]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/ira-lives.c
re PR target/63527 (-fPIC uses 2 registers for GOT)
[thirdparty/gcc.git] / gcc / ira-lives.c
1 /* IRA processing allocno lives to build allocno live ranges.
2 Copyright (C) 2006-2014 Free Software Foundation, Inc.
3 Contributed by Vladimir Makarov <vmakarov@redhat.com>.
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
10 version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
20
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "tm.h"
25 #include "regs.h"
26 #include "rtl.h"
27 #include "tm_p.h"
28 #include "target.h"
29 #include "flags.h"
30 #include "except.h"
31 #include "hard-reg-set.h"
32 #include "predict.h"
33 #include "vec.h"
34 #include "hashtab.h"
35 #include "hash-set.h"
36 #include "machmode.h"
37 #include "input.h"
38 #include "function.h"
39 #include "basic-block.h"
40 #include "insn-config.h"
41 #include "recog.h"
42 #include "diagnostic-core.h"
43 #include "params.h"
44 #include "df.h"
45 #include "sbitmap.h"
46 #include "sparseset.h"
47 #include "ira-int.h"
48
49 /* The code in this file is similar to one in global but the code
50 works on the allocno basis and creates live ranges instead of
51 pseudo-register conflicts. */
52
53 /* Program points are enumerated by numbers from range
54 0..IRA_MAX_POINT-1. There are approximately two times more program
55 points than insns. Program points are places in the program where
56 liveness info can be changed. In most general case (there are more
57 complicated cases too) some program points correspond to places
58 where input operand dies and other ones correspond to places where
59 output operands are born. */
60 int ira_max_point;
61
62 /* Arrays of size IRA_MAX_POINT mapping a program point to the allocno
63 live ranges with given start/finish point. */
64 live_range_t *ira_start_point_ranges, *ira_finish_point_ranges;
65
66 /* Number of the current program point. */
67 static int curr_point;
68
69 /* Point where register pressure excess started or -1 if there is no
70 register pressure excess. Excess pressure for a register class at
71 some point means that there are more allocnos of given register
72 class living at the point than number of hard-registers of the
73 class available for the allocation. It is defined only for
74 pressure classes. */
75 static int high_pressure_start_point[N_REG_CLASSES];
76
77 /* Objects live at current point in the scan. */
78 static sparseset objects_live;
79
80 /* A temporary bitmap used in functions that wish to avoid visiting an allocno
81 multiple times. */
82 static sparseset allocnos_processed;
83
84 /* Set of hard regs (except eliminable ones) currently live. */
85 static HARD_REG_SET hard_regs_live;
86
87 /* The loop tree node corresponding to the current basic block. */
88 static ira_loop_tree_node_t curr_bb_node;
89
90 /* The number of the last processed call. */
91 static int last_call_num;
92 /* The number of last call at which given allocno was saved. */
93 static int *allocno_saved_at_call;
94
95 /* The value of get_preferred_alternatives for the current instruction,
96 supplemental to recog_data. */
97 static alternative_mask preferred_alternatives;
98
99 /* Record the birth of hard register REGNO, updating hard_regs_live and
100 hard reg conflict information for living allocnos. */
101 static void
102 make_hard_regno_born (int regno)
103 {
104 unsigned int i;
105
106 SET_HARD_REG_BIT (hard_regs_live, regno);
107 EXECUTE_IF_SET_IN_SPARSESET (objects_live, i)
108 {
109 ira_object_t obj = ira_object_id_map[i];
110
111 SET_HARD_REG_BIT (OBJECT_CONFLICT_HARD_REGS (obj), regno);
112 SET_HARD_REG_BIT (OBJECT_TOTAL_CONFLICT_HARD_REGS (obj), regno);
113 }
114 }
115
116 /* Process the death of hard register REGNO. This updates
117 hard_regs_live. */
118 static void
119 make_hard_regno_dead (int regno)
120 {
121 CLEAR_HARD_REG_BIT (hard_regs_live, regno);
122 }
123
124 /* Record the birth of object OBJ. Set a bit for it in objects_live,
125 start a new live range for it if necessary and update hard register
126 conflicts. */
127 static void
128 make_object_born (ira_object_t obj)
129 {
130 live_range_t lr = OBJECT_LIVE_RANGES (obj);
131
132 sparseset_set_bit (objects_live, OBJECT_CONFLICT_ID (obj));
133 IOR_HARD_REG_SET (OBJECT_CONFLICT_HARD_REGS (obj), hard_regs_live);
134 IOR_HARD_REG_SET (OBJECT_TOTAL_CONFLICT_HARD_REGS (obj), hard_regs_live);
135
136 if (lr == NULL
137 || (lr->finish != curr_point && lr->finish + 1 != curr_point))
138 ira_add_live_range_to_object (obj, curr_point, -1);
139 }
140
141 /* Update ALLOCNO_EXCESS_PRESSURE_POINTS_NUM for the allocno
142 associated with object OBJ. */
143 static void
144 update_allocno_pressure_excess_length (ira_object_t obj)
145 {
146 ira_allocno_t a = OBJECT_ALLOCNO (obj);
147 int start, i;
148 enum reg_class aclass, pclass, cl;
149 live_range_t p;
150
151 aclass = ALLOCNO_CLASS (a);
152 pclass = ira_pressure_class_translate[aclass];
153 for (i = 0;
154 (cl = ira_reg_class_super_classes[pclass][i]) != LIM_REG_CLASSES;
155 i++)
156 {
157 if (! ira_reg_pressure_class_p[cl])
158 continue;
159 if (high_pressure_start_point[cl] < 0)
160 continue;
161 p = OBJECT_LIVE_RANGES (obj);
162 ira_assert (p != NULL);
163 start = (high_pressure_start_point[cl] > p->start
164 ? high_pressure_start_point[cl] : p->start);
165 ALLOCNO_EXCESS_PRESSURE_POINTS_NUM (a) += curr_point - start + 1;
166 }
167 }
168
169 /* Process the death of object OBJ, which is associated with allocno
170 A. This finishes the current live range for it. */
171 static void
172 make_object_dead (ira_object_t obj)
173 {
174 live_range_t lr;
175
176 sparseset_clear_bit (objects_live, OBJECT_CONFLICT_ID (obj));
177 lr = OBJECT_LIVE_RANGES (obj);
178 ira_assert (lr != NULL);
179 lr->finish = curr_point;
180 update_allocno_pressure_excess_length (obj);
181 }
182
183 /* The current register pressures for each pressure class for the current
184 basic block. */
185 static int curr_reg_pressure[N_REG_CLASSES];
186
187 /* Record that register pressure for PCLASS increased by N registers.
