]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/local-alloc.c
alias.c: Remove uses of "register" specifier in declarations of arguments and local...
[thirdparty/gcc.git] / gcc / local-alloc.c
1 /* Allocate registers within a basic block, for GNU compiler.
2 Copyright (C) 1987, 1988, 1991, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001 Free Software Foundation, Inc.
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA. */
21
22 /* Allocation of hard register numbers to pseudo registers is done in
23 two passes. In this pass we consider only regs that are born and
24 die once within one basic block. We do this one basic block at a
25 time. Then the next pass allocates the registers that remain.
26 Two passes are used because this pass uses methods that work only
27 on linear code, but that do a better job than the general methods
28 used in global_alloc, and more quickly too.
29
30 The assignments made are recorded in the vector reg_renumber
31 whose space is allocated here. The rtl code itself is not altered.
32
33 We assign each instruction in the basic block a number
34 which is its order from the beginning of the block.
35 Then we can represent the lifetime of a pseudo register with
36 a pair of numbers, and check for conflicts easily.
37 We can record the availability of hard registers with a
38 HARD_REG_SET for each instruction. The HARD_REG_SET
39 contains 0 or 1 for each hard reg.
40
41 To avoid register shuffling, we tie registers together when one
42 dies by being copied into another, or dies in an instruction that
43 does arithmetic to produce another. The tied registers are
44 allocated as one. Registers with different reg class preferences
45 can never be tied unless the class preferred by one is a subclass
46 of the one preferred by the other.
47
48 Tying is represented with "quantity numbers".
49 A non-tied register is given a new quantity number.
50 Tied registers have the same quantity number.
51
52 We have provision to exempt registers, even when they are contained
53 within the block, that can be tied to others that are not contained in it.
54 This is so that global_alloc could process them both and tie them then.
55 But this is currently disabled since tying in global_alloc is not
56 yet implemented. */
57
58 /* Pseudos allocated here can be reallocated by global.c if the hard register
59 is used as a spill register. Currently we don't allocate such pseudos
60 here if their preferred class is likely to be used by spills. */
61
62 #include "config.h"
63 #include "system.h"
64 #include "rtl.h"
65 #include "tm_p.h"
66 #include "flags.h"
67 #include "hard-reg-set.h"
68 #include "basic-block.h"
69 #include "regs.h"
70 #include "function.h"
71 #include "insn-config.h"
72 #include "insn-attr.h"
73 #include "recog.h"
74 #include "output.h"
75 #include "toplev.h"
76 #include "except.h"
77 \f
78 /* Next quantity number available for allocation. */
79
80 static int next_qty;
81
82 /* Information we maitain about each quantity. */
83 struct qty
84 {
85 /* The number of refs to quantity Q. */
86
87 int n_refs;
88
89 /* The frequency of uses of quantity Q. */
90
91 int freq;
92
93 /* Insn number (counting from head of basic block)
94 where quantity Q was born. -1 if birth has not been recorded. */
95
96 int birth;
97
98 /* Insn number (counting from head of basic block)
99 where given quantity died. Due to the way tying is done,
100 and the fact that we consider in this pass only regs that die but once,
101 a quantity can die only once. Each quantity's life span
102 is a set of consecutive insns. -1 if death has not been recorded. */
103
104 int death;
105
106 /* Number of words needed to hold the data in given quantity.
107 This depends on its machine mode. It is used for these purposes:
108 1. It is used in computing the relative importances of qtys,
109 which determines the order in which we look for regs for them.
110 2. It is used in rules that prevent tying several registers of
111 different sizes in a way that is geometrically impossible
112 (see combine_regs). */
113
114 int size;
115
116 /* Number of times a reg tied to given qty lives across a CALL_INSN. */
117
118 int n_calls_crossed;
119
120 /* The register number of one pseudo register whose reg_qty value is Q.
121 This register should be the head of the chain
122 maintained in reg_next_in_qty. */
123
124 int first_reg;
125
126 /* Reg class contained in (smaller than) the preferred classes of all
127 the pseudo regs that are tied in given quantity.
128 This is the preferred class for allocating that quantity. */
129
130 enum reg_class min_class;
131
132 /* Register class within which we allocate given qty if we can't get
133 its preferred class. */
134
135 enum reg_class alternate_class;
136
137 /* This holds the mode of the registers that are tied to given qty,
138 or VOIDmode if registers with differing modes are tied together. */
139
140 enum machine_mode mode;
141
142 /* the hard reg number chosen for given quantity,
143 or -1 if none was found. */
144
145 short phys_reg;
146
147 /* Nonzero if this quantity has been used in a SUBREG in some
148 way that is illegal. */
149
150 char changes_mode;
151
152 };
153
154 static struct qty *qty;
155
156 /* These fields are kept separately to speedup their clearing. */
157
158 /* We maintain two hard register sets that indicate suggested hard registers
159 for each quantity. The first, phys_copy_sugg, contains hard registers
160 that are tied to the quantity by a simple copy. The second contains all
161 hard registers that are tied to the quantity via an arithmetic operation.
162
163 The former register set is given priority for allocation. This tends to
164 eliminate copy insns. */
165
166 /* Element Q is a set of hard registers that are suggested for quantity Q by
167 copy insns. */
168
169 static HARD_REG_SET *qty_phys_copy_sugg;
170
171 /* Element Q is a set of hard registers that are suggested for quantity Q by
172 arithmetic insns. */
173
174 static HARD_REG_SET *qty_phys_sugg;
175
176 /* Element Q is the number of suggested registers in qty_phys_copy_sugg. */
177
178 static short *qty_phys_num_copy_sugg;
179
180 /* Element Q is the number of suggested registers in qty_phys_sugg. */
181
182 static short *qty_phys_num_sugg;
183
184 /* If (REG N) has been assigned a quantity number, is a register number
185 of another register assigned the same quantity number, or -1 for the
186 end of the chain. qty->first_reg point to the head of this chain. */
187
188 static int *reg_next_in_qty;
189
190 /* reg_qty[N] (where N is a pseudo reg number) is the qty number of that reg
191 if it is >= 0,
192 of -1 if this register cannot be allocated by local-alloc,
193 or -2 if not known yet.
194
195 Note that if we see a use or death of pseudo register N with
196 reg_qty[N] == -2, register N must be local to the current block. If
197 it were used in more than one block, we would have reg_qty[N] == -1.
198 This relies on the fact that if reg_basic_block[N] is >= 0, register N
199 will not appear in any other block. We save a considerable number of
200 tests by exploiting this.
201
202 If N is < FIRST_PSEUDO_REGISTER, reg_qty[N] is undefined and should not
203 be referenced. */
204
205 static int *reg_qty;
206
207 /* The offset (in words) of register N within its quantity.
208 This can be nonzero if register N is SImode, and has been tied
209 to a subreg of a DImode register. */
210
211 static char *reg_offset;
212
213 /* Vector of substitutions of register numbers,
214 used to map pseudo regs into hardware regs.
215 This is set up as a result of register allocation.
216 Element N is the hard reg assigned to pseudo reg N,
217 or is -1 if no hard reg was assigned.
218 If N is a hard reg number, element N is N. */
219
220 short *reg_renumber;
221
222 /* Set of hard registers live at the current point in the scan
223 of the instructions in a basic block. */
224
225 static HARD_REG_SET regs_live;
226
227 /* Each set of hard registers indicates registers live at a particular
228 point in the basic block. For N even, regs_live_at[N] says which
229 hard registers are needed *after* insn N/2 (i.e., they may not
230 conflict with the outputs of insn N/2 or the inputs of insn N/2 + 1.
231
232 If an object is to conflict with the inputs of insn J but not the
233 outputs of insn J + 1, we say it is born at index J*2 - 1. Similarly,
234 if it is to conflict with the outputs of insn J but not the inputs of
235 insn J + 1, it is said to die at index J*2 + 1. */
236
237 static HARD_REG_SET *regs_live_at;
238
239 /* Communicate local vars `insn_number' and `insn'
240 from `block_alloc' to `reg_is_set', `wipe_dead_reg', and `alloc_qty'. */
241 static int this_insn_number;
242 static rtx this_insn;
243
244 struct equivalence
245 {
246 /* Set when an attempt should be made to replace a register
247 with the associated src entry. */
248
249 char replace;
250
251 /* Set when a REG_EQUIV note is found or created. Use to
252 keep track of what memory accesses might be created later,
253 e.g. by reload. */
254
255 rtx replacement;
256
257 rtx src;
258
259 /* Loop depth is used to recognize equivalences which appear
260 to be present within the same loop (or in an inner loop). */
261
262 int loop_depth;
263
264 /* The list of each instruction which initializes this register. */
265
266 rtx init_insns;
267 };
268
269 /* reg_equiv[N] (where N is a pseudo reg number) is the equivalence
270 structure for that register. */
271
272 static struct equivalence *reg_equiv;
273
274 /* Nonzero if we recorded an equivalence for a LABEL_REF. */
275 static int recorded_label_ref;
276
277 static void alloc_qty PARAMS ((int, enum machine_mode, int, int));
278 static void validate_equiv_mem_from_store PARAMS ((rtx, rtx, void *));
279 static int validate_equiv_mem PARAMS ((rtx, rtx, rtx));
280 static int equiv_init_varies_p PARAMS ((rtx));
281 static int equiv_init_movable_p PARAMS ((rtx, int));
282 static int contains_replace_regs PARAMS ((rtx));
283 static int memref_referenced_p PARAMS ((rtx, rtx));
284 static int memref_used_between_p PARAMS ((rtx, rtx, rtx));
285 static void update_equiv_regs PARAMS ((void));
286 static void no_equiv PARAMS ((rtx, rtx, void *));
287 static void block_alloc PARAMS ((int));
288 static int qty_sugg_compare PARAMS ((int, int));
289 static int qty_sugg_compare_1 PARAMS ((const PTR, const PTR));
290 static int qty_compare PARAMS ((int, int));
291 static int qty_compare_1 PARAMS ((const PTR, const PTR));
292 static int combine_regs PARAMS ((rtx, rtx, int, int, rtx, int));
293 static int reg_meets_class_p PARAMS ((int, enum reg_class));
294 static void update_qty_class PARAMS ((int, int));
295 static void reg_is_set PARAMS ((rtx, rtx, void *));
296 static void reg_is_born PARAMS ((rtx, int));
297 static void wipe_dead_reg PARAMS ((rtx, int));
298 static int find_free_reg PARAMS ((enum reg_class, enum machine_mode,
299 int, int, int, int, int));
300 static void mark_life PARAMS ((int, enum machine_mode, int));
301 static void post_mark_life PARAMS ((int, enum machine_mode, int, int, int));
302 static int no_conflict_p PARAMS ((rtx, rtx, rtx));
303 static int requires_inout PARAMS ((const char *));
304 \f
305 /* Allocate a new quantity (new within current basic block)
306 for register number REGNO which is born at index BIRTH
307 within the block. MODE and SIZE are info on reg REGNO. */
308
309 static void
310 alloc_qty (regno, mode, size, birth)
311 int regno;
312 enum machine_mode mode;
313 int size, birth;
314 {
315 int qtyno = next_qty++;
316
317 reg_qty[regno] = qtyno;
318 reg_offset[regno] = 0;
319 reg_next_in_qty[regno] = -1;
320
321 qty[qtyno].first_reg = regno;
322 qty[qtyno].size = size;
323 qty[qtyno].mode = mode;
324 qty[qtyno].birth = birth;
325 qty[qtyno].n_calls_crossed = REG_N_CALLS_CROSSED (regno);
326 qty[qtyno].min_class = reg_preferred_class (regno);
327 qty[qtyno].alternate_class = reg_alternate_class (regno);
328 qty[qtyno].n_refs = REG_N_REFS (regno);
329 qty[qtyno].freq = REG_FREQ (regno);
330 qty[qtyno].changes_mode = REG_CHANGES_MODE (regno);
331 }
332 \f
333 /* Main entry point of this file. */
334
335 int
336 local_alloc ()
337 {
338 int b, i;
339 int max_qty;
340
341 /* We need to keep track of whether or not we recorded a LABEL_REF so
342 that we know if the jump optimizer needs to be rerun. */
343 recorded_label_ref = 0;
344
345 /* Leaf functions and non-leaf functions have different needs.
