]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/ira.cc
Change references of .c files to .cc files
[thirdparty/gcc.git] / gcc / ira.cc
1 /* Integrated Register Allocator (IRA) entry point.
2 Copyright (C) 2006-2022 Free Software Foundation, Inc.
3 Contributed by Vladimir Makarov <vmakarov@redhat.com>.
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
10 version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
20
21 /* The integrated register allocator (IRA) is a
22 regional register allocator performing graph coloring on a top-down
23 traversal of nested regions. Graph coloring in a region is based
24 on Chaitin-Briggs algorithm. It is called integrated because
25 register coalescing, register live range splitting, and choosing a
26 better hard register are done on-the-fly during coloring. Register
27 coalescing and choosing a cheaper hard register is done by hard
28 register preferencing during hard register assigning. The live
29 range splitting is a byproduct of the regional register allocation.
30
31 Major IRA notions are:
32
33 o *Region* is a part of CFG where graph coloring based on
34 Chaitin-Briggs algorithm is done. IRA can work on any set of
35 nested CFG regions forming a tree. Currently the regions are
36 the entire function for the root region and natural loops for
37 the other regions. Therefore data structure representing a
38 region is called loop_tree_node.
39
40 o *Allocno class* is a register class used for allocation of
41 given allocno. It means that only hard register of given
42 register class can be assigned to given allocno. In reality,
43 even smaller subset of (*profitable*) hard registers can be
44 assigned. In rare cases, the subset can be even smaller
45 because our modification of Chaitin-Briggs algorithm requires
46 that sets of hard registers can be assigned to allocnos forms a
47 forest, i.e. the sets can be ordered in a way where any
48 previous set is not intersected with given set or is a superset
49 of given set.
50
51 o *Pressure class* is a register class belonging to a set of
52 register classes containing all of the hard-registers available
53 for register allocation. The set of all pressure classes for a
54 target is defined in the corresponding machine-description file
55 according some criteria. Register pressure is calculated only
56 for pressure classes and it affects some IRA decisions as
57 forming allocation regions.
58
59 o *Allocno* represents the live range of a pseudo-register in a
60 region. Besides the obvious attributes like the corresponding
61 pseudo-register number, allocno class, conflicting allocnos and
62 conflicting hard-registers, there are a few allocno attributes
63 which are important for understanding the allocation algorithm:
64
65 - *Live ranges*. This is a list of ranges of *program points*
66 where the allocno lives. Program points represent places
67 where a pseudo can be born or become dead (there are
68 approximately two times more program points than the insns)
69 and they are represented by integers starting with 0. The
70 live ranges are used to find conflicts between allocnos.
71 They also play very important role for the transformation of
72 the IRA internal representation of several regions into a one
73 region representation. The later is used during the reload
74 pass work because each allocno represents all of the
75 corresponding pseudo-registers.
76
77 - *Hard-register costs*. This is a vector of size equal to the
78 number of available hard-registers of the allocno class. The
79 cost of a callee-clobbered hard-register for an allocno is
80 increased by the cost of save/restore code around the calls
81 through the given allocno's life. If the allocno is a move
82 instruction operand and another operand is a hard-register of
83 the allocno class, the cost of the hard-register is decreased
84 by the move cost.
85
86 When an allocno is assigned, the hard-register with minimal
87 full cost is used. Initially, a hard-register's full cost is
88 the corresponding value from the hard-register's cost vector.
89 If the allocno is connected by a *copy* (see below) to
90 another allocno which has just received a hard-register, the
91 cost of the hard-register is decreased. Before choosing a
92 hard-register for an allocno, the allocno's current costs of
93 the hard-registers are modified by the conflict hard-register
94 costs of all of the conflicting allocnos which are not
95 assigned yet.
96
97 - *Conflict hard-register costs*. This is a vector of the same
98 size as the hard-register costs vector. To permit an
99 unassigned allocno to get a better hard-register, IRA uses
100 this vector to calculate the final full cost of the
101 available hard-registers. Conflict hard-register costs of an
102 unassigned allocno are also changed with a change of the
103 hard-register cost of the allocno when a copy involving the
104 allocno is processed as described above. This is done to
105 show other unassigned allocnos that a given allocno prefers
106 some hard-registers in order to remove the move instruction
107 corresponding to the copy.
108
109 o *Cap*. If a pseudo-register does not live in a region but
110 lives in a nested region, IRA creates a special allocno called
111 a cap in the outer region. A region cap is also created for a
112 subregion cap.
113
114 o *Copy*. Allocnos can be connected by copies. Copies are used
115 to modify hard-register costs for allocnos during coloring.
116 Such modifications reflects a preference to use the same
117 hard-register for the allocnos connected by copies. Usually
118 copies are created for move insns (in this case it results in
119 register coalescing). But IRA also creates copies for operands
120 of an insn which should be assigned to the same hard-register
121 due to constraints in the machine description (it usually
122 results in removing a move generated in reload to satisfy
123 the constraints) and copies referring to the allocno which is
124 the output operand of an instruction and the allocno which is
125 an input operand dying in the instruction (creation of such
126 copies results in less register shuffling). IRA *does not*
127 create copies between the same register allocnos from different
128 regions because we use another technique for propagating
129 hard-register preference on the borders of regions.
130
131 Allocnos (including caps) for the upper region in the region tree
132 *accumulate* information important for coloring from allocnos with
133 the same pseudo-register from nested regions. This includes
134 hard-register and memory costs, conflicts with hard-registers,
135 allocno conflicts, allocno copies and more. *Thus, attributes for
136 allocnos in a region have the same values as if the region had no
137 subregions*. It means that attributes for allocnos in the
138 outermost region corresponding to the function have the same values
139 as though the allocation used only one region which is the entire
140 function. It also means that we can look at IRA work as if the
141 first IRA did allocation for all function then it improved the
142 allocation for loops then their subloops and so on.
143
144 IRA major passes are:
145
146 o Building IRA internal representation which consists of the
147 following subpasses:
148
149 * First, IRA builds regions and creates allocnos (file
150 ira-build.cc) and initializes most of their attributes.
151
152 * Then IRA finds an allocno class for each allocno and
153 calculates its initial (non-accumulated) cost of memory and
154 each hard-register of its allocno class (file ira-cost.c).
155
156 * IRA creates live ranges of each allocno, calculates register
157 pressure for each pressure class in each region, sets up
158 conflict hard registers for each allocno and info about calls
159 the allocno lives through (file ira-lives.cc).
160
161 * IRA removes low register pressure loops from the regions
162 mostly to speed IRA up (file ira-build.cc).
163
164 * IRA propagates accumulated allocno info from lower region
165 allocnos to corresponding upper region allocnos (file
166 ira-build.cc).
167
168 * IRA creates all caps (file ira-build.cc).
169
170 * Having live-ranges of allocnos and their classes, IRA creates
171 conflicting allocnos for each allocno. Conflicting allocnos
172 are stored as a bit vector or array of pointers to the
173 conflicting allocnos whatever is more profitable (file
174 ira-conflicts.cc). At this point IRA creates allocno copies.
175
176 o Coloring. Now IRA has all necessary info to start graph coloring
177 process. It is done in each region on top-down traverse of the
178 region tree (file ira-color.cc). There are following subpasses:
179
180 * Finding profitable hard registers of corresponding allocno
181 class for each allocno. For example, only callee-saved hard
182 registers are frequently profitable for allocnos living
183 through colors. If the profitable hard register set of
184 allocno does not form a tree based on subset relation, we use
185 some approximation to form the tree. This approximation is
186 used to figure out trivial colorability of allocnos. The
187 approximation is a pretty rare case.
188
189 * Putting allocnos onto the coloring stack. IRA uses Briggs
190 optimistic coloring which is a major improvement over
191 Chaitin's coloring. Therefore IRA does not spill allocnos at
192 this point. There is some freedom in the order of putting
193 allocnos on the stack which can affect the final result of
194 the allocation. IRA uses some heuristics to improve the
195 order. The major one is to form *threads* from colorable
196 allocnos and push them on the stack by threads. Thread is a
197 set of non-conflicting colorable allocnos connected by
198 copies. The thread contains allocnos from the colorable
199 bucket or colorable allocnos already pushed onto the coloring
200 stack. Pushing thread allocnos one after another onto the
201 stack increases chances of removing copies when the allocnos
202 get the same hard reg.
203
204 We also use a modification of Chaitin-Briggs algorithm which
205 works for intersected register classes of allocnos. To
206 figure out trivial colorability of allocnos, the mentioned
207 above tree of hard register sets is used. To get an idea how
208 the algorithm works in i386 example, let us consider an
209 allocno to which any general hard register can be assigned.
210 If the allocno conflicts with eight allocnos to which only
211 EAX register can be assigned, given allocno is still
212 trivially colorable because all conflicting allocnos might be
213 assigned only to EAX and all other general hard registers are
214 still free.
215
216 To get an idea of the used trivial colorability criterion, it
217 is also useful to read article "Graph-Coloring Register
218 Allocation for Irregular Architectures" by Michael D. Smith
219 and Glen Holloway. Major difference between the article
220 approach and approach used in IRA is that Smith's approach
221 takes register classes only from machine description and IRA
222 calculate register classes from intermediate code too
223 (e.g. an explicit usage of hard registers in RTL code for
224 parameter passing can result in creation of additional
225 register classes which contain or exclude the hard
226 registers). That makes IRA approach useful for improving
227 coloring even for architectures with regular register files
228 and in fact some benchmarking shows the improvement for
229 regular class architectures is even bigger than for irregular
230 ones. Another difference is that Smith's approach chooses
231 intersection of classes of all insn operands in which a given
232 pseudo occurs. IRA can use bigger classes if it is still
233 more profitable than memory usage.
234
235 * Popping the allocnos from the stack and assigning them hard
236 registers. If IRA cannot assign a hard register to an
237 allocno and the allocno is coalesced, IRA undoes the
238 coalescing and puts the uncoalesced allocnos onto the stack in
239 the hope that some such allocnos will get a hard register
240 separately. If IRA fails to assign hard register or memory
241 is more profitable for it, IRA spills the allocno. IRA
242 assigns the allocno the hard-register with minimal full
243 allocation cost which reflects the cost of usage of the
244 hard-register for the allocno and cost of usage of the
245 hard-register for allocnos conflicting with given allocno.
246
247 * Chaitin-Briggs coloring assigns as many pseudos as possible
248 to hard registers. After coloring we try to improve
249 allocation with cost point of view. We improve the
250 allocation by spilling some allocnos and assigning the freed
251 hard registers to other allocnos if it decreases the overall
252 allocation cost.
253
254 * After allocno assigning in the region, IRA modifies the hard
255 register and memory costs for the corresponding allocnos in
256 the subregions to reflect the cost of possible loads, stores,
257 or moves on the border of the region and its subregions.
258 When default regional allocation algorithm is used
259 (-fira-algorithm=mixed), IRA just propagates the assignment
260 for allocnos if the register pressure in the region for the
261 corresponding pressure class is less than number of available
262 hard registers for given pressure class.
263
264 o Spill/restore code moving. When IRA performs an allocation
265 by traversing regions in top-down order, it does not know what
266 happens below in the region tree. Therefore, sometimes IRA
267 misses opportunities to perform a better allocation. A simple
268 optimization tries to improve allocation in a region having
269 subregions and containing in another region. If the
270 corresponding allocnos in the subregion are spilled, it spills
271 the region allocno if it is profitable. The optimization
272 implements a simple iterative algorithm performing profitable
273 transformations while they are still possible. It is fast in
274 practice, so there is no real need for a better time complexity
275 algorithm.
276
277 o Code change. After coloring, two allocnos representing the
278 same pseudo-register outside and inside a region respectively
279 may be assigned to different locations (hard-registers or
280 memory). In this case IRA creates and uses a new
281 pseudo-register inside the region and adds code to move allocno
282 values on the region's borders. This is done during top-down
283 traversal of the regions (file ira-emit.cc). In some
284 complicated cases IRA can create a new allocno to move allocno
285 values (e.g. when a swap of values stored in two hard-registers
286 is needed). At this stage, the new allocno is marked as
287 spilled. IRA still creates the pseudo-register and the moves
288 on the region borders even when both allocnos were assigned to
289 the same hard-register. If the reload pass spills a
290 pseudo-register for some reason, the effect will be smaller
291 because another allocno will still be in the hard-register. In
292 most cases, this is better then spilling both allocnos. If
293 reload does not change the allocation for the two
294 pseudo-registers, the trivial move will be removed by
295 post-reload optimizations. IRA does not generate moves for
296 allocnos assigned to the same hard register when the default
297 regional allocation algorithm is used and the register pressure
298 in the region for the corresponding pressure class is less than
299 number of available hard registers for given pressure class.
300 IRA also does some optimizations to remove redundant stores and
301 to reduce code duplication on the region borders.
302
303 o Flattening internal representation. After changing code, IRA
304 transforms its internal representation for several regions into
305 one region representation (file ira-build.cc). This process is
306 called IR flattening. Such process is more complicated than IR
307 rebuilding would be, but is much faster.
308
309 o After IR flattening, IRA tries to assign hard registers to all
310 spilled allocnos. This is implemented by a simple and fast
311 priority coloring algorithm (see function
312 ira_reassign_conflict_allocnos::ira-color.cc). Here new allocnos
313 created during the code change pass can be assigned to hard
314 registers.
315
316 o At the end IRA calls the reload pass. The reload pass
317 communicates with IRA through several functions in file
318 ira-color.cc to improve its decisions in
319
320 * sharing stack slots for the spilled pseudos based on IRA info
321 about pseudo-register conflicts.
322
323 * reassigning hard-registers to all spilled pseudos at the end
324 of each reload iteration.
325
326 * choosing a better hard-register to spill based on IRA info
327 about pseudo-register live ranges and the register pressure
328 in places where the pseudo-register lives.
329
330 IRA uses a lot of data representing the target processors. These
331 data are initialized in file ira.cc.
332
333 If function has no loops (or the loops are ignored when
334 -fira-algorithm=CB is used), we have classic Chaitin-Briggs
335 coloring (only instead of separate pass of coalescing, we use hard
336 register preferencing). In such case, IRA works much faster
337 because many things are not made (like IR flattening, the
338 spill/restore optimization, and the code change).
339
340 Literature is worth to read for better understanding the code:
341
342 o Preston Briggs, Keith D. Cooper, Linda Torczon. Improvements to
343 Graph Coloring Register Allocation.
344
345 o David Callahan, Brian Koblenz. Register allocation via
346 hierarchical graph coloring.
347
348 o Keith Cooper, Anshuman Dasgupta, Jason Eckhardt. Revisiting Graph
349 Coloring Register Allocation: A Study of the Chaitin-Briggs and
350 Callahan-Koblenz Algorithms.
351
352 o Guei-Yuan Lueh, Thomas Gross, and Ali-Reza Adl-Tabatabai. Global
353 Register Allocation Based on Graph Fusion.
354
355 o Michael D. Smith and Glenn Holloway. Graph-Coloring Register
356 Allocation for Irregular Architectures
357
358 o Vladimir Makarov. The Integrated Register Allocator for GCC.
359
360 o Vladimir Makarov. The top-down register allocator for irregular
361 register file architectures.
362
363 */
364
365
366 #include "config.h"
367 #include "system.h"
368 #include "coretypes.h"
369 #include "backend.h"
370 #include "target.h"
371 #include "rtl.h"
372 #include "tree.h"
373 #include "df.h"
374 #include "memmodel.h"
375 #include "tm_p.h"
376 #include "insn-config.h"
377 #include "regs.h"
378 #include "ira.h"
379 #include "ira-int.h"
380 #include "diagnostic-core.h"
381 #include "cfgrtl.h"
382 #include "cfgbuild.h"
383 #include "cfgcleanup.h"
384 #include "expr.h"
385 #include "tree-pass.h"
386 #include "output.h"
387 #include "reload.h"
388 #include "cfgloop.h"
389 #include "lra.h"
390 #include "dce.h"
391 #include "dbgcnt.h"
392 #include "rtl-iter.h"
393 #include "shrink-wrap.h"
394 #include "print-rtl.h"
395
396 struct target_ira default_target_ira;
397 class target_ira_int default_target_ira_int;
398 #if SWITCHABLE_TARGET
399 struct target_ira *this_target_ira = &default_target_ira;
400 class target_ira_int *this_target_ira_int = &default_target_ira_int;
401 #endif
402
403 /* A modified value of flag `-fira-verbose' used internally. */
404 int internal_flag_ira_verbose;
405
406 /* Dump file of the allocator if it is not NULL. */
407 FILE *ira_dump_file;
408
409 /* The number of elements in the following array. */
410 int ira_spilled_reg_stack_slots_num;
411
412 /* The following array contains info about spilled pseudo-registers
413 stack slots used in current function so far. */
414 class ira_spilled_reg_stack_slot *ira_spilled_reg_stack_slots;
415
416 /* Correspondingly overall cost of the allocation, overall cost before
417 reload, cost of the allocnos assigned to hard-registers, cost of
418 the allocnos assigned to memory, cost of loads, stores and register
419 move insns generated for pseudo-register live range splitting (see
420 ira-emit.cc). */
421 int64_t ira_overall_cost, overall_cost_before;
422 int64_t ira_reg_cost, ira_mem_cost;
423 int64_t ira_load_cost, ira_store_cost, ira_shuffle_cost;
424 int ira_move_loops_num, ira_additional_jumps_num;
425
426 /* All registers that can be eliminated. */
427
428 HARD_REG_SET eliminable_regset;
429
430 /* Value of max_reg_num () before IRA work start. This value helps
431 us to recognize a situation when new pseudos were created during
432 IRA work. */
433 static int max_regno_before_ira;
434
435 /* Temporary hard reg set used for a different calculation. */
436 static HARD_REG_SET temp_hard_regset;
437
438 #define last_mode_for_init_move_cost \
439 (this_target_ira_int->x_last_mode_for_init_move_cost)
440 \f
441
442 /* The function sets up the map IRA_REG_MODE_HARD_REGSET. */
443 static void
444 setup_reg_mode_hard_regset (void)
445 {
446 int i, m, hard_regno;
447
448 for (m = 0; m < NUM_MACHINE_MODES; m++)
449 for (hard_regno = 0; hard_regno < FIRST_PSEUDO_REGISTER; hard_regno++)
450 {
451 CLEAR_HARD_REG_SET (ira_reg_mode_hard_regset[hard_regno][m]);
452 for (i = hard_regno_nregs (hard_regno, (machine_mode) m) - 1;
453 i >= 0; i--)
454 if (hard_regno + i < FIRST_PSEUDO_REGISTER)
455 SET_HARD_REG_BIT (ira_reg_mode_hard_regset[hard_regno][m],
456 hard_regno + i);
457 }
458 }
459
460 \f
461 #define no_unit_alloc_regs \
462 (this_target_ira_int->x_no_unit_alloc_regs)
463
464 /* The function sets up the three arrays declared above. */
465 static void
466 setup_class_hard_regs (void)
467 {
468 int cl, i, hard_regno, n;
469 HARD_REG_SET processed_hard_reg_set;
470
471 ira_assert (SHRT_MAX >= FIRST_PSEUDO_REGISTER);
472 for (cl = (int) N_REG_CLASSES - 1; cl >= 0; cl--)
473 {
474 temp_hard_regset = reg_class_contents[cl] & ~no_unit_alloc_regs;
475 CLEAR_HARD_REG_SET (processed_hard_reg_set);
476 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
477 {
478 ira_non_ordered_class_hard_regs[cl][i] = -1;
479 ira_class_hard_reg_index[cl][i] = -1;
480 }
481 for (n = 0, i = 0; i < FIRST_PSEUDO_REGISTER; i++)
482 {
483 #ifdef REG_ALLOC_ORDER
484 hard_regno = reg_alloc_order[i];
485 #else
486 hard_regno = i;
487 #endif
488 if (TEST_HARD_REG_BIT (processed_hard_reg_set, hard_regno))
489 continue;
490 SET_HARD_REG_BIT (processed_hard_reg_set, hard_regno);
491 if (! TEST_HARD_REG_BIT (temp_hard_regset, hard_regno))
492 ira_class_hard_reg_index[cl][hard_regno] = -1;
493 else
494 {
495 ira_class_hard_reg_index[cl][hard_regno] = n;
496 ira_class_hard_regs[cl][n++] = hard_regno;
497 }
498 }
499 ira_class_hard_regs_num[cl] = n;
500 for (n = 0, i = 0; i < FIRST_PSEUDO_REGISTER; i++)
501 if (TEST_HARD_REG_BIT (temp_hard_regset, i))
502 ira_non_ordered_class_hard_regs[cl][n++] = i;
503 ira_assert (ira_class_hard_regs_num[cl] == n);
504 }
505 }
506
507 /* Set up global variables defining info about hard registers for the
508 allocation. These depend on USE_HARD_FRAME_P whose TRUE value means
509 that we can use the hard frame pointer for the allocation. */
510 static void
511 setup_alloc_regs (bool use_hard_frame_p)
512 {
513 #ifdef ADJUST_REG_ALLOC_ORDER
514 ADJUST_REG_ALLOC_ORDER;
515 #endif
516 no_unit_alloc_regs = fixed_nonglobal_reg_set;
517 if (! use_hard_frame_p)
518 add_to_hard_reg_set (&no_unit_alloc_regs, Pmode,
519 HARD_FRAME_POINTER_REGNUM);
520 setup_class_hard_regs ();
521 }
522
523 \f
524
525 #define alloc_reg_class_subclasses \
526 (this_target_ira_int->x_alloc_reg_class_subclasses)
527
528 /* Initialize the table of subclasses of each reg class. */
529 static void
530 setup_reg_subclasses (void)
531 {
532 int i, j;
533 HARD_REG_SET temp_hard_regset2;
534
535 for (i = 0; i < N_REG_CLASSES; i++)
536 for (j = 0; j < N_REG_CLASSES; j++)
537 alloc_reg_class_subclasses[i][j] = LIM_REG_CLASSES;
538
539 for (i = 0; i < N_REG_CLASSES; i++)
540 {
541 if (i == (int) NO_REGS)
542 continue;
543
544 temp_hard_regset = reg_class_contents[i] & ~no_unit_alloc_regs;
545 if (hard_reg_set_empty_p (temp_hard_regset))
546 continue;
547 for (j = 0; j < N_REG_CLASSES; j++)
548 if (i != j)
549 {
550 enum reg_class *p;
551
552 temp_hard_regset2 = reg_class_contents[j] & ~no_unit_alloc_regs;
553 if (! hard_reg_set_subset_p (temp_hard_regset,
554 temp_hard_regset2))
555 continue;
556 p = &alloc_reg_class_subclasses[j][0];
557 while (*p != LIM_REG_CLASSES) p++;
558 *p = (enum reg_class) i;
559 }
560 }
561 }
562
563 \f
564
565 /* Set up IRA_MEMORY_MOVE_COST and IRA_MAX_MEMORY_MOVE_COST. */
566 static void
567 setup_class_subset_and_memory_move_costs (void)
568 {
569 int cl, cl2, mode, cost;
570 HARD_REG_SET temp_hard_regset2;
571
572 for (mode = 0; mode < MAX_MACHINE_MODE; mode++)
573 ira_memory_move_cost[mode][NO_REGS][0]
574 = ira_memory_move_cost[mode][NO_REGS][1] = SHRT_MAX;
575 for (cl = (int) N_REG_CLASSES - 1; cl >= 0; cl--)
576 {
577 if (cl != (int) NO_REGS)
578 for (mode = 0; mode < MAX_MACHINE_MODE; mode++)
579 {
580 ira_max_memory_move_cost[mode][cl][0]
581 = ira_memory_move_cost[mode][cl][0]
582 = memory_move_cost ((machine_mode) mode,
583 (reg_class_t) cl, false);
584 ira_max_memory_move_cost[mode][cl][1]
585 = ira_memory_move_cost[mode][cl][1]
586 = memory_move_cost ((machine_mode) mode,
587 (reg_class_t) cl, true);
588 /* Costs for NO_REGS are used in cost calculation on the
589 1st pass when the preferred register classes are not
590 known yet. In this case we take the best scenario. */
591 if (ira_memory_move_cost[mode][NO_REGS][0]
592 > ira_memory_move_cost[mode][cl][0])
593 ira_max_memory_move_cost[mode][NO_REGS][0]
594 = ira_memory_move_cost[mode][NO_REGS][0]
595 = ira_memory_move_cost[mode][cl][0];
596 if (ira_memory_move_cost[mode][NO_REGS][1]
597 > ira_memory_move_cost[mode][cl][1])
598 ira_max_memory_move_cost[mode][NO_REGS][1]
599 = ira_memory_move_cost[mode][NO_REGS][1]
600 = ira_memory_move_cost[mode][cl][1];
601 }
602 }
603 for (cl = (int) N_REG_CLASSES - 1; cl >= 0; cl--)
604 for (cl2 = (int) N_REG_CLASSES - 1; cl2 >= 0; cl2--)
605 {
606 temp_hard_regset = reg_class_contents[cl] & ~no_unit_alloc_regs;
607 temp_hard_regset2 = reg_class_contents[cl2] & ~no_unit_alloc_regs;
608 ira_class_subset_p[cl][cl2]
609 = hard_reg_set_subset_p (temp_hard_regset, temp_hard_regset2);
610 if (! hard_reg_set_empty_p (temp_hard_regset2)
611 && hard_reg_set_subset_p (reg_class_contents[cl2],
612 reg_class_contents[cl]))
613 for (mode = 0; mode < MAX_MACHINE_MODE; mode++)
614 {
615 cost = ira_memory_move_cost[mode][cl2][0];
616 if (cost > ira_max_memory_move_cost[mode][cl][0])
617 ira_max_memory_move_cost[mode][cl][0] = cost;
618 cost = ira_memory_move_cost[mode][cl2][1];
619 if (cost > ira_max_memory_move_cost[mode][cl][1])
620 ira_max_memory_move_cost[mode][cl][1] = cost;
621 }
622 }
623 for (cl = (int) N_REG_CLASSES - 1; cl >= 0; cl--)
624 for (mode = 0; mode < MAX_MACHINE_MODE; mode++)
625 {
626 ira_memory_move_cost[mode][cl][0]
627 = ira_max_memory_move_cost[mode][cl][0];
628 ira_memory_move_cost[mode][cl][1]
629 = ira_max_memory_move_cost[mode][cl][1];
630 }
631 setup_reg_subclasses ();
632 }
633
634 \f
635
636 /* Define the following macro if allocation through malloc if
637 preferable. */
638 #define IRA_NO_OBSTACK
639
640 #ifndef IRA_NO_OBSTACK
641 /* Obstack used for storing all dynamic data (except bitmaps) of the
642 IRA. */
643 static struct obstack ira_obstack;
644 #endif
645
646 /* Obstack used for storing all bitmaps of the IRA. */
647 static struct bitmap_obstack ira_bitmap_obstack;
648
649 /* Allocate memory of size LEN for IRA data. */
650 void *
651 ira_allocate (size_t len)
652 {
653 void *res;
654
655 #ifndef IRA_NO_OBSTACK
656 res = obstack_alloc (&ira_obstack, len);
657 #else
658 res = xmalloc (len);
659 #endif
660 return res;
661 }
662
663 /* Free memory ADDR allocated for IRA data. */
664 void
665 ira_free (void *addr ATTRIBUTE_UNUSED)
666 {
667 #ifndef IRA_NO_OBSTACK
668 /* do nothing */
669 #else
670 free (addr);
671 #endif
672 }
673
674
675 /* Allocate and returns bitmap for IRA. */
676 bitmap
677 ira_allocate_bitmap (void)
678 {
679 return BITMAP_ALLOC (&ira_bitmap_obstack);
680 }
681
682 /* Free bitmap B allocated for IRA. */
683 void
684 ira_free_bitmap (bitmap b ATTRIBUTE_UNUSED)
685 {
686 /* do nothing */
687 }
688
689 \f
690
691 /* Output information about allocation of all allocnos (except for
692 caps) into file F. */
693 void
694 ira_print_disposition (FILE *f)
695 {
696 int i, n, max_regno;
697 ira_allocno_t a;
698 basic_block bb;
699
700 fprintf (f, "Disposition:");
701 max_regno = max_reg_num ();
702 for (n = 0, i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
703 for (a = ira_regno_allocno_map[i];
704 a != NULL;
705 a = ALLOCNO_NEXT_REGNO_ALLOCNO (a))
706 {
707 if (n % 4 == 0)
708 fprintf (f, "\n");
709 n++;
710 fprintf (f, " %4d:r%-4d", ALLOCNO_NUM (a), ALLOCNO_REGNO (a));
711 if ((bb = ALLOCNO_LOOP_TREE_NODE (a)->bb) != NULL)
712 fprintf (f, "b%-3d", bb->index);
713 else
714 fprintf (f, "l%-3d", ALLOCNO_LOOP_TREE_NODE (a)->loop_num);
715 if (ALLOCNO_HARD_REGNO (a) >= 0)
716 fprintf (f, " %3d", ALLOCNO_HARD_REGNO (a));
717 else
718 fprintf (f, " mem");
719 }
720 fprintf (f, "\n");
721 }
722
723 /* Outputs information about allocation of all allocnos into
724 stderr. */
725 void
726 ira_debug_disposition (void)
727 {
728 ira_print_disposition (stderr);
729 }
730
731 \f
732
733 /* Set up ira_stack_reg_pressure_class which is the biggest pressure
734 register class containing stack registers or NO_REGS if there are
735 no stack registers. To find this class, we iterate through all
736 register pressure classes and choose the first register pressure
737 class containing all the stack registers and having the biggest
738 size. */
739 static void
740 setup_stack_reg_pressure_class (void)
741 {
742 ira_stack_reg_pressure_class = NO_REGS;
743 #ifdef STACK_REGS
744 {
745 int i, best, size;
746 enum reg_class cl;
747 HARD_REG_SET temp_hard_regset2;
748
749 CLEAR_HARD_REG_SET (temp_hard_regset);
750 for (i = FIRST_STACK_REG; i <= LAST_STACK_REG; i++)
751 SET_HARD_REG_BIT (temp_hard_regset, i);
752 best = 0;
753 for (i = 0; i < ira_pressure_classes_num; i++)
754 {
755 cl = ira_pressure_classes[i];
756 temp_hard_regset2 = temp_hard_regset & reg_class_contents[cl];
757 size = hard_reg_set_size (temp_hard_regset2);
758 if (best < size)
759 {
760 best = size;
761 ira_stack_reg_pressure_class = cl;
762 }
763 }
764 }
765 #endif
766 }
767
768 /* Find pressure classes which are register classes for which we
769 calculate register pressure in IRA, register pressure sensitive
770 insn scheduling, and register pressure sensitive loop invariant
771 motion.
