]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/ira-lives.c
alias.c: Reorder #include statements and remove duplicates.
[thirdparty/gcc.git] / gcc / ira-lives.c
1 /* IRA processing allocno lives to build allocno live ranges.
2 Copyright (C) 2006-2015 Free Software Foundation, Inc.
3 Contributed by Vladimir Makarov <vmakarov@redhat.com>.
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
10 version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
20
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "backend.h"
25 #include "target.h"
26 #include "rtl.h"
27 #include "predict.h"
28 #include "df.h"
29 #include "tm_p.h"
30 #include "insn-config.h"
31 #include "regs.h"
32 #include "ira.h"
33 #include "ira-int.h"
34 #include "diagnostic-core.h"
35 #include "flags.h"
36 #include "except.h"
37 #include "params.h"
38 #include "sparseset.h"
39 #include "cfgloop.h"
40
41 /* The code in this file is similar to one in global but the code
42 works on the allocno basis and creates live ranges instead of
43 pseudo-register conflicts. */
44
45 /* Program points are enumerated by numbers from range
46 0..IRA_MAX_POINT-1. There are approximately two times more program
47 points than insns. Program points are places in the program where
48 liveness info can be changed. In most general case (there are more
49 complicated cases too) some program points correspond to places
50 where input operand dies and other ones correspond to places where
51 output operands are born. */
52 int ira_max_point;
53
54 /* Arrays of size IRA_MAX_POINT mapping a program point to the allocno
55 live ranges with given start/finish point. */
56 live_range_t *ira_start_point_ranges, *ira_finish_point_ranges;
57
58 /* Number of the current program point. */
59 static int curr_point;
60
61 /* Point where register pressure excess started or -1 if there is no
62 register pressure excess. Excess pressure for a register class at
63 some point means that there are more allocnos of given register
64 class living at the point than number of hard-registers of the
65 class available for the allocation. It is defined only for
66 pressure classes. */
67 static int high_pressure_start_point[N_REG_CLASSES];
68
69 /* Objects live at current point in the scan. */
70 static sparseset objects_live;
71
72 /* A temporary bitmap used in functions that wish to avoid visiting an allocno
73 multiple times. */
74 static sparseset allocnos_processed;
75
76 /* Set of hard regs (except eliminable ones) currently live. */
77 static HARD_REG_SET hard_regs_live;
78
79 /* The loop tree node corresponding to the current basic block. */
80 static ira_loop_tree_node_t curr_bb_node;
81
82 /* The number of the last processed call. */
83 static int last_call_num;
84 /* The number of last call at which given allocno was saved. */
85 static int *allocno_saved_at_call;
86
87 /* The value of get_preferred_alternatives for the current instruction,
88 supplemental to recog_data. */
89 static alternative_mask preferred_alternatives;
90
91 /* Record the birth of hard register REGNO, updating hard_regs_live and
92 hard reg conflict information for living allocnos. */
93 static void
94 make_hard_regno_born (int regno)
95 {
96 unsigned int i;
97
98 SET_HARD_REG_BIT (hard_regs_live, regno);
99 EXECUTE_IF_SET_IN_SPARSESET (objects_live, i)
100 {
101 ira_object_t obj = ira_object_id_map[i];
102
103 SET_HARD_REG_BIT (OBJECT_CONFLICT_HARD_REGS (obj), regno);
104 SET_HARD_REG_BIT (OBJECT_TOTAL_CONFLICT_HARD_REGS (obj), regno);
105 }
106 }
107
108 /* Process the death of hard register REGNO. This updates
109 hard_regs_live. */
110 static void
111 make_hard_regno_dead (int regno)
112 {
113 CLEAR_HARD_REG_BIT (hard_regs_live, regno);
114 }
115
116 /* Record the birth of object OBJ. Set a bit for it in objects_live,
117 start a new live range for it if necessary and update hard register
118 conflicts. */
119 static void
120 make_object_born (ira_object_t obj)
121 {
122 live_range_t lr = OBJECT_LIVE_RANGES (obj);
123
124 sparseset_set_bit (objects_live, OBJECT_CONFLICT_ID (obj));
125 IOR_HARD_REG_SET (OBJECT_CONFLICT_HARD_REGS (obj), hard_regs_live);
126 IOR_HARD_REG_SET (OBJECT_TOTAL_CONFLICT_HARD_REGS (obj), hard_regs_live);
127
128 if (lr == NULL
129 || (lr->finish != curr_point && lr->finish + 1 != curr_point))
130 ira_add_live_range_to_object (obj, curr_point, -1);
131 }
132
133 /* Update ALLOCNO_EXCESS_PRESSURE_POINTS_NUM for the allocno
134 associated with object OBJ. */
135 static void
136 update_allocno_pressure_excess_length (ira_object_t obj)
137 {
138 ira_allocno_t a = OBJECT_ALLOCNO (obj);
139 int start, i;
140 enum reg_class aclass, pclass, cl;
141 live_range_t p;
142
143 aclass = ALLOCNO_CLASS (a);
144 pclass = ira_pressure_class_translate[aclass];
145 for (i = 0;
146 (cl = ira_reg_class_super_classes[pclass][i]) != LIM_REG_CLASSES;
147 i++)
148 {
149 if (! ira_reg_pressure_class_p[cl])
150 continue;
151 if (high_pressure_start_point[cl] < 0)
152 continue;
153 p = OBJECT_LIVE_RANGES (obj);
154 ira_assert (p != NULL);
155 start = (high_pressure_start_point[cl] > p->start
156 ? high_pressure_start_point[cl] : p->start);
157 ALLOCNO_EXCESS_PRESSURE_POINTS_NUM (a) += curr_point - start + 1;
158 }
159 }
160
161 /* Process the death of object OBJ, which is associated with allocno
162 A. This finishes the current live range for it. */
163 static void
164 make_object_dead (ira_object_t obj)
165 {
166 live_range_t lr;
167
168 sparseset_clear_bit (objects_live, OBJECT_CONFLICT_ID (obj));
169 lr = OBJECT_LIVE_RANGES (obj);
170 ira_assert (lr != NULL);
171 lr->finish = curr_point;
172 update_allocno_pressure_excess_length (obj);
173 }
174
175 /* The current register pressures for each pressure class for the current
176 basic block. */
177 static int curr_reg_pressure[N_REG_CLASSES];
178
179 /* Record that register pressure for PCLASS increased by N registers.
