]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/ira.c
2008-10-27 Vladimir Makarov <vmakarov@redhat.com>
[thirdparty/gcc.git] / gcc / ira.c
1 /* Integrated Register Allocator (IRA) entry point.
2 Copyright (C) 2006, 2007, 2008
3 Free Software Foundation, Inc.
4 Contributed by Vladimir Makarov <vmakarov@redhat.com>.
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
12
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
21
22 /* The integrated register allocator (IRA) is a
23 regional register allocator performing graph coloring on a top-down
24 traversal of nested regions. Graph coloring in a region is based
25 on Chaitin-Briggs algorithm. It is called integrated because
26 register coalescing, register live range splitting, and choosing a
27 better hard register are done on-the-fly during coloring. Register
28 coalescing and choosing a cheaper hard register is done by hard
29 register preferencing during hard register assigning. The live
30 range splitting is a byproduct of the regional register allocation.
31
32 Major IRA notions are:
33
34 o *Region* is a part of CFG where graph coloring based on
35 Chaitin-Briggs algorithm is done. IRA can work on any set of
36 nested CFG regions forming a tree. Currently the regions are
37 the entire function for the root region and natural loops for
38 the other regions. Therefore data structure representing a
39 region is called loop_tree_node.
40
41 o *Cover class* is a register class belonging to a set of
42 non-intersecting register classes containing all of the
43 hard-registers available for register allocation. The set of
44 all cover classes for a target is defined in the corresponding
45 machine-description file according some criteria. Such notion
46 is needed because Chaitin-Briggs algorithm works on
47 non-intersected register classes.
48
49 o *Allocno* represents the live range of a pseudo-register in a
50 region. Besides the obvious attributes like the corresponding
51 pseudo-register number, cover class, conflicting allocnos and
52 conflicting hard-registers, there are a few allocno attributes
53 which are important for understanding the allocation algorithm:
54
55 - *Live ranges*. This is a list of ranges of *program
56 points* where the allocno lives. Program points represent
57 places where a pseudo can be born or become dead (there are
58 approximately two times more program points than the insns)
59 and they are represented by integers starting with 0. The
60 live ranges are used to find conflicts between allocnos of
61 different cover classes. They also play very important role
62 for the transformation of the IRA internal representation of
63 several regions into a one region representation. The later is
64 used during the reload pass work because each allocno
65 represents all of the corresponding pseudo-registers.
66
67 - *Hard-register costs*. This is a vector of size equal to the
68 number of available hard-registers of the allocno's cover
69 class. The cost of a callee-clobbered hard-register for an
70 allocno is increased by the cost of save/restore code around
71 the calls through the given allocno's life. If the allocno
72 is a move instruction operand and another operand is a
73 hard-register of the allocno's cover class, the cost of the
74 hard-register is decreased by the move cost.
75
76 When an allocno is assigned, the hard-register with minimal
77 full cost is used. Initially, a hard-register's full cost is
78 the corresponding value from the hard-register's cost vector.
79 If the allocno is connected by a *copy* (see below) to
80 another allocno which has just received a hard-register, the
81 cost of the hard-register is decreased. Before choosing a
82 hard-register for an allocno, the allocno's current costs of
83 the hard-registers are modified by the conflict hard-register
84 costs of all of the conflicting allocnos which are not
85 assigned yet.
86
87 - *Conflict hard-register costs*. This is a vector of the same
88 size as the hard-register costs vector. To permit an
89 unassigned allocno to get a better hard-register, IRA uses
90 this vector to calculate the final full cost of the
91 available hard-registers. Conflict hard-register costs of an
92 unassigned allocno are also changed with a change of the
93 hard-register cost of the allocno when a copy involving the
94 allocno is processed as described above. This is done to
95 show other unassigned allocnos that a given allocno prefers
96 some hard-registers in order to remove the move instruction
97 corresponding to the copy.
98
99 o *Cap*. If a pseudo-register does not live in a region but
100 lives in a nested region, IRA creates a special allocno called
101 a cap in the outer region. A region cap is also created for a
102 subregion cap.
103
104 o *Copy*. Allocnos can be connected by copies. Copies are used
105 to modify hard-register costs for allocnos during coloring.
106 Such modifications reflects a preference to use the same
107 hard-register for the allocnos connected by copies. Usually
108 copies are created for move insns (in this case it results in
109 register coalescing). But IRA also creates copies for operands
110 of an insn which should be assigned to the same hard-register
111 due to constraints in the machine description (it usually
112 results in removing a move generated in reload to satisfy
113 the constraints) and copies referring to the allocno which is
114 the output operand of an instruction and the allocno which is
115 an input operand dying in the instruction (creation of such
116 copies results in less register shuffling). IRA *does not*
117 create copies between the same register allocnos from different
118 regions because we use another technique for propagating
119 hard-register preference on the borders of regions.
120
121 Allocnos (including caps) for the upper region in the region tree
122 *accumulate* information important for coloring from allocnos with
123 the same pseudo-register from nested regions. This includes
124 hard-register and memory costs, conflicts with hard-registers,
125 allocno conflicts, allocno copies and more. *Thus, attributes for
126 allocnos in a region have the same values as if the region had no
127 subregions*. It means that attributes for allocnos in the
128 outermost region corresponding to the function have the same values
129 as though the allocation used only one region which is the entire
130 function. It also means that we can look at IRA work as if the
131 first IRA did allocation for all function then it improved the
132 allocation for loops then their subloops and so on.
133
134 IRA major passes are:
135
136 o Building IRA internal representation which consists of the
137 following subpasses:
138
139 * First, IRA builds regions and creates allocnos (file
140 ira-build.c) and initializes most of their attributes.
141
142 * Then IRA finds a cover class for each allocno and calculates
143 its initial (non-accumulated) cost of memory and each
144 hard-register of its cover class (file ira-cost.c).
145
146 * IRA creates live ranges of each allocno, calulates register
147 pressure for each cover class in each region, sets up
148 conflict hard registers for each allocno and info about calls
149 the allocno lives through (file ira-lives.c).
150
151 * IRA removes low register pressure loops from the regions
152 mostly to speed IRA up (file ira-build.c).
153
154 * IRA propagates accumulated allocno info from lower region
155 allocnos to corresponding upper region allocnos (file
156 ira-build.c).
157
158 * IRA creates all caps (file ira-build.c).
159
160 * Having live-ranges of allocnos and their cover classes, IRA
161 creates conflicting allocnos of the same cover class for each
162 allocno. Conflicting allocnos are stored as a bit vector or
163 array of pointers to the conflicting allocnos whatever is
164 more profitable (file ira-conflicts.c). At this point IRA
165 creates allocno copies.
166
167 o Coloring. Now IRA has all necessary info to start graph coloring
168 process. It is done in each region on top-down traverse of the
169 region tree (file ira-color.c). There are following subpasses:
170
171 * Optional aggressive coalescing of allocnos in the region.
172
173 * Putting allocnos onto the coloring stack. IRA uses Briggs
174 optimistic coloring which is a major improvement over
175 Chaitin's coloring. Therefore IRA does not spill allocnos at
176 this point. There is some freedom in the order of putting
177 allocnos on the stack which can affect the final result of
178 the allocation. IRA uses some heuristics to improve the order.
179
180 * Popping the allocnos from the stack and assigning them hard
181 registers. If IRA can not assign a hard register to an
182 allocno and the allocno is coalesced, IRA undoes the
183 coalescing and puts the uncoalesced allocnos onto the stack in
184 the hope that some such allocnos will get a hard register
185 separately. If IRA fails to assign hard register or memory
186 is more profitable for it, IRA spills the allocno. IRA
187 assigns the allocno the hard-register with minimal full
188 allocation cost which reflects the cost of usage of the
189 hard-register for the allocno and cost of usage of the
190 hard-register for allocnos conflicting with given allocno.
191
192 * After allono assigning in the region, IRA modifies the hard
193 register and memory costs for the corresponding allocnos in
194 the subregions to reflect the cost of possible loads, stores,
195 or moves on the border of the region and its subregions.
196 When default regional allocation algorithm is used
197 (-fira-algorithm=mixed), IRA just propagates the assignment
198 for allocnos if the register pressure in the region for the
199 corresponding cover class is less than number of available
200 hard registers for given cover class.
201
202 o Spill/restore code moving. When IRA performs an allocation
203 by traversing regions in top-down order, it does not know what
204 happens below in the region tree. Therefore, sometimes IRA
205 misses opportunities to perform a better allocation. A simple
206 optimization tries to improve allocation in a region having
207 subregions and containing in another region. If the
208 corresponding allocnos in the subregion are spilled, it spills
209 the region allocno if it is profitable. The optimization
210 implements a simple iterative algorithm performing profitable
211 transformations while they are still possible. It is fast in
212 practice, so there is no real need for a better time complexity
213 algorithm.
214
215 o Code change. After coloring, two allocnos representing the same
216 pseudo-register outside and inside a region respectively may be
217 assigned to different locations (hard-registers or memory). In
218 this case IRA creates and uses a new pseudo-register inside the
219 region and adds code to move allocno values on the region's
220 borders. This is done during top-down traversal of the regions
221 (file ira-emit.c). In some complicated cases IRA can create a
222 new allocno to move allocno values (e.g. when a swap of values
223 stored in two hard-registers is needed). At this stage, the
224 new allocno is marked as spilled. IRA still creates the
225 pseudo-register and the moves on the region borders even when
226 both allocnos were assigned to the same hard-register. If the
227 reload pass spills a pseudo-register for some reason, the
228 effect will be smaller because another allocno will still be in
229 the hard-register. In most cases, this is better then spilling
230 both allocnos. If reload does not change the allocation
231 for the two pseudo-registers, the trivial move will be removed
232 by post-reload optimizations. IRA does not generate moves for
233 allocnos assigned to the same hard register when the default
234 regional allocation algorithm is used and the register pressure
235 in the region for the corresponding allocno cover class is less
236 than number of available hard registers for given cover class.
