]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/ira-lives.c
recog.c (preprocess_constraints): Don't skip disabled alternatives.
[thirdparty/gcc.git] / gcc / ira-lives.c
1 /* IRA processing allocno lives to build allocno live ranges.
2 Copyright (C) 2006-2014 Free Software Foundation, Inc.
3 Contributed by Vladimir Makarov <vmakarov@redhat.com>.
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
10 version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
20
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "tm.h"
25 #include "regs.h"
26 #include "rtl.h"
27 #include "tm_p.h"
28 #include "target.h"
29 #include "flags.h"
30 #include "except.h"
31 #include "hard-reg-set.h"
32 #include "basic-block.h"
33 #include "insn-config.h"
34 #include "recog.h"
35 #include "diagnostic-core.h"
36 #include "params.h"
37 #include "df.h"
38 #include "sbitmap.h"
39 #include "sparseset.h"
40 #include "ira-int.h"
41
42 /* The code in this file is similar to one in global but the code
43 works on the allocno basis and creates live ranges instead of
44 pseudo-register conflicts. */
45
46 /* Program points are enumerated by numbers from range
47 0..IRA_MAX_POINT-1. There are approximately two times more program
48 points than insns. Program points are places in the program where
49 liveness info can be changed. In most general case (there are more
50 complicated cases too) some program points correspond to places
51 where input operand dies and other ones correspond to places where
52 output operands are born. */
53 int ira_max_point;
54
55 /* Arrays of size IRA_MAX_POINT mapping a program point to the allocno
56 live ranges with given start/finish point. */
57 live_range_t *ira_start_point_ranges, *ira_finish_point_ranges;
58
59 /* Number of the current program point. */
60 static int curr_point;
61
62 /* Point where register pressure excess started or -1 if there is no
63 register pressure excess. Excess pressure for a register class at
64 some point means that there are more allocnos of given register
65 class living at the point than number of hard-registers of the
66 class available for the allocation. It is defined only for
67 pressure classes. */
68 static int high_pressure_start_point[N_REG_CLASSES];
69
70 /* Objects live at current point in the scan. */
71 static sparseset objects_live;
72
73 /* A temporary bitmap used in functions that wish to avoid visiting an allocno
74 multiple times. */
75 static sparseset allocnos_processed;
76
77 /* Set of hard regs (except eliminable ones) currently live. */
78 static HARD_REG_SET hard_regs_live;
79
80 /* The loop tree node corresponding to the current basic block. */
81 static ira_loop_tree_node_t curr_bb_node;
82
83 /* The number of the last processed call. */
84 static int last_call_num;
85 /* The number of last call at which given allocno was saved. */
86 static int *allocno_saved_at_call;
87
88 /* Record the birth of hard register REGNO, updating hard_regs_live and
89 hard reg conflict information for living allocnos. */
90 static void
91 make_hard_regno_born (int regno)
92 {
93 unsigned int i;
94
95 SET_HARD_REG_BIT (hard_regs_live, regno);
96 EXECUTE_IF_SET_IN_SPARSESET (objects_live, i)
97 {
98 ira_object_t obj = ira_object_id_map[i];
99
100 SET_HARD_REG_BIT (OBJECT_CONFLICT_HARD_REGS (obj), regno);
101 SET_HARD_REG_BIT (OBJECT_TOTAL_CONFLICT_HARD_REGS (obj), regno);
102 }
103 }
104
105 /* Process the death of hard register REGNO. This updates
106 hard_regs_live. */
107 static void
108 make_hard_regno_dead (int regno)
109 {
110 CLEAR_HARD_REG_BIT (hard_regs_live, regno);
111 }
112
113 /* Record the birth of object OBJ. Set a bit for it in objects_live,
114 start a new live range for it if necessary and update hard register
115 conflicts. */
116 static void
117 make_object_born (ira_object_t obj)
118 {
119 live_range_t lr = OBJECT_LIVE_RANGES (obj);
120
121 sparseset_set_bit (objects_live, OBJECT_CONFLICT_ID (obj));
122 IOR_HARD_REG_SET (OBJECT_CONFLICT_HARD_REGS (obj), hard_regs_live);
123 IOR_HARD_REG_SET (OBJECT_TOTAL_CONFLICT_HARD_REGS (obj), hard_regs_live);
124
125 if (lr == NULL
126 || (lr->finish != curr_point && lr->finish + 1 != curr_point))
127 ira_add_live_range_to_object (obj, curr_point, -1);
128 }
129
130 /* Update ALLOCNO_EXCESS_PRESSURE_POINTS_NUM for the allocno
131 associated with object OBJ. */
132 static void
133 update_allocno_pressure_excess_length (ira_object_t obj)
134 {
135 ira_allocno_t a = OBJECT_ALLOCNO (obj);
136 int start, i;
137 enum reg_class aclass, pclass, cl;
138 live_range_t p;
139
140 aclass = ALLOCNO_CLASS (a);
141 pclass = ira_pressure_class_translate[aclass];
142 for (i = 0;
143 (cl = ira_reg_class_super_classes[pclass][i]) != LIM_REG_CLASSES;
144 i++)
145 {
146 if (! ira_reg_pressure_class_p[cl])
147 continue;
148 if (high_pressure_start_point[cl] < 0)
149 continue;
150 p = OBJECT_LIVE_RANGES (obj);
151 ira_assert (p != NULL);
152 start = (high_pressure_start_point[cl] > p->start
153 ? high_pressure_start_point[cl] : p->start);
154 ALLOCNO_EXCESS_PRESSURE_POINTS_NUM (a) += curr_point - start + 1;
155 }
156 }
157
158 /* Process the death of object OBJ, which is associated with allocno
159 A. This finishes the current live range for it. */
160 static void
161 make_object_dead (ira_object_t obj)
162 {
163 live_range_t lr;
164
165 sparseset_clear_bit (objects_live, OBJECT_CONFLICT_ID (obj));
166 lr = OBJECT_LIVE_RANGES (obj);
167 ira_assert (lr != NULL);
168 lr->finish = curr_point;
169 update_allocno_pressure_excess_length (obj);
170 }
171
172 /* The current register pressures for each pressure class for the current
173 basic block. */
174 static int curr_reg_pressure[N_REG_CLASSES];
175
176 /* Record that register pressure for PCLASS increased by N registers.
