]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/loop-invariant.c
2014-06-23 Zhenqiang Chen <zhenqiang.chen@linaro.org>
[thirdparty/gcc.git] / gcc / loop-invariant.c
1 /* RTL-level loop invariant motion.
2 Copyright (C) 2004-2014 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it
7 under the terms of the GNU General Public License as published by the
8 Free Software Foundation; either version 3, or (at your option) any
9 later version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT
12 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20 /* This implements the loop invariant motion pass. It is very simple
21 (no calls, no loads/stores, etc.). This should be sufficient to cleanup
22 things like address arithmetics -- other more complicated invariants should
23 be eliminated on GIMPLE either in tree-ssa-loop-im.c or in tree-ssa-pre.c.
24
25 We proceed loop by loop -- it is simpler than trying to handle things
26 globally and should not lose much. First we inspect all sets inside loop
27 and create a dependency graph on insns (saying "to move this insn, you must
28 also move the following insns").
29
30 We then need to determine what to move. We estimate the number of registers
31 used and move as many invariants as possible while we still have enough free
32 registers. We prefer the expensive invariants.
33
34 Then we move the selected invariants out of the loop, creating a new
35 temporaries for them if necessary. */
36
37 #include "config.h"
38 #include "system.h"
39 #include "coretypes.h"
40 #include "tm.h"
41 #include "hard-reg-set.h"
42 #include "rtl.h"
43 #include "tm_p.h"
44 #include "obstack.h"
45 #include "basic-block.h"
46 #include "cfgloop.h"
47 #include "expr.h"
48 #include "recog.h"
49 #include "target.h"
50 #include "function.h"
51 #include "flags.h"
52 #include "df.h"
53 #include "hash-table.h"
54 #include "except.h"
55 #include "params.h"
56 #include "regs.h"
57 #include "ira.h"
58 #include "dumpfile.h"
59
60 /* The data stored for the loop. */
61
62 struct loop_data
63 {
64 struct loop *outermost_exit; /* The outermost exit of the loop. */
65 bool has_call; /* True if the loop contains a call. */
66 /* Maximal register pressure inside loop for given register class
67 (defined only for the pressure classes). */
68 int max_reg_pressure[N_REG_CLASSES];
69 /* Loop regs referenced and live pseudo-registers. */
70 bitmap_head regs_ref;
71 bitmap_head regs_live;
72 };
73
74 #define LOOP_DATA(LOOP) ((struct loop_data *) (LOOP)->aux)
75
76 /* The description of an use. */
77
78 struct use
79 {
80 rtx *pos; /* Position of the use. */
81 rtx insn; /* The insn in that the use occurs. */
82 unsigned addr_use_p; /* Whether the use occurs in an address. */
83 struct use *next; /* Next use in the list. */
84 };
85
86 /* The description of a def. */
87
88 struct def
89 {
90 struct use *uses; /* The list of uses that are uniquely reached
91 by it. */
92 unsigned n_uses; /* Number of such uses. */
93 unsigned n_addr_uses; /* Number of uses in addresses. */
94 unsigned invno; /* The corresponding invariant. */
95 };
96
97 /* The data stored for each invariant. */
98
99 struct invariant
100 {
101 /* The number of the invariant. */
102 unsigned invno;
103
104 /* The number of the invariant with the same value. */
105 unsigned eqto;
106
107 /* If we moved the invariant out of the loop, the register that contains its
108 value. */
109 rtx reg;
110
111 /* If we moved the invariant out of the loop, the original regno
112 that contained its value. */
113 int orig_regno;
114
115 /* The definition of the invariant. */
116 struct def *def;
117
118 /* The insn in that it is defined. */
119 rtx insn;
120
121 /* Whether it is always executed. */
122 bool always_executed;
123
124 /* Whether to move the invariant. */
125 bool move;
126
127 /* Whether the invariant is cheap when used as an address. */
128 bool cheap_address;
129
130 /* Cost of the invariant. */
131 unsigned cost;
132
133 /* The invariants it depends on. */
134 bitmap depends_on;
135
136 /* Used for detecting already visited invariants during determining
137 costs of movements. */
138 unsigned stamp;
139 };
140
141 /* Currently processed loop. */
142 static struct loop *curr_loop;
143
144 /* Table of invariants indexed by the df_ref uid field. */
145
146 static unsigned int invariant_table_size = 0;
147 static struct invariant ** invariant_table;
148
149 /* Entry for hash table of invariant expressions. */
150
151 struct invariant_expr_entry
152 {
153 /* The invariant. */
154 struct invariant *inv;
155
156 /* Its value. */
157 rtx expr;
158
159 /* Its mode. */
160 enum machine_mode mode;
161
162 /* Its hash. */
163 hashval_t hash;
164 };
165
166 /* The actual stamp for marking already visited invariants during determining
167 costs of movements. */
168
169 static unsigned actual_stamp;
170
171 typedef struct invariant *invariant_p;
172
173
174 /* The invariants. */
175
176 static vec<invariant_p> invariants;
177
178 /* Check the size of the invariant table and realloc if necessary. */
179
180 static void
181 check_invariant_table_size (void)
182 {
183 if (invariant_table_size < DF_DEFS_TABLE_SIZE ())
184 {
185 unsigned int new_size = DF_DEFS_TABLE_SIZE () + (DF_DEFS_TABLE_SIZE () / 4);
186 invariant_table = XRESIZEVEC (struct invariant *, invariant_table, new_size);
187 memset (&invariant_table[invariant_table_size], 0,
188 (new_size - invariant_table_size) * sizeof (struct invariant *));
189 invariant_table_size = new_size;
190 }
191 }
192
193 /* Test for possibility of invariantness of X. */
194
195 static bool
196 check_maybe_invariant (rtx x)
197 {
198 enum rtx_code code = GET_CODE (x);
199 int i, j;
200 const char *fmt;
201
202 switch (code)
203 {
204 CASE_CONST_ANY:
205 case SYMBOL_REF:
206 case CONST:
207 case LABEL_REF:
208 return true;
209
210 case PC:
211 case CC0:
212 case UNSPEC_VOLATILE:
213 case CALL:
214 return false;
215
216 case REG:
217 return true;
218
219 case MEM:
220 /* Load/store motion is done elsewhere. ??? Perhaps also add it here?