237 IRA also does some optimizations to remove redundant stores and
238 to reduce code duplication on the region borders.
239
240 o Flattening internal representation. After changing code, IRA
241 transforms its internal representation for several regions into
242 one region representation (file ira-build.c). This process is
243 called IR flattening. Such process is more complicated than IR
244 rebuilding would be, but is much faster.
245
246 o After IR flattening, IRA tries to assign hard registers to all
247 spilled allocnos. This is impelemented by a simple and fast
248 priority coloring algorithm (see function
249 ira_reassign_conflict_allocnos::ira-color.c). Here new allocnos
250 created during the code change pass can be assigned to hard
251 registers.
252
253 o At the end IRA calls the reload pass. The reload pass
254 communicates with IRA through several functions in file
255 ira-color.c to improve its decisions in
256
257 * sharing stack slots for the spilled pseudos based on IRA info
258 about pseudo-register conflicts.
259
260 * reassigning hard-registers to all spilled pseudos at the end
261 of each reload iteration.
262
263 * choosing a better hard-register to spill based on IRA info
264 about pseudo-register live ranges and the register pressure
265 in places where the pseudo-register lives.
266
267 IRA uses a lot of data representing the target processors. These
268 data are initilized in file ira.c.
269
270 If function has no loops (or the loops are ignored when
271 -fira-algorithm=CB is used), we have classic Chaitin-Briggs
272 coloring (only instead of separate pass of coalescing, we use hard
273 register preferencing). In such case, IRA works much faster
274 because many things are not made (like IR flattening, the
275 spill/restore optimization, and the code change).
276
277 Literature is worth to read for better understanding the code:
278
279 o Preston Briggs, Keith D. Cooper, Linda Torczon. Improvements to
280 Graph Coloring Register Allocation.
281
282 o David Callahan, Brian Koblenz. Register allocation via
283 hierarchical graph coloring.
284
285 o Keith Cooper, Anshuman Dasgupta, Jason Eckhardt. Revisiting Graph
286 Coloring Register Allocation: A Study of the Chaitin-Briggs and
287 Callahan-Koblenz Algorithms.
288
289 o Guei-Yuan Lueh, Thomas Gross, and Ali-Reza Adl-Tabatabai. Global
290 Register Allocation Based on Graph Fusion.
291
292 o Vladimir Makarov. The Integrated Register Allocator for GCC.
293
294 o Vladimir Makarov. The top-down register allocator for irregular
295 register file architectures.
296
297 */
298
299
300 #include "config.h"
301 #include "system.h"
302 #include "coretypes.h"
303 #include "tm.h"
304 #include "regs.h"
305 #include "rtl.h"
306 #include "tm_p.h"
307 #include "target.h"
308 #include "flags.h"
309 #include "obstack.h"
310 #include "bitmap.h"
311 #include "hard-reg-set.h"
312 #include "basic-block.h"
313 #include "expr.h"
314 #include "recog.h"
315 #include "params.h"
316 #include "timevar.h"
317 #include "tree-pass.h"
318 #include "output.h"
319 #include "reload.h"
320 #include "errors.h"
321 #include "integrate.h"
322 #include "df.h"
323 #include "ggc.h"
324 #include "ira-int.h"
325
326
327 /* A modified value of flag `-fira-verbose' used internally. */
328 int internal_flag_ira_verbose;
329
330 /* Dump file of the allocator if it is not NULL. */
331 FILE *ira_dump_file;
332
333 /* Pools for allocnos, copies, allocno live ranges. */
334 alloc_pool allocno_pool, copy_pool, allocno_live_range_pool;
335
336 /* The number of elements in the following array. */
337 int ira_spilled_reg_stack_slots_num;
338
339 /* The following array contains info about spilled pseudo-registers
340 stack slots used in current function so far. */
341 struct ira_spilled_reg_stack_slot *ira_spilled_reg_stack_slots;
342
343 /* Correspondingly overall cost of the allocation, cost of the
344 allocnos assigned to hard-registers, cost of the allocnos assigned
345 to memory, cost of loads, stores and register move insns generated
346 for pseudo-register live range splitting (see ira-emit.c). */
347 int ira_overall_cost;
348 int ira_reg_cost, ira_mem_cost;
349 int ira_load_cost, ira_store_cost, ira_shuffle_cost;
350 int ira_move_loops_num, ira_additional_jumps_num;
351
352 /* Map: hard regs X modes -> set of hard registers for storing value
353 of given mode starting with given hard register. */
354 HARD_REG_SET ira_reg_mode_hard_regset[FIRST_PSEUDO_REGISTER][NUM_MACHINE_MODES];
355
356 /* The following two variables are array analogs of the macros
357 MEMORY_MOVE_COST and REGISTER_MOVE_COST. */
358 short int ira_memory_move_cost[MAX_MACHINE_MODE][N_REG_CLASSES][2];
359 move_table *ira_register_move_cost[MAX_MACHINE_MODE];
360
361 /* Similar to may_move_in_cost but it is calculated in IRA instead of
362 regclass. Another difference is that we take only available hard
363 registers into account to figure out that one register class is a
364 subset of the another one. */
365 move_table *ira_may_move_in_cost[MAX_MACHINE_MODE];
366
367 /* Similar to may_move_out_cost but it is calculated in IRA instead of
368 regclass. Another difference is that we take only available hard
369 registers into account to figure out that one register class is a
370 subset of the another one. */
371 move_table *ira_may_move_out_cost[MAX_MACHINE_MODE];
372
373 /* Register class subset relation: TRUE if the first class is a subset
374 of the second one considering only hard registers available for the
375 allocation. */
376 int ira_class_subset_p[N_REG_CLASSES][N_REG_CLASSES];
377
378 /* Temporary hard reg set used for a different calculation. */
379 static HARD_REG_SET temp_hard_regset;
380
381 \f
382
383 /* The function sets up the map IRA_REG_MODE_HARD_REGSET. */
384 static void
385 setup_reg_mode_hard_regset (void)
386 {
387 int i, m, hard_regno;
388
389 for (m = 0; m < NUM_MACHINE_MODES; m++)
390 for (hard_regno = 0; hard_regno < FIRST_PSEUDO_REGISTER; hard_regno++)
391 {
392 CLEAR_HARD_REG_SET (ira_reg_mode_hard_regset[hard_regno][m]);
393 for (i = hard_regno_nregs[hard_regno][m] - 1; i >= 0; i--)
394 if (hard_regno + i < FIRST_PSEUDO_REGISTER)
395 SET_HARD_REG_BIT (ira_reg_mode_hard_regset[hard_regno][m],
396 hard_regno + i);
397 }
398 }
399
400 \f
401
402 /* Hard registers that can not be used for the register allocator for
403 all functions of the current compilation unit. */
404 static HARD_REG_SET no_unit_alloc_regs;
405
406 /* Array of the number of hard registers of given class which are
407 available for allocation. The order is defined by the
408 allocation order. */
409 short ira_class_hard_regs[N_REG_CLASSES][FIRST_PSEUDO_REGISTER];
410
411 /* The number of elements of the above array for given register
412 class. */
413 int ira_class_hard_regs_num[N_REG_CLASSES];
414
415 /* Index (in ira_class_hard_regs) for given register class and hard
416 register (in general case a hard register can belong to several
417 register classes). The index is negative for hard registers
418 unavailable for the allocation. */
419 short ira_class_hard_reg_index[N_REG_CLASSES][FIRST_PSEUDO_REGISTER];
420
421 /* The function sets up the three arrays declared above. */
422 static void
423 setup_class_hard_regs (void)
424 {
425 int cl, i, hard_regno, n;
426 HARD_REG_SET processed_hard_reg_set;
427
428 ira_assert (SHRT_MAX >= FIRST_PSEUDO_REGISTER);
429 /* We could call ORDER_REGS_FOR_LOCAL_ALLOC here (it is usually
430 putting hard callee-used hard registers first). But our
431 heuristics work better. */
432 for (cl = (int) N_REG_CLASSES - 1; cl >= 0; cl--)
433 {
434 COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl]);
435 AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
436 CLEAR_HARD_REG_SET (processed_hard_reg_set);
437 for (n = 0, i = 0; i < FIRST_PSEUDO_REGISTER; i++)