346 If defined, let the machine say what kind of ordering we
347 should use. */
348 #ifdef ORDER_REGS_FOR_LOCAL_ALLOC
349 ORDER_REGS_FOR_LOCAL_ALLOC;
350 #endif
351
352 /* Promote REG_EQUAL notes to REG_EQUIV notes and adjust status of affected
353 registers. */
354 update_equiv_regs ();
355
356 /* This sets the maximum number of quantities we can have. Quantity
357 numbers start at zero and we can have one for each pseudo. */
358 max_qty = (max_regno - FIRST_PSEUDO_REGISTER);
359
360 /* Allocate vectors of temporary data.
361 See the declarations of these variables, above,
362 for what they mean. */
363
364 qty = (struct qty *) xmalloc (max_qty * sizeof (struct qty));
365 qty_phys_copy_sugg
366 = (HARD_REG_SET *) xmalloc (max_qty * sizeof (HARD_REG_SET));
367 qty_phys_num_copy_sugg = (short *) xmalloc (max_qty * sizeof (short));
368 qty_phys_sugg = (HARD_REG_SET *) xmalloc (max_qty * sizeof (HARD_REG_SET));
369 qty_phys_num_sugg = (short *) xmalloc (max_qty * sizeof (short));
370
371 reg_qty = (int *) xmalloc (max_regno * sizeof (int));
372 reg_offset = (char *) xmalloc (max_regno * sizeof (char));
373 reg_next_in_qty = (int *) xmalloc (max_regno * sizeof (int));
374
375 /* Determine which pseudo-registers can be allocated by local-alloc.
376 In general, these are the registers used only in a single block and
377 which only die once.
378
379 We need not be concerned with which block actually uses the register
380 since we will never see it outside that block. */
381
382 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
383 {
384 if (REG_BASIC_BLOCK (i) >= 0 && REG_N_DEATHS (i) == 1)
385 reg_qty[i] = -2;
386 else
387 reg_qty[i] = -1;
388 }
389
390 /* Force loop below to initialize entire quantity array. */
391 next_qty = max_qty;
392
393 /* Allocate each block's local registers, block by block. */
394
395 for (b = 0; b < n_basic_blocks; b++)
396 {
397 /* NEXT_QTY indicates which elements of the `qty_...'
398 vectors might need to be initialized because they were used
399 for the previous block; it is set to the entire array before
400 block 0. Initialize those, with explicit loop if there are few,
401 else with bzero and bcopy. Do not initialize vectors that are
402 explicit set by `alloc_qty'. */
403
404 if (next_qty < 6)
405 {
406 for (i = 0; i < next_qty; i++)
407 {
408 CLEAR_HARD_REG_SET (qty_phys_copy_sugg[i]);
409 qty_phys_num_copy_sugg[i] = 0;
410 CLEAR_HARD_REG_SET (qty_phys_sugg[i]);
411 qty_phys_num_sugg[i] = 0;
412 }
413 }
414 else
415 {
416 #define CLEAR(vector) \
417 memset ((char *) (vector), 0, (sizeof (*(vector))) * next_qty);
418
419 CLEAR (qty_phys_copy_sugg);
420 CLEAR (qty_phys_num_copy_sugg);
421 CLEAR (qty_phys_sugg);
422 CLEAR (qty_phys_num_sugg);
423 }
424
425 next_qty = 0;
426
427 block_alloc (b);
428 }
429
430 free (qty);
431 free (qty_phys_copy_sugg);
432 free (qty_phys_num_copy_sugg);
433 free (qty_phys_sugg);
434 free (qty_phys_num_sugg);
435
436 free (reg_qty);
437 free (reg_offset);
438 free (reg_next_in_qty);
439
440 return recorded_label_ref;
441 }
442 \f
443 /* Used for communication between the following two functions: contains
444 a MEM that we wish to ensure remains unchanged. */
445 static rtx equiv_mem;
446
447 /* Set nonzero if EQUIV_MEM is modified. */
448 static int equiv_mem_modified;
449
450 /* If EQUIV_MEM is modified by modifying DEST, indicate that it is modified.
451 Called via note_stores. */
452
453 static void
454 validate_equiv_mem_from_store (dest, set, data)
455 rtx dest;
456 rtx set ATTRIBUTE_UNUSED;
457 void *data ATTRIBUTE_UNUSED;
458 {
459 if ((GET_CODE (dest) == REG
460 && reg_overlap_mentioned_p (dest, equiv_mem))
461 || (GET_CODE (dest) == MEM
462 && true_dependence (dest, VOIDmode, equiv_mem, rtx_varies_p)))
463 equiv_mem_modified = 1;
464 }
465
466 /* Verify that no store between START and the death of REG invalidates
467 MEMREF. MEMREF is invalidated by modifying a register used in MEMREF,
468 by storing into an overlapping memory location, or with a non-const
469 CALL_INSN.
470
471 Return 1 if MEMREF remains valid. */
472
473 static int
474 validate_equiv_mem (start, reg, memref)
475 rtx start;
476 rtx reg;
477 rtx memref;
478 {
479 rtx insn;
480 rtx note;
481
482 equiv_mem = memref;
483 equiv_mem_modified = 0;
484
485 /* If the memory reference has side effects or is volatile, it isn't a
486 valid equivalence. */
487 if (side_effects_p (memref))
488 return 0;
489
490 for (insn = start; insn && ! equiv_mem_modified; insn = NEXT_INSN (insn))
491 {
492 if (! INSN_P (insn))
493 continue;
494
495 if (find_reg_note (insn, REG_DEAD, reg))
496 return 1;
497
498 if (GET_CODE (insn) == CALL_INSN && ! RTX_UNCHANGING_P (memref)
499 && ! CONST_OR_PURE_CALL_P (insn))
500 return 0;
501
502 note_stores (PATTERN (insn), validate_equiv_mem_from_store, NULL);
503
504 /* If a register mentioned in MEMREF is modified via an
505 auto-increment, we lose the equivalence. Do the same if one
506 dies; although we could extend the life, it doesn't seem worth
507 the trouble. */
508
509 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
510 if ((REG_NOTE_KIND (note) == REG_INC
511 || REG_NOTE_KIND (note) == REG_DEAD)
512 && GET_CODE (XEXP (note, 0)) == REG
513 && reg_overlap_mentioned_p (XEXP (note, 0), memref))
514 return 0;
515 }
516
517 return 0;
518 }
519
520 /* Returns zero if X is known to be invariant. */
521
522 static int
523 equiv_init_varies_p (x)
524 rtx x;
525 {
526 RTX_CODE code = GET_CODE (x);
527 int i;
528 const char *fmt;
529
530 switch (code)
531 {
532 case MEM:
533 return ! RTX_UNCHANGING_P (x) || equiv_init_varies_p (XEXP (x, 0));
534
535 case QUEUED:
536 return 1;
537
538 case CONST:
539 case CONST_INT:
540 case CONST_DOUBLE:
541 case SYMBOL_REF:
542 case LABEL_REF:
543 return 0;
544
545 case REG:
546 return reg_equiv[REGNO (x)].replace == 0 && rtx_varies_p (x, 0);
547
548 case ASM_OPERANDS:
549 if (MEM_VOLATILE_P (x))
550 return 1;
551
552 /* FALLTHROUGH */
553
554 default:
555 break;
556 }
557
558 fmt = GET_RTX_FORMAT (code);
559 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
560 if (fmt[i] == 'e')
561 {
562 if (equiv_init_varies_p (XEXP (x, i)))
563 return 1;
564 }
565 else if (fmt[i] == 'E')
566 {
567 int j;
568 for (j = 0; j < XVECLEN (x, i); j++)
569 if (equiv_init_varies_p (XVECEXP (x, i, j)))
570 return 1;
571 }
572
573 return 0;
574 }
575
576 /* Returns non-zero if X (used to initialize register REGNO) is movable.
577 X is only movable if the registers it uses have equivalent initializations
578 which appear to be within the same loop (or in an inner loop) and movable
579 or if they are not candidates for local_alloc and don't vary. */
580
581 static int
582 equiv_init_movable_p (x, regno)
583 rtx x;
584 int regno;
585 {
586 int i, j;
587 const char *fmt;
588 enum rtx_code code = GET_CODE (x);
589
590 switch (code)
591 {
592 case SET:
593 return equiv_init_movable_p (SET_SRC (x), regno);
594
595 case CC0:
596 case CLOBBER:
597 return 0;
598
599 case PRE_INC:
600 case PRE_DEC:
601 case POST_INC:
602 case POST_DEC:
603 case PRE_MODIFY:
604 case POST_MODIFY:
605 return 0;
606
607 case REG:
608 return (reg_equiv[REGNO (x)].loop_depth >= reg_equiv[regno].loop_depth
609 && reg_equiv[REGNO (x)].replace)
610 || (REG_BASIC_BLOCK (REGNO (x)) < 0 && ! rtx_varies_p (x, 0));
611
612 case UNSPEC_VOLATILE:
613 return 0;
614
615 case ASM_OPERANDS:
616 if (MEM_VOLATILE_P (x))
617 return 0;
618
619 /* FALLTHROUGH */
620
621 default:
622 break;
623 }
624
625 fmt = GET_RTX_FORMAT (code);
626 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
627 switch (fmt[i])
628 {
629 case 'e':
630 if (! equiv_init_movable_p (XEXP (x, i), regno))
631 return 0;
632 break;
633 case 'E':
634 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
635 if (! equiv_init_movable_p (XVECEXP (x, i, j), regno))
636 return 0;
637 break;
638 }
639
640 return 1;
641 }
642
643 /* TRUE if X uses any registers for which reg_equiv[REGNO].replace is true. */
644
645 static int
646 contains_replace_regs (x)
647 rtx x;
648 {
649 int i, j;
650 const char *fmt;
651 enum rtx_code code = GET_CODE (x);
652
653 switch (code)
654 {
655 case CONST_INT:
656 case CONST:
657 case LABEL_REF:
658 case SYMBOL_REF:
659 case CONST_DOUBLE:
660 case PC:
661 case CC0:
662 case HIGH:
663 case LO_SUM:
664 return 0;
665
666 case REG:
667 return reg_equiv[REGNO (x)].replace;
668
669 default:
670 break;
671 }
672
673 fmt = GET_RTX_FORMAT (code);
674 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
675 switch (fmt[i])
676 {
677 case 'e':
678 if (contains_replace_regs (XEXP (x, i)))
679 return 1;
680 break;
681 case 'E':
682 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
683 if (contains_replace_regs (XVECEXP (x, i, j)))
684 return 1;
685 break;
686 }
687
688 return 0;
689 }
690 \f
691 /* TRUE if X references a memory location that would be affected by a store
692 to MEMREF. */
693
694 static int
695 memref_referenced_p (memref, x)
696 rtx x;
697 rtx memref;
698 {
699 int i, j;
700 const char *fmt;
701 enum rtx_code code = GET_CODE (x);
702
703 switch (code)
704 {
705 case CONST_INT:
706 case CONST:
707 case LABEL_REF:
708 case SYMBOL_REF:
709 case CONST_DOUBLE:
710 case PC:
711 case CC0:
712 case HIGH:
713 case LO_SUM:
714 return 0;
715
716 case REG:
717 return (reg_equiv[REGNO (x)].replacement
718 && memref_referenced_p (memref,
719 reg_equiv[REGNO (x)].replacement));
720
721 case MEM:
722 if (true_dependence (memref, VOIDmode, x, rtx_varies_p))
723 return 1;
724 break;
725
726 case SET:
727 /* If we are setting a MEM, it doesn't count (its address does), but any
728 other SET_DEST that has a MEM in it is referencing the MEM. */
729 if (GET_CODE (SET_DEST (x)) == MEM)
730 {
731 if (memref_referenced_p (memref, XEXP (SET_DEST (x), 0)))
732 return 1;
733 }
734 else if (memref_referenced_p (memref, SET_DEST (x)))
735 return 1;
736
737 return memref_referenced_p (memref, SET_SRC (x));
738
739 default:
740 break;
741 }
742
743 fmt = GET_RTX_FORMAT (code);
744 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
745 switch (fmt[i])
746 {
747 case 'e':
748 if (memref_referenced_p (memref, XEXP (x, i)))
749 return 1;
750 break;
751 case 'E':
752 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
753 if (memref_referenced_p (memref, XVECEXP (x, i, j)))
754 return 1;
755 break;
756 }
757
758 return 0;
759 }
760
761 /* TRUE if some insn in the range (START, END] references a memory location
762 that would be affected by a store to MEMREF. */
763
764 static int
765 memref_used_between_p (memref, start, end)
766 rtx memref;
767 rtx start;
768 rtx end;
769 {
770 rtx insn;
771
772 for (insn = NEXT_INSN (start); insn != NEXT_INSN (end);
773 insn = NEXT_INSN (insn))
774 if (INSN_P (insn) && memref_referenced_p (memref, PATTERN (insn)))
775 return 1;
776
777 return 0;
778 }
779 \f
780 /* Return nonzero if the rtx X is invariant over the current function. */
781 int
782 function_invariant_p (x)
783 rtx x;
784 {
785 if (CONSTANT_P (x))
786 return 1;
787 if (x == frame_pointer_rtx || x == arg_pointer_rtx)
788 return 1;
789 if (GET_CODE (x) == PLUS
790 && (XEXP (x, 0) == frame_pointer_rtx || XEXP (x, 0) == arg_pointer_rtx)
791 && CONSTANT_P (XEXP (x, 1)))
792 return 1;
793 return 0;
794 }
795
796 /* Find registers that are equivalent to a single value throughout the
797 compilation (either because they can be referenced in memory or are set once
798 from a single constant). Lower their priority for a register.