188 Update the current register pressure, maximal register pressure for
189 the current BB and the start point of the register pressure
190 excess. */
191 static void
192 inc_register_pressure (enum reg_class pclass, int n)
193 {
194 int i;
195 enum reg_class cl;
196
197 for (i = 0;
198 (cl = ira_reg_class_super_classes[pclass][i]) != LIM_REG_CLASSES;
199 i++)
200 {
201 if (! ira_reg_pressure_class_p[cl])
202 continue;
203 curr_reg_pressure[cl] += n;
204 if (high_pressure_start_point[cl] < 0
205 && (curr_reg_pressure[cl] > ira_class_hard_regs_num[cl]))
206 high_pressure_start_point[cl] = curr_point;
207 if (curr_bb_node->reg_pressure[cl] < curr_reg_pressure[cl])
208 curr_bb_node->reg_pressure[cl] = curr_reg_pressure[cl];
209 }
210 }
211
212 /* Record that register pressure for PCLASS has decreased by NREGS
213 registers; update current register pressure, start point of the
214 register pressure excess, and register pressure excess length for
215 living allocnos. */
216
217 static void
218 dec_register_pressure (enum reg_class pclass, int nregs)
219 {
220 int i;
221 unsigned int j;
222 enum reg_class cl;
223 bool set_p = false;
224
225 for (i = 0;
226 (cl = ira_reg_class_super_classes[pclass][i]) != LIM_REG_CLASSES;
227 i++)
228 {
229 if (! ira_reg_pressure_class_p[cl])
230 continue;
231 curr_reg_pressure[cl] -= nregs;
232 ira_assert (curr_reg_pressure[cl] >= 0);
233 if (high_pressure_start_point[cl] >= 0
234 && curr_reg_pressure[cl] <= ira_class_hard_regs_num[cl])
235 set_p = true;
236 }
237 if (set_p)
238 {
239 EXECUTE_IF_SET_IN_SPARSESET (objects_live, j)
240 update_allocno_pressure_excess_length (ira_object_id_map[j]);
241 for (i = 0;
242 (cl = ira_reg_class_super_classes[pclass][i]) != LIM_REG_CLASSES;
243 i++)
244 {
245 if (! ira_reg_pressure_class_p[cl])
246 continue;
247 if (high_pressure_start_point[cl] >= 0
248 && curr_reg_pressure[cl] <= ira_class_hard_regs_num[cl])
249 high_pressure_start_point[cl] = -1;
250 }
251 }
252 }
253
254 /* Determine from the objects_live bitmap whether REGNO is currently live,
255 and occupies only one object. Return false if we have no information. */
256 static bool
257 pseudo_regno_single_word_and_live_p (int regno)
258 {
259 ira_allocno_t a = ira_curr_regno_allocno_map[regno];
260 ira_object_t obj;
261
262 if (a == NULL)
263 return false;
264 if (ALLOCNO_NUM_OBJECTS (a) > 1)
265 return false;
266
267 obj = ALLOCNO_OBJECT (a, 0);
268
269 return sparseset_bit_p (objects_live, OBJECT_CONFLICT_ID (obj));
270 }
271
272 /* Mark the pseudo register REGNO as live. Update all information about
273 live ranges and register pressure. */
274 static void
275 mark_pseudo_regno_live (int regno)
276 {
277 ira_allocno_t a = ira_curr_regno_allocno_map[regno];
278 enum reg_class pclass;
279 int i, n, nregs;
280
281 if (a == NULL)
282 return;
283
284 /* Invalidate because it is referenced. */
285 allocno_saved_at_call[ALLOCNO_NUM (a)] = 0;
286
287 n = ALLOCNO_NUM_OBJECTS (a);
288 pclass = ira_pressure_class_translate[ALLOCNO_CLASS (a)];
289 nregs = ira_reg_class_max_nregs[ALLOCNO_CLASS (a)][ALLOCNO_MODE (a)];
290 if (n > 1)
291 {
292 /* We track every subobject separately. */
293 gcc_assert (nregs == n);
294 nregs = 1;
295 }
296
297 for (i = 0; i < n; i++)
298 {
299 ira_object_t obj = ALLOCNO_OBJECT (a, i);
300
301 if (sparseset_bit_p (objects_live, OBJECT_CONFLICT_ID (obj)))
302 continue;
303
304 inc_register_pressure (pclass, nregs);
305 make_object_born (obj);
306 }
307 }
308
309 /* Like mark_pseudo_regno_live, but try to only mark one subword of
310 the pseudo as live. SUBWORD indicates which; a value of 0
311 indicates the low part. */
312 static void
313 mark_pseudo_regno_subword_live (int regno, int subword)
314 {
315 ira_allocno_t a = ira_curr_regno_allocno_map[regno];
316 int n;
317 enum reg_class pclass;
318 ira_object_t obj;
319
320 if (a == NULL)
321 return;
322
323 /* Invalidate because it is referenced. */
324 allocno_saved_at_call[ALLOCNO_NUM (a)] = 0;
325
326 n = ALLOCNO_NUM_OBJECTS (a);
327 if (n == 1)
328 {
329 mark_pseudo_regno_live (regno);
330 return;
331 }
332
333 pclass = ira_pressure_class_translate[ALLOCNO_CLASS (a)];
334 gcc_assert
335 (n == ira_reg_class_max_nregs[ALLOCNO_CLASS (a)][ALLOCNO_MODE (a)]);
336 obj = ALLOCNO_OBJECT (a, subword);
337
338 if (sparseset_bit_p (objects_live, OBJECT_CONFLICT_ID (obj)))
339 return;
340
341 inc_register_pressure (pclass, 1);
342 make_object_born (obj);
343 }
344
345 /* Mark the register REG as live. Store a 1 in hard_regs_live for
346 this register, record how many consecutive hardware registers it
347 actually needs. */
348 static void
349 mark_hard_reg_live (rtx reg)
350 {
351 int regno = REGNO (reg);
352
353 if (! TEST_HARD_REG_BIT (ira_no_alloc_regs, regno))
354 {
355 int last = regno + hard_regno_nregs[regno][GET_MODE (reg)];
356 enum reg_class aclass, pclass;
357
358 while (regno < last)
359 {
360 if (! TEST_HARD_REG_BIT (hard_regs_live, regno)
361 && ! TEST_HARD_REG_BIT (eliminable_regset, regno))
362 {
363 aclass = ira_hard_regno_allocno_class[regno];
364 pclass = ira_pressure_class_translate[aclass];
365 inc_register_pressure (pclass, 1);
366 make_hard_regno_born (regno);
367 }
368 regno++;
369 }
370 }
371 }
372
373 /* Mark a pseudo, or one of its subwords, as live. REGNO is the pseudo's
374 register number; ORIG_REG is the access in the insn, which may be a
375 subreg. */
376 static void
377 mark_pseudo_reg_live (rtx orig_reg, unsigned regno)
378 {
379 if (df_read_modify_subreg_p (orig_reg))
380 {
381 mark_pseudo_regno_subword_live (regno,
382 subreg_lowpart_p (orig_reg) ? 0 : 1);
383 }
384 else
385 mark_pseudo_regno_live (regno);
386 }
387
388 /* Mark the register referenced by use or def REF as live. */
389 static void
390 mark_ref_live (df_ref ref)
391 {
392 rtx reg = DF_REF_REG (ref);
393 rtx orig_reg = reg;
394
395 if (GET_CODE (reg) == SUBREG)
396 reg = SUBREG_REG (reg);
397
398 if (REGNO (reg) >= FIRST_PSEUDO_REGISTER)
399 mark_pseudo_reg_live (orig_reg, REGNO (reg));
400 else
401 mark_hard_reg_live (reg);
402 }
403
404 /* Mark the pseudo register REGNO as dead. Update all information about
405 live ranges and register pressure. */
406 static void