180 Update the current register pressure, maximal register pressure for
181 the current BB and the start point of the register pressure
182 excess. */
183 static void
184 inc_register_pressure (enum reg_class pclass, int n)
185 {
186 int i;
187 enum reg_class cl;
188
189 for (i = 0;
190 (cl = ira_reg_class_super_classes[pclass][i]) != LIM_REG_CLASSES;
191 i++)
192 {
193 if (! ira_reg_pressure_class_p[cl])
194 continue;
195 curr_reg_pressure[cl] += n;
196 if (high_pressure_start_point[cl] < 0
197 && (curr_reg_pressure[cl] > ira_class_hard_regs_num[cl]))
198 high_pressure_start_point[cl] = curr_point;
199 if (curr_bb_node->reg_pressure[cl] < curr_reg_pressure[cl])
200 curr_bb_node->reg_pressure[cl] = curr_reg_pressure[cl];
201 }
202 }
203
204 /* Record that register pressure for PCLASS has decreased by NREGS
205 registers; update current register pressure, start point of the
206 register pressure excess, and register pressure excess length for
207 living allocnos. */
208
209 static void
210 dec_register_pressure (enum reg_class pclass, int nregs)
211 {
212 int i;
213 unsigned int j;
214 enum reg_class cl;
215 bool set_p = false;
216
217 for (i = 0;
218 (cl = ira_reg_class_super_classes[pclass][i]) != LIM_REG_CLASSES;
219 i++)
220 {
221 if (! ira_reg_pressure_class_p[cl])
222 continue;
223 curr_reg_pressure[cl] -= nregs;
224 ira_assert (curr_reg_pressure[cl] >= 0);
225 if (high_pressure_start_point[cl] >= 0
226 && curr_reg_pressure[cl] <= ira_class_hard_regs_num[cl])
227 set_p = true;
228 }
229 if (set_p)
230 {
231 EXECUTE_IF_SET_IN_SPARSESET (objects_live, j)
232 update_allocno_pressure_excess_length (ira_object_id_map[j]);
233 for (i = 0;
234 (cl = ira_reg_class_super_classes[pclass][i]) != LIM_REG_CLASSES;
235 i++)
236 {
237 if (! ira_reg_pressure_class_p[cl])
238 continue;
239 if (high_pressure_start_point[cl] >= 0
240 && curr_reg_pressure[cl] <= ira_class_hard_regs_num[cl])
241 high_pressure_start_point[cl] = -1;
242 }
243 }
244 }
245
246 /* Determine from the objects_live bitmap whether REGNO is currently live,
247 and occupies only one object. Return false if we have no information. */
248 static bool
249 pseudo_regno_single_word_and_live_p (int regno)
250 {
251 ira_allocno_t a = ira_curr_regno_allocno_map[regno];
252 ira_object_t obj;
253
254 if (a == NULL)
255 return false;
256 if (ALLOCNO_NUM_OBJECTS (a) > 1)
257 return false;
258
259 obj = ALLOCNO_OBJECT (a, 0);
260
261 return sparseset_bit_p (objects_live, OBJECT_CONFLICT_ID (obj));
262 }
263
264 /* Mark the pseudo register REGNO as live. Update all information about
265 live ranges and register pressure. */
266 static void
267 mark_pseudo_regno_live (int regno)
268 {
269 ira_allocno_t a = ira_curr_regno_allocno_map[regno];
270 enum reg_class pclass;
271 int i, n, nregs;
272
273 if (a == NULL)
274 return;
275
276 /* Invalidate because it is referenced. */
277 allocno_saved_at_call[ALLOCNO_NUM (a)] = 0;
278
279 n = ALLOCNO_NUM_OBJECTS (a);
280 pclass = ira_pressure_class_translate[ALLOCNO_CLASS (a)];
281 nregs = ira_reg_class_max_nregs[ALLOCNO_CLASS (a)][ALLOCNO_MODE (a)];
282 if (n > 1)
283 {
284 /* We track every subobject separately. */
285 gcc_assert (nregs == n);
286 nregs = 1;
287 }
288
289 for (i = 0; i < n; i++)
290 {
291 ira_object_t obj = ALLOCNO_OBJECT (a, i);
292
293 if (sparseset_bit_p (objects_live, OBJECT_CONFLICT_ID (obj)))
294 continue;
295
296 inc_register_pressure (pclass, nregs);
297 make_object_born (obj);
298 }
299 }
300
301 /* Like mark_pseudo_regno_live, but try to only mark one subword of
302 the pseudo as live. SUBWORD indicates which; a value of 0
303 indicates the low part. */
304 static void
305 mark_pseudo_regno_subword_live (int regno, int subword)
306 {
307 ira_allocno_t a = ira_curr_regno_allocno_map[regno];
308 int n;
309 enum reg_class pclass;
310 ira_object_t obj;
311
312 if (a == NULL)
313 return;
314
315 /* Invalidate because it is referenced. */
316 allocno_saved_at_call[ALLOCNO_NUM (a)] = 0;
317
318 n = ALLOCNO_NUM_OBJECTS (a);
319 if (n == 1)
320 {
321 mark_pseudo_regno_live (regno);
322 return;
323 }
324
325 pclass = ira_pressure_class_translate[ALLOCNO_CLASS (a)];
326 gcc_assert
327 (n == ira_reg_class_max_nregs[ALLOCNO_CLASS (a)][ALLOCNO_MODE (a)]);
328 obj = ALLOCNO_OBJECT (a, subword);
329
330 if (sparseset_bit_p (objects_live, OBJECT_CONFLICT_ID (obj)))
331 return;
332
333 inc_register_pressure (pclass, 1);
334 make_object_born (obj);
335 }
336
337 /* Mark the register REG as live. Store a 1 in hard_regs_live for
338 this register, record how many consecutive hardware registers it
339 actually needs. */
340 static void
341 mark_hard_reg_live (rtx reg)
342 {
343 int regno = REGNO (reg);
344
345 if (! TEST_HARD_REG_BIT (ira_no_alloc_regs, regno))
346 {
347 int last = END_REGNO (reg);
348 enum reg_class aclass, pclass;
349
350 while (regno < last)
351 {
352 if (! TEST_HARD_REG_BIT (hard_regs_live, regno)
353 && ! TEST_HARD_REG_BIT (eliminable_regset, regno))
354 {
355 aclass = ira_hard_regno_allocno_class[regno];
356 pclass = ira_pressure_class_translate[aclass];
357 inc_register_pressure (pclass, 1);
358 make_hard_regno_born (regno);
359 }
360 regno++;
361 }
362 }
363 }
364
365 /* Mark a pseudo, or one of its subwords, as live. REGNO is the pseudo's
366 register number; ORIG_REG is the access in the insn, which may be a
367 subreg. */
368 static void
369 mark_pseudo_reg_live (rtx orig_reg, unsigned regno)
370 {
371 if (df_read_modify_subreg_p (orig_reg))
372 {
373 mark_pseudo_regno_subword_live (regno,
374 subreg_lowpart_p (orig_reg) ? 0 : 1);
375 }
376 else
377 mark_pseudo_regno_live (regno);
378 }
379
380 /* Mark the register referenced by use or def REF as live. */
381 static void
382 mark_ref_live (df_ref ref)
383 {
384 rtx reg = DF_REF_REG (ref);
385 rtx orig_reg = reg;
386
387 if (GET_CODE (reg) == SUBREG)
388 reg = SUBREG_REG (reg);
389
390 if (REGNO (reg) >= FIRST_PSEUDO_REGISTER)
391 mark_pseudo_reg_live (orig_reg, REGNO (reg));
392 else
393 mark_hard_reg_live (reg);
394 }
395
396 /* Mark the pseudo register REGNO as dead. Update all information about
397 live ranges and register pressure. */
398 static void
399 mark_pseudo_regno_dead (int regno)
400 {
401 ira_allocno_t a = ira_curr_regno_allocno_map[regno];
402 int n, i, nregs;
403 enum reg_class cl;
404
405 if (a == NULL)
406 return;
407
408 /* Invalidate because it is referenced. */
409 allocno_saved_at_call[ALLOCNO_NUM (a)] = 0;
410
411 n = ALLOCNO_NUM_OBJECTS (a);
412 cl = ira_pressure_class_translate[ALLOCNO_CLASS (a)];
413 nregs = ira_reg_class_max_nregs[ALLOCNO_CLASS (a)][ALLOCNO_MODE (a)];
414 if (n > 1)
415 {
416 /* We track every subobject separately. */
417 gcc_assert (nregs == n);
418 nregs = 1;
419 }
