]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/jump.c
Use rtx_expr_list for expr_status.x_forced_labels
[thirdparty/gcc.git] / gcc / jump.c
1 /* Optimize jump instructions, for GNU compiler.
2 Copyright (C) 1987-2014 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20 /* This is the pathetic reminder of old fame of the jump-optimization pass
21 of the compiler. Now it contains basically a set of utility functions to
22 operate with jumps.
23
24 Each CODE_LABEL has a count of the times it is used
25 stored in the LABEL_NUSES internal field, and each JUMP_INSN
26 has one label that it refers to stored in the
27 JUMP_LABEL internal field. With this we can detect labels that
28 become unused because of the deletion of all the jumps that
29 formerly used them. The JUMP_LABEL info is sometimes looked
30 at by later passes. For return insns, it contains either a
31 RETURN or a SIMPLE_RETURN rtx.
32
33 The subroutines redirect_jump and invert_jump are used
34 from other passes as well. */
35
36 #include "config.h"
37 #include "system.h"
38 #include "coretypes.h"
39 #include "tm.h"
40 #include "rtl.h"
41 #include "tm_p.h"
42 #include "flags.h"
43 #include "hard-reg-set.h"
44 #include "regs.h"
45 #include "insn-config.h"
46 #include "insn-attr.h"
47 #include "recog.h"
48 #include "function.h"
49 #include "basic-block.h"
50 #include "expr.h"
51 #include "except.h"
52 #include "diagnostic-core.h"
53 #include "reload.h"
54 #include "predict.h"
55 #include "tree-pass.h"
56 #include "target.h"
57
58 /* Optimize jump y; x: ... y: jumpif... x?
59 Don't know if it is worth bothering with. */
60 /* Optimize two cases of conditional jump to conditional jump?
61 This can never delete any instruction or make anything dead,
62 or even change what is live at any point.
63 So perhaps let combiner do it. */
64
65 static void init_label_info (rtx_insn *);
66 static void mark_all_labels (rtx_insn *);
67 static void mark_jump_label_1 (rtx, rtx, bool, bool);
68 static void mark_jump_label_asm (rtx, rtx);
69 static void redirect_exp_1 (rtx *, rtx, rtx, rtx);
70 static int invert_exp_1 (rtx, rtx);
71 static int returnjump_p_1 (rtx *, void *);
72 \f
73 /* Worker for rebuild_jump_labels and rebuild_jump_labels_chain. */
74 static void
75 rebuild_jump_labels_1 (rtx_insn *f, bool count_forced)
76 {
77 rtx_expr_list *insn;
78
79 timevar_push (TV_REBUILD_JUMP);
80 init_label_info (f);
81 mark_all_labels (f);
82
83 /* Keep track of labels used from static data; we don't track them
84 closely enough to delete them here, so make sure their reference
85 count doesn't drop to zero. */
86
87 if (count_forced)
88 for (insn = forced_labels; insn; insn = insn->next ())
89 if (LABEL_P (insn->element ()))
90 LABEL_NUSES (insn->element ())++;
91 timevar_pop (TV_REBUILD_JUMP);
92 }
93
94 /* This function rebuilds the JUMP_LABEL field and REG_LABEL_TARGET
95 notes in jumping insns and REG_LABEL_OPERAND notes in non-jumping
96 instructions and jumping insns that have labels as operands
97 (e.g. cbranchsi4). */
98 void
99 rebuild_jump_labels (rtx_insn *f)
100 {
101 rebuild_jump_labels_1 (f, true);
102 }
103
104 /* This function is like rebuild_jump_labels, but doesn't run over
105 forced_labels. It can be used on insn chains that aren't the
106 main function chain. */
107 void
108 rebuild_jump_labels_chain (rtx_insn *chain)
109 {
110 rebuild_jump_labels_1 (chain, false);
111 }
112 \f
113 /* Some old code expects exactly one BARRIER as the NEXT_INSN of a
114 non-fallthru insn. This is not generally true, as multiple barriers
115 may have crept in, or the BARRIER may be separated from the last
116 real insn by one or more NOTEs.
117
118 This simple pass moves barriers and removes duplicates so that the
119 old code is happy.
120 */
121 static unsigned int
122 cleanup_barriers (void)
123 {
124 rtx_insn *insn;
125 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
126 {
127 if (BARRIER_P (insn))
128 {
129 rtx_insn *prev = prev_nonnote_insn (insn);
130 if (!prev)
131 continue;
132
133 if (CALL_P (prev))
134 {
135 /* Make sure we do not split a call and its corresponding
136 CALL_ARG_LOCATION note. */
137 rtx_insn *next = NEXT_INSN (prev);
138
139 if (NOTE_P (next)
140 && NOTE_KIND (next) == NOTE_INSN_CALL_ARG_LOCATION)
141 prev = next;
142 }
143
144 if (BARRIER_P (prev))
145 delete_insn (insn);
146 else if (prev != PREV_INSN (insn))
147 reorder_insns_nobb (insn, insn, prev);
148 }
149 }
150 return 0;
151 }
152
153 namespace {
154
155 const pass_data pass_data_cleanup_barriers =
156 {
157 RTL_PASS, /* type */
158 "barriers", /* name */
159 OPTGROUP_NONE, /* optinfo_flags */
160 TV_NONE, /* tv_id */
161 0, /* properties_required */
162 0, /* properties_provided */
163 0, /* properties_destroyed */
164 0, /* todo_flags_start */
165 0, /* todo_flags_finish */
166 };
167
168 class pass_cleanup_barriers : public rtl_opt_pass
169 {
170 public:
171 pass_cleanup_barriers (gcc::context *ctxt)
172 : rtl_opt_pass (pass_data_cleanup_barriers, ctxt)
173 {}
174
175 /* opt_pass methods: */
176 virtual unsigned int execute (function *) { return cleanup_barriers (); }
177
178 }; // class pass_cleanup_barriers
179
180 } // anon namespace
181
182 rtl_opt_pass *
183 make_pass_cleanup_barriers (gcc::context *ctxt)
184 {
185 return new pass_cleanup_barriers (ctxt);
186 }
187
188 \f
189 /* Initialize LABEL_NUSES and JUMP_LABEL fields, add REG_LABEL_TARGET
190 for remaining targets for JUMP_P. Delete any REG_LABEL_OPERAND
191 notes whose labels don't occur in the insn any more. */
192
193 static void
194 init_label_info (rtx_insn *f)
195 {
196 rtx_insn *insn;
197
198 for (insn = f; insn; insn = NEXT_INSN (insn))
199 {
200 if (LABEL_P (insn))
201 LABEL_NUSES (insn) = (LABEL_PRESERVE_P (insn) != 0);
202
203 /* REG_LABEL_TARGET notes (including the JUMP_LABEL field) are
204 sticky and not reset here; that way we won't lose association
205 with a label when e.g. the source for a target register
206 disappears out of reach for targets that may use jump-target
207 registers. Jump transformations are supposed to transform
208 any REG_LABEL_TARGET notes. The target label reference in a
209 branch may disappear from the branch (and from the
210 instruction before it) for other reasons, like register
211 allocation. */
212
213 if (INSN_P (insn))
214 {
215 rtx note, next;
216
217 for (note = REG_NOTES (insn); note; note = next)
218 {
219 next = XEXP (note, 1);
220 if (REG_NOTE_KIND (note) == REG_LABEL_OPERAND
221 && ! reg_mentioned_p (XEXP (note, 0), PATTERN (insn)))
222 remove_note (insn, note);
223 }
224 }
225 }
226 }
227
228 /* A subroutine of mark_all_labels. Trivially propagate a simple label
229 load into a jump_insn that uses it. */
230
231 static void
232 maybe_propagate_label_ref (rtx_insn *jump_insn, rtx_insn *prev_nonjump_insn)
233 {
234 rtx label_note, pc, pc_src;
235
236 pc = pc_set (jump_insn);
237 pc_src = pc != NULL ? SET_SRC (pc) : NULL;
238 label_note = find_reg_note (prev_nonjump_insn, REG_LABEL_OPERAND, NULL);
239
240 /* If the previous non-jump insn sets something to a label,
241 something that this jump insn uses, make that label the primary
242 target of this insn if we don't yet have any. That previous
243 insn must be a single_set and not refer to more than one label.