407 mark_pseudo_regno_dead (int regno)
408 {
409 ira_allocno_t a = ira_curr_regno_allocno_map[regno];
410 int n, i, nregs;
411 enum reg_class cl;
412
413 if (a == NULL)
414 return;
415
416 /* Invalidate because it is referenced. */
417 allocno_saved_at_call[ALLOCNO_NUM (a)] = 0;
418
419 n = ALLOCNO_NUM_OBJECTS (a);
420 cl = ira_pressure_class_translate[ALLOCNO_CLASS (a)];
421 nregs = ira_reg_class_max_nregs[ALLOCNO_CLASS (a)][ALLOCNO_MODE (a)];
422 if (n > 1)
423 {
424 /* We track every subobject separately. */
425 gcc_assert (nregs == n);
426 nregs = 1;
427 }
428 for (i = 0; i < n; i++)
429 {
430 ira_object_t obj = ALLOCNO_OBJECT (a, i);
431 if (!sparseset_bit_p (objects_live, OBJECT_CONFLICT_ID (obj)))
432 continue;
433
434 dec_register_pressure (cl, nregs);
435 make_object_dead (obj);
436 }
437 }
438
439 /* Like mark_pseudo_regno_dead, but called when we know that only part of the
440 register dies. SUBWORD indicates which; a value of 0 indicates the low part. */
441 static void
442 mark_pseudo_regno_subword_dead (int regno, int subword)
443 {
444 ira_allocno_t a = ira_curr_regno_allocno_map[regno];
445 int n;
446 enum reg_class cl;
447 ira_object_t obj;
448
449 if (a == NULL)
450 return;
451
452 /* Invalidate because it is referenced. */
453 allocno_saved_at_call[ALLOCNO_NUM (a)] = 0;
454
455 n = ALLOCNO_NUM_OBJECTS (a);
456 if (n == 1)
457 /* The allocno as a whole doesn't die in this case. */
458 return;
459
460 cl = ira_pressure_class_translate[ALLOCNO_CLASS (a)];
461 gcc_assert
462 (n == ira_reg_class_max_nregs[ALLOCNO_CLASS (a)][ALLOCNO_MODE (a)]);
463
464 obj = ALLOCNO_OBJECT (a, subword);
465 if (!sparseset_bit_p (objects_live, OBJECT_CONFLICT_ID (obj)))
466 return;
467
468 dec_register_pressure (cl, 1);
469 make_object_dead (obj);
470 }
471
472 /* Mark the hard register REG as dead. Store a 0 in hard_regs_live for the
473 register. */
474 static void
475 mark_hard_reg_dead (rtx reg)
476 {
477 int regno = REGNO (reg);
478
479 if (! TEST_HARD_REG_BIT (ira_no_alloc_regs, regno))
480 {
481 int last = regno + hard_regno_nregs[regno][GET_MODE (reg)];
482 enum reg_class aclass, pclass;
483
484 while (regno < last)
485 {
486 if (TEST_HARD_REG_BIT (hard_regs_live, regno))
487 {
488 aclass = ira_hard_regno_allocno_class[regno];
489 pclass = ira_pressure_class_translate[aclass];
490 dec_register_pressure (pclass, 1);
491 make_hard_regno_dead (regno);
492 }
493 regno++;
494 }
495 }
496 }
497
498 /* Mark a pseudo, or one of its subwords, as dead. REGNO is the pseudo's
499 register number; ORIG_REG is the access in the insn, which may be a
500 subreg. */
501 static void
502 mark_pseudo_reg_dead (rtx orig_reg, unsigned regno)
503 {
504 if (df_read_modify_subreg_p (orig_reg))
505 {
506 mark_pseudo_regno_subword_dead (regno,
507 subreg_lowpart_p (orig_reg) ? 0 : 1);
508 }
509 else
510 mark_pseudo_regno_dead (regno);
511 }
512
513 /* Mark the register referenced by definition DEF as dead, if the
514 definition is a total one. */
515 static void
516 mark_ref_dead (df_ref def)
517 {
518 rtx reg = DF_REF_REG (def);
519 rtx orig_reg = reg;
520
521 if (DF_REF_FLAGS_IS_SET (def, DF_REF_CONDITIONAL))
522 return;
523
524 if (GET_CODE (reg) == SUBREG)
525 reg = SUBREG_REG (reg);
526
527 if (DF_REF_FLAGS_IS_SET (def, DF_REF_PARTIAL)
528 && (GET_CODE (orig_reg) != SUBREG
529 || REGNO (reg) < FIRST_PSEUDO_REGISTER
530 || !df_read_modify_subreg_p (orig_reg)))
531 return;
532
533 if (REGNO (reg) >= FIRST_PSEUDO_REGISTER)
534 mark_pseudo_reg_dead (orig_reg, REGNO (reg));
535 else
536 mark_hard_reg_dead (reg);
537 }
538
539 /* If REG is a pseudo or a subreg of it, and the class of its allocno
540 intersects CL, make a conflict with pseudo DREG. ORIG_DREG is the
541 rtx actually accessed, it may be identical to DREG or a subreg of it.
542 Advance the current program point before making the conflict if
543 ADVANCE_P. Return TRUE if we will need to advance the current
544 program point. */
545 static bool
546 make_pseudo_conflict (rtx reg, enum reg_class cl, rtx dreg, rtx orig_dreg,
547 bool advance_p)
548 {
549 rtx orig_reg = reg;
550 ira_allocno_t a;
551
552 if (GET_CODE (reg) == SUBREG)
553 reg = SUBREG_REG (reg);
554
555 if (! REG_P (reg) || REGNO (reg) < FIRST_PSEUDO_REGISTER)
556 return advance_p;
557
558 a = ira_curr_regno_allocno_map[REGNO (reg)];
559 if (! reg_classes_intersect_p (cl, ALLOCNO_CLASS (a)))
560 return advance_p;
561
562 if (advance_p)
563 curr_point++;
564
565 mark_pseudo_reg_live (orig_reg, REGNO (reg));
566 mark_pseudo_reg_live (orig_dreg, REGNO (dreg));
567 mark_pseudo_reg_dead (orig_reg, REGNO (reg));
568 mark_pseudo_reg_dead (orig_dreg, REGNO (dreg));
569
570 return false;
571 }
572
573 /* Check and make if necessary conflicts for pseudo DREG of class
574 DEF_CL of the current insn with input operand USE of class USE_CL.
575 ORIG_DREG is the rtx actually accessed, it may be identical to
576 DREG or a subreg of it. Advance the current program point before
577 making the conflict if ADVANCE_P. Return TRUE if we will need to
578 advance the current program point. */
579 static bool
580 check_and_make_def_use_conflict (rtx dreg, rtx orig_dreg,
581 enum reg_class def_cl, int use,
582 enum reg_class use_cl, bool advance_p)
583 {
584 if (! reg_classes_intersect_p (def_cl, use_cl))
585 return advance_p;
586
587 advance_p = make_pseudo_conflict (recog_data.operand[use],
588 use_cl, dreg, orig_dreg, advance_p);
589
590 /* Reload may end up swapping commutative operands, so you
591 have to take both orderings into account. The
592 constraints for the two operands can be completely
593 different. (Indeed, if the constraints for the two
594 operands are the same for all alternatives, there's no
595 point marking them as commutative.) */
596 if (use < recog_data.n_operands - 1
597 && recog_data.constraints[use][0] == '%')
598 advance_p
599 = make_pseudo_conflict (recog_data.operand[use + 1],
600 use_cl, dreg, orig_dreg, advance_p);
601 if (use >= 1
602 && recog_data.constraints[use - 1][0] == '%')
603 advance_p
604 = make_pseudo_conflict (recog_data.operand[use - 1],
605 use_cl, dreg, orig_dreg, advance_p);
606 return advance_p;
607 }
608