221 It should not be hard, and might be faster than "elsewhere". */
222
223 /* Just handle the most trivial case where we load from an unchanging
224 location (most importantly, pic tables). */
225 if (MEM_READONLY_P (x) && !MEM_VOLATILE_P (x))
226 break;
227
228 return false;
229
230 case ASM_OPERANDS:
231 /* Don't mess with insns declared volatile. */
232 if (MEM_VOLATILE_P (x))
233 return false;
234 break;
235
236 default:
237 break;
238 }
239
240 fmt = GET_RTX_FORMAT (code);
241 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
242 {
243 if (fmt[i] == 'e')
244 {
245 if (!check_maybe_invariant (XEXP (x, i)))
246 return false;
247 }
248 else if (fmt[i] == 'E')
249 {
250 for (j = 0; j < XVECLEN (x, i); j++)
251 if (!check_maybe_invariant (XVECEXP (x, i, j)))
252 return false;
253 }
254 }
255
256 return true;
257 }
258
259 /* Returns the invariant definition for USE, or NULL if USE is not
260 invariant. */
261
262 static struct invariant *
263 invariant_for_use (df_ref use)
264 {
265 struct df_link *defs;
266 df_ref def;
267 basic_block bb = DF_REF_BB (use), def_bb;
268
269 if (DF_REF_FLAGS (use) & DF_REF_READ_WRITE)
270 return NULL;
271
272 defs = DF_REF_CHAIN (use);
273 if (!defs || defs->next)
274 return NULL;
275 def = defs->ref;
276 check_invariant_table_size ();
277 if (!invariant_table[DF_REF_ID (def)])
278 return NULL;
279
280 def_bb = DF_REF_BB (def);
281 if (!dominated_by_p (CDI_DOMINATORS, bb, def_bb))
282 return NULL;
283 return invariant_table[DF_REF_ID (def)];
284 }
285
286 /* Computes hash value for invariant expression X in INSN. */
287
288 static hashval_t
289 hash_invariant_expr_1 (rtx insn, rtx x)
290 {
291 enum rtx_code code = GET_CODE (x);
292 int i, j;
293 const char *fmt;
294 hashval_t val = code;
295 int do_not_record_p;
296 df_ref use;
297 struct invariant *inv;
298
299 switch (code)
300 {
301 CASE_CONST_ANY:
302 case SYMBOL_REF:
303 case CONST:
304 case LABEL_REF:
305 return hash_rtx (x, GET_MODE (x), &do_not_record_p, NULL, false);
306
307 case REG:
308 use = df_find_use (insn, x);
309 if (!use)
310 return hash_rtx (x, GET_MODE (x), &do_not_record_p, NULL, false);
311 inv = invariant_for_use (use);
312 if (!inv)
313 return hash_rtx (x, GET_MODE (x), &do_not_record_p, NULL, false);
314
315 gcc_assert (inv->eqto != ~0u);
316 return inv->eqto;
317
318 default:
319 break;
320 }
321
322 fmt = GET_RTX_FORMAT (code);
323 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
324 {
325 if (fmt[i] == 'e')
326 val ^= hash_invariant_expr_1 (insn, XEXP (x, i));
327 else if (fmt[i] == 'E')
328 {
329 for (j = 0; j < XVECLEN (x, i); j++)
330 val ^= hash_invariant_expr_1 (insn, XVECEXP (x, i, j));
331 }
332 else if (fmt[i] == 'i' || fmt[i] == 'n')
333 val ^= XINT (x, i);
334 }
335
336 return val;
337 }
338
339 /* Returns true if the invariant expressions E1 and E2 used in insns INSN1
340 and INSN2 have always the same value. */
341
342 static bool
343 invariant_expr_equal_p (rtx insn1, rtx e1, rtx insn2, rtx e2)
344 {
345 enum rtx_code code = GET_CODE (e1);
346 int i, j;
347 const char *fmt;
348 df_ref use1, use2;
349 struct invariant *inv1 = NULL, *inv2 = NULL;
350 rtx sub1, sub2;
351
352 /* If mode of only one of the operands is VOIDmode, it is not equivalent to
353 the other one. If both are VOIDmode, we rely on the caller of this
354 function to verify that their modes are the same. */
355 if (code != GET_CODE (e2) || GET_MODE (e1) != GET_MODE (e2))
356 return false;
357
358 switch (code)
359 {
360 CASE_CONST_ANY:
361 case SYMBOL_REF:
362 case CONST:
363 case LABEL_REF:
364 return rtx_equal_p (e1, e2);
365
366 case REG:
367 use1 = df_find_use (insn1, e1);
368 use2 = df_find_use (insn2, e2);
369 if (use1)
370 inv1 = invariant_for_use (use1);
371 if (use2)
372 inv2 = invariant_for_use (use2);
373
374 if (!inv1 && !inv2)
375 return rtx_equal_p (e1, e2);
376
377 if (!inv1 || !inv2)
378 return false;
379
380 gcc_assert (inv1->eqto != ~0u);
381 gcc_assert (inv2->eqto != ~0u);
382 return inv1->eqto == inv2->eqto;
383
384 default:
385 break;
386 }
387
388 fmt = GET_RTX_FORMAT (code);
389 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
390 {
391 if (fmt[i] == 'e')
392 {
393 sub1 = XEXP (e1, i);
394 sub2 = XEXP (e2, i);
395
396 if (!invariant_expr_equal_p (insn1, sub1, insn2, sub2))
397 return false;
398 }
399
400 else if (fmt[i] == 'E')
401 {
402 if (XVECLEN (e1, i) != XVECLEN (e2, i))
403 return false;
404
405 for (j = 0; j < XVECLEN (e1, i); j++)
406 {
407 sub1 = XVECEXP (e1, i, j);
408 sub2 = XVECEXP (e2, i, j);
409
410 if (!invariant_expr_equal_p (insn1, sub1, insn2, sub2))
411 return false;
412 }
413 }
414 else if (fmt[i] == 'i' || fmt[i] == 'n')
415 {
416 if (XINT (e1, i) != XINT (e2, i))
417 return false;
418 }
419 /* Unhandled type of subexpression, we fail conservatively. */
420 else
421 return false;
422 }
423
424 return true;
425 }
426
427 struct invariant_expr_hasher : typed_free_remove <invariant_expr_entry>
428 {
429 typedef invariant_expr_entry value_type;
430 typedef invariant_expr_entry compare_type;
431 static inline hashval_t hash (const value_type *);
432 static inline bool equal (const value_type *, const compare_type *);
433 };
434
435 /* Returns hash value for invariant expression entry ENTRY. */
436
437 inline hashval_t
438 invariant_expr_hasher::hash (const value_type *entry)
439 {
440 return entry->hash;
441 }
442
443 /* Compares invariant expression entries ENTRY1 and ENTRY2. */
444
445 inline bool
446 invariant_expr_hasher::equal (const value_type *entry1,
447 const compare_type *entry2)
448 {
449 if (entry1->mode != entry2->mode)
450 return 0;
451
452 return invariant_expr_equal_p (entry1->inv->insn, entry1->expr,
453 entry2->inv->insn, entry2->expr);
454 }
455
456 typedef hash_table <invariant_expr_hasher> invariant_htab_type;
457
458 /* Checks whether invariant with value EXPR in machine mode MODE is
459 recorded in EQ. If this is the case, return the invariant. Otherwise
460 insert INV to the table for this expression and return INV. */
461
462 static struct invariant *
463 find_or_insert_inv (invariant_htab_type eq, rtx expr, enum machine_mode mode,
464 struct invariant *inv)
465 {
466 hashval_t hash = hash_invariant_expr_1 (inv->insn, expr);
467 struct invariant_expr_entry *entry;
468 struct invariant_expr_entry pentry;
469 invariant_expr_entry **slot;
470
471 pentry.expr = expr;
472 pentry.inv = inv;
473 pentry.mode = mode;
474 slot = eq.find_slot_with_hash (&pentry, hash, INSERT);
475 entry = *slot;
476
477 if (entry)
478 return entry->inv;
479
480 entry = XNEW (struct invariant_expr_entry);