438 {
439 #ifdef REG_ALLOC_ORDER
440 hard_regno = reg_alloc_order[i];
441 #else
442 hard_regno = i;
443 #endif
444 if (TEST_HARD_REG_BIT (processed_hard_reg_set, hard_regno))
445 continue;
446 SET_HARD_REG_BIT (processed_hard_reg_set, hard_regno);
447 if (! TEST_HARD_REG_BIT (temp_hard_regset, hard_regno))
448 ira_class_hard_reg_index[cl][hard_regno] = -1;
449 else
450 {
451 ira_class_hard_reg_index[cl][hard_regno] = n;
452 ira_class_hard_regs[cl][n++] = hard_regno;
453 }
454 }
455 ira_class_hard_regs_num[cl] = n;
456 }
457 }
458
459 /* Number of given class hard registers available for the register
460 allocation for given classes. */
461 int ira_available_class_regs[N_REG_CLASSES];
462
463 /* Set up IRA_AVAILABLE_CLASS_REGS. */
464 static void
465 setup_available_class_regs (void)
466 {
467 int i, j;
468
469 memset (ira_available_class_regs, 0, sizeof (ira_available_class_regs));
470 for (i = 0; i < N_REG_CLASSES; i++)
471 {
472 COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[i]);
473 AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
474 for (j = 0; j < FIRST_PSEUDO_REGISTER; j++)
475 if (TEST_HARD_REG_BIT (temp_hard_regset, j))
476 ira_available_class_regs[i]++;
477 }
478 }
479
480 /* Set up global variables defining info about hard registers for the
481 allocation. These depend on USE_HARD_FRAME_P whose TRUE value means
482 that we can use the hard frame pointer for the allocation. */
483 static void
484 setup_alloc_regs (bool use_hard_frame_p)
485 {
486 COPY_HARD_REG_SET (no_unit_alloc_regs, fixed_reg_set);
487 if (! use_hard_frame_p)
488 SET_HARD_REG_BIT (no_unit_alloc_regs, HARD_FRAME_POINTER_REGNUM);
489 setup_class_hard_regs ();
490 setup_available_class_regs ();
491 }
492
493 \f
494
495 /* Set up IRA_MEMORY_MOVE_COST, IRA_REGISTER_MOVE_COST. */
496 static void
497 setup_class_subset_and_memory_move_costs (void)
498 {
499 int cl, cl2;
500 enum machine_mode mode;
501 HARD_REG_SET temp_hard_regset2;
502
503 for (mode = 0; mode < MAX_MACHINE_MODE; mode++)
504 ira_memory_move_cost[mode][NO_REGS][0]
505 = ira_memory_move_cost[mode][NO_REGS][1] = SHRT_MAX;
506 for (cl = (int) N_REG_CLASSES - 1; cl >= 0; cl--)
507 {
508 if (cl != (int) NO_REGS)
509 for (mode = 0; mode < MAX_MACHINE_MODE; mode++)
510 {
511 ira_memory_move_cost[mode][cl][0] = MEMORY_MOVE_COST (mode, cl, 0);
512 ira_memory_move_cost[mode][cl][1] = MEMORY_MOVE_COST (mode, cl, 1);
513 /* Costs for NO_REGS are used in cost calculation on the
514 1st pass when the preferred register classes are not
515 known yet. In this case we take the best scenario. */
516 if (ira_memory_move_cost[mode][NO_REGS][0]
517 > ira_memory_move_cost[mode][cl][0])
518 ira_memory_move_cost[mode][NO_REGS][0]
519 = ira_memory_move_cost[mode][cl][0];
520 if (ira_memory_move_cost[mode][NO_REGS][1]
521 > ira_memory_move_cost[mode][cl][1])
522 ira_memory_move_cost[mode][NO_REGS][1]
523 = ira_memory_move_cost[mode][cl][1];
524 }
525 for (cl2 = (int) N_REG_CLASSES - 1; cl2 >= 0; cl2--)
526 {
527 COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl]);
528 AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
529 COPY_HARD_REG_SET (temp_hard_regset2, reg_class_contents[cl2]);
530 AND_COMPL_HARD_REG_SET (temp_hard_regset2, no_unit_alloc_regs);
531 ira_class_subset_p[cl][cl2]
532 = hard_reg_set_subset_p (temp_hard_regset, temp_hard_regset2);
533 }
534 }
535 }
536
537 \f
538
539 /* Define the following macro if allocation through malloc if
540 preferable. */
541 #define IRA_NO_OBSTACK
542
543 #ifndef IRA_NO_OBSTACK
544 /* Obstack used for storing all dynamic data (except bitmaps) of the
545 IRA. */
546 static struct obstack ira_obstack;
547 #endif
548
549 /* Obstack used for storing all bitmaps of the IRA. */
550 static struct bitmap_obstack ira_bitmap_obstack;
551
552 /* Allocate memory of size LEN for IRA data. */
553 void *
554 ira_allocate (size_t len)
555 {
556 void *res;
557
558 #ifndef IRA_NO_OBSTACK
559 res = obstack_alloc (&ira_obstack, len);
560 #else
561 res = xmalloc (len);
562 #endif
563 return res;
564 }
565
566 /* Reallocate memory PTR of size LEN for IRA data. */
567 void *
568 ira_reallocate (void *ptr, size_t len)
569 {
570 void *res;
571
572 #ifndef IRA_NO_OBSTACK
573 res = obstack_alloc (&ira_obstack, len);
574 #else
575 res = xrealloc (ptr, len);
576 #endif
577 return res;
578 }
579
580 /* Free memory ADDR allocated for IRA data. */
581 void
582 ira_free (void *addr ATTRIBUTE_UNUSED)
583 {
584 #ifndef IRA_NO_OBSTACK
585 /* do nothing */
586 #else
587 free (addr);
588 #endif
589 }
590
591
592 /* Allocate and returns bitmap for IRA. */
593 bitmap
594 ira_allocate_bitmap (void)
595 {
596 return BITMAP_ALLOC (&ira_bitmap_obstack);
597 }
598
599 /* Free bitmap B allocated for IRA. */
600 void
601 ira_free_bitmap (bitmap b ATTRIBUTE_UNUSED)
602 {
603 /* do nothing */
604 }
605
606 \f
607
608 /* Output information about allocation of all allocnos (except for
609 caps) into file F. */
610 void
611 ira_print_disposition (FILE *f)
612 {
613 int i, n, max_regno;
614 ira_allocno_t a;
615 basic_block bb;
616
617 fprintf (f, "Disposition:");
618 max_regno = max_reg_num ();
619 for (n = 0, i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
620 for (a = ira_regno_allocno_map[i];
621 a != NULL;
622 a = ALLOCNO_NEXT_REGNO_ALLOCNO (a))
623 {
624 if (n % 4 == 0)
625 fprintf (f, "\n");
626 n++;
627 fprintf (f, " %4d:r%-4d", ALLOCNO_NUM (a), ALLOCNO_REGNO (a));
628 if ((bb = ALLOCNO_LOOP_TREE_NODE (a)->bb) != NULL)
629 fprintf (f, "b%-3d", bb->index);
630 else
631 fprintf (f, "l%-3d", ALLOCNO_LOOP_TREE_NODE (a)->loop->num);
632 if (ALLOCNO_HARD_REGNO (a) >= 0)
633 fprintf (f, " %3d", ALLOCNO_HARD_REGNO (a));
634 else
635 fprintf (f, " mem");
636 }
637 fprintf (f, "\n");
638 }
639
640 /* Outputs information about allocation of all allocnos into
641 stderr. */
642 void
643 ira_debug_disposition (void)
644 {
645 ira_print_disposition (stderr);
646 }
647
648 \f
649
650 /* For each reg class, table listing all the classes contained in it
651 (excluding the class itself. Non-allocatable registers are
652 excluded from the consideration). */
653 static enum reg_class alloc_reg_class_subclasses[N_REG_CLASSES][N_REG_CLASSES];
654
655 /* Initialize the table of subclasses of each reg class. */
656 static void
657 setup_reg_subclasses (void)
658 {
659 int i, j;
660 HARD_REG_SET temp_hard_regset2;
661
662 for (i = 0; i < N_REG_CLASSES; i++)
663 for (j = 0; j < N_REG_CLASSES; j++)
664 alloc_reg_class_subclasses[i][j] = LIM_REG_CLASSES;
665
666 for (i = 0; i < N_REG_CLASSES; i++)
667 {
668 if (i == (int) NO_REGS)
669 continue;
670
671 COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[i]);
672 AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
673 if (hard_reg_set_empty_p (temp_hard_regset))
674 continue;
675 for (j = 0; j < N_REG_CLASSES; j++)
676 if (i != j)
677 {
678 enum reg_class *p;
679
680 COPY_HARD_REG_SET (temp_hard_regset2, reg_class_contents[j]);
681 AND_COMPL_HARD_REG_SET (temp_hard_regset2, no_unit_alloc_regs);
682 if (! hard_reg_set_subset_p (temp_hard_regset,
683 temp_hard_regset2))
684 continue;
685 p = &alloc_reg_class_subclasses[j][0];
686 while (*p != LIM_REG_CLASSES) p++;
687 *p = (enum reg_class) i;
688 }
689 }
690 }
691
692 \f
693
694 /* Number of cover classes. Cover classes is non-intersected register
695 classes containing all hard-registers available for the
696 allocation. */
697 int ira_reg_class_cover_size;
698
699 /* The array containing cover classes (see also comments for macro
700 IRA_COVER_CLASSES). Only first IRA_REG_CLASS_COVER_SIZE elements are
701 used for this. */
702 enum reg_class ira_reg_class_cover[N_REG_CLASSES];
703
704 /* The number of elements in the subsequent array. */
705 int ira_important_classes_num;
706
707 /* The array containing non-empty classes (including non-empty cover
