until the beginning of the block.
968 Likewise if FOO is not set at all. This is unnecessarily
969 pessimistic, but it probably doesn't matter much in practice. */
970 FOR_BB_INSNS_REVERSE (bb, insn)
971 {
972 df_ref *def_rec, *use_rec;
973 bool call_p;
974
975 if (!NONDEBUG_INSN_P (insn))
976 continue;
977
978 if (internal_flag_ira_verbose > 2 && ira_dump_file != NULL)
979 fprintf (ira_dump_file, " Insn %u(l%d): point = %d\n",
980 INSN_UID (insn), loop_tree_node->parent->loop->num,
981 curr_point);
982
983 /* Mark each defined value as live. We need to do this for
984 unused values because they still conflict with quantities
985 that are live at the time of the definition.
986
987 Ignore DF_REF_MAY_CLOBBERs on a call instruction. Such
988 references represent the effect of the called function
989 on a call-clobbered register. Marking the register as
990 live would stop us from allocating it to a call-crossing
991 allocno. */
992 call_p = CALL_P (insn);
993 for (def_rec = DF_INSN_DEFS (insn); *def_rec; def_rec++)
994 if (!call_p || !DF_REF_FLAGS_IS_SET (*def_rec, DF_REF_MAY_CLOBBER))
995 mark_ref_live (*def_rec);
996
997 /* If INSN has multiple outputs, then any value used in one
998 of the outputs conflicts with the other outputs. Model this
999 by making the used value live during the output phase.
1000
1001 It is unsafe to use !single_set here since it will ignore
1002 an unused output. Just because an output is unused does
1003 not mean the compiler can assume the side effect will not
1004 occur. Consider if ALLOCNO appears in the address of an
1005 output and we reload the output. If we allocate ALLOCNO
1006 to the same hard register as an unused output we could
1007 set the hard register before the output reload insn. */
1008 if (GET_CODE (PATTERN (insn)) == PARALLEL && multiple_sets (insn))
1009 for (use_rec = DF_INSN_USES (insn); *use_rec; use_rec++)
1010 {
1011 int i;
1012 rtx reg;
1013
1014 reg = DF_REF_REG (*use_rec);
1015 for (i = XVECLEN (PATTERN (insn), 0) - 1; i >= 0; i--)
1016 {
1017 rtx set;
1018
1019 set = XVECEXP (PATTERN (insn), 0, i);
1020 if (GET_CODE (set) == SET
1021 && reg_overlap_mentioned_p (reg, SET_DEST (set)))
1022 {
1023 /* After the previous loop, this is a no-op if
1024 REG is contained within SET_DEST (SET). */
1025 mark_ref_live (*use_rec);
1026 break;
1027 }
1028 }
1029 }
1030
1031 extract_insn (insn);
1032 preprocess_constraints ();
1033 process_single_reg_class_operands (false, freq);
1034
1035 /* See which defined values die here. */
1036 for (def_rec = DF_INSN_DEFS (insn); *def_rec; def_rec++)
1037 if (!call_p || !DF_REF_FLAGS_IS_SET (*def_rec, DF_REF_MAY_CLOBBER))
1038 mark_ref_dead (*def_rec);
1039
1040 if (call_p)
1041 {
1042 last_call_num++;
1043 /* The current set of live allocnos are live across the call. */
1044 EXECUTE_IF_SET_IN_SPARSESET (allocnos_live, i)
1045 {
1046 ira_allocno_t a = ira_allocnos[i];
1047
1048 if (allocno_saved_at_call[i] != last_call_num)
1049 /* Here we are mimicking caller-save.c behaviour
1050 which does not save hard register at a call if