244 The jump insn must not refer to other labels as jump targets
245 and must be a plain (set (pc) ...), maybe in a parallel, and
246 may refer to the item being set only directly or as one of the
247 arms in an IF_THEN_ELSE. */
248
249 if (label_note != NULL && pc_src != NULL)
250 {
251 rtx label_set = single_set (prev_nonjump_insn);
252 rtx label_dest = label_set != NULL ? SET_DEST (label_set) : NULL;
253
254 if (label_set != NULL
255 /* The source must be the direct LABEL_REF, not a
256 PLUS, UNSPEC, IF_THEN_ELSE etc. */
257 && GET_CODE (SET_SRC (label_set)) == LABEL_REF
258 && (rtx_equal_p (label_dest, pc_src)
259 || (GET_CODE (pc_src) == IF_THEN_ELSE
260 && (rtx_equal_p (label_dest, XEXP (pc_src, 1))
261 || rtx_equal_p (label_dest, XEXP (pc_src, 2))))))
262 {
263 /* The CODE_LABEL referred to in the note must be the
264 CODE_LABEL in the LABEL_REF of the "set". We can
265 conveniently use it for the marker function, which
266 requires a LABEL_REF wrapping. */
267 gcc_assert (XEXP (label_note, 0) == XEXP (SET_SRC (label_set), 0));
268
269 mark_jump_label_1 (label_set, jump_insn, false, true);
270
271 gcc_assert (JUMP_LABEL (jump_insn) == XEXP (label_note, 0));
272 }
273 }
274 }
275
276 /* Mark the label each jump jumps to.
277 Combine consecutive labels, and count uses of labels. */
278
279 static void
280 mark_all_labels (rtx_insn *f)
281 {
282 rtx_insn *insn;
283
284 if (current_ir_type () == IR_RTL_CFGLAYOUT)
285 {
286 basic_block bb;
287 FOR_EACH_BB_FN (bb, cfun)
288 {
289 /* In cfglayout mode, we don't bother with trivial next-insn
290 propagation of LABEL_REFs into JUMP_LABEL. This will be
291 handled by other optimizers using better algorithms. */
292 FOR_BB_INSNS (bb, insn)
293 {
294 gcc_assert (! INSN_DELETED_P (insn));
295 if (NONDEBUG_INSN_P (insn))
296 mark_jump_label (PATTERN (insn), insn, 0);
297 }
298
299 /* In cfglayout mode, there may be non-insns between the
300 basic blocks. If those non-insns represent tablejump data,
301 they contain label references that we must record. */
302 for (insn = BB_HEADER (bb); insn; insn = NEXT_INSN (insn))
303 if (JUMP_TABLE_DATA_P (insn))
304 mark_jump_label (PATTERN (insn), insn, 0);
305 for (insn = BB_FOOTER (bb); insn; insn = NEXT_INSN (insn))
306 if (JUMP_TABLE_DATA_P (insn))
307 mark_jump_label (PATTERN (insn), insn, 0);
308 }
309 }
310 else
311 {
312 rtx_insn *prev_nonjump_insn = NULL;
313 for (insn = f; insn; insn = NEXT_INSN (insn))
314 {
315 if (INSN_DELETED_P (insn))
316 ;
317 else if (LABEL_P (insn))
318 prev_nonjump_insn = NULL;
319 else if (JUMP_TABLE_DATA_P (insn))
320 mark_jump_label (PATTERN (insn), insn, 0);
321 else if (NONDEBUG_INSN_P (insn))
322 {
323 mark_jump_label (PATTERN (insn), insn, 0);
324 if (JUMP_P (insn))
325 {
326 if (JUMP_LABEL (insn) == NULL && prev_nonjump_insn != NULL)
327 maybe_propagate_label_ref (insn, prev_nonjump_insn);
328 }
329 else
330 prev_nonjump_insn = insn;
331 }
332 }
333 }
334 }
335 \f
336 /* Given a comparison (CODE ARG0 ARG1), inside an insn, INSN, return a code
337 of reversed comparison if it is possible to do so. Otherwise return UNKNOWN.
338 UNKNOWN may be returned in case we are having CC_MODE compare and we don't
339 know whether it's source is floating point or integer comparison. Machine
340 description should define REVERSIBLE_CC_MODE and REVERSE_CONDITION macros
341 to help this function avoid overhead in these cases. */
342 enum rtx_code
343 reversed_comparison_code_parts (enum rtx_code code, const_rtx arg0,
344 const_rtx arg1, const_rtx insn)
345 {
346 enum machine_mode mode;
347
348 /* If this is not actually a comparison, we can't reverse it. */
349 if (GET_RTX_CLASS (code) != RTX_COMPARE
350 && GET_RTX_CLASS (code) != RTX_COMM_COMPARE)
351 return UNKNOWN;
352
353 mode = GET_MODE (arg0);
354 if (mode == VOIDmode)
355 mode = GET_MODE (arg1);
356
357 /* First see if machine description supplies us way to reverse the
358 comparison. Give it priority over everything else to allow
359 machine description to do tricks. */
360 if (GET_MODE_CLASS (mode) == MODE_CC
361 && REVERSIBLE_CC_MODE (mode))
362 {
363 #ifdef REVERSE_CONDITION
364 return REVERSE_CONDITION (code, mode);
365 #else
366 return reverse_condition (code);
367 #endif
368 }
369
370 /* Try a few special cases based on the comparison code. */
371 switch (code)
372 {
373 case GEU:
374 case GTU:
375 case LEU:
376 case LTU:
377 case NE:
378 case EQ:
379 /* It is always safe to reverse EQ and NE, even for the floating
380 point. Similarly the unsigned comparisons are never used for
381 floating point so we can reverse them in the default way. */
382 return reverse_condition (code);
383 case ORDERED:
384 case UNORDERED:
385 case LTGT:
386 case UNEQ:
387 /* In case we already see unordered comparison, we can be sure to
388 be dealing with floating point so we don't need any more tests. */
389 return reverse_condition_maybe_unordered (code);
390 case UNLT:
391 case UNLE:
392 case UNGT:
393 case UNGE:
394 /* We don't have safe way to reverse these yet. */
395 return UNKNOWN;
396 default:
397 break;
398 }
399
400 if (GET_MODE_CLASS (mode) == MODE_CC || CC0_P (arg0))
401 {
402 const_rtx prev;
403 /* Try to search for the comparison to determine the real mode.
404 This code is expensive, but with sane machine description it
405 will be never used, since REVERSIBLE_CC_MODE will return true
406 in all cases. */
407 if (! insn)
408 return UNKNOWN;
409
410 /* These CONST_CAST's are okay because prev_nonnote_insn just
411 returns its argument and we assign it to a const_rtx
412 variable. */
413 for (prev = prev_nonnote_insn (CONST_CAST_RTX (insn));
414 prev != 0 && !LABEL_P (prev);
415 prev = prev_nonnote_insn (CONST_CAST_RTX (prev)))
416 {
417 const_rtx set = set_of (arg0, prev);
418 if (set && GET_CODE (set) == SET
419 && rtx_equal_p (SET_DEST (set), arg0))
420 {
421 rtx src = SET_SRC (set);
422
423 if (GET_CODE (src) == COMPARE)
424 {
425 rtx comparison = src;
426 arg0 = XEXP (src, 0);
427 mode = GET_MODE (arg0);
428 if (mode == VOIDmode)
429 mode = GET_MODE (XEXP (comparison, 1));
430 break;
431 }
432 /* We can get past reg-reg moves. This may be useful for model
433 of i387 comparisons that first move flag registers around. */
434 if (REG_P (src))
435 {
436 arg0 = src;
437 continue;
438 }
439 }
440 /* If register is clobbered in some ununderstandable way,
441 give up. */
442 if (set)
443 return UNKNOWN;
444 }
445 }
446
447 /* Test for an integer condition, or a floating-point comparison
448 in which NaNs can be ignored. */
449 if (CONST_INT_P (arg0)
450 || (GET_MODE (arg0) != VOIDmode
451 && GET_MODE_CLASS (mode) != MODE_CC
452 && !HONOR_NANS (mode)))
453 return reverse_condition (code);
454
455 return UNKNOWN;
456 }
457
458 /* A wrapper around the previous function to take COMPARISON as rtx
459 expression. This simplifies many callers. */
460 enum rtx_code
461 reversed_comparison_code (const_rtx comparison, const_rtx insn)
462 {
463 if (!COMPARISON_P (comparison))
464 return UNKNOWN;
465 return reversed_comparison_code_parts (GET_CODE (comparison),
466 XEXP (comparison, 0),
467 XEXP (comparison, 1), insn);
468 }
469
470 /* Return comparison with reversed code of EXP.