772
773 To make register pressure calculation easy, we always use
774 non-intersected register pressure classes. A move of hard
775 registers from one register pressure class is not more expensive
776 than load and store of the hard registers. Most likely an allocno
777 class will be a subset of a register pressure class and in many
778 cases a register pressure class. That makes usage of register
779 pressure classes a good approximation to find a high register
780 pressure. */
781 static void
782 setup_pressure_classes (void)
783 {
784 int cost, i, n, curr;
785 int cl, cl2;
786 enum reg_class pressure_classes[N_REG_CLASSES];
787 int m;
788 HARD_REG_SET temp_hard_regset2;
789 bool insert_p;
790
791 if (targetm.compute_pressure_classes)
792 n = targetm.compute_pressure_classes (pressure_classes);
793 else
794 {
795 n = 0;
796 for (cl = 0; cl < N_REG_CLASSES; cl++)
797 {
798 if (ira_class_hard_regs_num[cl] == 0)
799 continue;
800 if (ira_class_hard_regs_num[cl] != 1
801 /* A register class without subclasses may contain a few
802 hard registers and movement between them is costly
803 (e.g. SPARC FPCC registers). We still should consider it
804 as a candidate for a pressure class. */
805 && alloc_reg_class_subclasses[cl][0] < cl)
806 {
807 /* Check that the moves between any hard registers of the
808 current class are not more expensive for a legal mode
809 than load/store of the hard registers of the current
810 class. Such class is a potential candidate to be a
811 register pressure class. */
812 for (m = 0; m < NUM_MACHINE_MODES; m++)
813 {
814 temp_hard_regset
815 = (reg_class_contents[cl]
816 & ~(no_unit_alloc_regs
817 | ira_prohibited_class_mode_regs[cl][m]));
818 if (hard_reg_set_empty_p (temp_hard_regset))
819 continue;
820 ira_init_register_move_cost_if_necessary ((machine_mode) m);
821 cost = ira_register_move_cost[m][cl][cl];
822 if (cost <= ira_max_memory_move_cost[m][cl][1]
823 || cost <= ira_max_memory_move_cost[m][cl][0])
824 break;
825 }
826 if (m >= NUM_MACHINE_MODES)
827 continue;
828 }
829 curr = 0;
830 insert_p = true;
831 temp_hard_regset = reg_class_contents[cl] & ~no_unit_alloc_regs;
832 /* Remove so far added pressure classes which are subset of the
833 current candidate class. Prefer GENERAL_REGS as a pressure
834 register class to another class containing the same
835 allocatable hard registers. We do this because machine
836 dependent cost hooks might give wrong costs for the latter
837 class but always give the right cost for the former class
838 (GENERAL_REGS). */
839 for (i = 0; i < n; i++)
840 {
841 cl2 = pressure_classes[i];
842 temp_hard_regset2 = (reg_class_contents[cl2]
843 & ~no_unit_alloc_regs);
844 if (hard_reg_set_subset_p (temp_hard_regset, temp_hard_regset2)
845 && (temp_hard_regset != temp_hard_regset2
846 || cl2 == (int) GENERAL_REGS))
847 {
848 pressure_classes[curr++] = (enum reg_class) cl2;
849 insert_p = false;
850 continue;
851 }
852 if (hard_reg_set_subset_p (temp_hard_regset2, temp_hard_regset)
853 && (temp_hard_regset2 != temp_hard_regset
854 || cl == (int) GENERAL_REGS))
855 continue;
856 if (temp_hard_regset2 == temp_hard_regset)
857 insert_p = false;
858 pressure_classes[curr++] = (enum reg_class) cl2;
859 }
860 /* If the current candidate is a subset of a so far added
861 pressure class, don't add it to the list of the pressure
862 classes. */
863 if (insert_p)
864 pressure_classes[curr++] = (enum reg_class) cl;
865 n = curr;
866 }
867 }
868 #ifdef ENABLE_IRA_CHECKING
869 {
870 HARD_REG_SET ignore_hard_regs;
871
872 /* Check pressure classes correctness: here we check that hard
873 registers from all register pressure classes contains all hard
874 registers available for the allocation. */
875 CLEAR_HARD_REG_SET (temp_hard_regset);
876 CLEAR_HARD_REG_SET (temp_hard_regset2);
877 ignore_hard_regs = no_unit_alloc_regs;
878 for (cl = 0; cl < LIM_REG_CLASSES; cl++)
879 {
880 /* For some targets (like MIPS with MD_REGS), there are some
881 classes with hard registers available for allocation but
882 not able to hold value of any mode. */
883 for (m = 0; m < NUM_MACHINE_MODES; m++)
884 if (contains_reg_of_mode[cl][m])
885 break;
886 if (m >= NUM_MACHINE_MODES)
887 {
888 ignore_hard_regs |= reg_class_contents[cl];
889 continue;
890 }
891 for (i = 0; i < n; i++)
892 if ((int) pressure_classes[i] == cl)
893 break;
894 temp_hard_regset2 |= reg_class_contents[cl];
895 if (i < n)
896 temp_hard_regset |= reg_class_contents[cl];
897 }
898 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
899 /* Some targets (like SPARC with ICC reg) have allocatable regs
900 for which no reg class is defined. */
901 if (REGNO_REG_CLASS (i) == NO_REGS)
902 SET_HARD_REG_BIT (ignore_hard_regs, i);
903 temp_hard_regset &= ~ignore_hard_regs;
904 temp_hard_regset2 &= ~ignore_hard_regs;
905 ira_assert (hard_reg_set_subset_p (temp_hard_regset2, temp_hard_regset));
906 }
907 #endif
908 ira_pressure_classes_num = 0;
909 for (i = 0; i < n; i++)
910 {
911 cl = (int) pressure_classes[i];
912 ira_reg_pressure_class_p[cl] = true;
913 ira_pressure_classes[ira_pressure_classes_num++] = (enum reg_class) cl;
914 }
915 setup_stack_reg_pressure_class ();
916 }
917
918 /* Set up IRA_UNIFORM_CLASS_P. Uniform class is a register class
919 whose register move cost between any registers of the class is the
920 same as for all its subclasses. We use the data to speed up the
921 2nd pass of calculations of allocno costs. */
922 static void
923 setup_uniform_class_p (void)
924 {
925 int i, cl, cl2, m;
926
927 for (cl = 0; cl < N_REG_CLASSES; cl++)
928 {
929 ira_uniform_class_p[cl] = false;
930 if (ira_class_hard_regs_num[cl] == 0)
931 continue;
932 /* We cannot use alloc_reg_class_subclasses here because move
933 cost hooks does not take into account that some registers are
934 unavailable for the subtarget. E.g. for i686, INT_SSE_REGS
935 is element of alloc_reg_class_subclasses for GENERAL_REGS
936 because SSE regs are unavailable. */
937 for (i = 0; (cl2 = reg_class_subclasses[cl][i]) != LIM_REG_CLASSES; i++)
938 {
939 if (ira_class_hard_regs_num[cl2] == 0)
940 continue;
941 for (m = 0; m < NUM_MACHINE_MODES; m++)
942 if (contains_reg_of_mode[cl][m] && contains_reg_of_mode[cl2][m])
943 {
944 ira_init_register_move_cost_if_necessary ((machine_mode) m);
945 if (ira_register_move_cost[m][cl][cl]
946 != ira_register_move_cost[m][cl2][cl2])
947 break;
948 }
949 if (m < NUM_MACHINE_MODES)
950 break;
951 }
952 if (cl2 == LIM_REG_CLASSES)
953 ira_uniform_class_p[cl] = true;
954 }
955 }
956
957 /* Set up IRA_ALLOCNO_CLASSES, IRA_ALLOCNO_CLASSES_NUM,
958 IRA_IMPORTANT_CLASSES, and IRA_IMPORTANT_CLASSES_NUM.
959
960 Target may have many subtargets and not all target hard registers can
961 be used for allocation, e.g. x86 port in 32-bit mode cannot use
962 hard registers introduced in x86-64 like r8-r15). Some classes
963 might have the same allocatable hard registers, e.g. INDEX_REGS
964 and GENERAL_REGS in x86 port in 32-bit mode. To decrease different
965 calculations efforts we introduce allocno classes which contain
966 unique non-empty sets of allocatable hard-registers.
967
968 Pseudo class cost calculation in ira-costs.cc is very expensive.
969 Therefore we are trying to decrease number of classes involved in
970 such calculation. Register classes used in the cost calculation
971 are called important classes. They are allocno classes and other
972 non-empty classes whose allocatable hard register sets are inside
973 of an allocno class hard register set. From the first sight, it
974 looks like that they are just allocno classes. It is not true. In
975 example of x86-port in 32-bit mode, allocno classes will contain
976 GENERAL_REGS but not LEGACY_REGS (because allocatable hard
977 registers are the same for the both classes). The important
978 classes will contain GENERAL_REGS and LEGACY_REGS. It is done
979 because a machine description insn constraint may refers for
980 LEGACY_REGS and code in ira-costs.cc is mostly base on investigation
981 of the insn constraints. */
982 static void
983 setup_allocno_and_important_classes (void)
984 {
985 int i, j, n, cl;
986 bool set_p;
987 HARD_REG_SET temp_hard_regset2;
988 static enum reg_class classes[LIM_REG_CLASSES + 1];
989
990 n = 0;
991 /* Collect classes which contain unique sets of allocatable hard
992 registers. Prefer GENERAL_REGS to other classes containing the
993 same set of hard registers. */
994 for (i = 0; i < LIM_REG_CLASSES; i++)
995 {
996 temp_hard_regset = reg_class_contents[i] & ~no_unit_alloc_regs;
997 for (j = 0; j < n; j++)
998 {
999 cl = classes[j];
1000 temp_hard_regset2 = reg_class_contents[cl] & ~no_unit_alloc_regs;
1001 if (temp_hard_regset == temp_hard_regset2)
1002 break;
1003 }
1004 if (j >= n || targetm.additional_allocno_class_p (i))
1005 classes[n++] = (enum reg_class) i;
1006 else if (i == GENERAL_REGS)
1007 /* Prefer general regs. For i386 example, it means that
1008 we prefer GENERAL_REGS over INDEX_REGS or LEGACY_REGS
1009 (all of them consists of the same available hard
1010 registers). */
1011 classes[j] = (enum reg_class) i;
1012 }
1013 classes[n] = LIM_REG_CLASSES;
1014
1015 /* Set up classes which can be used for allocnos as classes
1016 containing non-empty unique sets of allocatable hard
1017 registers. */
1018 ira_allocno_classes_num = 0;
1019 for (i = 0; (cl = classes[i]) != LIM_REG_CLASSES; i++)
1020 if (ira_class_hard_regs_num[cl] > 0)
1021 ira_allocno_classes[ira_allocno_classes_num++] = (enum reg_class) cl;
1022 ira_important_classes_num = 0;
1023 /* Add non-allocno classes containing to non-empty set of
1024 allocatable hard regs. */
1025 for (cl = 0; cl < N_REG_CLASSES; cl++)
1026 if (ira_class_hard_regs_num[cl] > 0)
1027 {
1028 temp_hard_regset = reg_class_contents[cl] & ~no_unit_alloc_regs;
1029 set_p = false;
1030 for (j = 0; j < ira_allocno_classes_num; j++)
1031 {
1032 temp_hard_regset2 = (reg_class_contents[ira_allocno_classes[j]]
1033 & ~no_unit_alloc_regs);
1034 if ((enum reg_class) cl == ira_allocno_classes[j])
1035 break;
1036 else if (hard_reg_set_subset_p (temp_hard_regset,
1037 temp_hard_regset2))
1038 set_p = true;
1039 }
1040 if (set_p && j >= ira_allocno_classes_num)
1041 ira_important_classes[ira_important_classes_num++]
1042 = (enum reg_class) cl;
1043 }
1044 /* Now add allocno classes to the important classes. */
1045 for (j = 0; j < ira_allocno_classes_num; j++)
1046 ira_important_classes[ira_important_classes_num++]
1047 = ira_allocno_classes[j];
1048 for (cl = 0; cl < N_REG_CLASSES; cl++)
1049 {
1050 ira_reg_allocno_class_p[cl] = false;
1051 ira_reg_pressure_class_p[cl] = false;
1052 }
1053 for (j = 0; j < ira_allocno_classes_num; j++)
1054 ira_reg_allocno_class_p[ira_allocno_classes[j]] = true;
1055 setup_pressure_classes ();
1056 setup_uniform_class_p ();
1057 }
1058
1059 /* Setup translation in CLASS_TRANSLATE of all classes into a class
1060 given by array CLASSES of length CLASSES_NUM. The function is used
1061 make translation any reg class to an allocno class or to an
1062 pressure class. This translation is necessary for some
1063 calculations when we can use only allocno or pressure classes and
1064 such translation represents an approximate representation of all
1065 classes.
1066
1067 The translation in case when allocatable hard register set of a
1068 given class is subset of allocatable hard register set of a class
1069 in CLASSES is pretty simple. We use smallest classes from CLASSES
1070 containing a given class. If allocatable hard register set of a
1071 given class is not a subset of any corresponding set of a class
1072 from CLASSES, we use the cheapest (with load/store point of view)
1073 class from CLASSES whose set intersects with given class set. */
1074 static void
1075 setup_class_translate_array (enum reg_class *class_translate,
1076 int classes_num, enum reg_class *classes)
1077 {
1078 int cl, mode;
1079 enum reg_class aclass, best_class, *cl_ptr;
1080 int i, cost, min_cost, best_cost;
1081
1082 for (cl = 0; cl < N_REG_CLASSES; cl++)
1083 class_translate[cl] = NO_REGS;
1084
1085 for (i = 0; i < classes_num; i++)
1086 {
1087 aclass = classes[i];
1088 for (cl_ptr = &alloc_reg_class_subclasses[aclass][0];
1089 (cl = *cl_ptr) != LIM_REG_CLASSES;
1090 cl_ptr++)
1091 if (class_translate[cl] == NO_REGS)
1092 class_translate[cl] = aclass;
1093 class_translate[aclass] = aclass;
1094 }
1095 /* For classes which are not fully covered by one of given classes
1096 (in other words covered by more one given class), use the
1097 cheapest class. */
1098 for (cl = 0; cl < N_REG_CLASSES; cl++)
1099 {
1100 if (cl == NO_REGS || class_translate[cl] != NO_REGS)
1101 continue;
1102 best_class = NO_REGS;
1103 best_cost = INT_MAX;
1104 for (i = 0; i < classes_num; i++)
1105 {
1106 aclass = classes[i];
1107 temp_hard_regset = (reg_class_contents[aclass]
1108 & reg_class_contents[cl]
1109 & ~no_unit_alloc_regs);
1110 if (! hard_reg_set_empty_p (temp_hard_regset))
1111 {
1112 min_cost = INT_MAX;
1113 for (mode = 0; mode < MAX_MACHINE_MODE; mode++)
1114 {
1115 cost = (ira_memory_move_cost[mode][aclass][0]
1116 + ira_memory_move_cost[mode][aclass][1]);
1117 if (min_cost > cost)
1118 min_cost = cost;
1119 }
1120 if (best_class == NO_REGS || best_cost > min_cost)
1121 {
1122 best_class = aclass;
1123 best_cost = min_cost;
1124 }
1125 }
1126 }
1127 class_translate[cl] = best_class;
1128 }
1129 }
1130
1131 /* Set up array IRA_ALLOCNO_CLASS_TRANSLATE and
1132 IRA_PRESSURE_CLASS_TRANSLATE. */
1133 static void
1134 setup_class_translate (void)
1135 {
1136 setup_class_translate_array (ira_allocno_class_translate,
1137 ira_allocno_classes_num, ira_allocno_classes);
1138 setup_class_translate_array (ira_pressure_class_translate,
1139 ira_pressure_classes_num, ira_pressure_classes);
1140 }
1141
1142 /* Order numbers of allocno classes in original target allocno class
1143 array, -1 for non-allocno classes. */
1144 static int allocno_class_order[N_REG_CLASSES];
1145
1146 /* The function used to sort the important classes. */
1147 static int
1148 comp_reg_classes_func (const void *v1p, const void *v2p)
1149 {
1150 enum reg_class cl1 = *(const enum reg_class *) v1p;
1151 enum reg_class cl2 = *(const enum reg_class *) v2p;
1152 enum reg_class tcl1, tcl2;
1153 int diff;
1154
1155 tcl1 = ira_allocno_class_translate[cl1];
1156 tcl2 = ira_allocno_class_translate[cl2];
1157 if (tcl1 != NO_REGS && tcl2 != NO_REGS
1158 && (diff = allocno_class_order[tcl1] - allocno_class_order[tcl2]) != 0)
1159 return diff;
1160 return (int) cl1 - (int) cl2;
1161 }
1162
1163 /* For correct work of function setup_reg_class_relation we need to
1164 reorder important classes according to the order of their allocno
1165 classes. It places important classes containing the same
1166 allocatable hard register set adjacent to each other and allocno
1167 class with the allocatable hard register set right after the other
1168 important classes with the same set.
1169
1170 In example from comments of function
1171 setup_allocno_and_important_classes, it places LEGACY_REGS and
1172 GENERAL_REGS close to each other and GENERAL_REGS is after
1173 LEGACY_REGS. */
1174 static void
1175 reorder_important_classes (void)
1176 {
1177 int i;
1178
1179 for (i = 0; i < N_REG_CLASSES; i++)
1180 allocno_class_order[i] = -1;
1181 for (i = 0; i < ira_allocno_classes_num; i++)
1182 allocno_class_order[ira_allocno_classes[i]] = i;
1183 qsort (ira_important_classes, ira_important_classes_num,
1184 sizeof (enum reg_class), comp_reg_classes_func);
1185 for (i = 0; i < ira_important_classes_num; i++)
1186 ira_important_class_nums[ira_important_classes[i]] = i;
1187 }
1188
1189 /* Set up IRA_REG_CLASS_SUBUNION, IRA_REG_CLASS_SUPERUNION,
1190 IRA_REG_CLASS_SUPER_CLASSES, IRA_REG_CLASSES_INTERSECT, and
1191 IRA_REG_CLASSES_INTERSECT_P. For the meaning of the relations,
1192 please see corresponding comments in ira-int.h. */
1193 static void
1194 setup_reg_class_relations (void)
1195 {
1196 int i, cl1, cl2, cl3;
1197 HARD_REG_SET intersection_set, union_set, temp_set2;
1198 bool important_class_p[N_REG_CLASSES];
1199
1200 memset (important_class_p, 0, sizeof (important_class_p));
1201 for (i = 0; i < ira_important_classes_num; i++)
1202 important_class_p[ira_important_classes[i]] = true;
1203 for (cl1 = 0; cl1 < N_REG_CLASSES; cl1++)
1204 {
1205 ira_reg_class_super_classes[cl1][0] = LIM_REG_CLASSES;
1206 for (cl2 = 0; cl2 < N_REG_CLASSES; cl2++)
1207 {
1208 ira_reg_classes_intersect_p[cl1][cl2] = false;
1209 ira_reg_class_intersect[cl1][cl2] = NO_REGS;
1210 ira_reg_class_subset[cl1][cl2] = NO_REGS;
1211 temp_hard_regset = reg_class_contents[cl1] & ~no_unit_alloc_regs;
1212 temp_set2 = reg_class_contents[cl2] & ~no_unit_alloc_regs;
1213 if (hard_reg_set_empty_p (temp_hard_regset)
1214 && hard_reg_set_empty_p (temp_set2))
1215 {
1216 /* The both classes have no allocatable hard registers
1217 -- take all class hard registers into account and use
1218 reg_class_subunion and reg_class_superunion. */
1219 for (i = 0;; i++)
1220 {
1221 cl3 = reg_class_subclasses[cl1][i];
1222 if (cl3 == LIM_REG_CLASSES)
1223 break;
1224 if (reg_class_subset_p (ira_reg_class_intersect[cl1][cl2],
1225 (enum reg_class) cl3))
1226 ira_reg_class_intersect[cl1][cl2] = (enum reg_class) cl3;
1227 }
1228 ira_reg_class_subunion[cl1][cl2] = reg_class_subunion[cl1][cl2];
1229 ira_reg_class_superunion[cl1][cl2] = reg_class_superunion[cl1][cl2];
1230 continue;
1231 }
1232 ira_reg_classes_intersect_p[cl1][cl2]
1233 = hard_reg_set_intersect_p (temp_hard_regset, temp_set2);
1234 if (important_class_p[cl1] && important_class_p[cl2]
1235 && hard_reg_set_subset_p (temp_hard_regset, temp_set2))
1236 {
1237 /* CL1 and CL2 are important classes and CL1 allocatable
1238 hard register set is inside of CL2 allocatable hard
1239 registers -- make CL1 a superset of CL2. */
1240 enum reg_class *p;
1241
1242 p = &ira_reg_class_super_classes[cl1][0];
1243 while (*p != LIM_REG_CLASSES)
1244 p++;
1245 *p++ = (enum reg_class) cl2;
1246 *p = LIM_REG_CLASSES;
1247 }
1248 ira_reg_class_subunion[cl1][cl2] = NO_REGS;
1249 ira_reg_class_superunion[cl1][cl2] = NO_REGS;
1250 intersection_set = (reg_class_contents[cl1]
1251 & reg_class_contents[cl2]
1252 & ~no_unit_alloc_regs);
1253 union_set = ((reg_class_contents[cl1] | reg_class_contents[cl2])
1254 & ~no_unit_alloc_regs);
1255 for (cl3 = 0; cl3 < N_REG_CLASSES; cl3++)
1256 {
1257 temp_hard_regset = reg_class_contents[cl3] & ~no_unit_alloc_regs;
1258 if (hard_reg_set_subset_p (temp_hard_regset, intersection_set))
1259 {
1260 /* CL3 allocatable hard register set is inside of
1261 intersection of allocatable hard register sets
1262 of CL1 and CL2. */
1263 if (important_class_p[cl3])
1264 {
1265 temp_set2
1266 = (reg_class_contents
1267 [ira_reg_class_intersect[cl1][cl2]]);
1268 temp_set2 &= ~no_unit_alloc_regs;
1269 if (! hard_reg_set_subset_p (temp_hard_regset, temp_set2)
1270 /* If the allocatable hard register sets are
1271 the same, prefer GENERAL_REGS or the
1272 smallest class for debugging
1273 purposes. */
1274 || (temp_hard_regset == temp_set2
1275 && (cl3 == GENERAL_REGS
1276 || ((ira_reg_class_intersect[cl1][cl2]
1277 != GENERAL_REGS)
1278 && hard_reg_set_subset_p
1279 (reg_class_contents[cl3],
1280 reg_class_contents
1281 [(int)
1282 ira_reg_class_intersect[cl1][cl2]])))))
1283 ira_reg_class_intersect[cl1][cl2] = (enum reg_class) cl3;
1284 }
1285 temp_set2
1286 = (reg_class_contents[ira_reg_class_subset[cl1][cl2]]
1287 & ~no_unit_alloc_regs);
1288 if (! hard_reg_set_subset_p (temp_hard_regset, temp_set2)
1289 /* Ignore unavailable hard registers and prefer
1290 smallest class for debugging purposes. */
1291 || (temp_hard_regset == temp_set2
1292 && hard_reg_set_subset_p
1293 (reg_class_contents[cl3],
1294 reg_class_contents
1295 [(int) ira_reg_class_subset[cl1][cl2]])))
1296 ira_reg_class_subset[cl1][cl2] = (enum reg_class) cl3;
1297 }
1298 if (important_class_p[cl3]
1299 && hard_reg_set_subset_p (temp_hard_regset, union_set))
1300 {
1301 /* CL3 allocatable hard register set is inside of
1302 union of allocatable hard register sets of CL1
1303 and CL2. */
1304 temp_set2
1305 = (reg_class_contents[ira_reg_class_subunion[cl1][cl2]]
1306 & ~no_unit_alloc_regs);
1307 if (ira_reg_class_subunion[cl1][cl2] == NO_REGS
1308 || (hard_reg_set_subset_p (temp_set2, temp_hard_regset)
1309
1310 && (temp_set2 != temp_hard_regset
1311 || cl3 == GENERAL_REGS
1312 /* If the allocatable hard register sets are the
1313 same, prefer GENERAL_REGS or the smallest
1314 class for debugging purposes. */
1315 || (ira_reg_class_subunion[cl1][cl2] != GENERAL_REGS
1316 && hard_reg_set_subset_p
1317 (reg_class_contents[cl3],
1318 reg_class_contents
1319 [(int) ira_reg_class_subunion[cl1][cl2]])))))
1320 ira_reg_class_subunion[cl1][cl2] = (enum reg_class) cl3;
1321 }
1322 if (hard_reg_set_subset_p (union_set, temp_hard_regset))
1323 {
1324 /* CL3 allocatable hard register set contains union
1325 of allocatable hard register sets of CL1 and
1326 CL2. */
1327 temp_set2
1328 = (reg_class_contents[ira_reg_class_superunion[cl1][cl2]]
1329 & ~no_unit_alloc_regs);
1330 if (ira_reg_class_superunion[cl1][cl2] == NO_REGS
1331 || (hard_reg_set_subset_p (temp_hard_regset, temp_set2)
1332
1333 && (temp_set2 != temp_hard_regset
1334 || cl3 == GENERAL_REGS
1335 /* If the allocatable hard register sets are the
1336 same, prefer GENERAL_REGS or the smallest
1337 class for debugging purposes. */
1338 || (ira_reg_class_superunion[cl1][cl2] != GENERAL_REGS
1339 && hard_reg_set_subset_p
1340 (reg_class_contents[cl3],
1341 reg_class_contents
1342 [(int) ira_reg_class_superunion[cl1][cl2]])))))
1343 ira_reg_class_superunion[cl1][cl2] = (enum reg_class) cl3;
1344 }
1345 }
1346 }
1347 }
1348 }
1349
1350 /* Output all uniform and important classes into file F. */
1351 static void
1352 print_uniform_and_important_classes (FILE *f)
1353 {
1354 int i, cl;
1355
1356 fprintf (f, "Uniform classes:\n");
1357 for (cl = 0; cl < N_REG_CLASSES; cl++)
1358 if (ira_uniform_class_p[cl])
1359 fprintf (f, " %s", reg_class_names[cl]);
1360 fprintf (f, "\nImportant classes:\n");
1361 for (i = 0; i < ira_important_classes_num; i++)
1362 fprintf (f, " %s", reg_class_names[ira_important_classes[i]]);
1363 fprintf (f, "\n");
1364 }
1365
1366 /* Output all possible allocno or pressure classes and their
1367 translation map into file F. */
1368 static void
1369 print_translated_classes (FILE *f, bool pressure_p)
1370 {
1371 int classes_num = (pressure_p
1372 ? ira_pressure_classes_num : ira_allocno_classes_num);
1373 enum reg_class *classes = (pressure_p
1374 ? ira_pressure_classes : ira_allocno_classes);
1375 enum reg_class *class_translate = (pressure_p
1376 ? ira_pressure_class_translate
1377 : ira_allocno_class_translate);
1378 int i;
1379
1380 fprintf (f, "%s classes:\n", pressure_p ? "Pressure" : "Allocno");
1381 for (i = 0; i < classes_num; i++)
1382 fprintf (f, " %s", reg_class_names[classes[i]]);
1383 fprintf (f, "\nClass translation:\n");
1384 for (i = 0; i < N_REG_CLASSES; i++)
1385 fprintf (f, " %s -> %s\n", reg_class_names[i],
1386 reg_class_names[class_translate[i]]);
1387 }
1388
1389 /* Output all possible allocno and translation classes and the
1390 translation maps into stderr. */
1391 void
1392 ira_debug_allocno_classes (void)
1393 {
1394 print_uniform_and_important_classes (stderr);
1395 print_translated_classes (stderr, false);
1396 print_translated_classes (stderr, true);
1397 }
1398
1399 /* Set up different arrays concerning class subsets, allocno and
1400 important classes. */
1401 static void
1402 find_reg_classes (void)
1403 {
1404 setup_allocno_and_important_classes ();
1405 setup_class_translate ();
1406 reorder_important_classes ();
1407 setup_reg_class_relations ();
1408 }
1409
1410 \f
1411
1412 /* Set up the array above. */
1413 static void
1414 setup_hard_regno_aclass (void)
1415 {
1416 int i;
1417
1418 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1419 {
1420 #if 1
1421 ira_hard_regno_allocno_class[i]
1422 = (TEST_HARD_REG_BIT (no_unit_alloc_regs, i)
1423 ? NO_REGS
1424 : ira_allocno_class_translate[REGNO_REG_CLASS (i)]);
1425 #else
1426 int j;
1427 enum reg_class cl;
1428 ira_hard_regno_allocno_class[i] = NO_REGS;
1429 for (j = 0; j < ira_allocno_classes_num; j++)
1430 {
1431 cl = ira_allocno_classes[j];
1432 if (ira_class_hard_reg_index[cl][i] >= 0)
1433 {
1434 ira_hard_regno_allocno_class[i] = cl;
1435 break;
1436 }
1437 }
1438 #endif
1439 }
1440 }
1441
1442 \f
1443
1444 /* Form IRA_REG_CLASS_MAX_NREGS and IRA_REG_CLASS_MIN_NREGS maps. */
1445 static void
1446 setup_reg_class_nregs (void)
1447 {
1448 int i, cl, cl2, m;
1449
1450 for (m = 0; m < MAX_MACHINE_MODE; m++)
1451 {
1452 for (cl = 0; cl < N_REG_CLASSES; cl++)
1453 ira_reg_class_max_nregs[cl][m]
1454 = ira_reg_class_min_nregs[cl][m]
1455 = targetm.class_max_nregs ((reg_class_t) cl, (machine_mode) m);
1456 for (cl = 0; cl < N_REG_CLASSES; cl++)
1457 for (i = 0;
1458 (cl2 = alloc_reg_class_subclasses[cl][i]) != LIM_REG_CLASSES;
1459 i++)
1460 if (ira_reg_class_min_nregs[cl2][m]
1461 < ira_reg_class_min_nregs[cl][m])
1462 ira_reg_class_min_nregs[cl][m] = ira_reg_class_min_nregs[cl2][m];
1463 }
1464 }
1465
1466 \f
1467
1468 /* Set up IRA_PROHIBITED_CLASS_MODE_REGS and IRA_CLASS_SINGLETON.
