]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/jump.c
Correct a function pre/postcondition [PR102403].
[thirdparty/gcc.git] / gcc / jump.c
1 /* Optimize jump instructions, for GNU compiler.
2 Copyright (C) 1987-2021 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20 /* This is the pathetic reminder of old fame of the jump-optimization pass
21 of the compiler. Now it contains basically a set of utility functions to
22 operate with jumps.
23
24 Each CODE_LABEL has a count of the times it is used
25 stored in the LABEL_NUSES internal field, and each JUMP_INSN
26 has one label that it refers to stored in the
27 JUMP_LABEL internal field. With this we can detect labels that
28 become unused because of the deletion of all the jumps that
29 formerly used them. The JUMP_LABEL info is sometimes looked
30 at by later passes. For return insns, it contains either a
31 RETURN or a SIMPLE_RETURN rtx.
32
33 The subroutines redirect_jump and invert_jump are used
34 from other passes as well. */
35
36 #include "config.h"
37 #include "system.h"
38 #include "coretypes.h"
39 #include "backend.h"
40 #include "target.h"
41 #include "rtl.h"
42 #include "tree.h"
43 #include "cfghooks.h"
44 #include "tree-pass.h"
45 #include "memmodel.h"
46 #include "tm_p.h"
47 #include "insn-config.h"
48 #include "regs.h"
49 #include "emit-rtl.h"
50 #include "recog.h"
51 #include "cfgrtl.h"
52 #include "rtl-iter.h"
53
54 /* Optimize jump y; x: ... y: jumpif... x?
55 Don't know if it is worth bothering with. */
56 /* Optimize two cases of conditional jump to conditional jump?
57 This can never delete any instruction or make anything dead,
58 or even change what is live at any point.
59 So perhaps let combiner do it. */
60
61 static void init_label_info (rtx_insn *);
62 static void mark_all_labels (rtx_insn *);
63 static void mark_jump_label_1 (rtx, rtx_insn *, bool, bool);
64 static void mark_jump_label_asm (rtx, rtx_insn *);
65 static void redirect_exp_1 (rtx *, rtx, rtx, rtx_insn *);
66 static int invert_exp_1 (rtx, rtx_insn *);
67 \f
68 /* Worker for rebuild_jump_labels and rebuild_jump_labels_chain. */
69 static void
70 rebuild_jump_labels_1 (rtx_insn *f, bool count_forced)
71 {
72 timevar_push (TV_REBUILD_JUMP);
73 init_label_info (f);
74 mark_all_labels (f);
75
76 /* Keep track of labels used from static data; we don't track them
77 closely enough to delete them here, so make sure their reference
78 count doesn't drop to zero. */
79
80 if (count_forced)
81 {
82 rtx_insn *insn;
83 unsigned int i;
84 FOR_EACH_VEC_SAFE_ELT (forced_labels, i, insn)
85 if (LABEL_P (insn))
86 LABEL_NUSES (insn)++;
87 }
88 timevar_pop (TV_REBUILD_JUMP);
89 }
90
91 /* This function rebuilds the JUMP_LABEL field and REG_LABEL_TARGET
92 notes in jumping insns and REG_LABEL_OPERAND notes in non-jumping
93 instructions and jumping insns that have labels as operands
94 (e.g. cbranchsi4). */
95 void
96 rebuild_jump_labels (rtx_insn *f)
97 {
98 rebuild_jump_labels_1 (f, true);
99 }
100
101 /* This function is like rebuild_jump_labels, but doesn't run over
102 forced_labels. It can be used on insn chains that aren't the
103 main function chain. */
104 void
105 rebuild_jump_labels_chain (rtx_insn *chain)
106 {
107 rebuild_jump_labels_1 (chain, false);
108 }
109 \f
110 /* Some old code expects exactly one BARRIER as the NEXT_INSN of a
111 non-fallthru insn. This is not generally true, as multiple barriers
112 may have crept in, or the BARRIER may be separated from the last
113 real insn by one or more NOTEs.
114
115 This simple pass moves barriers and removes duplicates so that the
116 old code is happy.
117 */
118 static unsigned int
119 cleanup_barriers (void)
120 {
121 rtx_insn *insn;
122 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
123 {
124 if (BARRIER_P (insn))
125 {
126 rtx_insn *prev = prev_nonnote_nondebug_insn (insn);
127 if (!prev)
128 continue;
129
130 if (BARRIER_P (prev))
131 delete_insn (insn);
132 else if (prev != PREV_INSN (insn))
133 {
134 basic_block bb = BLOCK_FOR_INSN (prev);
135 rtx_insn *end = PREV_INSN (insn);
136 reorder_insns_nobb (insn, insn, prev);
137 if (bb)
138 {
139 /* If the backend called in machine reorg compute_bb_for_insn
140 and didn't free_bb_for_insn again, preserve basic block
141 boundaries. Move the end of basic block to PREV since
142 it is followed by a barrier now, and clear BLOCK_FOR_INSN
143 on the following notes.
144 ??? Maybe the proper solution for the targets that have
145 cfg around after machine reorg is not to run cleanup_barriers
146 pass at all. */
147 BB_END (bb) = prev;
148 do
149 {
150 prev = NEXT_INSN (prev);
151 if (prev != insn && BLOCK_FOR_INSN (prev) == bb)
152 BLOCK_FOR_INSN (prev) = NULL;
153 }
154 while (prev != end);
155 }
156 }
157 }
158 }
159 return 0;
160 }
161
162 namespace {
163
164 const pass_data pass_data_cleanup_barriers =
165 {
166 RTL_PASS, /* type */
167 "barriers", /* name */
168 OPTGROUP_NONE, /* optinfo_flags */
169 TV_NONE, /* tv_id */
170 0, /* properties_required */
171 0, /* properties_provided */
172 0, /* properties_destroyed */
173 0, /* todo_flags_start */
174 0, /* todo_flags_finish */
175 };
176
177 class pass_cleanup_barriers : public rtl_opt_pass
178 {
179 public:
180 pass_cleanup_barriers (gcc::context *ctxt)
181 : rtl_opt_pass (pass_data_cleanup_barriers, ctxt)
182 {}
183
184 /* opt_pass methods: */
185 virtual unsigned int execute (function *) { return cleanup_barriers (); }
186
187 }; // class pass_cleanup_barriers
188
189 } // anon namespace
190
191 rtl_opt_pass *
192 make_pass_cleanup_barriers (gcc::context *ctxt)
193 {
194 return new pass_cleanup_barriers (ctxt);
195 }
196
197 \f
198 /* Initialize LABEL_NUSES and JUMP_LABEL fields, add REG_LABEL_TARGET
199 for remaining targets for JUMP_P. Delete any REG_LABEL_OPERAND
200 notes whose labels don't occur in the insn any more. */
201
202 static void
203 init_label_info (rtx_insn *f)
204 {
205 rtx_insn *insn;
206
207 for (insn = f; insn; insn = NEXT_INSN (insn))
208 {
209 if (LABEL_P (insn))
210 LABEL_NUSES (insn) = (LABEL_PRESERVE_P (insn) != 0);
211
212 /* REG_LABEL_TARGET notes (including the JUMP_LABEL field) are
213 sticky and not reset here; that way we won't lose association
214 with a label when e.g. the source for a target register
215 disappears out of reach for targets that may use jump-target
216 registers. Jump transformations are supposed to transform
217 any REG_LABEL_TARGET notes. The target label reference in a
218 branch may disappear from the branch (and from the
219 instruction before it) for other reasons, like register
220 allocation. */
221
222 if (INSN_P (insn))
223 {
224 rtx note, next;
225
226 for (note = REG_NOTES (insn); note; note = next)
227 {
228 next = XEXP (note, 1);
229 if (REG_NOTE_KIND (note) == REG_LABEL_OPERAND
230 && ! reg_mentioned_p (XEXP (note, 0), PATTERN (insn)))
231 remove_note (insn, note);
232 }
233 }
234 }
235 }
236
237 /* A subroutine of mark_all_labels. Trivially propagate a simple label
238 load into a jump_insn that uses it. */
239
240 static void
241 maybe_propagate_label_ref (rtx_insn *jump_insn, rtx_insn *prev_nonjump_insn)
242 {
243 rtx label_note, pc, pc_src;
244
245 pc = pc_set (jump_insn);
246 pc_src = pc != NULL ? SET_SRC (pc) : NULL;
247 label_note = find_reg_note (prev_nonjump_insn, REG_LABEL_OPERAND, NULL);
248
249 /* If the previous non-jump insn sets something to a label,
250 something that this jump insn uses, make that label the primary
251 target of this insn if we don't yet have any. That previous
252 insn must be a single_set and not refer to more than one label.