799
800 If such a register is only referenced once, try substituting its value
801 into the using insn. If it succeeds, we can eliminate the register
802 completely. */
803
804 static void
805 update_equiv_regs ()
806 {
807 rtx insn;
808 int block;
809 int loop_depth;
810 regset_head cleared_regs;
811 int clear_regnos = 0;
812
813 reg_equiv = (struct equivalence *) xcalloc (max_regno, sizeof *reg_equiv);
814 INIT_REG_SET (&cleared_regs);
815
816 init_alias_analysis ();
817
818 /* Scan the insns and find which registers have equivalences. Do this
819 in a separate scan of the insns because (due to -fcse-follow-jumps)
820 a register can be set below its use. */
821 for (block = 0; block < n_basic_blocks; block++)
822 {
823 basic_block bb = BASIC_BLOCK (block);
824 loop_depth = bb->loop_depth;
825
826 for (insn = bb->head; insn != NEXT_INSN (bb->end); insn = NEXT_INSN (insn))
827 {
828 rtx note;
829 rtx set;
830 rtx dest, src;
831 int regno;
832
833 if (! INSN_P (insn))
834 continue;
835
836 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
837 if (REG_NOTE_KIND (note) == REG_INC)
838 no_equiv (XEXP (note, 0), note, NULL);
839
840 set = single_set (insn);
841
842 /* If this insn contains more (or less) than a single SET,
843 only mark all destinations as having no known equivalence. */
844 if (set == 0)
845 {
846 note_stores (PATTERN (insn), no_equiv, NULL);
847 continue;
848 }
849 else if (GET_CODE (PATTERN (insn)) == PARALLEL)
850 {
851 int i;
852
853 for (i = XVECLEN (PATTERN (insn), 0) - 1; i >= 0; i--)
854 {
855 rtx part = XVECEXP (PATTERN (insn), 0, i);
856 if (part != set)
857 note_stores (part, no_equiv, NULL);
858 }
859 }
860
861 dest = SET_DEST (set);
862 src = SET_SRC (set);
863
864 /* If this sets a MEM to the contents of a REG that is only used
865 in a single basic block, see if the register is always equivalent
866 to that memory location and if moving the store from INSN to the
867 insn that set REG is safe. If so, put a REG_EQUIV note on the
868 initializing insn.
869
870 Don't add a REG_EQUIV note if the insn already has one. The existing
871 REG_EQUIV is likely more useful than the one we are adding.
872
873 If one of the regs in the address has reg_equiv[REGNO].replace set,
874 then we can't add this REG_EQUIV note. The reg_equiv[REGNO].replace
875 optimization may move the set of this register immediately before
876 insn, which puts it after reg_equiv[REGNO].init_insns, and hence
877 the mention in the REG_EQUIV note would be to an uninitialized
878 pseudo. */
879 /* ????? This test isn't good enough; we might see a MEM with a use of
880 a pseudo register before we see its setting insn that will cause
881 reg_equiv[].replace for that pseudo to be set.
882 Equivalences to MEMs should be made in another pass, after the
883 reg_equiv[].replace information has been gathered. */
884
885 if (GET_CODE (dest) == MEM && GET_CODE (src) == REG
886 && (regno = REGNO (src)) >= FIRST_PSEUDO_REGISTER
887 && REG_BASIC_BLOCK (regno) >= 0
888 && REG_N_SETS (regno) == 1
889 && reg_equiv[regno].init_insns != 0
890 && reg_equiv[regno].init_insns != const0_rtx
891 && ! find_reg_note (XEXP (reg_equiv[regno].init_insns, 0),
892 REG_EQUIV, NULL_RTX)
893 && ! contains_replace_regs (XEXP (dest, 0)))
894 {
895 rtx init_insn = XEXP (reg_equiv[regno].init_insns, 0);
896 if (validate_equiv_mem (init_insn, src, dest)
897 && ! memref_used_between_p (dest, init_insn, insn))
898 REG_NOTES (init_insn)
899 = gen_rtx_EXPR_LIST (REG_EQUIV, dest, REG_NOTES (init_insn));
900 }
901
902 /* We only handle the case of a pseudo register being set
903 once, or always to the same value. */
904 /* ??? The mn10200 port breaks if we add equivalences for
905 values that need an ADDRESS_REGS register and set them equivalent
906 to a MEM of a pseudo. The actual problem is in the over-conservative
907 handling of INPADDR_ADDRESS / INPUT_ADDRESS / INPUT triples in
908 calculate_needs, but we traditionally work around this problem
909 here by rejecting equivalences when the destination is in a register
910 that's likely spilled. This is fragile, of course, since the
911 preferred class of a pseudo depends on all instructions that set
912 or use it. */
913
914 if (GET_CODE (dest) != REG
915 || (regno = REGNO (dest)) < FIRST_PSEUDO_REGISTER
916 || reg_equiv[regno].init_insns == const0_rtx
917 || (CLASS_LIKELY_SPILLED_P (reg_preferred_class (regno))
918 && GET_CODE (src) == MEM))
919 {
920 /* This might be seting a SUBREG of a pseudo, a pseudo that is
921 also set somewhere else to a constant. */
922 note_stores (set, no_equiv, NULL);
923 continue;
924 }
925
926 note = find_reg_note (insn, REG_EQUAL, NULL_RTX);
927
928 /* cse sometimes generates function invariants, but doesn't put a
929 REG_EQUAL note on the insn. Since this note would be redundant,
930 there's no point creating it earlier than here. */
931 if (! note && ! rtx_varies_p (src, 0))
932 REG_NOTES (insn)
933 = note = gen_rtx_EXPR_LIST (REG_EQUAL, src, REG_NOTES (insn));
934
935 /* Don't bother considering a REG_EQUAL note containing an EXPR_LIST
936 since it represents a function call */
937 if (note && GET_CODE (XEXP (note, 0)) == EXPR_LIST)
938 note = NULL_RTX;
939
940 if (REG_N_SETS (regno) != 1
941 && (! note
942 || rtx_varies_p (XEXP (note, 0), 0)
943 || (reg_equiv[regno].replacement
944 && ! rtx_equal_p (XEXP (note, 0),
945 reg_equiv[regno].replacement))))
946 {
947 no_equiv (dest, set, NULL);
948 continue;
949 }
950 /* Record this insn as initializing this register. */
951 reg_equiv[regno].init_insns
952 = gen_rtx_INSN_LIST (VOIDmode, insn, reg_equiv[regno].init_insns);
953
954 /* If this register is known to be equal to a constant, record that
955 it is always equivalent to the constant. */
956 if (note && ! rtx_varies_p (XEXP (note, 0), 0))
957 PUT_MODE (note, (enum machine_mode) REG_EQUIV);
958
959 /* If this insn introduces a "constant" register, decrease the priority
960 of that register. Record this insn if the register is only used once
961 more and the equivalence value is the same as our source.
962
963 The latter condition is checked for two reasons: First, it is an
964 indication that it may be more efficient to actually emit the insn
965 as written (if no registers are available, reload will substitute
966 the equivalence). Secondly, it avoids problems with any registers
967 dying in this insn whose death notes would be missed.
968
969 If we don't have a REG_EQUIV note, see if this insn is loading
970 a register used only in one basic block from a MEM. If so, and the
971 MEM remains unchanged for the life of the register, add a REG_EQUIV
972 note. */
973
974 note = find_reg_note (insn, REG_EQUIV, NULL_RTX);
975
976 if (note == 0 && REG_BASIC_BLOCK (regno) >= 0
977 && GET_CODE (SET_SRC (set)) == MEM
978 && validate_equiv_mem (insn, dest, SET_SRC (set)))
979 REG_NOTES (insn) = note = gen_rtx_EXPR_LIST (REG_EQUIV, SET_SRC (set),
980 REG_NOTES (insn));
981
982 if (note)
983 {
984 int regno = REGNO (dest);
985
986 /* Record whether or not we created a REG_EQUIV note for a LABEL_REF.