1469 This function is called once IRA_CLASS_HARD_REGS has been initialized. */
1470 static void
1471 setup_prohibited_class_mode_regs (void)
1472 {
1473 int j, k, hard_regno, cl, last_hard_regno, count;
1474
1475 for (cl = (int) N_REG_CLASSES - 1; cl >= 0; cl--)
1476 {
1477 temp_hard_regset = reg_class_contents[cl] & ~no_unit_alloc_regs;
1478 for (j = 0; j < NUM_MACHINE_MODES; j++)
1479 {
1480 count = 0;
1481 last_hard_regno = -1;
1482 CLEAR_HARD_REG_SET (ira_prohibited_class_mode_regs[cl][j]);
1483 for (k = ira_class_hard_regs_num[cl] - 1; k >= 0; k--)
1484 {
1485 hard_regno = ira_class_hard_regs[cl][k];
1486 if (!targetm.hard_regno_mode_ok (hard_regno, (machine_mode) j))
1487 SET_HARD_REG_BIT (ira_prohibited_class_mode_regs[cl][j],
1488 hard_regno);
1489 else if (in_hard_reg_set_p (temp_hard_regset,
1490 (machine_mode) j, hard_regno))
1491 {
1492 last_hard_regno = hard_regno;
1493 count++;
1494 }
1495 }
1496 ira_class_singleton[cl][j] = (count == 1 ? last_hard_regno : -1);
1497 }
1498 }
1499 }
1500
1501 /* Clarify IRA_PROHIBITED_CLASS_MODE_REGS by excluding hard registers
1502 spanning from one register pressure class to another one. It is
1503 called after defining the pressure classes. */
1504 static void
1505 clarify_prohibited_class_mode_regs (void)
1506 {
1507 int j, k, hard_regno, cl, pclass, nregs;
1508
1509 for (cl = (int) N_REG_CLASSES - 1; cl >= 0; cl--)
1510 for (j = 0; j < NUM_MACHINE_MODES; j++)
1511 {
1512 CLEAR_HARD_REG_SET (ira_useful_class_mode_regs[cl][j]);
1513 for (k = ira_class_hard_regs_num[cl] - 1; k >= 0; k--)
1514 {
1515 hard_regno = ira_class_hard_regs[cl][k];
1516 if (TEST_HARD_REG_BIT (ira_prohibited_class_mode_regs[cl][j], hard_regno))
1517 continue;
1518 nregs = hard_regno_nregs (hard_regno, (machine_mode) j);
1519 if (hard_regno + nregs > FIRST_PSEUDO_REGISTER)
1520 {
1521 SET_HARD_REG_BIT (ira_prohibited_class_mode_regs[cl][j],
1522 hard_regno);
1523 continue;
1524 }
1525 pclass = ira_pressure_class_translate[REGNO_REG_CLASS (hard_regno)];
1526 for (nregs-- ;nregs >= 0; nregs--)
1527 if (((enum reg_class) pclass
1528 != ira_pressure_class_translate[REGNO_REG_CLASS
1529 (hard_regno + nregs)]))
1530 {
1531 SET_HARD_REG_BIT (ira_prohibited_class_mode_regs[cl][j],
1532 hard_regno);
1533 break;
1534 }
1535 if (!TEST_HARD_REG_BIT (ira_prohibited_class_mode_regs[cl][j],
1536 hard_regno))
1537 add_to_hard_reg_set (&ira_useful_class_mode_regs[cl][j],
1538 (machine_mode) j, hard_regno);
1539 }
1540 }
1541 }
1542 \f
1543 /* Allocate and initialize IRA_REGISTER_MOVE_COST, IRA_MAY_MOVE_IN_COST
1544 and IRA_MAY_MOVE_OUT_COST for MODE. */
1545 void
1546 ira_init_register_move_cost (machine_mode mode)
1547 {
1548 static unsigned short last_move_cost[N_REG_CLASSES][N_REG_CLASSES];
1549 bool all_match = true;
1550 unsigned int i, cl1, cl2;
1551 HARD_REG_SET ok_regs;
1552
1553 ira_assert (ira_register_move_cost[mode] == NULL
1554 && ira_may_move_in_cost[mode] == NULL
1555 && ira_may_move_out_cost[mode] == NULL);
1556 CLEAR_HARD_REG_SET (ok_regs);
1557 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1558 if (targetm.hard_regno_mode_ok (i, mode))
1559 SET_HARD_REG_BIT (ok_regs, i);
1560
1561 /* Note that we might be asked about the move costs of modes that
1562 cannot be stored in any hard register, for example if an inline
1563 asm tries to create a register operand with an impossible mode.
1564 We therefore can't assert have_regs_of_mode[mode] here. */
1565 for (cl1 = 0; cl1 < N_REG_CLASSES; cl1++)
1566 for (cl2 = 0; cl2 < N_REG_CLASSES; cl2++)
1567 {
1568 int cost;
1569 if (!hard_reg_set_intersect_p (ok_regs, reg_class_contents[cl1])
1570 || !hard_reg_set_intersect_p (ok_regs, reg_class_contents[cl2]))
1571 {
1572 if ((ira_reg_class_max_nregs[cl1][mode]
1573 > ira_class_hard_regs_num[cl1])
1574 || (ira_reg_class_max_nregs[cl2][mode]
1575 > ira_class_hard_regs_num[cl2]))
1576 cost = 65535;
1577 else
1578 cost = (ira_memory_move_cost[mode][cl1][0]
1579 + ira_memory_move_cost[mode][cl2][1]) * 2;
1580 }
1581 else
1582 {
1583 cost = register_move_cost (mode, (enum reg_class) cl1,
1584 (enum reg_class) cl2);
1585 ira_assert (cost < 65535);
1586 }
1587 all_match &= (last_move_cost[cl1][cl2] == cost);
1588 last_move_cost[cl1][cl2] = cost;
1589 }
1590 if (all_match && last_mode_for_init_move_cost != -1)
1591 {
1592 ira_register_move_cost[mode]
1593 = ira_register_move_cost[last_mode_for_init_move_cost];
1594 ira_may_move_in_cost[mode]
1595 = ira_may_move_in_cost[last_mode_for_init_move_cost];
1596 ira_may_move_out_cost[mode]
1597 = ira_may_move_out_cost[last_mode_for_init_move_cost];
1598 return;
1599 }
1600 last_mode_for_init_move_cost = mode;
1601 ira_register_move_cost[mode] = XNEWVEC (move_table, N_REG_CLASSES);
1602 ira_may_move_in_cost[mode] = XNEWVEC (move_table, N_REG_CLASSES);
1603 ira_may_move_out_cost[mode] = XNEWVEC (move_table, N_REG_CLASSES);
1604 for (cl1 = 0; cl1 < N_REG_CLASSES; cl1++)
1605 for (cl2 = 0; cl2 < N_REG_CLASSES; cl2++)
1606 {
1607 int cost;
1608 enum reg_class *p1, *p2;
1609
1610 if (last_move_cost[cl1][cl2] == 65535)
1611 {
1612 ira_register_move_cost[mode][cl1][cl2] = 65535;
1613 ira_may_move_in_cost[mode][cl1][cl2] = 65535;
1614 ira_may_move_out_cost[mode][cl1][cl2] = 65535;
1615 }
1616 else
1617 {
1618 cost = last_move_cost[cl1][cl2];
1619
1620 for (p2 = &reg_class_subclasses[cl2][0];
1621 *p2 != LIM_REG_CLASSES; p2++)
1622 if (ira_class_hard_regs_num[*p2] > 0
1623 && (ira_reg_class_max_nregs[*p2][mode]
1624 <= ira_class_hard_regs_num[*p2]))
1625 cost = MAX (cost, ira_register_move_cost[mode][cl1][*p2]);
1626
1627 for (p1 = &reg_class_subclasses[cl1][0];
1628 *p1 != LIM_REG_CLASSES; p1++)
1629 if (ira_class_hard_regs_num[*p1] > 0
1630 && (ira_reg_class_max_nregs[*p1][mode]
1631 <= ira_class_hard_regs_num[*p1]))
1632 cost = MAX (cost, ira_register_move_cost[mode][*p1][cl2]);
1633
1634 ira_assert (cost <= 65535);
1635 ira_register_move_cost[mode][cl1][cl2] = cost;
1636
1637 if (ira_class_subset_p[cl1][cl2])
1638 ira_may_move_in_cost[mode][cl1][cl2] = 0;
1639 else
1640 ira_may_move_in_cost[mode][cl1][cl2] = cost;
1641
1642 if (ira_class_subset_p[cl2][cl1])
1643 ira_may_move_out_cost[mode][cl1][cl2] = 0;
1644 else
1645 ira_may_move_out_cost[mode][cl1][cl2] = cost;
1646 }
1647 }
1648 }
1649
1650 \f
1651
1652 /* This is called once during compiler work. It sets up
1653 different arrays whose values don't depend on the compiled
1654 function. */
1655 void
1656 ira_init_once (void)
1657 {
1658 ira_init_costs_once ();
1659 lra_init_once ();
1660
1661 ira_use_lra_p = targetm.lra_p ();
1662 }
1663
1664 /* Free ira_max_register_move_cost, ira_may_move_in_cost and
1665 ira_may_move_out_cost for each mode. */
1666 void
1667 target_ira_int::free_register_move_costs (void)
1668 {
1669 int mode, i;
1670
1671 /* Reset move_cost and friends, making sure we only free shared
1672 table entries once. */
1673 for (mode = 0; mode < MAX_MACHINE_MODE; mode++)
1674 if (x_ira_register_move_cost[mode])
1675 {
1676 for (i = 0;
1677 i < mode && (x_ira_register_move_cost[i]
1678 != x_ira_register_move_cost[mode]);
1679 i++)
1680 ;
1681 if (i == mode)
1682 {
1683 free (x_ira_register_move_cost[mode]);
1684 free (x_ira_may_move_in_cost[mode]);
1685 free (x_ira_may_move_out_cost[mode]);
1686 }
1687 }
1688 memset (x_ira_register_move_cost, 0, sizeof x_ira_register_move_cost);
1689 memset (x_ira_may_move_in_cost, 0, sizeof x_ira_may_move_in_cost);
1690 memset (x_ira_may_move_out_cost, 0, sizeof x_ira_may_move_out_cost);
1691 last_mode_for_init_move_cost = -1;
1692 }
1693
1694 target_ira_int::~target_ira_int ()
1695 {
1696 free_ira_costs ();
1697 free_register_move_costs ();
1698 }
1699
1700 /* This is called every time when register related information is
1701 changed. */
1702 void
1703 ira_init (void)
1704 {
1705 this_target_ira_int->free_register_move_costs ();
1706 setup_reg_mode_hard_regset ();
1707 setup_alloc_regs (flag_omit_frame_pointer != 0);
1708 setup_class_subset_and_memory_move_costs ();
1709 setup_reg_class_nregs ();
1710 setup_prohibited_class_mode_regs ();
1711 find_reg_classes ();
1712 clarify_prohibited_class_mode_regs ();
1713 setup_hard_regno_aclass ();
1714 ira_init_costs ();
1715 }
1716
1717 \f
1718 #define ira_prohibited_mode_move_regs_initialized_p \
1719 (this_target_ira_int->x_ira_prohibited_mode_move_regs_initialized_p)
1720
1721 /* Set up IRA_PROHIBITED_MODE_MOVE_REGS. */
1722 static void
1723 setup_prohibited_mode_move_regs (void)
1724 {
1725 int i, j;
1726 rtx test_reg1, test_reg2, move_pat;
1727 rtx_insn *move_insn;
1728
1729 if (ira_prohibited_mode_move_regs_initialized_p)
1730 return;
1731 ira_prohibited_mode_move_regs_initialized_p = true;
1732 test_reg1 = gen_rtx_REG (word_mode, LAST_VIRTUAL_REGISTER + 1);
1733 test_reg2 = gen_rtx_REG (word_mode, LAST_VIRTUAL_REGISTER + 2);
1734 move_pat = gen_rtx_SET (test_reg1, test_reg2);
1735 move_insn = gen_rtx_INSN (VOIDmode, 0, 0, 0, move_pat, 0, -1, 0);
1736 for (i = 0; i < NUM_MACHINE_MODES; i++)
1737 {
1738 SET_HARD_REG_SET (ira_prohibited_mode_move_regs[i]);
1739 for (j = 0; j < FIRST_PSEUDO_REGISTER; j++)
1740 {
1741 if (!targetm.hard_regno_mode_ok (j, (machine_mode) i))
1742 continue;
1743 set_mode_and_regno (test_reg1, (machine_mode) i, j);
1744 set_mode_and_regno (test_reg2, (machine_mode) i, j);
1745 INSN_CODE (move_insn) = -1;
1746 recog_memoized (move_insn);
1747 if (INSN_CODE (move_insn) < 0)
1748 continue;
1749 extract_insn (move_insn);
1750 /* We don't know whether the move will be in code that is optimized
1751 for size or speed, so consider all enabled alternatives. */
1752 if (! constrain_operands (1, get_enabled_alternatives (move_insn)))
1753 continue;
1754 CLEAR_HARD_REG_BIT (ira_prohibited_mode_move_regs[i], j);
1755 }
1756 }
1757 }
1758
1759 \f
1760
1761 /* Extract INSN and return the set of alternatives that we should consider.
1762 This excludes any alternatives whose constraints are obviously impossible
1763 to meet (e.g. because the constraint requires a constant and the operand
1764 is nonconstant). It also excludes alternatives that are bound to need
1765 a spill or reload, as long as we have other alternatives that match
1766 exactly. */
1767 alternative_mask
1768 ira_setup_alts (rtx_insn *insn)
1769 {
1770 int nop, nalt;
1771 bool curr_swapped;
1772 const char *p;
1773 int commutative = -1;
1774
1775 extract_insn (insn);
1776 preprocess_constraints (insn);
1777 alternative_mask preferred = get_preferred_alternatives (insn);
1778 alternative_mask alts = 0;
1779 alternative_mask exact_alts = 0;
1780 /* Check that the hard reg set is enough for holding all
1781 alternatives. It is hard to imagine the situation when the
1782 assertion is wrong. */
1783 ira_assert (recog_data.n_alternatives
1784 <= (int) MAX (sizeof (HARD_REG_ELT_TYPE) * CHAR_BIT,
1785 FIRST_PSEUDO_REGISTER));
1786 for (nop = 0; nop < recog_data.n_operands; nop++)
1787 if (recog_data.constraints[nop][0] == '%')
1788 {
1789 commutative = nop;
1790 break;
1791 }
1792 for (curr_swapped = false;; curr_swapped = true)
1793 {
1794 for (nalt = 0; nalt < recog_data.n_alternatives; nalt++)
1795 {
1796 if (!TEST_BIT (preferred, nalt) || TEST_BIT (exact_alts, nalt))
1797 continue;
1798
1799 const operand_alternative *op_alt
1800 = &recog_op_alt[nalt * recog_data.n_operands];
1801 int this_reject = 0;
1802 for (nop = 0; nop < recog_data.n_operands; nop++)
1803 {
1804 int c, len;
1805
1806 this_reject += op_alt[nop].reject;
1807
1808 rtx op = recog_data.operand[nop];
1809 p = op_alt[nop].constraint;
1810 if (*p == 0 || *p == ',')
1811 continue;
1812
1813 bool win_p = false;
1814 do
1815 switch (c = *p, len = CONSTRAINT_LEN (c, p), c)
1816 {
1817 case '#':
1818 case ',':
1819 c = '\0';
1820 /* FALLTHRU */
1821 case '\0':
1822 len = 0;
1823 break;
1824
1825 case '%':
1826 /* The commutative modifier is handled above. */
1827 break;
1828
1829 case '0': case '1': case '2': case '3': case '4':
1830 case '5': case '6': case '7': case '8': case '9':
1831 {
1832 char *end;
1833 unsigned long dup = strtoul (p, &end, 10);
1834 rtx other = recog_data.operand[dup];
1835 len = end - p;
1836 if (MEM_P (other)
1837 ? rtx_equal_p (other, op)
1838 : REG_P (op) || SUBREG_P (op))
1839 goto op_success;
1840 win_p = true;
1841 }
1842 break;
1843
1844 case 'g':
1845 goto op_success;
1846 break;
1847
1848 default:
1849 {
1850 enum constraint_num cn = lookup_constraint (p);
1851 rtx mem = NULL;
1852 switch (get_constraint_type (cn))
1853 {
1854 case CT_REGISTER:
1855 if (reg_class_for_constraint (cn) != NO_REGS)
1856 {
1857 if (REG_P (op) || SUBREG_P (op))
1858 goto op_success;
1859 win_p = true;
1860 }
1861 break;
1862
1863 case CT_CONST_INT:
1864 if (CONST_INT_P (op)
1865 && (insn_const_int_ok_for_constraint
1866 (INTVAL (op), cn)))
1867 goto op_success;
1868 break;
1869
1870 case CT_ADDRESS:
1871 goto op_success;
1872
1873 case CT_MEMORY:
1874 case CT_RELAXED_MEMORY:
1875 mem = op;
1876 /* Fall through. */
1877 case CT_SPECIAL_MEMORY:
1878 if (!mem)
1879 mem = extract_mem_from_operand (op);
1880 if (MEM_P (mem))
1881 goto op_success;
1882 win_p = true;
1883 break;
1884
1885 case CT_FIXED_FORM:
1886 if (constraint_satisfied_p (op, cn))
1887 goto op_success;
1888 break;
1889 }
1890 break;
1891 }
1892 }
1893 while (p += len, c);
1894 if (!win_p)
1895 break;
1896 /* We can make the alternative match by spilling a register
1897 to memory or loading something into a register. Count a
1898 cost of one reload (the equivalent of the '?' constraint). */
1899 this_reject += 6;
1900 op_success:
1901 ;
1902 }
1903
1904 if (nop >= recog_data.n_operands)
1905 {
1906 alts |= ALTERNATIVE_BIT (nalt);
1907 if (this_reject == 0)
1908 exact_alts |= ALTERNATIVE_BIT (nalt);
1909 }
1910 }
1911 if (commutative < 0)
1912 break;
1913 /* Swap forth and back to avoid changing recog_data. */
1914 std::swap (recog_data.operand[commutative],
1915 recog_data.operand[commutative + 1]);
1916 if (curr_swapped)
1917 break;
1918 }
1919 return exact_alts ? exact_alts : alts;
1920 }
1921
1922 /* Return the number of the output non-early clobber operand which
1923 should be the same in any case as operand with number OP_NUM (or
1924 negative value if there is no such operand). ALTS is the mask
1925 of alternatives that we should consider. SINGLE_INPUT_OP_HAS_CSTR_P
1926 should be set in this function, it indicates whether there is only
1927 a single input operand which has the matching constraint on the
1928 output operand at the position specified in return value. If the
1929 pattern allows any one of several input operands holds the matching
1930 constraint, it's set as false, one typical case is destructive FMA
1931 instruction on target rs6000. Note that for a non-NO_REG preferred
1932 register class with no free register move copy, if the parameter
1933 PARAM_IRA_CONSIDER_DUP_IN_ALL_ALTS is set to one, this function
1934 will check all available alternatives for matching constraints,
1935 even if it has found or will find one alternative with non-NO_REG
1936 regclass, it can respect more cases with matching constraints. If
1937 PARAM_IRA_CONSIDER_DUP_IN_ALL_ALTS is set to zero,
1938 SINGLE_INPUT_OP_HAS_CSTR_P is always true, it will stop to find
1939 matching constraint relationship once it hits some alternative with
1940 some non-NO_REG regclass. */
1941 int
1942 ira_get_dup_out_num (int op_num, alternative_mask alts,
1943 bool &single_input_op_has_cstr_p)
1944 {
1945 int curr_alt, c, original;
1946 bool ignore_p, use_commut_op_p;
1947 const char *str;
1948
1949 if (op_num < 0 || recog_data.n_alternatives == 0)
1950 return -1;
1951 /* We should find duplications only for input operands. */
1952 if (recog_data.operand_type[op_num] != OP_IN)
1953 return -1;
1954 str = recog_data.constraints[op_num];
1955 use_commut_op_p = false;
1956 single_input_op_has_cstr_p = true;
1957
1958 rtx op = recog_data.operand[op_num];
1959 int op_regno = reg_or_subregno (op);
1960 enum reg_class op_pref_cl = reg_preferred_class (op_regno);
1961 machine_mode op_mode = GET_MODE (op);
1962
1963 ira_init_register_move_cost_if_necessary (op_mode);
1964 /* If the preferred regclass isn't NO_REG, continue to find the matching
1965 constraint in all available alternatives with preferred regclass, even
1966 if we have found or will find one alternative whose constraint stands
1967 for a REG (non-NO_REG) regclass. Note that it would be fine not to
1968 respect matching constraint if the register copy is free, so exclude
1969 it. */
1970 bool respect_dup_despite_reg_cstr
1971 = param_ira_consider_dup_in_all_alts
1972 && op_pref_cl != NO_REGS
1973 && ira_register_move_cost[op_mode][op_pref_cl][op_pref_cl] > 0;
1974
1975 /* Record the alternative whose constraint uses the same regclass as the
1976 preferred regclass, later if we find one matching constraint for this
1977 operand with preferred reclass, we will visit these recorded
1978 alternatives to check whether if there is one alternative in which no
1979 any INPUT operands have one matching constraint same as our candidate.
1980 If yes, it means there is one alternative which is perfectly fine
1981 without satisfying this matching constraint. If no, it means in any
1982 alternatives there is one other INPUT operand holding this matching
1983 constraint, it's fine to respect this matching constraint and further
1984 create this constraint copy since it would become harmless once some
1985 other takes preference and it's interfered. */
1986 alternative_mask pref_cl_alts;
1987
1988 for (;;)
1989 {
1990 pref_cl_alts = 0;
1991
1992 for (curr_alt = 0, ignore_p = !TEST_BIT (alts, curr_alt),
1993 original = -1;;)
1994 {
1995 c = *str;
1996 if (c == '\0')
1997 break;
1998 if (c == '#')
1999 ignore_p = true;
2000 else if (c == ',')
2001 {
2002 curr_alt++;
2003 ignore_p = !TEST_BIT (alts, curr_alt);
2004 }
2005 else if (! ignore_p)
2006 switch (c)
2007 {
2008 case 'g':
2009 goto fail;
2010 default:
2011 {
2012 enum constraint_num cn = lookup_constraint (str);
2013 enum reg_class cl = reg_class_for_constraint (cn);
2014 if (cl != NO_REGS && !targetm.class_likely_spilled_p (cl))
2015 {
2016 if (respect_dup_despite_reg_cstr)
2017 {
2018 /* If it's free to move from one preferred class to
2019 the one without matching constraint, it doesn't
2020 have to respect this constraint with costs. */
2021 if (cl != op_pref_cl
2022 && (ira_reg_class_intersect[cl][op_pref_cl]
2023 != NO_REGS)
2024 && (ira_may_move_in_cost[op_mode][op_pref_cl][cl]
2025 == 0))
2026 goto fail;
2027 else if (cl == op_pref_cl)
2028 pref_cl_alts |= ALTERNATIVE_BIT (curr_alt);
2029 }
2030 else
2031 goto fail;
2032 }
2033 if (constraint_satisfied_p (op, cn))
2034 goto fail;
2035 break;
2036 }
2037
2038 case '0': case '1': case '2': case '3': case '4':
2039 case '5': case '6': case '7': case '8': case '9':
2040 {
2041 char *end;
2042 int n = (int) strtoul (str, &end, 10);
2043 str = end;
2044 if (original != -1 && original != n)
2045 goto fail;
2046 gcc_assert (n < recog_data.n_operands);
2047 if (respect_dup_despite_reg_cstr)
2048 {
2049 const operand_alternative *op_alt
2050 = &recog_op_alt[curr_alt * recog_data.n_operands];
2051 /* Only respect the one with preferred rclass, without
2052 respect_dup_despite_reg_cstr it's possible to get
2053 one whose regclass isn't preferred first before,
2054 but it would fail since there should be other
2055 alternatives with preferred regclass. */
2056 if (op_alt[n].cl == op_pref_cl)
2057 original = n;
2058 }
2059 else
2060 original = n;
2061 continue;
2062 }
2063 }
2064 str += CONSTRAINT_LEN (c, str);
2065 }
2066 if (original == -1)
2067 goto fail;
2068 if (recog_data.operand_type[original] == OP_OUT)
2069 {
2070 if (pref_cl_alts == 0)
2071 return original;
2072 /* Visit these recorded alternatives to check whether
2073 there is one alternative in which no any INPUT operands
2074 have one matching constraint same as our candidate.
2075 Give up this candidate if so. */
2076 int nop, nalt;
2077 for (nalt = 0; nalt < recog_data.n_alternatives; nalt++)
2078 {
2079 if (!TEST_BIT (pref_cl_alts, nalt))
2080 continue;
2081 const operand_alternative *op_alt
2082 = &recog_op_alt[nalt * recog_data.n_operands];
2083 bool dup_in_other = false;
2084 for (nop = 0; nop < recog_data.n_operands; nop++)
2085 {
2086 if (recog_data.operand_type[nop] != OP_IN)
2087 continue;
2088 if (nop == op_num)
2089 continue;
2090 if (op_alt[nop].matches == original)
2091 {
2092 dup_in_other = true;
2093 break;
2094 }
2095 }
2096 if (!dup_in_other)
2097 return -1;
2098 }
2099 single_input_op_has_cstr_p = false;
2100 return original;
2101 }
2102 fail:
2103 if (use_commut_op_p)
2104 break;
2105 use_commut_op_p = true;
2106 if (recog_data.constraints[op_num][0] == '%')
2107 str = recog_data.constraints[op_num + 1];
2108 else if (op_num > 0 && recog_data.constraints[op_num - 1][0] == '%')
2109 str = recog_data.constraints[op_num - 1];
2110 else
2111 break;
2112 }
2113 return -1;
2114 }
2115
2116 \f
2117
2118 /* Search forward to see if the source register of a copy insn dies
2119 before either it or the destination register is modified, but don't
2120 scan past the end of the basic block. If so, we can replace the
2121 source with the destination and let the source die in the copy
2122 insn.