253 The jump insn must not refer to other labels as jump targets
254 and must be a plain (set (pc) ...), maybe in a parallel, and
255 may refer to the item being set only directly or as one of the
256 arms in an IF_THEN_ELSE. */
257
258 if (label_note != NULL && pc_src != NULL)
259 {
260 rtx label_set = single_set (prev_nonjump_insn);
261 rtx label_dest = label_set != NULL ? SET_DEST (label_set) : NULL;
262
263 if (label_set != NULL
264 /* The source must be the direct LABEL_REF, not a
265 PLUS, UNSPEC, IF_THEN_ELSE etc. */
266 && GET_CODE (SET_SRC (label_set)) == LABEL_REF
267 && (rtx_equal_p (label_dest, pc_src)
268 || (GET_CODE (pc_src) == IF_THEN_ELSE
269 && (rtx_equal_p (label_dest, XEXP (pc_src, 1))
270 || rtx_equal_p (label_dest, XEXP (pc_src, 2))))))
271 {
272 /* The CODE_LABEL referred to in the note must be the
273 CODE_LABEL in the LABEL_REF of the "set". We can
274 conveniently use it for the marker function, which
275 requires a LABEL_REF wrapping. */
276 gcc_assert (XEXP (label_note, 0) == label_ref_label (SET_SRC (label_set)));
277
278 mark_jump_label_1 (label_set, jump_insn, false, true);
279
280 gcc_assert (JUMP_LABEL (jump_insn) == XEXP (label_note, 0));
281 }
282 }
283 }
284
285 /* Mark the label each jump jumps to.
286 Combine consecutive labels, and count uses of labels. */
287
288 static void
289 mark_all_labels (rtx_insn *f)
290 {
291 rtx_insn *insn;
292
293 if (current_ir_type () == IR_RTL_CFGLAYOUT)
294 {
295 basic_block bb;
296 FOR_EACH_BB_FN (bb, cfun)
297 {
298 /* In cfglayout mode, we don't bother with trivial next-insn
299 propagation of LABEL_REFs into JUMP_LABEL. This will be
300 handled by other optimizers using better algorithms. */
301 FOR_BB_INSNS (bb, insn)
302 {
303 gcc_assert (! insn->deleted ());
304 if (NONDEBUG_INSN_P (insn))
305 mark_jump_label (PATTERN (insn), insn, 0);
306 }
307
308 /* In cfglayout mode, there may be non-insns between the
309 basic blocks. If those non-insns represent tablejump data,
310 they contain label references that we must record. */
311 for (insn = BB_HEADER (bb); insn; insn = NEXT_INSN (insn))
312 if (JUMP_TABLE_DATA_P (insn))
313 mark_jump_label (PATTERN (insn), insn, 0);
314 for (insn = BB_FOOTER (bb); insn; insn = NEXT_INSN (insn))
315 if (JUMP_TABLE_DATA_P (insn))
316 mark_jump_label (PATTERN (insn), insn, 0);
317 }
318 }
319 else
320 {
321 rtx_insn *prev_nonjump_insn = NULL;
322 for (insn = f; insn; insn = NEXT_INSN (insn))
323 {
324 if (insn->deleted ())
325 ;
326 else if (LABEL_P (insn))
327 prev_nonjump_insn = NULL;
328 else if (JUMP_TABLE_DATA_P (insn))
329 mark_jump_label (PATTERN (insn), insn, 0);
330 else if (NONDEBUG_INSN_P (insn))
331 {
332 mark_jump_label (PATTERN (insn), insn, 0);
333 if (JUMP_P (insn))
334 {
335 if (JUMP_LABEL (insn) == NULL && prev_nonjump_insn != NULL)
336 maybe_propagate_label_ref (insn, prev_nonjump_insn);
337 }
338 else
339 prev_nonjump_insn = insn;
340 }
341 }
342 }
343 }
344 \f
345 /* Given a comparison (CODE ARG0 ARG1), inside an insn, INSN, return a code
346 of reversed comparison if it is possible to do so. Otherwise return UNKNOWN.
347 UNKNOWN may be returned in case we are having CC_MODE compare and we don't
348 know whether it's source is floating point or integer comparison. Machine
349 description should define REVERSIBLE_CC_MODE and REVERSE_CONDITION macros
350 to help this function avoid overhead in these cases. */
351 enum rtx_code
352 reversed_comparison_code_parts (enum rtx_code code, const_rtx arg0,
353 const_rtx arg1, const rtx_insn *insn)
354 {
355 machine_mode mode;
356
357 /* If this is not actually a comparison, we can't reverse it. */
358 if (GET_RTX_CLASS (code) != RTX_COMPARE
359 && GET_RTX_CLASS (code) != RTX_COMM_COMPARE)
360 return UNKNOWN;
361
362 mode = GET_MODE (arg0);
363 if (mode == VOIDmode)
364 mode = GET_MODE (arg1);
365
366 /* First see if machine description supplies us way to reverse the
367 comparison. Give it priority over everything else to allow
368 machine description to do tricks. */
369 if (GET_MODE_CLASS (mode) == MODE_CC
370 && REVERSIBLE_CC_MODE (mode))
371 return REVERSE_CONDITION (code, mode);
372
373 /* Try a few special cases based on the comparison code. */
374 switch (code)
375 {
376 case GEU:
377 case GTU:
378 case LEU:
379 case LTU:
380 case NE:
381 case EQ:
382 /* It is always safe to reverse EQ and NE, even for the floating
383 point. Similarly the unsigned comparisons are never used for
384 floating point so we can reverse them in the default way. */
385 return reverse_condition (code);
386 case ORDERED:
387 case UNORDERED:
388 case LTGT:
389 case UNEQ:
390 /* In case we already see unordered comparison, we can be sure to
391 be dealing with floating point so we don't need any more tests. */
392 return reverse_condition_maybe_unordered (code);
393 case UNLT:
394 case UNLE:
395 case UNGT:
396 case UNGE:
397 /* We don't have safe way to reverse these yet. */
398 return UNKNOWN;
399 default:
400 break;
401 }
402
403 if (GET_MODE_CLASS (mode) == MODE_CC)
404 {
405 /* Try to search for the comparison to determine the real mode.
406 This code is expensive, but with sane machine description it
407 will be never used, since REVERSIBLE_CC_MODE will return true
408 in all cases. */
409 if (! insn)
410 return UNKNOWN;
411
412 /* These CONST_CAST's are okay because prev_nonnote_insn just
413 returns its argument and we assign it to a const_rtx
414 variable. */
415 for (rtx_insn *prev = prev_nonnote_insn (const_cast<rtx_insn *> (insn));
416 prev != 0 && !LABEL_P (prev);
417 prev = prev_nonnote_insn (prev))
418 {
419 const_rtx set = set_of (arg0, prev);
420 if (set && GET_CODE (set) == SET
421 && rtx_equal_p (SET_DEST (set), arg0))
422 {
423 rtx src = SET_SRC (set);
424
425 if (GET_CODE (src) == COMPARE)
426 {
427 rtx comparison = src;
428 arg0 = XEXP (src, 0);
429 mode = GET_MODE (arg0);
430 if (mode == VOIDmode)
431 mode = GET_MODE (XEXP (comparison, 1));
432 break;
433 }
434 /* We can get past reg-reg moves. This may be useful for model
435 of i387 comparisons that first move flag registers around. */
436 if (REG_P (src))
437 {
438 arg0 = src;
439 continue;
440 }
441 }
442 /* If register is clobbered in some ununderstandable way,
443 give up. */
444 if (set)
445 return UNKNOWN;
446 }
447 }
448
449 /* Test for an integer condition, or a floating-point comparison
450 in which NaNs can be ignored. */
451 if (CONST_INT_P (arg0)
452 || (GET_MODE (arg0) != VOIDmode
453 && GET_MODE_CLASS (mode) != MODE_CC
454 && !HONOR_NANS (mode)))
455 return reverse_condition (code);
456
457 return UNKNOWN;
458 }
459
460 /* A wrapper around the previous function to take COMPARISON as rtx
461 expression. This simplifies many callers. */
462 enum rtx_code
463 reversed_comparison_code (const_rtx comparison, const rtx_insn *insn)
464 {
465 if (!COMPARISON_P (comparison))
466 return UNKNOWN;
467 return reversed_comparison_code_parts (GET_CODE (comparison),
468 XEXP (comparison, 0),
469 XEXP (comparison, 1), insn);
470 }
471
472 /* Return comparison with reversed code of EXP.