987 We might end up substituting the LABEL_REF for uses of the
988 pseudo here or later. That kind of transformation may turn an
989 indirect jump into a direct jump, in which case we must rerun the
990 jump optimizer to ensure that the JUMP_LABEL fields are valid. */
991 if (GET_CODE (XEXP (note, 0)) == LABEL_REF
992 || (GET_CODE (XEXP (note, 0)) == CONST
993 && GET_CODE (XEXP (XEXP (note, 0), 0)) == PLUS
994 && (GET_CODE (XEXP (XEXP (XEXP (note, 0), 0), 0))
995 == LABEL_REF)))
996 recorded_label_ref = 1;
997
998 reg_equiv[regno].replacement = XEXP (note, 0);
999 reg_equiv[regno].src = src;
1000 reg_equiv[regno].loop_depth = loop_depth;
1001
1002 /* Don't mess with things live during setjmp. */
1003 if (REG_LIVE_LENGTH (regno) >= 0 && optimize)
1004 {
1005 /* Note that the statement below does not affect the priority
1006 in local-alloc! */
1007 REG_LIVE_LENGTH (regno) *= 2;
1008
1009
1010 /* If the register is referenced exactly twice, meaning it is
1011 set once and used once, indicate that the reference may be
1012 replaced by the equivalence we computed above. Do this
1013 even if the register is only used in one block so that
1014 dependencies can be handled where the last register is
1015 used in a different block (i.e. HIGH / LO_SUM sequences)
1016 and to reduce the number of registers alive across
1017 calls. */
1018
1019 if (REG_N_REFS (regno) == 2
1020 && (rtx_equal_p (XEXP (note, 0), src)
1021 || ! equiv_init_varies_p (src))
1022 && GET_CODE (insn) == INSN
1023 && equiv_init_movable_p (PATTERN (insn), regno))
1024 reg_equiv[regno].replace = 1;
1025 }
1026 }
1027 }
1028 }
1029
1030 /* Now scan all regs killed in an insn to see if any of them are
1031 registers only used that once. If so, see if we can replace the
1032 reference with the equivalent from. If we can, delete the
1033 initializing reference and this register will go away. If we
1034 can't replace the reference, and the initialzing reference is
1035 within the same loop (or in an inner loop), then move the register
1036 initialization just before the use, so that they are in the same
1037 basic block. */
1038 for (block = n_basic_blocks - 1; block >= 0; block--)
1039 {
1040 basic_block bb = BASIC_BLOCK (block);
1041
1042 loop_depth = bb->loop_depth;
1043 for (insn = bb->end; insn != PREV_INSN (bb->head); insn = PREV_INSN (insn))
1044 {
1045 rtx link;
1046
1047 if (! INSN_P (insn))
1048 continue;
1049
1050 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1051 {
1052 if (REG_NOTE_KIND (link) == REG_DEAD
1053 /* Make sure this insn still refers to the register. */
1054 && reg_mentioned_p (XEXP (link, 0), PATTERN (insn)))
1055 {
1056 int regno = REGNO (XEXP (link, 0));
1057 rtx equiv_insn;
1058
1059 if (! reg_equiv[regno].replace
1060 || reg_equiv[regno].loop_depth < loop_depth)
1061 continue;
1062
1063 /* reg_equiv[REGNO].replace gets set only when
1064 REG_N_REFS[REGNO] is 2, i.e. the register is set
1065 once and used once. (If it were only set, but not used,
1066 flow would have deleted the setting insns.) Hence
1067 there can only be one insn in reg_equiv[REGNO].init_insns. */
1068 if (reg_equiv[regno].init_insns == NULL_RTX
1069 || XEXP (reg_equiv[regno].init_insns, 1) != NULL_RTX)
1070 abort ();
1071 equiv_insn = XEXP (reg_equiv[regno].init_insns, 0);
1072
1073 /* We may not move instructions that can throw, since
1074 that changes basic block boundaries and we are not
1075 prepared to adjust the CFG to match. */
1076 if (can_throw_internal (equiv_insn))
1077 continue;
1078
1079 if (asm_noperands (PATTERN (equiv_insn)) < 0
1080 && validate_replace_rtx (regno_reg_rtx[regno],
1081 reg_equiv[regno].src, insn))
1082 {
1083 rtx equiv_link;
1084 rtx last_link;
1085 rtx note;
1086
1087 /* Find the last note. */
1088 for (last_link = link; XEXP (last_link, 1);
1089 last_link = XEXP (last_link, 1))
1090 ;
1091
1092 /* Append the REG_DEAD notes from equiv_insn. */
1093 equiv_link = REG_NOTES (equiv_insn);
1094 while (equiv_link)
1095 {
1096 note = equiv_link;
1097 equiv_link = XEXP (equiv_link, 1);
1098 if (REG_NOTE_KIND (note) == REG_DEAD)
1099 {
1100 remove_note (equiv_insn, note);
1101 XEXP (last_link, 1) = note;
1102 XEXP (note, 1) = NULL_RTX;
1103 last_link = note;
1104 }
1105 }
1106
1107 remove_death (regno, insn);
1108 REG_N_REFS (regno) = 0;
1109 REG_FREQ (regno) = 0;
1110 delete_insn (equiv_insn);
1111
1112 reg_equiv[regno].init_insns
1113 = XEXP (reg_equiv[regno].init_insns, 1);
1114 }
1115 /* Move the initialization of the register to just before
1116 INSN. Update the flow information. */
1117 else if (PREV_INSN (insn) != equiv_insn)
1118 {
1119 rtx new_insn;
1120
1121 new_insn = emit_insn_before (PATTERN (equiv_insn), insn);
1122 REG_NOTES (new_insn) = REG_NOTES (equiv_insn);
1123 REG_NOTES (equiv_insn) = 0;
1124
1125 /* Make sure this insn is recognized before reload begins,
1126 otherwise eliminate_regs_in_insn will abort. */
1127 INSN_CODE (new_insn) = INSN_CODE (equiv_insn);
1128
1129 delete_insn (equiv_insn);
1130
1131 XEXP (reg_equiv[regno].init_insns, 0) = new_insn;
1132
1133 REG_BASIC_BLOCK (regno) = block >= 0 ? block : 0;
1134 REG_N_CALLS_CROSSED (regno) = 0;
1135 REG_LIVE_LENGTH (regno) = 2;
1136
1137 if (block >= 0 && insn == BLOCK_HEAD (block))
1138 BLOCK_HEAD (block) = PREV_INSN (insn);
1139
1140 /* Remember to clear REGNO from all basic block's live
1141 info. */
1142 SET_REGNO_REG_SET (&cleared_regs, regno);
1143 clear_regnos++;
1144 }
1145 }
1146 }
1147 }
1148 }
1149
1150 /* Clear all dead REGNOs from all basic block's live info. */
1151 if (clear_regnos)
1152 {
1153 int j, l;
1154 if (clear_regnos > 8)
1155 {
1156 for (l = 0; l < n_basic_blocks; l++)
1157 {
1158 AND_COMPL_REG_SET (BASIC_BLOCK (l)->global_live_at_start,
1159 &cleared_regs);
1160 AND_COMPL_REG_SET (BASIC_BLOCK (l)->global_live_at_end,
1161 &cleared_regs);
1162 }
1163 }
1164 else
1165 EXECUTE_IF_SET_IN_REG_SET (&cleared_regs, 0, j,
1166 {
1167 for (l = 0; l < n_basic_blocks; l++)
1168 {
1169 CLEAR_REGNO_REG_SET (BASIC_BLOCK (l)->global_live_at_start, j);
1170 CLEAR_REGNO_REG_SET (BASIC_BLOCK (l)->global_live_at_end, j);
1171 }
1172 });
1173 }
1174
1175 /* Clean up. */
1176 end_alias_analysis ();
1177 CLEAR_REG_SET (&cleared_regs);
1178 free (reg_equiv);
1179 }
1180
1181 /* Mark REG as having no known equivalence.
1182 Some instructions might have been proceessed before and furnished
1183 with REG_EQUIV notes for this register; these notes will have to be
1184 removed.
1185 STORE is the piece of RTL that does the non-constant / conflicting
1186 assignment - a SET, CLOBBER or REG_INC note. It is currently not used,
1187 but needs to be there because this function is called from note_stores. */
1188 static void
1189 no_equiv (reg, store, data)
1190 rtx reg, store ATTRIBUTE_UNUSED;
1191 void *data ATTRIBUTE_UNUSED;
1192 {
1193 int regno;
1194 rtx list;
1195
1196 if (GET_CODE (reg) != REG)
1197 return;
1198 regno = REGNO (reg);
1199 list = reg_equiv[regno].init_insns;
1200 if (list == const0_rtx)
1201 return;
1202 for (; list; list = XEXP (list, 1))
1203 {
1204 rtx insn = XEXP (list, 0);
1205 remove_note (insn, find_reg_note (insn, REG_EQUIV, NULL_RTX));
1206 }
1207 reg_equiv[regno].init_insns = const0_rtx;
1208 reg_equiv[regno].replacement = NULL_RTX;
1209 }
1210 \f
1211 /* Allocate hard regs to the pseudo regs used only within block number B.
1212 Only the pseudos that die but once can be handled. */
1213
1214 static void
1215 block_alloc (b)
1216 int b;
1217 {
1218 int i, q;
1219 rtx insn;
1220 rtx note;
1221 int insn_number = 0;
1222 int insn_count = 0;
1223 int max_uid = get_max_uid ();
1224 int *qty_order;
1225 int no_conflict_combined_regno = -1;
1226
1227 /* Count the instructions in the basic block. */
1228
1229 insn = BLOCK_END (b);
1230 while (1)
1231 {
1232 if (GET_CODE (insn) != NOTE)
1233 if (++insn_count > max_uid)
1234 abort ();
1235 if (insn == BLOCK_HEAD (b))
1236 break;
1237 insn = PREV_INSN (insn);
1238 }
1239
1240 /* +2 to leave room for a post_mark_life at the last insn and for
1241 the birth of a CLOBBER in the first insn. */
1242 regs_live_at = (HARD_REG_SET *) xcalloc ((2 * insn_count + 2),
1243 sizeof (HARD_REG_SET));
1244
1245 /* Initialize table of hardware registers currently live. */
1246
1247 REG_SET_TO_HARD_REG_SET (regs_live, BASIC_BLOCK (b)->global_live_at_start);
1248
1249 /* This loop scans the instructions of the basic block
1250 and assigns quantities to registers.
1251 It computes which registers to tie. */
1252
1253 insn = BLOCK_HEAD (b);
1254 while (1)
1255 {
1256 if (GET_CODE (insn) != NOTE)
1257 insn_number++;
1258
1259 if (INSN_P (insn))
1260 {
1261 rtx link, set;
1262 int win = 0;
1263 rtx r0, r1 = NULL_RTX;
1264 int combined_regno = -1;
1265 int i;
1266
1267 this_insn_number = insn_number;
1268 this_insn = insn;
1269
1270 extract_insn (insn);
1271 which_alternative = -1;
1272
1273 /* Is this insn suitable for tying two registers?
1274 If so, try doing that.
1275 Suitable insns are those with at least two operands and where
1276 operand 0 is an output that is a register that is not
1277 earlyclobber.
1278
1279 We can tie operand 0 with some operand that dies in this insn.
1280 First look for operands that are required to be in the same
1281 register as operand 0. If we find such, only try tying that
1282 operand or one that can be put into that operand if the
1283 operation is commutative. If we don't find an operand
1284 that is required to be in the same register as operand 0,
1285 we can tie with any operand.
1286
1287 Subregs in place of regs are also ok.
1288
1289 If tying is done, WIN is set nonzero. */
1290
1291 if (optimize
1292 && recog_data.n_operands > 1
1293 && recog_data.constraints[0][0] == '='
1294 && recog_data.constraints[0][1] != '&')
1295 {
1296 /* If non-negative, is an operand that must match operand 0. */
1297 int must_match_0 = -1;
1298 /* Counts number of alternatives that require a match with
1299 operand 0. */
1300 int n_matching_alts = 0;
1301
1302 for (i = 1; i < recog_data.n_operands; i++)
1303 {
1304 const char *p = recog_data.constraints[i];
1305 int this_match = (requires_inout (p));
1306
1307 n_matching_alts += this_match;
1308 if (this_match == recog_data.n_alternatives)
1309 must_match_0 = i;
1310 }
1311
1312 r0 = recog_data.operand[0];
1313 for (i = 1; i < recog_data.n_operands; i++)
1314 {
1315 /* Skip this operand if we found an operand that
1316 must match operand 0 and this operand isn't it
1317 and can't be made to be it by commutativity. */
1318
1319 if (must_match_0 >= 0 && i != must_match_0
1320 && ! (i == must_match_0 + 1
1321 && recog_data.constraints[i-1][0] == '%')
1322 && ! (i == must_match_0 - 1
1323 && recog_data.constraints[i][0] == '%'))
1324 continue;
1325
1326 /* Likewise if each alternative has some operand that
1327 must match operand zero. In that case, skip any
1328 operand that doesn't list operand 0 since we know that
1329 the operand always conflicts with operand 0. We
1330 ignore commutatity in this case to keep things simple. */
1331 if (n_matching_alts == recog_data.n_alternatives
1332 && 0 == requires_inout (recog_data.constraints[i]))
1333 continue;
1334
1335 r1 = recog_data.operand[i];
1336
1337 /* If the operand is an address, find a register in it.