481 entry->inv = inv;
482 entry->expr = expr;
483 entry->mode = mode;
484 entry->hash = hash;
485 *slot = entry;
486
487 return inv;
488 }
489
490 /* Finds invariants identical to INV and records the equivalence. EQ is the
491 hash table of the invariants. */
492
493 static void
494 find_identical_invariants (invariant_htab_type eq, struct invariant *inv)
495 {
496 unsigned depno;
497 bitmap_iterator bi;
498 struct invariant *dep;
499 rtx expr, set;
500 enum machine_mode mode;
501
502 if (inv->eqto != ~0u)
503 return;
504
505 EXECUTE_IF_SET_IN_BITMAP (inv->depends_on, 0, depno, bi)
506 {
507 dep = invariants[depno];
508 find_identical_invariants (eq, dep);
509 }
510
511 set = single_set (inv->insn);
512 expr = SET_SRC (set);
513 mode = GET_MODE (expr);
514 if (mode == VOIDmode)
515 mode = GET_MODE (SET_DEST (set));
516 inv->eqto = find_or_insert_inv (eq, expr, mode, inv)->invno;
517
518 if (dump_file && inv->eqto != inv->invno)
519 fprintf (dump_file,
520 "Invariant %d is equivalent to invariant %d.\n",
521 inv->invno, inv->eqto);
522 }
523
524 /* Find invariants with the same value and record the equivalences. */
525
526 static void
527 merge_identical_invariants (void)
528 {
529 unsigned i;
530 struct invariant *inv;
531 invariant_htab_type eq;
532 eq.create (invariants.length ());
533
534 FOR_EACH_VEC_ELT (invariants, i, inv)
535 find_identical_invariants (eq, inv);
536
537 eq.dispose ();
538 }
539
540 /* Determines the basic blocks inside LOOP that are always executed and
541 stores their bitmap to ALWAYS_REACHED. MAY_EXIT is a bitmap of
542 basic blocks that may either exit the loop, or contain the call that
543 does not have to return. BODY is body of the loop obtained by
544 get_loop_body_in_dom_order. */
545
546 static void
547 compute_always_reached (struct loop *loop, basic_block *body,
548 bitmap may_exit, bitmap always_reached)
549 {
550 unsigned i;
551
552 for (i = 0; i < loop->num_nodes; i++)
553 {
554 if (dominated_by_p (CDI_DOMINATORS, loop->latch, body[i]))
555 bitmap_set_bit (always_reached, i);
556
557 if (bitmap_bit_p (may_exit, i))
558 return;
559 }
560 }
561
562 /* Finds exits out of the LOOP with body BODY. Marks blocks in that we may
563 exit the loop by cfg edge to HAS_EXIT and MAY_EXIT. In MAY_EXIT
564 additionally mark blocks that may exit due to a call. */
565
566 static void
567 find_exits (struct loop *loop, basic_block *body,
568 bitmap may_exit, bitmap has_exit)
569 {
570 unsigned i;
571 edge_iterator ei;
572 edge e;
573 struct loop *outermost_exit = loop, *aexit;
574 bool has_call = false;
575 rtx insn;
576
577 for (i = 0; i < loop->num_nodes; i++)
578 {
579 if (body[i]->loop_father == loop)
580 {
581 FOR_BB_INSNS (body[i], insn)
582 {
583 if (CALL_P (insn)
584 && (RTL_LOOPING_CONST_OR_PURE_CALL_P (insn)
585 || !RTL_CONST_OR_PURE_CALL_P (insn)))
586 {
587 has_call = true;
588 bitmap_set_bit (may_exit, i);
589 break;
590 }
591 }
592
593 FOR_EACH_EDGE (e, ei, body[i]->succs)
594 {
595 if (flow_bb_inside_loop_p (loop, e->dest))
596 continue;
597
598 bitmap_set_bit (may_exit, i);
599 bitmap_set_bit (has_exit, i);
600 outermost_exit = find_common_loop (outermost_exit,
601 e->dest->loop_father);
602 }
603 continue;
604 }
605
606 /* Use the data stored for the subloop to decide whether we may exit
607 through it. It is sufficient to do this for header of the loop,
608 as other basic blocks inside it must be dominated by it. */
609 if (body[i]->loop_father->header != body[i])
610 continue;
611
612 if (LOOP_DATA (body[i]->loop_father)->has_call)
613 {
614 has_call = true;
615 bitmap_set_bit (may_exit, i);
616 }
617 aexit = LOOP_DATA (body[i]->loop_father)->outermost_exit;
618 if (aexit != loop)
619 {
620 bitmap_set_bit (may_exit, i);
621 bitmap_set_bit (has_exit, i);
622
623 if (flow_loop_nested_p (aexit, outermost_exit))
624 outermost_exit = aexit;
625 }
626 }
627
628 if (loop->aux == NULL)
629 {
630 loop->aux = xcalloc (1, sizeof (struct loop_data));
631 bitmap_initialize (&LOOP_DATA (loop)->regs_ref, &reg_obstack);
632 bitmap_initialize (&LOOP_DATA (loop)->regs_live, &reg_obstack);
633 }
634 LOOP_DATA (loop)->outermost_exit = outermost_exit;
635 LOOP_DATA (loop)->has_call = has_call;
636 }
637
638 /* Check whether we may assign a value to X from a register. */
639
640 static bool
641 may_assign_reg_p (rtx x)
642 {
643 return (GET_MODE (x) != VOIDmode
644 && GET_MODE (x) != BLKmode
645 && can_copy_p (GET_MODE (x))
646 && (!REG_P (x)
647 || !HARD_REGISTER_P (x)
648 || REGNO_REG_CLASS (REGNO (x)) != NO_REGS));
649 }
650
651 /* Finds definitions that may correspond to invariants in LOOP with body
652 BODY. */
653
654 static void
655 find_defs (struct loop *loop)
656 {
657 if (dump_file)
658 {
659 fprintf (dump_file,
660 "*****starting processing of loop %d ******\n",
661 loop->num);
662 }
663
664 df_remove_problem (df_chain);
665 df_process_deferred_rescans ();
666 df_chain_add_problem (DF_UD_CHAIN);
667 df_set_flags (DF_RD_PRUNE_DEAD_DEFS);
668 df_analyze_loop (loop);
669 check_invariant_table_size ();
670
671 if (dump_file)
672 {
673 df_dump_region (dump_file);
674 fprintf (dump_file,
675 "*****ending processing of loop %d ******\n",
676 loop->num);
677 }
678 }
679
680 /* Creates a new invariant for definition DEF in INSN, depending on invariants
681 in DEPENDS_ON. ALWAYS_EXECUTED is true if the insn is always executed,
682 unless the program ends due to a function call. The newly created invariant
683 is returned. */
684
685 static struct invariant *
686 create_new_invariant (struct def *def, rtx insn, bitmap depends_on,
687 bool always_executed)
688 {
689 struct invariant *inv = XNEW (struct invariant);
690 rtx set = single_set (insn);
691 bool speed = optimize_bb_for_speed_p (BLOCK_FOR_INSN (insn));
692
693 inv->def = def;
694 inv->always_executed = always_executed;
695 inv->depends_on = depends_on;
696
697 /* If the set is simple, usually by moving it we move the whole store out of
698 the loop. Otherwise we save only cost of the computation. */
699 if (def)
700 {
701 inv->cost = set_rtx_cost (set, speed);
702 /* ??? Try to determine cheapness of address computation. Unfortunately
703 the address cost is only a relative measure, we can't really compare
704 it with any absolute number, but only with other address costs.
705 But here we don't have any other addresses, so compare with a magic
706 number anyway. It has to be large enough to not regress PR33928
707 (by avoiding to move reg+8,reg+16,reg+24 invariants), but small
708 enough to not regress 410.bwaves either (by still moving reg+reg
709 invariants).