471 Return NULL_RTX in case we fail to do the reversal. */
472 rtx
473 reversed_comparison (const_rtx exp, enum machine_mode mode)
474 {
475 enum rtx_code reversed_code = reversed_comparison_code (exp, NULL_RTX);
476 if (reversed_code == UNKNOWN)
477 return NULL_RTX;
478 else
479 return simplify_gen_relational (reversed_code, mode, VOIDmode,
480 XEXP (exp, 0), XEXP (exp, 1));
481 }
482
483 \f
484 /* Given an rtx-code for a comparison, return the code for the negated
485 comparison. If no such code exists, return UNKNOWN.
486
487 WATCH OUT! reverse_condition is not safe to use on a jump that might
488 be acting on the results of an IEEE floating point comparison, because
489 of the special treatment of non-signaling nans in comparisons.
490 Use reversed_comparison_code instead. */
491
492 enum rtx_code
493 reverse_condition (enum rtx_code code)
494 {
495 switch (code)
496 {
497 case EQ:
498 return NE;
499 case NE:
500 return EQ;
501 case GT:
502 return LE;
503 case GE:
504 return LT;
505 case LT:
506 return GE;
507 case LE:
508 return GT;
509 case GTU:
510 return LEU;
511 case GEU:
512 return LTU;
513 case LTU:
514 return GEU;
515 case LEU:
516 return GTU;
517 case UNORDERED:
518 return ORDERED;
519 case ORDERED:
520 return UNORDERED;
521
522 case UNLT:
523 case UNLE:
524 case UNGT:
525 case UNGE:
526 case UNEQ:
527 case LTGT:
528 return UNKNOWN;
529
530 default:
531 gcc_unreachable ();
532 }
533 }
534
535 /* Similar, but we're allowed to generate unordered comparisons, which
536 makes it safe for IEEE floating-point. Of course, we have to recognize
537 that the target will support them too... */
538
539 enum rtx_code
540 reverse_condition_maybe_unordered (enum rtx_code code)
541 {
542 switch (code)
543 {
544 case EQ:
545 return NE;
546 case NE:
547 return EQ;
548 case GT:
549 return UNLE;
550 case GE:
551 return UNLT;
552 case LT:
553 return UNGE;
554 case LE:
555 return UNGT;
556 case LTGT:
557 return UNEQ;
558 case UNORDERED:
559 return ORDERED;
560 case ORDERED:
561 return UNORDERED;
562 case UNLT:
563 return GE;
564 case UNLE:
565 return GT;
566 case UNGT:
567 return LE;
568 case UNGE:
569 return LT;
570 case UNEQ:
571 return LTGT;
572
573 default:
574 gcc_unreachable ();
575 }
576 }
577
578 /* Similar, but return the code when two operands of a comparison are swapped.
579 This IS safe for IEEE floating-point. */
580
581 enum rtx_code
582 swap_condition (enum rtx_code code)
583 {
584 switch (code)
585 {
586 case EQ:
587 case NE:
588 case UNORDERED:
589 case ORDERED:
590 case UNEQ:
591 case LTGT:
592 return code;
593
594 case GT:
595 return LT;
596 case GE:
597 return LE;
598 case LT:
599 return GT;
600 case LE:
601 return GE;
602 case GTU:
603 return LTU;
604 case GEU:
605 return LEU;
606 case LTU:
607 return GTU;
608 case LEU:
609 return GEU;
610 case UNLT:
611 return UNGT;
612 case UNLE:
613 return UNGE;
614 case UNGT:
615 return UNLT;
616 case UNGE:
617 return UNLE;
618
619 default:
620 gcc_unreachable ();
621 }
622 }
623
624 /* Given a comparison CODE, return the corresponding unsigned comparison.
625 If CODE is an equality comparison or already an unsigned comparison,
626 CODE is returned. */
627
628 enum rtx_code
629 unsigned_condition (enum rtx_code code)
630 {
631 switch (code)
632 {
633 case EQ:
634 case NE:
635 case GTU:
636 case GEU:
637 case LTU:
638 case LEU:
639 return code;
640
641 case GT:
642 return GTU;
643 case GE:
644 return GEU;
645 case LT:
646 return LTU;
647 case LE:
648 return LEU;
649
650 default:
651 gcc_unreachable ();
652 }
653 }
654
655 /* Similarly, return the signed version of a comparison. */
656
657 enum rtx_code
658 signed_condition (enum rtx_code code)
659 {
660 switch (code)
661 {
662 case EQ:
663 case NE:
664 case GT:
665 case GE:
666 case LT:
667 case LE:
668 return code;
669
670 case GTU:
671 return GT;
672 case GEU:
673 return GE;
674 case LTU:
675 return LT;
676 case LEU:
677 return LE;
678
679 default:
680 gcc_unreachable ();
681 }
682 }
683 \f
684 /* Return nonzero if CODE1 is more strict than CODE2, i.e., if the
685 truth of CODE1 implies the truth of CODE2. */
686
687 int
688 comparison_dominates_p (enum rtx_code code1, enum rtx_code code2)
689 {
690 /* UNKNOWN comparison codes can happen as a result of trying to revert
691 comparison codes.
692 They can't match anything, so we have to reject them here. */
693 if (code1 == UNKNOWN || code2 == UNKNOWN)
694 return 0;
695
696 if (code1 == code2)
697 return 1;
698
699 switch (code1)
700 {
701 case UNEQ:
702 if (code2 == UNLE || code2 == UNGE)
703 return 1;
704 break;
705
706 case EQ:
707 if (code2 == LE || code2 == LEU || code2 == GE || code2 == GEU
708 || code2 == ORDERED)
709 return 1;
710 break;
711
712 case UNLT:
713 if (code2 == UNLE || code2 == NE)
714 return 1;
715 break;
716
717 case LT:
718 if (code2 == LE || code2 == NE || code2 == ORDERED || code2 == LTGT)
719 return 1;
720 break;
721
722 case UNGT:
723 if (code2 == UNGE || code2 == NE)
724 return 1;
725 break;
726
727 case GT:
728 if (code2 == GE || code2 == NE || code2 == ORDERED || code2 == LTGT)
729 return 1;
730 break;
731
732 case GE:
733 case LE:
734 if (code2 == ORDERED)
735 return 1;
736 break;
737
738 case LTGT:
739 if (code2 == NE || code2 == ORDERED)
740 return 1;
741 break;
742
743 case LTU:
744 if (code2 == LEU || code2 == NE)
745 return 1;
746 break;
747
748 case GTU:
749 if (code2 == GEU || code2 == NE)
750 return 1;
751 break;
752
753 case UNORDERED:
754 if (code2 == NE || code2 == UNEQ || code2 == UNLE || code2 == UNLT
755 || code2 == UNGE || code2 == UNGT)
756 return 1;
757 break;
758
759 default:
760 break;
761 }
762
763 return 0;
764 }
765 \f
766 /* Return 1 if INSN is an unconditional jump and nothing else. */
767
768 int
769 simplejump_p (const_rtx insn)
770 {
771 return (JUMP_P (insn)
772 && GET_CODE (PATTERN (insn)) == SET
773 && GET_CODE (SET_DEST (PATTERN (insn))) == PC
774 && GET_CODE (SET_SRC (PATTERN (insn))) == LABEL_REF);
775 }
776
777 /* Return nonzero if INSN is a (possibly) conditional jump
778 and nothing more.