1338 There may be more than one register, but we only try one
1339 of them. */
1340 if (recog_data.constraints[i][0] == 'p')
1341 while (GET_CODE (r1) == PLUS || GET_CODE (r1) == MULT)
1342 r1 = XEXP (r1, 0);
1343
1344 if (GET_CODE (r0) == REG || GET_CODE (r0) == SUBREG)
1345 {
1346 /* We have two priorities for hard register preferences.
1347 If we have a move insn or an insn whose first input
1348 can only be in the same register as the output, give
1349 priority to an equivalence found from that insn. */
1350 int may_save_copy
1351 = (r1 == recog_data.operand[i] && must_match_0 >= 0);
1352
1353 if (GET_CODE (r1) == REG || GET_CODE (r1) == SUBREG)
1354 win = combine_regs (r1, r0, may_save_copy,
1355 insn_number, insn, 0);
1356 }
1357 if (win)
1358 break;
1359 }
1360 }
1361
1362 /* Recognize an insn sequence with an ultimate result
1363 which can safely overlap one of the inputs.
1364 The sequence begins with a CLOBBER of its result,
1365 and ends with an insn that copies the result to itself
1366 and has a REG_EQUAL note for an equivalent formula.
1367 That note indicates what the inputs are.
1368 The result and the input can overlap if each insn in
1369 the sequence either doesn't mention the input
1370 or has a REG_NO_CONFLICT note to inhibit the conflict.
1371
1372 We do the combining test at the CLOBBER so that the
1373 destination register won't have had a quantity number
1374 assigned, since that would prevent combining. */
1375
1376 if (optimize
1377 && GET_CODE (PATTERN (insn)) == CLOBBER
1378 && (r0 = XEXP (PATTERN (insn), 0),
1379 GET_CODE (r0) == REG)
1380 && (link = find_reg_note (insn, REG_LIBCALL, NULL_RTX)) != 0
1381 && XEXP (link, 0) != 0
1382 && GET_CODE (XEXP (link, 0)) == INSN
1383 && (set = single_set (XEXP (link, 0))) != 0
1384 && SET_DEST (set) == r0 && SET_SRC (set) == r0
1385 && (note = find_reg_note (XEXP (link, 0), REG_EQUAL,
1386 NULL_RTX)) != 0)
1387 {
1388 if (r1 = XEXP (note, 0), GET_CODE (r1) == REG
1389 /* Check that we have such a sequence. */
1390 && no_conflict_p (insn, r0, r1))
1391 win = combine_regs (r1, r0, 1, insn_number, insn, 1);
1392 else if (GET_RTX_FORMAT (GET_CODE (XEXP (note, 0)))[0] == 'e'
1393 && (r1 = XEXP (XEXP (note, 0), 0),
1394 GET_CODE (r1) == REG || GET_CODE (r1) == SUBREG)
1395 && no_conflict_p (insn, r0, r1))
1396 win = combine_regs (r1, r0, 0, insn_number, insn, 1);
1397
1398 /* Here we care if the operation to be computed is
1399 commutative. */
1400 else if ((GET_CODE (XEXP (note, 0)) == EQ
1401 || GET_CODE (XEXP (note, 0)) == NE
1402 || GET_RTX_CLASS (GET_CODE (XEXP (note, 0))) == 'c')
1403 && (r1 = XEXP (XEXP (note, 0), 1),
1404 (GET_CODE (r1) == REG || GET_CODE (r1) == SUBREG))
1405 && no_conflict_p (insn, r0, r1))
1406 win = combine_regs (r1, r0, 0, insn_number, insn, 1);
1407
1408 /* If we did combine something, show the register number
1409 in question so that we know to ignore its death. */
1410 if (win)
1411 no_conflict_combined_regno = REGNO (r1);
1412 }
1413
1414 /* If registers were just tied, set COMBINED_REGNO
1415 to the number of the register used in this insn
1416 that was tied to the register set in this insn.
1417 This register's qty should not be "killed". */
1418
1419 if (win)
1420 {
1421 while (GET_CODE (r1) == SUBREG)
1422 r1 = SUBREG_REG (r1);
1423 combined_regno = REGNO (r1);
1424 }
1425
1426 /* Mark the death of everything that dies in this instruction,
1427 except for anything that was just combined. */
1428
1429 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1430 if (REG_NOTE_KIND (link) == REG_DEAD
1431 && GET_CODE (XEXP (link, 0)) == REG
1432 && combined_regno != (int) REGNO (XEXP (link, 0))
1433 && (no_conflict_combined_regno != (int) REGNO (XEXP (link, 0))
1434 || ! find_reg_note (insn, REG_NO_CONFLICT,
1435 XEXP (link, 0))))
1436 wipe_dead_reg (XEXP (link, 0), 0);
1437
1438 /* Allocate qty numbers for all registers local to this block
1439 that are born (set) in this instruction.
1440 A pseudo that already has a qty is not changed. */
1441
1442 note_stores (PATTERN (insn), reg_is_set, NULL);
1443
1444 /* If anything is set in this insn and then unused, mark it as dying
1445 after this insn, so it will conflict with our outputs. This
1446 can't match with something that combined, and it doesn't matter
1447 if it did. Do this after the calls to reg_is_set since these
1448 die after, not during, the current insn. */
1449
1450 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1451 if (REG_NOTE_KIND (link) == REG_UNUSED
1452 && GET_CODE (XEXP (link, 0)) == REG)
1453 wipe_dead_reg (XEXP (link, 0), 1);
1454
1455 /* If this is an insn that has a REG_RETVAL note pointing at a
1456 CLOBBER insn, we have reached the end of a REG_NO_CONFLICT
1457 block, so clear any register number that combined within it. */
1458 if ((note = find_reg_note (insn, REG_RETVAL, NULL_RTX)) != 0
1459 && GET_CODE (XEXP (note, 0)) == INSN
1460 && GET_CODE (PATTERN (XEXP (note, 0))) == CLOBBER)
1461 no_conflict_combined_regno = -1;
1462 }
1463
1464 /* Set the registers live after INSN_NUMBER. Note that we never
1465 record the registers live before the block's first insn, since no
1466 pseudos we care about are live before that insn. */
1467
1468 IOR_HARD_REG_SET (regs_live_at[2 * insn_number], regs_live);
1469 IOR_HARD_REG_SET (regs_live_at[2 * insn_number + 1], regs_live);
1470
1471 if (insn == BLOCK_END (b))
1472 break;
1473
1474 insn = NEXT_INSN (insn);
1475 }
1476
1477 /* Now every register that is local to this basic block
1478 should have been given a quantity, or else -1 meaning ignore it.
1479 Every quantity should have a known birth and death.
1480
1481 Order the qtys so we assign them registers in order of the
1482 number of suggested registers they need so we allocate those with
1483 the most restrictive needs first. */
1484
1485 qty_order = (int *) xmalloc (next_qty * sizeof (int));
1486 for (i = 0; i < next_qty; i++)
1487 qty_order[i] = i;
1488
1489 #define EXCHANGE(I1, I2) \
1490 { i = qty_order[I1]; qty_order[I1] = qty_order[I2]; qty_order[I2] = i; }
1491
1492 switch (next_qty)
1493 {
1494 case 3:
1495 /* Make qty_order[2] be the one to allocate last. */
1496 if (qty_sugg_compare (0, 1) > 0)
1497 EXCHANGE (0, 1);
1498 if (qty_sugg_compare (1, 2) > 0)
1499 EXCHANGE (2, 1);
1500
1501 /* ... Fall through ... */
1502 case 2:
1503 /* Put the best one to allocate in qty_order[0]. */
1504 if (qty_sugg_compare (0, 1) > 0)
1505 EXCHANGE (0, 1);
1506
1507 /* ... Fall through ... */
1508
1509 case 1:
1510 case 0:
1511 /* Nothing to do here. */
1512 break;
1513
1514 default:
1515 qsort (qty_order, next_qty, sizeof (int), qty_sugg_compare_1);
1516 }
1517
1518 /* Try to put each quantity in a suggested physical register, if it has one.
1519 This may cause registers to be allocated that otherwise wouldn't be, but
1520 this seems acceptable in local allocation (unlike global allocation). */
1521 for (i = 0; i < next_qty; i++)
1522 {
1523 q = qty_order[i];
1524 if (qty_phys_num_sugg[q] != 0 || qty_phys_num_copy_sugg[q] != 0)
1525 qty[q].phys_reg = find_free_reg (qty[q].min_class, qty[q].mode, q,
1526 0, 1, qty[q].birth, qty[q].death);
1527 else
1528 qty[q].phys_reg = -1;
1529 }
1530
1531 /* Order the qtys so we assign them registers in order of
1532 decreasing length of life. Normally call qsort, but if we
1533 have only a very small number of quantities, sort them ourselves. */
1534
1535 for (i = 0; i < next_qty; i++)
1536 qty_order[i] = i;
1537
1538 #define EXCHANGE(I1, I2) \
1539 { i = qty_order[I1]; qty_order[I1] = qty_order[I2]; qty_order[I2] = i; }
1540
1541 switch (next_qty)
1542 {
1543 case 3:
1544 /* Make qty_order[2] be the one to allocate last. */
1545 if (qty_compare (0, 1) > 0)
1546 EXCHANGE (0, 1);
1547 if (qty_compare (1, 2) > 0)
1548 EXCHANGE (2, 1);
1549
1550 /* ... Fall through ... */
1551 case 2:
1552 /* Put the best one to allocate in qty_order[0]. */
1553 if (qty_compare (0, 1) > 0)
1554 EXCHANGE (0, 1);
1555
1556 /* ... Fall through ... */
1557
1558 case 1:
1559 case 0:
1560 /* Nothing to do here. */
1561 break;
1562
1563 default:
1564 qsort (qty_order, next_qty, sizeof (int), qty_compare_1);
1565 }
1566
1567 /* Now for each qty that is not a hardware register,
1568 look for a hardware register to put it in.
1569 First try the register class that is cheapest for this qty,
1570 if there is more than one class. */
1571
1572 for (i = 0; i < next_qty; i++)
1573 {
1574 q = qty_order[i];
1575 if (qty[q].phys_reg < 0)
1576 {
1577 #ifdef INSN_SCHEDULING
1578 /* These values represent the adjusted lifetime of a qty so
1579 that it conflicts with qtys which appear near the start/end
1580 of this qty's lifetime.
1581
1582 The purpose behind extending the lifetime of this qty is to
1583 discourage the register allocator from creating false
1584 dependencies.
1585
1586 The adjustment value is choosen to indicate that this qty
1587 conflicts with all the qtys in the instructions immediately
1588 before and after the lifetime of this qty.
1589
1590 Experiments have shown that higher values tend to hurt
1591 overall code performance.
1592
1593 If allocation using the extended lifetime fails we will try
1594 again with the qty's unadjusted lifetime. */
1595 int fake_birth = MAX (0, qty[q].birth - 2 + qty[q].birth % 2);
1596 int fake_death = MIN (insn_number * 2 + 1,
1597 qty[q].death + 2 - qty[q].death % 2);
1598 #endif
1599
1600 if (N_REG_CLASSES > 1)
1601 {
1602 #ifdef INSN_SCHEDULING
1603 /* We try to avoid using hard registers allocated to qtys which
1604 are born immediately after this qty or die immediately before
1605 this qty.