1051 it was saved on previous call in the same basic
1052 block and the hard register was not mentioned
1053 between the two calls. */
1054 ALLOCNO_CALL_FREQ (a) += freq;
1055 /* Mark it as saved at the next call. */
1056 allocno_saved_at_call[i] = last_call_num + 1;
1057 ALLOCNO_CALLS_CROSSED_NUM (a)++;
1058 /* Don't allocate allocnos that cross setjmps or any
1059 call, if this function receives a nonlocal
1060 goto. */
1061 if (cfun->has_nonlocal_label
1062 || find_reg_note (insn, REG_SETJMP,
1063 NULL_RTX) != NULL_RTX)
1064 {
1065 SET_HARD_REG_SET (ALLOCNO_CONFLICT_HARD_REGS (a));
1066 SET_HARD_REG_SET (ALLOCNO_TOTAL_CONFLICT_HARD_REGS (a));
1067 }
1068 if (can_throw_internal (insn))
1069 {
1070 IOR_HARD_REG_SET (ALLOCNO_TOTAL_CONFLICT_HARD_REGS (a),
1071 call_used_reg_set);
1072 IOR_HARD_REG_SET (ALLOCNO_CONFLICT_HARD_REGS (a),
1073 call_used_reg_set);
1074 }
1075 }
1076 }
1077
1078 make_early_clobber_and_input_conflicts ();
1079
1080 curr_point++;
1081
1082 /* Mark each used value as live. */
1083 for (use_rec = DF_INSN_USES (insn); *use_rec; use_rec++)
1084 mark_ref_live (*use_rec);
1085
1086 process_single_reg_class_operands (true, freq);
1087
1088 set_p = mark_hard_reg_early_clobbers (insn, true);
1089
1090 if (set_p)
1091 {
1092 mark_hard_reg_early_clobbers (insn, false);
1093
1094 /* Mark each hard reg as live again. For example, a
1095 hard register can be in clobber and in an insn
1096 input. */
1097 for (use_rec = DF_INSN_USES (insn); *use_rec; use_rec++)
1098 {
1099 rtx ureg = DF_REF_REG (*use_rec);
1100
1101 if (GET_CODE (ureg) == SUBREG)
1102 ureg = SUBREG_REG (ureg);
1103 if (! REG_P (ureg) || REGNO (ureg) >= FIRST_PSEUDO_REGISTER)
1104 continue;
1105
1106 mark_ref_live (*use_rec);
1107 }
1108 }
1109
1110 curr_point++;
1111 }
1112
1113 #ifdef EH_RETURN_DATA_REGNO
1114 if (bb_has_eh_pred (bb))
1115 for (j = 0; ; ++j)
1116 {
1117 unsigned int regno = EH_RETURN_DATA_REGNO (j);
1118 if (regno == INVALID_REGNUM)
1119 break;
1120 make_regno_born (regno);
1121 }
1122 #endif
1123
1124 /* Allocnos can't go in stack regs at the start of a basic block
1125 that is reached by an abnormal edge. Likewise for call
1126 clobbered regs, because caller-save, fixup_abnormal_edges and
1127 possibly the table driven EH machinery are not quite ready to
1128 handle such allocnos live across such edges. */
1129 if (bb_has_abnormal_pred (bb))
1130 {
1131 #ifdef STACK_REGS
1132 EXECUTE_IF_SET_IN_SPARSESET (allocnos_live, px)
1133 {
1134 ALLOCNO_NO_STACK_REG_P (ira_allocnos[px]) = true;
1135 ALLOCNO_TOTAL_NO_STACK_REG_P (ira_allocnos[px]) = true;
1136 }
1137 for (px = FIRST_STACK_REG; px <= LAST_STACK_REG; px++)
1138 make_regno_born (px);
1139 #endif
1140 /* No need to record conflicts for call clobbered regs if we
1141 have nonlocal labels around, as we don't ever try to
1142 allocate such regs in this case. */
1143 if (!cfun->has_nonlocal_label && bb_has_abnormal_call_pred (bb))
1144 for (px = 0; px < FIRST_PSEUDO_REGISTER; px++)
1145 if (call_used_regs[px])
1146 make_regno_born (px);