177 Update the current register pressure, maximal register pressure for
178 the current BB and the start point of the register pressure
179 excess. */
180 static void
181 inc_register_pressure (enum reg_class pclass, int n)
182 {
183 int i;
184 enum reg_class cl;
185
186 for (i = 0;
187 (cl = ira_reg_class_super_classes[pclass][i]) != LIM_REG_CLASSES;
188 i++)
189 {
190 if (! ira_reg_pressure_class_p[cl])
191 continue;
192 curr_reg_pressure[cl] += n;
193 if (high_pressure_start_point[cl] < 0
194 && (curr_reg_pressure[cl] > ira_class_hard_regs_num[cl]))
195 high_pressure_start_point[cl] = curr_point;
196 if (curr_bb_node->reg_pressure[cl] < curr_reg_pressure[cl])
197 curr_bb_node->reg_pressure[cl] = curr_reg_pressure[cl];
198 }
199 }
200
201 /* Record that register pressure for PCLASS has decreased by NREGS
202 registers; update current register pressure, start point of the
203 register pressure excess, and register pressure excess length for
204 living allocnos. */
205
206 static void
207 dec_register_pressure (enum reg_class pclass, int nregs)
208 {
209 int i;
210 unsigned int j;
211 enum reg_class cl;
212 bool set_p = false;
213
214 for (i = 0;
215 (cl = ira_reg_class_super_classes[pclass][i]) != LIM_REG_CLASSES;
216 i++)
217 {
218 if (! ira_reg_pressure_class_p[cl])
219 continue;
220 curr_reg_pressure[cl] -= nregs;
221 ira_assert (curr_reg_pressure[cl] >= 0);
222 if (high_pressure_start_point[cl] >= 0
223 && curr_reg_pressure[cl] <= ira_class_hard_regs_num[cl])
224 set_p = true;
225 }
226 if (set_p)
227 {
228 EXECUTE_IF_SET_IN_SPARSESET (objects_live, j)
229 update_allocno_pressure_excess_length (ira_object_id_map[j]);
230 for (i = 0;
231 (cl = ira_reg_class_super_classes[pclass][i]) != LIM_REG_CLASSES;
232 i++)
233 {
234 if (! ira_reg_pressure_class_p[cl])
235 continue;
236 if (high_pressure_start_point[cl] >= 0
237 && curr_reg_pressure[cl] <= ira_class_hard_regs_num[cl])
238 high_pressure_start_point[cl] = -1;
239 }
240 }
241 }
242
243 /* Determine from the objects_live bitmap whether REGNO is currently live,
244 and occupies only one object. Return false if we have no information. */
245 static bool
246 pseudo_regno_single_word_and_live_p (int regno)
247 {
248 ira_allocno_t a = ira_curr_regno_allocno_map[regno];
249 ira_object_t obj;
250
251 if (a == NULL)
252 return false;
253 if (ALLOCNO_NUM_OBJECTS (a) > 1)
254 return false;
255
256 obj = ALLOCNO_OBJECT (a, 0);
257
258 return sparseset_bit_p (objects_live, OBJECT_CONFLICT_ID (obj));
259 }
260
261 /* Mark the pseudo register REGNO as live. Update all information about
262 live ranges and register pressure. */
263 static void
264 mark_pseudo_regno_live (int regno)
265 {
266 ira_allocno_t a = ira_curr_regno_allocno_map[regno];
267 enum reg_class pclass;
268 int i, n, nregs;
269
270 if (a == NULL)
271 return;
272
273 /* Invalidate because it is referenced. */
274 allocno_saved_at_call[ALLOCNO_NUM (a)] = 0;
275
276 n = ALLOCNO_NUM_OBJECTS (a);
277 pclass = ira_pressure_class_translate[ALLOCNO_CLASS (a)];
278 nregs = ira_reg_class_max_nregs[ALLOCNO_CLASS (a)][ALLOCNO_MODE (a)];
279 if (n > 1)
280 {
281 /* We track every subobject separately. */
282 gcc_assert (nregs == n);
283 nregs = 1;
284 }
285
286 for (i = 0; i < n; i++)
287 {
288 ira_object_t obj = ALLOCNO_OBJECT (a, i);
289
290 if (sparseset_bit_p (objects_live, OBJECT_CONFLICT_ID (obj)))
291 continue;
292
293 inc_register_pressure (pclass, nregs);
294 make_object_born (obj);
295 }
296 }
297
298 /* Like mark_pseudo_regno_live, but try to only mark one subword of
299 the pseudo as live. SUBWORD indicates which; a value of 0
300 indicates the low part. */
301 static void
302 mark_pseudo_regno_subword_live (int regno, int subword)
303 {
304 ira_allocno_t a = ira_curr_regno_allocno_map[regno];
305 int n;
306 enum reg_class pclass;
307 ira_object_t obj;
308
309 if (a == NULL)
310 return;
311
312 /* Invalidate because it is referenced. */
313 allocno_saved_at_call[ALLOCNO_NUM (a)] = 0;
314
315 n = ALLOCNO_NUM_OBJECTS (a);
316 if (n == 1)
317 {
318 mark_pseudo_regno_live (regno);
319 return;
320 }
321
322 pclass = ira_pressure_class_translate[ALLOCNO_CLASS (a)];
323 gcc_assert
324 (n == ira_reg_class_max_nregs[ALLOCNO_CLASS (a)][ALLOCNO_MODE (a)]);
325 obj = ALLOCNO_OBJECT (a, subword);
326
327 if (sparseset_bit_p (objects_live, OBJECT_CONFLICT_ID (obj)))
328 return;
329
330 inc_register_pressure (pclass, 1);
331 make_object_born (obj);
332 }
333
334 /* Mark the register REG as live. Store a 1 in hard_regs_live for
335 this register, record how many consecutive hardware registers it
336 actually needs. */
337 static void
338 mark_hard_reg_live (rtx reg)
339 {
340 int regno = REGNO (reg);
341
342 if (! TEST_HARD_REG_BIT (ira_no_alloc_regs, regno))
343 {
344 int last = regno + hard_regno_nregs[regno][GET_MODE (reg)];
345 enum reg_class aclass, pclass;
346
347 while (regno < last)
348 {
349 if (! TEST_HARD_REG_BIT (hard_regs_live, regno)
350 && ! TEST_HARD_REG_BIT (eliminable_regset, regno))
351 {
352 aclass = ira_hard_regno_allocno_class[regno];
353 pclass = ira_pressure_class_translate[aclass];
354 inc_register_pressure (pclass, 1);
355 make_hard_regno_born (regno);
356 }
357 regno++;
358 }
359 }
360 }
361
362 /* Mark a pseudo, or one of its subwords, as live. REGNO is the pseudo's
363 register number; ORIG_REG is the access in the insn, which may be a
364 subreg. */
365 static void
366 mark_pseudo_reg_live (rtx orig_reg, unsigned regno)
367 {
368 if (df_read_modify_subreg_p (orig_reg))
369 {
370 mark_pseudo_regno_subword_live (regno,
371 subreg_lowpart_p (orig_reg) ? 0 : 1);
372 }
373 else
374 mark_pseudo_regno_live (regno);
375 }
376
377 /* Mark the register referenced by use or def REF as live. */
378 static void
379 mark_ref_live (df_ref ref)
380 {
381 rtx reg = DF_REF_REG (ref);
382 rtx orig_reg = reg;
383
384 if (GET_CODE (reg) == SUBREG)
385 reg = SUBREG_REG (reg);
386
387 if (REGNO (reg) >= FIRST_PSEUDO_REGISTER)
388 mark_pseudo_reg_live (orig_reg, REGNO (reg));
389 else
390 mark_hard_reg_live (reg);
391 }
392
393 /* Mark the pseudo register REGNO as dead. Update all information about
394 live ranges and register pressure. */
395 static void
396 mark_pseudo_regno_dead (int regno)
397 {