708 classes) which are subclasses of cover classes. Such classes is
709 important for calculation of the hard register usage costs. */
710 enum reg_class ira_important_classes[N_REG_CLASSES];
711
712 /* The array containing indexes of important classes in the previous
713 array. The array elements are defined only for important
714 classes. */
715 int ira_important_class_nums[N_REG_CLASSES];
716
717 /* Check IRA_COVER_CLASSES and sets the four global variables defined
718 above. */
719 static void
720 setup_cover_and_important_classes (void)
721 {
722 int i, j;
723 enum reg_class cl;
724 const enum reg_class *classes;
725 HARD_REG_SET temp_hard_regset2;
726
727 classes = targetm.ira_cover_classes ();
728 ira_reg_class_cover_size = 0;
729 for (i = 0; (cl = classes[i]) != LIM_REG_CLASSES; i++)
730 {
731 for (j = 0; j < i; j++)
732 if (reg_classes_intersect_p (cl, classes[j]))
733 gcc_unreachable ();
734 COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl]);
735 AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
736 if (! hard_reg_set_empty_p (temp_hard_regset))
737 ira_reg_class_cover[ira_reg_class_cover_size++] = cl;
738 }
739 ira_important_classes_num = 0;
740 for (cl = 0; cl < N_REG_CLASSES; cl++)
741 {
742 COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl]);
743 AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
744 if (! hard_reg_set_empty_p (temp_hard_regset))
745 for (j = 0; j < ira_reg_class_cover_size; j++)
746 {
747 COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl]);
748 AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
749 COPY_HARD_REG_SET (temp_hard_regset2,
750 reg_class_contents[ira_reg_class_cover[j]]);
751 AND_COMPL_HARD_REG_SET (temp_hard_regset2, no_unit_alloc_regs);
752 if (cl == ira_reg_class_cover[j]
753 || (hard_reg_set_subset_p (temp_hard_regset, temp_hard_regset2)
754 && ! hard_reg_set_equal_p (temp_hard_regset,
755 temp_hard_regset2)))
756 {
757 ira_important_class_nums[cl] = ira_important_classes_num;
758 ira_important_classes[ira_important_classes_num++] = cl;
759 }
760 }
761 }
762 }
763
764 /* Map of all register classes to corresponding cover class containing
765 the given class. If given class is not a subset of a cover class,
766 we translate it into the cheapest cover class. */
767 enum reg_class ira_class_translate[N_REG_CLASSES];
768
769 /* Set up array IRA_CLASS_TRANSLATE. */
770 static void
771 setup_class_translate (void)
772 {
773 enum reg_class cl, cover_class, best_class, *cl_ptr;
774 enum machine_mode mode;
775 int i, cost, min_cost, best_cost;
776
777 for (cl = 0; cl < N_REG_CLASSES; cl++)
778 ira_class_translate[cl] = NO_REGS;
779 for (i = 0; i < ira_reg_class_cover_size; i++)
780 {
781 cover_class = ira_reg_class_cover[i];
782 for (cl_ptr = &alloc_reg_class_subclasses[cover_class][0];
783 (cl = *cl_ptr) != LIM_REG_CLASSES;
784 cl_ptr++)
785 {
786 if (ira_class_translate[cl] == NO_REGS)
787 ira_class_translate[cl] = cover_class;
788 #ifdef ENABLE_IRA_CHECKING
789 else
790 {
791 COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl]);
792 AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
793 if (! hard_reg_set_empty_p (temp_hard_regset))
794 gcc_unreachable ();
795 }
796 #endif
797 }
798 ira_class_translate[cover_class] = cover_class;
799 }
800 /* For classes which are not fully covered by a cover class (in
801 other words covered by more one cover class), use the cheapest
802 cover class. */
803 for (cl = 0; cl < N_REG_CLASSES; cl++)
804 {
805 if (cl == NO_REGS || ira_class_translate[cl] != NO_REGS)
806 continue;
807 best_class = NO_REGS;
808 best_cost = INT_MAX;
809 for (i = 0; i < ira_reg_class_cover_size; i++)
810 {
811 cover_class = ira_reg_class_cover[i];
812 COPY_HARD_REG_SET (temp_hard_regset,
813 reg_class_contents[cover_class]);
814 AND_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl]);
815 AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
816 if (! hard_reg_set_empty_p (temp_hard_regset))
817 {
818 min_cost = INT_MAX;
819 for (mode = 0; mode < MAX_MACHINE_MODE; mode++)
820 {
821 cost = (ira_memory_move_cost[mode][cl][0]
822 + ira_memory_move_cost[mode][cl][1]);
823 if (min_cost > cost)
824 min_cost = cost;
825 }
826 if (best_class == NO_REGS || best_cost > min_cost)
827 {
828 best_class = cover_class;
829 best_cost = min_cost;
830 }
831 }
832 }
833 ira_class_translate[cl] = best_class;
834 }
835 }
836
837 /* The biggest important reg_class inside of intersection of the two
838 reg_classes (that is calculated taking only hard registers
839 available for allocation into account). If the both reg_classes
840 contain no hard registers available for allocation, the value is
841 calculated by taking all hard-registers including fixed ones into
842 account. */
843 enum reg_class ira_reg_class_intersect[N_REG_CLASSES][N_REG_CLASSES];
844
845 /* The biggest important reg_class inside of union of the two
846 reg_classes (that is calculated taking only hard registers
847 available for allocation into account). If the both reg_classes
848 contain no hard registers available for allocation, the value is
849 calculated by taking all hard-registers including fixed ones into
850 account. In other words, the value is the corresponding
851 reg_class_subunion value. */
852 enum reg_class ira_reg_class_union[N_REG_CLASSES][N_REG_CLASSES];
853
854 /* Set up IRA_REG_CLASS_INTERSECT and IRA_REG_CLASS_UNION. */
855 static void
856 setup_reg_class_intersect_union (void)
857 {
858 int i, cl1, cl2, cl3;
859 HARD_REG_SET intersection_set, union_set, temp_set2;
860
861 for (cl1 = 0; cl1 < N_REG_CLASSES; cl1++)
862 {
863 for (cl2 = 0; cl2 < N_REG_CLASSES; cl2++)
864 {
865 ira_reg_class_intersect[cl1][cl2] = NO_REGS;
866 COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl1]);
867 AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
868 COPY_HARD_REG_SET (temp_set2, reg_class_contents[cl2]);
869 AND_COMPL_HARD_REG_SET (temp_set2, no_unit_alloc_regs);
870 if (hard_reg_set_empty_p (temp_hard_regset)
871 && hard_reg_set_empty_p (temp_set2))
872 {
873 for (i = 0;; i++)
874 {
875 cl3 = reg_class_subclasses[cl1][i];
876 if (cl3 == LIM_REG_CLASSES)
877 break;
878 if (reg_class_subset_p (ira_reg_class_intersect[cl1][cl2],
879 cl3))
880 ira_reg_class_intersect[cl1][cl2] = cl3;
881 }
882 ira_reg_class_union[cl1][cl2] = reg_class_subunion[cl1][cl2];
883 continue;
884 }
885 ira_reg_class_union[cl1][cl2] = NO_REGS;
886 COPY_HARD_REG_SET (intersection_set, reg_class_contents[cl1]);
887 AND_HARD_REG_SET (intersection_set, reg_class_contents[cl2]);
888 AND_COMPL_HARD_REG_SET (intersection_set, no_unit_alloc_regs);
889 COPY_HARD_REG_SET (union_set, reg_class_contents[cl1]);
890 IOR_HARD_REG_SET (union_set, reg_class_contents[cl2]);
891 AND_COMPL_HARD_REG_SET (union_set, no_unit_alloc_regs);
892 for (i = 0; i < ira_important_classes_num; i++)
893 {
894 cl3 = ira_important_classes[i];
895 COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl3]);
896 AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
897 if (hard_reg_set_subset_p (temp_hard_regset, intersection_set))
898 {
899 COPY_HARD_REG_SET
900 (temp_set2,
901 reg_class_contents[(int)
902 ira_reg_class_intersect[cl1][cl2]]);
903 AND_COMPL_HARD_REG_SET (temp_set2, no_unit_alloc_regs);
904 if (! hard_reg_set_subset_p (temp_hard_regset, temp_set2)
905 /* Ignore unavailable hard registers and prefer
906 smallest class for debugging purposes. */
907 || (hard_reg_set_equal_p (temp_hard_regset, temp_set2)
908 && hard_reg_set_subset_p
909 (reg_class_contents[cl3],
910 reg_class_contents
911 [(int) ira_reg_class_intersect[cl1][cl2]])))
912 ira_reg_class_intersect[cl1][cl2] = (enum reg_class) cl3;
913 }
914 if (hard_reg_set_subset_p (temp_hard_regset, union_set))
915 {
916 COPY_HARD_REG_SET
917 (temp_set2,
918 reg_class_contents[(int) ira_reg_class_union[cl1][cl2]]);