420 for (i = 0; i < n; i++)
421 {
422 ira_object_t obj = ALLOCNO_OBJECT (a, i);
423 if (!sparseset_bit_p (objects_live, OBJECT_CONFLICT_ID (obj)))
424 continue;
425
426 dec_register_pressure (cl, nregs);
427 make_object_dead (obj);
428 }
429 }
430
431 /* Like mark_pseudo_regno_dead, but called when we know that only part of the
432 register dies. SUBWORD indicates which; a value of 0 indicates the low part. */
433 static void
434 mark_pseudo_regno_subword_dead (int regno, int subword)
435 {
436 ira_allocno_t a = ira_curr_regno_allocno_map[regno];
437 int n;
438 enum reg_class cl;
439 ira_object_t obj;
440
441 if (a == NULL)
442 return;
443
444 /* Invalidate because it is referenced. */
445 allocno_saved_at_call[ALLOCNO_NUM (a)] = 0;
446
447 n = ALLOCNO_NUM_OBJECTS (a);
448 if (n == 1)
449 /* The allocno as a whole doesn't die in this case. */
450 return;
451
452 cl = ira_pressure_class_translate[ALLOCNO_CLASS (a)];
453 gcc_assert
454 (n == ira_reg_class_max_nregs[ALLOCNO_CLASS (a)][ALLOCNO_MODE (a)]);
455
456 obj = ALLOCNO_OBJECT (a, subword);
457 if (!sparseset_bit_p (objects_live, OBJECT_CONFLICT_ID (obj)))
458 return;
459
460 dec_register_pressure (cl, 1);
461 make_object_dead (obj);
462 }
463
464 /* Mark the hard register REG as dead. Store a 0 in hard_regs_live for the
465 register. */
466 static void
467 mark_hard_reg_dead (rtx reg)
468 {
469 int regno = REGNO (reg);
470
471 if (! TEST_HARD_REG_BIT (ira_no_alloc_regs, regno))
472 {
473 int last = END_REGNO (reg);
474 enum reg_class aclass, pclass;
475
476 while (regno < last)
477 {
478 if (TEST_HARD_REG_BIT (hard_regs_live, regno))
479 {
480 aclass = ira_hard_regno_allocno_class[regno];
481 pclass = ira_pressure_class_translate[aclass];
482 dec_register_pressure (pclass, 1);
483 make_hard_regno_dead (regno);
484 }
485 regno++;
486 }
487 }
488 }
489
490 /* Mark a pseudo, or one of its subwords, as dead. REGNO is the pseudo's
491 register number; ORIG_REG is the access in the insn, which may be a
492 subreg. */
493 static void
494 mark_pseudo_reg_dead (rtx orig_reg, unsigned regno)
495 {
496 if (df_read_modify_subreg_p (orig_reg))
497 {
498 mark_pseudo_regno_subword_dead (regno,
499 subreg_lowpart_p (orig_reg) ? 0 : 1);
500 }
501 else
502 mark_pseudo_regno_dead (regno);
503 }
504
505 /* Mark the register referenced by definition DEF as dead, if the
506 definition is a total one. */
507 static void
508 mark_ref_dead (df_ref def)
509 {
510 rtx reg = DF_REF_REG (def);
511 rtx orig_reg = reg;
512
513 if (DF_REF_FLAGS_IS_SET (def, DF_REF_CONDITIONAL))
514 return;
515
516 if (GET_CODE (reg) == SUBREG)
517 reg = SUBREG_REG (reg);
518
519 if (DF_REF_FLAGS_IS_SET (def, DF_REF_PARTIAL)
520 && (GET_CODE (orig_reg) != SUBREG
521 || REGNO (reg) < FIRST_PSEUDO_REGISTER
522 || !df_read_modify_subreg_p (orig_reg)))
523 return;
524
525 if (REGNO (reg) >= FIRST_PSEUDO_REGISTER)
526 mark_pseudo_reg_dead (orig_reg, REGNO (reg));
527 else
528 mark_hard_reg_dead (reg);
529 }
530
531 /* If REG is a pseudo or a subreg of it, and the class of its allocno
532 intersects CL, make a conflict with pseudo DREG. ORIG_DREG is the
533 rtx actually accessed, it may be identical to DREG or a subreg of it.
534 Advance the current program point before making the conflict if
535 ADVANCE_P. Return TRUE if we will need to advance the current
536 program point. */
537 static bool
538 make_pseudo_conflict (rtx reg, enum reg_class cl, rtx dreg, rtx orig_dreg,
539 bool advance_p)
540 {
541 rtx orig_reg = reg;
542 ira_allocno_t a;
543
544 if (GET_CODE (reg) == SUBREG)
545 reg = SUBREG_REG (reg);
546
547 if (! REG_P (reg) || REGNO (reg) < FIRST_PSEUDO_REGISTER)
548 return advance_p;
549
550 a = ira_curr_regno_allocno_map[REGNO (reg)];
551 if (! reg_classes_intersect_p (cl, ALLOCNO_CLASS (a)))
552 return advance_p;
553
554 if (advance_p)
555 curr_point++;
556
557 mark_pseudo_reg_live (orig_reg, REGNO (reg));
558 mark_pseudo_reg_live (orig_dreg, REGNO (dreg));
559 mark_pseudo_reg_dead (orig_reg, REGNO (reg));
560 mark_pseudo_reg_dead (orig_dreg, REGNO (dreg));
561
562 return false;
563 }
564
565 /* Check and make if necessary conflicts for pseudo DREG of class
566 DEF_CL of the current insn with input operand USE of class USE_CL.
567 ORIG_DREG is the rtx actually accessed, it may be identical to
568 DREG or a subreg of it. Advance the current program point before
569 making the conflict if ADVANCE_P. Return TRUE if we will need to
570 advance the current program point. */
571 static bool
572 check_and_make_def_use_conflict (rtx dreg, rtx orig_dreg,
573 enum reg_class def_cl, int use,
574 enum reg_class use_cl, bool advance_p)
575 {
576 if (! reg_classes_intersect_p (def_cl, use_cl))
577 return advance_p;
578
579 advance_p = make_pseudo_conflict (recog_data.operand[use],
580 use_cl, dreg, orig_dreg, advance_p);
581
582 /* Reload may end up swapping commutative operands, so you
583 have to take both orderings into account. The
584 constraints for the two operands can be completely
585 different. (Indeed, if the constraints for the two
586 operands are the same for all alternatives, there's no
587 point marking them as commutative.) */
588 if (use < recog_data.n_operands - 1
589 && recog_data.constraints[use][0] == '%')
590 advance_p
591 = make_pseudo_conflict (recog_data.operand[use + 1],
592 use_cl, dreg, orig_dreg, advance_p);
593 if (use >= 1
594 && recog_data.constraints[use - 1][0] == '%')
595 advance_p
596 = make_pseudo_conflict (recog_data.operand[use - 1],
597 use_cl, dreg, orig_dreg, advance_p);
598 return advance_p;
599 }
600
601 /* Check and make if necessary conflicts for definition DEF of class
602 DEF_CL of the current insn with input operands. Process only
603 constraints of alternative ALT. */
604 static void
605 check_and_make_def_conflict (int alt, int def, enum reg_class def_cl)
606 {
607 int use, use_match;
608 ira_allocno_t a;
609 enum reg_class use_cl, acl;
610 bool advance_p;
611 rtx dreg = recog_data.operand[def];
612 rtx orig_dreg = dreg;
613
614 if (def_cl == NO_REGS)
615 return;
616
617 if (GET_CODE (dreg) == SUBREG)
618 dreg = SUBREG_REG (dreg);
619
620 if (! REG_P (dreg) || REGNO (dreg) < FIRST_PSEUDO_REGISTER)
621 return;
622
623 a = ira_curr_regno_allocno_map[REGNO (dreg)];
624 acl = ALLOCNO_CLASS (a);
625 if (! reg_classes_intersect_p (acl, def_cl))
626 return;
627
628 advance_p = true;
629
630 int n_operands = recog_data.n_operands;
631 const operand_alternative *op_alt = &recog_op_alt[alt * n_operands];
632 for (use = 0; use < n_operands; use++)
633 {
634 int alt1;
635
636 if (use == def || recog_data.operand_type[use] == OP_OUT)
637 continue;
638
639 if (op_alt[use].anything_ok)
640 use_cl = ALL_REGS;
641 else
642 use_cl = op_alt[use].cl;
643