710 See http://gcc.gnu.org/ml/gcc-patches/2009-10/msg01210.html . */
711 inv->cheap_address = address_cost (SET_SRC (set), word_mode,
712 ADDR_SPACE_GENERIC, speed) < 3;
713 }
714 else
715 {
716 inv->cost = set_src_cost (SET_SRC (set), speed);
717 inv->cheap_address = false;
718 }
719
720 inv->move = false;
721 inv->reg = NULL_RTX;
722 inv->orig_regno = -1;
723 inv->stamp = 0;
724 inv->insn = insn;
725
726 inv->invno = invariants.length ();
727 inv->eqto = ~0u;
728 if (def)
729 def->invno = inv->invno;
730 invariants.safe_push (inv);
731
732 if (dump_file)
733 {
734 fprintf (dump_file,
735 "Set in insn %d is invariant (%d), cost %d, depends on ",
736 INSN_UID (insn), inv->invno, inv->cost);
737 dump_bitmap (dump_file, inv->depends_on);
738 }
739
740 return inv;
741 }
742
743 /* Record USE at DEF. */
744
745 static void
746 record_use (struct def *def, df_ref use)
747 {
748 struct use *u = XNEW (struct use);
749
750 u->pos = DF_REF_REAL_LOC (use);
751 u->insn = DF_REF_INSN (use);
752 u->addr_use_p = (DF_REF_TYPE (use) == DF_REF_REG_MEM_LOAD
753 || DF_REF_TYPE (use) == DF_REF_REG_MEM_STORE);
754 u->next = def->uses;
755 def->uses = u;
756 def->n_uses++;
757 if (u->addr_use_p)
758 def->n_addr_uses++;
759 }
760
761 /* Finds the invariants USE depends on and store them to the DEPENDS_ON
762 bitmap. Returns true if all dependencies of USE are known to be
763 loop invariants, false otherwise. */
764
765 static bool
766 check_dependency (basic_block bb, df_ref use, bitmap depends_on)
767 {
768 df_ref def;
769 basic_block def_bb;
770 struct df_link *defs;
771 struct def *def_data;
772 struct invariant *inv;
773
774 if (DF_REF_FLAGS (use) & DF_REF_READ_WRITE)
775 return false;
776
777 defs = DF_REF_CHAIN (use);
778 if (!defs)
779 {
780 unsigned int regno = DF_REF_REGNO (use);
781
782 /* If this is the use of an uninitialized argument register that is
783 likely to be spilled, do not move it lest this might extend its
784 lifetime and cause reload to die. This can occur for a call to
785 a function taking complex number arguments and moving the insns
786 preparing the arguments without moving the call itself wouldn't
787 gain much in practice. */
788 if ((DF_REF_FLAGS (use) & DF_HARD_REG_LIVE)
789 && FUNCTION_ARG_REGNO_P (regno)
790 && targetm.class_likely_spilled_p (REGNO_REG_CLASS (regno)))
791 return false;
792
793 return true;
794 }
795
796 if (defs->next)
797 return false;
798
799 def = defs->ref;
800 check_invariant_table_size ();
801 inv = invariant_table[DF_REF_ID (def)];
802 if (!inv)
803 return false;
804
805 def_data = inv->def;
806 gcc_assert (def_data != NULL);
807
808 def_bb = DF_REF_BB (def);
809 /* Note that in case bb == def_bb, we know that the definition
810 dominates insn, because def has invariant_table[DF_REF_ID(def)]
811 defined and we process the insns in the basic block bb
812 sequentially. */
813 if (!dominated_by_p (CDI_DOMINATORS, bb, def_bb))
814 return false;
815
816 bitmap_set_bit (depends_on, def_data->invno);
817 return true;
818 }
819
820
821 /* Finds the invariants INSN depends on and store them to the DEPENDS_ON
822 bitmap. Returns true if all dependencies of INSN are known to be
823 loop invariants, false otherwise. */
824
825 static bool
826 check_dependencies (rtx insn, bitmap depends_on)
827 {
828 struct df_insn_info *insn_info = DF_INSN_INFO_GET (insn);
829 df_ref use;
830 basic_block bb = BLOCK_FOR_INSN (insn);
831
832 FOR_EACH_INSN_INFO_USE (use, insn_info)
833 if (!check_dependency (bb, use, depends_on))
834 return false;
835 FOR_EACH_INSN_INFO_EQ_USE (use, insn_info)
836 if (!check_dependency (bb, use, depends_on))
837 return false;
838
839 return true;
840 }
841
842 /* Pre-check candidate DEST to skip the one which can not make a valid insn
843 during move_invariant_reg. SIMPLE is to skip HARD_REGISTER. */
844 static bool
845 pre_check_invariant_p (bool simple, rtx dest)
846 {
847 if (simple && REG_P (dest) && DF_REG_DEF_COUNT (REGNO (dest)) > 1)
848 {
849 df_ref use;
850 rtx ref;
851 unsigned int i = REGNO (dest);
852 struct df_insn_info *insn_info;
853 df_ref def_rec;
854
855 for (use = DF_REG_USE_CHAIN (i); use; use = DF_REF_NEXT_REG (use))
856 {
857 ref = DF_REF_INSN (use);
858 insn_info = DF_INSN_INFO_GET (ref);
859
860 FOR_EACH_INSN_INFO_DEF (def_rec, insn_info)
861 if (DF_REF_REGNO (def_rec) == i)
862 {
863 /* Multi definitions at this stage, most likely are due to
864 instruction constraints, which requires both read and write
865 on the same register. Since move_invariant_reg is not
866 powerful enough to handle such cases, just ignore the INV
867 and leave the chance to others. */
868 return false;
869 }
870 }
871 }
872 return true;
873 }
874
875 /* Finds invariant in INSN. ALWAYS_REACHED is true if the insn is always
876 executed. ALWAYS_EXECUTED is true if the insn is always executed,
877 unless the program ends due to a function call. */
878
879 static void
880 find_invariant_insn (rtx insn, bool always_reached, bool always_executed)
881 {
882 df_ref ref;
883 struct def *def;
884 bitmap depends_on;
885 rtx set, dest;
886 bool simple = true;
887 struct invariant *inv;
888
889 #ifdef HAVE_cc0
890 /* We can't move a CC0 setter without the user. */
891 if (sets_cc0_p (insn))
892 return;
893 #endif
894
895 set = single_set (insn);
896 if (!set)
897 return;
898 dest = SET_DEST (set);
899
900 if (!REG_P (dest)
901 || HARD_REGISTER_P (dest))
902 simple = false;
903
904 if (!may_assign_reg_p (dest)
905 || !pre_check_invariant_p (simple, dest)
906 || !check_maybe_invariant (SET_SRC (set)))
907 return;
908
909 /* If the insn can throw exception, we cannot move it at all without changing
910 cfg. */
911 if (can_throw_internal (insn))
912 return;
913
914 /* We cannot make trapping insn executed, unless it was executed before. */
915 if (may_trap_or_fault_p (PATTERN (insn)) && !always_reached)
916 return;
917
918 depends_on = BITMAP_ALLOC (NULL);
919 if (!check_dependencies (insn, depends_on))
920 {
921 BITMAP_FREE (depends_on);
922 return;
923 }
924
925 if (simple)
926 def = XCNEW (struct def);
927 else
928 def = NULL;
929
930 inv = create_new_invariant (def, insn, depends_on, always_executed);
931
932 if (simple)
933 {
934 ref = df_find_def (insn, dest);
935 check_invariant_table_size ();