1147 }
1148
1149 EXECUTE_IF_SET_IN_SPARSESET (allocnos_live, i)
1150 {
1151 make_regno_dead (ALLOCNO_REGNO (ira_allocnos[i]));
1152 }
1153
1154 curr_point++;
1155
1156 }
1157 /* Propagate register pressure to upper loop tree nodes: */
1158 if (loop_tree_node != ira_loop_tree_root)
1159 for (i = 0; i < ira_reg_class_cover_size; i++)
1160 {
1161 enum reg_class cover_class;
1162
1163 cover_class = ira_reg_class_cover[i];
1164 if (loop_tree_node->reg_pressure[cover_class]
1165 > loop_tree_node->parent->reg_pressure[cover_class])
1166 loop_tree_node->parent->reg_pressure[cover_class]
1167 = loop_tree_node->reg_pressure[cover_class];
1168 }
1169 }
1170
1171 /* Create and set up IRA_START_POINT_RANGES and
1172 IRA_FINISH_POINT_RANGES. */
1173 static void
1174 create_start_finish_chains (void)
1175 {
1176 ira_allocno_t a;
1177 ira_allocno_iterator ai;
1178 allocno_live_range_t r;
1179
1180 ira_start_point_ranges
1181 = (allocno_live_range_t *) ira_allocate (ira_max_point
1182 * sizeof (allocno_live_range_t));
1183 memset (ira_start_point_ranges, 0,
1184 ira_max_point * sizeof (allocno_live_range_t));
1185 ira_finish_point_ranges
1186 = (allocno_live_range_t *) ira_allocate (ira_max_point
1187 * sizeof (allocno_live_range_t));
1188 memset (ira_finish_point_ranges, 0,
1189 ira_max_point * sizeof (allocno_live_range_t));
1190 FOR_EACH_ALLOCNO (a, ai)
1191 {
1192 for (r = ALLOCNO_LIVE_RANGES (a); r != NULL; r = r->next)
1193 {
1194 r->start_next = ira_start_point_ranges[r->start];
1195 ira_start_point_ranges[r->start] = r;
1196 r->finish_next = ira_finish_point_ranges[r->finish];
1197 ira_finish_point_ranges[r->finish] = r;
1198 }
1199 }
1200 }
1201
1202 /* Rebuild IRA_START_POINT_RANGES and IRA_FINISH_POINT_RANGES after
1203 new live ranges and program points were added as a result if new
1204 insn generation. */
1205 void
1206 ira_rebuild_start_finish_chains (void)
1207 {
1208 ira_free (ira_finish_point_ranges);
1209 ira_free (ira_start_point_ranges);
1210 create_start_finish_chains ();
1211 }
1212
1213 /* Compress allocno live ranges by removing program points where
1214 nothing happens. */
1215 static void
1216 remove_some_program_points_and_update_live_ranges (void)
1217 {
1218 unsigned i;
1219 int n;
1220 int *map;
1221 ira_allocno_t a;
1222 ira_allocno_iterator ai;
1223 allocno_live_range_t r;
1224 bitmap born_or_died;
1225 bitmap_iterator bi;
1226
1227 born_or_died = ira_allocate_bitmap ();
1228 FOR_EACH_ALLOCNO (a, ai)
1229 {
1230 for (r = ALLOCNO_LIVE_RANGES (a); r != NULL; r = r->next)
1231 {
1232 ira_assert (r->start <= r->finish);
1233 bitmap_set_bit (born_or_died, r->start);
1234 bitmap_set_bit (born_or_died, r->finish);
1235 }
1236 }
1237 map = (int *) ira_allocate (sizeof (int) * ira_max_point);
1238 n = 0;
1239 EXECUTE_IF_SET_IN_BITMAP(born_or_died, 0, i, bi)
1240 {
1241 map[i] = n++;
1242 }
1243 ira_free_bitmap (born_or_died);
1244 if (internal_flag_ira_verbose > 1 && ira_dump_file != NULL)
1245 fprintf (ira_dump_file, "Compressing live ranges: from %d to %d - %d%%\n",