919 AND_COMPL_HARD_REG_SET (temp_set2, no_unit_alloc_regs);
920 if (ira_reg_class_union[cl1][cl2] == NO_REGS
921 || (hard_reg_set_subset_p (temp_set2, temp_hard_regset)
922
923 && (! hard_reg_set_equal_p (temp_set2,
924 temp_hard_regset)
925 /* Ignore unavailable hard registers and
926 prefer smallest class for debugging
927 purposes. */
928 || hard_reg_set_subset_p
929 (reg_class_contents[cl3],
930 reg_class_contents
931 [(int) ira_reg_class_union[cl1][cl2]]))))
932 ira_reg_class_union[cl1][cl2] = (enum reg_class) cl3;
933 }
934 }
935 }
936 }
937 }
938
939 /* Output all cover classes and the translation map into file F. */
940 static void
941 print_class_cover (FILE *f)
942 {
943 static const char *const reg_class_names[] = REG_CLASS_NAMES;
944 int i;
945
946 fprintf (f, "Class cover:\n");
947 for (i = 0; i < ira_reg_class_cover_size; i++)
948 fprintf (f, " %s", reg_class_names[ira_reg_class_cover[i]]);
949 fprintf (f, "\nClass translation:\n");
950 for (i = 0; i < N_REG_CLASSES; i++)
951 fprintf (f, " %s -> %s\n", reg_class_names[i],
952 reg_class_names[ira_class_translate[i]]);
953 }
954
955 /* Output all cover classes and the translation map into
956 stderr. */
957 void
958 ira_debug_class_cover (void)
959 {
960 print_class_cover (stderr);
961 }
962
963 /* Set up different arrays concerning class subsets, cover and
964 important classes. */
965 static void
966 find_reg_class_closure (void)
967 {
968 setup_reg_subclasses ();
969 if (targetm.ira_cover_classes)
970 {
971 setup_cover_and_important_classes ();
972 setup_class_translate ();
973 setup_reg_class_intersect_union ();
974 }
975 }
976
977 \f
978
979 /* Map: hard register number -> cover class it belongs to. If the
980 corresponding class is NO_REGS, the hard register is not available
981 for allocation. */
982 enum reg_class ira_hard_regno_cover_class[FIRST_PSEUDO_REGISTER];
983
984 /* Set up the array above. */
985 static void
986 setup_hard_regno_cover_class (void)
987 {
988 int i, j;
989 enum reg_class cl;
990
991 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
992 {
993 ira_hard_regno_cover_class[i] = NO_REGS;
994 for (j = 0; j < ira_reg_class_cover_size; j++)
995 {
996 cl = ira_reg_class_cover[j];
997 if (ira_class_hard_reg_index[cl][i] >= 0)
998 {
999 ira_hard_regno_cover_class[i] = cl;
1000 break;
1001 }
1002 }
1003
1004 }
1005 }
1006
1007 \f
1008
1009 /* Map: register class x machine mode -> number of hard registers of
1010 given class needed to store value of given mode. If the number is
1011 different, the size will be negative. */
1012 int ira_reg_class_nregs[N_REG_CLASSES][MAX_MACHINE_MODE];
1013
1014 /* Maximal value of the previous array elements. */
1015 int ira_max_nregs;
1016
1017 /* Form IRA_REG_CLASS_NREGS map. */
1018 static void
1019 setup_reg_class_nregs (void)
1020 {
1021 int m;
1022 enum reg_class cl;
1023
1024 ira_max_nregs = -1;
1025 for (cl = 0; cl < N_REG_CLASSES; cl++)
1026 for (m = 0; m < MAX_MACHINE_MODE; m++)
1027 {
1028 ira_reg_class_nregs[cl][m] = CLASS_MAX_NREGS (cl, m);
1029 if (ira_max_nregs < ira_reg_class_nregs[cl][m])
1030 ira_max_nregs = ira_reg_class_nregs[cl][m];
1031 }
1032 }
1033
1034 \f
1035
1036 /* Array whose values are hard regset of hard registers available for
1037 the allocation of given register class whose HARD_REGNO_MODE_OK
1038 values for given mode are zero. */
1039 HARD_REG_SET prohibited_class_mode_regs[N_REG_CLASSES][NUM_MACHINE_MODES];
1040
1041 /* Set up PROHIBITED_CLASS_MODE_REGS. */
1042 static void
1043 setup_prohibited_class_mode_regs (void)
1044 {
1045 int i, j, k, hard_regno;
1046 enum reg_class cl;
1047
1048 for (i = 0; i < ira_reg_class_cover_size; i++)
1049 {
1050 cl = ira_reg_class_cover[i];
1051 for (j = 0; j < NUM_MACHINE_MODES; j++)
1052 {
1053 CLEAR_HARD_REG_SET (prohibited_class_mode_regs[cl][j]);
1054 for (k = ira_class_hard_regs_num[cl] - 1; k >= 0; k--)
1055 {
1056 hard_regno = ira_class_hard_regs[cl][k];
1057 if (! HARD_REGNO_MODE_OK (hard_regno, j))
1058 SET_HARD_REG_BIT (prohibited_class_mode_regs[cl][j],
1059 hard_regno);
1060 }
1061 }
1062 }
1063 }
1064
1065 \f
1066
1067 /* Allocate and initialize IRA_REGISTER_MOVE_COST,
1068 IRA_MAY_MOVE_IN_COST, and IRA_MAY_MOVE_OUT_COST for MODE if it is
1069 not done yet. */
1070 void
1071 ira_init_register_move_cost (enum machine_mode mode)
1072 {
1073 int cl1, cl2;
1074
1075 ira_assert (ira_register_move_cost[mode] == NULL
1076 && ira_may_move_in_cost[mode] == NULL
1077 && ira_may_move_out_cost[mode] == NULL);
1078 if (move_cost[mode] == NULL)
1079 init_move_cost (mode);
1080 ira_register_move_cost[mode] = move_cost[mode];
1081 /* Don't use ira_allocate because the tables exist out of scope of a
1082 IRA call. */
1083 ira_may_move_in_cost[mode]
1084 = (move_table *) xmalloc (sizeof (move_table) * N_REG_CLASSES);
1085 memcpy (ira_may_move_in_cost[mode], may_move_in_cost[mode],
1086 sizeof (move_table) * N_REG_CLASSES);
1087 ira_may_move_out_cost[mode]
1088 = (move_table *) xmalloc (sizeof (move_table) * N_REG_CLASSES);
1089 memcpy (ira_may_move_out_cost[mode], may_move_out_cost[mode],
1090 sizeof (move_table) * N_REG_CLASSES);
1091 for (cl1 = 0; cl1 < N_REG_CLASSES; cl1++)
1092 {
1093 for (cl2 = 0; cl2 < N_REG_CLASSES; cl2++)
1094 {
1095 if (ira_class_subset_p[cl1][cl2])
1096 ira_may_move_in_cost[mode][cl1][cl2] = 0;
1097 if (ira_class_subset_p[cl2][cl1])
1098 ira_may_move_out_cost[mode][cl1][cl2] = 0;
1099 }
1100 }
1101 }
1102
1103 \f
1104
1105 /* This is called once during compiler work. It sets up
1106 different arrays whose values don't depend on the compiled
1107 function. */
1108 void
1109 ira_init_once (void)
1110 {
1111 enum machine_mode mode;
1112
1113 for (mode = 0; mode < MAX_MACHINE_MODE; mode++)
1114 {
1115 ira_register_move_cost[mode] = NULL;
1116 ira_may_move_in_cost[mode] = NULL;
1117 ira_may_move_out_cost[mode] = NULL;
1118 }
1119 ira_init_costs_once ();
1120 }
1121
1122 /* Free ira_register_move_cost, ira_may_move_in_cost, and
1123 ira_may_move_out_cost for each mode. */
1124 static void
1125 free_register_move_costs (void)
1126 {
1127 enum machine_mode mode;
1128
1129 for (mode = 0; mode < MAX_MACHINE_MODE; mode++)
1130 {
1131 if (ira_may_move_in_cost[mode] != NULL)
1132 free (ira_may_move_in_cost[mode]);
1133 if (ira_may_move_out_cost[mode] != NULL)
1134 free (ira_may_move_out_cost[mode]);
1135 ira_register_move_cost[mode] = NULL;
1136 ira_may_move_in_cost[mode] = NULL;
1137 ira_may_move_out_cost[mode] = NULL;
1138 }
1139 }
1140
1141 /* This is called every time when register related information is
1142 changed. */
1143 void
1144 ira_init (void)
1145 {
1146 free_register_move_costs ();
1147 setup_reg_mode_hard_regset ();
1148 setup_alloc_regs (flag_omit_frame_pointer != 0);
1149 setup_class_subset_and_memory_move_costs ();
1150 find_reg_class_closure ();
1151 setup_hard_regno_cover_class ();
1152 setup_reg_class_nregs ();
1153 setup_prohibited_class_mode_regs ();
1154 ira_init_costs ();
1155 }
1156
1157 /* Function called once at the end of compiler work. */
1158 void
1159 ira_finish_once (void)
1160 {
1161 ira_finish_costs_once ();
1162 free_register_move_costs ();
1163 }
1164
1165 \f
1166
1167 /* Array whose values are hard regset of hard registers for which
1168 move of the hard register in given mode into itself is
1169 prohibited. */
1170 HARD_REG_SET ira_prohibited_mode_move_regs[NUM_MACHINE_MODES];
1171
1172 /* Flag of that the above array has been initialized. */
1173 static bool ira_prohibited_mode_move_regs_initialized_p = false;
1174
1175 /* Set up IRA_PROHIBITED_MODE_MOVE_REGS. */
1176 static void
1177 setup_prohibited_mode_move_regs (void)
1178 {
1179 int i, j;
1180 rtx test_reg1, test_reg2, move_pat, move_insn;
1181
1182 if (ira_prohibited_mode_move_regs_initialized_p)
1183 return;
1184 ira_prohibited_mode_move_regs_initialized_p = true;
1185 test_reg1 = gen_rtx_REG (VOIDmode, 0);