473 Return NULL_RTX in case we fail to do the reversal. */
474 rtx
475 reversed_comparison (const_rtx exp, machine_mode mode)
476 {
477 enum rtx_code reversed_code = reversed_comparison_code (exp, NULL);
478 if (reversed_code == UNKNOWN)
479 return NULL_RTX;
480 else
481 return simplify_gen_relational (reversed_code, mode, VOIDmode,
482 XEXP (exp, 0), XEXP (exp, 1));
483 }
484
485 \f
486 /* Given an rtx-code for a comparison, return the code for the negated
487 comparison. If no such code exists, return UNKNOWN.
488
489 WATCH OUT! reverse_condition is not safe to use on a jump that might
490 be acting on the results of an IEEE floating point comparison, because
491 of the special treatment of non-signaling nans in comparisons.
492 Use reversed_comparison_code instead. */
493
494 enum rtx_code
495 reverse_condition (enum rtx_code code)
496 {
497 switch (code)
498 {
499 case EQ:
500 return NE;
501 case NE:
502 return EQ;
503 case GT:
504 return LE;
505 case GE:
506 return LT;
507 case LT:
508 return GE;
509 case LE:
510 return GT;
511 case GTU:
512 return LEU;
513 case GEU:
514 return LTU;
515 case LTU:
516 return GEU;
517 case LEU:
518 return GTU;
519 case UNORDERED:
520 return ORDERED;
521 case ORDERED:
522 return UNORDERED;
523
524 case UNLT:
525 case UNLE:
526 case UNGT:
527 case UNGE:
528 case UNEQ:
529 case LTGT:
530 return UNKNOWN;
531
532 default:
533 gcc_unreachable ();
534 }
535 }
536
537 /* Similar, but we're allowed to generate unordered comparisons, which
538 makes it safe for IEEE floating-point. Of course, we have to recognize
539 that the target will support them too... */
540
541 enum rtx_code
542 reverse_condition_maybe_unordered (enum rtx_code code)
543 {
544 switch (code)
545 {
546 case EQ:
547 return NE;
548 case NE:
549 return EQ;
550 case GT:
551 return UNLE;
552 case GE:
553 return UNLT;
554 case LT:
555 return UNGE;
556 case LE:
557 return UNGT;
558 case LTGT:
559 return UNEQ;
560 case UNORDERED:
561 return ORDERED;
562 case ORDERED:
563 return UNORDERED;
564 case UNLT:
565 return GE;
566 case UNLE:
567 return GT;
568 case UNGT:
569 return LE;
570 case UNGE:
571 return LT;
572 case UNEQ:
573 return LTGT;
574
575 default:
576 gcc_unreachable ();
577 }
578 }
579
580 /* Similar, but return the code when two operands of a comparison are swapped.
581 This IS safe for IEEE floating-point. */
582
583 enum rtx_code
584 swap_condition (enum rtx_code code)
585 {
586 switch (code)
587 {
588 case EQ:
589 case NE:
590 case UNORDERED:
591 case ORDERED:
592 case UNEQ:
593 case LTGT:
594 return code;
595
596 case GT:
597 return LT;
598 case GE:
599 return LE;
600 case LT:
601 return GT;
602 case LE:
603 return GE;
604 case GTU:
605 return LTU;
606 case GEU:
607 return LEU;
608 case LTU:
609 return GTU;
610 case LEU:
611 return GEU;
612 case UNLT:
613 return UNGT;
614 case UNLE:
615 return UNGE;
616 case UNGT:
617 return UNLT;
618 case UNGE:
619 return UNLE;
620
621 default:
622 gcc_unreachable ();
623 }
624 }
625
626 /* Given a comparison CODE, return the corresponding unsigned comparison.
627 If CODE is an equality comparison or already an unsigned comparison,
628 CODE is returned. */
629
630 enum rtx_code
631 unsigned_condition (enum rtx_code code)
632 {
633 switch (code)
634 {
635 case EQ:
636 case NE:
637 case GTU:
638 case GEU:
639 case LTU:
640 case LEU:
641 return code;
642
643 case GT:
644 return GTU;
645 case GE:
646 return GEU;
647 case LT:
648 return LTU;
649 case LE:
650 return LEU;
651
652 default:
653 gcc_unreachable ();
654 }
655 }
656
657 /* Similarly, return the signed version of a comparison. */
658
659 enum rtx_code
660 signed_condition (enum rtx_code code)
661 {
662 switch (code)
663 {
664 case EQ:
665 case NE:
666 case GT:
667 case GE:
668 case LT:
669 case LE:
670 return code;
671
672 case GTU:
673 return GT;
674 case GEU:
675 return GE;
676 case LTU:
677 return LT;
678 case LEU:
679 return LE;
680
681 default:
682 gcc_unreachable ();
683 }
684 }
685 \f
686 /* Return nonzero if CODE1 is more strict than CODE2, i.e., if the
687 truth of CODE1 implies the truth of CODE2. */
688
689 int
690 comparison_dominates_p (enum rtx_code code1, enum rtx_code code2)
691 {
692 /* UNKNOWN comparison codes can happen as a result of trying to revert
693 comparison codes.
694 They can't match anything, so we have to reject them here. */
695 if (code1 == UNKNOWN || code2 == UNKNOWN)
696 return 0;
697
698 if (code1 == code2)
699 return 1;
700
701 switch (code1)
702 {
703 case UNEQ:
704 if (code2 == UNLE || code2 == UNGE)
705 return 1;
706 break;
707
708 case EQ:
709 if (code2 == LE || code2 == LEU || code2 == GE || code2 == GEU
710 || code2 == ORDERED)
711 return 1;
712 break;
713
714 case UNLT:
715 if (code2 == UNLE || code2 == NE)
716 return 1;
717 break;
718
719 case LT:
720 if (code2 == LE || code2 == NE || code2 == ORDERED || code2 == LTGT)
721 return 1;
722 break;
723
724 case UNGT:
725 if (code2 == UNGE || code2 == NE)
726 return 1;
727 break;
728
729 case GT:
730 if (code2 == GE || code2 == NE || code2 == ORDERED || code2 == LTGT)
731 return 1;
732 break;
733
734 case GE:
735 case LE:
736 if (code2 == ORDERED)
737 return 1;
738 break;
739
740 case LTGT:
741 if (code2 == NE || code2 == ORDERED)
742 return 1;
743 break;
744
745 case LTU:
746 if (code2 == LEU || code2 == NE)
747 return 1;
748 break;
749
750 case GTU:
751 if (code2 == GEU || code2 == NE)
752 return 1;
753 break;
754
755 case UNORDERED:
756 if (code2 == NE || code2 == UNEQ || code2 == UNLE || code2 == UNLT
757 || code2 == UNGE || code2 == UNGT)
758 return 1;
759 break;
760
761 default:
762 break;
763 }
764
765 return 0;
766 }
767 \f
768 /* Return 1 if INSN is an unconditional jump and nothing else. */
769
770 int
771 simplejump_p (const rtx_insn *insn)
772 {
773 return (JUMP_P (insn)
774 && GET_CODE (PATTERN (insn)) == SET
775 && GET_CODE (SET_DEST (PATTERN (insn))) == PC
776 && GET_CODE (SET_SRC (PATTERN (insn))) == LABEL_REF);
777 }
778
779 /* Return nonzero if INSN is a (possibly) conditional jump
780 and nothing more.