1606
1607 This optimization is only appropriate when we will run
1608 a scheduling pass after reload and we are not optimizing
1609 for code size. */
1610 if (flag_schedule_insns_after_reload
1611 && !optimize_size
1612 && !SMALL_REGISTER_CLASSES)
1613 {
1614 qty[q].phys_reg = find_free_reg (qty[q].min_class,
1615 qty[q].mode, q, 0, 0,
1616 fake_birth, fake_death);
1617 if (qty[q].phys_reg >= 0)
1618 continue;
1619 }
1620 #endif
1621 qty[q].phys_reg = find_free_reg (qty[q].min_class,
1622 qty[q].mode, q, 0, 0,
1623 qty[q].birth, qty[q].death);
1624 if (qty[q].phys_reg >= 0)
1625 continue;
1626 }
1627
1628 #ifdef INSN_SCHEDULING
1629 /* Similarly, avoid false dependencies. */
1630 if (flag_schedule_insns_after_reload
1631 && !optimize_size
1632 && !SMALL_REGISTER_CLASSES
1633 && qty[q].alternate_class != NO_REGS)
1634 qty[q].phys_reg = find_free_reg (qty[q].alternate_class,
1635 qty[q].mode, q, 0, 0,
1636 fake_birth, fake_death);
1637 #endif
1638 if (qty[q].alternate_class != NO_REGS)
1639 qty[q].phys_reg = find_free_reg (qty[q].alternate_class,
1640 qty[q].mode, q, 0, 0,
1641 qty[q].birth, qty[q].death);
1642 }
1643 }
1644
1645 /* Now propagate the register assignments
1646 to the pseudo regs belonging to the qtys. */
1647
1648 for (q = 0; q < next_qty; q++)
1649 if (qty[q].phys_reg >= 0)
1650 {
1651 for (i = qty[q].first_reg; i >= 0; i = reg_next_in_qty[i])
1652 reg_renumber[i] = qty[q].phys_reg + reg_offset[i];
1653 }
1654
1655 /* Clean up. */
1656 free (regs_live_at);
1657 free (qty_order);
1658 }
1659 \f
1660 /* Compare two quantities' priority for getting real registers.
1661 We give shorter-lived quantities higher priority.
1662 Quantities with more references are also preferred, as are quantities that
1663 require multiple registers. This is the identical prioritization as
1664 done by global-alloc.
1665
1666 We used to give preference to registers with *longer* lives, but using
1667 the same algorithm in both local- and global-alloc can speed up execution
1668 of some programs by as much as a factor of three! */
1669
1670 /* Note that the quotient will never be bigger than
1671 the value of floor_log2 times the maximum number of
1672 times a register can occur in one insn (surely less than 100)
1673 weighted by frequency (max REG_FREQ_MAX).
1674 Multiplying this by 10000/REG_FREQ_MAX can't overflow.
1675 QTY_CMP_PRI is also used by qty_sugg_compare. */
1676
1677 #define QTY_CMP_PRI(q) \
1678 ((int) (((double) (floor_log2 (qty[q].n_refs) * qty[q].freq * qty[q].size) \
1679 / (qty[q].death - qty[q].birth)) * (10000 / REG_FREQ_MAX)))
1680
1681 static int
1682 qty_compare (q1, q2)
1683 int q1, q2;
1684 {
1685 return QTY_CMP_PRI (q2) - QTY_CMP_PRI (q1);
1686 }
1687
1688 static int
1689 qty_compare_1 (q1p, q2p)
1690 const PTR q1p;
1691 const PTR q2p;
1692 {
1693 int q1 = *(const int *) q1p, q2 = *(const int *) q2p;
1694 int tem = QTY_CMP_PRI (q2) - QTY_CMP_PRI (q1);
1695
1696 if (tem != 0)
1697 return tem;
1698
1699 /* If qtys are equally good, sort by qty number,
1700 so that the results of qsort leave nothing to chance. */
1701 return q1 - q2;
1702 }
1703 \f
1704 /* Compare two quantities' priority for getting real registers. This version
1705 is called for quantities that have suggested hard registers. First priority
1706 goes to quantities that have copy preferences, then to those that have
1707 normal preferences. Within those groups, quantities with the lower
1708 number of preferences have the highest priority. Of those, we use the same
1709 algorithm as above. */
1710
1711 #define QTY_CMP_SUGG(q) \
1712 (qty_phys_num_copy_sugg[q] \
1713 ? qty_phys_num_copy_sugg[q] \
1714 : qty_phys_num_sugg[q] * FIRST_PSEUDO_REGISTER)
1715
1716 static int
1717 qty_sugg_compare (q1, q2)
1718 int q1, q2;
1719 {
1720 int tem = QTY_CMP_SUGG (q1) - QTY_CMP_SUGG (q2);
1721
1722 if (tem != 0)
1723 return tem;
1724
1725 return QTY_CMP_PRI (q2) - QTY_CMP_PRI (q1);
1726 }
1727
1728 static int
1729 qty_sugg_compare_1 (q1p, q2p)
1730 const PTR q1p;
1731 const PTR q2p;
1732 {
1733 int q1 = *(const int *) q1p, q2 = *(const int *) q2p;
1734 int tem = QTY_CMP_SUGG (q1) - QTY_CMP_SUGG (q2);
1735
1736 if (tem != 0)
1737 return tem;
1738
1739 tem = QTY_CMP_PRI (q2) - QTY_CMP_PRI (q1);
1740 if (tem != 0)
1741 return tem;
1742
1743 /* If qtys are equally good, sort by qty number,
1744 so that the results of qsort leave nothing to chance. */
1745 return q1 - q2;
1746 }
1747
1748 #undef QTY_CMP_SUGG
1749 #undef QTY_CMP_PRI
1750 \f
1751 /* Attempt to combine the two registers (rtx's) USEDREG and SETREG.
1752 Returns 1 if have done so, or 0 if cannot.
1753
1754 Combining registers means marking them as having the same quantity
1755 and adjusting the offsets within the quantity if either of
1756 them is a SUBREG).
1757
1758 We don't actually combine a hard reg with a pseudo; instead
1759 we just record the hard reg as the suggestion for the pseudo's quantity.
1760 If we really combined them, we could lose if the pseudo lives
1761 across an insn that clobbers the hard reg (eg, movstr).
1762
1763 ALREADY_DEAD is non-zero if USEDREG is known to be dead even though
1764 there is no REG_DEAD note on INSN. This occurs during the processing
1765 of REG_NO_CONFLICT blocks.
1766
1767 MAY_SAVE_COPYCOPY is non-zero if this insn is simply copying USEDREG to
1768 SETREG or if the input and output must share a register.
1769 In that case, we record a hard reg suggestion in QTY_PHYS_COPY_SUGG.
1770
1771 There are elaborate checks for the validity of combining. */
1772
1773 static int
1774 combine_regs (usedreg, setreg, may_save_copy, insn_number, insn, already_dead)
1775 rtx usedreg, setreg;
1776 int may_save_copy;
1777 int insn_number;
1778 rtx insn;
1779 int already_dead;
1780 {
1781 int ureg, sreg;
1782 int offset = 0;
1783 int usize, ssize;
1784 int sqty;
1785
1786 /* Determine the numbers and sizes of registers being used. If a subreg
1787 is present that does not change the entire register, don't consider
1788 this a copy insn. */
1789
1790 while (GET_CODE (usedreg) == SUBREG)
1791 {
1792 if (GET_MODE_SIZE (GET_MODE (SUBREG_REG (usedreg))) > UNITS_PER_WORD)
1793 may_save_copy = 0;
1794 if (REGNO (SUBREG_REG (usedreg)) < FIRST_PSEUDO_REGISTER)
1795 offset += subreg_regno_offset (REGNO (SUBREG_REG (usedreg)),
1796 GET_MODE (SUBREG_REG (usedreg)),
1797 SUBREG_BYTE (usedreg),
1798 GET_MODE (usedreg));
1799 else
1800 offset += (SUBREG_BYTE (usedreg)
1801 / REGMODE_NATURAL_SIZE (GET_MODE (usedreg)));
1802 usedreg = SUBREG_REG (usedreg);
1803 }
1804 if (GET_CODE (usedreg) != REG)
1805 return 0;
1806 ureg = REGNO (usedreg);
1807 if (ureg < FIRST_PSEUDO_REGISTER)
1808 usize = HARD_REGNO_NREGS (ureg, GET_MODE (usedreg));
1809 else
1810 usize = ((GET_MODE_SIZE (GET_MODE (usedreg))
1811 + (REGMODE_NATURAL_SIZE (GET_MODE (usedreg)) - 1))
1812 / REGMODE_NATURAL_SIZE (GET_MODE (usedreg)));
1813
1814 while (GET_CODE (setreg) == SUBREG)
1815 {
1816 if (GET_MODE_SIZE (GET_MODE (SUBREG_REG (setreg))) > UNITS_PER_WORD)
1817 may_save_copy = 0;
1818 if (REGNO (SUBREG_REG (setreg)) < FIRST_PSEUDO_REGISTER)
1819 offset -= subreg_regno_offset (REGNO (SUBREG_REG (setreg)),
1820 GET_MODE (SUBREG_REG (setreg)),
1821 SUBREG_BYTE (setreg),
1822 GET_MODE (setreg));
1823 else
1824 offset -= (SUBREG_BYTE (setreg)
1825 / REGMODE_NATURAL_SIZE (GET_MODE (setreg)));
1826 setreg = SUBREG_REG (setreg);
1827 }
1828 if (GET_CODE (setreg) != REG)
1829 return 0;
1830 sreg = REGNO (setreg);
1831 if (sreg < FIRST_PSEUDO_REGISTER)
1832 ssize = HARD_REGNO_NREGS (sreg, GET_MODE (setreg));
1833 else
1834 ssize = ((GET_MODE_SIZE (GET_MODE (setreg))
1835 + (REGMODE_NATURAL_SIZE (GET_MODE (setreg)) - 1))
1836 / REGMODE_NATURAL_SIZE (GET_MODE (setreg)));
1837
1838 /* If UREG is a pseudo-register that hasn't already been assigned a
1839 quantity number, it means that it is not local to this block or dies
1840 more than once. In either event, we can't do anything with it. */
1841 if ((ureg >= FIRST_PSEUDO_REGISTER && reg_qty[ureg] < 0)
1842 /* Do not combine registers unless one fits within the other. */
1843 || (offset > 0 && usize + offset > ssize)
1844 || (offset < 0 && usize + offset < ssize)
1845 /* Do not combine with a smaller already-assigned object
1846 if that smaller object is already combined with something bigger. */
1847 || (ssize > usize && ureg >= FIRST_PSEUDO_REGISTER
1848 && usize < qty[reg_qty[ureg]].size)
1849 /* Can't combine if SREG is not a register we can allocate. */
1850 || (sreg >= FIRST_PSEUDO_REGISTER && reg_qty[sreg] == -1)
1851 /* Don't combine with a pseudo mentioned in a REG_NO_CONFLICT note.
1852 These have already been taken care of. This probably wouldn't
1853 combine anyway, but don't take any chances. */
1854 || (ureg >= FIRST_PSEUDO_REGISTER
1855 && find_reg_note (insn, REG_NO_CONFLICT, usedreg))
1856 /* Don't tie something to itself. In most cases it would make no
1857 difference, but it would screw up if the reg being tied to itself
1858 also dies in this insn. */
1859 || ureg == sreg
1860 /* Don't try to connect two different hardware registers. */
1861 || (ureg < FIRST_PSEUDO_REGISTER && sreg < FIRST_PSEUDO_REGISTER)
1862 /* Don't connect two different machine modes if they have different
1863 implications as to which registers may be used. */
1864 || !MODES_TIEABLE_P (GET_MODE (usedreg), GET_MODE (setreg)))
1865 return 0;
1866
1867 /* Now, if UREG is a hard reg and SREG is a pseudo, record the hard reg in
1868 qty_phys_sugg for the pseudo instead of tying them.