609 /* Check and make if necessary conflicts for definition DEF of class
610 DEF_CL of the current insn with input operands. Process only
611 constraints of alternative ALT. */
612 static void
613 check_and_make_def_conflict (int alt, int def, enum reg_class def_cl)
614 {
615 int use, use_match;
616 ira_allocno_t a;
617 enum reg_class use_cl, acl;
618 bool advance_p;
619 rtx dreg = recog_data.operand[def];
620 rtx orig_dreg = dreg;
621
622 if (def_cl == NO_REGS)
623 return;
624
625 if (GET_CODE (dreg) == SUBREG)
626 dreg = SUBREG_REG (dreg);
627
628 if (! REG_P (dreg) || REGNO (dreg) < FIRST_PSEUDO_REGISTER)
629 return;
630
631 a = ira_curr_regno_allocno_map[REGNO (dreg)];
632 acl = ALLOCNO_CLASS (a);
633 if (! reg_classes_intersect_p (acl, def_cl))
634 return;
635
636 advance_p = true;
637
638 int n_operands = recog_data.n_operands;
639 const operand_alternative *op_alt = &recog_op_alt[alt * n_operands];
640 for (use = 0; use < n_operands; use++)
641 {
642 int alt1;
643
644 if (use == def || recog_data.operand_type[use] == OP_OUT)
645 continue;
646
647 if (op_alt[use].anything_ok)
648 use_cl = ALL_REGS;
649 else
650 use_cl = op_alt[use].cl;
651
652 /* If there's any alternative that allows USE to match DEF, do not
653 record a conflict. If that causes us to create an invalid
654 instruction due to the earlyclobber, reload must fix it up. */
655 for (alt1 = 0; alt1 < recog_data.n_alternatives; alt1++)
656 {
657 if (!TEST_BIT (preferred_alternatives, alt1))
658 continue;
659 const operand_alternative *op_alt1
660 = &recog_op_alt[alt1 * n_operands];
661 if (op_alt1[use].matches == def
662 || (use < n_operands - 1
663 && recog_data.constraints[use][0] == '%'
664 && op_alt1[use + 1].matches == def)
665 || (use >= 1
666 && recog_data.constraints[use - 1][0] == '%'
667 && op_alt1[use - 1].matches == def))
668 break;
669 }
670
671 if (alt1 < recog_data.n_alternatives)
672 continue;
673
674 advance_p = check_and_make_def_use_conflict (dreg, orig_dreg, def_cl,
675 use, use_cl, advance_p);
676
677 if ((use_match = op_alt[use].matches) >= 0)
678 {
679 if (use_match == def)
680 continue;
681
682 if (op_alt[use_match].anything_ok)
683 use_cl = ALL_REGS;
684 else
685 use_cl = op_alt[use_match].cl;
686 advance_p = check_and_make_def_use_conflict (dreg, orig_dreg, def_cl,
687 use, use_cl, advance_p);
688 }
689 }
690 }
691
692 /* Make conflicts of early clobber pseudo registers of the current
693 insn with its inputs. Avoid introducing unnecessary conflicts by
694 checking classes of the constraints and pseudos because otherwise
695 significant code degradation is possible for some targets. */
696 static void
697 make_early_clobber_and_input_conflicts (void)
698 {
699 int alt;
700 int def, def_match;
701 enum reg_class def_cl;
702
703 int n_alternatives = recog_data.n_alternatives;
704 int n_operands = recog_data.n_operands;
705 const operand_alternative *op_alt = recog_op_alt;
706 for (alt = 0; alt < n_alternatives; alt++, op_alt += n_operands)
707 if (TEST_BIT (preferred_alternatives, alt))
708 for (def = 0; def < n_operands; def++)
709 {
710 def_cl = NO_REGS;
711 if (op_alt[def].earlyclobber)
712 {
713 if (op_alt[def].anything_ok)
714 def_cl = ALL_REGS;
715 else
716 def_cl = op_alt[def].cl;
717 check_and_make_def_conflict (alt, def, def_cl);
718 }
719 if ((def_match = op_alt[def].matches) >= 0
720 && (op_alt[def_match].earlyclobber
721 || op_alt[def].earlyclobber))
722 {
723 if (op_alt[def_match].anything_ok)
724 def_cl = ALL_REGS;
725 else
726 def_cl = op_alt[def_match].cl;
727 check_and_make_def_conflict (alt, def, def_cl);
728 }
729 }
730 }
731
732 /* Mark early clobber hard registers of the current INSN as live (if
733 LIVE_P) or dead. Return true if there are such registers. */
734 static bool
735 mark_hard_reg_early_clobbers (rtx_insn *insn, bool live_p)
736 {
737 df_ref def;
738 bool set_p = false;
739
740 FOR_EACH_INSN_DEF (def, insn)
741 if (DF_REF_FLAGS_IS_SET (def, DF_REF_MUST_CLOBBER))
742 {
743 rtx dreg = DF_REF_REG (def);
744
745 if (GET_CODE (dreg) == SUBREG)
746 dreg = SUBREG_REG (dreg);
747 if (! REG_P (dreg) || REGNO (dreg) >= FIRST_PSEUDO_REGISTER)
748 continue;
749
750 /* Hard register clobbers are believed to be early clobber
751 because there is no way to say that non-operand hard
752 register clobbers are not early ones. */
753 if (live_p)
754 mark_ref_live (def);
755 else
756 mark_ref_dead (def);
757 set_p = true;
758 }
759
760 return set_p;
761 }
762
763 /* Checks that CONSTRAINTS permits to use only one hard register. If
764 it is so, the function returns the class of the hard register.
765 Otherwise it returns NO_REGS. */
766 static enum reg_class
767 single_reg_class (const char *constraints, rtx op, rtx equiv_const)
768 {
769 int c;
770 enum reg_class cl, next_cl;
771 enum constraint_num cn;
772
773 cl = NO_REGS;
774 alternative_mask preferred = preferred_alternatives;
775 for (; (c = *constraints); constraints += CONSTRAINT_LEN (c, constraints))
776 if (c == '#')
777 preferred &= ~ALTERNATIVE_BIT (0);
778 else if (c == ',')
779 preferred >>= 1;
780 else if (preferred & 1)
781 switch (c)
782 {
783 case 'g':
784 return NO_REGS;
785
786 default:
787 /* ??? Is this the best way to handle memory constraints? */
788 cn = lookup_constraint (constraints);
789 if (insn_extra_memory_constraint (cn)
790 || insn_extra_address_constraint (cn))
791 return NO_REGS;
792 if (constraint_satisfied_p (op, cn)
793 || (equiv_const != NULL_RTX
794 && CONSTANT_P (equiv_const)
795 && constraint_satisfied_p (equiv_const, cn)))
796 return NO_REGS;
797 next_cl = reg_class_for_constraint (cn);
798 if (next_cl == NO_REGS)
799 break;
800 if (cl == NO_REGS
801 ? ira_class_singleton[next_cl][GET_MODE (op)] < 0
802 : (ira_class_singleton[cl][GET_MODE (op)]
803 != ira_class_singleton[next_cl][GET_MODE (op)]))
804 return NO_REGS;
805 cl = next_cl;
806 break;
807
808 case '0': case '1': case '2': case '3': case '4':
809 case '5': case '6': case '7': case '8': case '9':
810 next_cl
811 = single_reg_class (recog_data.constraints[c - '0'],
812 recog_data.operand[c - '0'], NULL_RTX);
813 if (cl == NO_REGS
814 ? ira_class_singleton[next_cl][GET_MODE (op)] < 0
815 : (ira_class_singleton[cl][GET_MODE (op)]
