]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/ira-lives.c
re PR rtl-optimization/86939 (IRA incorrectly creates an interference between a pseud...
[thirdparty/gcc.git] / gcc / ira-lives.c
1 /* IRA processing allocno lives to build allocno live ranges.
2 Copyright (C) 2006-2018 Free Software Foundation, Inc.
3 Contributed by Vladimir Makarov <vmakarov@redhat.com>.
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
10 version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
20
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "backend.h"
25 #include "target.h"
26 #include "rtl.h"
27 #include "predict.h"
28 #include "df.h"
29 #include "memmodel.h"
30 #include "tm_p.h"
31 #include "insn-config.h"
32 #include "regs.h"
33 #include "ira.h"
34 #include "ira-int.h"
35 #include "sparseset.h"
36
37 /* The code in this file is similar to one in global but the code
38 works on the allocno basis and creates live ranges instead of
39 pseudo-register conflicts. */
40
41 /* Program points are enumerated by numbers from range
42 0..IRA_MAX_POINT-1. There are approximately two times more program
43 points than insns. Program points are places in the program where
44 liveness info can be changed. In most general case (there are more
45 complicated cases too) some program points correspond to places
46 where input operand dies and other ones correspond to places where
47 output operands are born. */
48 int ira_max_point;
49
50 /* Arrays of size IRA_MAX_POINT mapping a program point to the allocno
51 live ranges with given start/finish point. */
52 live_range_t *ira_start_point_ranges, *ira_finish_point_ranges;
53
54 /* Number of the current program point. */
55 static int curr_point;
56
57 /* Point where register pressure excess started or -1 if there is no
58 register pressure excess. Excess pressure for a register class at
59 some point means that there are more allocnos of given register
60 class living at the point than number of hard-registers of the
61 class available for the allocation. It is defined only for
62 pressure classes. */
63 static int high_pressure_start_point[N_REG_CLASSES];
64
65 /* Objects live at current point in the scan. */
66 static sparseset objects_live;
67
68 /* A temporary bitmap used in functions that wish to avoid visiting an allocno
69 multiple times. */
70 static sparseset allocnos_processed;
71
72 /* Set of hard regs (except eliminable ones) currently live. */
73 static HARD_REG_SET hard_regs_live;
74
75 /* The loop tree node corresponding to the current basic block. */
76 static ira_loop_tree_node_t curr_bb_node;
77
78 /* The number of the last processed call. */
79 static int last_call_num;
80 /* The number of last call at which given allocno was saved. */
81 static int *allocno_saved_at_call;
82
83 /* The value of get_preferred_alternatives for the current instruction,
84 supplemental to recog_data. */
85 static alternative_mask preferred_alternatives;
86
87 /* Record hard register REGNO as now being live. */
88 static void
89 make_hard_regno_live (int regno)
90 {
91 SET_HARD_REG_BIT (hard_regs_live, regno);
92 }
93
94 /* Process the definition of hard register REGNO. This updates
95 hard_regs_live and hard reg conflict information for living allocnos. */
96 static void
97 make_hard_regno_dead (int regno)
98 {
99 unsigned int i;
100 EXECUTE_IF_SET_IN_SPARSESET (objects_live, i)
101 {
102 ira_object_t obj = ira_object_id_map[i];
103
104 SET_HARD_REG_BIT (OBJECT_CONFLICT_HARD_REGS (obj), regno);
105 SET_HARD_REG_BIT (OBJECT_TOTAL_CONFLICT_HARD_REGS (obj), regno);
106 }
107 CLEAR_HARD_REG_BIT (hard_regs_live, regno);
108 }
109
110 /* Record object OBJ as now being live. Set a bit for it in objects_live,
111 and start a new live range for it if necessary. */
112 static void
113 make_object_live (ira_object_t obj)
114 {
115 sparseset_set_bit (objects_live, OBJECT_CONFLICT_ID (obj));
116
117 live_range_t lr = OBJECT_LIVE_RANGES (obj);
118 if (lr == NULL
119 || (lr->finish != curr_point && lr->finish + 1 != curr_point))
120 ira_add_live_range_to_object (obj, curr_point, -1);
121 }
122
123 /* Update ALLOCNO_EXCESS_PRESSURE_POINTS_NUM for the allocno
124 associated with object OBJ. */
125 static void
126 update_allocno_pressure_excess_length (ira_object_t obj)
127 {
128 ira_allocno_t a = OBJECT_ALLOCNO (obj);
129 int start, i;
130 enum reg_class aclass, pclass, cl;
131 live_range_t p;
132
133 aclass = ALLOCNO_CLASS (a);
134 pclass = ira_pressure_class_translate[aclass];
135 for (i = 0;
136 (cl = ira_reg_class_super_classes[pclass][i]) != LIM_REG_CLASSES;
137 i++)
138 {
139 if (! ira_reg_pressure_class_p[cl])
140 continue;
141 if (high_pressure_start_point[cl] < 0)
142 continue;
143 p = OBJECT_LIVE_RANGES (obj);
144 ira_assert (p != NULL);
145 start = (high_pressure_start_point[cl] > p->start
146 ? high_pressure_start_point[cl] : p->start);
147 ALLOCNO_EXCESS_PRESSURE_POINTS_NUM (a) += curr_point - start + 1;
148 }
149 }
150
151 /* Process the definition of object OBJ, which is associated with allocno A.
152 This finishes the current live range for it. */
153 static void
154 make_object_dead (ira_object_t obj)
155 {
156 live_range_t lr;
157
158 sparseset_clear_bit (objects_live, OBJECT_CONFLICT_ID (obj));
159
160 IOR_HARD_REG_SET (OBJECT_CONFLICT_HARD_REGS (obj), hard_regs_live);
161 IOR_HARD_REG_SET (OBJECT_TOTAL_CONFLICT_HARD_REGS (obj), hard_regs_live);
162
163 lr = OBJECT_LIVE_RANGES (obj);
164 ira_assert (lr != NULL);
165 lr->finish = curr_point;
166 update_allocno_pressure_excess_length (obj);
167 }
168
169 /* The current register pressures for each pressure class for the current
170 basic block. */
171 static int curr_reg_pressure[N_REG_CLASSES];
172
173 /* Record that register pressure for PCLASS increased by N registers.