779
780 Use of this function is deprecated, since we need to support combined
781 branch and compare insns. Use any_condjump_p instead whenever possible. */
782
783 int
784 condjump_p (const_rtx insn)
785 {
786 const_rtx x = PATTERN (insn);
787
788 if (GET_CODE (x) != SET
789 || GET_CODE (SET_DEST (x)) != PC)
790 return 0;
791
792 x = SET_SRC (x);
793 if (GET_CODE (x) == LABEL_REF)
794 return 1;
795 else
796 return (GET_CODE (x) == IF_THEN_ELSE
797 && ((GET_CODE (XEXP (x, 2)) == PC
798 && (GET_CODE (XEXP (x, 1)) == LABEL_REF
799 || ANY_RETURN_P (XEXP (x, 1))))
800 || (GET_CODE (XEXP (x, 1)) == PC
801 && (GET_CODE (XEXP (x, 2)) == LABEL_REF
802 || ANY_RETURN_P (XEXP (x, 2))))));
803 }
804
805 /* Return nonzero if INSN is a (possibly) conditional jump inside a
806 PARALLEL.
807
808 Use this function is deprecated, since we need to support combined
809 branch and compare insns. Use any_condjump_p instead whenever possible. */
810
811 int
812 condjump_in_parallel_p (const_rtx insn)
813 {
814 const_rtx x = PATTERN (insn);
815
816 if (GET_CODE (x) != PARALLEL)
817 return 0;
818 else
819 x = XVECEXP (x, 0, 0);
820
821 if (GET_CODE (x) != SET)
822 return 0;
823 if (GET_CODE (SET_DEST (x)) != PC)
824 return 0;
825 if (GET_CODE (SET_SRC (x)) == LABEL_REF)
826 return 1;
827 if (GET_CODE (SET_SRC (x)) != IF_THEN_ELSE)
828 return 0;
829 if (XEXP (SET_SRC (x), 2) == pc_rtx
830 && (GET_CODE (XEXP (SET_SRC (x), 1)) == LABEL_REF
831 || ANY_RETURN_P (XEXP (SET_SRC (x), 1))))
832 return 1;
833 if (XEXP (SET_SRC (x), 1) == pc_rtx
834 && (GET_CODE (XEXP (SET_SRC (x), 2)) == LABEL_REF
835 || ANY_RETURN_P (XEXP (SET_SRC (x), 2))))
836 return 1;
837 return 0;
838 }
839
840 /* Return set of PC, otherwise NULL. */
841
842 rtx
843 pc_set (const_rtx insn)
844 {
845 rtx pat;
846 if (!JUMP_P (insn))
847 return NULL_RTX;
848 pat = PATTERN (insn);
849
850 /* The set is allowed to appear either as the insn pattern or
851 the first set in a PARALLEL. */
852 if (GET_CODE (pat) == PARALLEL)
853 pat = XVECEXP (pat, 0, 0);
854 if (GET_CODE (pat) == SET && GET_CODE (SET_DEST (pat)) == PC)
855 return pat;
856
857 return NULL_RTX;
858 }
859
860 /* Return true when insn is an unconditional direct jump,
861 possibly bundled inside a PARALLEL. */
862
863 int
864 any_uncondjump_p (const_rtx insn)
865 {
866 const_rtx x = pc_set (insn);
867 if (!x)
868 return 0;
869 if (GET_CODE (SET_SRC (x)) != LABEL_REF)
870 return 0;
871 if (find_reg_note (insn, REG_NON_LOCAL_GOTO, NULL_RTX))
872 return 0;
873 return 1;
874 }
875
876 /* Return true when insn is a conditional jump. This function works for
877 instructions containing PC sets in PARALLELs. The instruction may have
878 various other effects so before removing the jump you must verify
879 onlyjump_p.
880
881 Note that unlike condjump_p it returns false for unconditional jumps. */
882
883 int
884 any_condjump_p (const_rtx insn)
885 {
886 const_rtx x = pc_set (insn);
887 enum rtx_code a, b;
888
889 if (!x)
890 return 0;
891 if (GET_CODE (SET_SRC (x)) != IF_THEN_ELSE)
892 return 0;
893
894 a = GET_CODE (XEXP (SET_SRC (x), 1));
895 b = GET_CODE (XEXP (SET_SRC (x), 2));
896
897 return ((b == PC && (a == LABEL_REF || a == RETURN || a == SIMPLE_RETURN))
898 || (a == PC
899 && (b == LABEL_REF || b == RETURN || b == SIMPLE_RETURN)));
900 }
901
902 /* Return the label of a conditional jump. */
903
904 rtx
905 condjump_label (const_rtx insn)
906 {
907 rtx x = pc_set (insn);
908
909 if (!x)
910 return NULL_RTX;
911 x = SET_SRC (x);
912 if (GET_CODE (x) == LABEL_REF)
913 return x;
914 if (GET_CODE (x) != IF_THEN_ELSE)
915 return NULL_RTX;
916 if (XEXP (x, 2) == pc_rtx && GET_CODE (XEXP (x, 1)) == LABEL_REF)
917 return XEXP (x, 1);
918 if (XEXP (x, 1) == pc_rtx && GET_CODE (XEXP (x, 2)) == LABEL_REF)
919 return XEXP (x, 2);
920 return NULL_RTX;
921 }
922
923 /* Return true if INSN is a (possibly conditional) return insn. */
924
925 static int
926 returnjump_p_1 (rtx *loc, void *data ATTRIBUTE_UNUSED)
927 {
928 rtx x = *loc;
929
930 if (x == NULL)
931 return false;
932
933 switch (GET_CODE (x))
934 {
935 case RETURN:
936 case SIMPLE_RETURN:
937 case EH_RETURN:
938 return true;
939
940 case SET:
941 return SET_IS_RETURN_P (x);
942
943 default:
944 return false;
945 }
946 }
947
948 /* Return TRUE if INSN is a return jump. */
949
950 int
951 returnjump_p (rtx insn)
952 {
953 if (!JUMP_P (insn))
954 return 0;
955 return for_each_rtx (&PATTERN (insn), returnjump_p_1, NULL);
956 }
957
958 /* Return true if INSN is a (possibly conditional) return insn. */
959
960 static int
961 eh_returnjump_p_1 (rtx *loc, void *data ATTRIBUTE_UNUSED)
962 {
963 return *loc && GET_CODE (*loc) == EH_RETURN;
964 }
965
966 int
967 eh_returnjump_p (rtx insn)
968 {
969 if (!JUMP_P (insn))
970 return 0;
971 return for_each_rtx (&PATTERN (insn), eh_returnjump_p_1, NULL);
972 }
973
974 /* Return true if INSN is a jump that only transfers control and
975 nothing more. */
976
977 int
978 onlyjump_p (const_rtx insn)
979 {
980 rtx set;
981
982 if (!JUMP_P (insn))
983 return 0;
984
985 set = single_set (insn);
986 if (set == NULL)
987 return 0;
988 if (GET_CODE (SET_DEST (set)) != PC)
989 return 0;
990 if (side_effects_p (SET_SRC (set)))
991 return 0;
992
993 return 1;
994 }
995
996 /* Return true iff INSN is a jump and its JUMP_LABEL is a label, not
997 NULL or a return. */
998 bool
999 jump_to_label_p (rtx insn)
1000 {
1001 return (JUMP_P (insn)
1002 && JUMP_LABEL (insn) != NULL && !ANY_RETURN_P (JUMP_LABEL (insn)));
1003 }
1004
1005 #ifdef HAVE_cc0
1006
1007 /* Return nonzero if X is an RTX that only sets the condition codes
1008 and has no side effects. */
1009
1010 int
1011 only_sets_cc0_p (const_rtx x)
1012 {
1013 if (! x)
1014 return 0;
1015
1016 if (INSN_P (x))
1017 x = PATTERN (x);
1018
1019 return sets_cc0_p (x) == 1 && ! side_effects_p (x);
1020 }
1021
1022 /* Return 1 if X is an RTX that does nothing but set the condition codes
1023 and CLOBBER or USE registers.