1869
1870 Return "failure" so that the lifespan of UREG is terminated here;
1871 that way the two lifespans will be disjoint and nothing will prevent
1872 the pseudo reg from being given this hard reg. */
1873
1874 if (ureg < FIRST_PSEUDO_REGISTER)
1875 {
1876 /* Allocate a quantity number so we have a place to put our
1877 suggestions. */
1878 if (reg_qty[sreg] == -2)
1879 reg_is_born (setreg, 2 * insn_number);
1880
1881 if (reg_qty[sreg] >= 0)
1882 {
1883 if (may_save_copy
1884 && ! TEST_HARD_REG_BIT (qty_phys_copy_sugg[reg_qty[sreg]], ureg))
1885 {
1886 SET_HARD_REG_BIT (qty_phys_copy_sugg[reg_qty[sreg]], ureg);
1887 qty_phys_num_copy_sugg[reg_qty[sreg]]++;
1888 }
1889 else if (! TEST_HARD_REG_BIT (qty_phys_sugg[reg_qty[sreg]], ureg))
1890 {
1891 SET_HARD_REG_BIT (qty_phys_sugg[reg_qty[sreg]], ureg);
1892 qty_phys_num_sugg[reg_qty[sreg]]++;
1893 }
1894 }
1895 return 0;
1896 }
1897
1898 /* Similarly for SREG a hard register and UREG a pseudo register. */
1899
1900 if (sreg < FIRST_PSEUDO_REGISTER)
1901 {
1902 if (may_save_copy
1903 && ! TEST_HARD_REG_BIT (qty_phys_copy_sugg[reg_qty[ureg]], sreg))
1904 {
1905 SET_HARD_REG_BIT (qty_phys_copy_sugg[reg_qty[ureg]], sreg);
1906 qty_phys_num_copy_sugg[reg_qty[ureg]]++;
1907 }
1908 else if (! TEST_HARD_REG_BIT (qty_phys_sugg[reg_qty[ureg]], sreg))
1909 {
1910 SET_HARD_REG_BIT (qty_phys_sugg[reg_qty[ureg]], sreg);
1911 qty_phys_num_sugg[reg_qty[ureg]]++;
1912 }
1913 return 0;
1914 }
1915
1916 /* At this point we know that SREG and UREG are both pseudos.
1917 Do nothing if SREG already has a quantity or is a register that we
1918 don't allocate. */
1919 if (reg_qty[sreg] >= -1
1920 /* If we are not going to let any regs live across calls,
1921 don't tie a call-crossing reg to a non-call-crossing reg. */
1922 || (current_function_has_nonlocal_label
1923 && ((REG_N_CALLS_CROSSED (ureg) > 0)
1924 != (REG_N_CALLS_CROSSED (sreg) > 0))))
1925 return 0;
1926
1927 /* We don't already know about SREG, so tie it to UREG
1928 if this is the last use of UREG, provided the classes they want
1929 are compatible. */
1930
1931 if ((already_dead || find_regno_note (insn, REG_DEAD, ureg))
1932 && reg_meets_class_p (sreg, qty[reg_qty[ureg]].min_class))
1933 {
1934 /* Add SREG to UREG's quantity. */
1935 sqty = reg_qty[ureg];
1936 reg_qty[sreg] = sqty;
1937 reg_offset[sreg] = reg_offset[ureg] + offset;
1938 reg_next_in_qty[sreg] = qty[sqty].first_reg;
1939 qty[sqty].first_reg = sreg;
1940
1941 /* If SREG's reg class is smaller, set qty[SQTY].min_class. */
1942 update_qty_class (sqty, sreg);
1943
1944 /* Update info about quantity SQTY. */
1945 qty[sqty].n_calls_crossed += REG_N_CALLS_CROSSED (sreg);
1946 qty[sqty].n_refs += REG_N_REFS (sreg);
1947 qty[sqty].freq += REG_FREQ (sreg);
1948 if (usize < ssize)
1949 {
1950 int i;
1951
1952 for (i = qty[sqty].first_reg; i >= 0; i = reg_next_in_qty[i])
1953 reg_offset[i] -= offset;
1954
1955 qty[sqty].size = ssize;
1956 qty[sqty].mode = GET_MODE (setreg);
1957 }
1958 }
1959 else
1960 return 0;
1961
1962 return 1;
1963 }
1964 \f
1965 /* Return 1 if the preferred class of REG allows it to be tied
1966 to a quantity or register whose class is CLASS.
1967 True if REG's reg class either contains or is contained in CLASS. */
1968
1969 static int
1970 reg_meets_class_p (reg, class)
1971 int reg;
1972 enum reg_class class;
1973 {
1974 enum reg_class rclass = reg_preferred_class (reg);
1975 return (reg_class_subset_p (rclass, class)
1976 || reg_class_subset_p (class, rclass));
1977 }
1978
1979 /* Update the class of QTYNO assuming that REG is being tied to it. */
1980
1981 static void
1982 update_qty_class (qtyno, reg)
1983 int qtyno;
1984 int reg;
1985 {
1986 enum reg_class rclass = reg_preferred_class (reg);
1987 if (reg_class_subset_p (rclass, qty[qtyno].min_class))
1988 qty[qtyno].min_class = rclass;
1989
1990 rclass = reg_alternate_class (reg);
1991 if (reg_class_subset_p (rclass, qty[qtyno].alternate_class))
1992 qty[qtyno].alternate_class = rclass;
1993
1994 if (REG_CHANGES_MODE (reg))
1995 qty[qtyno].changes_mode = 1;
1996 }
1997 \f
1998 /* Handle something which alters the value of an rtx REG.
1999
2000 REG is whatever is set or clobbered. SETTER is the rtx that
2001 is modifying the register.
2002
2003 If it is not really a register, we do nothing.
2004 The file-global variables `this_insn' and `this_insn_number'
2005 carry info from `block_alloc'. */
2006
2007 static void
2008 reg_is_set (reg, setter, data)
2009 rtx reg;
2010 rtx setter;
2011 void *data ATTRIBUTE_UNUSED;
2012 {
2013 /* Note that note_stores will only pass us a SUBREG if it is a SUBREG of
2014 a hard register. These may actually not exist any more. */
2015
2016 if (GET_CODE (reg) != SUBREG
2017 && GET_CODE (reg) != REG)
2018 return;
2019
2020 /* Mark this register as being born. If it is used in a CLOBBER, mark
2021 it as being born halfway between the previous insn and this insn so that
2022 it conflicts with our inputs but not the outputs of the previous insn. */
2023
2024 reg_is_born (reg, 2 * this_insn_number - (GET_CODE (setter) == CLOBBER));
2025 }
2026 \f
2027 /* Handle beginning of the life of register REG.
2028 BIRTH is the index at which this is happening. */
2029
2030 static void
2031 reg_is_born (reg, birth)
2032 rtx reg;
2033 int birth;
2034 {
2035 int regno;
2036
2037 if (GET_CODE (reg) == SUBREG)
2038 {
2039 regno = REGNO (SUBREG_REG (reg));
2040 if (regno < FIRST_PSEUDO_REGISTER)
2041 regno = subreg_hard_regno (reg, 1);
2042 }
2043 else
2044 regno = REGNO (reg);
2045
2046 if (regno < FIRST_PSEUDO_REGISTER)
2047 {
2048 mark_life (regno, GET_MODE (reg), 1);
2049
2050 /* If the register was to have been born earlier that the present
2051 insn, mark it as live where it is actually born. */
2052 if (birth < 2 * this_insn_number)
2053 post_mark_life (regno, GET_MODE (reg), 1, birth, 2 * this_insn_number);
2054 }
2055 else
2056 {
2057 if (reg_qty[regno] == -2)
2058 alloc_qty (regno, GET_MODE (reg), PSEUDO_REGNO_SIZE (regno), birth);
2059
2060 /* If this register has a quantity number, show that it isn't dead. */
2061 if (reg_qty[regno] >= 0)
2062 qty[reg_qty[regno]].death = -1;
2063 }
2064 }
2065
2066 /* Record the death of REG in the current insn. If OUTPUT_P is non-zero,
2067 REG is an output that is dying (i.e., it is never used), otherwise it
2068 is an input (the normal case).
2069 If OUTPUT_P is 1, then we extend the life past the end of this insn. */
2070
2071 static void
2072 wipe_dead_reg (reg, output_p)
2073 rtx reg;
2074 int output_p;
2075 {
2076 int regno = REGNO (reg);
2077
2078 /* If this insn has multiple results,
2079 and the dead reg is used in one of the results,
2080 extend its life to after this insn,
2081 so it won't get allocated together with any other result of this insn.
2082
2083 It is unsafe to use !single_set here since it will ignore an unused
2084 output. Just because an output is unused does not mean the compiler
2085 can assume the side effect will not occur. Consider if REG appears
2086 in the address of an output and we reload the output. If we allocate
2087 REG to the same hard register as an unused output we could set the hard
2088 register before the output reload insn. */
2089 if (GET_CODE (PATTERN (this_insn)) == PARALLEL
2090 && multiple_sets (this_insn))
2091 {
2092 int i;
2093 for (i = XVECLEN (PATTERN (this_insn), 0) - 1; i >= 0; i--)
2094 {
2095 rtx set = XVECEXP (PATTERN (this_insn), 0, i);
2096 if (GET_CODE (set) == SET
2097 && GET_CODE (SET_DEST (set)) != REG
2098 && !rtx_equal_p (reg, SET_DEST (set))
2099 && reg_overlap_mentioned_p (reg, SET_DEST (set)))
2100 output_p = 1;
2101 }
2102 }
2103
2104 /* If this register is used in an auto-increment address, then extend its
2105 life to after this insn, so that it won't get allocated together with
2106 the result of this insn. */
2107 if (! output_p && find_regno_note (this_insn, REG_INC, regno))
2108 output_p = 1;
2109
2110 if (regno < FIRST_PSEUDO_REGISTER)
2111 {
2112 mark_life (regno, GET_MODE (reg), 0);
2113
2114 /* If a hard register is dying as an output, mark it as in use at
2115 the beginning of this insn (the above statement would cause this
2116 not to happen). */
2117 if (output_p)
2118 post_mark_life (regno, GET_MODE (reg), 1,
2119 2 * this_insn_number, 2 * this_insn_number + 1);
2120 }
2121
2122 else if (reg_qty[regno] >= 0)
2123 qty[reg_qty[regno]].death = 2 * this_insn_number + output_p;
2124 }
2125 \f
2126 /* Find a block of SIZE words of hard regs in reg_class CLASS
2127 that can hold something of machine-mode MODE
2128 (but actually we test only the first of the block for holding MODE)
2129 and still free between insn BORN_INDEX and insn DEAD_INDEX,
2130 and return the number of the first of them.
2131 Return -1 if such a block cannot be found.
2132 If QTYNO crosses calls, insist on a register preserved by calls,
2133 unless ACCEPT_CALL_CLOBBERED is nonzero.