644 /* If there's any alternative that allows USE to match DEF, do not
645 record a conflict. If that causes us to create an invalid
646 instruction due to the earlyclobber, reload must fix it up. */
647 for (alt1 = 0; alt1 < recog_data.n_alternatives; alt1++)
648 {
649 if (!TEST_BIT (preferred_alternatives, alt1))
650 continue;
651 const operand_alternative *op_alt1
652 = &recog_op_alt[alt1 * n_operands];
653 if (op_alt1[use].matches == def
654 || (use < n_operands - 1
655 && recog_data.constraints[use][0] == '%'
656 && op_alt1[use + 1].matches == def)
657 || (use >= 1
658 && recog_data.constraints[use - 1][0] == '%'
659 && op_alt1[use - 1].matches == def))
660 break;
661 }
662
663 if (alt1 < recog_data.n_alternatives)
664 continue;
665
666 advance_p = check_and_make_def_use_conflict (dreg, orig_dreg, def_cl,
667 use, use_cl, advance_p);
668
669 if ((use_match = op_alt[use].matches) >= 0)
670 {
671 if (use_match == def)
672 continue;
673
674 if (op_alt[use_match].anything_ok)
675 use_cl = ALL_REGS;
676 else
677 use_cl = op_alt[use_match].cl;
678 advance_p = check_and_make_def_use_conflict (dreg, orig_dreg, def_cl,
679 use, use_cl, advance_p);
680 }
681 }
682 }
683
684 /* Make conflicts of early clobber pseudo registers of the current
685 insn with its inputs. Avoid introducing unnecessary conflicts by
686 checking classes of the constraints and pseudos because otherwise
687 significant code degradation is possible for some targets. */
688 static void
689 make_early_clobber_and_input_conflicts (void)
690 {
691 int alt;
692 int def, def_match;
693 enum reg_class def_cl;
694
695 int n_alternatives = recog_data.n_alternatives;
696 int n_operands = recog_data.n_operands;
697 const operand_alternative *op_alt = recog_op_alt;
698 for (alt = 0; alt < n_alternatives; alt++, op_alt += n_operands)
699 if (TEST_BIT (preferred_alternatives, alt))
700 for (def = 0; def < n_operands; def++)
701 {
702 def_cl = NO_REGS;
703 if (op_alt[def].earlyclobber)
704 {
705 if (op_alt[def].anything_ok)
706 def_cl = ALL_REGS;
707 else
708 def_cl = op_alt[def].cl;
709 check_and_make_def_conflict (alt, def, def_cl);
710 }
711 if ((def_match = op_alt[def].matches) >= 0
712 && (op_alt[def_match].earlyclobber
713 || op_alt[def].earlyclobber))
714 {
715 if (op_alt[def_match].anything_ok)
716 def_cl = ALL_REGS;
717 else
718 def_cl = op_alt[def_match].cl;
719 check_and_make_def_conflict (alt, def, def_cl);
720 }
721 }
722 }
723
724 /* Mark early clobber hard registers of the current INSN as live (if
725 LIVE_P) or dead. Return true if there are such registers. */
726 static bool
727 mark_hard_reg_early_clobbers (rtx_insn *insn, bool live_p)
728 {
729 df_ref def;
730 bool set_p = false;
731
732 FOR_EACH_INSN_DEF (def, insn)
733 if (DF_REF_FLAGS_IS_SET (def, DF_REF_MUST_CLOBBER))
734 {
735 rtx dreg = DF_REF_REG (def);
736
737 if (GET_CODE (dreg) == SUBREG)
738 dreg = SUBREG_REG (dreg);
739 if (! REG_P (dreg) || REGNO (dreg) >= FIRST_PSEUDO_REGISTER)
740 continue;
741
742 /* Hard register clobbers are believed to be early clobber
743 because there is no way to say that non-operand hard
744 register clobbers are not early ones. */
745 if (live_p)
746 mark_ref_live (def);
747 else
748 mark_ref_dead (def);
749 set_p = true;
750 }
751
752 return set_p;
753 }
754
755 /* Checks that CONSTRAINTS permits to use only one hard register. If
756 it is so, the function returns the class of the hard register.
757 Otherwise it returns NO_REGS. */
758 static enum reg_class
759 single_reg_class (const char *constraints, rtx op, rtx equiv_const)
760 {
761 int c;
762 enum reg_class cl, next_cl;
763 enum constraint_num cn;
764
765 cl = NO_REGS;
766 alternative_mask preferred = preferred_alternatives;
767 for (; (c = *constraints); constraints += CONSTRAINT_LEN (c, constraints))
768 if (c == '#')
769 preferred &= ~ALTERNATIVE_BIT (0);
770 else if (c == ',')
771 preferred >>= 1;
772 else if (preferred & 1)
773 switch (c)
774 {
775 case 'g':
776 return NO_REGS;
777
778 default:
779 /* ??? Is this the best way to handle memory constraints? */
780 cn = lookup_constraint (constraints);
781 if (insn_extra_memory_constraint (cn)
782 || insn_extra_address_constraint (cn))
783 return NO_REGS;
784 if (constraint_satisfied_p (op, cn)
785 || (equiv_const != NULL_RTX
786 && CONSTANT_P (equiv_const)
787 && constraint_satisfied_p (equiv_const, cn)))
788 return NO_REGS;
789 next_cl = reg_class_for_constraint (cn);
790 if (next_cl == NO_REGS)
791 break;
792 if (cl == NO_REGS
793 ? ira_class_singleton[next_cl][GET_MODE (op)] < 0
794 : (ira_class_singleton[cl][GET_MODE (op)]
795 != ira_class_singleton[next_cl][GET_MODE (op)]))
796 return NO_REGS;
797 cl = next_cl;
798 break;
799
800 case '0': case '1': case '2': case '3': case '4':
801 case '5': case '6': case '7': case '8': case '9':
802 next_cl
803 = single_reg_class (recog_data.constraints[c - '0'],
804 recog_data.operand[c - '0'], NULL_RTX);
805 if (cl == NO_REGS
806 ? ira_class_singleton[next_cl][GET_MODE (op)] < 0
807 : (ira_class_singleton[cl][GET_MODE (op)]
808 != ira_class_singleton[next_cl][GET_MODE (op)]))
809 return NO_REGS;
810 cl = next_cl;
811 break;
812 }
813 return cl;
814 }
815
816 /* The function checks that operand OP_NUM of the current insn can use
817 only one hard register. If it is so, the function returns the
818 class of the hard register. Otherwise it returns NO_REGS. */
819 static enum reg_class
820 single_reg_operand_class (int op_num)
821 {
822 if (op_num < 0 || recog_data.n_alternatives == 0)
823 return NO_REGS;
824 return single_reg_class (recog_data.constraints[op_num],
825 recog_data.operand[op_num], NULL_RTX);
826 }
827
828 /* The function sets up hard register set *SET to hard registers which
829 might be used by insn reloads because the constraints are too
830 strict. */
831 void
832 ira_implicitly_set_insn_hard_regs (HARD_REG_SET *set,
833 alternative_mask preferred)
834 {
835 int i, c, regno = 0;
836 enum reg_class cl;
837 rtx op;
838 machine_mode mode;
839
840 CLEAR_HARD_REG_SET (*set);
841 for (i = 0; i < recog_data.n_operands; i++)
842 {
843 op = recog_data.operand[i];
844
845 if (GET_CODE (op) == SUBREG)
846 op = SUBREG_REG (op);
847
848 if (GET_CODE (op) == SCRATCH
849 || (REG_P (op) && (regno = REGNO (op)) >= FIRST_PSEUDO_REGISTER))
850 {
851 const char *p = recog_data.constraints[i];
852
853 mode = (GET_CODE (op) == SCRATCH
854 ? GET_MODE (op) : PSEUDO_REGNO_MODE (regno));
855 cl = NO_REGS;
856 for (; (c = *p); p += CONSTRAINT_LEN (c, p))
857 if (c == '#')
858 preferred &= ~ALTERNATIVE_BIT (0);
859 else if (c == ',')
860 preferred >>= 1;
861 else if (preferred & 1)
862 {
863 cl = reg_class_for_constraint (lookup_constraint (p));
864 if (cl != NO_REGS)
865 {