781
782 Use of this function is deprecated, since we need to support combined
783 branch and compare insns. Use any_condjump_p instead whenever possible. */
784
785 int
786 condjump_p (const rtx_insn *insn)
787 {
788 const_rtx x = PATTERN (insn);
789
790 if (GET_CODE (x) != SET
791 || GET_CODE (SET_DEST (x)) != PC)
792 return 0;
793
794 x = SET_SRC (x);
795 if (GET_CODE (x) == LABEL_REF)
796 return 1;
797 else
798 return (GET_CODE (x) == IF_THEN_ELSE
799 && ((GET_CODE (XEXP (x, 2)) == PC
800 && (GET_CODE (XEXP (x, 1)) == LABEL_REF
801 || ANY_RETURN_P (XEXP (x, 1))))
802 || (GET_CODE (XEXP (x, 1)) == PC
803 && (GET_CODE (XEXP (x, 2)) == LABEL_REF
804 || ANY_RETURN_P (XEXP (x, 2))))));
805 }
806
807 /* Return nonzero if INSN is a (possibly) conditional jump inside a
808 PARALLEL.
809
810 Use this function is deprecated, since we need to support combined
811 branch and compare insns. Use any_condjump_p instead whenever possible. */
812
813 int
814 condjump_in_parallel_p (const rtx_insn *insn)
815 {
816 const_rtx x = PATTERN (insn);
817
818 if (GET_CODE (x) != PARALLEL)
819 return 0;
820 else
821 x = XVECEXP (x, 0, 0);
822
823 if (GET_CODE (x) != SET)
824 return 0;
825 if (GET_CODE (SET_DEST (x)) != PC)
826 return 0;
827 if (GET_CODE (SET_SRC (x)) == LABEL_REF)
828 return 1;
829 if (GET_CODE (SET_SRC (x)) != IF_THEN_ELSE)
830 return 0;
831 if (XEXP (SET_SRC (x), 2) == pc_rtx
832 && (GET_CODE (XEXP (SET_SRC (x), 1)) == LABEL_REF
833 || ANY_RETURN_P (XEXP (SET_SRC (x), 1))))
834 return 1;
835 if (XEXP (SET_SRC (x), 1) == pc_rtx
836 && (GET_CODE (XEXP (SET_SRC (x), 2)) == LABEL_REF
837 || ANY_RETURN_P (XEXP (SET_SRC (x), 2))))
838 return 1;
839 return 0;
840 }
841
842 /* Return set of PC, otherwise NULL. */
843
844 rtx
845 pc_set (const rtx_insn *insn)
846 {
847 rtx pat;
848 if (!JUMP_P (insn))
849 return NULL_RTX;
850 pat = PATTERN (insn);
851
852 /* The set is allowed to appear either as the insn pattern or
853 the first set in a PARALLEL, UNSPEC or UNSPEC_VOLATILE. */
854 switch (GET_CODE (pat))
855 {
856 case PARALLEL:
857 case UNSPEC:
858 case UNSPEC_VOLATILE:
859 pat = XVECEXP (pat, 0, 0);
860 break;
861 default:
862 break;
863 }
864 if (GET_CODE (pat) == SET && GET_CODE (SET_DEST (pat)) == PC)
865 return pat;
866
867 return NULL_RTX;
868 }
869
870 /* Return true when insn is an unconditional direct jump,
871 possibly bundled inside a PARALLEL, UNSPEC or UNSPEC_VOLATILE.
872 The instruction may have various other effects so before removing the jump
873 you must verify onlyjump_p. */
874
875 int
876 any_uncondjump_p (const rtx_insn *insn)
877 {
878 const_rtx x = pc_set (insn);
879 if (!x)
880 return 0;
881 if (GET_CODE (SET_SRC (x)) != LABEL_REF)
882 return 0;
883 if (find_reg_note (insn, REG_NON_LOCAL_GOTO, NULL_RTX))
884 return 0;
885 return 1;
886 }
887
888 /* Return true when insn is a conditional jump. This function works for
889 instructions containing PC sets in PARALLELs, UNSPECs or UNSPEC_VOLATILEs.
890 The instruction may have various other effects so before removing the jump
891 you must verify onlyjump_p.
892
893 Note that unlike condjump_p it returns false for unconditional jumps. */
894
895 int
896 any_condjump_p (const rtx_insn *insn)
897 {
898 const_rtx x = pc_set (insn);
899 enum rtx_code a, b;
900
901 if (!x)
902 return 0;
903 if (GET_CODE (SET_SRC (x)) != IF_THEN_ELSE)
904 return 0;
905
906 a = GET_CODE (XEXP (SET_SRC (x), 1));
907 b = GET_CODE (XEXP (SET_SRC (x), 2));
908
909 return ((b == PC && (a == LABEL_REF || a == RETURN || a == SIMPLE_RETURN))
910 || (a == PC
911 && (b == LABEL_REF || b == RETURN || b == SIMPLE_RETURN)));
912 }
913
914 /* Return the label of a conditional jump. */
915
916 rtx
917 condjump_label (const rtx_insn *insn)
918 {
919 rtx x = pc_set (insn);
920
921 if (!x)
922 return NULL_RTX;
923 x = SET_SRC (x);
924 if (GET_CODE (x) == LABEL_REF)
925 return x;
926 if (GET_CODE (x) != IF_THEN_ELSE)
927 return NULL_RTX;
928 if (XEXP (x, 2) == pc_rtx && GET_CODE (XEXP (x, 1)) == LABEL_REF)
929 return XEXP (x, 1);
930 if (XEXP (x, 1) == pc_rtx && GET_CODE (XEXP (x, 2)) == LABEL_REF)
931 return XEXP (x, 2);
932 return NULL_RTX;
933 }
934
935 /* Return TRUE if INSN is a return jump. */
936
937 int
938 returnjump_p (const rtx_insn *insn)
939 {
940 if (JUMP_P (insn))
941 {
942 subrtx_iterator::array_type array;
943 FOR_EACH_SUBRTX (iter, array, PATTERN (insn), NONCONST)
944 {
945 const_rtx x = *iter;
946 switch (GET_CODE (x))
947 {
948 case RETURN:
949 case SIMPLE_RETURN:
950 case EH_RETURN:
951 return true;
952
953 case SET:
954 if (SET_IS_RETURN_P (x))
955 return true;
956 break;
957
958 default:
959 break;
960 }
961 }
962 }
963 return false;
964 }
965
966 /* Return true if INSN is a (possibly conditional) return insn. */
967
968 int
969 eh_returnjump_p (rtx_insn *insn)
970 {
971 if (JUMP_P (insn))
972 {
973 subrtx_iterator::array_type array;
974 FOR_EACH_SUBRTX (iter, array, PATTERN (insn), NONCONST)
975 if (GET_CODE (*iter) == EH_RETURN)
976 return true;
977 }
978 return false;
979 }
980
981 /* Return true if INSN is a jump that only transfers control and
982 nothing more. */
983
984 int
985 onlyjump_p (const rtx_insn *insn)
986 {
987 rtx set;
988
989 if (!JUMP_P (insn))
990 return 0;
991
992 set = single_set (insn);
993 if (set == NULL)
994 return 0;
995 if (GET_CODE (SET_DEST (set)) != PC)
996 return 0;
997 if (side_effects_p (SET_SRC (set)))
998 return 0;
999
1000 return 1;
1001 }
1002
1003 /* Return true iff INSN is a jump and its JUMP_LABEL is a label, not
1004 NULL or a return. */
1005 bool
1006 jump_to_label_p (const rtx_insn *insn)
1007 {
1008 return (JUMP_P (insn)
1009 && JUMP_LABEL (insn) != NULL && !ANY_RETURN_P (JUMP_LABEL (insn)));