398 ira_allocno_t a = ira_curr_regno_allocno_map[regno];
399 int n, i, nregs;
400 enum reg_class cl;
401
402 if (a == NULL)
403 return;
404
405 /* Invalidate because it is referenced. */
406 allocno_saved_at_call[ALLOCNO_NUM (a)] = 0;
407
408 n = ALLOCNO_NUM_OBJECTS (a);
409 cl = ira_pressure_class_translate[ALLOCNO_CLASS (a)];
410 nregs = ira_reg_class_max_nregs[ALLOCNO_CLASS (a)][ALLOCNO_MODE (a)];
411 if (n > 1)
412 {
413 /* We track every subobject separately. */
414 gcc_assert (nregs == n);
415 nregs = 1;
416 }
417 for (i = 0; i < n; i++)
418 {
419 ira_object_t obj = ALLOCNO_OBJECT (a, i);
420 if (!sparseset_bit_p (objects_live, OBJECT_CONFLICT_ID (obj)))
421 continue;
422
423 dec_register_pressure (cl, nregs);
424 make_object_dead (obj);
425 }
426 }
427
428 /* Like mark_pseudo_regno_dead, but called when we know that only part of the
429 register dies. SUBWORD indicates which; a value of 0 indicates the low part. */
430 static void
431 mark_pseudo_regno_subword_dead (int regno, int subword)
432 {
433 ira_allocno_t a = ira_curr_regno_allocno_map[regno];
434 int n;
435 enum reg_class cl;
436 ira_object_t obj;
437
438 if (a == NULL)
439 return;
440
441 /* Invalidate because it is referenced. */
442 allocno_saved_at_call[ALLOCNO_NUM (a)] = 0;
443
444 n = ALLOCNO_NUM_OBJECTS (a);
445 if (n == 1)
446 /* The allocno as a whole doesn't die in this case. */
447 return;
448
449 cl = ira_pressure_class_translate[ALLOCNO_CLASS (a)];
450 gcc_assert
451 (n == ira_reg_class_max_nregs[ALLOCNO_CLASS (a)][ALLOCNO_MODE (a)]);
452
453 obj = ALLOCNO_OBJECT (a, subword);
454 if (!sparseset_bit_p (objects_live, OBJECT_CONFLICT_ID (obj)))
455 return;
456
457 dec_register_pressure (cl, 1);
458 make_object_dead (obj);
459 }
460
461 /* Mark the hard register REG as dead. Store a 0 in hard_regs_live for the
462 register. */
463 static void
464 mark_hard_reg_dead (rtx reg)
465 {
466 int regno = REGNO (reg);
467
468 if (! TEST_HARD_REG_BIT (ira_no_alloc_regs, regno))
469 {
470 int last = regno + hard_regno_nregs[regno][GET_MODE (reg)];
471 enum reg_class aclass, pclass;
472
473 while (regno < last)
474 {
475 if (TEST_HARD_REG_BIT (hard_regs_live, regno))
476 {
477 aclass = ira_hard_regno_allocno_class[regno];
478 pclass = ira_pressure_class_translate[aclass];
479 dec_register_pressure (pclass, 1);
480 make_hard_regno_dead (regno);
481 }
482 regno++;
483 }
484 }
485 }
486
487 /* Mark a pseudo, or one of its subwords, as dead. REGNO is the pseudo's
488 register number; ORIG_REG is the access in the insn, which may be a
489 subreg. */
490 static void
491 mark_pseudo_reg_dead (rtx orig_reg, unsigned regno)
492 {
493 if (df_read_modify_subreg_p (orig_reg))
494 {
495 mark_pseudo_regno_subword_dead (regno,
496 subreg_lowpart_p (orig_reg) ? 0 : 1);
497 }
498 else
499 mark_pseudo_regno_dead (regno);
500 }
501
502 /* Mark the register referenced by definition DEF as dead, if the
503 definition is a total one. */
504 static void
505 mark_ref_dead (df_ref def)
506 {
507 rtx reg = DF_REF_REG (def);
508 rtx orig_reg = reg;
509
510 if (DF_REF_FLAGS_IS_SET (def, DF_REF_CONDITIONAL))
511 return;
512
513 if (GET_CODE (reg) == SUBREG)
514 reg = SUBREG_REG (reg);
515
516 if (DF_REF_FLAGS_IS_SET (def, DF_REF_PARTIAL)
517 && (GET_CODE (orig_reg) != SUBREG
518 || REGNO (reg) < FIRST_PSEUDO_REGISTER
519 || !df_read_modify_subreg_p (orig_reg)))
520 return;
521
522 if (REGNO (reg) >= FIRST_PSEUDO_REGISTER)
523 mark_pseudo_reg_dead (orig_reg, REGNO (reg));
524 else
525 mark_hard_reg_dead (reg);
526 }
527
528 /* If REG is a pseudo or a subreg of it, and the class of its allocno
529 intersects CL, make a conflict with pseudo DREG. ORIG_DREG is the
530 rtx actually accessed, it may be identical to DREG or a subreg of it.
531 Advance the current program point before making the conflict if
532 ADVANCE_P. Return TRUE if we will need to advance the current
533 program point. */
534 static bool
535 make_pseudo_conflict (rtx reg, enum reg_class cl, rtx dreg, rtx orig_dreg,
536 bool advance_p)
537 {
538 rtx orig_reg = reg;
539 ira_allocno_t a;
540
541 if (GET_CODE (reg) == SUBREG)
542 reg = SUBREG_REG (reg);
543
544 if (! REG_P (reg) || REGNO (reg) < FIRST_PSEUDO_REGISTER)
545 return advance_p;
546
547 a = ira_curr_regno_allocno_map[REGNO (reg)];
548 if (! reg_classes_intersect_p (cl, ALLOCNO_CLASS (a)))
549 return advance_p;
550
551 if (advance_p)
552 curr_point++;
553
554 mark_pseudo_reg_live (orig_reg, REGNO (reg));
555 mark_pseudo_reg_live (orig_dreg, REGNO (dreg));
556 mark_pseudo_reg_dead (orig_reg, REGNO (reg));
557 mark_pseudo_reg_dead (orig_dreg, REGNO (dreg));
558
559 return false;
560 }
561
562 /* Check and make if necessary conflicts for pseudo DREG of class
563 DEF_CL of the current insn with input operand USE of class USE_CL.
564 ORIG_DREG is the rtx actually accessed, it may be identical to
565 DREG or a subreg of it. Advance the current program point before
566 making the conflict if ADVANCE_P. Return TRUE if we will need to
567 advance the current program point. */
568 static bool
569 check_and_make_def_use_conflict (rtx dreg, rtx orig_dreg,
570 enum reg_class def_cl, int use,
571 enum reg_class use_cl, bool advance_p)
572 {
573 if (! reg_classes_intersect_p (def_cl, use_cl))
574 return advance_p;
575
576 advance_p = make_pseudo_conflict (recog_data.operand[use],
577 use_cl, dreg, orig_dreg, advance_p);
578
579 /* Reload may end up swapping commutative operands, so you
580 have to take both orderings into account. The
581 constraints for the two operands can be completely
582 different. (Indeed, if the constraints for the two
583 operands are the same for all alternatives, there's no
584 point marking them as commutative.) */
585 if (use < recog_data.n_operands - 1
586 && recog_data.constraints[use][0] == '%')
587 advance_p
588 = make_pseudo_conflict (recog_data.operand[use + 1],
589 use_cl, dreg, orig_dreg, advance_p);
590 if (use >= 1
591 && recog_data.constraints[use - 1][0] == '%')
592 advance_p
593 = make_pseudo_conflict (recog_data.operand[use - 1],
594 use_cl, dreg, orig_dreg, advance_p);
595 return advance_p;
596 }
597
598 /* Check and make if necessary conflicts for definition DEF of class
599 DEF_CL of the current insn with input operands. Process only