2123
2124 This will reduce the number of registers live in that range and may
2125 enable the destination and the source coalescing, thus often saving
2126 one register in addition to a register-register copy. */
2127
2128 static void
2129 decrease_live_ranges_number (void)
2130 {
2131 basic_block bb;
2132 rtx_insn *insn;
2133 rtx set, src, dest, dest_death, note;
2134 rtx_insn *p, *q;
2135 int sregno, dregno;
2136
2137 if (! flag_expensive_optimizations)
2138 return;
2139
2140 if (ira_dump_file)
2141 fprintf (ira_dump_file, "Starting decreasing number of live ranges...\n");
2142
2143 FOR_EACH_BB_FN (bb, cfun)
2144 FOR_BB_INSNS (bb, insn)
2145 {
2146 set = single_set (insn);
2147 if (! set)
2148 continue;
2149 src = SET_SRC (set);
2150 dest = SET_DEST (set);
2151 if (! REG_P (src) || ! REG_P (dest)
2152 || find_reg_note (insn, REG_DEAD, src))
2153 continue;
2154 sregno = REGNO (src);
2155 dregno = REGNO (dest);
2156
2157 /* We don't want to mess with hard regs if register classes
2158 are small. */
2159 if (sregno == dregno
2160 || (targetm.small_register_classes_for_mode_p (GET_MODE (src))
2161 && (sregno < FIRST_PSEUDO_REGISTER
2162 || dregno < FIRST_PSEUDO_REGISTER))
2163 /* We don't see all updates to SP if they are in an
2164 auto-inc memory reference, so we must disallow this
2165 optimization on them. */
2166 || sregno == STACK_POINTER_REGNUM
2167 || dregno == STACK_POINTER_REGNUM)
2168 continue;
2169
2170 dest_death = NULL_RTX;
2171
2172 for (p = NEXT_INSN (insn); p; p = NEXT_INSN (p))
2173 {
2174 if (! INSN_P (p))
2175 continue;
2176 if (BLOCK_FOR_INSN (p) != bb)
2177 break;
2178
2179 if (reg_set_p (src, p) || reg_set_p (dest, p)
2180 /* If SRC is an asm-declared register, it must not be
2181 replaced in any asm. Unfortunately, the REG_EXPR
2182 tree for the asm variable may be absent in the SRC
2183 rtx, so we can't check the actual register
2184 declaration easily (the asm operand will have it,
2185 though). To avoid complicating the test for a rare
2186 case, we just don't perform register replacement
2187 for a hard reg mentioned in an asm. */
2188 || (sregno < FIRST_PSEUDO_REGISTER
2189 && asm_noperands (PATTERN (p)) >= 0
2190 && reg_overlap_mentioned_p (src, PATTERN (p)))
2191 /* Don't change hard registers used by a call. */
2192 || (CALL_P (p) && sregno < FIRST_PSEUDO_REGISTER
2193 && find_reg_fusage (p, USE, src))
2194 /* Don't change a USE of a register. */
2195 || (GET_CODE (PATTERN (p)) == USE
2196 && reg_overlap_mentioned_p (src, XEXP (PATTERN (p), 0))))
2197 break;
2198
2199 /* See if all of SRC dies in P. This test is slightly
2200 more conservative than it needs to be. */
2201 if ((note = find_regno_note (p, REG_DEAD, sregno))
2202 && GET_MODE (XEXP (note, 0)) == GET_MODE (src))
2203 {
2204 int failed = 0;
2205
2206 /* We can do the optimization. Scan forward from INSN
2207 again, replacing regs as we go. Set FAILED if a
2208 replacement can't be done. In that case, we can't
2209 move the death note for SRC. This should be
2210 rare. */
2211
2212 /* Set to stop at next insn. */
2213 for (q = next_real_insn (insn);
2214 q != next_real_insn (p);
2215 q = next_real_insn (q))
2216 {
2217 if (reg_overlap_mentioned_p (src, PATTERN (q)))
2218 {
2219 /* If SRC is a hard register, we might miss
2220 some overlapping registers with
2221 validate_replace_rtx, so we would have to
2222 undo it. We can't if DEST is present in
2223 the insn, so fail in that combination of
2224 cases. */
2225 if (sregno < FIRST_PSEUDO_REGISTER
2226 && reg_mentioned_p (dest, PATTERN (q)))
2227 failed = 1;
2228
2229 /* Attempt to replace all uses. */
2230 else if (!validate_replace_rtx (src, dest, q))
2231 failed = 1;
2232
2233 /* If this succeeded, but some part of the
2234 register is still present, undo the
2235 replacement. */
2236 else if (sregno < FIRST_PSEUDO_REGISTER
2237 && reg_overlap_mentioned_p (src, PATTERN (q)))
2238 {
2239 validate_replace_rtx (dest, src, q);
2240 failed = 1;
2241 }
2242 }
2243
2244 /* If DEST dies here, remove the death note and
2245 save it for later. Make sure ALL of DEST dies
2246 here; again, this is overly conservative. */
2247 if (! dest_death
2248 && (dest_death = find_regno_note (q, REG_DEAD, dregno)))
2249 {
2250 if (GET_MODE (XEXP (dest_death, 0)) == GET_MODE (dest))
2251 remove_note (q, dest_death);
2252 else
2253 {
2254 failed = 1;
2255 dest_death = 0;
2256 }
2257 }
2258 }
2259
2260 if (! failed)
2261 {
2262 /* Move death note of SRC from P to INSN. */
2263 remove_note (p, note);
2264 XEXP (note, 1) = REG_NOTES (insn);
2265 REG_NOTES (insn) = note;
2266 }
2267
2268 /* DEST is also dead if INSN has a REG_UNUSED note for
2269 DEST. */
2270 if (! dest_death
2271 && (dest_death
2272 = find_regno_note (insn, REG_UNUSED, dregno)))
2273 {
2274 PUT_REG_NOTE_KIND (dest_death, REG_DEAD);
2275 remove_note (insn, dest_death);
2276 }
2277
2278 /* Put death note of DEST on P if we saw it die. */
2279 if (dest_death)
2280 {
2281 XEXP (dest_death, 1) = REG_NOTES (p);
2282 REG_NOTES (p) = dest_death;
2283 }
2284 break;
2285 }
2286
2287 /* If SRC is a hard register which is set or killed in
2288 some other way, we can't do this optimization. */
2289 else if (sregno < FIRST_PSEUDO_REGISTER && dead_or_set_p (p, src))
2290 break;
2291 }
2292 }
2293 }
2294
2295 \f
2296
2297 /* Return nonzero if REGNO is a particularly bad choice for reloading X. */
2298 static bool
2299 ira_bad_reload_regno_1 (int regno, rtx x)
2300 {
2301 int x_regno, n, i;
2302 ira_allocno_t a;
2303 enum reg_class pref;
2304
2305 /* We only deal with pseudo regs. */
2306 if (! x || GET_CODE (x) != REG)
2307 return false;
2308
2309 x_regno = REGNO (x);
2310 if (x_regno < FIRST_PSEUDO_REGISTER)
2311 return false;
2312
2313 /* If the pseudo prefers REGNO explicitly, then do not consider
2314 REGNO a bad spill choice. */
2315 pref = reg_preferred_class (x_regno);
2316 if (reg_class_size[pref] == 1)
2317 return !TEST_HARD_REG_BIT (reg_class_contents[pref], regno);
2318
2319 /* If the pseudo conflicts with REGNO, then we consider REGNO a
2320 poor choice for a reload regno. */
2321 a = ira_regno_allocno_map[x_regno];
2322 n = ALLOCNO_NUM_OBJECTS (a);
2323 for (i = 0; i < n; i++)
2324 {
2325 ira_object_t obj = ALLOCNO_OBJECT (a, i);
2326 if (TEST_HARD_REG_BIT (OBJECT_TOTAL_CONFLICT_HARD_REGS (obj), regno))
2327 return true;
2328 }
2329 return false;
2330 }
2331
2332 /* Return nonzero if REGNO is a particularly bad choice for reloading
2333 IN or OUT. */
2334 bool
2335 ira_bad_reload_regno (int regno, rtx in, rtx out)
2336 {
2337 return (ira_bad_reload_regno_1 (regno, in)
2338 || ira_bad_reload_regno_1 (regno, out));
2339 }
2340
2341 /* Add register clobbers from asm statements. */
2342 static void
2343 compute_regs_asm_clobbered (void)
2344 {
2345 basic_block bb;
2346
2347 FOR_EACH_BB_FN (bb, cfun)
2348 {
2349 rtx_insn *insn;
2350 FOR_BB_INSNS_REVERSE (bb, insn)
2351 {
2352 df_ref def;
2353
2354 if (NONDEBUG_INSN_P (insn) && asm_noperands (PATTERN (insn)) >= 0)
2355 FOR_EACH_INSN_DEF (def, insn)
2356 {
2357 unsigned int dregno = DF_REF_REGNO (def);
2358 if (HARD_REGISTER_NUM_P (dregno))
2359 add_to_hard_reg_set (&crtl->asm_clobbers,
2360 GET_MODE (DF_REF_REAL_REG (def)),
2361 dregno);
2362 }
2363 }
2364 }
2365 }
2366
2367
2368 /* Set up ELIMINABLE_REGSET, IRA_NO_ALLOC_REGS, and
2369 REGS_EVER_LIVE. */
2370 void
2371 ira_setup_eliminable_regset (void)
2372 {
2373 int i;
2374 static const struct {const int from, to; } eliminables[] = ELIMINABLE_REGS;
2375 int fp_reg_count = hard_regno_nregs (HARD_FRAME_POINTER_REGNUM, Pmode);
2376
2377 /* Setup is_leaf as frame_pointer_required may use it. This function
2378 is called by sched_init before ira if scheduling is enabled. */
2379 crtl->is_leaf = leaf_function_p ();
2380
2381 /* FIXME: If EXIT_IGNORE_STACK is set, we will not save and restore
2382 sp for alloca. So we can't eliminate the frame pointer in that
2383 case. At some point, we should improve this by emitting the
2384 sp-adjusting insns for this case. */
2385 frame_pointer_needed
2386 = (! flag_omit_frame_pointer
2387 || (cfun->calls_alloca && EXIT_IGNORE_STACK)
2388 /* We need the frame pointer to catch stack overflow exceptions if
2389 the stack pointer is moving (as for the alloca case just above). */
2390 || (STACK_CHECK_MOVING_SP
2391 && flag_stack_check
2392 && flag_exceptions
2393 && cfun->can_throw_non_call_exceptions)
2394 || crtl->accesses_prior_frames
2395 || (SUPPORTS_STACK_ALIGNMENT && crtl->stack_realign_needed)
2396 || targetm.frame_pointer_required ());
2397
2398 /* The chance that FRAME_POINTER_NEEDED is changed from inspecting
2399 RTL is very small. So if we use frame pointer for RA and RTL
2400 actually prevents this, we will spill pseudos assigned to the
2401 frame pointer in LRA. */
2402
2403 if (frame_pointer_needed)
2404 for (i = 0; i < fp_reg_count; i++)
2405 df_set_regs_ever_live (HARD_FRAME_POINTER_REGNUM + i, true);
2406
2407 ira_no_alloc_regs = no_unit_alloc_regs;
2408 CLEAR_HARD_REG_SET (eliminable_regset);
2409
2410 compute_regs_asm_clobbered ();
2411
2412 /* Build the regset of all eliminable registers and show we can't
2413 use those that we already know won't be eliminated. */
2414 for (i = 0; i < (int) ARRAY_SIZE (eliminables); i++)
2415 {
2416 bool cannot_elim
2417 = (! targetm.can_eliminate (eliminables[i].from, eliminables[i].to)
2418 || (eliminables[i].to == STACK_POINTER_REGNUM && frame_pointer_needed));
2419
2420 if (!TEST_HARD_REG_BIT (crtl->asm_clobbers, eliminables[i].from))
2421 {
2422 SET_HARD_REG_BIT (eliminable_regset, eliminables[i].from);
2423
2424 if (cannot_elim)
2425 SET_HARD_REG_BIT (ira_no_alloc_regs, eliminables[i].from);
2426 }
2427 else if (cannot_elim)
2428 error ("%s cannot be used in %<asm%> here",
2429 reg_names[eliminables[i].from]);
2430 else
2431 df_set_regs_ever_live (eliminables[i].from, true);
2432 }
2433 if (!HARD_FRAME_POINTER_IS_FRAME_POINTER)
2434 {
2435 for (i = 0; i < fp_reg_count; i++)
2436 if (global_regs[HARD_FRAME_POINTER_REGNUM + i])
2437 /* Nothing to do: the register is already treated as live
2438 where appropriate, and cannot be eliminated. */
2439 ;
2440 else if (!TEST_HARD_REG_BIT (crtl->asm_clobbers,
2441 HARD_FRAME_POINTER_REGNUM + i))
2442 {
2443 SET_HARD_REG_BIT (eliminable_regset,
2444 HARD_FRAME_POINTER_REGNUM + i);
2445 if (frame_pointer_needed)
2446 SET_HARD_REG_BIT (ira_no_alloc_regs,
2447 HARD_FRAME_POINTER_REGNUM + i);
2448 }
2449 else if (frame_pointer_needed)
2450 error ("%s cannot be used in %<asm%> here",
2451 reg_names[HARD_FRAME_POINTER_REGNUM + i]);
2452 else
2453 df_set_regs_ever_live (HARD_FRAME_POINTER_REGNUM + i, true);
2454 }
2455 }
2456
2457 \f
2458
2459 /* Vector of substitutions of register numbers,
2460 used to map pseudo regs into hardware regs.
2461 This is set up as a result of register allocation.
2462 Element N is the hard reg assigned to pseudo reg N,
2463 or is -1 if no hard reg was assigned.
2464 If N is a hard reg number, element N is N. */
2465 short *reg_renumber;
2466
2467 /* Set up REG_RENUMBER and CALLER_SAVE_NEEDED (used by reload) from
2468 the allocation found by IRA. */
2469 static void
2470 setup_reg_renumber (void)
2471 {
2472 int regno, hard_regno;
2473 ira_allocno_t a;
2474 ira_allocno_iterator ai;
2475
2476 caller_save_needed = 0;
2477 FOR_EACH_ALLOCNO (a, ai)
2478 {
2479 if (ira_use_lra_p && ALLOCNO_CAP_MEMBER (a) != NULL)
2480 continue;
2481 /* There are no caps at this point. */
2482 ira_assert (ALLOCNO_CAP_MEMBER (a) == NULL);
2483 if (! ALLOCNO_ASSIGNED_P (a))
2484 /* It can happen if A is not referenced but partially anticipated
2485 somewhere in a region. */
2486 ALLOCNO_ASSIGNED_P (a) = true;
2487 ira_free_allocno_updated_costs (a);
2488 hard_regno = ALLOCNO_HARD_REGNO (a);
2489 regno = ALLOCNO_REGNO (a);
2490 reg_renumber[regno] = (hard_regno < 0 ? -1 : hard_regno);
2491 if (hard_regno >= 0)
2492 {
2493 int i, nwords;
2494 enum reg_class pclass;
2495 ira_object_t obj;
2496
2497 pclass = ira_pressure_class_translate[REGNO_REG_CLASS (hard_regno)];
2498 nwords = ALLOCNO_NUM_OBJECTS (a);
2499 for (i = 0; i < nwords; i++)
2500 {
2501 obj = ALLOCNO_OBJECT (a, i);
2502 OBJECT_TOTAL_CONFLICT_HARD_REGS (obj)
2503 |= ~reg_class_contents[pclass];
2504 }
2505 if (ira_need_caller_save_p (a, hard_regno))
2506 {
2507 ira_assert (!optimize || flag_caller_saves
2508 || (ALLOCNO_CALLS_CROSSED_NUM (a)
2509 == ALLOCNO_CHEAP_CALLS_CROSSED_NUM (a))
2510 || regno >= ira_reg_equiv_len
2511 || ira_equiv_no_lvalue_p (regno));
2512 caller_save_needed = 1;
2513 }
2514 }
2515 }
2516 }
2517
2518 /* Set up allocno assignment flags for further allocation
2519 improvements. */
2520 static void
2521 setup_allocno_assignment_flags (void)
2522 {
2523 int hard_regno;
2524 ira_allocno_t a;
2525 ira_allocno_iterator ai;
2526
2527 FOR_EACH_ALLOCNO (a, ai)
2528 {
2529 if (! ALLOCNO_ASSIGNED_P (a))
2530 /* It can happen if A is not referenced but partially anticipated
2531 somewhere in a region. */
2532 ira_free_allocno_updated_costs (a);
2533 hard_regno = ALLOCNO_HARD_REGNO (a);
2534 /* Don't assign hard registers to allocnos which are destination
2535 of removed store at the end of loop. It has no sense to keep
2536 the same value in different hard registers. It is also
2537 impossible to assign hard registers correctly to such
2538 allocnos because the cost info and info about intersected
2539 calls are incorrect for them. */
2540 ALLOCNO_ASSIGNED_P (a) = (hard_regno >= 0
2541 || ALLOCNO_EMIT_DATA (a)->mem_optimized_dest_p
2542 || (ALLOCNO_MEMORY_COST (a)
2543 - ALLOCNO_CLASS_COST (a)) < 0);
2544 ira_assert
2545 (hard_regno < 0
2546 || ira_hard_reg_in_set_p (hard_regno, ALLOCNO_MODE (a),
2547 reg_class_contents[ALLOCNO_CLASS (a)]));
2548 }
2549 }
2550
2551 /* Evaluate overall allocation cost and the costs for using hard
2552 registers and memory for allocnos. */
2553 static void
2554 calculate_allocation_cost (void)
2555 {
2556 int hard_regno, cost;
2557 ira_allocno_t a;
2558 ira_allocno_iterator ai;
2559
2560 ira_overall_cost = ira_reg_cost = ira_mem_cost = 0;
2561 FOR_EACH_ALLOCNO (a, ai)
2562 {
2563 hard_regno = ALLOCNO_HARD_REGNO (a);
2564 ira_assert (hard_regno < 0
2565 || (ira_hard_reg_in_set_p
2566 (hard_regno, ALLOCNO_MODE (a),
2567 reg_class_contents[ALLOCNO_CLASS (a)])));
2568 if (hard_regno < 0)
2569 {
2570 cost = ALLOCNO_MEMORY_COST (a);
2571 ira_mem_cost += cost;
2572 }
2573 else if (ALLOCNO_HARD_REG_COSTS (a) != NULL)
2574 {
2575 cost = (ALLOCNO_HARD_REG_COSTS (a)
2576 [ira_class_hard_reg_index
2577 [ALLOCNO_CLASS (a)][hard_regno]]);
2578 ira_reg_cost += cost;
2579 }
2580 else
2581 {
2582 cost = ALLOCNO_CLASS_COST (a);
2583 ira_reg_cost += cost;
2584 }
2585 ira_overall_cost += cost;
2586 }
2587
2588 if (internal_flag_ira_verbose > 0 && ira_dump_file != NULL)
2589 {
2590 fprintf (ira_dump_file,
2591 "+++Costs: overall %" PRId64
2592 ", reg %" PRId64
2593 ", mem %" PRId64
2594 ", ld %" PRId64
2595 ", st %" PRId64
2596 ", move %" PRId64,
2597 ira_overall_cost, ira_reg_cost, ira_mem_cost,
2598 ira_load_cost, ira_store_cost, ira_shuffle_cost);
2599 fprintf (ira_dump_file, "\n+++ move loops %d, new jumps %d\n",
2600 ira_move_loops_num, ira_additional_jumps_num);
2601 }
2602
2603 }
2604
2605 #ifdef ENABLE_IRA_CHECKING
2606 /* Check the correctness of the allocation. We do need this because
2607 of complicated code to transform more one region internal
2608 representation into one region representation. */
2609 static void
2610 check_allocation (void)
2611 {
2612 ira_allocno_t a;
2613 int hard_regno, nregs, conflict_nregs;
2614 ira_allocno_iterator ai;
2615
2616 FOR_EACH_ALLOCNO (a, ai)
2617 {
2618 int n = ALLOCNO_NUM_OBJECTS (a);
2619 int i;
2620
2621 if (ALLOCNO_CAP_MEMBER (a) != NULL
2622 || (hard_regno = ALLOCNO_HARD_REGNO (a)) < 0)
2623 continue;
2624 nregs = hard_regno_nregs (hard_regno, ALLOCNO_MODE (a));
2625 if (nregs == 1)
2626 /* We allocated a single hard register. */
2627 n = 1;
2628 else if (n > 1)
2629 /* We allocated multiple hard registers, and we will test
2630 conflicts in a granularity of single hard regs. */
2631 nregs = 1;
2632
2633 for (i = 0; i < n; i++)
2634 {
2635 ira_object_t obj = ALLOCNO_OBJECT (a, i);
2636 ira_object_t conflict_obj;
2637 ira_object_conflict_iterator oci;
2638 int this_regno = hard_regno;
2639 if (n > 1)
2640 {
2641 if (REG_WORDS_BIG_ENDIAN)
2642 this_regno += n - i - 1;
2643 else
2644 this_regno += i;
2645 }
2646 FOR_EACH_OBJECT_CONFLICT (obj, conflict_obj, oci)
2647 {
2648 ira_allocno_t conflict_a = OBJECT_ALLOCNO (conflict_obj);
2649 int conflict_hard_regno = ALLOCNO_HARD_REGNO (conflict_a);
2650 if (conflict_hard_regno < 0)
2651 continue;
2652 if (ira_soft_conflict (a, conflict_a))
2653 continue;
2654
2655 conflict_nregs = hard_regno_nregs (conflict_hard_regno,
2656 ALLOCNO_MODE (conflict_a));
2657
2658 if (ALLOCNO_NUM_OBJECTS (conflict_a) > 1
2659 && conflict_nregs == ALLOCNO_NUM_OBJECTS (conflict_a))
2660 {
2661 if (REG_WORDS_BIG_ENDIAN)
2662 conflict_hard_regno += (ALLOCNO_NUM_OBJECTS (conflict_a)
2663 - OBJECT_SUBWORD (conflict_obj) - 1);
2664 else
2665 conflict_hard_regno += OBJECT_SUBWORD (conflict_obj);
2666 conflict_nregs = 1;
2667 }
2668
2669 if ((conflict_hard_regno <= this_regno
2670 && this_regno < conflict_hard_regno + conflict_nregs)
2671 || (this_regno <= conflict_hard_regno
2672 && conflict_hard_regno < this_regno + nregs))
2673 {
2674 fprintf (stderr, "bad allocation for %d and %d\n",
2675 ALLOCNO_REGNO (a), ALLOCNO_REGNO (conflict_a));
2676 gcc_unreachable ();
2677 }
2678 }
2679 }
2680 }
2681 }
2682 #endif
2683
2684 /* Allocate REG_EQUIV_INIT. Set up it from IRA_REG_EQUIV which should
2685 be already calculated. */
2686 static void
2687 setup_reg_equiv_init (void)
2688 {
2689 int i;
2690 int max_regno = max_reg_num ();
2691
2692 for (i = 0; i < max_regno; i++)
2693 reg_equiv_init (i) = ira_reg_equiv[i].init_insns;
2694 }
2695
2696 /* Update equiv regno from movement of FROM_REGNO to TO_REGNO. INSNS
2697 are insns which were generated for such movement. It is assumed
2698 that FROM_REGNO and TO_REGNO always have the same value at the
2699 point of any move containing such registers. This function is used
2700 to update equiv info for register shuffles on the region borders
2701 and for caller save/restore insns. */
2702 void
2703 ira_update_equiv_info_by_shuffle_insn (int to_regno, int from_regno, rtx_insn *insns)
2704 {
2705 rtx_insn *insn;
2706 rtx x, note;
2707
2708 if (! ira_reg_equiv[from_regno].defined_p
2709 && (! ira_reg_equiv[to_regno].defined_p
2710 || ((x = ira_reg_equiv[to_regno].memory) != NULL_RTX
2711 && ! MEM_READONLY_P (x))))
2712 return;
2713 insn = insns;
2714 if (NEXT_INSN (insn) != NULL_RTX)
2715 {
2716 if (! ira_reg_equiv[to_regno].defined_p)
2717 {
2718 ira_assert (ira_reg_equiv[to_regno].init_insns == NULL_RTX);
2719 return;
2720 }
2721 ira_reg_equiv[to_regno].defined_p = false;
2722 ira_reg_equiv[to_regno].memory
2723 = ira_reg_equiv[to_regno].constant
2724 = ira_reg_equiv[to_regno].invariant
2725 = ira_reg_equiv[to_regno].init_insns = NULL;
2726 if (internal_flag_ira_verbose > 3 && ira_dump_file != NULL)
2727 fprintf (ira_dump_file,
2728 " Invalidating equiv info for reg %d\n", to_regno);
2729 return;
2730 }
2731 /* It is possible that FROM_REGNO still has no equivalence because
2732 in shuffles to_regno<-from_regno and from_regno<-to_regno the 2nd
2733 insn was not processed yet. */
2734 if (ira_reg_equiv[from_regno].defined_p)
2735 {
2736 ira_reg_equiv[to_regno].defined_p = true;
2737 if ((x = ira_reg_equiv[from_regno].memory) != NULL_RTX)
2738 {
2739 ira_assert (ira_reg_equiv[from_regno].invariant == NULL_RTX
2740 && ira_reg_equiv[from_regno].constant == NULL_RTX);
2741 ira_assert (ira_reg_equiv[to_regno].memory == NULL_RTX
2742 || rtx_equal_p (ira_reg_equiv[to_regno].memory, x));
2743 ira_reg_equiv[to_regno].memory = x;
2744 if (! MEM_READONLY_P (x))
2745 /* We don't add the insn to insn init list because memory
2746 equivalence is just to say what memory is better to use
2747 when the pseudo is spilled. */
2748 return;
2749 }
2750 else if ((x = ira_reg_equiv[from_regno].constant) != NULL_RTX)
2751 {
2752 ira_assert (ira_reg_equiv[from_regno].invariant == NULL_RTX);
2753 ira_assert (ira_reg_equiv[to_regno].constant == NULL_RTX
2754 || rtx_equal_p (ira_reg_equiv[to_regno].constant, x));
2755 ira_reg_equiv[to_regno].constant = x;
2756 }
2757 else
2758 {
2759 x = ira_reg_equiv[from_regno].invariant;
2760 ira_assert (x != NULL_RTX);
2761 ira_assert (ira_reg_equiv[to_regno].invariant == NULL_RTX
2762 || rtx_equal_p (ira_reg_equiv[to_regno].invariant, x));
2763 ira_reg_equiv[to_regno].invariant = x;
2764 }
2765 if (find_reg_note (insn, REG_EQUIV, x) == NULL_RTX)
2766 {
2767 note = set_unique_reg_note (insn, REG_EQUIV, copy_rtx (x));
2768 gcc_assert (note != NULL_RTX);
2769 if (internal_flag_ira_verbose > 3 && ira_dump_file != NULL)
2770 {
2771 fprintf (ira_dump_file,
2772 " Adding equiv note to insn %u for reg %d ",
2773 INSN_UID (insn), to_regno);
2774 dump_value_slim (ira_dump_file, x, 1);
2775 fprintf (ira_dump_file, "\n");
2776 }
2777 }
2778 }
2779 ira_reg_equiv[to_regno].init_insns
2780 = gen_rtx_INSN_LIST (VOIDmode, insn,
2781 ira_reg_equiv[to_regno].init_insns);
2782 if (internal_flag_ira_verbose > 3 && ira_dump_file != NULL)
2783 fprintf (ira_dump_file,
2784 " Adding equiv init move insn %u to reg %d\n",
2785 INSN_UID (insn), to_regno);
2786 }
2787
2788 /* Fix values of array REG_EQUIV_INIT after live range splitting done
2789 by IRA. */
2790 static void
2791 fix_reg_equiv_init (void)
2792 {
2793 int max_regno = max_reg_num ();
2794 int i, new_regno, max;
2795 rtx set;
2796 rtx_insn_list *x, *next, *prev;
2797 rtx_insn *insn;
2798
2799 if (max_regno_before_ira < max_regno)
2800 {
2801 max = vec_safe_length (reg_equivs);
2802 grow_reg_equivs ();
2803 for (i = FIRST_PSEUDO_REGISTER; i < max; i++)
2804 for (prev = NULL, x = reg_equiv_init (i);
2805 x != NULL_RTX;
2806 x = next)
2807 {
2808 next = x->next ();
2809 insn = x->insn ();
2810 set = single_set (insn);
2811 ira_assert (set != NULL_RTX
2812 && (REG_P (SET_DEST (set)) || REG_P (SET_SRC (set))));
2813 if (REG_P (SET_DEST (set))
2814 && ((int) REGNO (SET_DEST (set)) == i
2815 || (int) ORIGINAL_REGNO (SET_DEST (set)) == i))
2816 new_regno = REGNO (SET_DEST (set));
2817 else if (REG_P (SET_SRC (set))
2818 && ((int) REGNO (SET_SRC (set)) == i
2819 || (int) ORIGINAL_REGNO (SET_SRC (set)) == i))
2820 new_regno = REGNO (SET_SRC (set));
2821 else
2822 gcc_unreachable ();
2823 if (new_regno == i)
2824 prev = x;
2825 else
2826 {
2827 /* Remove the wrong list element. */
2828 if (prev == NULL_RTX)
2829 reg_equiv_init (i) = next;
2830 else
2831 XEXP (prev, 1) = next;
2832 XEXP (x, 1) = reg_equiv_init (new_regno);
2833 reg_equiv_init (new_regno) = x;
2834 }
2835 }
2836 }
2837 }
2838
2839 #ifdef ENABLE_IRA_CHECKING
2840 /* Print redundant memory-memory copies. */
2841 static void
2842 print_redundant_copies (void)
2843 {
2844 int hard_regno;
2845 ira_allocno_t a;
2846 ira_copy_t cp, next_cp;
2847 ira_allocno_iterator ai;
2848
2849 FOR_EACH_ALLOCNO (a, ai)
2850 {
2851 if (ALLOCNO_CAP_MEMBER (a) != NULL)
2852 /* It is a cap. */
2853 continue;
2854 hard_regno = ALLOCNO_HARD_REGNO (a);
2855 if (hard_regno >= 0)
2856 continue;
2857 for (cp = ALLOCNO_COPIES (a); cp != NULL; cp = next_cp)
2858 if (cp->first == a)
2859 next_cp = cp->next_first_allocno_copy;
2860 else
2861 {
2862 next_cp = cp->next_second_allocno_copy;
2863 if (internal_flag_ira_verbose > 4 && ira_dump_file != NULL
2864 && cp->insn != NULL_RTX
2865 && ALLOCNO_HARD_REGNO (cp->first) == hard_regno)
2866 fprintf (ira_dump_file,
2867 " Redundant move from %d(freq %d):%d\n",
2868 INSN_UID (cp->insn), cp->freq, hard_regno);
2869 }
2870 }
2871 }
2872 #endif
2873
2874 /* Setup preferred and alternative classes for new pseudo-registers
2875 created by IRA starting with START. */
2876 static void
2877 setup_preferred_alternate_classes_for_new_pseudos (int start)
2878 {
2879 int i, old_regno;
2880 int max_regno = max_reg_num ();
2881
2882 for (i = start; i < max_regno; i++)
2883 {
2884 old_regno = ORIGINAL_REGNO (regno_reg_rtx[i]);
2885 ira_assert (i != old_regno);
2886 setup_reg_classes (i, reg_preferred_class (old_regno),
2887 reg_alternate_class (old_regno),
2888 reg_allocno_class (old_regno));
2889 if (internal_flag_ira_verbose > 2 && ira_dump_file != NULL)
2890 fprintf (ira_dump_file,
2891 " New r%d: setting preferred %s, alternative %s\n",
2892 i, reg_class_names[reg_preferred_class (old_regno)],
2893 reg_class_names[reg_alternate_class (old_regno)]);
2894 }
2895 }
2896
2897 \f
2898 /* The number of entries allocated in reg_info. */
2899 static int allocated_reg_info_size;
2900
2901 /* Regional allocation can create new pseudo-registers. This function
2902 expands some arrays for pseudo-registers. */
2903 static void
2904 expand_reg_info (void)
2905 {
2906 int i;
2907 int size = max_reg_num ();
2908
2909 resize_reg_info ();
2910 for (i = allocated_reg_info_size; i < size; i++)
2911 setup_reg_classes (i, GENERAL_REGS, ALL_REGS, GENERAL_REGS);
2912 setup_preferred_alternate_classes_for_new_pseudos (allocated_reg_info_size);
2913 allocated_reg_info_size = size;
2914 }
2915
2916 /* Return TRUE if there is too high register pressure in the function.