1024 Return -1 if X does explicitly set the condition codes,
1025 but also does other things. */
1026
1027 int
1028 sets_cc0_p (const_rtx x)
1029 {
1030 if (! x)
1031 return 0;
1032
1033 if (INSN_P (x))
1034 x = PATTERN (x);
1035
1036 if (GET_CODE (x) == SET && SET_DEST (x) == cc0_rtx)
1037 return 1;
1038 if (GET_CODE (x) == PARALLEL)
1039 {
1040 int i;
1041 int sets_cc0 = 0;
1042 int other_things = 0;
1043 for (i = XVECLEN (x, 0) - 1; i >= 0; i--)
1044 {
1045 if (GET_CODE (XVECEXP (x, 0, i)) == SET
1046 && SET_DEST (XVECEXP (x, 0, i)) == cc0_rtx)
1047 sets_cc0 = 1;
1048 else if (GET_CODE (XVECEXP (x, 0, i)) == SET)
1049 other_things = 1;
1050 }
1051 return ! sets_cc0 ? 0 : other_things ? -1 : 1;
1052 }
1053 return 0;
1054 }
1055 #endif
1056 \f
1057 /* Find all CODE_LABELs referred to in X, and increment their use
1058 counts. If INSN is a JUMP_INSN and there is at least one
1059 CODE_LABEL referenced in INSN as a jump target, then store the last
1060 one in JUMP_LABEL (INSN). For a tablejump, this must be the label
1061 for the ADDR_VEC. Store any other jump targets as REG_LABEL_TARGET
1062 notes. If INSN is an INSN or a CALL_INSN or non-target operands of
1063 a JUMP_INSN, and there is at least one CODE_LABEL referenced in
1064 INSN, add a REG_LABEL_OPERAND note containing that label to INSN.
1065 For returnjumps, the JUMP_LABEL will also be set as appropriate.
1066
1067 Note that two labels separated by a loop-beginning note
1068 must be kept distinct if we have not yet done loop-optimization,
1069 because the gap between them is where loop-optimize
1070 will want to move invariant code to. CROSS_JUMP tells us
1071 that loop-optimization is done with. */
1072
1073 void
1074 mark_jump_label (rtx x, rtx insn, int in_mem)
1075 {
1076 rtx asmop = extract_asm_operands (x);
1077 if (asmop)
1078 mark_jump_label_asm (asmop, insn);
1079 else
1080 mark_jump_label_1 (x, insn, in_mem != 0,
1081 (insn != NULL && x == PATTERN (insn) && JUMP_P (insn)));
1082 }
1083
1084 /* Worker function for mark_jump_label. IN_MEM is TRUE when X occurs
1085 within a (MEM ...). IS_TARGET is TRUE when X is to be treated as a
1086 jump-target; when the JUMP_LABEL field of INSN should be set or a
1087 REG_LABEL_TARGET note should be added, not a REG_LABEL_OPERAND
1088 note. */
1089
1090 static void
1091 mark_jump_label_1 (rtx x, rtx insn, bool in_mem, bool is_target)
1092 {
1093 RTX_CODE code = GET_CODE (x);
1094 int i;
1095 const char *fmt;
1096
1097 switch (code)
1098 {
1099 case PC:
1100 case CC0:
1101 case REG:
1102 case CLOBBER:
1103 case CALL:
1104 return;
1105
1106 case RETURN:
1107 case SIMPLE_RETURN:
1108 if (is_target)
1109 {
1110 gcc_assert (JUMP_LABEL (insn) == NULL || JUMP_LABEL (insn) == x);
1111 JUMP_LABEL (insn) = x;
1112 }
1113 return;
1114
1115 case MEM:
1116 in_mem = true;
1117 break;
1118
1119 case SEQUENCE:
1120 {
1121 rtx_sequence *seq = as_a <rtx_sequence *> (x);
1122 for (i = 0; i < seq->len (); i++)
1123 mark_jump_label (PATTERN (seq->insn (i)),
1124 seq->insn (i), 0);
1125 }
1126 return;
1127
1128 case SYMBOL_REF:
1129 if (!in_mem)
1130 return;
1131
1132 /* If this is a constant-pool reference, see if it is a label. */
1133 if (CONSTANT_POOL_ADDRESS_P (x))
1134 mark_jump_label_1 (get_pool_constant (x), insn, in_mem, is_target);
1135 break;
1136
1137 /* Handle operands in the condition of an if-then-else as for a
1138 non-jump insn. */
1139 case IF_THEN_ELSE:
1140 if (!is_target)
1141 break;
1142 mark_jump_label_1 (XEXP (x, 0), insn, in_mem, false);
1143 mark_jump_label_1 (XEXP (x, 1), insn, in_mem, true);
1144 mark_jump_label_1 (XEXP (x, 2), insn, in_mem, true);
1145 return;
1146
1147 case LABEL_REF:
1148 {
1149 rtx label = XEXP (x, 0);
1150
1151 /* Ignore remaining references to unreachable labels that
1152 have been deleted. */
1153 if (NOTE_P (label)
1154 && NOTE_KIND (label) == NOTE_INSN_DELETED_LABEL)
1155 break;
1156
1157 gcc_assert (LABEL_P (label));
1158
1159 /* Ignore references to labels of containing functions. */
1160 if (LABEL_REF_NONLOCAL_P (x))
1161 break;
1162
1163 XEXP (x, 0) = label;
1164 if (! insn || ! INSN_DELETED_P (insn))
1165 ++LABEL_NUSES (label);
1166
1167 if (insn)
1168 {
1169 if (is_target
1170 /* Do not change a previous setting of JUMP_LABEL. If the
1171 JUMP_LABEL slot is occupied by a different label,
1172 create a note for this label. */
1173 && (JUMP_LABEL (insn) == NULL || JUMP_LABEL (insn) == label))
1174 JUMP_LABEL (insn) = label;
1175 else
1176 {
1177 enum reg_note kind
1178 = is_target ? REG_LABEL_TARGET : REG_LABEL_OPERAND;
1179
1180 /* Add a REG_LABEL_OPERAND or REG_LABEL_TARGET note
1181 for LABEL unless there already is one. All uses of
1182 a label, except for the primary target of a jump,
1183 must have such a note. */
1184 if (! find_reg_note (insn, kind, label))
1185 add_reg_note (insn, kind, label);
1186 }
1187 }
1188 return;
1189 }
1190
1191 /* Do walk the labels in a vector, but not the first operand of an
1192 ADDR_DIFF_VEC. Don't set the JUMP_LABEL of a vector. */
1193 case ADDR_VEC:
1194 case ADDR_DIFF_VEC:
1195 if (! INSN_DELETED_P (insn))
1196 {
1197 int eltnum = code == ADDR_DIFF_VEC ? 1 : 0;
1198
1199 for (i = 0; i < XVECLEN (x, eltnum); i++)
1200 mark_jump_label_1 (XVECEXP (x, eltnum, i), NULL_RTX, in_mem,
1201 is_target);
1202 }
1203 return;
1204
1205 default:
1206 break;
1207 }
1208
1209 fmt = GET_RTX_FORMAT (code);
1210
1211 /* The primary target of a tablejump is the label of the ADDR_VEC,
1212 which is canonically mentioned *last* in the insn. To get it
1213 marked as JUMP_LABEL, we iterate over items in reverse order. */
1214 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1215 {
1216 if (fmt[i] == 'e')
1217 mark_jump_label_1 (XEXP (x, i), insn, in_mem, is_target);
1218 else if (fmt[i] == 'E')
1219 {
1220 int j;
1221
1222 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
1223 mark_jump_label_1 (XVECEXP (x, i, j), insn, in_mem,
1224 is_target);
1225 }
1226 }
1227 }
1228
1229 /* Worker function for mark_jump_label. Handle asm insns specially.
1230 In particular, output operands need not be considered so we can
1231 avoid re-scanning the replicated asm_operand. Also, the asm_labels
1232 need to be considered targets. */
1233
1234 static void
1235 mark_jump_label_asm (rtx asmop, rtx insn)
1236 {
1237 int i;
1238
1239 for (i = ASM_OPERANDS_INPUT_LENGTH (asmop) - 1; i >= 0; --i)
1240 mark_jump_label_1 (ASM_OPERANDS_INPUT (asmop, i), insn, false, false);
1241
1242 for (i = ASM_OPERANDS_LABEL_LENGTH (asmop) - 1; i >= 0; --i)
1243 mark_jump_label_1 (ASM_OPERANDS_LABEL (asmop, i), insn, false, true);
1244 }
1245 \f
1246 /* Delete insn INSN from the chain of insns and update label ref counts
1247 and delete insns now unreachable.