1010 }
1011 \f
1012 /* Find all CODE_LABELs referred to in X, and increment their use
1013 counts. If INSN is a JUMP_INSN and there is at least one
1014 CODE_LABEL referenced in INSN as a jump target, then store the last
1015 one in JUMP_LABEL (INSN). For a tablejump, this must be the label
1016 for the ADDR_VEC. Store any other jump targets as REG_LABEL_TARGET
1017 notes. If INSN is an INSN or a CALL_INSN or non-target operands of
1018 a JUMP_INSN, and there is at least one CODE_LABEL referenced in
1019 INSN, add a REG_LABEL_OPERAND note containing that label to INSN.
1020 For returnjumps, the JUMP_LABEL will also be set as appropriate.
1021
1022 Note that two labels separated by a loop-beginning note
1023 must be kept distinct if we have not yet done loop-optimization,
1024 because the gap between them is where loop-optimize
1025 will want to move invariant code to. CROSS_JUMP tells us
1026 that loop-optimization is done with. */
1027
1028 void
1029 mark_jump_label (rtx x, rtx_insn *insn, int in_mem)
1030 {
1031 rtx asmop = extract_asm_operands (x);
1032 if (asmop)
1033 mark_jump_label_asm (asmop, insn);
1034 else
1035 mark_jump_label_1 (x, insn, in_mem != 0,
1036 (insn != NULL && x == PATTERN (insn) && JUMP_P (insn)));
1037 }
1038
1039 /* Worker function for mark_jump_label. IN_MEM is TRUE when X occurs
1040 within a (MEM ...). IS_TARGET is TRUE when X is to be treated as a
1041 jump-target; when the JUMP_LABEL field of INSN should be set or a
1042 REG_LABEL_TARGET note should be added, not a REG_LABEL_OPERAND
1043 note. */
1044
1045 static void
1046 mark_jump_label_1 (rtx x, rtx_insn *insn, bool in_mem, bool is_target)
1047 {
1048 RTX_CODE code = GET_CODE (x);
1049 int i;
1050 const char *fmt;
1051
1052 switch (code)
1053 {
1054 case PC:
1055 case REG:
1056 case CLOBBER:
1057 case CALL:
1058 return;
1059
1060 case RETURN:
1061 case SIMPLE_RETURN:
1062 if (is_target)
1063 {
1064 gcc_assert (JUMP_LABEL (insn) == NULL || JUMP_LABEL (insn) == x);
1065 JUMP_LABEL (insn) = x;
1066 }
1067 return;
1068
1069 case MEM:
1070 in_mem = true;
1071 break;
1072
1073 case SEQUENCE:
1074 {
1075 rtx_sequence *seq = as_a <rtx_sequence *> (x);
1076 for (i = 0; i < seq->len (); i++)
1077 mark_jump_label (PATTERN (seq->insn (i)),
1078 seq->insn (i), 0);
1079 }
1080 return;
1081
1082 case SYMBOL_REF:
1083 if (!in_mem)
1084 return;
1085
1086 /* If this is a constant-pool reference, see if it is a label. */
1087 if (CONSTANT_POOL_ADDRESS_P (x))
1088 mark_jump_label_1 (get_pool_constant (x), insn, in_mem, is_target);
1089 break;
1090
1091 /* Handle operands in the condition of an if-then-else as for a
1092 non-jump insn. */
1093 case IF_THEN_ELSE:
1094 if (!is_target)
1095 break;
1096 mark_jump_label_1 (XEXP (x, 0), insn, in_mem, false);
1097 mark_jump_label_1 (XEXP (x, 1), insn, in_mem, true);
1098 mark_jump_label_1 (XEXP (x, 2), insn, in_mem, true);
1099 return;
1100
1101 case LABEL_REF:
1102 {
1103 rtx_insn *label = label_ref_label (x);
1104
1105 /* Ignore remaining references to unreachable labels that
1106 have been deleted. */
1107 if (NOTE_P (label)
1108 && NOTE_KIND (label) == NOTE_INSN_DELETED_LABEL)
1109 break;
1110
1111 gcc_assert (LABEL_P (label));
1112
1113 /* Ignore references to labels of containing functions. */
1114 if (LABEL_REF_NONLOCAL_P (x))
1115 break;
1116
1117 set_label_ref_label (x, label);
1118 if (! insn || ! insn->deleted ())
1119 ++LABEL_NUSES (label);
1120
1121 if (insn)
1122 {
1123 if (is_target
1124 /* Do not change a previous setting of JUMP_LABEL. If the
1125 JUMP_LABEL slot is occupied by a different label,
1126 create a note for this label. */
1127 && (JUMP_LABEL (insn) == NULL || JUMP_LABEL (insn) == label))
1128 JUMP_LABEL (insn) = label;
1129 else
1130 {
1131 enum reg_note kind
1132 = is_target ? REG_LABEL_TARGET : REG_LABEL_OPERAND;
1133
1134 /* Add a REG_LABEL_OPERAND or REG_LABEL_TARGET note
1135 for LABEL unless there already is one. All uses of
1136 a label, except for the primary target of a jump,
1137 must have such a note. */
1138 if (! find_reg_note (insn, kind, label))
1139 add_reg_note (insn, kind, label);
1140 }
1141 }
1142 return;
1143 }
1144
1145 /* Do walk the labels in a vector, but not the first operand of an
1146 ADDR_DIFF_VEC. Don't set the JUMP_LABEL of a vector. */
1147 case ADDR_VEC:
1148 case ADDR_DIFF_VEC:
1149 if (! insn->deleted ())
1150 {
1151 int eltnum = code == ADDR_DIFF_VEC ? 1 : 0;
1152
1153 for (i = 0; i < XVECLEN (x, eltnum); i++)
1154 mark_jump_label_1 (XVECEXP (x, eltnum, i), NULL, in_mem,
1155 is_target);
1156 }
1157 return;
1158
1159 default:
1160 break;
1161 }
1162
1163 fmt = GET_RTX_FORMAT (code);
1164
1165 /* The primary target of a tablejump is the label of the ADDR_VEC,
1166 which is canonically mentioned *last* in the insn. To get it
1167 marked as JUMP_LABEL, we iterate over items in reverse order. */
1168 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1169 {
1170 if (fmt[i] == 'e')
1171 mark_jump_label_1 (XEXP (x, i), insn, in_mem, is_target);
1172 else if (fmt[i] == 'E')
1173 {
1174 int j;
1175
1176 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
1177 mark_jump_label_1 (XVECEXP (x, i, j), insn, in_mem,
1178 is_target);
1179 }
1180 }
1181 }
1182
1183 /* Worker function for mark_jump_label. Handle asm insns specially.
1184 In particular, output operands need not be considered so we can
1185 avoid re-scanning the replicated asm_operand. Also, the asm_labels
1186 need to be considered targets. */
1187
1188 static void
1189 mark_jump_label_asm (rtx asmop, rtx_insn *insn)
1190 {
1191 int i;
1192
1193 for (i = ASM_OPERANDS_INPUT_LENGTH (asmop) - 1; i >= 0; --i)
1194 mark_jump_label_1 (ASM_OPERANDS_INPUT (asmop, i), insn, false, false);
1195
1196 for (i = ASM_OPERANDS_LABEL_LENGTH (asmop) - 1; i >= 0; --i)
1197 mark_jump_label_1 (ASM_OPERANDS_LABEL (asmop, i), insn, false, true);
1198 }
1199 \f
1200 /* Delete insn INSN from the chain of insns and update label ref counts
1201 and delete insns now unreachable.
1202
1203 Returns the first insn after INSN that was not deleted.
1204
1205 Usage of this instruction is deprecated. Use delete_insn instead and
1206 subsequent cfg_cleanup pass to delete unreachable code if needed. */
1207
1208 rtx_insn *
1209 delete_related_insns (rtx uncast_insn)
1210 {
1211 rtx_insn *insn = as_a <rtx_insn *> (uncast_insn);
1212 int was_code_label = (LABEL_P (insn));
1213 rtx note;
1214 rtx_insn *next = NEXT_INSN (insn), *prev = PREV_INSN (insn);
1215
1216 while (next && next->deleted ())
1217 next = NEXT_INSN (next);
1218
1219 /* This insn is already deleted => return first following nondeleted. */
1220 if (insn->deleted ())
1221 return next;
1222
1223 delete_insn (insn);
1224
1225 /* If instruction is followed by a barrier,
1226 delete the barrier too. */
1227
1228 if (next != 0 && BARRIER_P (next))
1229 delete_insn (next);
1230
1231 /* If deleting a jump, decrement the count of the label,
1232 and delete the label if it is now unused. */
1233
1234 if (jump_to_label_p (insn))
1235 {
1236 rtx lab = JUMP_LABEL (insn);
1237 rtx_jump_table_data *lab_next;
1238
1239 if (LABEL_NUSES (lab) == 0)
1240 /* This can delete NEXT or PREV,
1241 either directly if NEXT is JUMP_LABEL (INSN),
1242 or indirectly through more levels of jumps. */
1243 delete_related_insns (lab);
1244 else if (tablejump_p (insn, NULL, &lab_next))
1245 {
1246 /* If we're deleting the tablejump, delete the dispatch table.