1186 test_reg2 = gen_rtx_REG (VOIDmode, 0);
1187 move_pat = gen_rtx_SET (VOIDmode, test_reg1, test_reg2);
1188 move_insn = gen_rtx_INSN (VOIDmode, 0, 0, 0, 0, 0, move_pat, -1, 0);
1189 for (i = 0; i < NUM_MACHINE_MODES; i++)
1190 {
1191 SET_HARD_REG_SET (ira_prohibited_mode_move_regs[i]);
1192 for (j = 0; j < FIRST_PSEUDO_REGISTER; j++)
1193 {
1194 if (! HARD_REGNO_MODE_OK (j, i))
1195 continue;
1196 SET_REGNO (test_reg1, j);
1197 PUT_MODE (test_reg1, i);
1198 SET_REGNO (test_reg2, j);
1199 PUT_MODE (test_reg2, i);
1200 INSN_CODE (move_insn) = -1;
1201 recog_memoized (move_insn);
1202 if (INSN_CODE (move_insn) < 0)
1203 continue;
1204 extract_insn (move_insn);
1205 if (! constrain_operands (1))
1206 continue;
1207 CLEAR_HARD_REG_BIT (ira_prohibited_mode_move_regs[i], j);
1208 }
1209 }
1210 }
1211
1212 \f
1213
1214 /* Function specific hard registers that can not be used for the
1215 register allocation. */
1216 HARD_REG_SET ira_no_alloc_regs;
1217
1218 /* Return TRUE if *LOC contains an asm. */
1219 static int
1220 insn_contains_asm_1 (rtx *loc, void *data ATTRIBUTE_UNUSED)
1221 {
1222 if ( !*loc)
1223 return FALSE;
1224 if (GET_CODE (*loc) == ASM_OPERANDS)
1225 return TRUE;
1226 return FALSE;
1227 }
1228
1229
1230 /* Return TRUE if INSN contains an ASM. */
1231 static bool
1232 insn_contains_asm (rtx insn)
1233 {
1234 return for_each_rtx (&insn, insn_contains_asm_1, NULL);
1235 }
1236
1237 /* Set up regs_asm_clobbered. */
1238 static void
1239 compute_regs_asm_clobbered (char *regs_asm_clobbered)
1240 {
1241 basic_block bb;
1242
1243 memset (regs_asm_clobbered, 0, sizeof (char) * FIRST_PSEUDO_REGISTER);
1244
1245 FOR_EACH_BB (bb)
1246 {
1247 rtx insn;
1248 FOR_BB_INSNS_REVERSE (bb, insn)
1249 {
1250 df_ref *def_rec;
1251
1252 if (insn_contains_asm (insn))
1253 for (def_rec = DF_INSN_DEFS (insn); *def_rec; def_rec++)
1254 {
1255 df_ref def = *def_rec;
1256 unsigned int dregno = DF_REF_REGNO (def);
1257 if (dregno < FIRST_PSEUDO_REGISTER)
1258 {
1259 unsigned int i;
1260 enum machine_mode mode = GET_MODE (DF_REF_REAL_REG (def));
1261 unsigned int end = dregno
1262 + hard_regno_nregs[dregno][mode] - 1;
1263
1264 for (i = dregno; i <= end; ++i)
1265 regs_asm_clobbered[i] = 1;
1266 }
1267 }
1268 }
1269 }
1270 }
1271
1272
1273 /* Set up ELIMINABLE_REGSET, IRA_NO_ALLOC_REGS, and REGS_EVER_LIVE. */
1274 static void
1275 setup_eliminable_regset (void)
1276 {
1277 /* Like regs_ever_live, but 1 if a reg is set or clobbered from an
1278 asm. Unlike regs_ever_live, elements of this array corresponding
1279 to eliminable regs (like the frame pointer) are set if an asm
1280 sets them. */
1281 char *regs_asm_clobbered
1282 = (char *) alloca (FIRST_PSEUDO_REGISTER * sizeof (char));
1283 #ifdef ELIMINABLE_REGS
1284 int i;
1285 static const struct {const int from, to; } eliminables[] = ELIMINABLE_REGS;
1286 #endif
1287 /* FIXME: If EXIT_IGNORE_STACK is set, we will not save and restore
1288 sp for alloca. So we can't eliminate the frame pointer in that
1289 case. At some point, we should improve this by emitting the
1290 sp-adjusting insns for this case. */
1291 int need_fp
1292 = (! flag_omit_frame_pointer
1293 || (cfun->calls_alloca && EXIT_IGNORE_STACK)
1294 || crtl->accesses_prior_frames
1295 || crtl->stack_realign_needed
1296 || FRAME_POINTER_REQUIRED);
1297
1298 frame_pointer_needed = need_fp;
1299
1300 COPY_HARD_REG_SET (ira_no_alloc_regs, no_unit_alloc_regs);
1301 CLEAR_HARD_REG_SET (eliminable_regset);
1302
1303 compute_regs_asm_clobbered (regs_asm_clobbered);
1304 /* Build the regset of all eliminable registers and show we can't
1305 use those that we already know won't be eliminated. */
1306 #ifdef ELIMINABLE_REGS
1307 for (i = 0; i < (int) ARRAY_SIZE (eliminables); i++)
1308 {
1309 bool cannot_elim
1310 = (! CAN_ELIMINATE (eliminables[i].from, eliminables[i].to)
1311 || (eliminables[i].to == STACK_POINTER_REGNUM && need_fp));
1312
1313 if (! regs_asm_clobbered[eliminables[i].from])
1314 {
1315 SET_HARD_REG_BIT (eliminable_regset, eliminables[i].from);
1316
1317 if (cannot_elim)
1318 SET_HARD_REG_BIT (ira_no_alloc_regs, eliminables[i].from);
1319 }
1320 else if (cannot_elim)
1321 error ("%s cannot be used in asm here",
1322 reg_names[eliminables[i].from]);
1323 else
1324 df_set_regs_ever_live (eliminables[i].from, true);
1325 }
1326 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
1327 if (! regs_asm_clobbered[HARD_FRAME_POINTER_REGNUM])
1328 {
1329 SET_HARD_REG_BIT (eliminable_regset, HARD_FRAME_POINTER_REGNUM);
1330 if (need_fp)
1331 SET_HARD_REG_BIT (ira_no_alloc_regs, HARD_FRAME_POINTER_REGNUM);
1332 }
1333 else if (need_fp)
1334 error ("%s cannot be used in asm here",
1335 reg_names[HARD_FRAME_POINTER_REGNUM]);
1336 else
1337 df_set_regs_ever_live (HARD_FRAME_POINTER_REGNUM, true);
1338 #endif
1339
1340 #else
1341 if (! regs_asm_clobbered[FRAME_POINTER_REGNUM])
1342 {
1343 SET_HARD_REG_BIT (eliminable_regset, FRAME_POINTER_REGNUM);
1344 if (need_fp)
1345 SET_HARD_REG_BIT (ira_no_alloc_regs, FRAME_POINTER_REGNUM);
1346 }
1347 else if (need_fp)
1348 error ("%s cannot be used in asm here", reg_names[FRAME_POINTER_REGNUM]);
1349 else
1350 df_set_regs_ever_live (FRAME_POINTER_REGNUM, true);
1351 #endif
1352 }
1353
1354 \f
1355
1356 /* The length of the following two arrays. */
1357 int ira_reg_equiv_len;
1358
1359 /* The element value is TRUE if the corresponding regno value is
1360 invariant. */
1361 bool *ira_reg_equiv_invariant_p;
1362
1363 /* The element value is equiv constant of given pseudo-register or
1364 NULL_RTX. */
1365 rtx *ira_reg_equiv_const;
1366
1367 /* Set up the two arrays declared above. */
1368 static void
1369 find_reg_equiv_invariant_const (void)
1370 {
1371 int i;
1372 bool invariant_p;
1373 rtx list, insn, note, constant, x;
1374
1375 for (i = FIRST_PSEUDO_REGISTER; i < reg_equiv_init_size; i++)
1376 {
1377 constant = NULL_RTX;
1378 invariant_p = false;
1379 for (list = reg_equiv_init[i]; list != NULL_RTX; list = XEXP (list, 1))
1380 {
1381 insn = XEXP (list, 0);
1382 note = find_reg_note (insn, REG_EQUIV, NULL_RTX);
1383
1384 if (note == NULL_RTX)
1385 continue;
1386
1387 x = XEXP (note, 0);
1388
1389 if (! function_invariant_p (x)
1390 || ! flag_pic
1391 /* A function invariant is often CONSTANT_P but may
1392 include a register. We promise to only pass CONSTANT_P
1393 objects to LEGITIMATE_PIC_OPERAND_P. */
1394 || (CONSTANT_P (x) && LEGITIMATE_PIC_OPERAND_P (x)))
1395 {
1396 /* It can happen that a REG_EQUIV note contains a MEM
1397 that is not a legitimate memory operand. As later
1398 stages of the reload assume that all addresses found
1399 in the reg_equiv_* arrays were originally legitimate,
1400 we ignore such REG_EQUIV notes. */
1401 if (memory_operand (x, VOIDmode))
1402 invariant_p = MEM_READONLY_P (x);
1403 else if (function_invariant_p (x))
1404 {
1405 if (GET_CODE (x) == PLUS
1406 || x == frame_pointer_rtx || x == arg_pointer_rtx)
1407 invariant_p = true;
1408 else
1409 constant = x;
1410 }
1411 }
1412 }
1413 ira_reg_equiv_invariant_p[i] = invariant_p;
1414 ira_reg_equiv_const[i] = constant;
1415 }
1416 }
1417
1418 \f
1419
1420 /* Set up REG_RENUMBER and CALLER_SAVE_NEEDED (used by reload) from
1421 the allocation found by IRA. */
1422 static void
1423 setup_reg_renumber (void)
1424 {
1425 int regno, hard_regno;
1426 ira_allocno_t a;
1427 ira_allocno_iterator ai;
1428
1429 caller_save_needed = 0;
1430 FOR_EACH_ALLOCNO (a, ai)
1431 {
1432 /* There are no caps at this point. */
1433 ira_assert (ALLOCNO_CAP_MEMBER (a) == NULL);
1434 if (! ALLOCNO_ASSIGNED_P (a))
1435 /* It can happen if A is not referenced but partially anticipated
1436 somewhere in a region. */
1437 ALLOCNO_ASSIGNED_P (a) = true;
1438 ira_free_allocno_updated_costs (a);
1439 hard_regno = ALLOCNO_HARD_REGNO (a);
1440 regno = (int) REGNO (ALLOCNO_REG (a));