2917 It is used to decide when stack slot sharing is worth to do. */
2918 static bool
2919 too_high_register_pressure_p (void)
2920 {
2921 int i;
2922 enum reg_class pclass;
2923
2924 for (i = 0; i < ira_pressure_classes_num; i++)
2925 {
2926 pclass = ira_pressure_classes[i];
2927 if (ira_loop_tree_root->reg_pressure[pclass] > 10000)
2928 return true;
2929 }
2930 return false;
2931 }
2932
2933 \f
2934
2935 /* Indicate that hard register number FROM was eliminated and replaced with
2936 an offset from hard register number TO. The status of hard registers live
2937 at the start of a basic block is updated by replacing a use of FROM with
2938 a use of TO. */
2939
2940 void
2941 mark_elimination (int from, int to)
2942 {
2943 basic_block bb;
2944 bitmap r;
2945
2946 FOR_EACH_BB_FN (bb, cfun)
2947 {
2948 r = DF_LR_IN (bb);
2949 if (bitmap_bit_p (r, from))
2950 {
2951 bitmap_clear_bit (r, from);
2952 bitmap_set_bit (r, to);
2953 }
2954 if (! df_live)
2955 continue;
2956 r = DF_LIVE_IN (bb);
2957 if (bitmap_bit_p (r, from))
2958 {
2959 bitmap_clear_bit (r, from);
2960 bitmap_set_bit (r, to);
2961 }
2962 }
2963 }
2964
2965 \f
2966
2967 /* The length of the following array. */
2968 int ira_reg_equiv_len;
2969
2970 /* Info about equiv. info for each register. */
2971 struct ira_reg_equiv_s *ira_reg_equiv;
2972
2973 /* Expand ira_reg_equiv if necessary. */
2974 void
2975 ira_expand_reg_equiv (void)
2976 {
2977 int old = ira_reg_equiv_len;
2978
2979 if (ira_reg_equiv_len > max_reg_num ())
2980 return;
2981 ira_reg_equiv_len = max_reg_num () * 3 / 2 + 1;
2982 ira_reg_equiv
2983 = (struct ira_reg_equiv_s *) xrealloc (ira_reg_equiv,
2984 ira_reg_equiv_len
2985 * sizeof (struct ira_reg_equiv_s));
2986 gcc_assert (old < ira_reg_equiv_len);
2987 memset (ira_reg_equiv + old, 0,
2988 sizeof (struct ira_reg_equiv_s) * (ira_reg_equiv_len - old));
2989 }
2990
2991 static void
2992 init_reg_equiv (void)
2993 {
2994 ira_reg_equiv_len = 0;
2995 ira_reg_equiv = NULL;
2996 ira_expand_reg_equiv ();
2997 }
2998
2999 static void
3000 finish_reg_equiv (void)
3001 {
3002 free (ira_reg_equiv);
3003 }
3004
3005 \f
3006
3007 struct equivalence
3008 {
3009 /* Set when a REG_EQUIV note is found or created. Use to
3010 keep track of what memory accesses might be created later,
3011 e.g. by reload. */
3012 rtx replacement;
3013 rtx *src_p;
3014
3015 /* The list of each instruction which initializes this register.
3016
3017 NULL indicates we know nothing about this register's equivalence
3018 properties.
3019
3020 An INSN_LIST with a NULL insn indicates this pseudo is already
3021 known to not have a valid equivalence. */
3022 rtx_insn_list *init_insns;
3023
3024 /* Loop depth is used to recognize equivalences which appear
3025 to be present within the same loop (or in an inner loop). */
3026 short loop_depth;
3027 /* Nonzero if this had a preexisting REG_EQUIV note. */
3028 unsigned char is_arg_equivalence : 1;
3029 /* Set when an attempt should be made to replace a register
3030 with the associated src_p entry. */
3031 unsigned char replace : 1;
3032 /* Set if this register has no known equivalence. */
3033 unsigned char no_equiv : 1;
3034 /* Set if this register is mentioned in a paradoxical subreg. */
3035 unsigned char pdx_subregs : 1;
3036 };
3037
3038 /* reg_equiv[N] (where N is a pseudo reg number) is the equivalence
3039 structure for that register. */
3040 static struct equivalence *reg_equiv;
3041
3042 /* Used for communication between the following two functions. */
3043 struct equiv_mem_data
3044 {
3045 /* A MEM that we wish to ensure remains unchanged. */
3046 rtx equiv_mem;
3047
3048 /* Set true if EQUIV_MEM is modified. */
3049 bool equiv_mem_modified;
3050 };
3051
3052 /* If EQUIV_MEM is modified by modifying DEST, indicate that it is modified.
3053 Called via note_stores. */
3054 static void
3055 validate_equiv_mem_from_store (rtx dest, const_rtx set ATTRIBUTE_UNUSED,
3056 void *data)
3057 {
3058 struct equiv_mem_data *info = (struct equiv_mem_data *) data;
3059
3060 if ((REG_P (dest)
3061 && reg_overlap_mentioned_p (dest, info->equiv_mem))
3062 || (MEM_P (dest)
3063 && anti_dependence (info->equiv_mem, dest)))
3064 info->equiv_mem_modified = true;
3065 }
3066
3067 enum valid_equiv { valid_none, valid_combine, valid_reload };
3068
3069 /* Verify that no store between START and the death of REG invalidates
3070 MEMREF. MEMREF is invalidated by modifying a register used in MEMREF,
3071 by storing into an overlapping memory location, or with a non-const
3072 CALL_INSN.
3073
3074 Return VALID_RELOAD if MEMREF remains valid for both reload and
3075 combine_and_move insns, VALID_COMBINE if only valid for
3076 combine_and_move_insns, and VALID_NONE otherwise. */
3077 static enum valid_equiv
3078 validate_equiv_mem (rtx_insn *start, rtx reg, rtx memref)
3079 {
3080 rtx_insn *insn;
3081 rtx note;
3082 struct equiv_mem_data info = { memref, false };
3083 enum valid_equiv ret = valid_reload;
3084
3085 /* If the memory reference has side effects or is volatile, it isn't a
3086 valid equivalence. */
3087 if (side_effects_p (memref))
3088 return valid_none;
3089
3090 for (insn = start; insn; insn = NEXT_INSN (insn))
3091 {
3092 if (!INSN_P (insn))
3093 continue;
3094
3095 if (find_reg_note (insn, REG_DEAD, reg))
3096 return ret;
3097
3098 if (CALL_P (insn))
3099 {
3100 /* We can combine a reg def from one insn into a reg use in
3101 another over a call if the memory is readonly or the call
3102 const/pure. However, we can't set reg_equiv notes up for
3103 reload over any call. The problem is the equivalent form
3104 may reference a pseudo which gets assigned a call
3105 clobbered hard reg. When we later replace REG with its
3106 equivalent form, the value in the call-clobbered reg has
3107 been changed and all hell breaks loose. */
3108 ret = valid_combine;
3109 if (!MEM_READONLY_P (memref)
3110 && !RTL_CONST_OR_PURE_CALL_P (insn))
3111 return valid_none;
3112 }
3113
3114 note_stores (insn, validate_equiv_mem_from_store, &info);
3115 if (info.equiv_mem_modified)
3116 return valid_none;
3117
3118 /* If a register mentioned in MEMREF is modified via an
3119 auto-increment, we lose the equivalence. Do the same if one
3120 dies; although we could extend the life, it doesn't seem worth
3121 the trouble. */
3122
3123 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
3124 if ((REG_NOTE_KIND (note) == REG_INC
3125 || REG_NOTE_KIND (note) == REG_DEAD)
3126 && REG_P (XEXP (note, 0))
3127 && reg_overlap_mentioned_p (XEXP (note, 0), memref))
3128 return valid_none;
3129 }
3130
3131 return valid_none;
3132 }
3133
3134 /* Returns zero if X is known to be invariant. */
3135 static int
3136 equiv_init_varies_p (rtx x)
3137 {
3138 RTX_CODE code = GET_CODE (x);
3139 int i;
3140 const char *fmt;
3141
3142 switch (code)
3143 {
3144 case MEM:
3145 return !MEM_READONLY_P (x) || equiv_init_varies_p (XEXP (x, 0));
3146
3147 case CONST:
3148 CASE_CONST_ANY:
3149 case SYMBOL_REF:
3150 case LABEL_REF:
3151 return 0;
3152
3153 case REG:
3154 return reg_equiv[REGNO (x)].replace == 0 && rtx_varies_p (x, 0);
3155
3156 case ASM_OPERANDS:
3157 if (MEM_VOLATILE_P (x))
3158 return 1;
3159
3160 /* Fall through. */
3161
3162 default:
3163 break;
3164 }
3165
3166 fmt = GET_RTX_FORMAT (code);
3167 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3168 if (fmt[i] == 'e')
3169 {
3170 if (equiv_init_varies_p (XEXP (x, i)))
3171 return 1;
3172 }
3173 else if (fmt[i] == 'E')
3174 {
3175 int j;
3176 for (j = 0; j < XVECLEN (x, i); j++)
3177 if (equiv_init_varies_p (XVECEXP (x, i, j)))
3178 return 1;
3179 }
3180
3181 return 0;
3182 }
3183
3184 /* Returns nonzero if X (used to initialize register REGNO) is movable.
3185 X is only movable if the registers it uses have equivalent initializations
3186 which appear to be within the same loop (or in an inner loop) and movable
3187 or if they are not candidates for local_alloc and don't vary. */
3188 static int
3189 equiv_init_movable_p (rtx x, int regno)
3190 {
3191 int i, j;
3192 const char *fmt;
3193 enum rtx_code code = GET_CODE (x);
3194
3195 switch (code)
3196 {
3197 case SET:
3198 return equiv_init_movable_p (SET_SRC (x), regno);
3199
3200 case CLOBBER:
3201 return 0;
3202
3203 case PRE_INC:
3204 case PRE_DEC:
3205 case POST_INC:
3206 case POST_DEC:
3207 case PRE_MODIFY:
3208 case POST_MODIFY:
3209 return 0;
3210
3211 case REG:
3212 return ((reg_equiv[REGNO (x)].loop_depth >= reg_equiv[regno].loop_depth
3213 && reg_equiv[REGNO (x)].replace)
3214 || (REG_BASIC_BLOCK (REGNO (x)) < NUM_FIXED_BLOCKS
3215 && ! rtx_varies_p (x, 0)));
3216
3217 case UNSPEC_VOLATILE:
3218 return 0;
3219
3220 case ASM_OPERANDS:
3221 if (MEM_VOLATILE_P (x))
3222 return 0;
3223
3224 /* Fall through. */
3225
3226 default:
3227 break;
3228 }
3229
3230 fmt = GET_RTX_FORMAT (code);
3231 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3232 switch (fmt[i])
3233 {
3234 case 'e':
3235 if (! equiv_init_movable_p (XEXP (x, i), regno))
3236 return 0;
3237 break;
3238 case 'E':
3239 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
3240 if (! equiv_init_movable_p (XVECEXP (x, i, j), regno))
3241 return 0;
3242 break;
3243 }
3244
3245 return 1;
3246 }
3247
3248 static bool memref_referenced_p (rtx memref, rtx x, bool read_p);
3249
3250 /* Auxiliary function for memref_referenced_p. Process setting X for
3251 MEMREF store. */
3252 static bool
3253 process_set_for_memref_referenced_p (rtx memref, rtx x)
3254 {
3255 /* If we are setting a MEM, it doesn't count (its address does), but any
3256 other SET_DEST that has a MEM in it is referencing the MEM. */
3257 if (MEM_P (x))
3258 {
3259 if (memref_referenced_p (memref, XEXP (x, 0), true))
3260 return true;
3261 }
3262 else if (memref_referenced_p (memref, x, false))
3263 return true;
3264
3265 return false;
3266 }
3267
3268 /* TRUE if X references a memory location (as a read if READ_P) that
3269 would be affected by a store to MEMREF. */
3270 static bool
3271 memref_referenced_p (rtx memref, rtx x, bool read_p)
3272 {
3273 int i, j;
3274 const char *fmt;
3275 enum rtx_code code = GET_CODE (x);
3276
3277 switch (code)
3278 {
3279 case CONST:
3280 case LABEL_REF:
3281 case SYMBOL_REF:
3282 CASE_CONST_ANY:
3283 case PC:
3284 case HIGH:
3285 case LO_SUM:
3286 return false;
3287
3288 case REG:
3289 return (reg_equiv[REGNO (x)].replacement
3290 && memref_referenced_p (memref,
3291 reg_equiv[REGNO (x)].replacement, read_p));
3292
3293 case MEM:
3294 /* Memory X might have another effective type than MEMREF. */
3295 if (read_p || true_dependence (memref, VOIDmode, x))
3296 return true;
3297 break;
3298
3299 case SET:
3300 if (process_set_for_memref_referenced_p (memref, SET_DEST (x)))
3301 return true;
3302
3303 return memref_referenced_p (memref, SET_SRC (x), true);
3304
3305 case CLOBBER:
3306 if (process_set_for_memref_referenced_p (memref, XEXP (x, 0)))
3307 return true;
3308
3309 return false;
3310
3311 case PRE_DEC:
3312 case POST_DEC:
3313 case PRE_INC:
3314 case POST_INC:
3315 if (process_set_for_memref_referenced_p (memref, XEXP (x, 0)))
3316 return true;
3317
3318 return memref_referenced_p (memref, XEXP (x, 0), true);
3319
3320 case POST_MODIFY:
3321 case PRE_MODIFY:
3322 /* op0 = op0 + op1 */
3323 if (process_set_for_memref_referenced_p (memref, XEXP (x, 0)))
3324 return true;
3325
3326 if (memref_referenced_p (memref, XEXP (x, 0), true))
3327 return true;
3328
3329 return memref_referenced_p (memref, XEXP (x, 1), true);
3330
3331 default:
3332 break;
3333 }
3334
3335 fmt = GET_RTX_FORMAT (code);
3336 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3337 switch (fmt[i])
3338 {
3339 case 'e':
3340 if (memref_referenced_p (memref, XEXP (x, i), read_p))
3341 return true;
3342 break;
3343 case 'E':
3344 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
3345 if (memref_referenced_p (memref, XVECEXP (x, i, j), read_p))
3346 return true;
3347 break;
3348 }
3349
3350 return false;
3351 }
3352
3353 /* TRUE if some insn in the range (START, END] references a memory location
3354 that would be affected by a store to MEMREF.
3355
3356 Callers should not call this routine if START is after END in the
3357 RTL chain. */
3358
3359 static int
3360 memref_used_between_p (rtx memref, rtx_insn *start, rtx_insn *end)
3361 {
3362 rtx_insn *insn;
3363
3364 for (insn = NEXT_INSN (start);
3365 insn && insn != NEXT_INSN (end);
3366 insn = NEXT_INSN (insn))
3367 {
3368 if (!NONDEBUG_INSN_P (insn))
3369 continue;
3370
3371 if (memref_referenced_p (memref, PATTERN (insn), false))
3372 return 1;
3373
3374 /* Nonconst functions may access memory. */
3375 if (CALL_P (insn) && (! RTL_CONST_CALL_P (insn)))
3376 return 1;
3377 }
3378
3379 gcc_assert (insn == NEXT_INSN (end));
3380 return 0;
3381 }
3382
3383 /* Mark REG as having no known equivalence.
3384 Some instructions might have been processed before and furnished
3385 with REG_EQUIV notes for this register; these notes will have to be
3386 removed.
3387 STORE is the piece of RTL that does the non-constant / conflicting
3388 assignment - a SET, CLOBBER or REG_INC note. It is currently not used,
3389 but needs to be there because this function is called from note_stores. */
3390 static void
3391 no_equiv (rtx reg, const_rtx store ATTRIBUTE_UNUSED,
3392 void *data ATTRIBUTE_UNUSED)
3393 {
3394 int regno;
3395 rtx_insn_list *list;
3396
3397 if (!REG_P (reg))
3398 return;
3399 regno = REGNO (reg);
3400 reg_equiv[regno].no_equiv = 1;
3401 list = reg_equiv[regno].init_insns;
3402 if (list && list->insn () == NULL)
3403 return;
3404 reg_equiv[regno].init_insns = gen_rtx_INSN_LIST (VOIDmode, NULL_RTX, NULL);
3405 reg_equiv[regno].replacement = NULL_RTX;
3406 /* This doesn't matter for equivalences made for argument registers, we
3407 should keep their initialization insns. */
3408 if (reg_equiv[regno].is_arg_equivalence)
3409 return;
3410 ira_reg_equiv[regno].defined_p = false;
3411 ira_reg_equiv[regno].init_insns = NULL;
3412 for (; list; list = list->next ())
3413 {
3414 rtx_insn *insn = list->insn ();
3415 remove_note (insn, find_reg_note (insn, REG_EQUIV, NULL_RTX));
3416 }
3417 }
3418
3419 /* Check whether the SUBREG is a paradoxical subreg and set the result
3420 in PDX_SUBREGS. */
3421
3422 static void
3423 set_paradoxical_subreg (rtx_insn *insn)
3424 {
3425 subrtx_iterator::array_type array;
3426 FOR_EACH_SUBRTX (iter, array, PATTERN (insn), NONCONST)
3427 {
3428 const_rtx subreg = *iter;
3429 if (GET_CODE (subreg) == SUBREG)
3430 {
3431 const_rtx reg = SUBREG_REG (subreg);
3432 if (REG_P (reg) && paradoxical_subreg_p (subreg))
3433 reg_equiv[REGNO (reg)].pdx_subregs = true;
3434 }
3435 }
3436 }
3437
3438 /* In DEBUG_INSN location adjust REGs from CLEARED_REGS bitmap to the
3439 equivalent replacement. */
3440
3441 static rtx
3442 adjust_cleared_regs (rtx loc, const_rtx old_rtx ATTRIBUTE_UNUSED, void *data)
3443 {
3444 if (REG_P (loc))
3445 {
3446 bitmap cleared_regs = (bitmap) data;
3447 if (bitmap_bit_p (cleared_regs, REGNO (loc)))
3448 return simplify_replace_fn_rtx (copy_rtx (*reg_equiv[REGNO (loc)].src_p),
3449 NULL_RTX, adjust_cleared_regs, data);
3450 }
3451 return NULL_RTX;
3452 }
3453
3454 /* Given register REGNO is set only once, return true if the defining
3455 insn dominates all uses. */
3456
3457 static bool
3458 def_dominates_uses (int regno)
3459 {
3460 df_ref def = DF_REG_DEF_CHAIN (regno);
3461
3462 struct df_insn_info *def_info = DF_REF_INSN_INFO (def);
3463 /* If this is an artificial def (eh handler regs, hard frame pointer
3464 for non-local goto, regs defined on function entry) then def_info
3465 is NULL and the reg is always live before any use. We might
3466 reasonably return true in that case, but since the only call
3467 of this function is currently here in ira.cc when we are looking
3468 at a defining insn we can't have an artificial def as that would
3469 bump DF_REG_DEF_COUNT. */
3470 gcc_assert (DF_REG_DEF_COUNT (regno) == 1 && def_info != NULL);
3471
3472 rtx_insn *def_insn = DF_REF_INSN (def);
3473 basic_block def_bb = BLOCK_FOR_INSN (def_insn);
3474
3475 for (df_ref use = DF_REG_USE_CHAIN (regno);
3476 use;
3477 use = DF_REF_NEXT_REG (use))
3478 {
3479 struct df_insn_info *use_info = DF_REF_INSN_INFO (use);
3480 /* Only check real uses, not artificial ones. */
3481 if (use_info)
3482 {
3483 rtx_insn *use_insn = DF_REF_INSN (use);
3484 if (!DEBUG_INSN_P (use_insn))
3485 {
3486 basic_block use_bb = BLOCK_FOR_INSN (use_insn);
3487 if (use_bb != def_bb
3488 ? !dominated_by_p (CDI_DOMINATORS, use_bb, def_bb)
3489 : DF_INSN_INFO_LUID (use_info) < DF_INSN_INFO_LUID (def_info))
3490 return false;
3491 }
3492 }
3493 }
3494 return true;
3495 }
3496
3497 /* Scan the instructions before update_equiv_regs. Record which registers
3498 are referenced as paradoxical subregs. Also check for cases in which
3499 the current function needs to save a register that one of its call
3500 instructions clobbers.
3501
3502 These things are logically unrelated, but it's more efficient to do
3503 them together. */
3504
3505 static void
3506 update_equiv_regs_prescan (void)
3507 {
3508 basic_block bb;
3509 rtx_insn *insn;
3510 function_abi_aggregator callee_abis;
3511
3512 FOR_EACH_BB_FN (bb, cfun)
3513 FOR_BB_INSNS (bb, insn)
3514 if (NONDEBUG_INSN_P (insn))
3515 {
3516 set_paradoxical_subreg (insn);
3517 if (CALL_P (insn))
3518 callee_abis.note_callee_abi (insn_callee_abi (insn));
3519 }
3520
3521 HARD_REG_SET extra_caller_saves = callee_abis.caller_save_regs (*crtl->abi);
3522 if (!hard_reg_set_empty_p (extra_caller_saves))
3523 for (unsigned int regno = 0; regno < FIRST_PSEUDO_REGISTER; ++regno)
3524 if (TEST_HARD_REG_BIT (extra_caller_saves, regno))
3525 df_set_regs_ever_live (regno, true);
3526 }
3527
3528 /* Find registers that are equivalent to a single value throughout the
3529 compilation (either because they can be referenced in memory or are
3530 set once from a single constant). Lower their priority for a
3531 register.
3532
3533 If such a register is only referenced once, try substituting its
3534 value into the using insn. If it succeeds, we can eliminate the
3535 register completely.
3536
3537 Initialize init_insns in ira_reg_equiv array. */
3538 static void
3539 update_equiv_regs (void)
3540 {
3541 rtx_insn *insn;
3542 basic_block bb;
3543
3544 /* Scan the insns and find which registers have equivalences. Do this
3545 in a separate scan of the insns because (due to -fcse-follow-jumps)
3546 a register can be set below its use. */
3547 bitmap setjmp_crosses = regstat_get_setjmp_crosses ();
3548 FOR_EACH_BB_FN (bb, cfun)
3549 {
3550 int loop_depth = bb_loop_depth (bb);
3551
3552 for (insn = BB_HEAD (bb);
3553 insn != NEXT_INSN (BB_END (bb));
3554 insn = NEXT_INSN (insn))
3555 {
3556 rtx note;
3557 rtx set;
3558 rtx dest, src;
3559 int regno;
3560
3561 if (! INSN_P (insn))
3562 continue;
3563
3564 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
3565 if (REG_NOTE_KIND (note) == REG_INC)
3566 no_equiv (XEXP (note, 0), note, NULL);
3567
3568 set = single_set (insn);
3569
3570 /* If this insn contains more (or less) than a single SET,
3571 only mark all destinations as having no known equivalence. */
3572 if (set == NULL_RTX
3573 || side_effects_p (SET_SRC (set)))
3574 {
3575 note_pattern_stores (PATTERN (insn), no_equiv, NULL);
3576 continue;
3577 }
3578 else if (GET_CODE (PATTERN (insn)) == PARALLEL)
3579 {
3580 int i;
3581
3582 for (i = XVECLEN (PATTERN (insn), 0) - 1; i >= 0; i--)
3583 {
3584 rtx part = XVECEXP (PATTERN (insn), 0, i);
3585 if (part != set)
3586 note_pattern_stores (part, no_equiv, NULL);
3587 }
3588 }
3589
3590 dest = SET_DEST (set);
3591 src = SET_SRC (set);
3592
3593 /* See if this is setting up the equivalence between an argument
3594 register and its stack slot. */
3595 note = find_reg_note (insn, REG_EQUIV, NULL_RTX);
3596 if (note)
3597 {
3598 gcc_assert (REG_P (dest));
3599 regno = REGNO (dest);
3600
3601 /* Note that we don't want to clear init_insns in
3602 ira_reg_equiv even if there are multiple sets of this
3603 register. */
3604 reg_equiv[regno].is_arg_equivalence = 1;
3605
3606 /* The insn result can have equivalence memory although
3607 the equivalence is not set up by the insn. We add
3608 this insn to init insns as it is a flag for now that
3609 regno has an equivalence. We will remove the insn
3610 from init insn list later. */
3611 if (rtx_equal_p (src, XEXP (note, 0)) || MEM_P (XEXP (note, 0)))
3612 ira_reg_equiv[regno].init_insns
3613 = gen_rtx_INSN_LIST (VOIDmode, insn,
3614 ira_reg_equiv[regno].init_insns);
3615
3616 /* Continue normally in case this is a candidate for
3617 replacements. */
3618 }
3619
3620 if (!optimize)
3621 continue;
3622
3623 /* We only handle the case of a pseudo register being set
3624 once, or always to the same value. */
3625 /* ??? The mn10200 port breaks if we add equivalences for
3626 values that need an ADDRESS_REGS register and set them equivalent
3627 to a MEM of a pseudo. The actual problem is in the over-conservative
3628 handling of INPADDR_ADDRESS / INPUT_ADDRESS / INPUT triples in
3629 calculate_needs, but we traditionally work around this problem
3630 here by rejecting equivalences when the destination is in a register
3631 that's likely spilled. This is fragile, of course, since the
3632 preferred class of a pseudo depends on all instructions that set
3633 or use it. */
3634
3635 if (!REG_P (dest)
3636 || (regno = REGNO (dest)) < FIRST_PSEUDO_REGISTER
3637 || (reg_equiv[regno].init_insns
3638 && reg_equiv[regno].init_insns->insn () == NULL)
3639 || (targetm.class_likely_spilled_p (reg_preferred_class (regno))
3640 && MEM_P (src) && ! reg_equiv[regno].is_arg_equivalence))
3641 {
3642 /* This might be setting a SUBREG of a pseudo, a pseudo that is
3643 also set somewhere else to a constant. */
3644 note_pattern_stores (set, no_equiv, NULL);
3645 continue;
3646 }
3647
3648 /* Don't set reg mentioned in a paradoxical subreg
3649 equivalent to a mem. */
3650 if (MEM_P (src) && reg_equiv[regno].pdx_subregs)
3651 {
3652 note_pattern_stores (set, no_equiv, NULL);
3653 continue;
3654 }
3655
3656 note = find_reg_note (insn, REG_EQUAL, NULL_RTX);
3657
3658 /* cse sometimes generates function invariants, but doesn't put a
3659 REG_EQUAL note on the insn. Since this note would be redundant,
3660 there's no point creating it earlier than here. */
3661 if (! note && ! rtx_varies_p (src, 0))
3662 note = set_unique_reg_note (insn, REG_EQUAL, copy_rtx (src));
3663
3664 /* Don't bother considering a REG_EQUAL note containing an EXPR_LIST
3665 since it represents a function call. */
3666 if (note && GET_CODE (XEXP (note, 0)) == EXPR_LIST)
3667 note = NULL_RTX;
3668
3669 if (DF_REG_DEF_COUNT (regno) != 1)
3670 {
3671 bool equal_p = true;
3672 rtx_insn_list *list;
3673
3674 /* If we have already processed this pseudo and determined it
3675 cannot have an equivalence, then honor that decision. */
3676 if (reg_equiv[regno].no_equiv)
3677 continue;
3678
3679 if (! note
3680 || rtx_varies_p (XEXP (note, 0), 0)
3681 || (reg_equiv[regno].replacement
3682 && ! rtx_equal_p (XEXP (note, 0),
3683 reg_equiv[regno].replacement)))
3684 {
3685 no_equiv (dest, set, NULL);
3686 continue;
3687 }
3688
3689 list = reg_equiv[regno].init_insns;
3690 for (; list; list = list->next ())
3691 {
3692 rtx note_tmp;
3693 rtx_insn *insn_tmp;
3694
3695 insn_tmp = list->insn ();
3696 note_tmp = find_reg_note (insn_tmp, REG_EQUAL, NULL_RTX);
3697 gcc_assert (note_tmp);
3698 if (! rtx_equal_p (XEXP (note, 0), XEXP (note_tmp, 0)))
3699 {
3700 equal_p = false;
3701 break;
3702 }
3703 }
3704
3705 if (! equal_p)
3706 {
3707 no_equiv (dest, set, NULL);
3708 continue;
3709 }
3710 }
3711
3712 /* Record this insn as initializing this register. */
3713 reg_equiv[regno].init_insns
3714 = gen_rtx_INSN_LIST (VOIDmode, insn, reg_equiv[regno].init_insns);
3715
3716 /* If this register is known to be equal to a constant, record that
3717 it is always equivalent to the constant.
3718 Note that it is possible to have a register use before
3719 the def in loops (see gcc.c-torture/execute/pr79286.c)
3720 where the reg is undefined on first use. If the def insn
3721 won't trap we can use it as an equivalence, effectively
3722 choosing the "undefined" value for the reg to be the
3723 same as the value set by the def. */
3724 if (DF_REG_DEF_COUNT (regno) == 1
3725 && note
3726 && !rtx_varies_p (XEXP (note, 0), 0)
3727 && (!may_trap_or_fault_p (XEXP (note, 0))
3728 || def_dominates_uses (regno)))
3729 {
3730 rtx note_value = XEXP (note, 0);
3731 remove_note (insn, note);
3732 set_unique_reg_note (insn, REG_EQUIV, note_value);
3733 }
3734
3735 /* If this insn introduces a "constant" register, decrease the priority
3736 of that register. Record this insn if the register is only used once
3737 more and the equivalence value is the same as our source.
3738
3739 The latter condition is checked for two reasons: First, it is an
3740 indication that it may be more efficient to actually emit the insn
3741 as written (if no registers are available, reload will substitute
3742 the equivalence). Secondly, it avoids problems with any registers
3743 dying in this insn whose death notes would be missed.