1247 We may not be able to kill the label immediately preceding
1248 just yet, as it might be referenced in code leading up to
1249 the tablejump. */
1250 delete_related_insns (lab_next);
1251 }
1252 }
1253
1254 /* Likewise if we're deleting a dispatch table. */
1255
1256 if (rtx_jump_table_data *table = dyn_cast <rtx_jump_table_data *> (insn))
1257 {
1258 rtvec labels = table->get_labels ();
1259 int i;
1260 int len = GET_NUM_ELEM (labels);
1261
1262 for (i = 0; i < len; i++)
1263 if (LABEL_NUSES (XEXP (RTVEC_ELT (labels, i), 0)) == 0)
1264 delete_related_insns (XEXP (RTVEC_ELT (labels, i), 0));
1265 while (next && next->deleted ())
1266 next = NEXT_INSN (next);
1267 return next;
1268 }
1269
1270 /* Likewise for any JUMP_P / INSN / CALL_INSN with a
1271 REG_LABEL_OPERAND or REG_LABEL_TARGET note. */
1272 if (INSN_P (insn))
1273 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
1274 if ((REG_NOTE_KIND (note) == REG_LABEL_OPERAND
1275 || REG_NOTE_KIND (note) == REG_LABEL_TARGET)
1276 /* This could also be a NOTE_INSN_DELETED_LABEL note. */
1277 && LABEL_P (XEXP (note, 0)))
1278 if (LABEL_NUSES (XEXP (note, 0)) == 0)
1279 delete_related_insns (XEXP (note, 0));
1280
1281 while (prev && (prev->deleted () || NOTE_P (prev)))
1282 prev = PREV_INSN (prev);
1283
1284 /* If INSN was a label and a dispatch table follows it,
1285 delete the dispatch table. The tablejump must have gone already.
1286 It isn't useful to fall through into a table. */
1287
1288 if (was_code_label
1289 && NEXT_INSN (insn) != 0
1290 && JUMP_TABLE_DATA_P (NEXT_INSN (insn)))
1291 next = delete_related_insns (NEXT_INSN (insn));
1292
1293 /* If INSN was a label, delete insns following it if now unreachable. */
1294
1295 if (was_code_label && prev && BARRIER_P (prev))
1296 {
1297 enum rtx_code code;
1298 while (next)
1299 {
1300 code = GET_CODE (next);
1301 if (code == NOTE)
1302 next = NEXT_INSN (next);
1303 /* Keep going past other deleted labels to delete what follows. */
1304 else if (code == CODE_LABEL && next->deleted ())
1305 next = NEXT_INSN (next);
1306 /* Keep the (use (insn))s created by dbr_schedule, which needs
1307 them in order to track liveness relative to a previous
1308 barrier. */
1309 else if (INSN_P (next)
1310 && GET_CODE (PATTERN (next)) == USE
1311 && INSN_P (XEXP (PATTERN (next), 0)))
1312 next = NEXT_INSN (next);
1313 else if (code == BARRIER || INSN_P (next))
1314 /* Note: if this deletes a jump, it can cause more
1315 deletion of unreachable code, after a different label.
1316 As long as the value from this recursive call is correct,
1317 this invocation functions correctly. */
1318 next = delete_related_insns (next);
1319 else
1320 break;
1321 }
1322 }
1323
1324 /* I feel a little doubtful about this loop,
1325 but I see no clean and sure alternative way
1326 to find the first insn after INSN that is not now deleted.
1327 I hope this works. */
1328 while (next && next->deleted ())
1329 next = NEXT_INSN (next);
1330 return next;
1331 }
1332 \f
1333 /* Delete a range of insns from FROM to TO, inclusive.
1334 This is for the sake of peephole optimization, so assume
1335 that whatever these insns do will still be done by a new
1336 peephole insn that will replace them. */
1337
1338 void
1339 delete_for_peephole (rtx_insn *from, rtx_insn *to)
1340 {
1341 rtx_insn *insn = from;
1342
1343 while (1)
1344 {
1345 rtx_insn *next = NEXT_INSN (insn);
1346 rtx_insn *prev = PREV_INSN (insn);
1347
1348 if (!NOTE_P (insn))
1349 {
1350 insn->set_deleted();
1351
1352 /* Patch this insn out of the chain. */
1353 /* We don't do this all at once, because we
1354 must preserve all NOTEs. */
1355 if (prev)
1356 SET_NEXT_INSN (prev) = next;
1357
1358 if (next)
1359 SET_PREV_INSN (next) = prev;
1360 }
1361
1362 if (insn == to)
1363 break;
1364 insn = next;
1365 }
1366
1367 /* Note that if TO is an unconditional jump
1368 we *do not* delete the BARRIER that follows,
1369 since the peephole that replaces this sequence
1370 is also an unconditional jump in that case. */
1371 }
1372 \f
1373 /* A helper function for redirect_exp_1; examines its input X and returns
1374 either a LABEL_REF around a label, or a RETURN if X was NULL. */
1375 static rtx
1376 redirect_target (rtx x)
1377 {
1378 if (x == NULL_RTX)
1379 return ret_rtx;
1380 if (!ANY_RETURN_P (x))
1381 return gen_rtx_LABEL_REF (Pmode, x);
1382 return x;
1383 }
1384
1385 /* Throughout LOC, redirect OLABEL to NLABEL. Treat null OLABEL or
1386 NLABEL as a return. Accrue modifications into the change group. */
1387
1388 static void
1389 redirect_exp_1 (rtx *loc, rtx olabel, rtx nlabel, rtx_insn *insn)
1390 {
1391 rtx x = *loc;
1392 RTX_CODE code = GET_CODE (x);
1393 int i;
1394 const char *fmt;
1395
1396 if ((code == LABEL_REF && label_ref_label (x) == olabel)
1397 || x == olabel)
1398 {
1399 x = redirect_target (nlabel);
1400 if (GET_CODE (x) == LABEL_REF && loc == &PATTERN (insn))
1401 x = gen_rtx_SET (pc_rtx, x);
1402 validate_change (insn, loc, x, 1);
1403 return;
1404 }
1405
1406 if (code == SET && SET_DEST (x) == pc_rtx
1407 && ANY_RETURN_P (nlabel)
1408 && GET_CODE (SET_SRC (x)) == LABEL_REF
1409 && label_ref_label (SET_SRC (x)) == olabel)
1410 {
1411 validate_change (insn, loc, nlabel, 1);
1412 return;
1413 }
1414
1415 if (code == IF_THEN_ELSE)
1416 {
1417 /* Skip the condition of an IF_THEN_ELSE. We only want to
1418 change jump destinations, not eventual label comparisons. */
1419 redirect_exp_1 (&XEXP (x, 1), olabel, nlabel, insn);
1420 redirect_exp_1 (&XEXP (x, 2), olabel, nlabel, insn);
1421 return;
1422 }
1423
1424 fmt = GET_RTX_FORMAT (code);
1425 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1426 {
1427 if (fmt[i] == 'e')
1428 redirect_exp_1 (&XEXP (x, i), olabel, nlabel, insn);
1429 else if (fmt[i] == 'E')
1430 {
1431 int j;
1432 for (j = 0; j < XVECLEN (x, i); j++)
1433 redirect_exp_1 (&XVECEXP (x, i, j), olabel, nlabel, insn);
1434 }
1435 }
1436 }
1437
1438 /* Make JUMP go to NLABEL instead of where it jumps now. Accrue
1439 the modifications into the change group. Return false if we did
1440 not see how to do that. */
1441
1442 int
1443 redirect_jump_1 (rtx_insn *jump, rtx nlabel)
1444 {
1445 int ochanges = num_validated_changes ();
1446 rtx *loc, asmop;
1447
1448 gcc_assert (nlabel != NULL_RTX);
1449 asmop = extract_asm_operands (PATTERN (jump));
1450 if (asmop)
1451 {
1452 if (nlabel == NULL)
1453 return 0;
1454 gcc_assert (ASM_OPERANDS_LABEL_LENGTH (asmop) == 1);
1455 loc = &ASM_OPERANDS_LABEL (asmop, 0);
1456 }
1457 else if (GET_CODE (PATTERN (jump)) == PARALLEL)
1458 loc = &XVECEXP (PATTERN (jump), 0, 0);
1459 else
1460 loc = &PATTERN (jump);
1461
1462 redirect_exp_1 (loc, JUMP_LABEL (jump), nlabel, jump);
1463 return num_validated_changes () > ochanges;
1464 }
1465
1466 /* Make JUMP go to NLABEL instead of where it jumps now. If the old
1467 jump target label is unused as a result, it and the code following
1468 it may be deleted.