816 != ira_class_singleton[next_cl][GET_MODE (op)]))
817 return NO_REGS;
818 cl = next_cl;
819 break;
820 }
821 return cl;
822 }
823
824 /* The function checks that operand OP_NUM of the current insn can use
825 only one hard register. If it is so, the function returns the
826 class of the hard register. Otherwise it returns NO_REGS. */
827 static enum reg_class
828 single_reg_operand_class (int op_num)
829 {
830 if (op_num < 0 || recog_data.n_alternatives == 0)
831 return NO_REGS;
832 return single_reg_class (recog_data.constraints[op_num],
833 recog_data.operand[op_num], NULL_RTX);
834 }
835
836 /* The function sets up hard register set *SET to hard registers which
837 might be used by insn reloads because the constraints are too
838 strict. */
839 void
840 ira_implicitly_set_insn_hard_regs (HARD_REG_SET *set)
841 {
842 int i, c, regno = 0;
843 enum reg_class cl;
844 rtx op;
845 machine_mode mode;
846
847 CLEAR_HARD_REG_SET (*set);
848 for (i = 0; i < recog_data.n_operands; i++)
849 {
850 op = recog_data.operand[i];
851
852 if (GET_CODE (op) == SUBREG)
853 op = SUBREG_REG (op);
854
855 if (GET_CODE (op) == SCRATCH
856 || (REG_P (op) && (regno = REGNO (op)) >= FIRST_PSEUDO_REGISTER))
857 {
858 const char *p = recog_data.constraints[i];
859
860 mode = (GET_CODE (op) == SCRATCH
861 ? GET_MODE (op) : PSEUDO_REGNO_MODE (regno));
862 cl = NO_REGS;
863 alternative_mask preferred = preferred_alternatives;
864 for (; (c = *p); p += CONSTRAINT_LEN (c, p))
865 if (c == '#')
866 preferred &= ~ALTERNATIVE_BIT (0);
867 else if (c == ',')
868 preferred >>= 1;
869 else if (preferred & 1)
870 {
871 cl = reg_class_for_constraint (lookup_constraint (p));
872 if (cl != NO_REGS)
873 {
874 /* There is no register pressure problem if all of the
875 regs in this class are fixed. */
876 int regno = ira_class_singleton[cl][mode];
877 if (regno >= 0)
878 add_to_hard_reg_set (set, mode, regno);
879 }
880 }
881 }
882 }
883 }
884 /* Processes input operands, if IN_P, or output operands otherwise of
885 the current insn with FREQ to find allocno which can use only one
886 hard register and makes other currently living allocnos conflicting
887 with the hard register. */
888 static void
889 process_single_reg_class_operands (bool in_p, int freq)
890 {
891 int i, regno;
892 unsigned int px;
893 enum reg_class cl;
894 rtx operand;
895 ira_allocno_t operand_a, a;
896
897 for (i = 0; i < recog_data.n_operands; i++)
898 {
899 operand = recog_data.operand[i];
900 if (in_p && recog_data.operand_type[i] != OP_IN
901 && recog_data.operand_type[i] != OP_INOUT)
902 continue;
903 if (! in_p && recog_data.operand_type[i] != OP_OUT
904 && recog_data.operand_type[i] != OP_INOUT)
905 continue;
906 cl = single_reg_operand_class (i);
907 if (cl == NO_REGS)
908 continue;
909
910 operand_a = NULL;
911
912 if (GET_CODE (operand) == SUBREG)
913 operand = SUBREG_REG (operand);
914
915 if (REG_P (operand)
916 && (regno = REGNO (operand)) >= FIRST_PSEUDO_REGISTER)
917 {
918 enum reg_class aclass;
919
920 operand_a = ira_curr_regno_allocno_map[regno];
921 aclass = ALLOCNO_CLASS (operand_a);
922 if (ira_class_subset_p[cl][aclass])
923 {
924 /* View the desired allocation of OPERAND as:
925
926 (REG:YMODE YREGNO),
927
928 a simplification of:
929
930 (subreg:YMODE (reg:XMODE XREGNO) OFFSET). */
931 machine_mode ymode, xmode;
932 int xregno, yregno;
933 HOST_WIDE_INT offset;
934
935 xmode = recog_data.operand_mode[i];
936 xregno = ira_class_singleton[cl][xmode];
937 gcc_assert (xregno >= 0);
938 ymode = ALLOCNO_MODE (operand_a);
939 offset = subreg_lowpart_offset (ymode, xmode);
940 yregno = simplify_subreg_regno (xregno, xmode, offset, ymode);
941 if (yregno >= 0
942 && ira_class_hard_reg_index[aclass][yregno] >= 0)
943 {
944 int cost;
945
946 ira_allocate_and_set_costs
947 (&ALLOCNO_CONFLICT_HARD_REG_COSTS (operand_a),
948 aclass, 0);
949 ira_init_register_move_cost_if_necessary (xmode);
950 cost = freq * (in_p
951 ? ira_register_move_cost[xmode][aclass][cl]
952 : ira_register_move_cost[xmode][cl][aclass]);
953 ALLOCNO_CONFLICT_HARD_REG_COSTS (operand_a)
954 [ira_class_hard_reg_index[aclass][yregno]] -= cost;
955 }
956 }
957 }
958
959 EXECUTE_IF_SET_IN_SPARSESET (objects_live, px)
960 {
961 ira_object_t obj = ira_object_id_map[px];
962 a = OBJECT_ALLOCNO (obj);
963 if (a != operand_a)
964 {
965 /* We could increase costs of A instead of making it
966 conflicting with the hard register. But it works worse
967 because it will be spilled in reload in anyway. */
968 IOR_HARD_REG_SET (OBJECT_CONFLICT_HARD_REGS (obj),
969 reg_class_contents[cl]);
970 IOR_HARD_REG_SET (OBJECT_TOTAL_CONFLICT_HARD_REGS (obj),
971 reg_class_contents[cl]);
972 }
973 }
974 }
975 }
976
977 /* Return true when one of the predecessor edges of BB is marked with
978 EDGE_ABNORMAL_CALL or EDGE_EH. */
979 static bool
980 bb_has_abnormal_call_pred (basic_block bb)
981 {
982 edge e;
983 edge_iterator ei;
984
985 FOR_EACH_EDGE (e, ei, bb->preds)
986 {
987 if (e->flags & (EDGE_ABNORMAL_CALL | EDGE_EH))
988 return true;
989 }
990 return false;
991 }
992
993 /* Look through the CALL_INSN_FUNCTION_USAGE of a call insn INSN, and see if
994 we find a SET rtx that we can use to deduce that a register can be cheaply
995 caller-saved. Return such a register, or NULL_RTX if none is found. */
996 static rtx
997 find_call_crossed_cheap_reg (rtx_insn *insn)
998 {
999 rtx cheap_reg = NULL_RTX;
1000 rtx exp = CALL_INSN_FUNCTION_USAGE (insn);
1001
1002 while (exp != NULL)
1003 {
1004 rtx x = XEXP (exp, 0);
1005 if (GET_CODE (x) == SET)
1006 {
1007 exp = x;
1008 break;
1009 }
1010 exp = XEXP (exp, 1);
1011 }
1012 if (exp != NULL)
1013 {
1014 basic_block bb = BLOCK_FOR_INSN (insn);
1015 rtx reg = SET_SRC (exp);
1016 rtx_insn *prev = PREV_INSN (insn);
1017 while (prev && !(INSN_P (prev)
1018 && BLOCK_FOR_INSN (prev) != bb))
1019 {
1020 if (NONDEBUG_INSN_P (prev))
1021 {
1022 rtx set = single_set (prev);
1023
1024 if (set && rtx_equal_p (SET_DEST (set), reg))
1025 {
1026 rtx src = SET_SRC (set);
1027 if (!REG_P (src) || HARD_REGISTER_P (src)
1028 || !pseudo_regno_single_word_and_live_p (REGNO (src)))
1029 break;
1030 if (!modified_between_p (src, prev, insn))