2134
2135 If JUST_TRY_SUGGESTED is non-zero, only try to see if the suggested
2136 register is available. If not, return -1. */
2137
2138 static int
2139 find_free_reg (class, mode, qtyno, accept_call_clobbered, just_try_suggested,
2140 born_index, dead_index)
2141 enum reg_class class;
2142 enum machine_mode mode;
2143 int qtyno;
2144 int accept_call_clobbered;
2145 int just_try_suggested;
2146 int born_index, dead_index;
2147 {
2148 int i, ins;
2149 #ifdef HARD_REG_SET
2150 /* Declare it register if it's a scalar. */
2151 register
2152 #endif
2153 HARD_REG_SET used, first_used;
2154 #ifdef ELIMINABLE_REGS
2155 static const struct {const int from, to; } eliminables[] = ELIMINABLE_REGS;
2156 #endif
2157
2158 /* Validate our parameters. */
2159 if (born_index < 0 || born_index > dead_index)
2160 abort ();
2161
2162 /* Don't let a pseudo live in a reg across a function call
2163 if we might get a nonlocal goto. */
2164 if (current_function_has_nonlocal_label
2165 && qty[qtyno].n_calls_crossed > 0)
2166 return -1;
2167
2168 if (accept_call_clobbered)
2169 COPY_HARD_REG_SET (used, call_fixed_reg_set);
2170 else if (qty[qtyno].n_calls_crossed == 0)
2171 COPY_HARD_REG_SET (used, fixed_reg_set);
2172 else
2173 COPY_HARD_REG_SET (used, call_used_reg_set);
2174
2175 if (accept_call_clobbered)
2176 IOR_HARD_REG_SET (used, losing_caller_save_reg_set);
2177
2178 for (ins = born_index; ins < dead_index; ins++)
2179 IOR_HARD_REG_SET (used, regs_live_at[ins]);
2180
2181 IOR_COMPL_HARD_REG_SET (used, reg_class_contents[(int) class]);
2182
2183 /* Don't use the frame pointer reg in local-alloc even if
2184 we may omit the frame pointer, because if we do that and then we
2185 need a frame pointer, reload won't know how to move the pseudo
2186 to another hard reg. It can move only regs made by global-alloc.
2187
2188 This is true of any register that can be eliminated. */
2189 #ifdef ELIMINABLE_REGS
2190 for (i = 0; i < (int) ARRAY_SIZE (eliminables); i++)
2191 SET_HARD_REG_BIT (used, eliminables[i].from);
2192 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
2193 /* If FRAME_POINTER_REGNUM is not a real register, then protect the one
2194 that it might be eliminated into. */
2195 SET_HARD_REG_BIT (used, HARD_FRAME_POINTER_REGNUM);
2196 #endif
2197 #else
2198 SET_HARD_REG_BIT (used, FRAME_POINTER_REGNUM);
2199 #endif
2200
2201 #ifdef CLASS_CANNOT_CHANGE_MODE
2202 if (qty[qtyno].changes_mode)
2203 IOR_HARD_REG_SET (used,
2204 reg_class_contents[(int) CLASS_CANNOT_CHANGE_MODE]);
2205 #endif
2206
2207 /* Normally, the registers that can be used for the first register in
2208 a multi-register quantity are the same as those that can be used for
2209 subsequent registers. However, if just trying suggested registers,
2210 restrict our consideration to them. If there are copy-suggested
2211 register, try them. Otherwise, try the arithmetic-suggested
2212 registers. */
2213 COPY_HARD_REG_SET (first_used, used);
2214
2215 if (just_try_suggested)
2216 {
2217 if (qty_phys_num_copy_sugg[qtyno] != 0)
2218 IOR_COMPL_HARD_REG_SET (first_used, qty_phys_copy_sugg[qtyno]);
2219 else
2220 IOR_COMPL_HARD_REG_SET (first_used, qty_phys_sugg[qtyno]);
2221 }
2222
2223 /* If all registers are excluded, we can't do anything. */
2224 GO_IF_HARD_REG_SUBSET (reg_class_contents[(int) ALL_REGS], first_used, fail);
2225
2226 /* If at least one would be suitable, test each hard reg. */
2227
2228 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
2229 {
2230 #ifdef REG_ALLOC_ORDER
2231 int regno = reg_alloc_order[i];
2232 #else
2233 int regno = i;
2234 #endif
2235 if (! TEST_HARD_REG_BIT (first_used, regno)
2236 && HARD_REGNO_MODE_OK (regno, mode)
2237 && (qty[qtyno].n_calls_crossed == 0
2238 || accept_call_clobbered
2239 || ! HARD_REGNO_CALL_PART_CLOBBERED (regno, mode)))
2240 {
2241 int j;
2242 int size1 = HARD_REGNO_NREGS (regno, mode);
2243 for (j = 1; j < size1 && ! TEST_HARD_REG_BIT (used, regno + j); j++);
2244 if (j == size1)
2245 {
2246 /* Mark that this register is in use between its birth and death
2247 insns. */
2248 post_mark_life (regno, mode, 1, born_index, dead_index);
2249 return regno;
2250 }
2251 #ifndef REG_ALLOC_ORDER
2252 /* Skip starting points we know will lose. */
2253 i += j;
2254 #endif
2255 }
2256 }
2257
2258 fail:
2259 /* If we are just trying suggested register, we have just tried copy-
2260 suggested registers, and there are arithmetic-suggested registers,
2261 try them. */
2262
2263 /* If it would be profitable to allocate a call-clobbered register
2264 and save and restore it around calls, do that. */
2265 if (just_try_suggested && qty_phys_num_copy_sugg[qtyno] != 0
2266 && qty_phys_num_sugg[qtyno] != 0)
2267 {
2268 /* Don't try the copy-suggested regs again. */
2269 qty_phys_num_copy_sugg[qtyno] = 0;
2270 return find_free_reg (class, mode, qtyno, accept_call_clobbered, 1,
2271 born_index, dead_index);
2272 }
2273
2274 /* We need not check to see if the current function has nonlocal
2275 labels because we don't put any pseudos that are live over calls in
2276 registers in that case. */
2277
2278 if (! accept_call_clobbered
2279 && flag_caller_saves
2280 && ! just_try_suggested
2281 && qty[qtyno].n_calls_crossed != 0
2282 && CALLER_SAVE_PROFITABLE (qty[qtyno].n_refs,
2283 qty[qtyno].n_calls_crossed))
2284 {
2285 i = find_free_reg (class, mode, qtyno, 1, 0, born_index, dead_index);
2286 if (i >= 0)
2287 caller_save_needed = 1;
2288 return i;
2289 }
2290 return -1;
2291 }
2292 \f
2293 /* Mark that REGNO with machine-mode MODE is live starting from the current
2294 insn (if LIFE is non-zero) or dead starting at the current insn (if LIFE
2295 is zero). */
2296
2297 static void
2298 mark_life (regno, mode, life)
2299 int regno;
2300 enum machine_mode mode;
2301 int life;
2302 {
2303 int j = HARD_REGNO_NREGS (regno, mode);
2304 if (life)
2305 while (--j >= 0)
2306 SET_HARD_REG_BIT (regs_live, regno + j);
2307 else
2308 while (--j >= 0)
2309 CLEAR_HARD_REG_BIT (regs_live, regno + j);
2310 }
2311
2312 /* Mark register number REGNO (with machine-mode MODE) as live (if LIFE
2313 is non-zero) or dead (if LIFE is zero) from insn number BIRTH (inclusive)
2314 to insn number DEATH (exclusive). */
2315
2316 static void
2317 post_mark_life (regno, mode, life, birth, death)
2318 int regno;
2319 enum machine_mode mode;
2320 int life, birth, death;
2321 {
2322 int j = HARD_REGNO_NREGS (regno, mode);
2323 #ifdef HARD_REG_SET
2324 /* Declare it register if it's a scalar. */
2325 register
2326 #endif
2327 HARD_REG_SET this_reg;
2328
2329 CLEAR_HARD_REG_SET (this_reg);
2330 while (--j >= 0)
2331 SET_HARD_REG_BIT (this_reg, regno + j);
2332
2333 if (life)
2334 while (birth < death)
2335 {
2336 IOR_HARD_REG_SET (regs_live_at[birth], this_reg);
2337 birth++;
2338 }
2339 else
2340 while (birth < death)
2341 {
2342 AND_COMPL_HARD_REG_SET (regs_live_at[birth], this_reg);
2343 birth++;
2344 }
2345 }
2346 \f
2347 /* INSN is the CLOBBER insn that starts a REG_NO_NOCONFLICT block, R0
2348 is the register being clobbered, and R1 is a register being used in
2349 the equivalent expression.
2350
2351 If R1 dies in the block and has a REG_NO_CONFLICT note on every insn
2352 in which it is used, return 1.
2353
2354 Otherwise, return 0. */
2355
2356 static int
2357 no_conflict_p (insn, r0, r1)
2358 rtx insn, r0 ATTRIBUTE_UNUSED, r1;
2359 {
2360 int ok = 0;
2361 rtx note = find_reg_note (insn, REG_LIBCALL, NULL_RTX);
2362 rtx p, last;
2363
2364 /* If R1 is a hard register, return 0 since we handle this case
2365 when we scan the insns that actually use it. */
2366
2367 if (note == 0
2368 || (GET_CODE (r1) == REG && REGNO (r1) < FIRST_PSEUDO_REGISTER)
2369 || (GET_CODE (r1) == SUBREG && GET_CODE (SUBREG_REG (r1)) == REG
2370 && REGNO (SUBREG_REG (r1)) < FIRST_PSEUDO_REGISTER))
2371 return 0;
2372
2373 last = XEXP (note, 0);
2374
2375 for (p = NEXT_INSN (insn); p && p != last; p = NEXT_INSN (p))
2376 if (INSN_P (p))
2377 {
2378 if (find_reg_note (p, REG_DEAD, r1))
2379 ok = 1;
2380
2381 /* There must be a REG_NO_CONFLICT note on every insn, otherwise
2382 some earlier optimization pass has inserted instructions into
2383 the sequence, and it is not safe to perform this optimization.
2384 Note that emit_no_conflict_block always ensures that this is
2385 true when these sequences are created. */
2386 if (! find_reg_note (p, REG_NO_CONFLICT, r1))
2387 return 0;
2388 }
2389
2390 return ok;
2391 }
2392 \f
2393 /* Return the number of alternatives for which the constraint string P
2394 indicates that the operand must be equal to operand 0 and that no register
2395 is acceptable. */
2396
2397 static int
2398 requires_inout (p)
2399 const char *p;
2400 {
2401 char c;
2402 int found_zero = 0;
2403 int reg_allowed = 0;
2404 int num_matching_alts = 0;
2405
2406 while ((c = *p++))
2407 switch (c)
2408 {
2409 case '=': case '+': case '?':
2410 case '#': case '&': case '!':
2411 case '*': case '%':
2412 case '1': case '2': case '3': case '4': case '5':
2413 case '6': case '7': case '8': case '9':
2414 case 'm': case '<': case '>': case 'V': case 'o':
2415 case 'E': case 'F': case 'G': case 'H':
2416 case 's': case 'i': case 'n':
2417 case 'I': case 'J': case 'K': case 'L':
2418 case 'M': case 'N': case 'O': case 'P':
2419 case 'X':
2420 /* These don't say anything we care about. */
2421 break;
2422
2423 case ',':
2424 if (found_zero && ! reg_allowed)
2425 num_matching_alts++;
2426
2427 found_zero = reg_allowed = 0;
2428 break;
2429
2430 case '0':
2431 found_zero = 1;
2432 break;
2433
2434 default:
2435 if (REG_CLASS_FROM_LETTER (c) == NO_REGS)
2436 break;
2437 /* FALLTHRU */
2438 case 'p':
2439 case 'g': case 'r':
2440 reg_allowed = 1;
2441 break;
2442 }
2443
2444 if (found_zero && ! reg_allowed)
2445 num_matching_alts++;
2446
2447 return num_matching_alts;
2448 }
2449 \f
2450 void
2451 dump_local_alloc (file)
2452 FILE *file;
2453 {
2454 int i;
2455 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
2456 if (reg_renumber[i] != -1)
2457 fprintf (file, ";; Register %d in %d.\n", i, reg_renumber[i]);
2458 }