1469
1470 Normally, NLABEL will be a label, but it may also be a RETURN rtx;
1471 in that case we are to turn the jump into a (possibly conditional)
1472 return insn.
1473
1474 The return value will be 1 if the change was made, 0 if it wasn't
1475 (this can only occur when trying to produce return insns). */
1476
1477 int
1478 redirect_jump (rtx_jump_insn *jump, rtx nlabel, int delete_unused)
1479 {
1480 rtx olabel = jump->jump_label ();
1481
1482 if (!nlabel)
1483 {
1484 /* If there is no label, we are asked to redirect to the EXIT block.
1485 When before the epilogue is emitted, return/simple_return cannot be
1486 created so we return 0 immediately. After the epilogue is emitted,
1487 we always expect a label, either a non-null label, or a
1488 return/simple_return RTX. */
1489
1490 if (!epilogue_completed)
1491 return 0;
1492 gcc_unreachable ();
1493 }
1494
1495 if (nlabel == olabel)
1496 return 1;
1497
1498 if (! redirect_jump_1 (jump, nlabel) || ! apply_change_group ())
1499 return 0;
1500
1501 redirect_jump_2 (jump, olabel, nlabel, delete_unused, 0);
1502 return 1;
1503 }
1504
1505 /* Fix up JUMP_LABEL and label ref counts after OLABEL has been replaced with
1506 NLABEL in JUMP.
1507 If DELETE_UNUSED is positive, delete related insn to OLABEL if its ref
1508 count has dropped to zero. */
1509 void
1510 redirect_jump_2 (rtx_jump_insn *jump, rtx olabel, rtx nlabel, int delete_unused,
1511 int invert)
1512 {
1513 rtx note;
1514
1515 gcc_assert (JUMP_LABEL (jump) == olabel);
1516
1517 /* Negative DELETE_UNUSED used to be used to signalize behavior on
1518 moving FUNCTION_END note. Just sanity check that no user still worry
1519 about this. */
1520 gcc_assert (delete_unused >= 0);
1521 JUMP_LABEL (jump) = nlabel;
1522 if (!ANY_RETURN_P (nlabel))
1523 ++LABEL_NUSES (nlabel);
1524
1525 /* Update labels in any REG_EQUAL note. */
1526 if ((note = find_reg_note (jump, REG_EQUAL, NULL_RTX)) != NULL_RTX)
1527 {
1528 if (ANY_RETURN_P (nlabel)
1529 || (invert && !invert_exp_1 (XEXP (note, 0), jump)))
1530 remove_note (jump, note);
1531 else
1532 {
1533 redirect_exp_1 (&XEXP (note, 0), olabel, nlabel, jump);
1534 confirm_change_group ();
1535 }
1536 }
1537
1538 /* Handle the case where we had a conditional crossing jump to a return
1539 label and are now changing it into a direct conditional return.
1540 The jump is no longer crossing in that case. */
1541 if (ANY_RETURN_P (nlabel))
1542 CROSSING_JUMP_P (jump) = 0;
1543
1544 if (!ANY_RETURN_P (olabel)
1545 && --LABEL_NUSES (olabel) == 0 && delete_unused > 0
1546 /* Undefined labels will remain outside the insn stream. */
1547 && INSN_UID (olabel))
1548 delete_related_insns (olabel);
1549 if (invert)
1550 invert_br_probabilities (jump);
1551 }
1552
1553 /* Invert the jump condition X contained in jump insn INSN. Accrue the
1554 modifications into the change group. Return nonzero for success. */
1555 static int
1556 invert_exp_1 (rtx x, rtx_insn *insn)
1557 {
1558 RTX_CODE code = GET_CODE (x);
1559
1560 if (code == IF_THEN_ELSE)
1561 {
1562 rtx comp = XEXP (x, 0);
1563 rtx tem;
1564 enum rtx_code reversed_code;
1565
1566 /* We can do this in two ways: The preferable way, which can only
1567 be done if this is not an integer comparison, is to reverse
1568 the comparison code. Otherwise, swap the THEN-part and ELSE-part
1569 of the IF_THEN_ELSE. If we can't do either, fail. */
1570
1571 reversed_code = reversed_comparison_code (comp, insn);
1572
1573 if (reversed_code != UNKNOWN)
1574 {
1575 validate_change (insn, &XEXP (x, 0),
1576 gen_rtx_fmt_ee (reversed_code,
1577 GET_MODE (comp), XEXP (comp, 0),
1578 XEXP (comp, 1)),
1579 1);
1580 return 1;
1581 }
1582
1583 tem = XEXP (x, 1);
1584 validate_change (insn, &XEXP (x, 1), XEXP (x, 2), 1);
1585 validate_change (insn, &XEXP (x, 2), tem, 1);
1586 return 1;
1587 }
1588 else
1589 return 0;
1590 }
1591
1592 /* Invert the condition of the jump JUMP, and make it jump to label
1593 NLABEL instead of where it jumps now. Accrue changes into the
1594 change group. Return false if we didn't see how to perform the
1595 inversion and redirection. */
1596
1597 int
1598 invert_jump_1 (rtx_jump_insn *jump, rtx nlabel)
1599 {
1600 rtx x = pc_set (jump);
1601 int ochanges;
1602 int ok;
1603
1604 ochanges = num_validated_changes ();
1605 if (x == NULL)
1606 return 0;
1607 ok = invert_exp_1 (SET_SRC (x), jump);
1608 gcc_assert (ok);
1609
1610 if (num_validated_changes () == ochanges)
1611 return 0;
1612
1613 /* redirect_jump_1 will fail of nlabel == olabel, and the current use is
1614 in Pmode, so checking this is not merely an optimization. */
1615 return nlabel == JUMP_LABEL (jump) || redirect_jump_1 (jump, nlabel);
1616 }
1617
1618 /* Invert the condition of the jump JUMP, and make it jump to label
1619 NLABEL instead of where it jumps now. Return true if successful. */
1620
1621 int
1622 invert_jump (rtx_jump_insn *jump, rtx nlabel, int delete_unused)
1623 {
1624 rtx olabel = JUMP_LABEL (jump);
1625
1626 if (invert_jump_1 (jump, nlabel) && apply_change_group ())
1627 {
1628 redirect_jump_2 (jump, olabel, nlabel, delete_unused, 1);
1629 return 1;
1630 }
1631 cancel_changes (0);
1632 return 0;
1633 }
1634
1635 \f
1636 /* Like rtx_equal_p except that it considers two REGs as equal
1637 if they renumber to the same value and considers two commutative
1638 operations to be the same if the order of the operands has been
1639 reversed. */
1640
1641 int
1642 rtx_renumbered_equal_p (const_rtx x, const_rtx y)
1643 {
1644 int i;
1645 const enum rtx_code code = GET_CODE (x);
1646 const char *fmt;
1647
1648 if (x == y)
1649 return 1;
1650
1651 if ((code == REG || (code == SUBREG && REG_P (SUBREG_REG (x))))
1652 && (REG_P (y) || (GET_CODE (y) == SUBREG
1653 && REG_P (SUBREG_REG (y)))))
1654 {
1655 int reg_x = -1, reg_y = -1;
1656 poly_int64 byte_x = 0, byte_y = 0;
1657 struct subreg_info info;
1658
1659 if (GET_MODE (x) != GET_MODE (y))
1660 return 0;
1661
1662 /* If we haven't done any renumbering, don't
1663 make any assumptions. */