1248
1249 Returns the first insn after INSN that was not deleted.
1250
1251 Usage of this instruction is deprecated. Use delete_insn instead and
1252 subsequent cfg_cleanup pass to delete unreachable code if needed. */
1253
1254 rtx_insn *
1255 delete_related_insns (rtx insn)
1256 {
1257 int was_code_label = (LABEL_P (insn));
1258 rtx note;
1259 rtx_insn *next = NEXT_INSN (insn), *prev = PREV_INSN (insn);
1260
1261 while (next && INSN_DELETED_P (next))
1262 next = NEXT_INSN (next);
1263
1264 /* This insn is already deleted => return first following nondeleted. */
1265 if (INSN_DELETED_P (insn))
1266 return next;
1267
1268 delete_insn (insn);
1269
1270 /* If instruction is followed by a barrier,
1271 delete the barrier too. */
1272
1273 if (next != 0 && BARRIER_P (next))
1274 delete_insn (next);
1275
1276 /* If this is a call, then we have to remove the var tracking note
1277 for the call arguments. */
1278
1279 if (CALL_P (insn)
1280 || (NONJUMP_INSN_P (insn)
1281 && GET_CODE (PATTERN (insn)) == SEQUENCE
1282 && CALL_P (XVECEXP (PATTERN (insn), 0, 0))))
1283 {
1284 rtx p;
1285
1286 for (p = next && INSN_DELETED_P (next) ? NEXT_INSN (next) : next;
1287 p && NOTE_P (p);
1288 p = NEXT_INSN (p))
1289 if (NOTE_KIND (p) == NOTE_INSN_CALL_ARG_LOCATION)
1290 {
1291 remove_insn (p);
1292 break;
1293 }
1294 }
1295
1296 /* If deleting a jump, decrement the count of the label,
1297 and delete the label if it is now unused. */
1298
1299 if (jump_to_label_p (insn))
1300 {
1301 rtx lab = JUMP_LABEL (insn);
1302 rtx_jump_table_data *lab_next;
1303
1304 if (LABEL_NUSES (lab) == 0)
1305 /* This can delete NEXT or PREV,
1306 either directly if NEXT is JUMP_LABEL (INSN),
1307 or indirectly through more levels of jumps. */
1308 delete_related_insns (lab);
1309 else if (tablejump_p (insn, NULL, &lab_next))
1310 {
1311 /* If we're deleting the tablejump, delete the dispatch table.
1312 We may not be able to kill the label immediately preceding
1313 just yet, as it might be referenced in code leading up to
1314 the tablejump. */
1315 delete_related_insns (lab_next);
1316 }
1317 }
1318
1319 /* Likewise if we're deleting a dispatch table. */
1320
1321 if (JUMP_TABLE_DATA_P (insn))
1322 {
1323 rtx pat = PATTERN (insn);
1324 int i, diff_vec_p = GET_CODE (pat) == ADDR_DIFF_VEC;
1325 int len = XVECLEN (pat, diff_vec_p);
1326
1327 for (i = 0; i < len; i++)
1328 if (LABEL_NUSES (XEXP (XVECEXP (pat, diff_vec_p, i), 0)) == 0)
1329 delete_related_insns (XEXP (XVECEXP (pat, diff_vec_p, i), 0));
1330 while (next && INSN_DELETED_P (next))
1331 next = NEXT_INSN (next);
1332 return next;
1333 }
1334
1335 /* Likewise for any JUMP_P / INSN / CALL_INSN with a
1336 REG_LABEL_OPERAND or REG_LABEL_TARGET note. */
1337 if (INSN_P (insn))
1338 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
1339 if ((REG_NOTE_KIND (note) == REG_LABEL_OPERAND
1340 || REG_NOTE_KIND (note) == REG_LABEL_TARGET)
1341 /* This could also be a NOTE_INSN_DELETED_LABEL note. */
1342 && LABEL_P (XEXP (note, 0)))
1343 if (LABEL_NUSES (XEXP (note, 0)) == 0)
1344 delete_related_insns (XEXP (note, 0));
1345
1346 while (prev && (INSN_DELETED_P (prev) || NOTE_P (prev)))
1347 prev = PREV_INSN (prev);
1348
1349 /* If INSN was a label and a dispatch table follows it,
1350 delete the dispatch table. The tablejump must have gone already.
1351 It isn't useful to fall through into a table. */
1352
1353 if (was_code_label
1354 && NEXT_INSN (insn) != 0
1355 && JUMP_TABLE_DATA_P (NEXT_INSN (insn)))
1356 next = delete_related_insns (NEXT_INSN (insn));
1357
1358 /* If INSN was a label, delete insns following it if now unreachable. */
1359
1360 if (was_code_label && prev && BARRIER_P (prev))
1361 {
1362 enum rtx_code code;
1363 while (next)
1364 {
1365 code = GET_CODE (next);
1366 if (code == NOTE)
1367 next = NEXT_INSN (next);
1368 /* Keep going past other deleted labels to delete what follows. */
1369 else if (code == CODE_LABEL && INSN_DELETED_P (next))
1370 next = NEXT_INSN (next);
1371 /* Keep the (use (insn))s created by dbr_schedule, which needs
1372 them in order to track liveness relative to a previous
1373 barrier. */
1374 else if (INSN_P (next)
1375 && GET_CODE (PATTERN (next)) == USE
1376 && INSN_P (XEXP (PATTERN (next), 0)))
1377 next = NEXT_INSN (next);
1378 else if (code == BARRIER || INSN_P (next))
1379 /* Note: if this deletes a jump, it can cause more
1380 deletion of unreachable code, after a different label.
1381 As long as the value from this recursive call is correct,
1382 this invocation functions correctly. */
1383 next = delete_related_insns (next);
1384 else
1385 break;
1386 }
1387 }
1388
1389 /* I feel a little doubtful about this loop,
1390 but I see no clean and sure alternative way
1391 to find the first insn after INSN that is not now deleted.
1392 I hope this works. */
1393 while (next && INSN_DELETED_P (next))
1394 next = NEXT_INSN (next);
1395 return next;
1396 }
1397 \f
1398 /* Delete a range of insns from FROM to TO, inclusive.
1399 This is for the sake of peephole optimization, so assume
1400 that whatever these insns do will still be done by a new
1401 peephole insn that will replace them. */
1402
1403 void
1404 delete_for_peephole (rtx_insn *from, rtx_insn *to)
1405 {
1406 rtx_insn *insn = from;
1407
1408 while (1)
1409 {
1410 rtx_insn *next = NEXT_INSN (insn);
1411 rtx_insn *prev = PREV_INSN (insn);
1412
1413 if (!NOTE_P (insn))
1414 {
1415 INSN_DELETED_P (insn) = 1;
1416
1417 /* Patch this insn out of the chain. */
1418 /* We don't do this all at once, because we
1419 must preserve all NOTEs. */
1420 if (prev)
1421 SET_NEXT_INSN (prev) = next;
1422
1423 if (next)
1424 SET_PREV_INSN (next) = prev;
1425 }
1426
1427 if (insn == to)
1428 break;
1429 insn = next;
1430 }
1431
1432 /* Note that if TO is an unconditional jump
1433 we *do not* delete the BARRIER that follows,
1434 since the peephole that replaces this sequence
1435 is also an unconditional jump in that case. */
1436 }
1437 \f
1438 /* A helper function for redirect_exp_1; examines its input X and returns
1439 either a LABEL_REF around a label, or a RETURN if X was NULL. */
1440 static rtx
1441 redirect_target (rtx x)
1442 {
1443 if (x == NULL_RTX)
1444 return ret_rtx;
1445 if (!ANY_RETURN_P (x))
1446 return gen_rtx_LABEL_REF (Pmode, x);
1447 return x;
1448 }
1449
1450 /* Throughout LOC, redirect OLABEL to NLABEL. Treat null OLABEL or
1451 NLABEL as a return. Accrue modifications into the change group. */
1452
1453 static void
1454 redirect_exp_1 (rtx *loc, rtx olabel, rtx nlabel, rtx insn)
1455 {
1456 rtx x = *loc;
1457 RTX_CODE code = GET_CODE (x);
1458 int i;
1459 const char *fmt;
1460
1461 if ((code == LABEL_REF && XEXP (x, 0) == olabel)
1462 || x == olabel)
1463 {
1464 x = redirect_target (nlabel);
1465 if (GET_CODE (x) == LABEL_REF && loc == &PATTERN (insn))
1466 x = gen_rtx_SET (VOIDmode, pc_rtx, x);
1467 validate_change (insn, loc, x, 1);
1468 return;
1469 }
1470
1471 if (code == SET && SET_DEST (x) == pc_rtx
1472 && ANY_RETURN_P (nlabel)
1473 && GET_CODE (SET_SRC (x)) == LABEL_REF
1474 && XEXP (SET_SRC (x), 0) == olabel)
1475 {
1476 validate_change (insn, loc, nlabel, 1);
1477 return;
1478 }
1479
1480 if (code == IF_THEN_ELSE)
1481 {
1482 /* Skip the condition of an IF_THEN_ELSE. We only want to
1483 change jump destinations, not eventual label comparisons. */
1484 redirect_exp_1 (&XEXP (x, 1), olabel, nlabel, insn);
1485 redirect_exp_1 (&XEXP (x, 2), olabel, nlabel, insn);
1486 return;
1487 }
1488
1489 fmt = GET_RTX_FORMAT (code);
1490 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1491 {
1492 if (fmt[i] == 'e')
1493 redirect_exp_1 (&XEXP (x, i), olabel, nlabel, insn);
1494 else if (fmt[i] == 'E')
1495 {
1496 int j;
1497 for (j = 0; j < XVECLEN (x, i); j++)
1498 redirect_exp_1 (&XVECEXP (x, i, j), olabel, nlabel, insn);
1499 }
1500 }
1501 }
1502
1503 /* Make JUMP go to NLABEL instead of where it jumps now. Accrue
1504 the modifications into the change group. Return false if we did
1505 not see how to do that. */
1506
1507 int
1508 redirect_jump_1 (rtx jump, rtx nlabel)
1509 {
1510 int ochanges = num_validated_changes ();
1511 rtx *loc, asmop;
1512
1513 gcc_assert (nlabel != NULL_RTX);
1514 asmop = extract_asm_operands (PATTERN (jump));
1515 if (asmop)
1516 {
1517 if (nlabel == NULL)
1518 return 0;
1519 gcc_assert (ASM_OPERANDS_LABEL_LENGTH (asmop) == 1);
1520 loc = &ASM_OPERANDS_LABEL (asmop, 0);
1521 }
1522 else if (GET_CODE (PATTERN (jump)) == PARALLEL)
1523 loc = &XVECEXP (PATTERN (jump), 0, 0);
1524 else
1525 loc = &PATTERN (jump);
1526
1527 redirect_exp_1 (loc, JUMP_LABEL (jump), nlabel, jump);
1528 return num_validated_changes () > ochanges;
1529 }
1530
1531 /* Make JUMP go to NLABEL instead of where it jumps now. If the old
1532 jump target label is unused as a result, it and the code following
1533 it may be deleted.