1031 cheap_reg = src;
1032 break;
1033 }
1034 if (set && rtx_equal_p (SET_SRC (set), reg))
1035 {
1036 rtx dest = SET_DEST (set);
1037 if (!REG_P (dest) || HARD_REGISTER_P (dest)
1038 || !pseudo_regno_single_word_and_live_p (REGNO (dest)))
1039 break;
1040 if (!modified_between_p (dest, prev, insn))
1041 cheap_reg = dest;
1042 break;
1043 }
1044
1045 if (reg_overlap_mentioned_p (reg, PATTERN (prev)))
1046 break;
1047 }
1048 prev = PREV_INSN (prev);
1049 }
1050 }
1051 return cheap_reg;
1052 }
1053
1054 /* Process insns of the basic block given by its LOOP_TREE_NODE to
1055 update allocno live ranges, allocno hard register conflicts,
1056 intersected calls, and register pressure info for allocnos for the
1057 basic block for and regions containing the basic block. */
1058 static void
1059 process_bb_node_lives (ira_loop_tree_node_t loop_tree_node)
1060 {
1061 int i, freq;
1062 unsigned int j;
1063 basic_block bb;
1064 rtx_insn *insn;
1065 bitmap_iterator bi;
1066 bitmap reg_live_out;
1067 unsigned int px;
1068 bool set_p;
1069
1070 bb = loop_tree_node->bb;
1071 if (bb != NULL)
1072 {
1073 for (i = 0; i < ira_pressure_classes_num; i++)
1074 {
1075 curr_reg_pressure[ira_pressure_classes[i]] = 0;
1076 high_pressure_start_point[ira_pressure_classes[i]] = -1;
1077 }
1078 curr_bb_node = loop_tree_node;
1079 reg_live_out = df_get_live_out (bb);
1080 sparseset_clear (objects_live);
1081 REG_SET_TO_HARD_REG_SET (hard_regs_live, reg_live_out);
1082 AND_COMPL_HARD_REG_SET (hard_regs_live, eliminable_regset);
1083 AND_COMPL_HARD_REG_SET (hard_regs_live, ira_no_alloc_regs);
1084 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1085 if (TEST_HARD_REG_BIT (hard_regs_live, i))
1086 {
1087 enum reg_class aclass, pclass, cl;
1088
1089 aclass = ira_allocno_class_translate[REGNO_REG_CLASS (i)];
1090 pclass = ira_pressure_class_translate[aclass];
1091 for (j = 0;
1092 (cl = ira_reg_class_super_classes[pclass][j])
1093 != LIM_REG_CLASSES;
1094 j++)
1095 {
1096 if (! ira_reg_pressure_class_p[cl])
1097 continue;
1098 curr_reg_pressure[cl]++;
1099 if (curr_bb_node->reg_pressure[cl] < curr_reg_pressure[cl])
1100 curr_bb_node->reg_pressure[cl] = curr_reg_pressure[cl];
1101 ira_assert (curr_reg_pressure[cl]
1102 <= ira_class_hard_regs_num[cl]);
1103 }
1104 }
1105 EXECUTE_IF_SET_IN_BITMAP (reg_live_out, FIRST_PSEUDO_REGISTER, j, bi)
1106 mark_pseudo_regno_live (j);
1107
1108 freq = REG_FREQ_FROM_BB (bb);
1109 if (freq == 0)
1110 freq = 1;
1111
1112 /* Invalidate all allocno_saved_at_call entries. */
1113 last_call_num++;
1114
1115 /* Scan the code of this basic block, noting which allocnos and
1116 hard regs are born or die.
1117
1118 Note that this loop treats uninitialized values as live until
1119 the beginning of the block. For example, if an instruction
1120 uses (reg:DI foo), and only (subreg:SI (reg:DI foo) 0) is ever
1121 set, FOO will remain live until the beginning of the block.
1122 Likewise if FOO is not set at all. This is unnecessarily
1123 pessimistic, but it probably doesn't matter much in practice. */
1124 FOR_BB_INSNS_REVERSE (bb, insn)
1125 {
1126 int regno;
1127 ira_allocno_t a;
1128 df_ref def, use;
1129 bool call_p, clear_pic_use_conflict_p;
1130
1131 if (!NONDEBUG_INSN_P (insn))
1132 continue;
1133
1134 if (internal_flag_ira_verbose > 2 && ira_dump_file != NULL)
1135 fprintf (ira_dump_file, " Insn %u(l%d): point = %d\n",
1136 INSN_UID (insn), loop_tree_node->parent->loop_num,
1137 curr_point);
1138
1139 call_p = CALL_P (insn);
1140 clear_pic_use_conflict_p = false;
1141 /* Processing insn usage in call insn can create conflict
1142 with pic pseudo and pic hard reg and that is wrong.
1143 Check this situation and fix it at the end of the insn
1144 processing. */
1145 if (call_p && pic_offset_table_rtx != NULL_RTX
1146 && (regno = REGNO (pic_offset_table_rtx)) >= FIRST_PSEUDO_REGISTER
1147 && (a = ira_curr_regno_allocno_map[regno]) != NULL)
1148 clear_pic_use_conflict_p
1149 = (find_regno_fusage (insn, USE, REAL_PIC_OFFSET_TABLE_REGNUM)
1150 && ! TEST_HARD_REG_BIT (OBJECT_CONFLICT_HARD_REGS
1151 (ALLOCNO_OBJECT (a, 0)),
1152 REAL_PIC_OFFSET_TABLE_REGNUM));
1153
1154 /* Mark each defined value as live. We need to do this for
1155 unused values because they still conflict with quantities
1156 that are live at the time of the definition.
1157
1158 Ignore DF_REF_MAY_CLOBBERs on a call instruction. Such
1159 references represent the effect of the called function
1160 on a call-clobbered register. Marking the register as
1161 live would stop us from allocating it to a call-crossing
1162 allocno. */
1163 FOR_EACH_INSN_DEF (def, insn)
1164 if (!call_p || !DF_REF_FLAGS_IS_SET (def, DF_REF_MAY_CLOBBER))
1165 mark_ref_live (def);
1166
1167 /* If INSN has multiple outputs, then any value used in one
1168 of the outputs conflicts with the other outputs. Model this
1169 by making the used value live during the output phase.
1170
1171 It is unsafe to use !single_set here since it will ignore
1172 an unused output. Just because an output is unused does
1173 not mean the compiler can assume the side effect will not
1174 occur. Consider if ALLOCNO appears in the address of an
1175 output and we reload the output. If we allocate ALLOCNO
1176 to the same hard register as an unused output we could
1177 set the hard register before the output reload insn. */
1178 if (GET_CODE (PATTERN (insn)) == PARALLEL && multiple_sets (insn))
1179 FOR_EACH_INSN_USE (use, insn)
1180 {
1181 int i;
1182 rtx reg;
1183
1184 reg = DF_REF_REG (use);
1185 for (i = XVECLEN (PATTERN (insn), 0) - 1; i >= 0; i--)
1186 {
1187 rtx set;
1188
1189 set = XVECEXP (PATTERN (insn), 0, i);
1190 if (GET_CODE (set) == SET
1191 && reg_overlap_mentioned_p (reg, SET_DEST (set)))
1192 {
1193 /* After the previous loop, this is a no-op if
1194 REG is contained within SET_DEST (SET). */
1195 mark_ref_live (use);
1196 break;
1197 }
1198 }
1199 }
1200
1201 extract_insn (insn);
1202 preferred_alternatives = get_preferred_alternatives (insn);
1203 preprocess_constraints (insn);
1204 process_single_reg_class_operands (false, freq);
1205
1206 /* See which defined values die here. */
1207 FOR_EACH_INSN_DEF (def, insn)