1246 ira_max_point, n, 100 * n / ira_max_point);
1247 ira_max_point = n;
1248 FOR_EACH_ALLOCNO (a, ai)
1249 {
1250 for (r = ALLOCNO_LIVE_RANGES (a); r != NULL; r = r->next)
1251 {
1252 r->start = map[r->start];
1253 r->finish = map[r->finish];
1254 }
1255 }
1256 ira_free (map);
1257 }
1258
1259 /* Print live ranges R to file F. */
1260 void
1261 ira_print_live_range_list (FILE *f, allocno_live_range_t r)
1262 {
1263 for (; r != NULL; r = r->next)
1264 fprintf (f, " [%d..%d]", r->start, r->finish);
1265 fprintf (f, "\n");
1266 }
1267
1268 /* Print live ranges R to stderr. */
1269 void
1270 ira_debug_live_range_list (allocno_live_range_t r)
1271 {
1272 ira_print_live_range_list (stderr, r);
1273 }
1274
1275 /* Print live ranges of allocno A to file F. */
1276 static void
1277 print_allocno_live_ranges (FILE *f, ira_allocno_t a)
1278 {
1279 fprintf (f, " a%d(r%d):", ALLOCNO_NUM (a), ALLOCNO_REGNO (a));
1280 ira_print_live_range_list (f, ALLOCNO_LIVE_RANGES (a));
1281 }
1282
1283 /* Print live ranges of allocno A to stderr. */
1284 void
1285 ira_debug_allocno_live_ranges (ira_allocno_t a)
1286 {
1287 print_allocno_live_ranges (stderr, a);
1288 }
1289
1290 /* Print live ranges of all allocnos to file F. */
1291 static void
1292 print_live_ranges (FILE *f)
1293 {
1294 ira_allocno_t a;
1295 ira_allocno_iterator ai;
1296
1297 FOR_EACH_ALLOCNO (a, ai)
1298 print_allocno_live_ranges (f, a);
1299 }
1300
1301 /* Print live ranges of all allocnos to stderr. */
1302 void
1303 ira_debug_live_ranges (void)
1304 {
1305 print_live_ranges (stderr);
1306 }
1307
1308 /* The main entry function creates live ranges, set up
1309 CONFLICT_HARD_REGS and TOTAL_CONFLICT_HARD_REGS for allocnos, and
1310 calculate register pressure info. */
1311 void
1312 ira_create_allocno_live_ranges (void)
1313 {
1314 allocnos_live = sparseset_alloc (ira_allocnos_num);
1315 curr_point = 0;
1316 last_call_num = 0;
1317 allocno_saved_at_call
1318 = (int *) ira_allocate (ira_allocnos_num * sizeof (int));
1319 memset (allocno_saved_at_call, 0, ira_allocnos_num * sizeof (int));
1320 ira_traverse_loop_tree (true, ira_loop_tree_root, NULL,
1321 process_bb_node_lives);
1322 ira_max_point = curr_point;
1323 create_start_finish_chains ();
1324 if (internal_flag_ira_verbose > 2 && ira_dump_file != NULL)
1325 print_live_ranges (ira_dump_file);
1326 /* Clean up. */
1327 ira_free (allocno_saved_at_call);
1328 sparseset_free (allocnos_live);
1329 }
1330
1331 /* Compress allocno live ranges. */
1332 void
1333 ira_compress_allocno_live_ranges (void)
1334 {
1335 remove_some_program_points_and_update_live_ranges ();
1336 ira_rebuild_start_finish_chains ();
1337 if (internal_flag_ira_verbose > 2 && ira_dump_file != NULL)
1338 {
1339 fprintf (ira_dump_file, "Ranges after the compression:\n");
1340 print_live_ranges (ira_dump_file);
1341 }
1342 }
1343
1344 /* Free arrays IRA_START_POINT_RANGES and IRA_FINISH_POINT_RANGES. */
1345 void
1346 ira_finish_allocno_live_ranges (void)
1347 {
1348 ira_free (ira_finish_point_ranges);
1349 ira_free (ira_start_point_ranges);
1350 }