1441 reg_renumber[regno] = (hard_regno < 0 ? -1 : hard_regno);
1442 if (hard_regno >= 0 && ALLOCNO_CALLS_CROSSED_NUM (a) != 0
1443 && ! ira_hard_reg_not_in_set_p (hard_regno, ALLOCNO_MODE (a),
1444 call_used_reg_set))
1445 {
1446 ira_assert (!optimize || flag_caller_saves
1447 || regno >= ira_reg_equiv_len
1448 || ira_reg_equiv_const[regno]
1449 || ira_reg_equiv_invariant_p[regno]);
1450 caller_save_needed = 1;
1451 }
1452 }
1453 }
1454
1455 /* Set up allocno assignment flags for further allocation
1456 improvements. */
1457 static void
1458 setup_allocno_assignment_flags (void)
1459 {
1460 int hard_regno;
1461 ira_allocno_t a;
1462 ira_allocno_iterator ai;
1463
1464 FOR_EACH_ALLOCNO (a, ai)
1465 {
1466 if (! ALLOCNO_ASSIGNED_P (a))
1467 /* It can happen if A is not referenced but partially anticipated
1468 somewhere in a region. */
1469 ira_free_allocno_updated_costs (a);
1470 hard_regno = ALLOCNO_HARD_REGNO (a);
1471 /* Don't assign hard registers to allocnos which are destination
1472 of removed store at the end of loop. It has no sense to keep
1473 the same value in different hard registers. It is also
1474 impossible to assign hard registers correctly to such
1475 allocnos because the cost info and info about intersected
1476 calls are incorrect for them. */
1477 ALLOCNO_ASSIGNED_P (a) = (hard_regno >= 0
1478 || ALLOCNO_MEM_OPTIMIZED_DEST_P (a)
1479 || (ALLOCNO_MEMORY_COST (a)
1480 - ALLOCNO_COVER_CLASS_COST (a)) < 0);
1481 ira_assert (hard_regno < 0
1482 || ! ira_hard_reg_not_in_set_p (hard_regno, ALLOCNO_MODE (a),
1483 reg_class_contents
1484 [ALLOCNO_COVER_CLASS (a)]));
1485 }
1486 }
1487
1488 /* Evaluate overall allocation cost and the costs for using hard
1489 registers and memory for allocnos. */
1490 static void
1491 calculate_allocation_cost (void)
1492 {
1493 int hard_regno, cost;
1494 ira_allocno_t a;
1495 ira_allocno_iterator ai;
1496
1497 ira_overall_cost = ira_reg_cost = ira_mem_cost = 0;
1498 FOR_EACH_ALLOCNO (a, ai)
1499 {
1500 hard_regno = ALLOCNO_HARD_REGNO (a);
1501 ira_assert (hard_regno < 0
1502 || ! ira_hard_reg_not_in_set_p
1503 (hard_regno, ALLOCNO_MODE (a),
1504 reg_class_contents[ALLOCNO_COVER_CLASS (a)]));
1505 if (hard_regno < 0)
1506 {
1507 cost = ALLOCNO_MEMORY_COST (a);
1508 ira_mem_cost += cost;
1509 }
1510 else if (ALLOCNO_HARD_REG_COSTS (a) != NULL)
1511 {
1512 cost = (ALLOCNO_HARD_REG_COSTS (a)
1513 [ira_class_hard_reg_index
1514 [ALLOCNO_COVER_CLASS (a)][hard_regno]]);
1515 ira_reg_cost += cost;
1516 }
1517 else
1518 {
1519 cost = ALLOCNO_COVER_CLASS_COST (a);
1520 ira_reg_cost += cost;
1521 }
1522 ira_overall_cost += cost;
1523 }
1524
1525 if (internal_flag_ira_verbose > 0 && ira_dump_file != NULL)
1526 {
1527 fprintf (ira_dump_file,
1528 "+++Costs: overall %d, reg %d, mem %d, ld %d, st %d, move %d\n",
1529 ira_overall_cost, ira_reg_cost, ira_mem_cost,
1530 ira_load_cost, ira_store_cost, ira_shuffle_cost);
1531 fprintf (ira_dump_file, "+++ move loops %d, new jumps %d\n",
1532 ira_move_loops_num, ira_additional_jumps_num);
1533 }
1534
1535 }
1536
1537 #ifdef ENABLE_IRA_CHECKING
1538 /* Check the correctness of the allocation. We do need this because
1539 of complicated code to transform more one region internal
1540 representation into one region representation. */
1541 static void
1542 check_allocation (void)
1543 {
1544 ira_allocno_t a, conflict_a;
1545 int hard_regno, conflict_hard_regno, nregs, conflict_nregs;
1546 ira_allocno_conflict_iterator aci;
1547 ira_allocno_iterator ai;
1548
1549 FOR_EACH_ALLOCNO (a, ai)
1550 {
1551 if (ALLOCNO_CAP_MEMBER (a) != NULL
1552 || (hard_regno = ALLOCNO_HARD_REGNO (a)) < 0)
1553 continue;
1554 nregs = hard_regno_nregs[hard_regno][ALLOCNO_MODE (a)];
1555 FOR_EACH_ALLOCNO_CONFLICT (a, conflict_a, aci)
1556 if ((conflict_hard_regno = ALLOCNO_HARD_REGNO (conflict_a)) >= 0)
1557 {
1558 conflict_nregs
1559 = (hard_regno_nregs
1560 [conflict_hard_regno][ALLOCNO_MODE (conflict_a)]);
1561 if ((conflict_hard_regno <= hard_regno
1562 && hard_regno < conflict_hard_regno + conflict_nregs)
1563 || (hard_regno <= conflict_hard_regno
1564 && conflict_hard_regno < hard_regno + nregs))
1565 {
1566 fprintf (stderr, "bad allocation for %d and %d\n",
1567 ALLOCNO_REGNO (a), ALLOCNO_REGNO (conflict_a));
1568 gcc_unreachable ();
1569 }
1570 }
1571 }
1572 }
1573 #endif
1574
1575 /* Fix values of array REG_EQUIV_INIT after live range splitting done
1576 by IRA. */
1577 static void
1578 fix_reg_equiv_init (void)
1579 {
1580 int max_regno = max_reg_num ();
1581 int i, new_regno;
1582 rtx x, prev, next, insn, set;
1583
1584 if (reg_equiv_init_size < max_regno)
1585 {
1586 reg_equiv_init
1587 = (rtx *) ggc_realloc (reg_equiv_init, max_regno * sizeof (rtx));
1588 while (reg_equiv_init_size < max_regno)
1589 reg_equiv_init[reg_equiv_init_size++] = NULL_RTX;
1590 for (i = FIRST_PSEUDO_REGISTER; i < reg_equiv_init_size; i++)
1591 for (prev = NULL_RTX, x = reg_equiv_init[i]; x != NULL_RTX; x = next)
1592 {
1593 next = XEXP (x, 1);
1594 insn = XEXP (x, 0);
1595 set = single_set (insn);
1596 ira_assert (set != NULL_RTX
1597 && (REG_P (SET_DEST (set)) || REG_P (SET_SRC (set))));
1598 if (REG_P (SET_DEST (set))
1599 && ((int) REGNO (SET_DEST (set)) == i
1600 || (int) ORIGINAL_REGNO (SET_DEST (set)) == i))
1601 new_regno = REGNO (SET_DEST (set));
1602 else if (REG_P (SET_SRC (set))
1603 && ((int) REGNO (SET_SRC (set)) == i
1604 || (int) ORIGINAL_REGNO (SET_SRC (set)) == i))
1605 new_regno = REGNO (SET_SRC (set));
1606 else
1607 gcc_unreachable ();
1608 if (new_regno == i)
1609 prev = x;
1610 else
1611 {
1612 if (prev == NULL_RTX)
1613 reg_equiv_init[i] = next;
1614 else
1615 XEXP (prev, 1) = next;
1616 XEXP (x, 1) = reg_equiv_init[new_regno];
1617 reg_equiv_init[new_regno] = x;
1618 }
1619 }
1620 }
1621 }
1622
1623 #ifdef ENABLE_IRA_CHECKING
1624 /* Print redundant memory-memory copies. */
1625 static void
1626 print_redundant_copies (void)
1627 {
1628 int hard_regno;
1629 ira_allocno_t a;
1630 ira_copy_t cp, next_cp;
1631 ira_allocno_iterator ai;
1632
1633 FOR_EACH_ALLOCNO (a, ai)
1634 {
1635 if (ALLOCNO_CAP_MEMBER (a) != NULL)
1636 /* It is a cap. */
1637 continue;
1638 hard_regno = ALLOCNO_HARD_REGNO (a);
1639 if (hard_regno >= 0)
1640 continue;
1641 for (cp = ALLOCNO_COPIES (a); cp != NULL; cp = next_cp)
1642 if (cp->first == a)
1643 next_cp = cp->next_first_allocno_copy;
1644 else
1645 {
1646 next_cp = cp->next_second_allocno_copy;
1647 if (internal_flag_ira_verbose > 4 && ira_dump_file != NULL
1648 && cp->insn != NULL_RTX
1649 && ALLOCNO_HARD_REGNO (cp->first) == hard_regno)
1650 fprintf (ira_dump_file,
1651 " Redundant move from %d(freq %d):%d\n",
1652 INSN_UID (cp->insn), cp->freq, hard_regno);
1653 }
1654 }
1655 }
1656 #endif
1657
1658 /* Setup preferred and alternative classes for new pseudo-registers
1659 created by IRA starting with START. */
1660 static void
1661 setup_preferred_alternate_classes_for_new_pseudos (int start)
1662 {
1663 int i, old_regno;
1664 int max_regno = max_reg_num ();
1665
1666 for (i = start; i < max_regno; i++)
1667 {
1668 old_regno = ORIGINAL_REGNO (regno_reg_rtx[i]);
1669 ira_assert (i != old_regno);
1670 setup_reg_classes (i, reg_preferred_class (old_regno),
1671 reg_alternate_class (old_regno));
1672 if (internal_flag_ira_verbose > 2 && ira_dump_file != NULL)
1673 fprintf (ira_dump_file,
1674 " New r%d: setting preferred %s, alternative %s\n",
1675 i, reg_class_names[reg_preferred_class (old_regno)],
1676 reg_class_names[reg_alternate_class (old_regno)]);
1677 }
1678 }
1679
1680 \f
1681
1682 /* Regional allocation can create new pseudo-registers. This function
1683 expands some arrays for pseudo-registers. */
1684 static void
1685 expand_reg_info (int old_size)
1686 {
1687 int i;
1688 int size = max_reg_num ();
1689
1690 resize_reg_info ();
1691 for (i = old_size; i < size; i++)
1692 {
1693 reg_renumber[i] = -1;