174 Update the current register pressure, maximal register pressure for
175 the current BB and the start point of the register pressure
176 excess. */
177 static void
178 inc_register_pressure (enum reg_class pclass, int n)
179 {
180 int i;
181 enum reg_class cl;
182
183 for (i = 0;
184 (cl = ira_reg_class_super_classes[pclass][i]) != LIM_REG_CLASSES;
185 i++)
186 {
187 if (! ira_reg_pressure_class_p[cl])
188 continue;
189 curr_reg_pressure[cl] += n;
190 if (high_pressure_start_point[cl] < 0
191 && (curr_reg_pressure[cl] > ira_class_hard_regs_num[cl]))
192 high_pressure_start_point[cl] = curr_point;
193 if (curr_bb_node->reg_pressure[cl] < curr_reg_pressure[cl])
194 curr_bb_node->reg_pressure[cl] = curr_reg_pressure[cl];
195 }
196 }
197
198 /* Record that register pressure for PCLASS has decreased by NREGS
199 registers; update current register pressure, start point of the
200 register pressure excess, and register pressure excess length for
201 living allocnos. */
202
203 static void
204 dec_register_pressure (enum reg_class pclass, int nregs)
205 {
206 int i;
207 unsigned int j;
208 enum reg_class cl;
209 bool set_p = false;
210
211 for (i = 0;
212 (cl = ira_reg_class_super_classes[pclass][i]) != LIM_REG_CLASSES;
213 i++)
214 {
215 if (! ira_reg_pressure_class_p[cl])
216 continue;
217 curr_reg_pressure[cl] -= nregs;
218 ira_assert (curr_reg_pressure[cl] >= 0);
219 if (high_pressure_start_point[cl] >= 0
220 && curr_reg_pressure[cl] <= ira_class_hard_regs_num[cl])
221 set_p = true;
222 }
223 if (set_p)
224 {
225 EXECUTE_IF_SET_IN_SPARSESET (objects_live, j)
226 update_allocno_pressure_excess_length (ira_object_id_map[j]);
227 for (i = 0;
228 (cl = ira_reg_class_super_classes[pclass][i]) != LIM_REG_CLASSES;
229 i++)
230 {
231 if (! ira_reg_pressure_class_p[cl])
232 continue;
233 if (high_pressure_start_point[cl] >= 0
234 && curr_reg_pressure[cl] <= ira_class_hard_regs_num[cl])
235 high_pressure_start_point[cl] = -1;
236 }
237 }
238 }
239
240 /* Determine from the objects_live bitmap whether REGNO is currently live,
241 and occupies only one object. Return false if we have no information. */
242 static bool
243 pseudo_regno_single_word_and_live_p (int regno)
244 {
245 ira_allocno_t a = ira_curr_regno_allocno_map[regno];
246 ira_object_t obj;
247
248 if (a == NULL)
249 return false;
250 if (ALLOCNO_NUM_OBJECTS (a) > 1)
251 return false;
252
253 obj = ALLOCNO_OBJECT (a, 0);
254
255 return sparseset_bit_p (objects_live, OBJECT_CONFLICT_ID (obj));
256 }
257
258 /* Mark the pseudo register REGNO as live. Update all information about
259 live ranges and register pressure. */
260 static void
261 mark_pseudo_regno_live (int regno)
262 {
263 ira_allocno_t a = ira_curr_regno_allocno_map[regno];
264 enum reg_class pclass;
265 int i, n, nregs;
266
267 if (a == NULL)
268 return;
269
270 /* Invalidate because it is referenced. */
271 allocno_saved_at_call[ALLOCNO_NUM (a)] = 0;
272
273 n = ALLOCNO_NUM_OBJECTS (a);
274 pclass = ira_pressure_class_translate[ALLOCNO_CLASS (a)];
275 nregs = ira_reg_class_max_nregs[ALLOCNO_CLASS (a)][ALLOCNO_MODE (a)];
276 if (n > 1)
277 {
278 /* We track every subobject separately. */
279 gcc_assert (nregs == n);
280 nregs = 1;
281 }
282
283 for (i = 0; i < n; i++)
284 {
285 ira_object_t obj = ALLOCNO_OBJECT (a, i);
286
287 if (sparseset_bit_p (objects_live, OBJECT_CONFLICT_ID (obj)))
288 continue;
289
290 inc_register_pressure (pclass, nregs);
291 make_object_live (obj);
292 }
293 }
294
295 /* Like mark_pseudo_regno_live, but try to only mark one subword of
296 the pseudo as live. SUBWORD indicates which; a value of 0
297 indicates the low part. */
298 static void
299 mark_pseudo_regno_subword_live (int regno, int subword)
300 {
301 ira_allocno_t a = ira_curr_regno_allocno_map[regno];
302 int n;
303 enum reg_class pclass;
304 ira_object_t obj;
305
306 if (a == NULL)
307 return;
308
309 /* Invalidate because it is referenced. */
310 allocno_saved_at_call[ALLOCNO_NUM (a)] = 0;
311
312 n = ALLOCNO_NUM_OBJECTS (a);
313 if (n == 1)
314 {
315 mark_pseudo_regno_live (regno);
316 return;
317 }
318
319 pclass = ira_pressure_class_translate[ALLOCNO_CLASS (a)];
320 gcc_assert
321 (n == ira_reg_class_max_nregs[ALLOCNO_CLASS (a)][ALLOCNO_MODE (a)]);
322 obj = ALLOCNO_OBJECT (a, subword);
323
324 if (sparseset_bit_p (objects_live, OBJECT_CONFLICT_ID (obj)))
325 return;
326
327 inc_register_pressure (pclass, 1);
328 make_object_live (obj);
329 }
330
331 /* Mark the register REG as live. Store a 1 in hard_regs_live for
332 this register, record how many consecutive hardware registers it
333 actually needs. */
334 static void
335 mark_hard_reg_live (rtx reg)
336 {
337 int regno = REGNO (reg);
338
339 if (! TEST_HARD_REG_BIT (ira_no_alloc_regs, regno))
340 {
341 int last = END_REGNO (reg);
342 enum reg_class aclass, pclass;
343
344 while (regno < last)
345 {
346 if (! TEST_HARD_REG_BIT (hard_regs_live, regno)
347 && ! TEST_HARD_REG_BIT (eliminable_regset, regno))
348 {
349 aclass = ira_hard_regno_allocno_class[regno];
350 pclass = ira_pressure_class_translate[aclass];
351 inc_register_pressure (pclass, 1);
352 make_hard_regno_live (regno);
353 }
354 regno++;
355 }
356 }
357 }
358
359 /* Mark a pseudo, or one of its subwords, as live. REGNO is the pseudo's
360 register number; ORIG_REG is the access in the insn, which may be a
361 subreg. */
362 static void
363 mark_pseudo_reg_live (rtx orig_reg, unsigned regno)
364 {
365 if (read_modify_subreg_p (orig_reg))
366 {
367 mark_pseudo_regno_subword_live (regno,
368 subreg_lowpart_p (orig_reg) ? 0 : 1);
369 }
370 else
371 mark_pseudo_regno_live (regno);
372 }
373
374 /* Mark the register referenced by use or def REF as live. */
375 static void
376 mark_ref_live (df_ref ref)
377 {
378 rtx reg = DF_REF_REG (ref);
379 rtx orig_reg = reg;
380
381 if (GET_CODE (reg) == SUBREG)
382 reg = SUBREG_REG (reg);
383
384 if (REGNO (reg) >= FIRST_PSEUDO_REGISTER)
385 mark_pseudo_reg_live (orig_reg, REGNO (reg));
386 else
387 mark_hard_reg_live (reg);
388 }
389
390 /* Mark the pseudo register REGNO as dead. Update all information about
391 live ranges and register pressure. */
392 static void
393 mark_pseudo_regno_dead (int regno)
394 {
395 ira_allocno_t a = ira_curr_regno_allocno_map[regno];
396 int n, i, nregs;
397 enum reg_class cl;
398
399 if (a == NULL)
400 return;
401
402 /* Invalidate because it is referenced. */
403 allocno_saved_at_call[ALLOCNO_NUM (a)] = 0;
404
405 n = ALLOCNO_NUM_OBJECTS (a);
406 cl = ira_pressure_class_translate[ALLOCNO_CLASS (a)];
407 nregs = ira_reg_class_max_nregs[ALLOCNO_CLASS (a)][ALLOCNO_MODE (a)];
408 if (n > 1)
409 {
410 /* We track every subobject separately. */
411 gcc_assert (nregs == n);
412 nregs = 1;
413 }
414 for (i = 0; i < n; i++)