1534
1535 Normally, NLABEL will be a label, but it may also be a RETURN rtx;
1536 in that case we are to turn the jump into a (possibly conditional)
1537 return insn.
1538
1539 The return value will be 1 if the change was made, 0 if it wasn't
1540 (this can only occur when trying to produce return insns). */
1541
1542 int
1543 redirect_jump (rtx jump, rtx nlabel, int delete_unused)
1544 {
1545 rtx olabel = JUMP_LABEL (jump);
1546
1547 if (!nlabel)
1548 {
1549 /* If there is no label, we are asked to redirect to the EXIT block.
1550 When before the epilogue is emitted, return/simple_return cannot be
1551 created so we return 0 immediately. After the epilogue is emitted,
1552 we always expect a label, either a non-null label, or a
1553 return/simple_return RTX. */
1554
1555 if (!epilogue_completed)
1556 return 0;
1557 gcc_unreachable ();
1558 }
1559
1560 if (nlabel == olabel)
1561 return 1;
1562
1563 if (! redirect_jump_1 (jump, nlabel) || ! apply_change_group ())
1564 return 0;
1565
1566 redirect_jump_2 (jump, olabel, nlabel, delete_unused, 0);
1567 return 1;
1568 }
1569
1570 /* Fix up JUMP_LABEL and label ref counts after OLABEL has been replaced with
1571 NLABEL in JUMP.
1572 If DELETE_UNUSED is positive, delete related insn to OLABEL if its ref
1573 count has dropped to zero. */
1574 void
1575 redirect_jump_2 (rtx jump, rtx olabel, rtx nlabel, int delete_unused,
1576 int invert)
1577 {
1578 rtx note;
1579
1580 gcc_assert (JUMP_LABEL (jump) == olabel);
1581
1582 /* Negative DELETE_UNUSED used to be used to signalize behavior on
1583 moving FUNCTION_END note. Just sanity check that no user still worry
1584 about this. */
1585 gcc_assert (delete_unused >= 0);
1586 JUMP_LABEL (jump) = nlabel;
1587 if (!ANY_RETURN_P (nlabel))
1588 ++LABEL_NUSES (nlabel);
1589
1590 /* Update labels in any REG_EQUAL note. */
1591 if ((note = find_reg_note (jump, REG_EQUAL, NULL_RTX)) != NULL_RTX)
1592 {
1593 if (ANY_RETURN_P (nlabel)
1594 || (invert && !invert_exp_1 (XEXP (note, 0), jump)))
1595 remove_note (jump, note);
1596 else
1597 {
1598 redirect_exp_1 (&XEXP (note, 0), olabel, nlabel, jump);
1599 confirm_change_group ();
1600 }
1601 }
1602
1603 /* Handle the case where we had a conditional crossing jump to a return
1604 label and are now changing it into a direct conditional return.
1605 The jump is no longer crossing in that case. */
1606 if (ANY_RETURN_P (nlabel))
1607 CROSSING_JUMP_P (jump) = 0;
1608
1609 if (!ANY_RETURN_P (olabel)
1610 && --LABEL_NUSES (olabel) == 0 && delete_unused > 0
1611 /* Undefined labels will remain outside the insn stream. */
1612 && INSN_UID (olabel))
1613 delete_related_insns (olabel);
1614 if (invert)
1615 invert_br_probabilities (jump);
1616 }
1617
1618 /* Invert the jump condition X contained in jump insn INSN. Accrue the
1619 modifications into the change group. Return nonzero for success. */
1620 static int
1621 invert_exp_1 (rtx x, rtx insn)
1622 {
1623 RTX_CODE code = GET_CODE (x);
1624
1625 if (code == IF_THEN_ELSE)
1626 {
1627 rtx comp = XEXP (x, 0);
1628 rtx tem;
1629 enum rtx_code reversed_code;
1630
1631 /* We can do this in two ways: The preferable way, which can only
1632 be done if this is not an integer comparison, is to reverse
1633 the comparison code. Otherwise, swap the THEN-part and ELSE-part
1634 of the IF_THEN_ELSE. If we can't do either, fail. */
1635
1636 reversed_code = reversed_comparison_code (comp, insn);
1637
1638 if (reversed_code != UNKNOWN)
1639 {
1640 validate_change (insn, &XEXP (x, 0),
1641 gen_rtx_fmt_ee (reversed_code,
1642 GET_MODE (comp), XEXP (comp, 0),
1643 XEXP (comp, 1)),
1644 1);
1645 return 1;
1646 }
1647
1648 tem = XEXP (x, 1);
1649 validate_change (insn, &XEXP (x, 1), XEXP (x, 2), 1);
1650 validate_change (insn, &XEXP (x, 2), tem, 1);
1651 return 1;
1652 }
1653 else
1654 return 0;
1655 }
1656
1657 /* Invert the condition of the jump JUMP, and make it jump to label
1658 NLABEL instead of where it jumps now. Accrue changes into the
1659 change group. Return false if we didn't see how to perform the
1660 inversion and redirection. */
1661
1662 int
1663 invert_jump_1 (rtx jump, rtx nlabel)
1664 {
1665 rtx x = pc_set (jump);
1666 int ochanges;
1667 int ok;
1668
1669 ochanges = num_validated_changes ();
1670 if (x == NULL)
1671 return 0;
1672 ok = invert_exp_1 (SET_SRC (x), jump);
1673 gcc_assert (ok);
1674
1675 if (num_validated_changes () == ochanges)
1676 return 0;
1677
1678 /* redirect_jump_1 will fail of nlabel == olabel, and the current use is
1679 in Pmode, so checking this is not merely an optimization. */
1680 return nlabel == JUMP_LABEL (jump) || redirect_jump_1 (jump, nlabel);
1681 }
1682
1683 /* Invert the condition of the jump JUMP, and make it jump to label
1684 NLABEL instead of where it jumps now. Return true if successful. */
1685
1686 int
1687 invert_jump (rtx jump, rtx nlabel, int delete_unused)
1688 {
1689 rtx olabel = JUMP_LABEL (jump);
1690
1691 if (invert_jump_1 (jump, nlabel) && apply_change_group ())
1692 {
1693 redirect_jump_2 (jump, olabel, nlabel, delete_unused, 1);
1694 return 1;
1695 }
1696 cancel_changes (0);
1697 return 0;
1698 }
1699
1700 \f
1701 /* Like rtx_equal_p except that it considers two REGs as equal
1702 if they renumber to the same value and considers two commutative
1703 operations to be the same if the order of the operands has been
1704 reversed. */
1705
1706 int
1707 rtx_renumbered_equal_p (const_rtx x, const_rtx y)
1708 {
1709 int i;
1710 const enum rtx_code code = GET_CODE (x);
1711 const char *fmt;
1712
1713 if (x == y)
1714 return 1;
1715
1716 if ((code == REG || (code == SUBREG && REG_P (SUBREG_REG (x))))
1717 && (REG_P (y) || (GET_CODE (y) == SUBREG
1718 && REG_P (SUBREG_REG (y)))))
1719 {
1720 int reg_x = -1, reg_y = -1;