600 constraints of alternative ALT. */
601 static void
602 check_and_make_def_conflict (int alt, int def, enum reg_class def_cl)
603 {
604 int use, use_match;
605 ira_allocno_t a;
606 enum reg_class use_cl, acl;
607 bool advance_p;
608 rtx dreg = recog_data.operand[def];
609 rtx orig_dreg = dreg;
610
611 if (def_cl == NO_REGS)
612 return;
613
614 if (GET_CODE (dreg) == SUBREG)
615 dreg = SUBREG_REG (dreg);
616
617 if (! REG_P (dreg) || REGNO (dreg) < FIRST_PSEUDO_REGISTER)
618 return;
619
620 a = ira_curr_regno_allocno_map[REGNO (dreg)];
621 acl = ALLOCNO_CLASS (a);
622 if (! reg_classes_intersect_p (acl, def_cl))
623 return;
624
625 advance_p = true;
626
627 int n_operands = recog_data.n_operands;
628 operand_alternative *op_alt = &recog_op_alt[alt * n_operands];
629 for (use = 0; use < n_operands; use++)
630 {
631 int alt1;
632
633 if (use == def || recog_data.operand_type[use] == OP_OUT)
634 continue;
635
636 if (op_alt[use].anything_ok)
637 use_cl = ALL_REGS;
638 else
639 use_cl = op_alt[use].cl;
640
641 /* If there's any alternative that allows USE to match DEF, do not
642 record a conflict. If that causes us to create an invalid
643 instruction due to the earlyclobber, reload must fix it up. */
644 alternative_mask enabled = recog_data.enabled_alternatives;
645 for (alt1 = 0; alt1 < recog_data.n_alternatives; alt1++)
646 {
647 if (!TEST_BIT (enabled, alt1))
648 continue;
649 operand_alternative *op_alt1 = &recog_op_alt[alt1 * n_operands];
650 if (op_alt1[use].matches == def
651 || (use < n_operands - 1
652 && recog_data.constraints[use][0] == '%'
653 && op_alt1[use + 1].matches == def)
654 || (use >= 1
655 && recog_data.constraints[use - 1][0] == '%'
656 && op_alt1[use - 1].matches == def))
657 break;
658 }
659
660 if (alt1 < recog_data.n_alternatives)
661 continue;
662
663 advance_p = check_and_make_def_use_conflict (dreg, orig_dreg, def_cl,
664 use, use_cl, advance_p);
665
666 if ((use_match = op_alt[use].matches) >= 0)
667 {
668 if (use_match == def)
669 continue;
670
671 if (op_alt[use_match].anything_ok)
672 use_cl = ALL_REGS;
673 else
674 use_cl = op_alt[use_match].cl;
675 advance_p = check_and_make_def_use_conflict (dreg, orig_dreg, def_cl,
676 use, use_cl, advance_p);
677 }
678 }
679 }
680
681 /* Make conflicts of early clobber pseudo registers of the current
682 insn with its inputs. Avoid introducing unnecessary conflicts by
683 checking classes of the constraints and pseudos because otherwise
684 significant code degradation is possible for some targets. */
685 static void
686 make_early_clobber_and_input_conflicts (void)
687 {
688 int alt;
689 int def, def_match;
690 enum reg_class def_cl;
691
692 int n_alternatives = recog_data.n_alternatives;
693 int n_operands = recog_data.n_operands;
694 alternative_mask enabled = recog_data.enabled_alternatives;
695 operand_alternative *op_alt = recog_op_alt;
696 for (alt = 0; alt < n_alternatives; alt++, op_alt += n_operands)
697 if (TEST_BIT (enabled, alt))
698 for (def = 0; def < n_operands; def++)
699 {
700 def_cl = NO_REGS;
701 if (op_alt[def].earlyclobber)
702 {
703 if (op_alt[def].anything_ok)
704 def_cl = ALL_REGS;
705 else
706 def_cl = op_alt[def].cl;
707 check_and_make_def_conflict (alt, def, def_cl);
708 }
709 if ((def_match = op_alt[def].matches) >= 0
710 && (op_alt[def_match].earlyclobber
711 || op_alt[def].earlyclobber))
712 {
713 if (op_alt[def_match].anything_ok)
714 def_cl = ALL_REGS;
715 else
716 def_cl = op_alt[def_match].cl;
717 check_and_make_def_conflict (alt, def, def_cl);
718 }
719 }
720 }
721
722 /* Mark early clobber hard registers of the current INSN as live (if
723 LIVE_P) or dead. Return true if there are such registers. */
724 static bool
725 mark_hard_reg_early_clobbers (rtx insn, bool live_p)
726 {
727 df_ref *def_rec;
728 bool set_p = false;
729
730 for (def_rec = DF_INSN_DEFS (insn); *def_rec; def_rec++)
731 if (DF_REF_FLAGS_IS_SET (*def_rec, DF_REF_MUST_CLOBBER))
732 {
733 rtx dreg = DF_REF_REG (*def_rec);
734
735 if (GET_CODE (dreg) == SUBREG)
736 dreg = SUBREG_REG (dreg);
737 if (! REG_P (dreg) || REGNO (dreg) >= FIRST_PSEUDO_REGISTER)
738 continue;
739
740 /* Hard register clobbers are believed to be early clobber
741 because there is no way to say that non-operand hard
742 register clobbers are not early ones. */
743 if (live_p)
744 mark_ref_live (*def_rec);
745 else
746 mark_ref_dead (*def_rec);
747 set_p = true;
748 }
749
750 return set_p;
751 }
752
753 /* Checks that CONSTRAINTS permits to use only one hard register. If
754 it is so, the function returns the class of the hard register.
755 Otherwise it returns NO_REGS. */
756 static enum reg_class
757 single_reg_class (const char *constraints, rtx op, rtx equiv_const)
758 {
759 int c;
760 enum reg_class cl, next_cl;
761
762 cl = NO_REGS;
763 alternative_mask enabled = recog_data.enabled_alternatives;
764 for (; (c = *constraints); constraints += CONSTRAINT_LEN (c, constraints))
765 if (c == '#')
766 enabled &= ~ALTERNATIVE_BIT (0);
767 else if (c == ',')
768 enabled >>= 1;
769 else if (enabled & 1)
770 switch (c)
771 {
772 case ' ':
773 case '\t':
774 case '=':
775 case '+':
776 case '*':
777 case '&':
778 case '%':
779 case '!':
780 case '?':
781 break;
782 case 'i':
783 if (CONSTANT_P (op)
784 || (equiv_const != NULL_RTX && CONSTANT_P (equiv_const)))
785 return NO_REGS;
786 break;
787
788 case 'n':
789 if (CONST_SCALAR_INT_P (op)
790 || (equiv_const != NULL_RTX && CONST_SCALAR_INT_P (equiv_const)))
791 return NO_REGS;
792 break;
793
794 case 's':
795 if ((CONSTANT_P (op) && !CONST_SCALAR_INT_P (op))
796 || (equiv_const != NULL_RTX
797 && CONSTANT_P (equiv_const)
798 && !CONST_SCALAR_INT_P (equiv_const)))
799 return NO_REGS;
800 break;
801
802 case 'I':
803 case 'J':
804 case 'K':
805 case 'L':
806 case 'M':
807 case 'N':
808 case 'O':
809 case 'P':
810 if ((CONST_INT_P (op)
811 && CONST_OK_FOR_CONSTRAINT_P (INTVAL (op), c, constraints))
812 || (equiv_const != NULL_RTX
813 && CONST_INT_P (equiv_const)
814 && CONST_OK_FOR_CONSTRAINT_P (INTVAL (equiv_const),
815 c, constraints)))
816 return NO_REGS;
817 break;
818
819 case 'E':
820 case 'F':
821 if (CONST_DOUBLE_AS_FLOAT_P (op)
822 || (GET_CODE (op) == CONST_VECTOR
823 && GET_MODE_CLASS (GET_MODE (op)) == MODE_VECTOR_FLOAT)