415 {
416 ira_object_t obj = ALLOCNO_OBJECT (a, i);
417 if (!sparseset_bit_p (objects_live, OBJECT_CONFLICT_ID (obj)))
418 continue;
419
420 dec_register_pressure (cl, nregs);
421 make_object_dead (obj);
422 }
423 }
424
425 /* Like mark_pseudo_regno_dead, but called when we know that only part of the
426 register dies. SUBWORD indicates which; a value of 0 indicates the low part. */
427 static void
428 mark_pseudo_regno_subword_dead (int regno, int subword)
429 {
430 ira_allocno_t a = ira_curr_regno_allocno_map[regno];
431 int n;
432 enum reg_class cl;
433 ira_object_t obj;
434
435 if (a == NULL)
436 return;
437
438 /* Invalidate because it is referenced. */
439 allocno_saved_at_call[ALLOCNO_NUM (a)] = 0;
440
441 n = ALLOCNO_NUM_OBJECTS (a);
442 if (n == 1)
443 /* The allocno as a whole doesn't die in this case. */
444 return;
445
446 cl = ira_pressure_class_translate[ALLOCNO_CLASS (a)];
447 gcc_assert
448 (n == ira_reg_class_max_nregs[ALLOCNO_CLASS (a)][ALLOCNO_MODE (a)]);
449
450 obj = ALLOCNO_OBJECT (a, subword);
451 if (!sparseset_bit_p (objects_live, OBJECT_CONFLICT_ID (obj)))
452 return;
453
454 dec_register_pressure (cl, 1);
455 make_object_dead (obj);
456 }
457
458 /* Process the definition of hard register REG. This updates hard_regs_live
459 and hard reg conflict information for living allocnos. */
460 static void
461 mark_hard_reg_dead (rtx reg)
462 {
463 int regno = REGNO (reg);
464
465 if (! TEST_HARD_REG_BIT (ira_no_alloc_regs, regno))
466 {
467 int last = END_REGNO (reg);
468 enum reg_class aclass, pclass;
469
470 while (regno < last)
471 {
472 if (TEST_HARD_REG_BIT (hard_regs_live, regno))
473 {
474 aclass = ira_hard_regno_allocno_class[regno];
475 pclass = ira_pressure_class_translate[aclass];
476 dec_register_pressure (pclass, 1);
477 make_hard_regno_dead (regno);
478 }
479 regno++;
480 }
481 }
482 }
483
484 /* Mark a pseudo, or one of its subwords, as dead. REGNO is the pseudo's
485 register number; ORIG_REG is the access in the insn, which may be a
486 subreg. */
487 static void
488 mark_pseudo_reg_dead (rtx orig_reg, unsigned regno)
489 {
490 if (read_modify_subreg_p (orig_reg))
491 {
492 mark_pseudo_regno_subword_dead (regno,
493 subreg_lowpart_p (orig_reg) ? 0 : 1);
494 }
495 else
496 mark_pseudo_regno_dead (regno);
497 }
498
499 /* Mark the register referenced by definition DEF as dead, if the
500 definition is a total one. */
501 static void
502 mark_ref_dead (df_ref def)
503 {
504 rtx reg = DF_REF_REG (def);
505 rtx orig_reg = reg;
506
507 if (DF_REF_FLAGS_IS_SET (def, DF_REF_CONDITIONAL))
508 return;
509
510 if (GET_CODE (reg) == SUBREG)
511 reg = SUBREG_REG (reg);
512
513 if (DF_REF_FLAGS_IS_SET (def, DF_REF_PARTIAL)
514 && (GET_CODE (orig_reg) != SUBREG
515 || REGNO (reg) < FIRST_PSEUDO_REGISTER
516 || !read_modify_subreg_p (orig_reg)))
517 return;
518
519 if (REGNO (reg) >= FIRST_PSEUDO_REGISTER)
520 mark_pseudo_reg_dead (orig_reg, REGNO (reg));
521 else
522 mark_hard_reg_dead (reg);
523 }
524
525 /* If REG is a pseudo or a subreg of it, and the class of its allocno
526 intersects CL, make a conflict with pseudo DREG. ORIG_DREG is the
527 rtx actually accessed, it may be identical to DREG or a subreg of it.
528 Advance the current program point before making the conflict if
529 ADVANCE_P. Return TRUE if we will need to advance the current
530 program point. */
531 static bool
532 make_pseudo_conflict (rtx reg, enum reg_class cl, rtx dreg, rtx orig_dreg,
533 bool advance_p)
534 {
535 rtx orig_reg = reg;
536 ira_allocno_t a;
537
538 if (GET_CODE (reg) == SUBREG)
539 reg = SUBREG_REG (reg);
540
541 if (! REG_P (reg) || REGNO (reg) < FIRST_PSEUDO_REGISTER)
542 return advance_p;
543
544 a = ira_curr_regno_allocno_map[REGNO (reg)];
545 if (! reg_classes_intersect_p (cl, ALLOCNO_CLASS (a)))
546 return advance_p;
547
548 if (advance_p)
549 curr_point++;
550
551 mark_pseudo_reg_live (orig_reg, REGNO (reg));
552 mark_pseudo_reg_live (orig_dreg, REGNO (dreg));
553 mark_pseudo_reg_dead (orig_reg, REGNO (reg));
554 mark_pseudo_reg_dead (orig_dreg, REGNO (dreg));
555
556 return false;
557 }
558
559 /* Check and make if necessary conflicts for pseudo DREG of class
560 DEF_CL of the current insn with input operand USE of class USE_CL.
561 ORIG_DREG is the rtx actually accessed, it may be identical to
562 DREG or a subreg of it. Advance the current program point before
563 making the conflict if ADVANCE_P. Return TRUE if we will need to
564 advance the current program point. */
565 static bool
566 check_and_make_def_use_conflict (rtx dreg, rtx orig_dreg,
567 enum reg_class def_cl, int use,
568 enum reg_class use_cl, bool advance_p)
569 {
570 if (! reg_classes_intersect_p (def_cl, use_cl))
571 return advance_p;
572
573 advance_p = make_pseudo_conflict (recog_data.operand[use],
574 use_cl, dreg, orig_dreg, advance_p);
575
576 /* Reload may end up swapping commutative operands, so you
577 have to take both orderings into account. The
578 constraints for the two operands can be completely
579 different. (Indeed, if the constraints for the two
580 operands are the same for all alternatives, there's no
581 point marking them as commutative.) */
582 if (use < recog_data.n_operands - 1
583 && recog_data.constraints[use][0] == '%')
584 advance_p
585 = make_pseudo_conflict (recog_data.operand[use + 1],
586 use_cl, dreg, orig_dreg, advance_p);
587 if (use >= 1
588 && recog_data.constraints[use - 1][0] == '%')
589 advance_p
590 = make_pseudo_conflict (recog_data.operand[use - 1],
591 use_cl, dreg, orig_dreg, advance_p);
592 return advance_p;
593 }
594
595 /* Check and make if necessary conflicts for definition DEF of class
596 DEF_CL of the current insn with input operands. Process only
597 constraints of alternative ALT. */
598 static void
599 check_and_make_def_conflict (int alt, int def, enum reg_class def_cl)
600 {
601 int use, use_match;
602 ira_allocno_t a;
603 enum reg_class use_cl, acl;
604 bool advance_p;
605 rtx dreg = recog_data.operand[def];
606 rtx orig_dreg = dreg;
607
608 if (def_cl == NO_REGS)
609 return;
610
611 if (GET_CODE (dreg) == SUBREG)
612 dreg = SUBREG_REG (dreg);
613
614 if (! REG_P (dreg) || REGNO (dreg) < FIRST_PSEUDO_REGISTER)
615 return;
616
617 a = ira_curr_regno_allocno_map[REGNO (dreg)];
618 acl = ALLOCNO_CLASS (a);
619 if (! reg_classes_intersect_p (acl, def_cl))
620 return;
621
622 advance_p = true;
623
624 int n_operands = recog_data.n_operands;
625 const operand_alternative *op_alt = &recog_op_alt[alt * n_operands];
626 for (use = 0; use < n_operands; use++)
627 {
628 int alt1;
629
630 if (use == def || recog_data.operand_type[use] == OP_OUT)
631 continue;
632
633 if (op_alt[use].anything_ok)
634 use_cl = ALL_REGS;
635 else
636 use_cl = op_alt[use].cl;