1721 int byte_x = 0, byte_y = 0;
1722 struct subreg_info info;
1723
1724 if (GET_MODE (x) != GET_MODE (y))
1725 return 0;
1726
1727 /* If we haven't done any renumbering, don't
1728 make any assumptions. */
1729 if (reg_renumber == 0)
1730 return rtx_equal_p (x, y);
1731
1732 if (code == SUBREG)
1733 {
1734 reg_x = REGNO (SUBREG_REG (x));
1735 byte_x = SUBREG_BYTE (x);
1736
1737 if (reg_renumber[reg_x] >= 0)
1738 {
1739 subreg_get_info (reg_renumber[reg_x],
1740 GET_MODE (SUBREG_REG (x)), byte_x,
1741 GET_MODE (x), &info);
1742 if (!info.representable_p)
1743 return 0;
1744 reg_x = info.offset;
1745 byte_x = 0;
1746 }
1747 }
1748 else
1749 {
1750 reg_x = REGNO (x);
1751 if (reg_renumber[reg_x] >= 0)
1752 reg_x = reg_renumber[reg_x];
1753 }
1754
1755 if (GET_CODE (y) == SUBREG)
1756 {
1757 reg_y = REGNO (SUBREG_REG (y));
1758 byte_y = SUBREG_BYTE (y);
1759
1760 if (reg_renumber[reg_y] >= 0)
1761 {
1762 subreg_get_info (reg_renumber[reg_y],
1763 GET_MODE (SUBREG_REG (y)), byte_y,
1764 GET_MODE (y), &info);
1765 if (!info.representable_p)
1766 return 0;
1767 reg_y = info.offset;
1768 byte_y = 0;
1769 }
1770 }
1771 else
1772 {
1773 reg_y = REGNO (y);
1774 if (reg_renumber[reg_y] >= 0)
1775 reg_y = reg_renumber[reg_y];
1776 }
1777
1778 return reg_x >= 0 && reg_x == reg_y && byte_x == byte_y;
1779 }
1780
1781 /* Now we have disposed of all the cases
1782 in which different rtx codes can match. */
1783 if (code != GET_CODE (y))
1784 return 0;
1785
1786 switch (code)
1787 {
1788 case PC:
1789 case CC0:
1790 case ADDR_VEC:
1791 case ADDR_DIFF_VEC:
1792 CASE_CONST_UNIQUE:
1793 return 0;
1794
1795 case LABEL_REF:
1796 /* We can't assume nonlocal labels have their following insns yet. */
1797 if (LABEL_REF_NONLOCAL_P (x) || LABEL_REF_NONLOCAL_P (y))
1798 return XEXP (x, 0) == XEXP (y, 0);
1799
1800 /* Two label-refs are equivalent if they point at labels
1801 in the same position in the instruction stream. */
1802 return (next_real_insn (XEXP (x, 0))
1803 == next_real_insn (XEXP (y, 0)));
1804
1805 case SYMBOL_REF:
1806 return XSTR (x, 0) == XSTR (y, 0);
1807
1808 case CODE_LABEL:
1809 /* If we didn't match EQ equality above, they aren't the same. */
1810 return 0;
1811
1812 default:
1813 break;
1814 }
1815
1816 /* (MULT:SI x y) and (MULT:HI x y) are NOT equivalent. */
1817
1818 if (GET_MODE (x) != GET_MODE (y))
1819 return 0;
1820
1821 /* MEMs referring to different address space are not equivalent. */
1822 if (code == MEM && MEM_ADDR_SPACE (x) != MEM_ADDR_SPACE (y))
1823 return 0;
1824
1825 /* For commutative operations, the RTX match if the operand match in any
1826 order. Also handle the simple binary and unary cases without a loop. */
1827 if (targetm.commutative_p (x, UNKNOWN))
1828 return ((rtx_renumbered_equal_p (XEXP (x, 0), XEXP (y, 0))
1829 && rtx_renumbered_equal_p (XEXP (x, 1), XEXP (y, 1)))
1830 || (rtx_renumbered_equal_p (XEXP (x, 0), XEXP (y, 1))
1831 && rtx_renumbered_equal_p (XEXP (x, 1), XEXP (y, 0))));
1832 else if (NON_COMMUTATIVE_P (x))
1833 return (rtx_renumbered_equal_p (XEXP (x, 0), XEXP (y, 0))
1834 && rtx_renumbered_equal_p (XEXP (x, 1), XEXP (y, 1)));
1835 else if (UNARY_P (x))
1836 return rtx_renumbered_equal_p (XEXP (x, 0), XEXP (y, 0));
1837
1838 /* Compare the elements. If any pair of corresponding elements
1839 fail to match, return 0 for the whole things. */
1840
1841 fmt = GET_RTX_FORMAT (code);
1842 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1843 {
1844 int j;
1845 switch (fmt[i])
1846 {
1847 case 'w':
1848 if (XWINT (x, i) != XWINT (y, i))
1849 return 0;
1850 break;
1851
1852 case 'i':
1853 if (XINT (x, i) != XINT (y, i))
1854 {
1855 if (((code == ASM_OPERANDS && i == 6)
1856 || (code == ASM_INPUT && i == 1)))
1857 break;
1858 return 0;
1859 }
1860 break;
1861
1862 case 't':
1863 if (XTREE (x, i) != XTREE (y, i))
1864 return 0;
1865 break;
1866
1867 case 's':
1868 if (strcmp (XSTR (x, i), XSTR (y, i)))
1869 return 0;
1870 break;
1871
1872 case 'e':
1873 if (! rtx_renumbered_equal_p (XEXP (x, i), XEXP (y, i)))
1874 return 0;
1875 break;
1876
1877 case 'u':
1878 if (XEXP (x, i) != XEXP (y, i))
1879 return 0;
1880 /* Fall through. */
1881 case '0':
1882 break;
1883
1884 case 'E':
1885 if (XVECLEN (x, i) != XVECLEN (y, i))
1886 return 0;
1887 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
1888 if (!rtx_renumbered_equal_p (XVECEXP (x, i, j), XVECEXP (y, i, j)))
1889 return 0;
1890 break;
1891
1892 default:
1893 gcc_unreachable ();
1894 }
1895 }
1896 return 1;
1897 }
1898 \f
1899 /* If X is a hard register or equivalent to one or a subregister of one,
1900 return the hard register number. If X is a pseudo register that was not
1901 assigned a hard register, return the pseudo register number. Otherwise,
1902 return -1. Any rtx is valid for X. */
1903
1904 int
1905 true_regnum (const_rtx x)
1906 {
1907 if (REG_P (x))
1908 {
1909 if (REGNO (x) >= FIRST_PSEUDO_REGISTER
1910 && (lra_in_progress || reg_renumber[REGNO (x)] >= 0))
1911 return reg_renumber[REGNO (x)];
1912 return REGNO (x);
1913 }
1914 if (GET_CODE (x) == SUBREG)
1915 {
1916 int base = true_regnum (SUBREG_REG (x));
1917 if (base >= 0
1918 && base < FIRST_PSEUDO_REGISTER)
1919 {
1920 struct subreg_info info;
1921
1922 subreg_get_info (lra_in_progress
1923 ? (unsigned) base : REGNO (SUBREG_REG (x)),
1924 GET_MODE (SUBREG_REG (x)),
1925 SUBREG_BYTE (x), GET_MODE (x), &info);
1926
1927 if (info.representable_p)
1928 return base + info.offset;
1929 }
1930 }
1931 return -1;
1932 }
1933
1934 /* Return regno of the register REG and handle subregs too. */
1935 unsigned int
1936 reg_or_subregno (const_rtx reg)
1937 {
1938 if (GET_CODE (reg) == SUBREG)
1939 reg = SUBREG_REG (reg);
1940 gcc_assert (REG_P (reg));
1941 return REGNO (reg);
1942 }