866 /* There is no register pressure problem if all of the
867 regs in this class are fixed. */
868 int regno = ira_class_singleton[cl][mode];
869 if (regno >= 0)
870 add_to_hard_reg_set (set, mode, regno);
871 }
872 }
873 }
874 }
875 }
876 /* Processes input operands, if IN_P, or output operands otherwise of
877 the current insn with FREQ to find allocno which can use only one
878 hard register and makes other currently living allocnos conflicting
879 with the hard register. */
880 static void
881 process_single_reg_class_operands (bool in_p, int freq)
882 {
883 int i, regno;
884 unsigned int px;
885 enum reg_class cl;
886 rtx operand;
887 ira_allocno_t operand_a, a;
888
889 for (i = 0; i < recog_data.n_operands; i++)
890 {
891 operand = recog_data.operand[i];
892 if (in_p && recog_data.operand_type[i] != OP_IN
893 && recog_data.operand_type[i] != OP_INOUT)
894 continue;
895 if (! in_p && recog_data.operand_type[i] != OP_OUT
896 && recog_data.operand_type[i] != OP_INOUT)
897 continue;
898 cl = single_reg_operand_class (i);
899 if (cl == NO_REGS)
900 continue;
901
902 operand_a = NULL;
903
904 if (GET_CODE (operand) == SUBREG)
905 operand = SUBREG_REG (operand);
906
907 if (REG_P (operand)
908 && (regno = REGNO (operand)) >= FIRST_PSEUDO_REGISTER)
909 {
910 enum reg_class aclass;
911
912 operand_a = ira_curr_regno_allocno_map[regno];
913 aclass = ALLOCNO_CLASS (operand_a);
914 if (ira_class_subset_p[cl][aclass])
915 {
916 /* View the desired allocation of OPERAND as:
917
918 (REG:YMODE YREGNO),
919
920 a simplification of:
921
922 (subreg:YMODE (reg:XMODE XREGNO) OFFSET). */
923 machine_mode ymode, xmode;
924 int xregno, yregno;
925 HOST_WIDE_INT offset;
926
927 xmode = recog_data.operand_mode[i];
928 xregno = ira_class_singleton[cl][xmode];
929 gcc_assert (xregno >= 0);
930 ymode = ALLOCNO_MODE (operand_a);
931 offset = subreg_lowpart_offset (ymode, xmode);
932 yregno = simplify_subreg_regno (xregno, xmode, offset, ymode);
933 if (yregno >= 0
934 && ira_class_hard_reg_index[aclass][yregno] >= 0)
935 {
936 int cost;
937
938 ira_allocate_and_set_costs
939 (&ALLOCNO_CONFLICT_HARD_REG_COSTS (operand_a),
940 aclass, 0);
941 ira_init_register_move_cost_if_necessary (xmode);
942 cost = freq * (in_p
943 ? ira_register_move_cost[xmode][aclass][cl]
944 : ira_register_move_cost[xmode][cl][aclass]);
945 ALLOCNO_CONFLICT_HARD_REG_COSTS (operand_a)
946 [ira_class_hard_reg_index[aclass][yregno]] -= cost;
947 }
948 }
949 }
950
951 EXECUTE_IF_SET_IN_SPARSESET (objects_live, px)
952 {
953 ira_object_t obj = ira_object_id_map[px];
954 a = OBJECT_ALLOCNO (obj);
955 if (a != operand_a)
956 {
957 /* We could increase costs of A instead of making it
958 conflicting with the hard register. But it works worse
959 because it will be spilled in reload in anyway. */
960 IOR_HARD_REG_SET (OBJECT_CONFLICT_HARD_REGS (obj),
961 reg_class_contents[cl]);
962 IOR_HARD_REG_SET (OBJECT_TOTAL_CONFLICT_HARD_REGS (obj),
963 reg_class_contents[cl]);
964 }
965 }
966 }
967 }
968
969 /* Look through the CALL_INSN_FUNCTION_USAGE of a call insn INSN, and see if
970 we find a SET rtx that we can use to deduce that a register can be cheaply
971 caller-saved. Return such a register, or NULL_RTX if none is found. */
972 static rtx
973 find_call_crossed_cheap_reg (rtx_insn *insn)
974 {
975 rtx cheap_reg = NULL_RTX;
976 rtx exp = CALL_INSN_FUNCTION_USAGE (insn);
977
978 while (exp != NULL)
979 {
980 rtx x = XEXP (exp, 0);
981 if (GET_CODE (x) == SET)
982 {
983 exp = x;
984 break;
985 }
986 exp = XEXP (exp, 1);
987 }
988 if (exp != NULL)
989 {
990 basic_block bb = BLOCK_FOR_INSN (insn);
991 rtx reg = SET_SRC (exp);
992 rtx_insn *prev = PREV_INSN (insn);
993 while (prev && !(INSN_P (prev)
994 && BLOCK_FOR_INSN (prev) != bb))
995 {
996 if (NONDEBUG_INSN_P (prev))
997 {
998 rtx set = single_set (prev);
999
1000 if (set && rtx_equal_p (SET_DEST (set), reg))
1001 {
1002 rtx src = SET_SRC (set);
1003 if (!REG_P (src) || HARD_REGISTER_P (src)
1004 || !pseudo_regno_single_word_and_live_p (REGNO (src)))
1005 break;
1006 if (!modified_between_p (src, prev, insn))
1007 cheap_reg = src;
1008 break;
1009 }
1010 if (set && rtx_equal_p (SET_SRC (set), reg))
1011 {
1012 rtx dest = SET_DEST (set);
1013 if (!REG_P (dest) || HARD_REGISTER_P (dest)
1014 || !pseudo_regno_single_word_and_live_p (REGNO (dest)))
1015 break;
1016 if (!modified_between_p (dest, prev, insn))
1017 cheap_reg = dest;
1018 break;
1019 }
1020
1021 if (reg_overlap_mentioned_p (reg, PATTERN (prev)))
1022 break;
1023 }
1024 prev = PREV_INSN (prev);
1025 }
1026 }
1027 return cheap_reg;
1028 }
1029
1030 /* Process insns of the basic block given by its LOOP_TREE_NODE to
1031 update allocno live ranges, allocno hard register conflicts,
1032 intersected calls, and register pressure info for allocnos for the
1033 basic block for and regions containing the basic block. */
1034 static void
1035 process_bb_node_lives (ira_loop_tree_node_t loop_tree_node)
1036 {
1037 int i, freq;
1038 unsigned int j;
1039 basic_block bb;
1040 rtx_insn *insn;
1041 bitmap_iterator bi;
1042 bitmap reg_live_out;
1043 unsigned int px;
1044 bool set_p;
1045
1046 bb = loop_tree_node->bb;
1047 if (bb != NULL)
1048 {
1049 for (i = 0; i < ira_pressure_classes_num; i++)
1050 {
1051 curr_reg_pressure[ira_pressure_classes[i]] = 0;
1052 high_pressure_start_point[ira_pressure_classes[i]] = -1;
1053 }
1054 curr_bb_node = loop_tree_node;
1055 reg_live_out = df_get_live_out (bb);
1056 sparseset_clear (objects_live);
1057 REG_SET_TO_HARD_REG_SET (hard_regs_live, reg_live_out);
1058 AND_COMPL_HARD_REG_SET (hard_regs_live, eliminable_regset);
1059 AND_COMPL_HARD_REG_SET (hard_regs_live, ira_no_alloc_regs);
1060 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1061 if (TEST_HARD_REG_BIT (hard_regs_live, i))
1062 {
1063 enum reg_class aclass, pclass, cl;
1064
1065 aclass = ira_allocno_class_translate[REGNO_REG_CLASS (i)];
1066 pclass = ira_pressure_class_translate[aclass];
1067 for (j = 0;
1068 (cl = ira_reg_class_super_classes[pclass][j])
1069 != LIM_REG_CLASSES;
1070 j++)
1071 {
1072 if (! ira_reg_pressure_class_p[cl])
1073 continue;
1074 curr_reg_pressure[cl]++;
1075 if (curr_bb_node->reg_pressure[cl] < curr_reg_pressure[cl])
1076 curr_bb_node->reg_pressure[cl] = curr_reg_pressure[cl];
1077 ira_assert (curr_reg_pressure[cl]
1078 <= ira_class_hard_regs_num[cl]);
1079 }
1080 }
1081 EXECUTE_IF_SET_IN_BITMAP (reg_live_out, FIRST_PSEUDO_REGISTER, j, bi)
1082 mark_pseudo_regno_live (j);
1083
1084 freq = REG_FREQ_FROM_BB (bb);
1085 if (freq == 0)
1086 freq = 1;
1087
1088 /* Invalidate all allocno_saved_at_call entries. */
1089 last_call_num++;
1090
1091 /* Scan the code of this basic block, noting which allocnos and
1092 hard regs are born or die.