1208 if (!call_p || !DF_REF_FLAGS_IS_SET (def, DF_REF_MAY_CLOBBER))
1209 mark_ref_dead (def);
1210
1211 if (call_p)
1212 {
1213 /* Try to find a SET in the CALL_INSN_FUNCTION_USAGE, and from
1214 there, try to find a pseudo that is live across the call but
1215 can be cheaply reconstructed from the return value. */
1216 rtx cheap_reg = find_call_crossed_cheap_reg (insn);
1217 if (cheap_reg != NULL_RTX)
1218 add_reg_note (insn, REG_RETURNED, cheap_reg);
1219
1220 last_call_num++;
1221 sparseset_clear (allocnos_processed);
1222 /* The current set of live allocnos are live across the call. */
1223 EXECUTE_IF_SET_IN_SPARSESET (objects_live, i)
1224 {
1225 ira_object_t obj = ira_object_id_map[i];
1226 a = OBJECT_ALLOCNO (obj);
1227 int num = ALLOCNO_NUM (a);
1228 HARD_REG_SET this_call_used_reg_set;
1229
1230 get_call_reg_set_usage (insn, &this_call_used_reg_set,
1231 call_used_reg_set);
1232
1233 /* Don't allocate allocnos that cross setjmps or any
1234 call, if this function receives a nonlocal
1235 goto. */
1236 if (cfun->has_nonlocal_label
1237 || find_reg_note (insn, REG_SETJMP,
1238 NULL_RTX) != NULL_RTX)
1239 {
1240 SET_HARD_REG_SET (OBJECT_CONFLICT_HARD_REGS (obj));
1241 SET_HARD_REG_SET (OBJECT_TOTAL_CONFLICT_HARD_REGS (obj));
1242 }
1243 if (can_throw_internal (insn))
1244 {
1245 IOR_HARD_REG_SET (OBJECT_CONFLICT_HARD_REGS (obj),
1246 this_call_used_reg_set);
1247 IOR_HARD_REG_SET (OBJECT_TOTAL_CONFLICT_HARD_REGS (obj),
1248 this_call_used_reg_set);
1249 }
1250
1251 if (sparseset_bit_p (allocnos_processed, num))
1252 continue;
1253 sparseset_set_bit (allocnos_processed, num);
1254
1255 if (allocno_saved_at_call[num] != last_call_num)
1256 /* Here we are mimicking caller-save.c behavior
1257 which does not save hard register at a call if
1258 it was saved on previous call in the same basic
1259 block and the hard register was not mentioned
1260 between the two calls. */
1261 ALLOCNO_CALL_FREQ (a) += freq;
1262 /* Mark it as saved at the next call. */
1263 allocno_saved_at_call[num] = last_call_num + 1;
1264 ALLOCNO_CALLS_CROSSED_NUM (a)++;
1265 IOR_HARD_REG_SET (ALLOCNO_CROSSED_CALLS_CLOBBERED_REGS (a),
1266 this_call_used_reg_set);
1267 if (cheap_reg != NULL_RTX
1268 && ALLOCNO_REGNO (a) == (int) REGNO (cheap_reg))
1269 ALLOCNO_CHEAP_CALLS_CROSSED_NUM (a)++;
1270 }
1271 }
1272
1273 make_early_clobber_and_input_conflicts ();
1274
1275 curr_point++;
1276
1277 /* Mark each used value as live. */
1278 FOR_EACH_INSN_USE (use, insn)
1279 mark_ref_live (use);
1280
1281 process_single_reg_class_operands (true, freq);
1282
1283 set_p = mark_hard_reg_early_clobbers (insn, true);
1284
1285 if (set_p)
1286 {
1287 mark_hard_reg_early_clobbers (insn, false);
1288
1289 /* Mark each hard reg as live again. For example, a
1290 hard register can be in clobber and in an insn
1291 input. */
1292 FOR_EACH_INSN_USE (use, insn)
1293 {
1294 rtx ureg = DF_REF_REG (use);
1295
1296 if (GET_CODE (ureg) == SUBREG)
1297 ureg = SUBREG_REG (ureg);
1298 if (! REG_P (ureg) || REGNO (ureg) >= FIRST_PSEUDO_REGISTER)
1299 continue;
1300
1301 mark_ref_live (use);
1302 }
1303 }
1304
1305 if (clear_pic_use_conflict_p)
1306 {
1307 regno = REGNO (pic_offset_table_rtx);
1308 a = ira_curr_regno_allocno_map[regno];
1309 CLEAR_HARD_REG_BIT (OBJECT_CONFLICT_HARD_REGS (ALLOCNO_OBJECT (a, 0)),
1310 REAL_PIC_OFFSET_TABLE_REGNUM);
1311 CLEAR_HARD_REG_BIT (OBJECT_TOTAL_CONFLICT_HARD_REGS
1312 (ALLOCNO_OBJECT (a, 0)),
1313 REAL_PIC_OFFSET_TABLE_REGNUM);
1314 }
1315
1316 curr_point++;
1317 }
1318
1319 #ifdef EH_RETURN_DATA_REGNO
1320 if (bb_has_eh_pred (bb))
1321 for (j = 0; ; ++j)
1322 {
1323 unsigned int regno = EH_RETURN_DATA_REGNO (j);
1324 if (regno == INVALID_REGNUM)
1325 break;
1326 make_hard_regno_born (regno);
1327 }
1328 #endif
1329
1330 /* Allocnos can't go in stack regs at the start of a basic block
1331 that is reached by an abnormal edge. Likewise for call
1332 clobbered regs, because caller-save, fixup_abnormal_edges and
1333 possibly the table driven EH machinery are not quite ready to
1334 handle such allocnos live across such edges. */
1335 if (bb_has_abnormal_pred (bb))
1336 {
1337 #ifdef STACK_REGS
1338 EXECUTE_IF_SET_IN_SPARSESET (objects_live, px)
1339 {
1340 ira_allocno_t a = OBJECT_ALLOCNO (ira_object_id_map[px]);
1341
1342 ALLOCNO_NO_STACK_REG_P (a) = true;
1343 ALLOCNO_TOTAL_NO_STACK_REG_P (a) = true;
1344 }
1345 for (px = FIRST_STACK_REG; px <= LAST_STACK_REG; px++)
1346 make_hard_regno_born (px);
1347 #endif
1348 /* No need to record conflicts for call clobbered regs if we
1349 have nonlocal labels around, as we don't ever try to
1350 allocate such regs in this case. */
1351 if (!cfun->has_nonlocal_label && bb_has_abnormal_call_pred (bb))
1352 for (px = 0; px < FIRST_PSEUDO_REGISTER; px++)
1353 if (call_used_regs[px])
1354 make_hard_regno_born (px);
1355 }
1356
1357 EXECUTE_IF_SET_IN_SPARSESET (objects_live, i)
1358 make_object_dead (ira_object_id_map[i]);
1359
1360 curr_point++;
1361
1362 }
1363 /* Propagate register pressure to upper loop tree nodes. */
1364 if (loop_tree_node != ira_loop_tree_root)
1365 for (i = 0; i < ira_pressure_classes_num; i++)
1366 {
1367 enum reg_class pclass;
1368
1369 pclass = ira_pressure_classes[i];
1370 if (loop_tree_node->reg_pressure[pclass]
1371 > loop_tree_node->parent->reg_pressure[pclass])
1372 loop_tree_node->parent->reg_pressure[pclass]
1373 = loop_tree_node->reg_pressure[pclass];
1374 }
1375 }
1376
1377 /* Create and set up IRA_START_POINT_RANGES and
1378 IRA_FINISH_POINT_RANGES. */
1379 static void
1380 create_start_finish_chains (void)
1381 {
1382 ira_object_t obj;
1383 ira_object_iterator oi;
1384 live_range_t r;
1385
1386 ira_start_point_ranges
1387 = (live_range_t *) ira_allocate (ira_max_point * sizeof (live_range_t));
1388 memset (ira_start_point_ranges, 0, ira_max_point * sizeof (live_range_t));
1389 ira_finish_point_ranges
1390 = (live_range_t *) ira_allocate (ira_max_point * sizeof (live_range_t));
1391 memset (ira_finish_point_ranges, 0, ira_max_point * sizeof (live_range_t));
1392 FOR_EACH_OBJECT (obj, oi)
1393 for (r = OBJECT_LIVE_RANGES (obj); r != NULL; r = r->next)
1394 {
1395 r->start_next = ira_start_point_ranges[r->start];