824 || (equiv_const != NULL_RTX
825 && (CONST_DOUBLE_AS_FLOAT_P (equiv_const)
826 || (GET_CODE (equiv_const) == CONST_VECTOR
827 && (GET_MODE_CLASS (GET_MODE (equiv_const))
828 == MODE_VECTOR_FLOAT)))))
829 return NO_REGS;
830 break;
831
832 case 'G':
833 case 'H':
834 if ((CONST_DOUBLE_AS_FLOAT_P (op)
835 && CONST_DOUBLE_OK_FOR_CONSTRAINT_P (op, c, constraints))
836 || (equiv_const != NULL_RTX
837 && CONST_DOUBLE_AS_FLOAT_P (equiv_const)
838 && CONST_DOUBLE_OK_FOR_CONSTRAINT_P (equiv_const,
839 c, constraints)))
840 return NO_REGS;
841 /* ??? what about memory */
842 case 'r':
843 case 'a': case 'b': case 'c': case 'd': case 'e': case 'f':
844 case 'h': case 'j': case 'k': case 'l':
845 case 'q': case 't': case 'u':
846 case 'v': case 'w': case 'x': case 'y': case 'z':
847 case 'A': case 'B': case 'C': case 'D':
848 case 'Q': case 'R': case 'S': case 'T': case 'U':
849 case 'W': case 'Y': case 'Z':
850 next_cl = (c == 'r'
851 ? GENERAL_REGS
852 : REG_CLASS_FROM_CONSTRAINT (c, constraints));
853 if (cl == NO_REGS
854 ? ira_class_singleton[next_cl][GET_MODE (op)] < 0
855 : (ira_class_singleton[cl][GET_MODE (op)]
856 != ira_class_singleton[next_cl][GET_MODE (op)]))
857 return NO_REGS;
858 cl = next_cl;
859 break;
860
861 case '0': case '1': case '2': case '3': case '4':
862 case '5': case '6': case '7': case '8': case '9':
863 next_cl
864 = single_reg_class (recog_data.constraints[c - '0'],
865 recog_data.operand[c - '0'], NULL_RTX);
866 if (cl == NO_REGS
867 ? ira_class_singleton[next_cl][GET_MODE (op)] < 0
868 : (ira_class_singleton[cl][GET_MODE (op)]
869 != ira_class_singleton[next_cl][GET_MODE (op)]))
870 return NO_REGS;
871 cl = next_cl;
872 break;
873
874 default:
875 return NO_REGS;
876 }
877 return cl;
878 }
879
880 /* The function checks that operand OP_NUM of the current insn can use
881 only one hard register. If it is so, the function returns the
882 class of the hard register. Otherwise it returns NO_REGS. */
883 static enum reg_class
884 single_reg_operand_class (int op_num)
885 {
886 if (op_num < 0 || recog_data.n_alternatives == 0)
887 return NO_REGS;
888 return single_reg_class (recog_data.constraints[op_num],
889 recog_data.operand[op_num], NULL_RTX);
890 }
891
892 /* The function sets up hard register set *SET to hard registers which
893 might be used by insn reloads because the constraints are too
894 strict. */
895 void
896 ira_implicitly_set_insn_hard_regs (HARD_REG_SET *set)
897 {
898 int i, c, regno = 0;
899 enum reg_class cl;
900 rtx op;
901 enum machine_mode mode;
902
903 CLEAR_HARD_REG_SET (*set);
904 for (i = 0; i < recog_data.n_operands; i++)
905 {
906 op = recog_data.operand[i];
907
908 if (GET_CODE (op) == SUBREG)
909 op = SUBREG_REG (op);
910
911 if (GET_CODE (op) == SCRATCH
912 || (REG_P (op) && (regno = REGNO (op)) >= FIRST_PSEUDO_REGISTER))
913 {
914 const char *p = recog_data.constraints[i];
915
916 mode = (GET_CODE (op) == SCRATCH
917 ? GET_MODE (op) : PSEUDO_REGNO_MODE (regno));
918 cl = NO_REGS;
919 alternative_mask enabled = recog_data.enabled_alternatives;
920 for (; (c = *p); p += CONSTRAINT_LEN (c, p))
921 if (c == '#')
922 enabled &= ~ALTERNATIVE_BIT (0);
923 else if (c == ',')
924 enabled >>= 1;
925 else if (enabled & 1)
926 switch (c)
927 {
928 case 'r':
929 case 'a': case 'b': case 'c': case 'd': case 'e': case 'f':
930 case 'h': case 'j': case 'k': case 'l':
931 case 'q': case 't': case 'u':
932 case 'v': case 'w': case 'x': case 'y': case 'z':
933 case 'A': case 'B': case 'C': case 'D':
934 case 'Q': case 'R': case 'S': case 'T': case 'U':
935 case 'W': case 'Y': case 'Z':
936 cl = (c == 'r'
937 ? GENERAL_REGS
938 : REG_CLASS_FROM_CONSTRAINT (c, p));
939 if (cl != NO_REGS)
940 {
941 /* There is no register pressure problem if all of the
942 regs in this class are fixed. */
943 int regno = ira_class_singleton[cl][mode];
944 if (regno >= 0)
945 add_to_hard_reg_set (set, mode, regno);
946 }
947 break;
948 }
949 }
950 }
951 }
952 /* Processes input operands, if IN_P, or output operands otherwise of
953 the current insn with FREQ to find allocno which can use only one
954 hard register and makes other currently living allocnos conflicting
955 with the hard register. */
956 static void
957 process_single_reg_class_operands (bool in_p, int freq)
958 {
959 int i, regno;
960 unsigned int px;
961 enum reg_class cl;
962 rtx operand;
963 ira_allocno_t operand_a, a;
964
965 for (i = 0; i < recog_data.n_operands; i++)
966 {
967 operand = recog_data.operand[i];
968 if (in_p && recog_data.operand_type[i] != OP_IN
969 && recog_data.operand_type[i] != OP_INOUT)
970 continue;
971 if (! in_p && recog_data.operand_type[i] != OP_OUT
972 && recog_data.operand_type[i] != OP_INOUT)
973 continue;
974 cl = single_reg_operand_class (i);
975 if (cl == NO_REGS)
976 continue;
977
978 operand_a = NULL;
979
980 if (GET_CODE (operand) == SUBREG)
981 operand = SUBREG_REG (operand);
982
983 if (REG_P (operand)
984 && (regno = REGNO (operand)) >= FIRST_PSEUDO_REGISTER)
985 {
986 enum reg_class aclass;
987
988 operand_a = ira_curr_regno_allocno_map[regno];
989 aclass = ALLOCNO_CLASS (operand_a);
990 if (ira_class_subset_p[cl][aclass])
991 {
992 /* View the desired allocation of OPERAND as:
993
994 (REG:YMODE YREGNO),
995
996 a simplification of:
997
998 (subreg:YMODE (reg:XMODE XREGNO) OFFSET). */
999 enum machine_mode ymode, xmode;
1000 int xregno, yregno;
1001 HOST_WIDE_INT offset;
1002
1003 xmode = recog_data.operand_mode[i];
1004 xregno = ira_class_singleton[cl][xmode];
1005 gcc_assert (xregno >= 0);
1006 ymode = ALLOCNO_MODE (operand_a);
1007 offset = subreg_lowpart_offset (ymode, xmode);
1008 yregno = simplify_subreg_regno (xregno, xmode, offset, ymode);
1009 if (yregno >= 0
1010 && ira_class_hard_reg_index[aclass][yregno] >= 0)
1011 {
1012 int cost;
1013
1014 ira_allocate_and_set_costs
1015 (&ALLOCNO_CONFLICT_HARD_REG_COSTS (operand_a),
1016 aclass, 0);
1017 ira_init_register_move_cost_if_necessary (xmode);
1018 cost = freq * (in_p
1019 ? ira_register_move_cost[xmode][aclass][cl]
1020 : ira_register_move_cost[xmode][cl][aclass]);
1021 ALLOCNO_CONFLICT_HARD_REG_COSTS (operand_a)
1022 [ira_class_hard_reg_index[aclass][yregno]] -= cost;
1023 }
1024 }
1025 }
1026
1027 EXECUTE_IF_SET_IN_SPARSESET (objects_live, px)