3744
3745 If we don't have a REG_EQUIV note, see if this insn is loading
3746 a register used only in one basic block from a MEM. If so, and the
3747 MEM remains unchanged for the life of the register, add a REG_EQUIV
3748 note. */
3749 note = find_reg_note (insn, REG_EQUIV, NULL_RTX);
3750
3751 rtx replacement = NULL_RTX;
3752 if (note)
3753 replacement = XEXP (note, 0);
3754 else if (REG_BASIC_BLOCK (regno) >= NUM_FIXED_BLOCKS
3755 && MEM_P (SET_SRC (set)))
3756 {
3757 enum valid_equiv validity;
3758 validity = validate_equiv_mem (insn, dest, SET_SRC (set));
3759 if (validity != valid_none)
3760 {
3761 replacement = copy_rtx (SET_SRC (set));
3762 if (validity == valid_reload)
3763 note = set_unique_reg_note (insn, REG_EQUIV, replacement);
3764 }
3765 }
3766
3767 /* If we haven't done so, record for reload that this is an
3768 equivalencing insn. */
3769 if (note && !reg_equiv[regno].is_arg_equivalence)
3770 ira_reg_equiv[regno].init_insns
3771 = gen_rtx_INSN_LIST (VOIDmode, insn,
3772 ira_reg_equiv[regno].init_insns);
3773
3774 if (replacement)
3775 {
3776 reg_equiv[regno].replacement = replacement;
3777 reg_equiv[regno].src_p = &SET_SRC (set);
3778 reg_equiv[regno].loop_depth = (short) loop_depth;
3779
3780 /* Don't mess with things live during setjmp. */
3781 if (optimize && !bitmap_bit_p (setjmp_crosses, regno))
3782 {
3783 /* If the register is referenced exactly twice, meaning it is
3784 set once and used once, indicate that the reference may be
3785 replaced by the equivalence we computed above. Do this
3786 even if the register is only used in one block so that
3787 dependencies can be handled where the last register is
3788 used in a different block (i.e. HIGH / LO_SUM sequences)
3789 and to reduce the number of registers alive across
3790 calls. */
3791
3792 if (REG_N_REFS (regno) == 2
3793 && (rtx_equal_p (replacement, src)
3794 || ! equiv_init_varies_p (src))
3795 && NONJUMP_INSN_P (insn)
3796 && equiv_init_movable_p (PATTERN (insn), regno))
3797 reg_equiv[regno].replace = 1;
3798 }
3799 }
3800 }
3801 }
3802 }
3803
3804 /* For insns that set a MEM to the contents of a REG that is only used
3805 in a single basic block, see if the register is always equivalent
3806 to that memory location and if moving the store from INSN to the
3807 insn that sets REG is safe. If so, put a REG_EQUIV note on the
3808 initializing insn. */
3809 static void
3810 add_store_equivs (void)
3811 {
3812 auto_bitmap seen_insns;
3813
3814 for (rtx_insn *insn = get_insns (); insn; insn = NEXT_INSN (insn))
3815 {
3816 rtx set, src, dest;
3817 unsigned regno;
3818 rtx_insn *init_insn;
3819
3820 bitmap_set_bit (seen_insns, INSN_UID (insn));
3821
3822 if (! INSN_P (insn))
3823 continue;
3824
3825 set = single_set (insn);
3826 if (! set)
3827 continue;
3828
3829 dest = SET_DEST (set);
3830 src = SET_SRC (set);
3831
3832 /* Don't add a REG_EQUIV note if the insn already has one. The existing
3833 REG_EQUIV is likely more useful than the one we are adding. */
3834 if (MEM_P (dest) && REG_P (src)
3835 && (regno = REGNO (src)) >= FIRST_PSEUDO_REGISTER
3836 && REG_BASIC_BLOCK (regno) >= NUM_FIXED_BLOCKS
3837 && DF_REG_DEF_COUNT (regno) == 1
3838 && ! reg_equiv[regno].pdx_subregs
3839 && reg_equiv[regno].init_insns != NULL
3840 && (init_insn = reg_equiv[regno].init_insns->insn ()) != 0
3841 && bitmap_bit_p (seen_insns, INSN_UID (init_insn))
3842 && ! find_reg_note (init_insn, REG_EQUIV, NULL_RTX)
3843 && validate_equiv_mem (init_insn, src, dest) == valid_reload
3844 && ! memref_used_between_p (dest, init_insn, insn)
3845 /* Attaching a REG_EQUIV note will fail if INIT_INSN has
3846 multiple sets. */
3847 && set_unique_reg_note (init_insn, REG_EQUIV, copy_rtx (dest)))
3848 {
3849 /* This insn makes the equivalence, not the one initializing
3850 the register. */
3851 ira_reg_equiv[regno].init_insns
3852 = gen_rtx_INSN_LIST (VOIDmode, insn, NULL_RTX);
3853 df_notes_rescan (init_insn);
3854 if (dump_file)
3855 fprintf (dump_file,
3856 "Adding REG_EQUIV to insn %d for source of insn %d\n",
3857 INSN_UID (init_insn),
3858 INSN_UID (insn));
3859 }
3860 }
3861 }
3862
3863 /* Scan all regs killed in an insn to see if any of them are registers
3864 only used that once. If so, see if we can replace the reference
3865 with the equivalent form. If we can, delete the initializing
3866 reference and this register will go away. If we can't replace the
3867 reference, and the initializing reference is within the same loop
3868 (or in an inner loop), then move the register initialization just
3869 before the use, so that they are in the same basic block. */
3870 static void
3871 combine_and_move_insns (void)
3872 {
3873 auto_bitmap cleared_regs;
3874 int max = max_reg_num ();
3875
3876 for (int regno = FIRST_PSEUDO_REGISTER; regno < max; regno++)
3877 {
3878 if (!reg_equiv[regno].replace)
3879 continue;
3880
3881 rtx_insn *use_insn = 0;
3882 for (df_ref use = DF_REG_USE_CHAIN (regno);
3883 use;
3884 use = DF_REF_NEXT_REG (use))
3885 if (DF_REF_INSN_INFO (use))
3886 {
3887 if (DEBUG_INSN_P (DF_REF_INSN (use)))
3888 continue;
3889 gcc_assert (!use_insn);
3890 use_insn = DF_REF_INSN (use);
3891 }
3892 gcc_assert (use_insn);
3893
3894 /* Don't substitute into jumps. indirect_jump_optimize does
3895 this for anything we are prepared to handle. */
3896 if (JUMP_P (use_insn))
3897 continue;
3898
3899 /* Also don't substitute into a conditional trap insn -- it can become
3900 an unconditional trap, and that is a flow control insn. */
3901 if (GET_CODE (PATTERN (use_insn)) == TRAP_IF)
3902 continue;
3903
3904 df_ref def = DF_REG_DEF_CHAIN (regno);
3905 gcc_assert (DF_REG_DEF_COUNT (regno) == 1 && DF_REF_INSN_INFO (def));
3906 rtx_insn *def_insn = DF_REF_INSN (def);
3907
3908 /* We may not move instructions that can throw, since that
3909 changes basic block boundaries and we are not prepared to
3910 adjust the CFG to match. */
3911 if (can_throw_internal (def_insn))
3912 continue;
3913
3914 /* Instructions with multiple sets can only be moved if DF analysis is
3915 performed for all of the registers set. See PR91052. */
3916 if (multiple_sets (def_insn))
3917 continue;
3918
3919 basic_block use_bb = BLOCK_FOR_INSN (use_insn);
3920 basic_block def_bb = BLOCK_FOR_INSN (def_insn);
3921 if (bb_loop_depth (use_bb) > bb_loop_depth (def_bb))
3922 continue;
3923
3924 if (asm_noperands (PATTERN (def_insn)) < 0
3925 && validate_replace_rtx (regno_reg_rtx[regno],
3926 *reg_equiv[regno].src_p, use_insn))
3927 {
3928 rtx link;
3929 /* Append the REG_DEAD notes from def_insn. */
3930 for (rtx *p = &REG_NOTES (def_insn); (link = *p) != 0; )
3931 {
3932 if (REG_NOTE_KIND (XEXP (link, 0)) == REG_DEAD)
3933 {
3934 *p = XEXP (link, 1);
3935 XEXP (link, 1) = REG_NOTES (use_insn);
3936 REG_NOTES (use_insn) = link;
3937 }
3938 else
3939 p = &XEXP (link, 1);
3940 }
3941
3942 remove_death (regno, use_insn);
3943 SET_REG_N_REFS (regno, 0);
3944 REG_FREQ (regno) = 0;
3945 df_ref use;
3946 FOR_EACH_INSN_USE (use, def_insn)
3947 {
3948 unsigned int use_regno = DF_REF_REGNO (use);
3949 if (!HARD_REGISTER_NUM_P (use_regno))
3950 reg_equiv[use_regno].replace = 0;
3951 }
3952
3953 delete_insn (def_insn);
3954
3955 reg_equiv[regno].init_insns = NULL;
3956 ira_reg_equiv[regno].init_insns = NULL;
3957 bitmap_set_bit (cleared_regs, regno);
3958 }
3959
3960 /* Move the initialization of the register to just before
3961 USE_INSN. Update the flow information. */
3962 else if (prev_nondebug_insn (use_insn) != def_insn)
3963 {
3964 rtx_insn *new_insn;
3965
3966 new_insn = emit_insn_before (PATTERN (def_insn), use_insn);
3967 REG_NOTES (new_insn) = REG_NOTES (def_insn);
3968 REG_NOTES (def_insn) = 0;
3969 /* Rescan it to process the notes. */
3970 df_insn_rescan (new_insn);
3971
3972 /* Make sure this insn is recognized before reload begins,
3973 otherwise eliminate_regs_in_insn will die. */
3974 INSN_CODE (new_insn) = INSN_CODE (def_insn);
3975
3976 delete_insn (def_insn);
3977
3978 XEXP (reg_equiv[regno].init_insns, 0) = new_insn;
3979
3980 REG_BASIC_BLOCK (regno) = use_bb->index;
3981 REG_N_CALLS_CROSSED (regno) = 0;
3982
3983 if (use_insn == BB_HEAD (use_bb))
3984 BB_HEAD (use_bb) = new_insn;
3985
3986 /* We know regno dies in use_insn, but inside a loop
3987 REG_DEAD notes might be missing when def_insn was in
3988 another basic block. However, when we move def_insn into
3989 this bb we'll definitely get a REG_DEAD note and reload
3990 will see the death. It's possible that update_equiv_regs
3991 set up an equivalence referencing regno for a reg set by
3992 use_insn, when regno was seen as non-local. Now that
3993 regno is local to this block, and dies, such an
3994 equivalence is invalid. */
3995 if (find_reg_note (use_insn, REG_EQUIV, regno_reg_rtx[regno]))
3996 {
3997 rtx set = single_set (use_insn);
3998 if (set && REG_P (SET_DEST (set)))
3999 no_equiv (SET_DEST (set), set, NULL);
4000 }
4001
4002 ira_reg_equiv[regno].init_insns
4003 = gen_rtx_INSN_LIST (VOIDmode, new_insn, NULL_RTX);
4004 bitmap_set_bit (cleared_regs, regno);
4005 }
4006 }
4007
4008 if (!bitmap_empty_p (cleared_regs))
4009 {
4010 basic_block bb;
4011
4012 FOR_EACH_BB_FN (bb, cfun)
4013 {
4014 bitmap_and_compl_into (DF_LR_IN (bb), cleared_regs);
4015 bitmap_and_compl_into (DF_LR_OUT (bb), cleared_regs);
4016 if (!df_live)
4017 continue;
4018 bitmap_and_compl_into (DF_LIVE_IN (bb), cleared_regs);
4019 bitmap_and_compl_into (DF_LIVE_OUT (bb), cleared_regs);
4020 }
4021
4022 /* Last pass - adjust debug insns referencing cleared regs. */
4023 if (MAY_HAVE_DEBUG_BIND_INSNS)
4024 for (rtx_insn *insn = get_insns (); insn; insn = NEXT_INSN (insn))
4025 if (DEBUG_BIND_INSN_P (insn))
4026 {
4027 rtx old_loc = INSN_VAR_LOCATION_LOC (insn);
4028 INSN_VAR_LOCATION_LOC (insn)
4029 = simplify_replace_fn_rtx (old_loc, NULL_RTX,
4030 adjust_cleared_regs,
4031 (void *) cleared_regs);
4032 if (old_loc != INSN_VAR_LOCATION_LOC (insn))
4033 df_insn_rescan (insn);
4034 }
4035 }
4036 }
4037
4038 /* A pass over indirect jumps, converting simple cases to direct jumps.
4039 Combine does this optimization too, but only within a basic block. */
4040 static void
4041 indirect_jump_optimize (void)
4042 {
4043 basic_block bb;
4044 bool rebuild_p = false;
4045
4046 FOR_EACH_BB_REVERSE_FN (bb, cfun)
4047 {
4048 rtx_insn *insn = BB_END (bb);
4049 if (!JUMP_P (insn)
4050 || find_reg_note (insn, REG_NON_LOCAL_GOTO, NULL_RTX))
4051 continue;
4052
4053 rtx x = pc_set (insn);
4054 if (!x || !REG_P (SET_SRC (x)))
4055 continue;
4056
4057 int regno = REGNO (SET_SRC (x));
4058 if (DF_REG_DEF_COUNT (regno) == 1)
4059 {
4060 df_ref def = DF_REG_DEF_CHAIN (regno);
4061 if (!DF_REF_IS_ARTIFICIAL (def))
4062 {
4063 rtx_insn *def_insn = DF_REF_INSN (def);
4064 rtx lab = NULL_RTX;
4065 rtx set = single_set (def_insn);
4066 if (set && GET_CODE (SET_SRC (set)) == LABEL_REF)
4067 lab = SET_SRC (set);
4068 else
4069 {
4070 rtx eqnote = find_reg_note (def_insn, REG_EQUAL, NULL_RTX);
4071 if (eqnote && GET_CODE (XEXP (eqnote, 0)) == LABEL_REF)
4072 lab = XEXP (eqnote, 0);
4073 }
4074 if (lab && validate_replace_rtx (SET_SRC (x), lab, insn))
4075 rebuild_p = true;
4076 }
4077 }
4078 }
4079
4080 if (rebuild_p)
4081 {
4082 timevar_push (TV_JUMP);
4083 rebuild_jump_labels (get_insns ());
4084 if (purge_all_dead_edges ())
4085 delete_unreachable_blocks ();
4086 timevar_pop (TV_JUMP);
4087 }
4088 }
4089 \f
4090 /* Set up fields memory, constant, and invariant from init_insns in
4091 the structures of array ira_reg_equiv. */
4092 static void
4093 setup_reg_equiv (void)
4094 {
4095 int i;
4096 rtx_insn_list *elem, *prev_elem, *next_elem;
4097 rtx_insn *insn;
4098 rtx set, x;
4099
4100 for (i = FIRST_PSEUDO_REGISTER; i < ira_reg_equiv_len; i++)
4101 for (prev_elem = NULL, elem = ira_reg_equiv[i].init_insns;
4102 elem;
4103 prev_elem = elem, elem = next_elem)
4104 {
4105 next_elem = elem->next ();
4106 insn = elem->insn ();
4107 set = single_set (insn);
4108
4109 /* Init insns can set up equivalence when the reg is a destination or
4110 a source (in this case the destination is memory). */
4111 if (set != 0 && (REG_P (SET_DEST (set)) || REG_P (SET_SRC (set))))
4112 {
4113 if ((x = find_reg_note (insn, REG_EQUIV, NULL_RTX)) != NULL)
4114 {
4115 x = XEXP (x, 0);
4116 if (REG_P (SET_DEST (set))
4117 && REGNO (SET_DEST (set)) == (unsigned int) i
4118 && ! rtx_equal_p (SET_SRC (set), x) && MEM_P (x))
4119 {
4120 /* This insn reporting the equivalence but
4121 actually not setting it. Remove it from the
4122 list. */
4123 if (prev_elem == NULL)
4124 ira_reg_equiv[i].init_insns = next_elem;
4125 else
4126 XEXP (prev_elem, 1) = next_elem;
4127 elem = prev_elem;
4128 }
4129 }
4130 else if (REG_P (SET_DEST (set))
4131 && REGNO (SET_DEST (set)) == (unsigned int) i)
4132 x = SET_SRC (set);
4133 else
4134 {
4135 gcc_assert (REG_P (SET_SRC (set))
4136 && REGNO (SET_SRC (set)) == (unsigned int) i);
4137 x = SET_DEST (set);
4138 }
4139 if (! function_invariant_p (x)
4140 || ! flag_pic
4141 /* A function invariant is often CONSTANT_P but may
4142 include a register. We promise to only pass
4143 CONSTANT_P objects to LEGITIMATE_PIC_OPERAND_P. */
4144 || (CONSTANT_P (x) && LEGITIMATE_PIC_OPERAND_P (x)))
4145 {
4146 /* It can happen that a REG_EQUIV note contains a MEM
4147 that is not a legitimate memory operand. As later
4148 stages of reload assume that all addresses found in
4149 the lra_regno_equiv_* arrays were originally
4150 legitimate, we ignore such REG_EQUIV notes. */
4151 if (memory_operand (x, VOIDmode))
4152 {
4153 ira_reg_equiv[i].defined_p = true;
4154 ira_reg_equiv[i].memory = x;
4155 continue;
4156 }
4157 else if (function_invariant_p (x))
4158 {
4159 machine_mode mode;
4160
4161 mode = GET_MODE (SET_DEST (set));
4162 if (GET_CODE (x) == PLUS
4163 || x == frame_pointer_rtx || x == arg_pointer_rtx)
4164 /* This is PLUS of frame pointer and a constant,
4165 or fp, or argp. */
4166 ira_reg_equiv[i].invariant = x;
4167 else if (targetm.legitimate_constant_p (mode, x))
4168 ira_reg_equiv[i].constant = x;
4169 else
4170 {
4171 ira_reg_equiv[i].memory = force_const_mem (mode, x);
4172 if (ira_reg_equiv[i].memory == NULL_RTX)
4173 {
4174 ira_reg_equiv[i].defined_p = false;
4175 ira_reg_equiv[i].init_insns = NULL;
4176 break;
4177 }
4178 }
4179 ira_reg_equiv[i].defined_p = true;
4180 continue;
4181 }
4182 }
4183 }
4184 ira_reg_equiv[i].defined_p = false;
4185 ira_reg_equiv[i].init_insns = NULL;
4186 break;
4187 }
4188 }
4189
4190 \f
4191
4192 /* Print chain C to FILE. */
4193 static void
4194 print_insn_chain (FILE *file, class insn_chain *c)
4195 {
4196 fprintf (file, "insn=%d, ", INSN_UID (c->insn));
4197 bitmap_print (file, &c->live_throughout, "live_throughout: ", ", ");
4198 bitmap_print (file, &c->dead_or_set, "dead_or_set: ", "\n");
4199 }
4200
4201
4202 /* Print all reload_insn_chains to FILE. */
4203 static void
4204 print_insn_chains (FILE *file)
4205 {
4206 class insn_chain *c;
4207 for (c = reload_insn_chain; c ; c = c->next)
4208 print_insn_chain (file, c);
4209 }
4210
4211 /* Return true if pseudo REGNO should be added to set live_throughout
4212 or dead_or_set of the insn chains for reload consideration. */
4213 static bool
4214 pseudo_for_reload_consideration_p (int regno)
4215 {
4216 /* Consider spilled pseudos too for IRA because they still have a
4217 chance to get hard-registers in the reload when IRA is used. */
4218 return (reg_renumber[regno] >= 0 || ira_conflicts_p);
4219 }
4220
4221 /* Return true if we can track the individual bytes of subreg X.
4222 When returning true, set *OUTER_SIZE to the number of bytes in
4223 X itself, *INNER_SIZE to the number of bytes in the inner register
4224 and *START to the offset of the first byte. */
4225 static bool
4226 get_subreg_tracking_sizes (rtx x, HOST_WIDE_INT *outer_size,
4227 HOST_WIDE_INT *inner_size, HOST_WIDE_INT *start)
4228 {
4229 rtx reg = regno_reg_rtx[REGNO (SUBREG_REG (x))];
4230 return (GET_MODE_SIZE (GET_MODE (x)).is_constant (outer_size)
4231 && GET_MODE_SIZE (GET_MODE (reg)).is_constant (inner_size)
4232 && SUBREG_BYTE (x).is_constant (start));
4233 }
4234
4235 /* Init LIVE_SUBREGS[ALLOCNUM] and LIVE_SUBREGS_USED[ALLOCNUM] for
4236 a register with SIZE bytes, making the register live if INIT_VALUE. */
4237 static void
4238 init_live_subregs (bool init_value, sbitmap *live_subregs,
4239 bitmap live_subregs_used, int allocnum, int size)
4240 {
4241 gcc_assert (size > 0);
4242
4243 /* Been there, done that. */
4244 if (bitmap_bit_p (live_subregs_used, allocnum))
4245 return;
4246
4247 /* Create a new one. */
4248 if (live_subregs[allocnum] == NULL)
4249 live_subregs[allocnum] = sbitmap_alloc (size);
4250
4251 /* If the entire reg was live before blasting into subregs, we need
4252 to init all of the subregs to ones else init to 0. */
4253 if (init_value)
4254 bitmap_ones (live_subregs[allocnum]);
4255 else
4256 bitmap_clear (live_subregs[allocnum]);
4257
4258 bitmap_set_bit (live_subregs_used, allocnum);
4259 }
4260
4261 /* Walk the insns of the current function and build reload_insn_chain,
4262 and record register life information. */
4263 static void
4264 build_insn_chain (void)
4265 {
4266 unsigned int i;
4267 class insn_chain **p = &reload_insn_chain;
4268 basic_block bb;
4269 class insn_chain *c = NULL;
4270 class insn_chain *next = NULL;
4271 auto_bitmap live_relevant_regs;
4272 auto_bitmap elim_regset;
4273 /* live_subregs is a vector used to keep accurate information about
4274 which hardregs are live in multiword pseudos. live_subregs and
4275 live_subregs_used are indexed by pseudo number. The live_subreg
4276 entry for a particular pseudo is only used if the corresponding
4277 element is non zero in live_subregs_used. The sbitmap size of
4278 live_subreg[allocno] is number of bytes that the pseudo can
4279 occupy. */
4280 sbitmap *live_subregs = XCNEWVEC (sbitmap, max_regno);
4281 auto_bitmap live_subregs_used;
4282
4283 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
4284 if (TEST_HARD_REG_BIT (eliminable_regset, i))
4285 bitmap_set_bit (elim_regset, i);
4286 FOR_EACH_BB_REVERSE_FN (bb, cfun)
4287 {
4288 bitmap_iterator bi;
4289 rtx_insn *insn;
4290
4291 CLEAR_REG_SET (live_relevant_regs);
4292 bitmap_clear (live_subregs_used);
4293
4294 EXECUTE_IF_SET_IN_BITMAP (df_get_live_out (bb), 0, i, bi)
4295 {
4296 if (i >= FIRST_PSEUDO_REGISTER)
4297 break;
4298 bitmap_set_bit (live_relevant_regs, i);
4299 }
4300
4301 EXECUTE_IF_SET_IN_BITMAP (df_get_live_out (bb),
4302 FIRST_PSEUDO_REGISTER, i, bi)
4303 {
4304 if (pseudo_for_reload_consideration_p (i))
4305 bitmap_set_bit (live_relevant_regs, i);
4306 }
4307
4308 FOR_BB_INSNS_REVERSE (bb, insn)
4309 {
4310 if (!NOTE_P (insn) && !BARRIER_P (insn))
4311 {
4312 struct df_insn_info *insn_info = DF_INSN_INFO_GET (insn);
4313 df_ref def, use;
4314
4315 c = new_insn_chain ();
4316 c->next = next;
4317 next = c;
4318 *p = c;
4319 p = &c->prev;
4320
4321 c->insn = insn;
4322 c->block = bb->index;
4323
4324 if (NONDEBUG_INSN_P (insn))
4325 FOR_EACH_INSN_INFO_DEF (def, insn_info)
4326 {
4327 unsigned int regno = DF_REF_REGNO (def);
4328
4329 /* Ignore may clobbers because these are generated
4330 from calls. However, every other kind of def is
4331 added to dead_or_set. */
4332 if (!DF_REF_FLAGS_IS_SET (def, DF_REF_MAY_CLOBBER))
4333 {
4334 if (regno < FIRST_PSEUDO_REGISTER)
4335 {
4336 if (!fixed_regs[regno])
4337 bitmap_set_bit (&c->dead_or_set, regno);
4338 }
4339 else if (pseudo_for_reload_consideration_p (regno))
4340 bitmap_set_bit (&c->dead_or_set, regno);
4341 }
4342
4343 if ((regno < FIRST_PSEUDO_REGISTER
4344 || reg_renumber[regno] >= 0
4345 || ira_conflicts_p)
4346 && (!DF_REF_FLAGS_IS_SET (def, DF_REF_CONDITIONAL)))
4347 {
4348 rtx reg = DF_REF_REG (def);
4349 HOST_WIDE_INT outer_size, inner_size, start;
4350
4351 /* We can usually track the liveness of individual
4352 bytes within a subreg. The only exceptions are
4353 subregs wrapped in ZERO_EXTRACTs and subregs whose
4354 size is not known; in those cases we need to be
4355 conservative and treat the definition as a partial
4356 definition of the full register rather than a full
4357 definition of a specific part of the register. */
4358 if (GET_CODE (reg) == SUBREG
4359 && !DF_REF_FLAGS_IS_SET (def, DF_REF_ZERO_EXTRACT)
4360 && get_subreg_tracking_sizes (reg, &outer_size,
4361 &inner_size, &start))
4362 {
4363 HOST_WIDE_INT last = start + outer_size;
4364
4365 init_live_subregs
4366 (bitmap_bit_p (live_relevant_regs, regno),
4367 live_subregs, live_subregs_used, regno,
4368 inner_size);
4369
4370 if (!DF_REF_FLAGS_IS_SET
4371 (def, DF_REF_STRICT_LOW_PART))
4372 {
4373 /* Expand the range to cover entire words.
4374 Bytes added here are "don't care". */
4375 start
4376 = start / UNITS_PER_WORD * UNITS_PER_WORD;
4377 last = ((last + UNITS_PER_WORD - 1)
4378 / UNITS_PER_WORD * UNITS_PER_WORD);
4379 }
4380
4381 /* Ignore the paradoxical bits. */
4382 if (last > SBITMAP_SIZE (live_subregs[regno]))
4383 last = SBITMAP_SIZE (live_subregs[regno]);
4384
4385 while (start < last)
4386 {
4387 bitmap_clear_bit (live_subregs[regno], start);
4388 start++;
4389 }
4390
4391 if (bitmap_empty_p (live_subregs[regno]))
4392 {
4393 bitmap_clear_bit (live_subregs_used, regno);
4394 bitmap_clear_bit (live_relevant_regs, regno);
4395 }
4396 else
4397 /* Set live_relevant_regs here because
4398 that bit has to be true to get us to
4399 look at the live_subregs fields. */
4400 bitmap_set_bit (live_relevant_regs, regno);
4401 }
4402 else
4403 {
4404 /* DF_REF_PARTIAL is generated for
4405 subregs, STRICT_LOW_PART, and
4406 ZERO_EXTRACT. We handle the subreg
4407 case above so here we have to keep from
4408 modeling the def as a killing def. */
4409 if (!DF_REF_FLAGS_IS_SET (def, DF_REF_PARTIAL))
4410 {
4411 bitmap_clear_bit (live_subregs_used, regno);
4412 bitmap_clear_bit (live_relevant_regs, regno);
4413 }
4414 }
4415 }
4416 }
4417
4418 bitmap_and_compl_into (live_relevant_regs, elim_regset);
4419 bitmap_copy (&c->live_throughout, live_relevant_regs);
4420
4421 if (NONDEBUG_INSN_P (insn))
4422 FOR_EACH_INSN_INFO_USE (use, insn_info)
4423 {
4424 unsigned int regno = DF_REF_REGNO (use);
4425 rtx reg = DF_REF_REG (use);
4426
4427 /* DF_REF_READ_WRITE on a use means that this use
4428 is fabricated from a def that is a partial set
4429 to a multiword reg. Here, we only model the
4430 subreg case that is not wrapped in ZERO_EXTRACT
4431 precisely so we do not need to look at the
4432 fabricated use. */
4433 if (DF_REF_FLAGS_IS_SET (use, DF_REF_READ_WRITE)
4434 && !DF_REF_FLAGS_IS_SET (use, DF_REF_ZERO_EXTRACT)
4435 && DF_REF_FLAGS_IS_SET (use, DF_REF_SUBREG))
4436 continue;
4437
4438 /* Add the last use of each var to dead_or_set. */
4439 if (!bitmap_bit_p (live_relevant_regs, regno))
4440 {
4441 if (regno < FIRST_PSEUDO_REGISTER)
4442 {
4443 if (!fixed_regs[regno])
4444 bitmap_set_bit (&c->dead_or_set, regno);
4445 }
4446 else if (pseudo_for_reload_consideration_p (regno))
4447 bitmap_set_bit (&c->dead_or_set, regno);
4448 }
4449
4450 if (regno < FIRST_PSEUDO_REGISTER
4451 || pseudo_for_reload_consideration_p (regno))
4452 {
4453 HOST_WIDE_INT outer_size, inner_size, start;
4454 if (GET_CODE (reg) == SUBREG
4455 && !DF_REF_FLAGS_IS_SET (use,
4456 DF_REF_SIGN_EXTRACT
4457 | DF_REF_ZERO_EXTRACT)
4458 && get_subreg_tracking_sizes (reg, &outer_size,
4459 &inner_size, &start))
4460 {
4461 HOST_WIDE_INT last = start + outer_size;
4462
4463 init_live_subregs
4464 (bitmap_bit_p (live_relevant_regs, regno),
4465 live_subregs, live_subregs_used, regno,
4466 inner_size);
4467
4468 /* Ignore the paradoxical bits. */
4469 if (last > SBITMAP_SIZE (live_subregs[regno]))
4470 last = SBITMAP_SIZE (live_subregs[regno]);
4471
4472 while (start < last)
4473 {
4474 bitmap_set_bit (live_subregs[regno], start);
4475 start++;
4476 }
4477 }
4478 else
4479 /* Resetting the live_subregs_used is
4480 effectively saying do not use the subregs
4481 because we are reading the whole
4482 pseudo. */
4483 bitmap_clear_bit (live_subregs_used, regno);
4484 bitmap_set_bit (live_relevant_regs, regno);
4485 }
4486 }
4487 }
4488 }
4489
4490 /* FIXME!! The following code is a disaster. Reload needs to see the
4491 labels and jump tables that are just hanging out in between
4492 the basic blocks. See pr33676. */
4493 insn = BB_HEAD (bb);
4494
4495 /* Skip over the barriers and cruft. */
4496 while (insn && (BARRIER_P (insn) || NOTE_P (insn)
4497 || BLOCK_FOR_INSN (insn) == bb))
4498 insn = PREV_INSN (insn);
4499
4500 /* While we add anything except barriers and notes, the focus is
4501 to get the labels and jump tables into the
4502 reload_insn_chain. */
4503 while (insn)
4504 {
4505 if (!NOTE_P (insn) && !BARRIER_P (insn))
4506 {
4507 if (BLOCK_FOR_INSN (insn))
4508 break;
4509
4510 c = new_insn_chain ();
4511 c->next = next;
4512 next = c;
4513 *p = c;
4514 p = &c->prev;
4515
4516 /* The block makes no sense here, but it is what the old
4517 code did. */
4518 c->block = bb->index;
4519 c->insn = insn;
4520 bitmap_copy (&c->live_throughout, live_relevant_regs);
4521 }
4522 insn = PREV_INSN (insn);
4523 }
4524 }
4525
4526 reload_insn_chain = c;
4527 *p = NULL;
4528
4529 for (i = 0; i < (unsigned int) max_regno; i++)
4530 if (live_subregs[i] != NULL)
4531 sbitmap_free (live_subregs[i]);
4532 free (live_subregs);
4533
4534 if (dump_file)
4535 print_insn_chains (dump_file);
4536 }
4537 \f
4538 /* Examine the rtx found in *LOC, which is read or written to as determined
4539 by TYPE. Return false if we find a reason why an insn containing this
4540 rtx should not be moved (such as accesses to non-constant memory), true
4541 otherwise. */
4542 static bool
4543 rtx_moveable_p (rtx *loc, enum op_type type)
4544 {
4545 const char *fmt;
4546 rtx x = *loc;
4547 int i, j;
4548
4549 enum rtx_code code = GET_CODE (x);
4550 switch (code)
4551 {
4552 case CONST:
4553 CASE_CONST_ANY:
4554 case SYMBOL_REF:
4555 case LABEL_REF:
4556 return true;
4557
4558 case PC:
4559 return type == OP_IN;
4560
4561 case REG:
4562 if (x == frame_pointer_rtx)
4563 return true;
4564 if (HARD_REGISTER_P (x))
4565 return false;
4566
4567 return true;
4568
4569 case MEM:
4570 if (type == OP_IN && MEM_READONLY_P (x))
4571 return rtx_moveable_p (&XEXP (x, 0), OP_IN);
4572 return false;
4573
4574 case SET:
4575 return (rtx_moveable_p (&SET_SRC (x), OP_IN)
4576 && rtx_moveable_p (&SET_DEST (x), OP_OUT));
4577
4578 case STRICT_LOW_PART:
4579 return rtx_moveable_p (&XEXP (x, 0), OP_OUT);
4580
4581 case ZERO_EXTRACT:
4582 case SIGN_EXTRACT:
4583 return (rtx_moveable_p (&XEXP (x, 0), type)
4584 && rtx_moveable_p (&XEXP (x, 1), OP_IN)
4585 && rtx_moveable_p (&XEXP (x, 2), OP_IN));
4586
4587 case CLOBBER:
4588 return rtx_moveable_p (&SET_DEST (x), OP_OUT);
4589
4590 case UNSPEC_VOLATILE:
4591 /* It is a bad idea to consider insns with such rtl
4592 as moveable ones. The insn scheduler also considers them as barrier
4593 for a reason. */
4594 return false;
4595
4596 case ASM_OPERANDS:
4597 /* The same is true for volatile asm: it has unknown side effects, it
4598 cannot be moved at will. */
4599 if (MEM_VOLATILE_P (x))
4600 return false;
4601
4602 default:
4603 break;
4604 }
4605
4606 fmt = GET_RTX_FORMAT (code);
4607 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
4608 {
4609 if (fmt[i] == 'e')
4610 {
4611 if (!rtx_moveable_p (&XEXP (x, i), type))
4612 return false;
4613 }
4614 else if (fmt[i] == 'E')
4615 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
4616 {
4617 if (!rtx_moveable_p (&XVECEXP (x, i, j), type))
4618 return false;
4619 }
4620 }
4621 return true;
4622 }
4623
4624 /* A wrapper around dominated_by_p, which uses the information in UID_LUID
4625 to give dominance relationships between two insns I1 and I2. */
4626 static bool
4627 insn_dominated_by_p (rtx i1, rtx i2, int *uid_luid)
4628 {
4629 basic_block bb1 = BLOCK_FOR_INSN (i1);
4630 basic_block bb2 = BLOCK_FOR_INSN (i2);
4631
4632 if (bb1 == bb2)
4633 return uid_luid[INSN_UID (i2)] < uid_luid[INSN_UID (i1)];
4634 return dominated_by_p (CDI_DOMINATORS, bb1, bb2);
4635 }
4636
4637 /* Record the range of register numbers added by find_moveable_pseudos. */
4638 int first_moveable_pseudo, last_moveable_pseudo;
4639
4640 /* These two vectors hold data for every register added by
4641 find_movable_pseudos, with index 0 holding data for the
4642 first_moveable_pseudo. */
4643 /* The original home register. */
4644 static vec<rtx> pseudo_replaced_reg;
4645
4646 /* Look for instances where we have an instruction that is known to increase
4647 register pressure, and whose result is not used immediately. If it is
4648 possible to move the instruction downwards to just before its first use,
4649 split its lifetime into two ranges. We create a new pseudo to compute the
4650 value, and emit a move instruction just before the first use. If, after
4651 register allocation, the new pseudo remains unallocated, the function
4652 move_unallocated_pseudos then deletes the move instruction and places
4653 the computation just before the first use.