1664 if (reg_renumber == 0)
1665 return rtx_equal_p (x, y);
1666
1667 if (code == SUBREG)
1668 {
1669 reg_x = REGNO (SUBREG_REG (x));
1670 byte_x = SUBREG_BYTE (x);
1671
1672 if (reg_renumber[reg_x] >= 0)
1673 {
1674 subreg_get_info (reg_renumber[reg_x],
1675 GET_MODE (SUBREG_REG (x)), byte_x,
1676 GET_MODE (x), &info);
1677 if (!info.representable_p)
1678 return 0;
1679 reg_x = info.offset;
1680 byte_x = 0;
1681 }
1682 }
1683 else
1684 {
1685 reg_x = REGNO (x);
1686 if (reg_renumber[reg_x] >= 0)
1687 reg_x = reg_renumber[reg_x];
1688 }
1689
1690 if (GET_CODE (y) == SUBREG)
1691 {
1692 reg_y = REGNO (SUBREG_REG (y));
1693 byte_y = SUBREG_BYTE (y);
1694
1695 if (reg_renumber[reg_y] >= 0)
1696 {
1697 subreg_get_info (reg_renumber[reg_y],
1698 GET_MODE (SUBREG_REG (y)), byte_y,
1699 GET_MODE (y), &info);
1700 if (!info.representable_p)
1701 return 0;
1702 reg_y = info.offset;
1703 byte_y = 0;
1704 }
1705 }
1706 else
1707 {
1708 reg_y = REGNO (y);
1709 if (reg_renumber[reg_y] >= 0)
1710 reg_y = reg_renumber[reg_y];
1711 }
1712
1713 return reg_x >= 0 && reg_x == reg_y && known_eq (byte_x, byte_y);
1714 }
1715
1716 /* Now we have disposed of all the cases
1717 in which different rtx codes can match. */
1718 if (code != GET_CODE (y))
1719 return 0;
1720
1721 switch (code)
1722 {
1723 case PC:
1724 case ADDR_VEC:
1725 case ADDR_DIFF_VEC:
1726 CASE_CONST_UNIQUE:
1727 return 0;
1728
1729 case CONST_VECTOR:
1730 if (!same_vector_encodings_p (x, y))
1731 return false;
1732 break;
1733
1734 case LABEL_REF:
1735 /* We can't assume nonlocal labels have their following insns yet. */
1736 if (LABEL_REF_NONLOCAL_P (x) || LABEL_REF_NONLOCAL_P (y))
1737 return label_ref_label (x) == label_ref_label (y);
1738
1739 /* Two label-refs are equivalent if they point at labels
1740 in the same position in the instruction stream. */
1741 else
1742 {
1743 rtx_insn *xi = next_nonnote_nondebug_insn (label_ref_label (x));
1744 rtx_insn *yi = next_nonnote_nondebug_insn (label_ref_label (y));
1745 while (xi && LABEL_P (xi))
1746 xi = next_nonnote_nondebug_insn (xi);
1747 while (yi && LABEL_P (yi))
1748 yi = next_nonnote_nondebug_insn (yi);
1749 return xi == yi;
1750 }
1751
1752 case SYMBOL_REF:
1753 return XSTR (x, 0) == XSTR (y, 0);
1754
1755 case CODE_LABEL:
1756 /* If we didn't match EQ equality above, they aren't the same. */
1757 return 0;
1758
1759 default:
1760 break;
1761 }
1762
1763 /* (MULT:SI x y) and (MULT:HI x y) are NOT equivalent. */
1764
1765 if (GET_MODE (x) != GET_MODE (y))
1766 return 0;
1767
1768 /* MEMs referring to different address space are not equivalent. */
1769 if (code == MEM && MEM_ADDR_SPACE (x) != MEM_ADDR_SPACE (y))
1770 return 0;
1771
1772 /* For commutative operations, the RTX match if the operand match in any
1773 order. Also handle the simple binary and unary cases without a loop. */
1774 if (targetm.commutative_p (x, UNKNOWN))
1775 return ((rtx_renumbered_equal_p (XEXP (x, 0), XEXP (y, 0))
1776 && rtx_renumbered_equal_p (XEXP (x, 1), XEXP (y, 1)))
1777 || (rtx_renumbered_equal_p (XEXP (x, 0), XEXP (y, 1))
1778 && rtx_renumbered_equal_p (XEXP (x, 1), XEXP (y, 0))));
1779 else if (NON_COMMUTATIVE_P (x))
1780 return (rtx_renumbered_equal_p (XEXP (x, 0), XEXP (y, 0))
1781 && rtx_renumbered_equal_p (XEXP (x, 1), XEXP (y, 1)));
1782 else if (UNARY_P (x))
1783 return rtx_renumbered_equal_p (XEXP (x, 0), XEXP (y, 0));
1784
1785 /* Compare the elements. If any pair of corresponding elements
1786 fail to match, return 0 for the whole things. */
1787
1788 fmt = GET_RTX_FORMAT (code);
1789 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1790 {
1791 int j;
1792 switch (fmt[i])
1793 {
1794 case 'w':
1795 if (XWINT (x, i) != XWINT (y, i))
1796 return 0;
1797 break;
1798
1799 case 'i':
1800 if (XINT (x, i) != XINT (y, i))
1801 {
1802 if (((code == ASM_OPERANDS && i == 6)
1803 || (code == ASM_INPUT && i == 1)))
1804 break;
1805 return 0;
1806 }
1807 break;
1808
1809 case 'p':
1810 if (maybe_ne (SUBREG_BYTE (x), SUBREG_BYTE (y)))
1811 return 0;
1812 break;
1813
1814 case 't':
1815 if (XTREE (x, i) != XTREE (y, i))
1816 return 0;
1817 break;
1818
1819 case 's':
1820 if (strcmp (XSTR (x, i), XSTR (y, i)))
1821 return 0;
1822 break;
1823
1824 case 'e':
1825 if (! rtx_renumbered_equal_p (XEXP (x, i), XEXP (y, i)))
1826 return 0;
1827 break;
1828
1829 case 'u':
1830 if (XEXP (x, i) != XEXP (y, i))
1831 return 0;
1832 /* Fall through. */
1833 case '0':
1834 break;
1835
1836 case 'E':
1837 if (XVECLEN (x, i) != XVECLEN (y, i))
1838 return 0;
1839 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
1840 if (!rtx_renumbered_equal_p (XVECEXP (x, i, j), XVECEXP (y, i, j)))
1841 return 0;
1842 break;
1843
1844 default:
1845 gcc_unreachable ();
1846 }
1847 }
1848 return 1;
1849 }
1850 \f
1851 /* If X is a hard register or equivalent to one or a subregister of one,
1852 return the hard register number. If X is a pseudo register that was not
1853 assigned a hard register, return the pseudo register number. Otherwise,
1854 return -1. Any rtx is valid for X. */
1855
1856 int
1857 true_regnum (const_rtx x)
1858 {
1859 if (REG_P (x))
1860 {
1861 if (REGNO (x) >= FIRST_PSEUDO_REGISTER
1862 && (lra_in_progress || reg_renumber[REGNO (x)] >= 0))
1863 return reg_renumber[REGNO (x)];
1864 return REGNO (x);
1865 }
1866 if (GET_CODE (x) == SUBREG)
1867 {
1868 int base = true_regnum (SUBREG_REG (x));
1869 if (base >= 0
1870 && base < FIRST_PSEUDO_REGISTER)
1871 {
1872 struct subreg_info info;
1873
1874 subreg_get_info (lra_in_progress
1875 ? (unsigned) base : REGNO (SUBREG_REG (x)),
1876 GET_MODE (SUBREG_REG (x)),
1877 SUBREG_BYTE (x), GET_MODE (x), &info);
1878
1879 if (info.representable_p)
1880 return base + info.offset;
1881 }
1882 }
1883 return -1;
1884 }
1885
1886 /* Return regno of the register REG and handle subregs too. */
1887 unsigned int
1888 reg_or_subregno (const_rtx reg)
1889 {
1890 if (GET_CODE (reg) == SUBREG)
1891 reg = SUBREG_REG (reg);
1892 gcc_assert (REG_P (reg));
1893 return REGNO (reg);
1894 }