637
638 /* If there's any alternative that allows USE to match DEF, do not
639 record a conflict. If that causes us to create an invalid
640 instruction due to the earlyclobber, reload must fix it up. */
641 for (alt1 = 0; alt1 < recog_data.n_alternatives; alt1++)
642 {
643 if (!TEST_BIT (preferred_alternatives, alt1))
644 continue;
645 const operand_alternative *op_alt1
646 = &recog_op_alt[alt1 * n_operands];
647 if (op_alt1[use].matches == def
648 || (use < n_operands - 1
649 && recog_data.constraints[use][0] == '%'
650 && op_alt1[use + 1].matches == def)
651 || (use >= 1
652 && recog_data.constraints[use - 1][0] == '%'
653 && op_alt1[use - 1].matches == def))
654 break;
655 }
656
657 if (alt1 < recog_data.n_alternatives)
658 continue;
659
660 advance_p = check_and_make_def_use_conflict (dreg, orig_dreg, def_cl,
661 use, use_cl, advance_p);
662
663 if ((use_match = op_alt[use].matches) >= 0)
664 {
665 if (use_match == def)
666 continue;
667
668 if (op_alt[use_match].anything_ok)
669 use_cl = ALL_REGS;
670 else
671 use_cl = op_alt[use_match].cl;
672 advance_p = check_and_make_def_use_conflict (dreg, orig_dreg, def_cl,
673 use, use_cl, advance_p);
674 }
675 }
676 }
677
678 /* Make conflicts of early clobber pseudo registers of the current
679 insn with its inputs. Avoid introducing unnecessary conflicts by
680 checking classes of the constraints and pseudos because otherwise
681 significant code degradation is possible for some targets. */
682 static void
683 make_early_clobber_and_input_conflicts (void)
684 {
685 int alt;
686 int def, def_match;
687 enum reg_class def_cl;
688
689 int n_alternatives = recog_data.n_alternatives;
690 int n_operands = recog_data.n_operands;
691 const operand_alternative *op_alt = recog_op_alt;
692 for (alt = 0; alt < n_alternatives; alt++, op_alt += n_operands)
693 if (TEST_BIT (preferred_alternatives, alt))
694 for (def = 0; def < n_operands; def++)
695 {
696 def_cl = NO_REGS;
697 if (op_alt[def].earlyclobber)
698 {
699 if (op_alt[def].anything_ok)
700 def_cl = ALL_REGS;
701 else
702 def_cl = op_alt[def].cl;
703 check_and_make_def_conflict (alt, def, def_cl);
704 }
705 if ((def_match = op_alt[def].matches) >= 0
706 && (op_alt[def_match].earlyclobber
707 || op_alt[def].earlyclobber))
708 {
709 if (op_alt[def_match].anything_ok)
710 def_cl = ALL_REGS;
711 else
712 def_cl = op_alt[def_match].cl;
713 check_and_make_def_conflict (alt, def, def_cl);
714 }
715 }
716 }
717
718 /* Mark early clobber hard registers of the current INSN as live (if
719 LIVE_P) or dead. Return true if there are such registers. */
720 static bool
721 mark_hard_reg_early_clobbers (rtx_insn *insn, bool live_p)
722 {
723 df_ref def;
724 bool set_p = false;
725
726 FOR_EACH_INSN_DEF (def, insn)
727 if (DF_REF_FLAGS_IS_SET (def, DF_REF_MUST_CLOBBER))
728 {
729 rtx dreg = DF_REF_REG (def);
730
731 if (GET_CODE (dreg) == SUBREG)
732 dreg = SUBREG_REG (dreg);
733 if (! REG_P (dreg) || REGNO (dreg) >= FIRST_PSEUDO_REGISTER)
734 continue;
735
736 /* Hard register clobbers are believed to be early clobber
737 because there is no way to say that non-operand hard
738 register clobbers are not early ones. */
739 if (live_p)
740 mark_ref_live (def);
741 else
742 mark_ref_dead (def);
743 set_p = true;
744 }
745
746 return set_p;
747 }
748
749 /* Checks that CONSTRAINTS permits to use only one hard register. If
750 it is so, the function returns the class of the hard register.
751 Otherwise it returns NO_REGS. */
752 static enum reg_class
753 single_reg_class (const char *constraints, rtx op, rtx equiv_const)
754 {
755 int c;
756 enum reg_class cl, next_cl;
757 enum constraint_num cn;
758
759 cl = NO_REGS;
760 alternative_mask preferred = preferred_alternatives;
761 for (; (c = *constraints); constraints += CONSTRAINT_LEN (c, constraints))
762 if (c == '#')
763 preferred &= ~ALTERNATIVE_BIT (0);
764 else if (c == ',')
765 preferred >>= 1;
766 else if (preferred & 1)
767 switch (c)
768 {
769 case 'g':
770 return NO_REGS;
771
772 default:
773 /* ??? Is this the best way to handle memory constraints? */
774 cn = lookup_constraint (constraints);
775 if (insn_extra_memory_constraint (cn)
776 || insn_extra_special_memory_constraint (cn)
777 || insn_extra_address_constraint (cn))
778 return NO_REGS;
779 if (constraint_satisfied_p (op, cn)
780 || (equiv_const != NULL_RTX
781 && CONSTANT_P (equiv_const)
782 && constraint_satisfied_p (equiv_const, cn)))
783 return NO_REGS;
784 next_cl = reg_class_for_constraint (cn);
785 if (next_cl == NO_REGS)
786 break;
787 if (cl == NO_REGS
788 ? ira_class_singleton[next_cl][GET_MODE (op)] < 0
789 : (ira_class_singleton[cl][GET_MODE (op)]
790 != ira_class_singleton[next_cl][GET_MODE (op)]))
791 return NO_REGS;
792 cl = next_cl;
793 break;
794
795 case '0': case '1': case '2': case '3': case '4':
796 case '5': case '6': case '7': case '8': case '9':
797 next_cl
798 = single_reg_class (recog_data.constraints[c - '0'],
799 recog_data.operand[c - '0'], NULL_RTX);
800 if (cl == NO_REGS
801 ? ira_class_singleton[next_cl][GET_MODE (op)] < 0
802 : (ira_class_singleton[cl][GET_MODE (op)]
803 != ira_class_singleton[next_cl][GET_MODE (op)]))
804 return NO_REGS;
805 cl = next_cl;
806 break;
807 }
808 return cl;
809 }
810
811 /* The function checks that operand OP_NUM of the current insn can use
812 only one hard register. If it is so, the function returns the
813 class of the hard register. Otherwise it returns NO_REGS. */
814 static enum reg_class
815 single_reg_operand_class (int op_num)
816 {
817 if (op_num < 0 || recog_data.n_alternatives == 0)
818 return NO_REGS;
819 return single_reg_class (recog_data.constraints[op_num],
820 recog_data.operand[op_num], NULL_RTX);
821 }
822
823 /* The function sets up hard register set *SET to hard registers which
824 might be used by insn reloads because the constraints are too
825 strict. */
826 void
827 ira_implicitly_set_insn_hard_regs (HARD_REG_SET *set,
828 alternative_mask preferred)
829 {
830 int i, c, regno = 0;
831 enum reg_class cl;
832 rtx op;
833 machine_mode mode;
834
835 CLEAR_HARD_REG_SET (*set);
836 for (i = 0; i < recog_data.n_operands; i++)
837 {
838 op = recog_data.operand[i];
839
840 if (GET_CODE (op) == SUBREG)
841 op = SUBREG_REG (op);
842
843 if (GET_CODE (op) == SCRATCH
844 || (REG_P (op) && (regno = REGNO (op)) >= FIRST_PSEUDO_REGISTER))
845 {
846 const char *p = recog_data.constraints[i];
847
848 mode = (GET_CODE (op) == SCRATCH
849 ? GET_MODE (op) : PSEUDO_REGNO_MODE (regno));
850 cl = NO_REGS;
851 for (; (c = *p); p += CONSTRAINT_LEN (c, p))
852 if (c == '#')
853 preferred &= ~ALTERNATIVE_BIT (0);
854 else if (c == ',')
855 preferred >>= 1;
856 else if (preferred & 1)
857 {
858 cl = reg_class_for_constraint (lookup_constraint (p));