4654
4655 Such a move is safe and profitable if all the input registers remain live
4656 and unchanged between the original computation and its first use. In such
4657 a situation, the computation is known to increase register pressure, and
4658 moving it is known to at least not worsen it.
4659
4660 We restrict moves to only those cases where a register remains unallocated,
4661 in order to avoid interfering too much with the instruction schedule. As
4662 an exception, we may move insns which only modify their input register
4663 (typically induction variables), as this increases the freedom for our
4664 intended transformation, and does not limit the second instruction
4665 scheduler pass. */
4666
4667 static void
4668 find_moveable_pseudos (void)
4669 {
4670 unsigned i;
4671 int max_regs = max_reg_num ();
4672 int max_uid = get_max_uid ();
4673 basic_block bb;
4674 int *uid_luid = XNEWVEC (int, max_uid);
4675 rtx_insn **closest_uses = XNEWVEC (rtx_insn *, max_regs);
4676 /* A set of registers which are live but not modified throughout a block. */
4677 bitmap_head *bb_transp_live = XNEWVEC (bitmap_head,
4678 last_basic_block_for_fn (cfun));
4679 /* A set of registers which only exist in a given basic block. */
4680 bitmap_head *bb_local = XNEWVEC (bitmap_head,
4681 last_basic_block_for_fn (cfun));
4682 /* A set of registers which are set once, in an instruction that can be
4683 moved freely downwards, but are otherwise transparent to a block. */
4684 bitmap_head *bb_moveable_reg_sets = XNEWVEC (bitmap_head,
4685 last_basic_block_for_fn (cfun));
4686 auto_bitmap live, used, set, interesting, unusable_as_input;
4687 bitmap_iterator bi;
4688
4689 first_moveable_pseudo = max_regs;
4690 pseudo_replaced_reg.release ();
4691 pseudo_replaced_reg.safe_grow_cleared (max_regs, true);
4692
4693 df_analyze ();
4694 calculate_dominance_info (CDI_DOMINATORS);
4695
4696 i = 0;
4697 FOR_EACH_BB_FN (bb, cfun)
4698 {
4699 rtx_insn *insn;
4700 bitmap transp = bb_transp_live + bb->index;
4701 bitmap moveable = bb_moveable_reg_sets + bb->index;
4702 bitmap local = bb_local + bb->index;
4703
4704 bitmap_initialize (local, 0);
4705 bitmap_initialize (transp, 0);
4706 bitmap_initialize (moveable, 0);
4707 bitmap_copy (live, df_get_live_out (bb));
4708 bitmap_and_into (live, df_get_live_in (bb));
4709 bitmap_copy (transp, live);
4710 bitmap_clear (moveable);
4711 bitmap_clear (live);
4712 bitmap_clear (used);
4713 bitmap_clear (set);
4714 FOR_BB_INSNS (bb, insn)
4715 if (NONDEBUG_INSN_P (insn))
4716 {
4717 df_insn_info *insn_info = DF_INSN_INFO_GET (insn);
4718 df_ref def, use;
4719
4720 uid_luid[INSN_UID (insn)] = i++;
4721
4722 def = df_single_def (insn_info);
4723 use = df_single_use (insn_info);
4724 if (use
4725 && def
4726 && DF_REF_REGNO (use) == DF_REF_REGNO (def)
4727 && !bitmap_bit_p (set, DF_REF_REGNO (use))
4728 && rtx_moveable_p (&PATTERN (insn), OP_IN))
4729 {
4730 unsigned regno = DF_REF_REGNO (use);
4731 bitmap_set_bit (moveable, regno);
4732 bitmap_set_bit (set, regno);
4733 bitmap_set_bit (used, regno);
4734 bitmap_clear_bit (transp, regno);
4735 continue;
4736 }
4737 FOR_EACH_INSN_INFO_USE (use, insn_info)
4738 {
4739 unsigned regno = DF_REF_REGNO (use);
4740 bitmap_set_bit (used, regno);
4741 if (bitmap_clear_bit (moveable, regno))
4742 bitmap_clear_bit (transp, regno);
4743 }
4744
4745 FOR_EACH_INSN_INFO_DEF (def, insn_info)
4746 {
4747 unsigned regno = DF_REF_REGNO (def);
4748 bitmap_set_bit (set, regno);
4749 bitmap_clear_bit (transp, regno);
4750 bitmap_clear_bit (moveable, regno);
4751 }
4752 }
4753 }
4754
4755 FOR_EACH_BB_FN (bb, cfun)
4756 {
4757 bitmap local = bb_local + bb->index;
4758 rtx_insn *insn;
4759
4760 FOR_BB_INSNS (bb, insn)
4761 if (NONDEBUG_INSN_P (insn))
4762 {
4763 df_insn_info *insn_info = DF_INSN_INFO_GET (insn);
4764 rtx_insn *def_insn;
4765 rtx closest_use, note;
4766 df_ref def, use;
4767 unsigned regno;
4768 bool all_dominated, all_local;
4769 machine_mode mode;
4770
4771 def = df_single_def (insn_info);
4772 /* There must be exactly one def in this insn. */
4773 if (!def || !single_set (insn))
4774 continue;
4775 /* This must be the only definition of the reg. We also limit
4776 which modes we deal with so that we can assume we can generate
4777 move instructions. */
4778 regno = DF_REF_REGNO (def);
4779 mode = GET_MODE (DF_REF_REG (def));
4780 if (DF_REG_DEF_COUNT (regno) != 1
4781 || !DF_REF_INSN_INFO (def)
4782 || HARD_REGISTER_NUM_P (regno)
4783 || DF_REG_EQ_USE_COUNT (regno) > 0
4784 || (!INTEGRAL_MODE_P (mode)
4785 && !FLOAT_MODE_P (mode)
4786 && !OPAQUE_MODE_P (mode)))
4787 continue;
4788 def_insn = DF_REF_INSN (def);
4789
4790 for (note = REG_NOTES (def_insn); note; note = XEXP (note, 1))
4791 if (REG_NOTE_KIND (note) == REG_EQUIV && MEM_P (XEXP (note, 0)))
4792 break;
4793
4794 if (note)
4795 {
4796 if (dump_file)
4797 fprintf (dump_file, "Ignoring reg %d, has equiv memory\n",
4798 regno);
4799 bitmap_set_bit (unusable_as_input, regno);
4800 continue;
4801 }
4802
4803 use = DF_REG_USE_CHAIN (regno);
4804 all_dominated = true;
4805 all_local = true;
4806 closest_use = NULL_RTX;
4807 for (; use; use = DF_REF_NEXT_REG (use))
4808 {
4809 rtx_insn *insn;
4810 if (!DF_REF_INSN_INFO (use))
4811 {
4812 all_dominated = false;
4813 all_local = false;
4814 break;
4815 }
4816 insn = DF_REF_INSN (use);
4817 if (DEBUG_INSN_P (insn))
4818 continue;
4819 if (BLOCK_FOR_INSN (insn) != BLOCK_FOR_INSN (def_insn))
4820 all_local = false;
4821 if (!insn_dominated_by_p (insn, def_insn, uid_luid))
4822 all_dominated = false;
4823 if (closest_use != insn && closest_use != const0_rtx)
4824 {
4825 if (closest_use == NULL_RTX)
4826 closest_use = insn;
4827 else if (insn_dominated_by_p (closest_use, insn, uid_luid))
4828 closest_use = insn;
4829 else if (!insn_dominated_by_p (insn, closest_use, uid_luid))
4830 closest_use = const0_rtx;
4831 }
4832 }
4833 if (!all_dominated)
4834 {
4835 if (dump_file)
4836 fprintf (dump_file, "Reg %d not all uses dominated by set\n",
4837 regno);
4838 continue;
4839 }
4840 if (all_local)
4841 bitmap_set_bit (local, regno);
4842 if (closest_use == const0_rtx || closest_use == NULL
4843 || next_nonnote_nondebug_insn (def_insn) == closest_use)
4844 {
4845 if (dump_file)
4846 fprintf (dump_file, "Reg %d uninteresting%s\n", regno,
4847 closest_use == const0_rtx || closest_use == NULL
4848 ? " (no unique first use)" : "");
4849 continue;
4850 }
4851
4852 bitmap_set_bit (interesting, regno);
4853 /* If we get here, we know closest_use is a non-NULL insn
4854 (as opposed to const_0_rtx). */
4855 closest_uses[regno] = as_a <rtx_insn *> (closest_use);
4856
4857 if (dump_file && (all_local || all_dominated))
4858 {
4859 fprintf (dump_file, "Reg %u:", regno);
4860 if (all_local)
4861 fprintf (dump_file, " local to bb %d", bb->index);
4862 if (all_dominated)
4863 fprintf (dump_file, " def dominates all uses");
4864 if (closest_use != const0_rtx)
4865 fprintf (dump_file, " has unique first use");
4866 fputs ("\n", dump_file);
4867 }
4868 }
4869 }
4870
4871 EXECUTE_IF_SET_IN_BITMAP (interesting, 0, i, bi)
4872 {
4873 df_ref def = DF_REG_DEF_CHAIN (i);
4874 rtx_insn *def_insn = DF_REF_INSN (def);
4875 basic_block def_block = BLOCK_FOR_INSN (def_insn);
4876 bitmap def_bb_local = bb_local + def_block->index;
4877 bitmap def_bb_moveable = bb_moveable_reg_sets + def_block->index;
4878 bitmap def_bb_transp = bb_transp_live + def_block->index;
4879 bool local_to_bb_p = bitmap_bit_p (def_bb_local, i);
4880 rtx_insn *use_insn = closest_uses[i];
4881 df_ref use;
4882 bool all_ok = true;
4883 bool all_transp = true;
4884
4885 if (!REG_P (DF_REF_REG (def)))
4886 continue;
4887
4888 if (!local_to_bb_p)
4889 {
4890 if (dump_file)
4891 fprintf (dump_file, "Reg %u not local to one basic block\n",
4892 i);
4893 continue;
4894 }
4895 if (reg_equiv_init (i) != NULL_RTX)
4896 {
4897 if (dump_file)
4898 fprintf (dump_file, "Ignoring reg %u with equiv init insn\n",
4899 i);
4900 continue;
4901 }
4902 if (!rtx_moveable_p (&PATTERN (def_insn), OP_IN))
4903 {
4904 if (dump_file)
4905 fprintf (dump_file, "Found def insn %d for %d to be not moveable\n",
4906 INSN_UID (def_insn), i);
4907 continue;
4908 }
4909 if (dump_file)
4910 fprintf (dump_file, "Examining insn %d, def for %d\n",
4911 INSN_UID (def_insn), i);
4912 FOR_EACH_INSN_USE (use, def_insn)
4913 {
4914 unsigned regno = DF_REF_REGNO (use);
4915 if (bitmap_bit_p (unusable_as_input, regno))
4916 {
4917 all_ok = false;
4918 if (dump_file)
4919 fprintf (dump_file, " found unusable input reg %u.\n", regno);
4920 break;
4921 }
4922 if (!bitmap_bit_p (def_bb_transp, regno))
4923 {
4924 if (bitmap_bit_p (def_bb_moveable, regno)
4925 && !control_flow_insn_p (use_insn))
4926 {
4927 if (modified_between_p (DF_REF_REG (use), def_insn, use_insn))
4928 {
4929 rtx_insn *x = NEXT_INSN (def_insn);
4930 while (!modified_in_p (DF_REF_REG (use), x))
4931 {
4932 gcc_assert (x != use_insn);
4933 x = NEXT_INSN (x);
4934 }
4935 if (dump_file)
4936 fprintf (dump_file, " input reg %u modified but insn %d moveable\n",
4937 regno, INSN_UID (x));
4938 emit_insn_after (PATTERN (x), use_insn);
4939 set_insn_deleted (x);
4940 }
4941 else
4942 {
4943 if (dump_file)
4944 fprintf (dump_file, " input reg %u modified between def and use\n",
4945 regno);
4946 all_transp = false;
4947 }
4948 }
4949 else
4950 all_transp = false;
4951 }
4952 }
4953 if (!all_ok)
4954 continue;
4955 if (!dbg_cnt (ira_move))
4956 break;
4957 if (dump_file)
4958 fprintf (dump_file, " all ok%s\n", all_transp ? " and transp" : "");
4959
4960 if (all_transp)
4961 {
4962 rtx def_reg = DF_REF_REG (def);
4963 rtx newreg = ira_create_new_reg (def_reg);
4964 if (validate_change (def_insn, DF_REF_REAL_LOC (def), newreg, 0))
4965 {
4966 unsigned nregno = REGNO (newreg);
4967 emit_insn_before (gen_move_insn (def_reg, newreg), use_insn);
4968 nregno -= max_regs;
4969 pseudo_replaced_reg[nregno] = def_reg;
4970 }
4971 }
4972 }
4973
4974 FOR_EACH_BB_FN (bb, cfun)
4975 {
4976 bitmap_clear (bb_local + bb->index);
4977 bitmap_clear (bb_transp_live + bb->index);
4978 bitmap_clear (bb_moveable_reg_sets + bb->index);
4979 }
4980 free (uid_luid);
4981 free (closest_uses);
4982 free (bb_local);
4983 free (bb_transp_live);
4984 free (bb_moveable_reg_sets);
4985
4986 last_moveable_pseudo = max_reg_num ();
4987
4988 fix_reg_equiv_init ();
4989 expand_reg_info ();
4990 regstat_free_n_sets_and_refs ();
4991 regstat_free_ri ();
4992 regstat_init_n_sets_and_refs ();
4993 regstat_compute_ri ();
4994 free_dominance_info (CDI_DOMINATORS);
4995 }
4996
4997 /* If SET pattern SET is an assignment from a hard register to a pseudo which
4998 is live at CALL_DOM (if non-NULL, otherwise this check is omitted), return
4999 the destination. Otherwise return NULL. */
5000
5001 static rtx
5002 interesting_dest_for_shprep_1 (rtx set, basic_block call_dom)
5003 {
5004 rtx src = SET_SRC (set);
5005 rtx dest = SET_DEST (set);
5006 if (!REG_P (src) || !HARD_REGISTER_P (src)
5007 || !REG_P (dest) || HARD_REGISTER_P (dest)
5008 || (call_dom && !bitmap_bit_p (df_get_live_in (call_dom), REGNO (dest))))
5009 return NULL;
5010 return dest;
5011 }
5012
5013 /* If insn is interesting for parameter range-splitting shrink-wrapping
5014 preparation, i.e. it is a single set from a hard register to a pseudo, which
5015 is live at CALL_DOM (if non-NULL, otherwise this check is omitted), or a
5016 parallel statement with only one such statement, return the destination.
5017 Otherwise return NULL. */
5018
5019 static rtx
5020 interesting_dest_for_shprep (rtx_insn *insn, basic_block call_dom)
5021 {
5022 if (!INSN_P (insn))
5023 return NULL;
5024 rtx pat = PATTERN (insn);
5025 if (GET_CODE (pat) == SET)
5026 return interesting_dest_for_shprep_1 (pat, call_dom);
5027
5028 if (GET_CODE (pat) != PARALLEL)
5029 return NULL;
5030 rtx ret = NULL;
5031 for (int i = 0; i < XVECLEN (pat, 0); i++)
5032 {
5033 rtx sub = XVECEXP (pat, 0, i);
5034 if (GET_CODE (sub) == USE || GET_CODE (sub) == CLOBBER)
5035 continue;
5036 if (GET_CODE (sub) != SET
5037 || side_effects_p (sub))
5038 return NULL;
5039 rtx dest = interesting_dest_for_shprep_1 (sub, call_dom);
5040 if (dest && ret)
5041 return NULL;
5042 if (dest)
5043 ret = dest;
5044 }
5045 return ret;
5046 }
5047
5048 /* Split live ranges of pseudos that are loaded from hard registers in the
5049 first BB in a BB that dominates all non-sibling call if such a BB can be
5050 found and is not in a loop. Return true if the function has made any
5051 changes. */
5052
5053 static bool
5054 split_live_ranges_for_shrink_wrap (void)
5055 {
5056 basic_block bb, call_dom = NULL;
5057 basic_block first = single_succ (ENTRY_BLOCK_PTR_FOR_FN (cfun));
5058 rtx_insn *insn, *last_interesting_insn = NULL;
5059 auto_bitmap need_new, reachable;
5060 vec<basic_block> queue;
5061
5062 if (!SHRINK_WRAPPING_ENABLED)
5063 return false;
5064
5065 queue.create (n_basic_blocks_for_fn (cfun));
5066
5067 FOR_EACH_BB_FN (bb, cfun)
5068 FOR_BB_INSNS (bb, insn)
5069 if (CALL_P (insn) && !SIBLING_CALL_P (insn))
5070 {
5071 if (bb == first)
5072 {
5073 queue.release ();
5074 return false;
5075 }
5076
5077 bitmap_set_bit (need_new, bb->index);
5078 bitmap_set_bit (reachable, bb->index);
5079 queue.quick_push (bb);
5080 break;
5081 }
5082
5083 if (queue.is_empty ())
5084 {
5085 queue.release ();
5086 return false;
5087 }
5088
5089 while (!queue.is_empty ())
5090 {
5091 edge e;
5092 edge_iterator ei;
5093
5094 bb = queue.pop ();
5095 FOR_EACH_EDGE (e, ei, bb->succs)
5096 if (e->dest != EXIT_BLOCK_PTR_FOR_FN (cfun)
5097 && bitmap_set_bit (reachable, e->dest->index))
5098 queue.quick_push (e->dest);
5099 }
5100 queue.release ();
5101
5102 FOR_BB_INSNS (first, insn)
5103 {
5104 rtx dest = interesting_dest_for_shprep (insn, NULL);
5105 if (!dest)
5106 continue;
5107
5108 if (DF_REG_DEF_COUNT (REGNO (dest)) > 1)
5109 return false;
5110
5111 for (df_ref use = DF_REG_USE_CHAIN (REGNO(dest));
5112 use;
5113 use = DF_REF_NEXT_REG (use))
5114 {
5115 int ubbi = DF_REF_BB (use)->index;
5116 if (bitmap_bit_p (reachable, ubbi))
5117 bitmap_set_bit (need_new, ubbi);
5118 }
5119 last_interesting_insn = insn;
5120 }
5121
5122 if (!last_interesting_insn)
5123 return false;
5124
5125 call_dom = nearest_common_dominator_for_set (CDI_DOMINATORS, need_new);
5126 if (call_dom == first)
5127 return false;
5128
5129 loop_optimizer_init (AVOID_CFG_MODIFICATIONS);
5130 while (bb_loop_depth (call_dom) > 0)
5131 call_dom = get_immediate_dominator (CDI_DOMINATORS, call_dom);
5132 loop_optimizer_finalize ();
5133
5134 if (call_dom == first)
5135 return false;
5136
5137 calculate_dominance_info (CDI_POST_DOMINATORS);
5138 if (dominated_by_p (CDI_POST_DOMINATORS, first, call_dom))
5139 {
5140 free_dominance_info (CDI_POST_DOMINATORS);
5141 return false;
5142 }
5143 free_dominance_info (CDI_POST_DOMINATORS);
5144
5145 if (dump_file)
5146 fprintf (dump_file, "Will split live ranges of parameters at BB %i\n",
5147 call_dom->index);
5148
5149 bool ret = false;
5150 FOR_BB_INSNS (first, insn)
5151 {
5152 rtx dest = interesting_dest_for_shprep (insn, call_dom);
5153 if (!dest || dest == pic_offset_table_rtx)
5154 continue;
5155
5156 bool need_newreg = false;
5157 df_ref use, next;
5158 for (use = DF_REG_USE_CHAIN (REGNO (dest)); use; use = next)
5159 {
5160 rtx_insn *uin = DF_REF_INSN (use);
5161 next = DF_REF_NEXT_REG (use);
5162
5163 if (DEBUG_INSN_P (uin))
5164 continue;
5165
5166 basic_block ubb = BLOCK_FOR_INSN (uin);
5167 if (ubb == call_dom
5168 || dominated_by_p (CDI_DOMINATORS, ubb, call_dom))
5169 {
5170 need_newreg = true;
5171 break;
5172 }
5173 }
5174
5175 if (need_newreg)
5176 {
5177 rtx newreg = ira_create_new_reg (dest);
5178
5179 for (use = DF_REG_USE_CHAIN (REGNO (dest)); use; use = next)
5180 {
5181 rtx_insn *uin = DF_REF_INSN (use);
5182 next = DF_REF_NEXT_REG (use);
5183
5184 basic_block ubb = BLOCK_FOR_INSN (uin);
5185 if (ubb == call_dom
5186 || dominated_by_p (CDI_DOMINATORS, ubb, call_dom))
5187 validate_change (uin, DF_REF_REAL_LOC (use), newreg, true);
5188 }
5189
5190 rtx_insn *new_move = gen_move_insn (newreg, dest);
5191 emit_insn_after (new_move, bb_note (call_dom));
5192 if (dump_file)
5193 {
5194 fprintf (dump_file, "Split live-range of register ");
5195 print_rtl_single (dump_file, dest);
5196 }
5197 ret = true;
5198 }
5199
5200 if (insn == last_interesting_insn)
5201 break;
5202 }
5203 apply_change_group ();
5204 return ret;
5205 }
5206
5207 /* Perform the second half of the transformation started in
5208 find_moveable_pseudos. We look for instances where the newly introduced
5209 pseudo remains unallocated, and remove it by moving the definition to
5210 just before its use, replacing the move instruction generated by
5211 find_moveable_pseudos. */
5212 static void
5213 move_unallocated_pseudos (void)
5214 {
5215 int i;
5216 for (i = first_moveable_pseudo; i < last_moveable_pseudo; i++)
5217 if (reg_renumber[i] < 0)
5218 {
5219 int idx = i - first_moveable_pseudo;
5220 rtx other_reg = pseudo_replaced_reg[idx];
5221 /* The iterating range [first_moveable_pseudo, last_moveable_pseudo)
5222 covers every new pseudo created in find_moveable_pseudos,
5223 regardless of the validation with it is successful or not.
5224 So we need to skip the pseudos which were used in those failed
5225 validations to avoid unexpected DF info and consequent ICE.
5226 We only set pseudo_replaced_reg[] when the validation is successful
5227 in find_moveable_pseudos, it's enough to check it here. */
5228 if (!other_reg)
5229 continue;
5230 rtx_insn *def_insn = DF_REF_INSN (DF_REG_DEF_CHAIN (i));
5231 /* The use must follow all definitions of OTHER_REG, so we can
5232 insert the new definition immediately after any of them. */
5233 df_ref other_def = DF_REG_DEF_CHAIN (REGNO (other_reg));
5234 rtx_insn *move_insn = DF_REF_INSN (other_def);
5235 rtx_insn *newinsn = emit_insn_after (PATTERN (def_insn), move_insn);
5236 rtx set;
5237 int success;
5238
5239 if (dump_file)
5240 fprintf (dump_file, "moving def of %d (insn %d now) ",
5241 REGNO (other_reg), INSN_UID (def_insn));
5242
5243 delete_insn (move_insn);
5244 while ((other_def = DF_REG_DEF_CHAIN (REGNO (other_reg))))
5245 delete_insn (DF_REF_INSN (other_def));
5246 delete_insn (def_insn);
5247
5248 set = single_set (newinsn);
5249 success = validate_change (newinsn, &SET_DEST (set), other_reg, 0);
5250 gcc_assert (success);
5251 if (dump_file)
5252 fprintf (dump_file, " %d) rather than keep unallocated replacement %d\n",
5253 INSN_UID (newinsn), i);
5254 SET_REG_N_REFS (i, 0);
5255 }
5256
5257 first_moveable_pseudo = last_moveable_pseudo = 0;
5258 }
5259
5260 \f
5261
5262 /* Code dealing with scratches (changing them onto
5263 pseudos and restoring them from the pseudos).
5264
5265 We change scratches into pseudos at the beginning of IRA to
5266 simplify dealing with them (conflicts, hard register assignments).
5267
5268 If the pseudo denoting scratch was spilled it means that we do not
5269 need a hard register for it. Such pseudos are transformed back to
5270 scratches at the end of LRA. */
5271
5272 /* Description of location of a former scratch operand. */
5273 struct sloc
5274 {
5275 rtx_insn *insn; /* Insn where the scratch was. */
5276 int nop; /* Number of the operand which was a scratch. */
5277 unsigned regno; /* regno gnerated instead of scratch */
5278 int icode; /* Original icode from which scratch was removed. */
5279 };
5280
5281 typedef struct sloc *sloc_t;
5282
5283 /* Locations of the former scratches. */
5284 static vec<sloc_t> scratches;
5285
5286 /* Bitmap of scratch regnos. */
5287 static bitmap_head scratch_bitmap;
5288
5289 /* Bitmap of scratch operands. */
5290 static bitmap_head scratch_operand_bitmap;
5291
5292 /* Return true if pseudo REGNO is made of SCRATCH. */
5293 bool
5294 ira_former_scratch_p (int regno)
5295 {
5296 return bitmap_bit_p (&scratch_bitmap, regno);
5297 }
5298
5299 /* Return true if the operand NOP of INSN is a former scratch. */
5300 bool
5301 ira_former_scratch_operand_p (rtx_insn *insn, int nop)
5302 {
5303 return bitmap_bit_p (&scratch_operand_bitmap,
5304 INSN_UID (insn) * MAX_RECOG_OPERANDS + nop) != 0;
5305 }
5306
5307 /* Register operand NOP in INSN as a former scratch. It will be
5308 changed to scratch back, if it is necessary, at the LRA end. */
5309 void
5310 ira_register_new_scratch_op (rtx_insn *insn, int nop, int icode)
5311 {
5312 rtx op = *recog_data.operand_loc[nop];
5313 sloc_t loc = XNEW (struct sloc);
5314 ira_assert (REG_P (op));
5315 loc->insn = insn;
5316 loc->nop = nop;
5317 loc->regno = REGNO (op);
5318 loc->icode = icode;
5319 scratches.safe_push (loc);
5320 bitmap_set_bit (&scratch_bitmap, REGNO (op));
5321 bitmap_set_bit (&scratch_operand_bitmap,
5322 INSN_UID (insn) * MAX_RECOG_OPERANDS + nop);
5323 add_reg_note (insn, REG_UNUSED, op);
5324 }
5325
5326 /* Return true if string STR contains constraint 'X'. */
5327 static bool
5328 contains_X_constraint_p (const char *str)
5329 {
5330 int c;
5331
5332 while ((c = *str))
5333 {
5334 str += CONSTRAINT_LEN (c, str);
5335 if (c == 'X') return true;
5336 }
5337 return false;
5338 }
5339
5340 /* Change INSN's scratches into pseudos and save their location.