936 invariant_table[DF_REF_ID (ref)] = inv;
937 }
938 }
939
940 /* Record registers used in INSN that have a unique invariant definition. */
941
942 static void
943 record_uses (rtx insn)
944 {
945 struct df_insn_info *insn_info = DF_INSN_INFO_GET (insn);
946 df_ref use;
947 struct invariant *inv;
948
949 FOR_EACH_INSN_INFO_USE (use, insn_info)
950 {
951 inv = invariant_for_use (use);
952 if (inv)
953 record_use (inv->def, use);
954 }
955 FOR_EACH_INSN_INFO_EQ_USE (use, insn_info)
956 {
957 inv = invariant_for_use (use);
958 if (inv)
959 record_use (inv->def, use);
960 }
961 }
962
963 /* Finds invariants in INSN. ALWAYS_REACHED is true if the insn is always
964 executed. ALWAYS_EXECUTED is true if the insn is always executed,
965 unless the program ends due to a function call. */
966
967 static void
968 find_invariants_insn (rtx insn, bool always_reached, bool always_executed)
969 {
970 find_invariant_insn (insn, always_reached, always_executed);
971 record_uses (insn);
972 }
973
974 /* Finds invariants in basic block BB. ALWAYS_REACHED is true if the
975 basic block is always executed. ALWAYS_EXECUTED is true if the basic
976 block is always executed, unless the program ends due to a function
977 call. */
978
979 static void
980 find_invariants_bb (basic_block bb, bool always_reached, bool always_executed)
981 {
982 rtx insn;
983
984 FOR_BB_INSNS (bb, insn)
985 {
986 if (!NONDEBUG_INSN_P (insn))
987 continue;
988
989 find_invariants_insn (insn, always_reached, always_executed);
990
991 if (always_reached
992 && CALL_P (insn)
993 && (RTL_LOOPING_CONST_OR_PURE_CALL_P (insn)
994 || ! RTL_CONST_OR_PURE_CALL_P (insn)))
995 always_reached = false;
996 }
997 }
998
999 /* Finds invariants in LOOP with body BODY. ALWAYS_REACHED is the bitmap of
1000 basic blocks in BODY that are always executed. ALWAYS_EXECUTED is the
1001 bitmap of basic blocks in BODY that are always executed unless the program
1002 ends due to a function call. */
1003
1004 static void
1005 find_invariants_body (struct loop *loop, basic_block *body,
1006 bitmap always_reached, bitmap always_executed)
1007 {
1008 unsigned i;
1009
1010 for (i = 0; i < loop->num_nodes; i++)
1011 find_invariants_bb (body[i],
1012 bitmap_bit_p (always_reached, i),
1013 bitmap_bit_p (always_executed, i));
1014 }
1015
1016 /* Finds invariants in LOOP. */
1017
1018 static void
1019 find_invariants (struct loop *loop)
1020 {
1021 bitmap may_exit = BITMAP_ALLOC (NULL);
1022 bitmap always_reached = BITMAP_ALLOC (NULL);
1023 bitmap has_exit = BITMAP_ALLOC (NULL);
1024 bitmap always_executed = BITMAP_ALLOC (NULL);
1025 basic_block *body = get_loop_body_in_dom_order (loop);
1026
1027 find_exits (loop, body, may_exit, has_exit);
1028 compute_always_reached (loop, body, may_exit, always_reached);
1029 compute_always_reached (loop, body, has_exit, always_executed);
1030
1031 find_defs (loop);
1032 find_invariants_body (loop, body, always_reached, always_executed);
1033 merge_identical_invariants ();
1034
1035 BITMAP_FREE (always_reached);
1036 BITMAP_FREE (always_executed);
1037 BITMAP_FREE (may_exit);
1038 BITMAP_FREE (has_exit);
1039 free (body);
1040 }
1041
1042 /* Frees a list of uses USE. */
1043
1044 static void
1045 free_use_list (struct use *use)
1046 {
1047 struct use *next;
1048
1049 for (; use; use = next)
1050 {
1051 next = use->next;
1052 free (use);
1053 }
1054 }
1055
1056 /* Return pressure class and number of hard registers (through *NREGS)
1057 for destination of INSN. */
1058 static enum reg_class
1059 get_pressure_class_and_nregs (rtx insn, int *nregs)
1060 {
1061 rtx reg;
1062 enum reg_class pressure_class;
1063 rtx set = single_set (insn);
1064
1065 /* Considered invariant insns have only one set. */
1066 gcc_assert (set != NULL_RTX);
1067 reg = SET_DEST (set);
1068 if (GET_CODE (reg) == SUBREG)
1069 reg = SUBREG_REG (reg);
1070 if (MEM_P (reg))
1071 {
1072 *nregs = 0;
1073 pressure_class = NO_REGS;
1074 }
1075 else
1076 {
1077 if (! REG_P (reg))
1078 reg = NULL_RTX;
1079 if (reg == NULL_RTX)
1080 pressure_class = GENERAL_REGS;
1081 else
1082 {
1083 pressure_class = reg_allocno_class (REGNO (reg));
1084 pressure_class = ira_pressure_class_translate[pressure_class];
1085 }
1086 *nregs
1087 = ira_reg_class_max_nregs[pressure_class][GET_MODE (SET_SRC (set))];
1088 }
1089 return pressure_class;
1090 }
1091
1092 /* Calculates cost and number of registers needed for moving invariant INV
1093 out of the loop and stores them to *COST and *REGS_NEEDED. */
1094
1095 static void
1096 get_inv_cost (struct invariant *inv, int *comp_cost, unsigned *regs_needed)
1097 {
1098 int i, acomp_cost;
1099 unsigned aregs_needed[N_REG_CLASSES];
1100 unsigned depno;
1101 struct invariant *dep;
1102 bitmap_iterator bi;
1103
1104 /* Find the representative of the class of the equivalent invariants. */
1105 inv = invariants[inv->eqto];
1106
1107 *comp_cost = 0;
1108 if (! flag_ira_loop_pressure)
1109 regs_needed[0] = 0;
1110 else
1111 {
1112 for (i = 0; i < ira_pressure_classes_num; i++)
1113 regs_needed[ira_pressure_classes[i]] = 0;
1114 }
1115
1116 if (inv->move
1117 || inv->stamp == actual_stamp)
1118 return;
1119 inv->stamp = actual_stamp;
1120
1121 if (! flag_ira_loop_pressure)
1122 regs_needed[0]++;
1123 else
1124 {
1125 int nregs;
1126 enum reg_class pressure_class;
1127
1128 pressure_class = get_pressure_class_and_nregs (inv->insn, &nregs);
1129 regs_needed[pressure_class] += nregs;
1130 }
1131
1132 if (!inv->cheap_address
1133 || inv->def->n_addr_uses < inv->def->n_uses)
1134 (*comp_cost) += inv->cost;
1135
1136 #ifdef STACK_REGS
1137 {
1138 /* Hoisting constant pool constants into stack regs may cost more than
1139 just single register. On x87, the balance is affected both by the
1140 small number of FP registers, and by its register stack organization,
1141 that forces us to add compensation code in and around the loop to
1142 shuffle the operands to the top of stack before use, and pop them
1143 from the stack after the loop finishes.
1144
1145 To model this effect, we increase the number of registers needed for
1146 stack registers by two: one register push, and one register pop.
1147 This usually has the effect that FP constant loads from the constant
1148 pool are not moved out of the loop.