859 if (cl != NO_REGS)
860 {
861 /* There is no register pressure problem if all of the
862 regs in this class are fixed. */
863 int regno = ira_class_singleton[cl][mode];
864 if (regno >= 0)
865 add_to_hard_reg_set (set, mode, regno);
866 }
867 }
868 }
869 }
870 }
871 /* Processes input operands, if IN_P, or output operands otherwise of
872 the current insn with FREQ to find allocno which can use only one
873 hard register and makes other currently living allocnos conflicting
874 with the hard register. */
875 static void
876 process_single_reg_class_operands (bool in_p, int freq)
877 {
878 int i, regno;
879 unsigned int px;
880 enum reg_class cl;
881 rtx operand;
882 ira_allocno_t operand_a, a;
883
884 for (i = 0; i < recog_data.n_operands; i++)
885 {
886 operand = recog_data.operand[i];
887 if (in_p && recog_data.operand_type[i] != OP_IN
888 && recog_data.operand_type[i] != OP_INOUT)
889 continue;
890 if (! in_p && recog_data.operand_type[i] != OP_OUT
891 && recog_data.operand_type[i] != OP_INOUT)
892 continue;
893 cl = single_reg_operand_class (i);
894 if (cl == NO_REGS)
895 continue;
896
897 operand_a = NULL;
898
899 if (GET_CODE (operand) == SUBREG)
900 operand = SUBREG_REG (operand);
901
902 if (REG_P (operand)
903 && (regno = REGNO (operand)) >= FIRST_PSEUDO_REGISTER)
904 {
905 enum reg_class aclass;
906
907 operand_a = ira_curr_regno_allocno_map[regno];
908 aclass = ALLOCNO_CLASS (operand_a);
909 if (ira_class_subset_p[cl][aclass])
910 {
911 /* View the desired allocation of OPERAND as:
912
913 (REG:YMODE YREGNO),
914
915 a simplification of:
916
917 (subreg:YMODE (reg:XMODE XREGNO) OFFSET). */
918 machine_mode ymode, xmode;
919 int xregno, yregno;
920 poly_int64 offset;
921
922 xmode = recog_data.operand_mode[i];
923 xregno = ira_class_singleton[cl][xmode];
924 gcc_assert (xregno >= 0);
925 ymode = ALLOCNO_MODE (operand_a);
926 offset = subreg_lowpart_offset (ymode, xmode);
927 yregno = simplify_subreg_regno (xregno, xmode, offset, ymode);
928 if (yregno >= 0
929 && ira_class_hard_reg_index[aclass][yregno] >= 0)
930 {
931 int cost;
932
933 ira_allocate_and_set_costs
934 (&ALLOCNO_CONFLICT_HARD_REG_COSTS (operand_a),
935 aclass, 0);
936 ira_init_register_move_cost_if_necessary (xmode);
937 cost = freq * (in_p
938 ? ira_register_move_cost[xmode][aclass][cl]
939 : ira_register_move_cost[xmode][cl][aclass]);
940 ALLOCNO_CONFLICT_HARD_REG_COSTS (operand_a)
941 [ira_class_hard_reg_index[aclass][yregno]] -= cost;
942 }
943 }
944 }
945
946 EXECUTE_IF_SET_IN_SPARSESET (objects_live, px)
947 {
948 ira_object_t obj = ira_object_id_map[px];
949 a = OBJECT_ALLOCNO (obj);
950 if (a != operand_a)
951 {
952 /* We could increase costs of A instead of making it
953 conflicting with the hard register. But it works worse
954 because it will be spilled in reload in anyway. */
955 IOR_HARD_REG_SET (OBJECT_CONFLICT_HARD_REGS (obj),
956 reg_class_contents[cl]);
957 IOR_HARD_REG_SET (OBJECT_TOTAL_CONFLICT_HARD_REGS (obj),
958 reg_class_contents[cl]);
959 }
960 }
961 }
962 }
963
964 /* Look through the CALL_INSN_FUNCTION_USAGE of a call insn INSN, and see if
965 we find a SET rtx that we can use to deduce that a register can be cheaply
966 caller-saved. Return such a register, or NULL_RTX if none is found. */
967 static rtx
968 find_call_crossed_cheap_reg (rtx_insn *insn)
969 {
970 rtx cheap_reg = NULL_RTX;
971 rtx exp = CALL_INSN_FUNCTION_USAGE (insn);
972
973 while (exp != NULL)
974 {
975 rtx x = XEXP (exp, 0);
976 if (GET_CODE (x) == SET)
977 {
978 exp = x;
979 break;
980 }
981 exp = XEXP (exp, 1);
982 }
983 if (exp != NULL)
984 {
985 basic_block bb = BLOCK_FOR_INSN (insn);
986 rtx reg = SET_SRC (exp);
987 rtx_insn *prev = PREV_INSN (insn);
988 while (prev && !(INSN_P (prev)
989 && BLOCK_FOR_INSN (prev) != bb))
990 {
991 if (NONDEBUG_INSN_P (prev))
992 {
993 rtx set = single_set (prev);
994
995 if (set && rtx_equal_p (SET_DEST (set), reg))
996 {
997 rtx src = SET_SRC (set);
998 if (!REG_P (src) || HARD_REGISTER_P (src)
999 || !pseudo_regno_single_word_and_live_p (REGNO (src)))
1000 break;
1001 if (!modified_between_p (src, prev, insn))
1002 cheap_reg = src;
1003 break;
1004 }
1005 if (set && rtx_equal_p (SET_SRC (set), reg))
1006 {
1007 rtx dest = SET_DEST (set);
1008 if (!REG_P (dest) || HARD_REGISTER_P (dest)
1009 || !pseudo_regno_single_word_and_live_p (REGNO (dest)))
1010 break;
1011 if (!modified_between_p (dest, prev, insn))
1012 cheap_reg = dest;
1013 break;
1014 }
1015
1016 if (reg_set_p (reg, prev))
1017 break;
1018 }
1019 prev = PREV_INSN (prev);
1020 }
1021 }
1022 return cheap_reg;
1023 }
1024
1025 /* Process insns of the basic block given by its LOOP_TREE_NODE to
1026 update allocno live ranges, allocno hard register conflicts,
1027 intersected calls, and register pressure info for allocnos for the
1028 basic block for and regions containing the basic block. */
1029 static void
1030 process_bb_node_lives (ira_loop_tree_node_t loop_tree_node)
1031 {
1032 int i, freq;
1033 unsigned int j;
1034 basic_block bb;
1035 rtx_insn *insn;
1036 bitmap_iterator bi;
1037 bitmap reg_live_out;
1038 unsigned int px;
1039 bool set_p;
1040
1041 bb = loop_tree_node->bb;
1042 if (bb != NULL)
1043 {
1044 for (i = 0; i < ira_pressure_classes_num; i++)
1045 {
1046 curr_reg_pressure[ira_pressure_classes[i]] = 0;
1047 high_pressure_start_point[ira_pressure_classes[i]] = -1;
1048 }
1049 curr_bb_node = loop_tree_node;
1050 reg_live_out = df_get_live_out (bb);
1051 sparseset_clear (objects_live);
1052 REG_SET_TO_HARD_REG_SET (hard_regs_live, reg_live_out);
1053 AND_COMPL_HARD_REG_SET (hard_regs_live, eliminable_regset);
1054 AND_COMPL_HARD_REG_SET (hard_regs_live, ira_no_alloc_regs);
1055 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1056 if (TEST_HARD_REG_BIT (hard_regs_live, i))
1057 {
1058 enum reg_class aclass, pclass, cl;
1059
1060 aclass = ira_allocno_class_translate[REGNO_REG_CLASS (i)];
1061 pclass = ira_pressure_class_translate[aclass];
1062 for (j = 0;
1063 (cl = ira_reg_class_super_classes[pclass][j])
1064 != LIM_REG_CLASSES;
1065 j++)
1066 {
1067 if (! ira_reg_pressure_class_p[cl])
1068 continue;
1069 curr_reg_pressure[cl]++;
1070 if (curr_bb_node->reg_pressure[cl] < curr_reg_pressure[cl])
1071 curr_bb_node->reg_pressure[cl] = curr_reg_pressure[cl];
1072 ira_assert (curr_reg_pressure[cl]
1073 <= ira_class_hard_regs_num[cl]);
1074 }
1075 }
1076 EXECUTE_IF_SET_IN_BITMAP (reg_live_out, FIRST_PSEUDO_REGISTER, j, bi)
1077 mark_pseudo_regno_live (j);
1078
1079 freq = REG_FREQ_FROM_BB (bb);
1080 if (freq == 0)
1081 freq = 1;
1082
1083 /* Invalidate all allocno_saved_at_call entries. */
1084 last_call_num++;
1085
1086 /* Scan the code of this basic block, noting which allocnos and
1087 hard regs are born or die.