1093
1094 Note that this loop treats uninitialized values as live until
1095 the beginning of the block. For example, if an instruction
1096 uses (reg:DI foo), and only (subreg:SI (reg:DI foo) 0) is ever
1097 set, FOO will remain live until the beginning of the block.
1098 Likewise if FOO is not set at all. This is unnecessarily
1099 pessimistic, but it probably doesn't matter much in practice. */
1100 FOR_BB_INSNS_REVERSE (bb, insn)
1101 {
1102 ira_allocno_t a;
1103 df_ref def, use;
1104 bool call_p;
1105
1106 if (!NONDEBUG_INSN_P (insn))
1107 continue;
1108
1109 if (internal_flag_ira_verbose > 2 && ira_dump_file != NULL)
1110 fprintf (ira_dump_file, " Insn %u(l%d): point = %d\n",
1111 INSN_UID (insn), loop_tree_node->parent->loop_num,
1112 curr_point);
1113
1114 call_p = CALL_P (insn);
1115 #ifdef REAL_PIC_OFFSET_TABLE_REGNUM
1116 int regno;
1117 bool clear_pic_use_conflict_p = false;
1118 /* Processing insn usage in call insn can create conflict
1119 with pic pseudo and pic hard reg and that is wrong.
1120 Check this situation and fix it at the end of the insn
1121 processing. */
1122 if (call_p && pic_offset_table_rtx != NULL_RTX
1123 && (regno = REGNO (pic_offset_table_rtx)) >= FIRST_PSEUDO_REGISTER
1124 && (a = ira_curr_regno_allocno_map[regno]) != NULL)
1125 clear_pic_use_conflict_p
1126 = (find_regno_fusage (insn, USE, REAL_PIC_OFFSET_TABLE_REGNUM)
1127 && ! TEST_HARD_REG_BIT (OBJECT_CONFLICT_HARD_REGS
1128 (ALLOCNO_OBJECT (a, 0)),
1129 REAL_PIC_OFFSET_TABLE_REGNUM));
1130 #endif
1131
1132 /* Mark each defined value as live. We need to do this for
1133 unused values because they still conflict with quantities
1134 that are live at the time of the definition.
1135
1136 Ignore DF_REF_MAY_CLOBBERs on a call instruction. Such
1137 references represent the effect of the called function
1138 on a call-clobbered register. Marking the register as
1139 live would stop us from allocating it to a call-crossing
1140 allocno. */
1141 FOR_EACH_INSN_DEF (def, insn)
1142 if (!call_p || !DF_REF_FLAGS_IS_SET (def, DF_REF_MAY_CLOBBER))
1143 mark_ref_live (def);
1144
1145 /* If INSN has multiple outputs, then any value used in one
1146 of the outputs conflicts with the other outputs. Model this
1147 by making the used value live during the output phase.
1148
1149 It is unsafe to use !single_set here since it will ignore
1150 an unused output. Just because an output is unused does
1151 not mean the compiler can assume the side effect will not
1152 occur. Consider if ALLOCNO appears in the address of an
1153 output and we reload the output. If we allocate ALLOCNO
1154 to the same hard register as an unused output we could
1155 set the hard register before the output reload insn. */
1156 if (GET_CODE (PATTERN (insn)) == PARALLEL && multiple_sets (insn))
1157 FOR_EACH_INSN_USE (use, insn)
1158 {
1159 int i;
1160 rtx reg;
1161
1162 reg = DF_REF_REG (use);
1163 for (i = XVECLEN (PATTERN (insn), 0) - 1; i >= 0; i--)
1164 {
1165 rtx set;
1166
1167 set = XVECEXP (PATTERN (insn), 0, i);
1168 if (GET_CODE (set) == SET
1169 && reg_overlap_mentioned_p (reg, SET_DEST (set)))
1170 {
1171 /* After the previous loop, this is a no-op if
1172 REG is contained within SET_DEST (SET). */
1173 mark_ref_live (use);
1174 break;
1175 }
1176 }
1177 }
1178
1179 extract_insn (insn);
1180 preferred_alternatives = get_preferred_alternatives (insn);
1181 preprocess_constraints (insn);
1182 process_single_reg_class_operands (false, freq);
1183
1184 /* See which defined values die here. */
1185 FOR_EACH_INSN_DEF (def, insn)
1186 if (!call_p || !DF_REF_FLAGS_IS_SET (def, DF_REF_MAY_CLOBBER))
1187 mark_ref_dead (def);
1188
1189 if (call_p)
1190 {
1191 /* Try to find a SET in the CALL_INSN_FUNCTION_USAGE, and from
1192 there, try to find a pseudo that is live across the call but
1193 can be cheaply reconstructed from the return value. */
1194 rtx cheap_reg = find_call_crossed_cheap_reg (insn);
1195 if (cheap_reg != NULL_RTX)
1196 add_reg_note (insn, REG_RETURNED, cheap_reg);
1197
1198 last_call_num++;
1199 sparseset_clear (allocnos_processed);
1200 /* The current set of live allocnos are live across the call. */
1201 EXECUTE_IF_SET_IN_SPARSESET (objects_live, i)
1202 {
1203 ira_object_t obj = ira_object_id_map[i];
1204 a = OBJECT_ALLOCNO (obj);
1205 int num = ALLOCNO_NUM (a);
1206 HARD_REG_SET this_call_used_reg_set;
1207
1208 get_call_reg_set_usage (insn, &this_call_used_reg_set,
1209 call_used_reg_set);
1210
1211 /* Don't allocate allocnos that cross setjmps or any
1212 call, if this function receives a nonlocal
1213 goto. */
1214 if (cfun->has_nonlocal_label
1215 || find_reg_note (insn, REG_SETJMP,
1216 NULL_RTX) != NULL_RTX)
1217 {
1218 SET_HARD_REG_SET (OBJECT_CONFLICT_HARD_REGS (obj));
1219 SET_HARD_REG_SET (OBJECT_TOTAL_CONFLICT_HARD_REGS (obj));
1220 }
1221 if (can_throw_internal (insn))
1222 {
1223 IOR_HARD_REG_SET (OBJECT_CONFLICT_HARD_REGS (obj),
1224 this_call_used_reg_set);
1225 IOR_HARD_REG_SET (OBJECT_TOTAL_CONFLICT_HARD_REGS (obj),
1226 this_call_used_reg_set);
1227 }
1228
1229 if (sparseset_bit_p (allocnos_processed, num))
1230 continue;
1231 sparseset_set_bit (allocnos_processed, num);
1232
1233 if (allocno_saved_at_call[num] != last_call_num)
1234 /* Here we are mimicking caller-save.c behavior
1235 which does not save hard register at a call if
1236 it was saved on previous call in the same basic
1237 block and the hard register was not mentioned
1238 between the two calls. */
1239 ALLOCNO_CALL_FREQ (a) += freq;