5341 Return true if we changed any scratch. */
5342 bool
5343 ira_remove_insn_scratches (rtx_insn *insn, bool all_p, FILE *dump_file,
5344 rtx (*get_reg) (rtx original))
5345 {
5346 int i;
5347 bool insn_changed_p;
5348 rtx reg, *loc;
5349
5350 extract_insn (insn);
5351 insn_changed_p = false;
5352 for (i = 0; i < recog_data.n_operands; i++)
5353 {
5354 loc = recog_data.operand_loc[i];
5355 if (GET_CODE (*loc) == SCRATCH && GET_MODE (*loc) != VOIDmode)
5356 {
5357 if (! all_p && contains_X_constraint_p (recog_data.constraints[i]))
5358 continue;
5359 insn_changed_p = true;
5360 *loc = reg = get_reg (*loc);
5361 ira_register_new_scratch_op (insn, i, INSN_CODE (insn));
5362 if (ira_dump_file != NULL)
5363 fprintf (dump_file,
5364 "Removing SCRATCH to p%u in insn #%u (nop %d)\n",
5365 REGNO (reg), INSN_UID (insn), i);
5366 }
5367 }
5368 return insn_changed_p;
5369 }
5370
5371 /* Return new register of the same mode as ORIGINAL. Used in
5372 remove_scratches. */
5373 static rtx
5374 get_scratch_reg (rtx original)
5375 {
5376 return gen_reg_rtx (GET_MODE (original));
5377 }
5378
5379 /* Change scratches into pseudos and save their location. Return true
5380 if we changed any scratch. */
5381 static bool
5382 remove_scratches (void)
5383 {
5384 bool change_p = false;
5385 basic_block bb;
5386 rtx_insn *insn;
5387
5388 scratches.create (get_max_uid ());
5389 bitmap_initialize (&scratch_bitmap, &reg_obstack);
5390 bitmap_initialize (&scratch_operand_bitmap, &reg_obstack);
5391 FOR_EACH_BB_FN (bb, cfun)
5392 FOR_BB_INSNS (bb, insn)
5393 if (INSN_P (insn)
5394 && ira_remove_insn_scratches (insn, false, ira_dump_file, get_scratch_reg))
5395 {
5396 /* Because we might use DF, we need to keep DF info up to date. */
5397 df_insn_rescan (insn);
5398 change_p = true;
5399 }
5400 return change_p;
5401 }
5402
5403 /* Changes pseudos created by function remove_scratches onto scratches. */
5404 void
5405 ira_restore_scratches (FILE *dump_file)
5406 {
5407 int regno, n;
5408 unsigned i;
5409 rtx *op_loc;
5410 sloc_t loc;
5411
5412 for (i = 0; scratches.iterate (i, &loc); i++)
5413 {
5414 /* Ignore already deleted insns. */
5415 if (NOTE_P (loc->insn)
5416 && NOTE_KIND (loc->insn) == NOTE_INSN_DELETED)
5417 continue;
5418 extract_insn (loc->insn);
5419 if (loc->icode != INSN_CODE (loc->insn))
5420 {
5421 /* The icode doesn't match, which means the insn has been modified
5422 (e.g. register elimination). The scratch cannot be restored. */
5423 continue;
5424 }
5425 op_loc = recog_data.operand_loc[loc->nop];
5426 if (REG_P (*op_loc)
5427 && ((regno = REGNO (*op_loc)) >= FIRST_PSEUDO_REGISTER)
5428 && reg_renumber[regno] < 0)
5429 {
5430 /* It should be only case when scratch register with chosen
5431 constraint 'X' did not get memory or hard register. */
5432 ira_assert (ira_former_scratch_p (regno));
5433 *op_loc = gen_rtx_SCRATCH (GET_MODE (*op_loc));
5434 for (n = 0; n < recog_data.n_dups; n++)
5435 *recog_data.dup_loc[n]
5436 = *recog_data.operand_loc[(int) recog_data.dup_num[n]];
5437 if (dump_file != NULL)
5438 fprintf (dump_file, "Restoring SCRATCH in insn #%u(nop %d)\n",
5439 INSN_UID (loc->insn), loc->nop);
5440 }
5441 }
5442 for (i = 0; scratches.iterate (i, &loc); i++)
5443 free (loc);
5444 scratches.release ();
5445 bitmap_clear (&scratch_bitmap);
5446 bitmap_clear (&scratch_operand_bitmap);
5447 }
5448
5449 \f
5450
5451 /* If the backend knows where to allocate pseudos for hard
5452 register initial values, register these allocations now. */
5453 static void
5454 allocate_initial_values (void)
5455 {
5456 if (targetm.allocate_initial_value)
5457 {
5458 rtx hreg, preg, x;
5459 int i, regno;
5460
5461 for (i = 0; HARD_REGISTER_NUM_P (i); i++)
5462 {
5463 if (! initial_value_entry (i, &hreg, &preg))
5464 break;
5465
5466 x = targetm.allocate_initial_value (hreg);
5467 regno = REGNO (preg);
5468 if (x && REG_N_SETS (regno) <= 1)
5469 {
5470 if (MEM_P (x))
5471 reg_equiv_memory_loc (regno) = x;
5472 else
5473 {
5474 basic_block bb;
5475 int new_regno;
5476
5477 gcc_assert (REG_P (x));
5478 new_regno = REGNO (x);
5479 reg_renumber[regno] = new_regno;
5480 /* Poke the regno right into regno_reg_rtx so that even
5481 fixed regs are accepted. */
5482 SET_REGNO (preg, new_regno);
5483 /* Update global register liveness information. */
5484 FOR_EACH_BB_FN (bb, cfun)
5485 {
5486 if (REGNO_REG_SET_P (df_get_live_in (bb), regno))
5487 SET_REGNO_REG_SET (df_get_live_in (bb), new_regno);
5488 if (REGNO_REG_SET_P (df_get_live_out (bb), regno))
5489 SET_REGNO_REG_SET (df_get_live_out (bb), new_regno);
5490 }
5491 }
5492 }
5493 }
5494
5495 gcc_checking_assert (! initial_value_entry (FIRST_PSEUDO_REGISTER,
5496 &hreg, &preg));
5497 }
5498 }
5499
5500 \f
5501
5502
5503 /* True when we use LRA instead of reload pass for the current
5504 function. */
5505 bool ira_use_lra_p;
5506
5507 /* True if we have allocno conflicts. It is false for non-optimized
5508 mode or when the conflict table is too big. */
5509 bool ira_conflicts_p;
5510
5511 /* Saved between IRA and reload. */
5512 static int saved_flag_ira_share_spill_slots;
5513
5514 /* This is the main entry of IRA. */
5515 static void
5516 ira (FILE *f)
5517 {
5518 bool loops_p;
5519 int ira_max_point_before_emit;
5520 bool saved_flag_caller_saves = flag_caller_saves;
5521 enum ira_region saved_flag_ira_region = flag_ira_region;
5522 basic_block bb;
5523 edge_iterator ei;
5524 edge e;
5525 bool output_jump_reload_p = false;
5526
5527 if (ira_use_lra_p)
5528 {
5529 /* First put potential jump output reloads on the output edges
5530 as USE which will be removed at the end of LRA. The major
5531 goal is actually to create BBs for critical edges for LRA and
5532 populate them later by live info. In LRA it will be
5533 difficult to do this. */
5534 FOR_EACH_BB_FN (bb, cfun)
5535 {
5536 rtx_insn *end = BB_END (bb);
5537 if (!JUMP_P (end))
5538 continue;
5539 extract_insn (end);
5540 for (int i = 0; i < recog_data.n_operands; i++)
5541 if (recog_data.operand_type[i] != OP_IN)
5542 {
5543 bool skip_p = false;
5544 FOR_EACH_EDGE (e, ei, bb->succs)
5545 if (EDGE_CRITICAL_P (e)
5546 && e->dest != EXIT_BLOCK_PTR_FOR_FN (cfun)
5547 && (e->flags & EDGE_ABNORMAL))
5548 {
5549 skip_p = true;
5550 break;
5551 }
5552 if (skip_p)
5553 break;
5554 output_jump_reload_p = true;
5555 FOR_EACH_EDGE (e, ei, bb->succs)
5556 if (EDGE_CRITICAL_P (e)
5557 && e->dest != EXIT_BLOCK_PTR_FOR_FN (cfun))
5558 {
5559 start_sequence ();
5560 /* We need to put some no-op insn here. We can
5561 not put a note as commit_edges insertion will
5562 fail. */
5563 emit_insn (gen_rtx_USE (VOIDmode, const1_rtx));
5564 rtx_insn *insns = get_insns ();
5565 end_sequence ();
5566 insert_insn_on_edge (insns, e);
5567 }
5568 break;
5569 }
5570 }
5571 if (output_jump_reload_p)
5572 commit_edge_insertions ();
5573 }
5574
5575 if (flag_ira_verbose < 10)
5576 {
5577 internal_flag_ira_verbose = flag_ira_verbose;
5578 ira_dump_file = f;
5579 }
5580 else
5581 {
5582 internal_flag_ira_verbose = flag_ira_verbose - 10;
5583 ira_dump_file = stderr;
5584 }
5585
5586 clear_bb_flags ();
5587
5588 /* Determine if the current function is a leaf before running IRA
5589 since this can impact optimizations done by the prologue and
5590 epilogue thus changing register elimination offsets.
5591 Other target callbacks may use crtl->is_leaf too, including
5592 SHRINK_WRAPPING_ENABLED, so initialize as early as possible. */
5593 crtl->is_leaf = leaf_function_p ();
5594
5595 /* Perform target specific PIC register initialization. */
5596 targetm.init_pic_reg ();
5597
5598 ira_conflicts_p = optimize > 0;
5599
5600 /* Determine the number of pseudos actually requiring coloring. */
5601 unsigned int num_used_regs = 0;
5602 for (unsigned int i = FIRST_PSEUDO_REGISTER; i < DF_REG_SIZE (df); i++)
5603 if (DF_REG_DEF_COUNT (i) || DF_REG_USE_COUNT (i))
5604 num_used_regs++;
5605
5606 /* If there are too many pseudos and/or basic blocks (e.g. 10K
5607 pseudos and 10K blocks or 100K pseudos and 1K blocks), we will
5608 use simplified and faster algorithms in LRA. */
5609 lra_simple_p
5610 = ira_use_lra_p
5611 && num_used_regs >= (1U << 26) / last_basic_block_for_fn (cfun);
5612
5613 if (lra_simple_p)
5614 {
5615 /* It permits to skip live range splitting in LRA. */
5616 flag_caller_saves = false;
5617 /* There is no sense to do regional allocation when we use
5618 simplified LRA. */
5619 flag_ira_region = IRA_REGION_ONE;
5620 ira_conflicts_p = false;
5621 }
5622
5623 #ifndef IRA_NO_OBSTACK
5624 gcc_obstack_init (&ira_obstack);
5625 #endif
5626 bitmap_obstack_initialize (&ira_bitmap_obstack);
5627
5628 /* LRA uses its own infrastructure to handle caller save registers. */
5629 if (flag_caller_saves && !ira_use_lra_p)
5630 init_caller_save ();
5631
5632 setup_prohibited_mode_move_regs ();
5633 decrease_live_ranges_number ();
5634 df_note_add_problem ();
5635
5636 /* DF_LIVE can't be used in the register allocator, too many other
5637 parts of the compiler depend on using the "classic" liveness
5638 interpretation of the DF_LR problem. See PR38711.
5639 Remove the problem, so that we don't spend time updating it in
5640 any of the df_analyze() calls during IRA/LRA. */
5641 if (optimize > 1)
5642 df_remove_problem (df_live);
5643 gcc_checking_assert (df_live == NULL);
5644
5645 if (flag_checking)
5646 df->changeable_flags |= DF_VERIFY_SCHEDULED;
5647
5648 df_analyze ();
5649
5650 init_reg_equiv ();
5651 if (ira_conflicts_p)
5652 {
5653 calculate_dominance_info (CDI_DOMINATORS);
5654
5655 if (split_live_ranges_for_shrink_wrap ())
5656 df_analyze ();
5657
5658 free_dominance_info (CDI_DOMINATORS);
5659 }
5660
5661 df_clear_flags (DF_NO_INSN_RESCAN);
5662
5663 indirect_jump_optimize ();
5664 if (delete_trivially_dead_insns (get_insns (), max_reg_num ()))
5665 df_analyze ();
5666
5667 regstat_init_n_sets_and_refs ();
5668 regstat_compute_ri ();
5669
5670 /* If we are not optimizing, then this is the only place before
5671 register allocation where dataflow is done. And that is needed
5672 to generate these warnings. */
5673 if (warn_clobbered)
5674 generate_setjmp_warnings ();
5675
5676 /* update_equiv_regs can use reg classes of pseudos and they are set up in
5677 register pressure sensitive scheduling and loop invariant motion and in
5678 live range shrinking. This info can become obsolete if we add new pseudos
5679 since the last set up. Recalculate it again if the new pseudos were
5680 added. */
5681 if (resize_reg_info () && (flag_sched_pressure || flag_live_range_shrinkage
5682 || flag_ira_loop_pressure))
5683 ira_set_pseudo_classes (true, ira_dump_file);
5684
5685 init_alias_analysis ();
5686 loop_optimizer_init (AVOID_CFG_MODIFICATIONS);
5687 reg_equiv = XCNEWVEC (struct equivalence, max_reg_num ());
5688 update_equiv_regs_prescan ();
5689 update_equiv_regs ();
5690
5691 /* Don't move insns if live range shrinkage or register
5692 pressure-sensitive scheduling were done because it will not
5693 improve allocation but likely worsen insn scheduling. */
5694 if (optimize
5695 && !flag_live_range_shrinkage
5696 && !(flag_sched_pressure && flag_schedule_insns))
5697 combine_and_move_insns ();
5698
5699 /* Gather additional equivalences with memory. */
5700 if (optimize)
5701 add_store_equivs ();
5702
5703 loop_optimizer_finalize ();
5704 free_dominance_info (CDI_DOMINATORS);
5705 end_alias_analysis ();
5706 free (reg_equiv);
5707
5708 /* Once max_regno changes, we need to free and re-init/re-compute
5709 some data structures like regstat_n_sets_and_refs and reg_info_p. */
5710 auto regstat_recompute_for_max_regno = []() {
5711 regstat_free_n_sets_and_refs ();
5712 regstat_free_ri ();
5713 regstat_init_n_sets_and_refs ();
5714 regstat_compute_ri ();
5715 };
5716
5717 int max_regno_before_rm = max_reg_num ();
5718 if (ira_use_lra_p && remove_scratches ())
5719 {
5720 ira_expand_reg_equiv ();
5721 /* For now remove_scatches is supposed to create pseudos when it
5722 succeeds, assert this happens all the time. Once it doesn't
5723 hold, we should guard the regstat recompute for the case
5724 max_regno changes. */
5725 gcc_assert (max_regno_before_rm != max_reg_num ());
5726 regstat_recompute_for_max_regno ();
5727 }
5728
5729 setup_reg_equiv ();
5730 grow_reg_equivs ();
5731 setup_reg_equiv_init ();
5732
5733 allocated_reg_info_size = max_reg_num ();
5734
5735 /* It is not worth to do such improvement when we use a simple
5736 allocation because of -O0 usage or because the function is too
5737 big. */
5738 if (ira_conflicts_p)
5739 find_moveable_pseudos ();
5740
5741 max_regno_before_ira = max_reg_num ();
5742 ira_setup_eliminable_regset ();
5743
5744 ira_overall_cost = ira_reg_cost = ira_mem_cost = 0;
5745 ira_load_cost = ira_store_cost = ira_shuffle_cost = 0;
5746 ira_move_loops_num = ira_additional_jumps_num = 0;
5747
5748 ira_assert (current_loops == NULL);
5749 if (flag_ira_region == IRA_REGION_ALL || flag_ira_region == IRA_REGION_MIXED)
5750 loop_optimizer_init (AVOID_CFG_MODIFICATIONS | LOOPS_HAVE_RECORDED_EXITS);
5751
5752 if (internal_flag_ira_verbose > 0 && ira_dump_file != NULL)
5753 fprintf (ira_dump_file, "Building IRA IR\n");
5754 loops_p = ira_build ();
5755
5756 ira_assert (ira_conflicts_p || !loops_p);
5757
5758 saved_flag_ira_share_spill_slots = flag_ira_share_spill_slots;
5759 if (too_high_register_pressure_p () || cfun->calls_setjmp)
5760 /* It is just wasting compiler's time to pack spilled pseudos into
5761 stack slots in this case -- prohibit it. We also do this if
5762 there is setjmp call because a variable not modified between
5763 setjmp and longjmp the compiler is required to preserve its
5764 value and sharing slots does not guarantee it. */
5765 flag_ira_share_spill_slots = FALSE;
5766
5767 ira_color ();
5768
5769 ira_max_point_before_emit = ira_max_point;
5770
5771 ira_initiate_emit_data ();
5772
5773 ira_emit (loops_p);
5774
5775 max_regno = max_reg_num ();
5776 if (ira_conflicts_p)
5777 {
5778 if (! loops_p)
5779 {
5780 if (! ira_use_lra_p)
5781 ira_initiate_assign ();
5782 }
5783 else
5784 {
5785 expand_reg_info ();
5786
5787 if (ira_use_lra_p)
5788 {
5789 ira_allocno_t a;
5790 ira_allocno_iterator ai;
5791
5792 FOR_EACH_ALLOCNO (a, ai)
5793 {
5794 int old_regno = ALLOCNO_REGNO (a);
5795 int new_regno = REGNO (ALLOCNO_EMIT_DATA (a)->reg);
5796
5797 ALLOCNO_REGNO (a) = new_regno;
5798
5799 if (old_regno != new_regno)
5800 setup_reg_classes (new_regno, reg_preferred_class (old_regno),
5801 reg_alternate_class (old_regno),
5802 reg_allocno_class (old_regno));
5803 }
5804 }
5805 else
5806 {
5807 if (internal_flag_ira_verbose > 0 && ira_dump_file != NULL)
5808 fprintf (ira_dump_file, "Flattening IR\n");
5809 ira_flattening (max_regno_before_ira, ira_max_point_before_emit);
5810 }
5811 /* New insns were generated: add notes and recalculate live
5812 info. */
5813 df_analyze ();
5814
5815 /* ??? Rebuild the loop tree, but why? Does the loop tree
5816 change if new insns were generated? Can that be handled
5817 by updating the loop tree incrementally? */
5818 loop_optimizer_finalize ();
5819 free_dominance_info (CDI_DOMINATORS);
5820 loop_optimizer_init (AVOID_CFG_MODIFICATIONS
5821 | LOOPS_HAVE_RECORDED_EXITS);
5822
5823 if (! ira_use_lra_p)
5824 {
5825 setup_allocno_assignment_flags ();
5826 ira_initiate_assign ();
5827 ira_reassign_conflict_allocnos (max_regno);
5828 }
5829 }
5830 }
5831
5832 ira_finish_emit_data ();
5833
5834 setup_reg_renumber ();
5835
5836 calculate_allocation_cost ();
5837
5838 #ifdef ENABLE_IRA_CHECKING
5839 if (ira_conflicts_p && ! ira_use_lra_p)
5840 /* Opposite to reload pass, LRA does not use any conflict info
5841 from IRA. We don't rebuild conflict info for LRA (through
5842 ira_flattening call) and cannot use the check here. We could
5843 rebuild this info for LRA in the check mode but there is a risk
5844 that code generated with the check and without it will be a bit
5845 different. Calling ira_flattening in any mode would be a
5846 wasting CPU time. So do not check the allocation for LRA. */
5847 check_allocation ();
5848 #endif
5849
5850 if (max_regno != max_regno_before_ira)
5851 regstat_recompute_for_max_regno ();
5852
5853 overall_cost_before = ira_overall_cost;
5854 if (! ira_conflicts_p)
5855 grow_reg_equivs ();
5856 else
5857 {
5858 fix_reg_equiv_init ();
5859
5860 #ifdef ENABLE_IRA_CHECKING
5861 print_redundant_copies ();
5862 #endif
5863 if (! ira_use_lra_p)
5864 {
5865 ira_spilled_reg_stack_slots_num = 0;
5866 ira_spilled_reg_stack_slots
5867 = ((class ira_spilled_reg_stack_slot *)
5868 ira_allocate (max_regno
5869 * sizeof (class ira_spilled_reg_stack_slot)));
5870 memset ((void *)ira_spilled_reg_stack_slots, 0,
5871 max_regno * sizeof (class ira_spilled_reg_stack_slot));
5872 }
5873 }
5874 allocate_initial_values ();
5875
5876 /* See comment for find_moveable_pseudos call. */
5877 if (ira_conflicts_p)
5878 move_unallocated_pseudos ();
5879
5880 /* Restore original values. */
5881 if (lra_simple_p)
5882 {
5883 flag_caller_saves = saved_flag_caller_saves;
5884 flag_ira_region = saved_flag_ira_region;
5885 }
5886 }
5887
5888 /* Modify asm goto to avoid further trouble with this insn. We can
5889 not replace the insn by USE as in other asm insns as we still
5890 need to keep CFG consistency. */
5891 void
5892 ira_nullify_asm_goto (rtx_insn *insn)
5893 {
5894 ira_assert (JUMP_P (insn) && INSN_CODE (insn) < 0);
5895 rtx tmp = extract_asm_operands (PATTERN (insn));
5896 PATTERN (insn) = gen_rtx_ASM_OPERANDS (VOIDmode, ggc_strdup (""), "", 0,
5897 rtvec_alloc (0),
5898 rtvec_alloc (0),
5899 ASM_OPERANDS_LABEL_VEC (tmp),
5900 ASM_OPERANDS_SOURCE_LOCATION(tmp));
5901 }
5902
5903 static void
5904 do_reload (void)
5905 {
5906 basic_block bb;
5907 bool need_dce;
5908 unsigned pic_offset_table_regno = INVALID_REGNUM;
5909
5910 if (flag_ira_verbose < 10)
5911 ira_dump_file = dump_file;
5912
5913 /* If pic_offset_table_rtx is a pseudo register, then keep it so
5914 after reload to avoid possible wrong usages of hard reg assigned
5915 to it. */
5916 if (pic_offset_table_rtx
5917 && REGNO (pic_offset_table_rtx) >= FIRST_PSEUDO_REGISTER)
5918 pic_offset_table_regno = REGNO (pic_offset_table_rtx);
5919
5920 timevar_push (TV_RELOAD);
5921 if (ira_use_lra_p)
5922 {
5923 if (current_loops != NULL)
5924 {
5925 loop_optimizer_finalize ();
5926 free_dominance_info (CDI_DOMINATORS);
5927 }
5928 FOR_ALL_BB_FN (bb, cfun)
5929 bb->loop_father = NULL;
5930 current_loops = NULL;
5931
5932 ira_destroy ();
5933
5934 lra (ira_dump_file);
5935 /* ???!!! Move it before lra () when we use ira_reg_equiv in
5936 LRA. */
5937 vec_free (reg_equivs);
5938 reg_equivs = NULL;
5939 need_dce = false;
5940 }
5941 else
5942 {
5943 df_set_flags (DF_NO_INSN_RESCAN);
5944 build_insn_chain ();
5945
5946 need_dce = reload (get_insns (), ira_conflicts_p);
5947 }
5948
5949 timevar_pop (TV_RELOAD);
5950
5951 timevar_push (TV_IRA);
5952
5953 if (ira_conflicts_p && ! ira_use_lra_p)
5954 {
5955 ira_free (ira_spilled_reg_stack_slots);
5956 ira_finish_assign ();
5957 }
5958
5959 if (internal_flag_ira_verbose > 0 && ira_dump_file != NULL
5960 && overall_cost_before != ira_overall_cost)
5961 fprintf (ira_dump_file, "+++Overall after reload %" PRId64 "\n",
5962 ira_overall_cost);
5963
5964 flag_ira_share_spill_slots = saved_flag_ira_share_spill_slots;
5965
5966 if (! ira_use_lra_p)
5967 {
5968 ira_destroy ();
5969 if (current_loops != NULL)
5970 {
5971 loop_optimizer_finalize ();
5972 free_dominance_info (CDI_DOMINATORS);
5973 }
5974 FOR_ALL_BB_FN (bb, cfun)
5975 bb->loop_father = NULL;
5976 current_loops = NULL;
5977
5978 regstat_free_ri ();
5979 regstat_free_n_sets_and_refs ();
5980 }
5981
5982 if (optimize)
5983 cleanup_cfg (CLEANUP_EXPENSIVE);
5984
5985 finish_reg_equiv ();
5986
5987 bitmap_obstack_release (&ira_bitmap_obstack);
5988 #ifndef IRA_NO_OBSTACK
5989 obstack_free (&ira_obstack, NULL);
5990 #endif
5991
5992 /* The code after the reload has changed so much that at this point
5993 we might as well just rescan everything. Note that
5994 df_rescan_all_insns is not going to help here because it does not
5995 touch the artificial uses and defs. */
5996 df_finish_pass (true);
5997 df_scan_alloc (NULL);
5998 df_scan_blocks ();
5999
6000 if (optimize > 1)
6001 {
6002 df_live_add_problem ();
6003 df_live_set_all_dirty ();
6004 }
6005
6006 if (optimize)
6007 df_analyze ();
6008
6009 if (need_dce && optimize)
6010 run_fast_dce ();
6011
6012 /* Diagnose uses of the hard frame pointer when it is used as a global
6013 register. Often we can get away with letting the user appropriate
6014 the frame pointer, but we should let them know when code generation
6015 makes that impossible. */
6016 if (global_regs[HARD_FRAME_POINTER_REGNUM] && frame_pointer_needed)
6017 {
6018 tree decl = global_regs_decl[HARD_FRAME_POINTER_REGNUM];
6019 error_at (DECL_SOURCE_LOCATION (current_function_decl),
6020 "frame pointer required, but reserved");
6021 inform (DECL_SOURCE_LOCATION (decl), "for %qD", decl);
6022 }
6023
6024 /* If we are doing generic stack checking, give a warning if this
6025 function's frame size is larger than we expect. */
6026 if (flag_stack_check == GENERIC_STACK_CHECK)
6027 {
6028 poly_int64 size = get_frame_size () + STACK_CHECK_FIXED_FRAME_SIZE;
6029
6030 for (int i = 0; i < FIRST_PSEUDO_REGISTER; i++)
6031 if (df_regs_ever_live_p (i)
6032 && !fixed_regs[i]
6033 && !crtl->abi->clobbers_full_reg_p (i))
6034 size += UNITS_PER_WORD;
6035
6036 if (constant_lower_bound (size) > STACK_CHECK_MAX_FRAME_SIZE)
6037 warning (0, "frame size too large for reliable stack checking");
6038 }
6039
6040 if (pic_offset_table_regno != INVALID_REGNUM)
6041 pic_offset_table_rtx = gen_rtx_REG (Pmode, pic_offset_table_regno);
6042
6043 timevar_pop (TV_IRA);
6044 }
6045 \f
6046 /* Run the integrated register allocator. */
6047
6048 namespace {
6049
6050 const pass_data pass_data_ira =
6051 {
6052 RTL_PASS, /* type */
6053 "ira", /* name */
6054 OPTGROUP_NONE, /* optinfo_flags */
6055 TV_IRA, /* tv_id */
6056 0, /* properties_required */
6057 0, /* properties_provided */
6058 0, /* properties_destroyed */
6059 0, /* todo_flags_start */
6060 TODO_do_not_ggc_collect, /* todo_flags_finish */
6061 };
6062
6063 class pass_ira : public rtl_opt_pass
6064 {
6065 public:
6066 pass_ira (gcc::context *ctxt)
6067 : rtl_opt_pass (pass_data_ira, ctxt)
6068 {}
6069
6070 /* opt_pass methods: */
6071 virtual bool gate (function *)
6072 {
6073 return !targetm.no_register_allocation;
6074 }
6075 virtual unsigned int execute (function *)
6076 {
6077 ira (dump_file);
6078 return 0;
6079 }
6080
6081 }; // class pass_ira
6082
6083 } // anon namespace
6084
6085 rtl_opt_pass *
6086 make_pass_ira (gcc::context *ctxt)
6087 {
6088 return new pass_ira (ctxt);
6089 }
6090
6091 namespace {
6092
6093 const pass_data pass_data_reload =
6094 {
6095 RTL_PASS, /* type */
6096 "reload", /* name */
6097 OPTGROUP_NONE, /* optinfo_flags */
6098 TV_RELOAD, /* tv_id */
6099 0, /* properties_required */
6100 0, /* properties_provided */
6101 0, /* properties_destroyed */
6102 0, /* todo_flags_start */
6103 0, /* todo_flags_finish */
6104 };
6105
6106 class pass_reload : public rtl_opt_pass
6107 {
6108 public:
6109 pass_reload (gcc::context *ctxt)
6110 : rtl_opt_pass (pass_data_reload, ctxt)
6111 {}
6112
6113 /* opt_pass methods: */
6114 virtual bool gate (function *)
6115 {
6116 return !targetm.no_register_allocation;
6117 }
6118 virtual unsigned int execute (function *)
6119 {
6120 do_reload ();
6121 return 0;
6122 }
6123
6124 }; // class pass_reload
6125
6126 } // anon namespace
6127
6128 rtl_opt_pass *
6129 make_pass_reload (gcc::context *ctxt)
6130 {
6131 return new pass_reload (ctxt);
6132 }