1149
1150 Note that this also means that dependent invariants can not be moved.
1151 However, the primary purpose of this pass is to move loop invariant
1152 address arithmetic out of loops, and address arithmetic that depends
1153 on floating point constants is unlikely to ever occur. */
1154 rtx set = single_set (inv->insn);
1155 if (set
1156 && IS_STACK_MODE (GET_MODE (SET_SRC (set)))
1157 && constant_pool_constant_p (SET_SRC (set)))
1158 {
1159 if (flag_ira_loop_pressure)
1160 regs_needed[ira_stack_reg_pressure_class] += 2;
1161 else
1162 regs_needed[0] += 2;
1163 }
1164 }
1165 #endif
1166
1167 EXECUTE_IF_SET_IN_BITMAP (inv->depends_on, 0, depno, bi)
1168 {
1169 bool check_p;
1170
1171 dep = invariants[depno];
1172
1173 /* If DEP is moved out of the loop, it is not a depends_on any more. */
1174 if (dep->move)
1175 continue;
1176
1177 get_inv_cost (dep, &acomp_cost, aregs_needed);
1178
1179 if (! flag_ira_loop_pressure)
1180 check_p = aregs_needed[0] != 0;
1181 else
1182 {
1183 for (i = 0; i < ira_pressure_classes_num; i++)
1184 if (aregs_needed[ira_pressure_classes[i]] != 0)
1185 break;
1186 check_p = i < ira_pressure_classes_num;
1187 }
1188 if (check_p
1189 /* We need to check always_executed, since if the original value of
1190 the invariant may be preserved, we may need to keep it in a
1191 separate register. TODO check whether the register has an
1192 use outside of the loop. */
1193 && dep->always_executed
1194 && !dep->def->uses->next)
1195 {
1196 /* If this is a single use, after moving the dependency we will not
1197 need a new register. */
1198 if (! flag_ira_loop_pressure)
1199 aregs_needed[0]--;
1200 else
1201 {
1202 int nregs;
1203 enum reg_class pressure_class;
1204
1205 pressure_class = get_pressure_class_and_nregs (inv->insn, &nregs);
1206 aregs_needed[pressure_class] -= nregs;
1207 }
1208 }
1209
1210 if (! flag_ira_loop_pressure)
1211 regs_needed[0] += aregs_needed[0];
1212 else
1213 {
1214 for (i = 0; i < ira_pressure_classes_num; i++)
1215 regs_needed[ira_pressure_classes[i]]
1216 += aregs_needed[ira_pressure_classes[i]];
1217 }
1218 (*comp_cost) += acomp_cost;
1219 }
1220 }
1221
1222 /* Calculates gain for eliminating invariant INV. REGS_USED is the number
1223 of registers used in the loop, NEW_REGS is the number of new variables
1224 already added due to the invariant motion. The number of registers needed
1225 for it is stored in *REGS_NEEDED. SPEED and CALL_P are flags passed
1226 through to estimate_reg_pressure_cost. */
1227
1228 static int
1229 gain_for_invariant (struct invariant *inv, unsigned *regs_needed,
1230 unsigned *new_regs, unsigned regs_used,
1231 bool speed, bool call_p)
1232 {
1233 int comp_cost, size_cost;
1234
1235 actual_stamp++;
1236
1237 get_inv_cost (inv, &comp_cost, regs_needed);
1238
1239 if (! flag_ira_loop_pressure)
1240 {
1241 size_cost = (estimate_reg_pressure_cost (new_regs[0] + regs_needed[0],
1242 regs_used, speed, call_p)
1243 - estimate_reg_pressure_cost (new_regs[0],
1244 regs_used, speed, call_p));
1245 }
1246 else
1247 {
1248 int i;
1249 enum reg_class pressure_class;
1250
1251 for (i = 0; i < ira_pressure_classes_num; i++)
1252 {
1253 pressure_class = ira_pressure_classes[i];
1254 if ((int) new_regs[pressure_class]
1255 + (int) regs_needed[pressure_class]
1256 + LOOP_DATA (curr_loop)->max_reg_pressure[pressure_class]
1257 + IRA_LOOP_RESERVED_REGS
1258 > ira_class_hard_regs_num[pressure_class])
1259 break;
1260 }
1261 if (i < ira_pressure_classes_num)
1262 /* There will be register pressure excess and we want not to
1263 make this loop invariant motion. All loop invariants with
1264 non-positive gains will be rejected in function
1265 find_invariants_to_move. Therefore we return the negative
1266 number here.
1267
1268 One could think that this rejects also expensive loop
1269 invariant motions and this will hurt code performance.
1270 However numerous experiments with different heuristics
1271 taking invariant cost into account did not confirm this
1272 assumption. There are possible explanations for this
1273 result:
1274 o probably all expensive invariants were already moved out
1275 of the loop by PRE and gimple invariant motion pass.
1276 o expensive invariant execution will be hidden by insn
1277 scheduling or OOO processor hardware because usually such
1278 invariants have a lot of freedom to be executed
1279 out-of-order.
1280 Another reason for ignoring invariant cost vs spilling cost
1281 heuristics is also in difficulties to evaluate accurately
1282 spill cost at this stage. */
1283 return -1;
1284 else
1285 size_cost = 0;
1286 }
1287
1288 return comp_cost - size_cost;
1289 }
1290
1291 /* Finds invariant with best gain for moving. Returns the gain, stores
1292 the invariant in *BEST and number of registers needed for it to
1293 *REGS_NEEDED. REGS_USED is the number of registers used in the loop.
1294 NEW_REGS is the number of new variables already added due to invariant
1295 motion. */
1296
1297 static int
1298 best_gain_for_invariant (struct invariant **best, unsigned *regs_needed,
1299 unsigned *new_regs, unsigned regs_used,
1300 bool speed, bool call_p)
1301 {
1302 struct invariant *inv;
1303 int i, gain = 0, again;
1304 unsigned aregs_needed[N_REG_CLASSES], invno;
1305
1306 FOR_EACH_VEC_ELT (invariants, invno, inv)
1307 {
1308 if (inv->move)
1309 continue;
1310
1311 /* Only consider the "representatives" of equivalent invariants. */
1312 if (inv->eqto != inv->invno)
1313 continue;
1314
1315 again = gain_for_invariant (inv, aregs_needed, new_regs, regs_used,
1316 speed, call_p);
1317 if (again > gain)
1318 {
1319 gain = again;
1320 *best = inv;
1321 if (! flag_ira_loop_pressure)
1322 regs_needed[0] = aregs_needed[0];
1323 else
1324 {
1325 for (i = 0; i < ira_pressure_classes_num; i++)
1326 regs_needed[ira_pressure_classes[i]]
1327 = aregs_needed[ira_pressure_classes[i]];
1328 }
1329 }
1330 }
1331
1332 return gain;
1333 }
1334
1335 /* Marks invariant INVNO and all its dependencies for moving. */
1336
1337 static void
1338 set_move_mark (unsigned invno, int gain)
1339 {
1340 struct invariant *inv = invariants[invno];
1341 bitmap_iterator bi;
1342
1343 /* Find the representative of the class of the equivalent invariants. */
1344 inv = invariants[inv->eqto];
1345
1346 if (inv->move)
1347 return;
1348 inv->move = true;
1349
1350 if (dump_file)
1351 {
1352 if (gain >= 0)
1353 fprintf (dump_file, "Decided to move invariant %d -- gain %d\n",
1354 invno, gain);
1355 else
1356 fprintf (dump_file, "Decided to move dependent invariant %d\n",
1357 invno);
1358 };
1359
1360 EXECUTE_IF_SET_IN_BITMAP (inv->depends_on, 0, invno, bi)
1361 {
1362 set_move_mark (invno, -1);
1363 }
1364 }
1365
1366 /* Determines which invariants to move. */
1367
1368 static void
1369 find_invariants_to_move (bool speed, bool call_p)
1370 {
1371 int gain;
1372 unsigned i, regs_used, regs_needed[N_REG_CLASSES], new_regs[N_REG_CLASSES];
1373 struct invariant *inv = NULL;
1374
1375 if (!invariants.length ())
1376 return;
1377
1378 if (flag_ira_loop_pressure)
1379 /* REGS_USED is actually never used when the flag is on. */
1380 regs_used = 0;
1381 else
1382 /* We do not really do a good job in estimating number of
1383 registers used; we put some initial bound here to stand for
1384 induction variables etc. that we do not detect. */
1385 {
1386 unsigned int n_regs = DF_REG_SIZE (df);
1387
1388 regs_used = 2;
1389
1390 for (i = 0; i < n_regs; i++)
1391 {
1392 if (!DF_REGNO_FIRST_DEF (i) && DF_REGNO_LAST_USE (i))
1393 {
1394 /* This is a value that is used but not changed inside loop. */
1395 regs_used++;
1396 }
1397 }
1398 }
1399
1400 if (! flag_ira_loop_pressure)
1401 new_regs[0] = regs_needed[0] = 0;
1402 else
1403 {
1404 for (i = 0; (int) i < ira_pressure_classes_num; i++)
1405 new_regs[ira_pressure_classes[i]] = 0;
1406 }
1407 while ((gain = best_gain_for_invariant (&inv, regs_needed,
1408 new_regs, regs_used,
1409 speed, call_p)) > 0)
1410 {
1411 set_move_mark (inv->invno, gain);
1412 if (! flag_ira_loop_pressure)
1413 new_regs[0] += regs_needed[0];
1414 else
1415 {
1416 for (i = 0; (int) i < ira_pressure_classes_num; i++)
1417 new_regs[ira_pressure_classes[i]]
1418 += regs_needed[ira_pressure_classes[i]];
1419 }
1420 }
1421 }
1422
1423 /* Replace the uses, reached by the definition of invariant INV, by REG.