1240 /* Mark it as saved at the next call. */
1241 allocno_saved_at_call[num] = last_call_num + 1;
1242 ALLOCNO_CALLS_CROSSED_NUM (a)++;
1243 IOR_HARD_REG_SET (ALLOCNO_CROSSED_CALLS_CLOBBERED_REGS (a),
1244 this_call_used_reg_set);
1245 if (cheap_reg != NULL_RTX
1246 && ALLOCNO_REGNO (a) == (int) REGNO (cheap_reg))
1247 ALLOCNO_CHEAP_CALLS_CROSSED_NUM (a)++;
1248 }
1249 }
1250
1251 make_early_clobber_and_input_conflicts ();
1252
1253 curr_point++;
1254
1255 /* Mark each used value as live. */
1256 FOR_EACH_INSN_USE (use, insn)
1257 mark_ref_live (use);
1258
1259 process_single_reg_class_operands (true, freq);
1260
1261 set_p = mark_hard_reg_early_clobbers (insn, true);
1262
1263 if (set_p)
1264 {
1265 mark_hard_reg_early_clobbers (insn, false);
1266
1267 /* Mark each hard reg as live again. For example, a
1268 hard register can be in clobber and in an insn
1269 input. */
1270 FOR_EACH_INSN_USE (use, insn)
1271 {
1272 rtx ureg = DF_REF_REG (use);
1273
1274 if (GET_CODE (ureg) == SUBREG)
1275 ureg = SUBREG_REG (ureg);
1276 if (! REG_P (ureg) || REGNO (ureg) >= FIRST_PSEUDO_REGISTER)
1277 continue;
1278
1279 mark_ref_live (use);
1280 }
1281 }
1282
1283 #ifdef REAL_PIC_OFFSET_TABLE_REGNUM
1284 if (clear_pic_use_conflict_p)
1285 {
1286 regno = REGNO (pic_offset_table_rtx);
1287 a = ira_curr_regno_allocno_map[regno];
1288 CLEAR_HARD_REG_BIT (OBJECT_CONFLICT_HARD_REGS (ALLOCNO_OBJECT (a, 0)),
1289 REAL_PIC_OFFSET_TABLE_REGNUM);
1290 CLEAR_HARD_REG_BIT (OBJECT_TOTAL_CONFLICT_HARD_REGS
1291 (ALLOCNO_OBJECT (a, 0)),
1292 REAL_PIC_OFFSET_TABLE_REGNUM);
1293 }
1294 #endif
1295 curr_point++;
1296 }
1297
1298 if (bb_has_eh_pred (bb))
1299 for (j = 0; ; ++j)
1300 {
1301 unsigned int regno = EH_RETURN_DATA_REGNO (j);
1302 if (regno == INVALID_REGNUM)
1303 break;
1304 make_hard_regno_born (regno);
1305 }
1306
1307 /* Allocnos can't go in stack regs at the start of a basic block
1308 that is reached by an abnormal edge. Likewise for call
1309 clobbered regs, because caller-save, fixup_abnormal_edges and
1310 possibly the table driven EH machinery are not quite ready to
1311 handle such allocnos live across such edges. */
1312 if (bb_has_abnormal_pred (bb))
1313 {
1314 #ifdef STACK_REGS
1315 EXECUTE_IF_SET_IN_SPARSESET (objects_live, px)
1316 {
1317 ira_allocno_t a = OBJECT_ALLOCNO (ira_object_id_map[px]);
1318
1319 ALLOCNO_NO_STACK_REG_P (a) = true;
1320 ALLOCNO_TOTAL_NO_STACK_REG_P (a) = true;
1321 }
1322 for (px = FIRST_STACK_REG; px <= LAST_STACK_REG; px++)
1323 make_hard_regno_born (px);
1324 #endif
1325 /* No need to record conflicts for call clobbered regs if we
1326 have nonlocal labels around, as we don't ever try to
1327 allocate such regs in this case. */
1328 if (!cfun->has_nonlocal_label
1329 && has_abnormal_call_or_eh_pred_edge_p (bb))
1330 for (px = 0; px < FIRST_PSEUDO_REGISTER; px++)
1331 if (call_used_regs[px]
1332 #ifdef REAL_PIC_OFFSET_TABLE_REGNUM
1333 /* We should create a conflict of PIC pseudo with
1334 PIC hard reg as PIC hard reg can have a wrong
1335 value after jump described by the abnormal edge.
1336 In this case we can not allocate PIC hard reg to
1337 PIC pseudo as PIC pseudo will also have a wrong
1338 value. This code is not critical as LRA can fix
1339 it but it is better to have the right allocation
1340 earlier. */
1341 || (px == REAL_PIC_OFFSET_TABLE_REGNUM
1342 && pic_offset_table_rtx != NULL_RTX
1343 && REGNO (pic_offset_table_rtx) >= FIRST_PSEUDO_REGISTER)
1344 #endif
1345 )
1346 make_hard_regno_born (px);
1347 }
1348
1349 EXECUTE_IF_SET_IN_SPARSESET (objects_live, i)
1350 make_object_dead (ira_object_id_map[i]);
1351
1352 curr_point++;
1353
1354 }
1355 /* Propagate register pressure to upper loop tree nodes. */
1356 if (loop_tree_node != ira_loop_tree_root)
1357 for (i = 0; i < ira_pressure_classes_num; i++)
1358 {
1359 enum reg_class pclass;
1360
1361 pclass = ira_pressure_classes[i];
1362 if (loop_tree_node->reg_pressure[pclass]
1363 > loop_tree_node->parent->reg_pressure[pclass])
1364 loop_tree_node->parent->reg_pressure[pclass]
1365 = loop_tree_node->reg_pressure[pclass];
1366 }
1367 }
1368
1369 /* Create and set up IRA_START_POINT_RANGES and
1370 IRA_FINISH_POINT_RANGES. */
1371 static void
1372 create_start_finish_chains (void)
1373 {
1374 ira_object_t obj;
1375 ira_object_iterator oi;
1376 live_range_t r;
1377
1378 ira_start_point_ranges
1379 = (live_range_t *) ira_allocate (ira_max_point * sizeof (live_range_t));
1380 memset (ira_start_point_ranges, 0, ira_max_point * sizeof (live_range_t));
1381 ira_finish_point_ranges
1382 = (live_range_t *) ira_allocate (ira_max_point * sizeof (live_range_t));
1383 memset (ira_finish_point_ranges, 0, ira_max_point * sizeof (live_range_t));
1384 FOR_EACH_OBJECT (obj, oi)
1385 for (r = OBJECT_LIVE_RANGES (obj); r != NULL; r = r->next)
1386 {
1387 r->start_next = ira_start_point_ranges[r->start];
1388 ira_start_point_ranges[r->start] = r;
1389 r->finish_next = ira_finish_point_ranges[r->finish];
1390 ira_finish_point_ranges[r->finish] = r;
1391 }
1392 }
1393
1394 /* Rebuild IRA_START_POINT_RANGES and IRA_FINISH_POINT_RANGES after
1395 new live ranges and program points were added as a result if new
1396 insn generation. */
1397 void
1398 ira_rebuild_start_finish_chains (void)
1399 {
1400 ira_free (ira_finish_point_ranges);
1401 ira_free (ira_start_point_ranges);
1402 create_start_finish_chains ();
1403 }
1404
1405 /* Compress allocno live ranges by removing program points where
1406 nothing happens. */
1407 static void
1408 remove_some_program_points_and_update_live_ranges (void)