1088
1089 Note that this loop treats uninitialized values as live until
1090 the beginning of the block. For example, if an instruction
1091 uses (reg:DI foo), and only (subreg:SI (reg:DI foo) 0) is ever
1092 set, FOO will remain live until the beginning of the block.
1093 Likewise if FOO is not set at all. This is unnecessarily
1094 pessimistic, but it probably doesn't matter much in practice. */
1095 FOR_BB_INSNS_REVERSE (bb, insn)
1096 {
1097 ira_allocno_t a;
1098 df_ref def, use;
1099 bool call_p;
1100
1101 if (!NONDEBUG_INSN_P (insn))
1102 continue;
1103
1104 if (internal_flag_ira_verbose > 2 && ira_dump_file != NULL)
1105 fprintf (ira_dump_file, " Insn %u(l%d): point = %d\n",
1106 INSN_UID (insn), loop_tree_node->parent->loop_num,
1107 curr_point);
1108
1109 call_p = CALL_P (insn);
1110 #ifdef REAL_PIC_OFFSET_TABLE_REGNUM
1111 int regno;
1112 bool clear_pic_use_conflict_p = false;
1113 /* Processing insn usage in call insn can create conflict
1114 with pic pseudo and pic hard reg and that is wrong.
1115 Check this situation and fix it at the end of the insn
1116 processing. */
1117 if (call_p && pic_offset_table_rtx != NULL_RTX
1118 && (regno = REGNO (pic_offset_table_rtx)) >= FIRST_PSEUDO_REGISTER
1119 && (a = ira_curr_regno_allocno_map[regno]) != NULL)
1120 clear_pic_use_conflict_p
1121 = (find_regno_fusage (insn, USE, REAL_PIC_OFFSET_TABLE_REGNUM)
1122 && ! TEST_HARD_REG_BIT (OBJECT_CONFLICT_HARD_REGS
1123 (ALLOCNO_OBJECT (a, 0)),
1124 REAL_PIC_OFFSET_TABLE_REGNUM));
1125 #endif
1126
1127 /* Mark each defined value as live. We need to do this for
1128 unused values because they still conflict with quantities
1129 that are live at the time of the definition.
1130
1131 Ignore DF_REF_MAY_CLOBBERs on a call instruction. Such
1132 references represent the effect of the called function
1133 on a call-clobbered register. Marking the register as
1134 live would stop us from allocating it to a call-crossing
1135 allocno. */
1136 FOR_EACH_INSN_DEF (def, insn)
1137 if (!call_p || !DF_REF_FLAGS_IS_SET (def, DF_REF_MAY_CLOBBER))
1138 mark_ref_live (def);
1139
1140 /* If INSN has multiple outputs, then any value used in one
1141 of the outputs conflicts with the other outputs. Model this
1142 by making the used value live during the output phase.
1143
1144 It is unsafe to use !single_set here since it will ignore
1145 an unused output. Just because an output is unused does
1146 not mean the compiler can assume the side effect will not
1147 occur. Consider if ALLOCNO appears in the address of an
1148 output and we reload the output. If we allocate ALLOCNO
1149 to the same hard register as an unused output we could
1150 set the hard register before the output reload insn. */
1151 if (GET_CODE (PATTERN (insn)) == PARALLEL && multiple_sets (insn))
1152 FOR_EACH_INSN_USE (use, insn)
1153 {
1154 int i;
1155 rtx reg;
1156
1157 reg = DF_REF_REG (use);
1158 for (i = XVECLEN (PATTERN (insn), 0) - 1; i >= 0; i--)
1159 {
1160 rtx set;
1161
1162 set = XVECEXP (PATTERN (insn), 0, i);
1163 if (GET_CODE (set) == SET
1164 && reg_overlap_mentioned_p (reg, SET_DEST (set)))
1165 {
1166 /* After the previous loop, this is a no-op if
1167 REG is contained within SET_DEST (SET). */
1168 mark_ref_live (use);
1169 break;
1170 }
1171 }
1172 }
1173
1174 extract_insn (insn);
1175 preferred_alternatives = get_preferred_alternatives (insn);
1176 preprocess_constraints (insn);
1177 process_single_reg_class_operands (false, freq);
1178
1179 /* See which defined values die here. */
1180 FOR_EACH_INSN_DEF (def, insn)
1181 if (!call_p || !DF_REF_FLAGS_IS_SET (def, DF_REF_MAY_CLOBBER))
1182 mark_ref_dead (def);
1183
1184 if (call_p)
1185 {
1186 /* Try to find a SET in the CALL_INSN_FUNCTION_USAGE, and from
1187 there, try to find a pseudo that is live across the call but
1188 can be cheaply reconstructed from the return value. */
1189 rtx cheap_reg = find_call_crossed_cheap_reg (insn);
1190 if (cheap_reg != NULL_RTX)
1191 add_reg_note (insn, REG_RETURNED, cheap_reg);
1192
1193 last_call_num++;
1194 sparseset_clear (allocnos_processed);
1195 /* The current set of live allocnos are live across the call. */
1196 EXECUTE_IF_SET_IN_SPARSESET (objects_live, i)
1197 {
1198 ira_object_t obj = ira_object_id_map[i];
1199 a = OBJECT_ALLOCNO (obj);
1200 int num = ALLOCNO_NUM (a);
1201 HARD_REG_SET this_call_used_reg_set;
1202
1203 get_call_reg_set_usage (insn, &this_call_used_reg_set,
1204 call_used_reg_set);
1205
1206 /* Don't allocate allocnos that cross setjmps or any
1207 call, if this function receives a nonlocal
1208 goto. */
1209 if (cfun->has_nonlocal_label
1210 || find_reg_note (insn, REG_SETJMP,
1211 NULL_RTX) != NULL_RTX)
1212 {
1213 SET_HARD_REG_SET (OBJECT_CONFLICT_HARD_REGS (obj));
1214 SET_HARD_REG_SET (OBJECT_TOTAL_CONFLICT_HARD_REGS (obj));
1215 }
1216 if (can_throw_internal (insn))
1217 {
1218 IOR_HARD_REG_SET (OBJECT_CONFLICT_HARD_REGS (obj),
1219 this_call_used_reg_set);
1220 IOR_HARD_REG_SET (OBJECT_TOTAL_CONFLICT_HARD_REGS (obj),
1221 this_call_used_reg_set);
1222 }
1223
1224 if (sparseset_bit_p (allocnos_processed, num))
1225 continue;
1226 sparseset_set_bit (allocnos_processed, num);
1227
1228 if (allocno_saved_at_call[num] != last_call_num)
1229 /* Here we are mimicking caller-save.c behavior
1230 which does not save hard register at a call if
1231 it was saved on previous call in the same basic
1232 block and the hard register was not mentioned
1233 between the two calls. */