1028 {
1029 ira_object_t obj = ira_object_id_map[px];
1030 a = OBJECT_ALLOCNO (obj);
1031 if (a != operand_a)
1032 {
1033 /* We could increase costs of A instead of making it
1034 conflicting with the hard register. But it works worse
1035 because it will be spilled in reload in anyway. */
1036 IOR_HARD_REG_SET (OBJECT_CONFLICT_HARD_REGS (obj),
1037 reg_class_contents[cl]);
1038 IOR_HARD_REG_SET (OBJECT_TOTAL_CONFLICT_HARD_REGS (obj),
1039 reg_class_contents[cl]);
1040 }
1041 }
1042 }
1043 }
1044
1045 /* Return true when one of the predecessor edges of BB is marked with
1046 EDGE_ABNORMAL_CALL or EDGE_EH. */
1047 static bool
1048 bb_has_abnormal_call_pred (basic_block bb)
1049 {
1050 edge e;
1051 edge_iterator ei;
1052
1053 FOR_EACH_EDGE (e, ei, bb->preds)
1054 {
1055 if (e->flags & (EDGE_ABNORMAL_CALL | EDGE_EH))
1056 return true;
1057 }
1058 return false;
1059 }
1060
1061 /* Look through the CALL_INSN_FUNCTION_USAGE of a call insn INSN, and see if
1062 we find a SET rtx that we can use to deduce that a register can be cheaply
1063 caller-saved. Return such a register, or NULL_RTX if none is found. */
1064 static rtx
1065 find_call_crossed_cheap_reg (rtx insn)
1066 {
1067 rtx cheap_reg = NULL_RTX;
1068 rtx exp = CALL_INSN_FUNCTION_USAGE (insn);
1069
1070 while (exp != NULL)
1071 {
1072 rtx x = XEXP (exp, 0);
1073 if (GET_CODE (x) == SET)
1074 {
1075 exp = x;
1076 break;
1077 }
1078 exp = XEXP (exp, 1);
1079 }
1080 if (exp != NULL)
1081 {
1082 basic_block bb = BLOCK_FOR_INSN (insn);
1083 rtx reg = SET_SRC (exp);
1084 rtx prev = PREV_INSN (insn);
1085 while (prev && !(INSN_P (prev)
1086 && BLOCK_FOR_INSN (prev) != bb))
1087 {
1088 if (NONDEBUG_INSN_P (prev))
1089 {
1090 rtx set = single_set (prev);
1091
1092 if (set && rtx_equal_p (SET_DEST (set), reg))
1093 {
1094 rtx src = SET_SRC (set);
1095 if (!REG_P (src) || HARD_REGISTER_P (src)
1096 || !pseudo_regno_single_word_and_live_p (REGNO (src)))
1097 break;
1098 if (!modified_between_p (src, prev, insn))
1099 cheap_reg = src;
1100 break;
1101 }
1102 if (set && rtx_equal_p (SET_SRC (set), reg))
1103 {
1104 rtx dest = SET_DEST (set);
1105 if (!REG_P (dest) || HARD_REGISTER_P (dest)
1106 || !pseudo_regno_single_word_and_live_p (REGNO (dest)))
1107 break;
1108 if (!modified_between_p (dest, prev, insn))
1109 cheap_reg = dest;
1110 break;
1111 }
1112
1113 if (reg_overlap_mentioned_p (reg, PATTERN (prev)))
1114 break;
1115 }
1116 prev = PREV_INSN (prev);
1117 }
1118 }
1119 return cheap_reg;
1120 }
1121
1122 /* Process insns of the basic block given by its LOOP_TREE_NODE to
1123 update allocno live ranges, allocno hard register conflicts,
1124 intersected calls, and register pressure info for allocnos for the
1125 basic block for and regions containing the basic block. */
1126 static void
1127 process_bb_node_lives (ira_loop_tree_node_t loop_tree_node)
1128 {
1129 int i, freq;
1130 unsigned int j;
1131 basic_block bb;
1132 rtx insn;
1133 bitmap_iterator bi;
1134 bitmap reg_live_out;
1135 unsigned int px;
1136 bool set_p;
1137
1138 bb = loop_tree_node->bb;
1139 if (bb != NULL)
1140 {
1141 for (i = 0; i < ira_pressure_classes_num; i++)
1142 {
1143 curr_reg_pressure[ira_pressure_classes[i]] = 0;
1144 high_pressure_start_point[ira_pressure_classes[i]] = -1;
1145 }
1146 curr_bb_node = loop_tree_node;
1147 reg_live_out = df_get_live_out (bb);
1148 sparseset_clear (objects_live);
1149 REG_SET_TO_HARD_REG_SET (hard_regs_live, reg_live_out);
1150 AND_COMPL_HARD_REG_SET (hard_regs_live, eliminable_regset);
1151 AND_COMPL_HARD_REG_SET (hard_regs_live, ira_no_alloc_regs);
1152 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1153 if (TEST_HARD_REG_BIT (hard_regs_live, i))
1154 {
1155 enum reg_class aclass, pclass, cl;
1156
1157 aclass = ira_allocno_class_translate[REGNO_REG_CLASS (i)];
1158 pclass = ira_pressure_class_translate[aclass];
1159 for (j = 0;
1160 (cl = ira_reg_class_super_classes[pclass][j])
1161 != LIM_REG_CLASSES;
1162 j++)
1163 {
1164 if (! ira_reg_pressure_class_p[cl])
1165 continue;
1166 curr_reg_pressure[cl]++;
1167 if (curr_bb_node->reg_pressure[cl] < curr_reg_pressure[cl])
1168 curr_bb_node->reg_pressure[cl] = curr_reg_pressure[cl];
1169 ira_assert (curr_reg_pressure[cl]
1170 <= ira_class_hard_regs_num[cl]);
1171 }
1172 }
1173 EXECUTE_IF_SET_IN_BITMAP (reg_live_out, FIRST_PSEUDO_REGISTER, j, bi)
1174 mark_pseudo_regno_live (j);
1175
1176 freq = REG_FREQ_FROM_BB (bb);
1177 if (freq == 0)
1178 freq = 1;
1179
1180 /* Invalidate all allocno_saved_at_call entries. */
1181 last_call_num++;
1182
1183 /* Scan the code of this basic block, noting which allocnos and
1184 hard regs are born or die.
1185
1186 Note that this loop treats uninitialized values as live until
1187 the beginning of the block. For example, if an instruction
1188 uses (reg:DI foo), and only (subreg:SI (reg:DI foo) 0) is ever
1189 set, FOO will remain live until the beginning of the block.
1190 Likewise if FOO is not set at all. This is unnecessarily
1191 pessimistic, but it probably doesn't matter much in practice. */
1192 FOR_BB_INSNS_REVERSE (bb, insn)
1193 {
1194 df_ref *def_rec, *use_rec;
1195 bool call_p;
1196
1197 if (!NONDEBUG_INSN_P (insn))
1198 continue;
1199
1200 if (internal_flag_ira_verbose > 2 && ira_dump_file != NULL)
1201 fprintf (ira_dump_file, " Insn %u(l%d): point = %d\n",
1202 INSN_UID (insn), loop_tree_node->parent->loop_num,
1203 curr_point);
1204
1205 /* Mark each defined value as live. We need to do this for
1206 unused values because they still conflict with quantities
1207 that are live at the time of the definition.
1208
1209 Ignore DF_REF_MAY_CLOBBERs on a call instruction. Such
1210 references represent the effect of the called function
1211 on a call-clobbered register. Marking the register as
1212 live would stop us from allocating it to a call-crossing
1213 allocno. */
1214 call_p = CALL_P (insn);
1215 for (def_rec = DF_INSN_DEFS (insn); *def_rec; def_rec++)
1216 if (!call_p || !DF_REF_FLAGS_IS_SET (*def_rec, DF_REF_MAY_CLOBBER))
1217 mark_ref_live (*def_rec);
1218
1219 /* If INSN has multiple outputs, then any value used in one
1220 of the outputs conflicts with the other outputs. Model this
1221 by making the used value live during the output phase.