1409 {
1410 unsigned i;
1411 int n;
1412 int *map;
1413 ira_object_t obj;
1414 ira_object_iterator oi;
1415 live_range_t r, prev_r, next_r;
1416 sbitmap born_or_dead, born, dead;
1417 sbitmap_iterator sbi;
1418 bool born_p, dead_p, prev_born_p, prev_dead_p;
1419
1420 born = sbitmap_alloc (ira_max_point);
1421 dead = sbitmap_alloc (ira_max_point);
1422 bitmap_clear (born);
1423 bitmap_clear (dead);
1424 FOR_EACH_OBJECT (obj, oi)
1425 for (r = OBJECT_LIVE_RANGES (obj); r != NULL; r = r->next)
1426 {
1427 ira_assert (r->start <= r->finish);
1428 bitmap_set_bit (born, r->start);
1429 bitmap_set_bit (dead, r->finish);
1430 }
1431
1432 born_or_dead = sbitmap_alloc (ira_max_point);
1433 bitmap_ior (born_or_dead, born, dead);
1434 map = (int *) ira_allocate (sizeof (int) * ira_max_point);
1435 n = -1;
1436 prev_born_p = prev_dead_p = false;
1437 EXECUTE_IF_SET_IN_BITMAP (born_or_dead, 0, i, sbi)
1438 {
1439 born_p = bitmap_bit_p (born, i);
1440 dead_p = bitmap_bit_p (dead, i);
1441 if ((prev_born_p && ! prev_dead_p && born_p && ! dead_p)
1442 || (prev_dead_p && ! prev_born_p && dead_p && ! born_p))
1443 map[i] = n;
1444 else
1445 map[i] = ++n;
1446 prev_born_p = born_p;
1447 prev_dead_p = dead_p;
1448 }
1449 sbitmap_free (born_or_dead);
1450 sbitmap_free (born);
1451 sbitmap_free (dead);
1452 n++;
1453 if (internal_flag_ira_verbose > 1 && ira_dump_file != NULL)
1454 fprintf (ira_dump_file, "Compressing live ranges: from %d to %d - %d%%\n",
1455 ira_max_point, n, 100 * n / ira_max_point);
1456 ira_max_point = n;
1457
1458 FOR_EACH_OBJECT (obj, oi)
1459 for (r = OBJECT_LIVE_RANGES (obj), prev_r = NULL; r != NULL; r = next_r)
1460 {
1461 next_r = r->next;
1462 r->start = map[r->start];
1463 r->finish = map[r->finish];
1464 if (prev_r == NULL || prev_r->start > r->finish + 1)
1465 {
1466 prev_r = r;
1467 continue;
1468 }
1469 prev_r->start = r->start;
1470 prev_r->next = next_r;
1471 ira_finish_live_range (r);
1472 }
1473
1474 ira_free (map);
1475 }
1476
1477 /* Print live ranges R to file F. */
1478 void
1479 ira_print_live_range_list (FILE *f, live_range_t r)
1480 {
1481 for (; r != NULL; r = r->next)
1482 fprintf (f, " [%d..%d]", r->start, r->finish);
1483 fprintf (f, "\n");
1484 }
1485
1486 DEBUG_FUNCTION void
1487 debug (live_range &ref)
1488 {
1489 ira_print_live_range_list (stderr, &ref);
1490 }
1491
1492 DEBUG_FUNCTION void
1493 debug (live_range *ptr)
1494 {
1495 if (ptr)
1496 debug (*ptr);
1497 else
1498 fprintf (stderr, "<nil>\n");
1499 }
1500
1501 /* Print live ranges R to stderr. */
1502 void
1503 ira_debug_live_range_list (live_range_t r)
1504 {
1505 ira_print_live_range_list (stderr, r);
1506 }
1507
1508 /* Print live ranges of object OBJ to file F. */
1509 static void
1510 print_object_live_ranges (FILE *f, ira_object_t obj)
1511 {
1512 ira_print_live_range_list (f, OBJECT_LIVE_RANGES (obj));
1513 }
1514
1515 /* Print live ranges of allocno A to file F. */
1516 static void
1517 print_allocno_live_ranges (FILE *f, ira_allocno_t a)
1518 {
1519 int n = ALLOCNO_NUM_OBJECTS (a);
1520 int i;
1521
1522 for (i = 0; i < n; i++)
1523 {
1524 fprintf (f, " a%d(r%d", ALLOCNO_NUM (a), ALLOCNO_REGNO (a));
1525 if (n > 1)
1526 fprintf (f, " [%d]", i);
1527 fprintf (f, "):");
1528 print_object_live_ranges (f, ALLOCNO_OBJECT (a, i));
1529 }
1530 }
1531
1532 /* Print live ranges of allocno A to stderr. */
1533 void
1534 ira_debug_allocno_live_ranges (ira_allocno_t a)
1535 {
1536 print_allocno_live_ranges (stderr, a);
1537 }
1538
1539 /* Print live ranges of all allocnos to file F. */
1540 static void
1541 print_live_ranges (FILE *f)
1542 {
1543 ira_allocno_t a;
1544 ira_allocno_iterator ai;
1545
1546 FOR_EACH_ALLOCNO (a, ai)
1547 print_allocno_live_ranges (f, a);
1548 }
1549
1550 /* Print live ranges of all allocnos to stderr. */
1551 void
1552 ira_debug_live_ranges (void)
1553 {
1554 print_live_ranges (stderr);
1555 }
1556
1557 /* The main entry function creates live ranges, set up
1558 CONFLICT_HARD_REGS and TOTAL_CONFLICT_HARD_REGS for objects, and
1559 calculate register pressure info. */
1560 void
1561 ira_create_allocno_live_ranges (void)
1562 {
1563 objects_live = sparseset_alloc (ira_objects_num);
1564 allocnos_processed = sparseset_alloc (ira_allocnos_num);
1565 curr_point = 0;
1566 last_call_num = 0;
1567 allocno_saved_at_call
1568 = (int *) ira_allocate (ira_allocnos_num * sizeof (int));
1569 memset (allocno_saved_at_call, 0, ira_allocnos_num * sizeof (int));
1570 ira_traverse_loop_tree (true, ira_loop_tree_root, NULL,
1571 process_bb_node_lives);
1572 ira_max_point = curr_point;
1573 create_start_finish_chains ();
1574 if (internal_flag_ira_verbose > 2 && ira_dump_file != NULL)
1575 print_live_ranges (ira_dump_file);
1576 /* Clean up. */
1577 ira_free (allocno_saved_at_call);
1578 sparseset_free (objects_live);
1579 sparseset_free (allocnos_processed);
1580 }
1581
1582 /* Compress allocno live ranges. */
1583 void
1584 ira_compress_allocno_live_ranges (void)
1585 {
1586 remove_some_program_points_and_update_live_ranges ();
1587 ira_rebuild_start_finish_chains ();
1588 if (internal_flag_ira_verbose > 2 && ira_dump_file != NULL)
1589 {
1590 fprintf (ira_dump_file, "Ranges after the compression:\n");
1591 print_live_ranges (ira_dump_file);
1592 }
1593 }
1594
1595 /* Free arrays IRA_START_POINT_RANGES and IRA_FINISH_POINT_RANGES. */
1596 void
1597 ira_finish_allocno_live_ranges (void)
1598 {
1599 ira_free (ira_finish_point_ranges);
1600 ira_free (ira_start_point_ranges);
1601 }