1234 ALLOCNO_CALL_FREQ (a) += freq;
1235 /* Mark it as saved at the next call. */
1236 allocno_saved_at_call[num] = last_call_num + 1;
1237 ALLOCNO_CALLS_CROSSED_NUM (a)++;
1238 IOR_HARD_REG_SET (ALLOCNO_CROSSED_CALLS_CLOBBERED_REGS (a),
1239 this_call_used_reg_set);
1240 if (cheap_reg != NULL_RTX
1241 && ALLOCNO_REGNO (a) == (int) REGNO (cheap_reg))
1242 ALLOCNO_CHEAP_CALLS_CROSSED_NUM (a)++;
1243 }
1244 }
1245
1246 make_early_clobber_and_input_conflicts ();
1247
1248 curr_point++;
1249
1250 /* Mark each used value as live. */
1251 FOR_EACH_INSN_USE (use, insn)
1252 mark_ref_live (use);
1253
1254 process_single_reg_class_operands (true, freq);
1255
1256 set_p = mark_hard_reg_early_clobbers (insn, true);
1257
1258 if (set_p)
1259 {
1260 mark_hard_reg_early_clobbers (insn, false);
1261
1262 /* Mark each hard reg as live again. For example, a
1263 hard register can be in clobber and in an insn
1264 input. */
1265 FOR_EACH_INSN_USE (use, insn)
1266 {
1267 rtx ureg = DF_REF_REG (use);
1268
1269 if (GET_CODE (ureg) == SUBREG)
1270 ureg = SUBREG_REG (ureg);
1271 if (! REG_P (ureg) || REGNO (ureg) >= FIRST_PSEUDO_REGISTER)
1272 continue;
1273
1274 mark_ref_live (use);
1275 }
1276 }
1277
1278 #ifdef REAL_PIC_OFFSET_TABLE_REGNUM
1279 if (clear_pic_use_conflict_p)
1280 {
1281 regno = REGNO (pic_offset_table_rtx);
1282 a = ira_curr_regno_allocno_map[regno];
1283 CLEAR_HARD_REG_BIT (OBJECT_CONFLICT_HARD_REGS (ALLOCNO_OBJECT (a, 0)),
1284 REAL_PIC_OFFSET_TABLE_REGNUM);
1285 CLEAR_HARD_REG_BIT (OBJECT_TOTAL_CONFLICT_HARD_REGS
1286 (ALLOCNO_OBJECT (a, 0)),
1287 REAL_PIC_OFFSET_TABLE_REGNUM);
1288 }
1289 #endif
1290 curr_point++;
1291 }
1292
1293 if (bb_has_eh_pred (bb))
1294 for (j = 0; ; ++j)
1295 {
1296 unsigned int regno = EH_RETURN_DATA_REGNO (j);
1297 if (regno == INVALID_REGNUM)
1298 break;
1299 make_hard_regno_live (regno);
1300 }
1301
1302 /* Allocnos can't go in stack regs at the start of a basic block
1303 that is reached by an abnormal edge. Likewise for call
1304 clobbered regs, because caller-save, fixup_abnormal_edges and
1305 possibly the table driven EH machinery are not quite ready to
1306 handle such allocnos live across such edges. */
1307 if (bb_has_abnormal_pred (bb))
1308 {
1309 #ifdef STACK_REGS
1310 EXECUTE_IF_SET_IN_SPARSESET (objects_live, px)
1311 {
1312 ira_allocno_t a = OBJECT_ALLOCNO (ira_object_id_map[px]);
1313
1314 ALLOCNO_NO_STACK_REG_P (a) = true;
1315 ALLOCNO_TOTAL_NO_STACK_REG_P (a) = true;
1316 }
1317 for (px = FIRST_STACK_REG; px <= LAST_STACK_REG; px++)
1318 make_hard_regno_live (px);
1319 #endif
1320 /* No need to record conflicts for call clobbered regs if we
1321 have nonlocal labels around, as we don't ever try to
1322 allocate such regs in this case. */
1323 if (!cfun->has_nonlocal_label
1324 && has_abnormal_call_or_eh_pred_edge_p (bb))
1325 for (px = 0; px < FIRST_PSEUDO_REGISTER; px++)
1326 if (call_used_regs[px]
1327 #ifdef REAL_PIC_OFFSET_TABLE_REGNUM
1328 /* We should create a conflict of PIC pseudo with
1329 PIC hard reg as PIC hard reg can have a wrong
1330 value after jump described by the abnormal edge.
1331 In this case we can not allocate PIC hard reg to
1332 PIC pseudo as PIC pseudo will also have a wrong
1333 value. This code is not critical as LRA can fix
1334 it but it is better to have the right allocation
1335 earlier. */
1336 || (px == REAL_PIC_OFFSET_TABLE_REGNUM
1337 && pic_offset_table_rtx != NULL_RTX
1338 && REGNO (pic_offset_table_rtx) >= FIRST_PSEUDO_REGISTER)
1339 #endif
1340 )
1341 make_hard_regno_live (px);
1342 }
1343
1344 EXECUTE_IF_SET_IN_SPARSESET (objects_live, i)
1345 make_object_dead (ira_object_id_map[i]);
1346
1347 curr_point++;
1348
1349 }
1350 /* Propagate register pressure to upper loop tree nodes. */
1351 if (loop_tree_node != ira_loop_tree_root)
1352 for (i = 0; i < ira_pressure_classes_num; i++)
1353 {
1354 enum reg_class pclass;
1355
1356 pclass = ira_pressure_classes[i];
1357 if (loop_tree_node->reg_pressure[pclass]
1358 > loop_tree_node->parent->reg_pressure[pclass])
1359 loop_tree_node->parent->reg_pressure[pclass]
1360 = loop_tree_node->reg_pressure[pclass];
1361 }
1362 }
1363
1364 /* Create and set up IRA_START_POINT_RANGES and
1365 IRA_FINISH_POINT_RANGES. */
1366 static void
1367 create_start_finish_chains (void)
1368 {
1369 ira_object_t obj;
1370 ira_object_iterator oi;
1371 live_range_t r;
1372
1373 ira_start_point_ranges
1374 = (live_range_t *) ira_allocate (ira_max_point * sizeof (live_range_t));
1375 memset (ira_start_point_ranges, 0, ira_max_point * sizeof (live_range_t));
1376 ira_finish_point_ranges
1377 = (live_range_t *) ira_allocate (ira_max_point * sizeof (live_range_t));
1378 memset (ira_finish_point_ranges, 0, ira_max_point * sizeof (live_range_t));
1379 FOR_EACH_OBJECT (obj, oi)
1380 for (r = OBJECT_LIVE_RANGES (obj); r != NULL; r = r->next)
1381 {
1382 r->start_next = ira_start_point_ranges[r->start];
1383 ira_start_point_ranges[r->start] = r;
1384 r->finish_next = ira_finish_point_ranges[r->finish];
1385 ira_finish_point_ranges[r->finish] = r;
1386 }
1387 }
1388
1389 /* Rebuild IRA_START_POINT_RANGES and IRA_FINISH_POINT_RANGES after
1390 new live ranges and program points were added as a result if new
1391 insn generation. */
1392 void
1393 ira_rebuild_start_finish_chains (void)
1394 {
1395 ira_free (ira_finish_point_ranges);
1396 ira_free (ira_start_point_ranges);
1397 create_start_finish_chains ();
1398 }
1399
1400 /* Compress allocno live ranges by removing program points where