1424
1425 IN_GROUP is nonzero if this is part of a group of changes that must be
1426 performed as a group. In that case, the changes will be stored. The
1427 function `apply_change_group' will validate and apply the changes. */
1428
1429 static int
1430 replace_uses (struct invariant *inv, rtx reg, bool in_group)
1431 {
1432 /* Replace the uses we know to be dominated. It saves work for copy
1433 propagation, and also it is necessary so that dependent invariants
1434 are computed right. */
1435 if (inv->def)
1436 {
1437 struct use *use;
1438 for (use = inv->def->uses; use; use = use->next)
1439 validate_change (use->insn, use->pos, reg, true);
1440
1441 /* If we aren't part of a larger group, apply the changes now. */
1442 if (!in_group)
1443 return apply_change_group ();
1444 }
1445
1446 return 1;
1447 }
1448
1449 /* Move invariant INVNO out of the LOOP. Returns true if this succeeds, false
1450 otherwise. */
1451
1452 static bool
1453 move_invariant_reg (struct loop *loop, unsigned invno)
1454 {
1455 struct invariant *inv = invariants[invno];
1456 struct invariant *repr = invariants[inv->eqto];
1457 unsigned i;
1458 basic_block preheader = loop_preheader_edge (loop)->src;
1459 rtx reg, set, dest, note;
1460 bitmap_iterator bi;
1461 int regno = -1;
1462
1463 if (inv->reg)
1464 return true;
1465 if (!repr->move)
1466 return false;
1467
1468 /* If this is a representative of the class of equivalent invariants,
1469 really move the invariant. Otherwise just replace its use with
1470 the register used for the representative. */
1471 if (inv == repr)
1472 {
1473 if (inv->depends_on)
1474 {
1475 EXECUTE_IF_SET_IN_BITMAP (inv->depends_on, 0, i, bi)
1476 {
1477 if (!move_invariant_reg (loop, i))
1478 goto fail;
1479 }
1480 }
1481
1482 /* Move the set out of the loop. If the set is always executed (we could
1483 omit this condition if we know that the register is unused outside of
1484 the loop, but it does not seem worth finding out) and it has no uses
1485 that would not be dominated by it, we may just move it (TODO).
1486 Otherwise we need to create a temporary register. */
1487 set = single_set (inv->insn);
1488 reg = dest = SET_DEST (set);
1489 if (GET_CODE (reg) == SUBREG)
1490 reg = SUBREG_REG (reg);
1491 if (REG_P (reg))
1492 regno = REGNO (reg);
1493
1494 reg = gen_reg_rtx_and_attrs (dest);
1495
1496 /* Try replacing the destination by a new pseudoregister. */
1497 validate_change (inv->insn, &SET_DEST (set), reg, true);
1498
1499 /* As well as all the dominated uses. */
1500 replace_uses (inv, reg, true);
1501
1502 /* And validate all the changes. */
1503 if (!apply_change_group ())
1504 goto fail;
1505
1506 emit_insn_after (gen_move_insn (dest, reg), inv->insn);
1507 reorder_insns (inv->insn, inv->insn, BB_END (preheader));
1508
1509 /* If there is a REG_EQUAL note on the insn we just moved, and the
1510 insn is in a basic block that is not always executed or the note
1511 contains something for which we don't know the invariant status,
1512 the note may no longer be valid after we move the insn. Note that
1513 uses in REG_EQUAL notes are taken into account in the computation
1514 of invariants, so it is safe to retain the note even if it contains
1515 register references for which we know the invariant status. */
1516 if ((note = find_reg_note (inv->insn, REG_EQUAL, NULL_RTX))
1517 && (!inv->always_executed
1518 || !check_maybe_invariant (XEXP (note, 0))))
1519 remove_note (inv->insn, note);
1520 }
1521 else
1522 {
1523 if (!move_invariant_reg (loop, repr->invno))
1524 goto fail;
1525 reg = repr->reg;
1526 regno = repr->orig_regno;
1527 if (!replace_uses (inv, reg, false))
1528 goto fail;
1529 set = single_set (inv->insn);
1530 emit_insn_after (gen_move_insn (SET_DEST (set), reg), inv->insn);
1531 delete_insn (inv->insn);
1532 }
1533
1534 inv->reg = reg;
1535 inv->orig_regno = regno;
1536
1537 return true;
1538
1539 fail:
1540 /* If we failed, clear move flag, so that we do not try to move inv
1541 again. */
1542 if (dump_file)
1543 fprintf (dump_file, "Failed to move invariant %d\n", invno);
1544 inv->move = false;
1545 inv->reg = NULL_RTX;
1546 inv->orig_regno = -1;
1547
1548 return false;
1549 }
1550
1551 /* Move selected invariant out of the LOOP. Newly created regs are marked
1552 in TEMPORARY_REGS. */
1553
1554 static void
1555 move_invariants (struct loop *loop)
1556 {
1557 struct invariant *inv;
1558 unsigned i;
1559
1560 FOR_EACH_VEC_ELT (invariants, i, inv)
1561 move_invariant_reg (loop, i);
1562 if (flag_ira_loop_pressure && resize_reg_info ())
1563 {
1564 FOR_EACH_VEC_ELT (invariants, i, inv)
1565 if (inv->reg != NULL_RTX)
1566 {
1567 if (inv->orig_regno >= 0)
1568 setup_reg_classes (REGNO (inv->reg),
1569 reg_preferred_class (inv->orig_regno),
1570 reg_alternate_class (inv->orig_regno),
1571 reg_allocno_class (inv->orig_regno));
1572 else
1573 setup_reg_classes (REGNO (inv->reg),
1574 GENERAL_REGS, NO_REGS, GENERAL_REGS);
1575 }
1576 }
1577 }
1578
1579 /* Initializes invariant motion data. */
1580
1581 static void
1582 init_inv_motion_data (void)
1583 {
1584 actual_stamp = 1;
1585
1586 invariants.create (100);
1587 }
1588
1589 /* Frees the data allocated by invariant motion. */
1590
1591 static void
1592 free_inv_motion_data (void)
1593 {
1594 unsigned i;
1595 struct def *def;
1596 struct invariant *inv;
1597
1598 check_invariant_table_size ();
1599 for (i = 0; i < DF_DEFS_TABLE_SIZE (); i++)
1600 {
1601 inv = invariant_table[i];
1602 if (inv)
1603 {
1604 def = inv->def;
1605 gcc_assert (def != NULL);
1606
1607 free_use_list (def->uses);
1608 free (def);
1609 invariant_table[i] = NULL;
1610 }
1611 }
1612
1613 FOR_EACH_VEC_ELT (invariants, i, inv)
1614 {
1615 BITMAP_FREE (inv->depends_on);
1616 free (inv);
1617 }
1618 invariants.release ();
1619 }
1620
1621 /* Move the invariants out of the LOOP. */
1622
1623 static void
1624 move_single_loop_invariants (struct loop *loop)
1625 {
1626 init_inv_motion_data ();
1627
1628 find_invariants (loop);
1629 find_invariants_to_move (optimize_loop_for_speed_p (loop),
1630 LOOP_DATA (loop)->has_call);
1631 move_invariants (loop);