1694 setup_reg_classes (i, GENERAL_REGS, ALL_REGS);
1695 }
1696 }
1697
1698 \f
1699
1700 /* All natural loops. */
1701 struct loops ira_loops;
1702
1703 /* This is the main entry of IRA. */
1704 static void
1705 ira (FILE *f)
1706 {
1707 int overall_cost_before, allocated_reg_info_size;
1708 bool loops_p;
1709 int max_regno_before_ira, ira_max_point_before_emit;
1710 int rebuild_p;
1711 int saved_flag_ira_algorithm;
1712 basic_block bb;
1713
1714 timevar_push (TV_IRA);
1715
1716 if (flag_ira_verbose < 10)
1717 {
1718 internal_flag_ira_verbose = flag_ira_verbose;
1719 ira_dump_file = f;
1720 }
1721 else
1722 {
1723 internal_flag_ira_verbose = flag_ira_verbose - 10;
1724 ira_dump_file = stderr;
1725 }
1726
1727 setup_prohibited_mode_move_regs ();
1728
1729 df_note_add_problem ();
1730
1731 if (optimize == 1)
1732 {
1733 df_live_add_problem ();
1734 df_live_set_all_dirty ();
1735 }
1736 #ifdef ENABLE_CHECKING
1737 df->changeable_flags |= DF_VERIFY_SCHEDULED;
1738 #endif
1739 df_analyze ();
1740 df_clear_flags (DF_NO_INSN_RESCAN);
1741 regstat_init_n_sets_and_refs ();
1742 regstat_compute_ri ();
1743
1744 /* If we are not optimizing, then this is the only place before
1745 register allocation where dataflow is done. And that is needed
1746 to generate these warnings. */
1747 if (warn_clobbered)
1748 generate_setjmp_warnings ();
1749
1750 rebuild_p = update_equiv_regs ();
1751
1752 #ifndef IRA_NO_OBSTACK
1753 gcc_obstack_init (&ira_obstack);
1754 #endif
1755 bitmap_obstack_initialize (&ira_bitmap_obstack);
1756 if (optimize)
1757 {
1758 max_regno = max_reg_num ();
1759 ira_reg_equiv_len = max_regno;
1760 ira_reg_equiv_invariant_p
1761 = (bool *) ira_allocate (max_regno * sizeof (bool));
1762 memset (ira_reg_equiv_invariant_p, 0, max_regno * sizeof (bool));
1763 ira_reg_equiv_const = (rtx *) ira_allocate (max_regno * sizeof (rtx));
1764 memset (ira_reg_equiv_const, 0, max_regno * sizeof (rtx));
1765 find_reg_equiv_invariant_const ();
1766 if (rebuild_p)
1767 {
1768 timevar_push (TV_JUMP);
1769 rebuild_jump_labels (get_insns ());
1770 purge_all_dead_edges ();
1771 timevar_pop (TV_JUMP);
1772 }
1773 }
1774
1775 max_regno_before_ira = allocated_reg_info_size = max_reg_num ();
1776 allocate_reg_info ();
1777 setup_eliminable_regset ();
1778
1779 ira_overall_cost = ira_reg_cost = ira_mem_cost = 0;
1780 ira_load_cost = ira_store_cost = ira_shuffle_cost = 0;
1781 ira_move_loops_num = ira_additional_jumps_num = 0;
1782
1783 ira_assert (current_loops == NULL);
1784 flow_loops_find (&ira_loops);
1785 current_loops = &ira_loops;
1786 saved_flag_ira_algorithm = flag_ira_algorithm;
1787 if (optimize && number_of_loops () > (unsigned) IRA_MAX_LOOPS_NUM)
1788 flag_ira_algorithm = IRA_ALGORITHM_CB;
1789
1790 if (internal_flag_ira_verbose > 0 && ira_dump_file != NULL)
1791 fprintf (ira_dump_file, "Building IRA IR\n");
1792 loops_p = ira_build (optimize
1793 && (flag_ira_algorithm == IRA_ALGORITHM_REGIONAL
1794 || flag_ira_algorithm == IRA_ALGORITHM_MIXED));
1795 ira_color ();
1796
1797 ira_max_point_before_emit = ira_max_point;
1798
1799 ira_emit (loops_p);
1800
1801 if (optimize)
1802 {
1803 max_regno = max_reg_num ();
1804
1805 if (! loops_p)
1806 ira_initiate_assign ();
1807 else
1808 {
1809 expand_reg_info (allocated_reg_info_size);
1810 setup_preferred_alternate_classes_for_new_pseudos
1811 (allocated_reg_info_size);
1812 allocated_reg_info_size = max_regno;
1813
1814 if (internal_flag_ira_verbose > 0 && ira_dump_file != NULL)
1815 fprintf (ira_dump_file, "Flattening IR\n");
1816 ira_flattening (max_regno_before_ira, ira_max_point_before_emit);
1817 /* New insns were generated: add notes and recalculate live
1818 info. */
1819 df_analyze ();
1820
1821 flow_loops_find (&ira_loops);
1822 current_loops = &ira_loops;
1823
1824 setup_allocno_assignment_flags ();
1825 ira_initiate_assign ();
1826 ira_reassign_conflict_allocnos (max_regno);
1827 }
1828 }
1829
1830 setup_reg_renumber ();
1831
1832 calculate_allocation_cost ();
1833
1834 #ifdef ENABLE_IRA_CHECKING
1835 if (optimize)
1836 check_allocation ();
1837 #endif
1838
1839 delete_trivially_dead_insns (get_insns (), max_reg_num ());
1840 max_regno = max_reg_num ();
1841
1842 /* Determine if the current function is a leaf before running IRA
1843 since this can impact optimizations done by the prologue and
1844 epilogue thus changing register elimination offsets. */
1845 current_function_is_leaf = leaf_function_p ();
1846
1847 /* And the reg_equiv_memory_loc array. */
1848 VEC_safe_grow (rtx, gc, reg_equiv_memory_loc_vec, max_regno);
1849 memset (VEC_address (rtx, reg_equiv_memory_loc_vec), 0,
1850 sizeof (rtx) * max_regno);
1851 reg_equiv_memory_loc = VEC_address (rtx, reg_equiv_memory_loc_vec);
1852
1853 if (max_regno != max_regno_before_ira)
1854 {
1855 regstat_free_n_sets_and_refs ();
1856 regstat_free_ri ();
1857 regstat_init_n_sets_and_refs ();
1858 regstat_compute_ri ();
1859 }
1860
1861 allocate_initial_values (reg_equiv_memory_loc);
1862
1863 overall_cost_before = ira_overall_cost;
1864 if (optimize)
1865 {
1866 fix_reg_equiv_init ();
1867
1868 #ifdef ENABLE_IRA_CHECKING
1869 print_redundant_copies ();
1870 #endif
1871
1872 ira_spilled_reg_stack_slots_num = 0;
1873 ira_spilled_reg_stack_slots
1874 = ((struct ira_spilled_reg_stack_slot *)
1875 ira_allocate (max_regno
1876 * sizeof (struct ira_spilled_reg_stack_slot)));
1877 memset (ira_spilled_reg_stack_slots, 0,
1878 max_regno * sizeof (struct ira_spilled_reg_stack_slot));
1879 }
1880
1881 timevar_pop (TV_IRA);
1882
1883 timevar_push (TV_RELOAD);
1884 df_set_flags (DF_NO_INSN_RESCAN);
1885 build_insn_chain ();
1886
1887 reload_completed = !reload (get_insns (), optimize > 0);
1888
1889 timevar_pop (TV_RELOAD);
1890
1891 timevar_push (TV_IRA);
1892
1893 if (optimize)
1894 {
1895 ira_free (ira_spilled_reg_stack_slots);
1896
1897 ira_finish_assign ();
1898
1899 }
1900 if (internal_flag_ira_verbose > 0 && ira_dump_file != NULL
1901 && overall_cost_before != ira_overall_cost)
1902 fprintf (ira_dump_file, "+++Overall after reload %d\n", ira_overall_cost);
1903 ira_destroy ();
1904
1905 flow_loops_free (&ira_loops);
1906 free_dominance_info (CDI_DOMINATORS);
1907 FOR_ALL_BB (bb)
1908 bb->loop_father = NULL;
1909 current_loops = NULL;
1910
1911 flag_ira_algorithm = saved_flag_ira_algorithm;
1912
1913 regstat_free_ri ();
1914 regstat_free_n_sets_and_refs ();
1915
1916 if (optimize)
1917 {
1918 cleanup_cfg (CLEANUP_EXPENSIVE);
1919
1920 ira_free (ira_reg_equiv_invariant_p);
1921 ira_free (ira_reg_equiv_const);
1922 }
1923
1924 bitmap_obstack_release (&ira_bitmap_obstack);
1925 #ifndef IRA_NO_OBSTACK
1926 obstack_free (&ira_obstack, NULL);
1927 #endif
1928
1929 /* The code after the reload has changed so much that at this point
1930 we might as well just rescan everything. Not that
1931 df_rescan_all_insns is not going to help here because it does not
1932 touch the artificial uses and defs. */
1933 df_finish_pass (true);
1934 if (optimize > 1)
1935 df_live_add_problem ();
1936 df_scan_alloc (NULL);
1937 df_scan_blocks ();
1938
1939 if (optimize)
1940 df_analyze ();
1941
1942 timevar_pop (TV_IRA);
1943 }
1944
1945 \f
1946
1947 static bool
1948 gate_ira (void)
1949 {
1950 return flag_ira != 0;
1951 }
1952
1953 /* Run the integrated register allocator. */
1954 static unsigned int
1955 rest_of_handle_ira (void)
1956 {
1957 ira (dump_file);
1958 return 0;
1959 }
1960
1961 struct rtl_opt_pass pass_ira =
1962 {
1963 {
1964 RTL_PASS,
1965 "ira", /* name */
1966 gate_ira, /* gate */
1967 rest_of_handle_ira, /* execute */
1968 NULL, /* sub */
1969 NULL, /* next */
1970 0, /* static_pass_number */
1971 0, /* tv_id */
1972 0, /* properties_required */
1973 0, /* properties_provided */
1974 0, /* properties_destroyed */
1975 0, /* todo_flags_start */
1976 TODO_dump_func |
1977 TODO_ggc_collect /* todo_flags_finish */
1978 }
1979 };