1396 ira_start_point_ranges[r->start] = r;
1397 r->finish_next = ira_finish_point_ranges[r->finish];
1398 ira_finish_point_ranges[r->finish] = r;
1399 }
1400 }
1401
1402 /* Rebuild IRA_START_POINT_RANGES and IRA_FINISH_POINT_RANGES after
1403 new live ranges and program points were added as a result if new
1404 insn generation. */
1405 void
1406 ira_rebuild_start_finish_chains (void)
1407 {
1408 ira_free (ira_finish_point_ranges);
1409 ira_free (ira_start_point_ranges);
1410 create_start_finish_chains ();
1411 }
1412
1413 /* Compress allocno live ranges by removing program points where
1414 nothing happens. */
1415 static void
1416 remove_some_program_points_and_update_live_ranges (void)
1417 {
1418 unsigned i;
1419 int n;
1420 int *map;
1421 ira_object_t obj;
1422 ira_object_iterator oi;
1423 live_range_t r, prev_r, next_r;
1424 sbitmap born_or_dead, born, dead;
1425 sbitmap_iterator sbi;
1426 bool born_p, dead_p, prev_born_p, prev_dead_p;
1427
1428 born = sbitmap_alloc (ira_max_point);
1429 dead = sbitmap_alloc (ira_max_point);
1430 bitmap_clear (born);
1431 bitmap_clear (dead);
1432 FOR_EACH_OBJECT (obj, oi)
1433 for (r = OBJECT_LIVE_RANGES (obj); r != NULL; r = r->next)
1434 {
1435 ira_assert (r->start <= r->finish);
1436 bitmap_set_bit (born, r->start);
1437 bitmap_set_bit (dead, r->finish);
1438 }
1439
1440 born_or_dead = sbitmap_alloc (ira_max_point);
1441 bitmap_ior (born_or_dead, born, dead);
1442 map = (int *) ira_allocate (sizeof (int) * ira_max_point);
1443 n = -1;
1444 prev_born_p = prev_dead_p = false;
1445 EXECUTE_IF_SET_IN_BITMAP (born_or_dead, 0, i, sbi)
1446 {
1447 born_p = bitmap_bit_p (born, i);
1448 dead_p = bitmap_bit_p (dead, i);
1449 if ((prev_born_p && ! prev_dead_p && born_p && ! dead_p)
1450 || (prev_dead_p && ! prev_born_p && dead_p && ! born_p))
1451 map[i] = n;
1452 else
1453 map[i] = ++n;
1454 prev_born_p = born_p;
1455 prev_dead_p = dead_p;
1456 }
1457 sbitmap_free (born_or_dead);
1458 sbitmap_free (born);
1459 sbitmap_free (dead);
1460 n++;
1461 if (internal_flag_ira_verbose > 1 && ira_dump_file != NULL)
1462 fprintf (ira_dump_file, "Compressing live ranges: from %d to %d - %d%%\n",
1463 ira_max_point, n, 100 * n / ira_max_point);
1464 ira_max_point = n;
1465
1466 FOR_EACH_OBJECT (obj, oi)
1467 for (r = OBJECT_LIVE_RANGES (obj), prev_r = NULL; r != NULL; r = next_r)
1468 {
1469 next_r = r->next;
1470 r->start = map[r->start];
1471 r->finish = map[r->finish];
1472 if (prev_r == NULL || prev_r->start > r->finish + 1)
1473 {
1474 prev_r = r;
1475 continue;
1476 }
1477 prev_r->start = r->start;
1478 prev_r->next = next_r;
1479 ira_finish_live_range (r);
1480 }
1481
1482 ira_free (map);
1483 }
1484
1485 /* Print live ranges R to file F. */
1486 void
1487 ira_print_live_range_list (FILE *f, live_range_t r)
1488 {
1489 for (; r != NULL; r = r->next)
1490 fprintf (f, " [%d..%d]", r->start, r->finish);
1491 fprintf (f, "\n");
1492 }
1493
1494 DEBUG_FUNCTION void
1495 debug (live_range &ref)
1496 {
1497 ira_print_live_range_list (stderr, &ref);
1498 }
1499
1500 DEBUG_FUNCTION void
1501 debug (live_range *ptr)
1502 {
1503 if (ptr)
1504 debug (*ptr);
1505 else
1506 fprintf (stderr, "<nil>\n");
1507 }
1508
1509 /* Print live ranges R to stderr. */
1510 void
1511 ira_debug_live_range_list (live_range_t r)
1512 {
1513 ira_print_live_range_list (stderr, r);
1514 }
1515
1516 /* Print live ranges of object OBJ to file F. */
1517 static void
1518 print_object_live_ranges (FILE *f, ira_object_t obj)
1519 {
1520 ira_print_live_range_list (f, OBJECT_LIVE_RANGES (obj));
1521 }
1522
1523 /* Print live ranges of allocno A to file F. */
1524 static void
1525 print_allocno_live_ranges (FILE *f, ira_allocno_t a)
1526 {
1527 int n = ALLOCNO_NUM_OBJECTS (a);
1528 int i;
1529
1530 for (i = 0; i < n; i++)
1531 {
1532 fprintf (f, " a%d(r%d", ALLOCNO_NUM (a), ALLOCNO_REGNO (a));
1533 if (n > 1)
1534 fprintf (f, " [%d]", i);
1535 fprintf (f, "):");
1536 print_object_live_ranges (f, ALLOCNO_OBJECT (a, i));
1537 }
1538 }
1539
1540 /* Print live ranges of allocno A to stderr. */
1541 void
1542 ira_debug_allocno_live_ranges (ira_allocno_t a)
1543 {
1544 print_allocno_live_ranges (stderr, a);
1545 }
1546
1547 /* Print live ranges of all allocnos to file F. */
1548 static void
1549 print_live_ranges (FILE *f)
1550 {
1551 ira_allocno_t a;
1552 ira_allocno_iterator ai;
1553
1554 FOR_EACH_ALLOCNO (a, ai)
1555 print_allocno_live_ranges (f, a);
1556 }
1557
1558 /* Print live ranges of all allocnos to stderr. */
1559 void
1560 ira_debug_live_ranges (void)
1561 {
1562 print_live_ranges (stderr);
1563 }
1564
1565 /* The main entry function creates live ranges, set up
1566 CONFLICT_HARD_REGS and TOTAL_CONFLICT_HARD_REGS for objects, and
1567 calculate register pressure info. */
1568 void
1569 ira_create_allocno_live_ranges (void)
1570 {
1571 objects_live = sparseset_alloc (ira_objects_num);
1572 allocnos_processed = sparseset_alloc (ira_allocnos_num);
1573 curr_point = 0;
1574 last_call_num = 0;
1575 allocno_saved_at_call
1576 = (int *) ira_allocate (ira_allocnos_num * sizeof (int));
1577 memset (allocno_saved_at_call, 0, ira_allocnos_num * sizeof (int));
1578 ira_traverse_loop_tree (true, ira_loop_tree_root, NULL,
1579 process_bb_node_lives);
1580 ira_max_point = curr_point;
1581 create_start_finish_chains ();
1582 if (internal_flag_ira_verbose > 2 && ira_dump_file != NULL)
1583 print_live_ranges (ira_dump_file);
1584 /* Clean up. */
1585 ira_free (allocno_saved_at_call);
1586 sparseset_free (objects_live);
1587 sparseset_free (allocnos_processed);
1588 }
1589
1590 /* Compress allocno live ranges. */
1591 void
1592 ira_compress_allocno_live_ranges (void)
1593 {
1594 remove_some_program_points_and_update_live_ranges ();
1595 ira_rebuild_start_finish_chains ();
1596 if (internal_flag_ira_verbose > 2 && ira_dump_file != NULL)
1597 {
1598 fprintf (ira_dump_file, "Ranges after the compression:\n");
1599 print_live_ranges (ira_dump_file);
1600 }
1601 }
1602
1603 /* Free arrays IRA_START_POINT_RANGES and IRA_FINISH_POINT_RANGES. */
1604 void
1605 ira_finish_allocno_live_ranges (void)
1606 {
1607 ira_free (ira_finish_point_ranges);
1608 ira_free (ira_start_point_ranges);
1609 }