1222
1223 It is unsafe to use !single_set here since it will ignore
1224 an unused output. Just because an output is unused does
1225 not mean the compiler can assume the side effect will not
1226 occur. Consider if ALLOCNO appears in the address of an
1227 output and we reload the output. If we allocate ALLOCNO
1228 to the same hard register as an unused output we could
1229 set the hard register before the output reload insn. */
1230 if (GET_CODE (PATTERN (insn)) == PARALLEL && multiple_sets (insn))
1231 for (use_rec = DF_INSN_USES (insn); *use_rec; use_rec++)
1232 {
1233 int i;
1234 rtx reg;
1235
1236 reg = DF_REF_REG (*use_rec);
1237 for (i = XVECLEN (PATTERN (insn), 0) - 1; i >= 0; i--)
1238 {
1239 rtx set;
1240
1241 set = XVECEXP (PATTERN (insn), 0, i);
1242 if (GET_CODE (set) == SET
1243 && reg_overlap_mentioned_p (reg, SET_DEST (set)))
1244 {
1245 /* After the previous loop, this is a no-op if
1246 REG is contained within SET_DEST (SET). */
1247 mark_ref_live (*use_rec);
1248 break;
1249 }
1250 }
1251 }
1252
1253 extract_insn (insn);
1254 preprocess_constraints ();
1255 process_single_reg_class_operands (false, freq);
1256
1257 /* See which defined values die here. */
1258 for (def_rec = DF_INSN_DEFS (insn); *def_rec; def_rec++)
1259 if (!call_p || !DF_REF_FLAGS_IS_SET (*def_rec, DF_REF_MAY_CLOBBER))
1260 mark_ref_dead (*def_rec);
1261
1262 if (call_p)
1263 {
1264 /* Try to find a SET in the CALL_INSN_FUNCTION_USAGE, and from
1265 there, try to find a pseudo that is live across the call but
1266 can be cheaply reconstructed from the return value. */
1267 rtx cheap_reg = find_call_crossed_cheap_reg (insn);
1268 if (cheap_reg != NULL_RTX)
1269 add_reg_note (insn, REG_RETURNED, cheap_reg);
1270
1271 last_call_num++;
1272 sparseset_clear (allocnos_processed);
1273 /* The current set of live allocnos are live across the call. */
1274 EXECUTE_IF_SET_IN_SPARSESET (objects_live, i)
1275 {
1276 ira_object_t obj = ira_object_id_map[i];
1277 ira_allocno_t a = OBJECT_ALLOCNO (obj);
1278 int num = ALLOCNO_NUM (a);
1279 HARD_REG_SET this_call_used_reg_set;
1280
1281 get_call_reg_set_usage (insn, &this_call_used_reg_set,
1282 call_used_reg_set);
1283
1284 /* Don't allocate allocnos that cross setjmps or any
1285 call, if this function receives a nonlocal
1286 goto. */
1287 if (cfun->has_nonlocal_label
1288 || find_reg_note (insn, REG_SETJMP,
1289 NULL_RTX) != NULL_RTX)
1290 {
1291 SET_HARD_REG_SET (OBJECT_CONFLICT_HARD_REGS (obj));
1292 SET_HARD_REG_SET (OBJECT_TOTAL_CONFLICT_HARD_REGS (obj));
1293 }
1294 if (can_throw_internal (insn))
1295 {
1296 IOR_HARD_REG_SET (OBJECT_CONFLICT_HARD_REGS (obj),
1297 this_call_used_reg_set);
1298 IOR_HARD_REG_SET (OBJECT_TOTAL_CONFLICT_HARD_REGS (obj),
1299 this_call_used_reg_set);
1300 }
1301
1302 if (sparseset_bit_p (allocnos_processed, num))
1303 continue;
1304 sparseset_set_bit (allocnos_processed, num);
1305
1306 if (allocno_saved_at_call[num] != last_call_num)
1307 /* Here we are mimicking caller-save.c behaviour
1308 which does not save hard register at a call if
1309 it was saved on previous call in the same basic
1310 block and the hard register was not mentioned
1311 between the two calls. */
1312 ALLOCNO_CALL_FREQ (a) += freq;
1313 /* Mark it as saved at the next call. */
1314 allocno_saved_at_call[num] = last_call_num + 1;
1315 ALLOCNO_CALLS_CROSSED_NUM (a)++;
1316 IOR_HARD_REG_SET (ALLOCNO_CROSSED_CALLS_CLOBBERED_REGS (a),
1317 this_call_used_reg_set);
1318 if (cheap_reg != NULL_RTX
1319 && ALLOCNO_REGNO (a) == (int) REGNO (cheap_reg))
1320 ALLOCNO_CHEAP_CALLS_CROSSED_NUM (a)++;
1321 }
1322 }
1323
1324 make_early_clobber_and_input_conflicts ();
1325
1326 curr_point++;
1327
1328 /* Mark each used value as live. */
1329 for (use_rec = DF_INSN_USES (insn); *use_rec; use_rec++)
1330 mark_ref_live (*use_rec);
1331
1332 process_single_reg_class_operands (true, freq);
1333
1334 set_p = mark_hard_reg_early_clobbers (insn, true);
1335
1336 if (set_p)
1337 {
1338 mark_hard_reg_early_clobbers (insn, false);
1339
1340 /* Mark each hard reg as live again. For example, a
1341 hard register can be in clobber and in an insn
1342 input. */
1343 for (use_rec = DF_INSN_USES (insn); *use_rec; use_rec++)
1344 {
1345 rtx ureg = DF_REF_REG (*use_rec);
1346
1347 if (GET_CODE (ureg) == SUBREG)
1348 ureg = SUBREG_REG (ureg);
1349 if (! REG_P (ureg) || REGNO (ureg) >= FIRST_PSEUDO_REGISTER)
1350 continue;
1351
1352 mark_ref_live (*use_rec);
1353 }
1354 }
1355
1356 curr_point++;
1357 }
1358
1359 #ifdef EH_RETURN_DATA_REGNO
1360 if (bb_has_eh_pred (bb))
1361 for (j = 0; ; ++j)
1362 {
1363 unsigned int regno = EH_RETURN_DATA_REGNO (j);
1364 if (regno == INVALID_REGNUM)
1365 break;
1366 make_hard_regno_born (regno);
1367 }
1368 #endif
1369
1370 /* Allocnos can't go in stack regs at the start of a basic block
1371 that is reached by an abnormal edge. Likewise for call
1372 clobbered regs, because caller-save, fixup_abnormal_edges and
1373 possibly the table driven EH machinery are not quite ready to
1374 handle such allocnos live across such edges. */
1375 if (bb_has_abnormal_pred (bb))
1376 {
1377 #ifdef STACK_REGS
1378 EXECUTE_IF_SET_IN_SPARSESET (objects_live, px)
1379 {
1380 ira_allocno_t a = OBJECT_ALLOCNO (ira_object_id_map[px]);
1381
1382 ALLOCNO_NO_STACK_REG_P (a) = true;
1383 ALLOCNO_TOTAL_NO_STACK_REG_P (a) = true;
1384 }
1385 for (px = FIRST_STACK_REG; px <= LAST_STACK_REG; px++)
1386 make_hard_regno_born (px);
1387 #endif
1388 /* No need to record conflicts for call clobbered regs if we
1389 have nonlocal labels around, as we don't ever try to
1390 allocate such regs in this case. */
1391 if (!cfun->has_nonlocal_label && bb_has_abnormal_call_pred (bb))
1392 for (px = 0; px < FIRST_PSEUDO_REGISTER; px++)
1393 if (call_used_regs[px])
1394 make_hard_regno_born (px);
1395 }
1396
1397 EXECUTE_IF_SET_IN_SPARSESET (objects_live, i)
1398 make_object_dead (ira_object_id_map[i]);
1399
1400 curr_point++;
1401
1402 }
1403 /* Propagate register pressure to upper loop tree nodes: */
1404 if (loop_tree_node != ira_loop_tree_root)
1405 for (i = 0; i < ira_pressure_classes_num; i++)
1406 {
1407 enum reg_class pclass;
1408
1409 pclass = ira_pressure_classes[i];
1410 if (loop_tree_node->reg_pressure[pclass]
1411 > loop_tree_node->parent->reg_pressure[pclass])
1412 loop_tree_node->parent->reg_pressure[pclass]
1413 = loop_tree_node->reg_pressure[pclass];
1414 }
1415 }
1416
1417 /* Create and set up IRA_START_POINT_RANGES and
1418 IRA_FINISH_POINT_RANGES. */
1419 static void
1420 create_start_finish_chains (void)
1421 {
1422 ira_object_t obj;
1423 ira_object_iterator oi;
1424 live_range_t r;
1425
1426 ira_start_point_ranges