1401 nothing happens. */
1402 static void
1403 remove_some_program_points_and_update_live_ranges (void)
1404 {
1405 unsigned i;
1406 int n;
1407 int *map;
1408 ira_object_t obj;
1409 ira_object_iterator oi;
1410 live_range_t r, prev_r, next_r;
1411 sbitmap_iterator sbi;
1412 bool born_p, dead_p, prev_born_p, prev_dead_p;
1413
1414 auto_sbitmap born (ira_max_point);
1415 auto_sbitmap dead (ira_max_point);
1416 bitmap_clear (born);
1417 bitmap_clear (dead);
1418 FOR_EACH_OBJECT (obj, oi)
1419 for (r = OBJECT_LIVE_RANGES (obj); r != NULL; r = r->next)
1420 {
1421 ira_assert (r->start <= r->finish);
1422 bitmap_set_bit (born, r->start);
1423 bitmap_set_bit (dead, r->finish);
1424 }
1425
1426 auto_sbitmap born_or_dead (ira_max_point);
1427 bitmap_ior (born_or_dead, born, dead);
1428 map = (int *) ira_allocate (sizeof (int) * ira_max_point);
1429 n = -1;
1430 prev_born_p = prev_dead_p = false;
1431 EXECUTE_IF_SET_IN_BITMAP (born_or_dead, 0, i, sbi)
1432 {
1433 born_p = bitmap_bit_p (born, i);
1434 dead_p = bitmap_bit_p (dead, i);
1435 if ((prev_born_p && ! prev_dead_p && born_p && ! dead_p)
1436 || (prev_dead_p && ! prev_born_p && dead_p && ! born_p))
1437 map[i] = n;
1438 else
1439 map[i] = ++n;
1440 prev_born_p = born_p;
1441 prev_dead_p = dead_p;
1442 }
1443
1444 n++;
1445 if (internal_flag_ira_verbose > 1 && ira_dump_file != NULL)
1446 fprintf (ira_dump_file, "Compressing live ranges: from %d to %d - %d%%\n",
1447 ira_max_point, n, 100 * n / ira_max_point);
1448 ira_max_point = n;
1449
1450 FOR_EACH_OBJECT (obj, oi)
1451 for (r = OBJECT_LIVE_RANGES (obj), prev_r = NULL; r != NULL; r = next_r)
1452 {
1453 next_r = r->next;
1454 r->start = map[r->start];
1455 r->finish = map[r->finish];
1456 if (prev_r == NULL || prev_r->start > r->finish + 1)
1457 {
1458 prev_r = r;
1459 continue;
1460 }
1461 prev_r->start = r->start;
1462 prev_r->next = next_r;
1463 ira_finish_live_range (r);
1464 }
1465
1466 ira_free (map);
1467 }
1468
1469 /* Print live ranges R to file F. */
1470 void
1471 ira_print_live_range_list (FILE *f, live_range_t r)
1472 {
1473 for (; r != NULL; r = r->next)
1474 fprintf (f, " [%d..%d]", r->start, r->finish);
1475 fprintf (f, "\n");
1476 }
1477
1478 DEBUG_FUNCTION void
1479 debug (live_range &ref)
1480 {
1481 ira_print_live_range_list (stderr, &ref);
1482 }
1483
1484 DEBUG_FUNCTION void
1485 debug (live_range *ptr)
1486 {
1487 if (ptr)
1488 debug (*ptr);
1489 else
1490 fprintf (stderr, "<nil>\n");
1491 }
1492
1493 /* Print live ranges R to stderr. */
1494 void
1495 ira_debug_live_range_list (live_range_t r)
1496 {
1497 ira_print_live_range_list (stderr, r);
1498 }
1499
1500 /* Print live ranges of object OBJ to file F. */
1501 static void
1502 print_object_live_ranges (FILE *f, ira_object_t obj)
1503 {
1504 ira_print_live_range_list (f, OBJECT_LIVE_RANGES (obj));
1505 }
1506
1507 /* Print live ranges of allocno A to file F. */
1508 static void
1509 print_allocno_live_ranges (FILE *f, ira_allocno_t a)
1510 {
1511 int n = ALLOCNO_NUM_OBJECTS (a);
1512 int i;
1513
1514 for (i = 0; i < n; i++)
1515 {
1516 fprintf (f, " a%d(r%d", ALLOCNO_NUM (a), ALLOCNO_REGNO (a));
1517 if (n > 1)
1518 fprintf (f, " [%d]", i);
1519 fprintf (f, "):");
1520 print_object_live_ranges (f, ALLOCNO_OBJECT (a, i));
1521 }
1522 }
1523
1524 /* Print live ranges of allocno A to stderr. */
1525 void
1526 ira_debug_allocno_live_ranges (ira_allocno_t a)
1527 {
1528 print_allocno_live_ranges (stderr, a);
1529 }
1530
1531 /* Print live ranges of all allocnos to file F. */
1532 static void
1533 print_live_ranges (FILE *f)
1534 {
1535 ira_allocno_t a;
1536 ira_allocno_iterator ai;
1537
1538 FOR_EACH_ALLOCNO (a, ai)
1539 print_allocno_live_ranges (f, a);
1540 }
1541
1542 /* Print live ranges of all allocnos to stderr. */
1543 void
1544 ira_debug_live_ranges (void)
1545 {
1546 print_live_ranges (stderr);
1547 }
1548
1549 /* The main entry function creates live ranges, set up
1550 CONFLICT_HARD_REGS and TOTAL_CONFLICT_HARD_REGS for objects, and
1551 calculate register pressure info. */
1552 void
1553 ira_create_allocno_live_ranges (void)
1554 {
1555 objects_live = sparseset_alloc (ira_objects_num);
1556 allocnos_processed = sparseset_alloc (ira_allocnos_num);
1557 curr_point = 0;
1558 last_call_num = 0;
1559 allocno_saved_at_call
1560 = (int *) ira_allocate (ira_allocnos_num * sizeof (int));
1561 memset (allocno_saved_at_call, 0, ira_allocnos_num * sizeof (int));
1562 ira_traverse_loop_tree (true, ira_loop_tree_root, NULL,
1563 process_bb_node_lives);
1564 ira_max_point = curr_point;
1565 create_start_finish_chains ();
1566 if (internal_flag_ira_verbose > 2 && ira_dump_file != NULL)
1567 print_live_ranges (ira_dump_file);
1568 /* Clean up. */
1569 ira_free (allocno_saved_at_call);
1570 sparseset_free (objects_live);
1571 sparseset_free (allocnos_processed);
1572 }
1573
1574 /* Compress allocno live ranges. */
1575 void
1576 ira_compress_allocno_live_ranges (void)
1577 {
1578 remove_some_program_points_and_update_live_ranges ();
1579 ira_rebuild_start_finish_chains ();
1580 if (internal_flag_ira_verbose > 2 && ira_dump_file != NULL)
1581 {
1582 fprintf (ira_dump_file, "Ranges after the compression:\n");
1583 print_live_ranges (ira_dump_file);
1584 }
1585 }
1586
1587 /* Free arrays IRA_START_POINT_RANGES and IRA_FINISH_POINT_RANGES. */
1588 void
1589 ira_finish_allocno_live_ranges (void)
1590 {
1591 ira_free (ira_finish_point_ranges);
1592 ira_free (ira_start_point_ranges);
1593 }