1427 = (live_range_t *) ira_allocate (ira_max_point * sizeof (live_range_t));
1428 memset (ira_start_point_ranges, 0, ira_max_point * sizeof (live_range_t));
1429 ira_finish_point_ranges
1430 = (live_range_t *) ira_allocate (ira_max_point * sizeof (live_range_t));
1431 memset (ira_finish_point_ranges, 0, ira_max_point * sizeof (live_range_t));
1432 FOR_EACH_OBJECT (obj, oi)
1433 for (r = OBJECT_LIVE_RANGES (obj); r != NULL; r = r->next)
1434 {
1435 r->start_next = ira_start_point_ranges[r->start];
1436 ira_start_point_ranges[r->start] = r;
1437 r->finish_next = ira_finish_point_ranges[r->finish];
1438 ira_finish_point_ranges[r->finish] = r;
1439 }
1440 }
1441
1442 /* Rebuild IRA_START_POINT_RANGES and IRA_FINISH_POINT_RANGES after
1443 new live ranges and program points were added as a result if new
1444 insn generation. */
1445 void
1446 ira_rebuild_start_finish_chains (void)
1447 {
1448 ira_free (ira_finish_point_ranges);
1449 ira_free (ira_start_point_ranges);
1450 create_start_finish_chains ();
1451 }
1452
1453 /* Compress allocno live ranges by removing program points where
1454 nothing happens. */
1455 static void
1456 remove_some_program_points_and_update_live_ranges (void)
1457 {
1458 unsigned i;
1459 int n;
1460 int *map;
1461 ira_object_t obj;
1462 ira_object_iterator oi;
1463 live_range_t r, prev_r, next_r;
1464 sbitmap born_or_dead, born, dead;
1465 sbitmap_iterator sbi;
1466 bool born_p, dead_p, prev_born_p, prev_dead_p;
1467
1468 born = sbitmap_alloc (ira_max_point);
1469 dead = sbitmap_alloc (ira_max_point);
1470 bitmap_clear (born);
1471 bitmap_clear (dead);
1472 FOR_EACH_OBJECT (obj, oi)
1473 for (r = OBJECT_LIVE_RANGES (obj); r != NULL; r = r->next)
1474 {
1475 ira_assert (r->start <= r->finish);
1476 bitmap_set_bit (born, r->start);
1477 bitmap_set_bit (dead, r->finish);
1478 }
1479
1480 born_or_dead = sbitmap_alloc (ira_max_point);
1481 bitmap_ior (born_or_dead, born, dead);
1482 map = (int *) ira_allocate (sizeof (int) * ira_max_point);
1483 n = -1;
1484 prev_born_p = prev_dead_p = false;
1485 EXECUTE_IF_SET_IN_BITMAP (born_or_dead, 0, i, sbi)
1486 {
1487 born_p = bitmap_bit_p (born, i);
1488 dead_p = bitmap_bit_p (dead, i);
1489 if ((prev_born_p && ! prev_dead_p && born_p && ! dead_p)
1490 || (prev_dead_p && ! prev_born_p && dead_p && ! born_p))
1491 map[i] = n;
1492 else
1493 map[i] = ++n;
1494 prev_born_p = born_p;
1495 prev_dead_p = dead_p;
1496 }
1497 sbitmap_free (born_or_dead);
1498 sbitmap_free (born);
1499 sbitmap_free (dead);
1500 n++;
1501 if (internal_flag_ira_verbose > 1 && ira_dump_file != NULL)
1502 fprintf (ira_dump_file, "Compressing live ranges: from %d to %d - %d%%\n",
1503 ira_max_point, n, 100 * n / ira_max_point);
1504 ira_max_point = n;
1505
1506 FOR_EACH_OBJECT (obj, oi)
1507 for (r = OBJECT_LIVE_RANGES (obj), prev_r = NULL; r != NULL; r = next_r)
1508 {
1509 next_r = r->next;
1510 r->start = map[r->start];
1511 r->finish = map[r->finish];
1512 if (prev_r == NULL || prev_r->start > r->finish + 1)
1513 {
1514 prev_r = r;
1515 continue;
1516 }
1517 prev_r->start = r->start;
1518 prev_r->next = next_r;
1519 ira_finish_live_range (r);
1520 }
1521
1522 ira_free (map);
1523 }
1524
1525 /* Print live ranges R to file F. */
1526 void
1527 ira_print_live_range_list (FILE *f, live_range_t r)
1528 {
1529 for (; r != NULL; r = r->next)
1530 fprintf (f, " [%d..%d]", r->start, r->finish);
1531 fprintf (f, "\n");
1532 }
1533
1534 DEBUG_FUNCTION void
1535 debug (live_range &ref)
1536 {
1537 ira_print_live_range_list (stderr, &ref);
1538 }
1539
1540 DEBUG_FUNCTION void
1541 debug (live_range *ptr)
1542 {
1543 if (ptr)
1544 debug (*ptr);
1545 else
1546 fprintf (stderr, "<nil>\n");
1547 }
1548
1549 /* Print live ranges R to stderr. */
1550 void
1551 ira_debug_live_range_list (live_range_t r)
1552 {
1553 ira_print_live_range_list (stderr, r);
1554 }
1555
1556 /* Print live ranges of object OBJ to file F. */
1557 static void
1558 print_object_live_ranges (FILE *f, ira_object_t obj)
1559 {
1560 ira_print_live_range_list (f, OBJECT_LIVE_RANGES (obj));
1561 }
1562
1563 /* Print live ranges of allocno A to file F. */
1564 static void
1565 print_allocno_live_ranges (FILE *f, ira_allocno_t a)
1566 {
1567 int n = ALLOCNO_NUM_OBJECTS (a);
1568 int i;
1569
1570 for (i = 0; i < n; i++)
1571 {
1572 fprintf (f, " a%d(r%d", ALLOCNO_NUM (a), ALLOCNO_REGNO (a));
1573 if (n > 1)
1574 fprintf (f, " [%d]", i);
1575 fprintf (f, "):");
1576 print_object_live_ranges (f, ALLOCNO_OBJECT (a, i));
1577 }
1578 }
1579
1580 /* Print live ranges of allocno A to stderr. */
1581 void
1582 ira_debug_allocno_live_ranges (ira_allocno_t a)
1583 {
1584 print_allocno_live_ranges (stderr, a);
1585 }
1586
1587 /* Print live ranges of all allocnos to file F. */
1588 static void
1589 print_live_ranges (FILE *f)
1590 {
1591 ira_allocno_t a;
1592 ira_allocno_iterator ai;
1593
1594 FOR_EACH_ALLOCNO (a, ai)
1595 print_allocno_live_ranges (f, a);
1596 }
1597
1598 /* Print live ranges of all allocnos to stderr. */
1599 void
1600 ira_debug_live_ranges (void)
1601 {
1602 print_live_ranges (stderr);
1603 }
1604
1605 /* The main entry function creates live ranges, set up
1606 CONFLICT_HARD_REGS and TOTAL_CONFLICT_HARD_REGS for objects, and
1607 calculate register pressure info. */
1608 void
1609 ira_create_allocno_live_ranges (void)
1610 {
1611 objects_live = sparseset_alloc (ira_objects_num);
1612 allocnos_processed = sparseset_alloc (ira_allocnos_num);
1613 curr_point = 0;
1614 last_call_num = 0;
1615 allocno_saved_at_call
1616 = (int *) ira_allocate (ira_allocnos_num * sizeof (int));
1617 memset (allocno_saved_at_call, 0, ira_allocnos_num * sizeof (int));
1618 ira_traverse_loop_tree (true, ira_loop_tree_root, NULL,
1619 process_bb_node_lives);
1620 ira_max_point = curr_point;
1621 create_start_finish_chains ();
1622 if (internal_flag_ira_verbose > 2 && ira_dump_file != NULL)
1623 print_live_ranges (ira_dump_file);
1624 /* Clean up. */
1625 ira_free (allocno_saved_at_call);
1626 sparseset_free (objects_live);
1627 sparseset_free (allocnos_processed);
1628 }
1629
1630 /* Compress allocno live ranges. */
1631 void
1632 ira_compress_allocno_live_ranges (void)
1633 {
1634 remove_some_program_points_and_update_live_ranges ();
1635 ira_rebuild_start_finish_chains ();
1636 if (internal_flag_ira_verbose > 2 && ira_dump_file != NULL)
1637 {
1638 fprintf (ira_dump_file, "Ranges after the compression:\n");
1639 print_live_ranges (ira_dump_file);
1640 }
1641 }
1642
1643 /* Free arrays IRA_START_POINT_RANGES and IRA_FINISH_POINT_RANGES. */
1644 void
1645 ira_finish_allocno_live_ranges (void)
1646 {
1647 ira_free (ira_finish_point_ranges);
1648 ira_free (ira_start_point_ranges);
1649 }