1632
1633 free_inv_motion_data ();
1634 }
1635
1636 /* Releases the auxiliary data for LOOP. */
1637
1638 static void
1639 free_loop_data (struct loop *loop)
1640 {
1641 struct loop_data *data = LOOP_DATA (loop);
1642 if (!data)
1643 return;
1644
1645 bitmap_clear (&LOOP_DATA (loop)->regs_ref);
1646 bitmap_clear (&LOOP_DATA (loop)->regs_live);
1647 free (data);
1648 loop->aux = NULL;
1649 }
1650
1651 \f
1652
1653 /* Registers currently living. */
1654 static bitmap_head curr_regs_live;
1655
1656 /* Current reg pressure for each pressure class. */
1657 static int curr_reg_pressure[N_REG_CLASSES];
1658
1659 /* Record all regs that are set in any one insn. Communication from
1660 mark_reg_{store,clobber} and global_conflicts. Asm can refer to
1661 all hard-registers. */
1662 static rtx regs_set[(FIRST_PSEUDO_REGISTER > MAX_RECOG_OPERANDS
1663 ? FIRST_PSEUDO_REGISTER : MAX_RECOG_OPERANDS) * 2];
1664 /* Number of regs stored in the previous array. */
1665 static int n_regs_set;
1666
1667 /* Return pressure class and number of needed hard registers (through
1668 *NREGS) of register REGNO. */
1669 static enum reg_class
1670 get_regno_pressure_class (int regno, int *nregs)
1671 {
1672 if (regno >= FIRST_PSEUDO_REGISTER)
1673 {
1674 enum reg_class pressure_class;
1675
1676 pressure_class = reg_allocno_class (regno);
1677 pressure_class = ira_pressure_class_translate[pressure_class];
1678 *nregs
1679 = ira_reg_class_max_nregs[pressure_class][PSEUDO_REGNO_MODE (regno)];
1680 return pressure_class;
1681 }
1682 else if (! TEST_HARD_REG_BIT (ira_no_alloc_regs, regno)
1683 && ! TEST_HARD_REG_BIT (eliminable_regset, regno))
1684 {
1685 *nregs = 1;
1686 return ira_pressure_class_translate[REGNO_REG_CLASS (regno)];
1687 }
1688 else
1689 {
1690 *nregs = 0;
1691 return NO_REGS;
1692 }
1693 }
1694
1695 /* Increase (if INCR_P) or decrease current register pressure for
1696 register REGNO. */
1697 static void
1698 change_pressure (int regno, bool incr_p)
1699 {
1700 int nregs;
1701 enum reg_class pressure_class;
1702
1703 pressure_class = get_regno_pressure_class (regno, &nregs);
1704 if (! incr_p)
1705 curr_reg_pressure[pressure_class] -= nregs;
1706 else
1707 {
1708 curr_reg_pressure[pressure_class] += nregs;
1709 if (LOOP_DATA (curr_loop)->max_reg_pressure[pressure_class]
1710 < curr_reg_pressure[pressure_class])
1711 LOOP_DATA (curr_loop)->max_reg_pressure[pressure_class]
1712 = curr_reg_pressure[pressure_class];
1713 }
1714 }
1715
1716 /* Mark REGNO birth. */
1717 static void
1718 mark_regno_live (int regno)
1719 {
1720 struct loop *loop;
1721
1722 for (loop = curr_loop;
1723 loop != current_loops->tree_root;
1724 loop = loop_outer (loop))
1725 bitmap_set_bit (&LOOP_DATA (loop)->regs_live, regno);
1726 if (!bitmap_set_bit (&curr_regs_live, regno))
1727 return;
1728 change_pressure (regno, true);
1729 }
1730
1731 /* Mark REGNO death. */
1732 static void
1733 mark_regno_death (int regno)
1734 {
1735 if (! bitmap_clear_bit (&curr_regs_live, regno))
1736 return;
1737 change_pressure (regno, false);
1738 }
1739
1740 /* Mark setting register REG. */
1741 static void
1742 mark_reg_store (rtx reg, const_rtx setter ATTRIBUTE_UNUSED,
1743 void *data ATTRIBUTE_UNUSED)
1744 {
1745 int regno;
1746
1747 if (GET_CODE (reg) == SUBREG)
1748 reg = SUBREG_REG (reg);
1749
1750 if (! REG_P (reg))
1751 return;
1752
1753 regs_set[n_regs_set++] = reg;
1754
1755 regno = REGNO (reg);
1756
1757 if (regno >= FIRST_PSEUDO_REGISTER)
1758 mark_regno_live (regno);
1759 else
1760 {
1761 int last = regno + hard_regno_nregs[regno][GET_MODE (reg)];
1762
1763 while (regno < last)
1764 {
1765 mark_regno_live (regno);
1766 regno++;
1767 }
1768 }
1769 }
1770
1771 /* Mark clobbering register REG. */
1772 static void
1773 mark_reg_clobber (rtx reg, const_rtx setter, void *data)
1774 {
1775 if (GET_CODE (setter) == CLOBBER)
1776 mark_reg_store (reg, setter, data);
1777 }
1778
1779 /* Mark register REG death. */
1780 static void
1781 mark_reg_death (rtx reg)
1782 {
1783 int regno = REGNO (reg);
1784
1785 if (regno >= FIRST_PSEUDO_REGISTER)
1786 mark_regno_death (regno);
1787 else
1788 {
1789 int last = regno + hard_regno_nregs[regno][GET_MODE (reg)];
1790
1791 while (regno < last)
1792 {
1793 mark_regno_death (regno);
1794 regno++;
1795 }
1796 }
1797 }
1798
1799 /* Mark occurrence of registers in X for the current loop. */
1800 static void
1801 mark_ref_regs (rtx x)
1802 {
1803 RTX_CODE code;
1804 int i;
1805 const char *fmt;
1806
1807 if (!x)
1808 return;
1809
1810 code = GET_CODE (x);
1811 if (code == REG)
1812 {
1813 struct loop *loop;
1814
1815 for (loop = curr_loop;
1816 loop != current_loops->tree_root;
1817 loop = loop_outer (loop))
1818 bitmap_set_bit (&LOOP_DATA (loop)->regs_ref, REGNO (x));
1819 return;
1820 }
1821
1822 fmt = GET_RTX_FORMAT (code);
1823 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1824 if (fmt[i] == 'e')
1825 mark_ref_regs (XEXP (x, i));
1826 else if (fmt[i] == 'E')
1827 {
1828 int j;
1829
1830 for (j = 0; j < XVECLEN (x, i); j++)
1831 mark_ref_regs (XVECEXP (x, i, j));
1832 }
1833 }
1834
1835 /* Calculate register pressure in the loops. */
1836 static void
1837 calculate_loop_reg_pressure (void)
1838 {
1839 int i;
1840 unsigned int j;
1841 bitmap_iterator bi;
1842 basic_block bb;
1843 rtx insn, link;
1844 struct loop *loop, *parent;
1845
1846 FOR_EACH_LOOP (loop, 0)
1847 if (loop->aux == NULL)
1848 {
1849 loop->aux = xcalloc (1, sizeof (struct loop_data));
1850 bitmap_initialize (&LOOP_DATA (loop)->regs_ref, &reg_obstack);
1851 bitmap_initialize (&LOOP_DATA (loop)->regs_live, &reg_obstack);
1852 }
1853 ira_setup_eliminable_regset ();
1854 bitmap_initialize (&curr_regs_live, &reg_obstack);
1855 FOR_EACH_BB_FN (bb, cfun)
1856 {
1857 curr_loop = bb->loop_father;
1858 if (curr_loop == current_loops->tree_root)
1859 continue;
1860
1861 for (loop = curr_loop;
1862 loop != current_loops->tree_root;
1863 loop = loop_outer (loop))
1864 bitmap_ior_into (&LOOP_DATA (loop)->regs_live, DF_LR_IN (bb));
1865
1866 bitmap_copy (&curr_regs_live, DF_LR_IN (bb));
1867 for (i = 0; i < ira_pressure_classes_num; i++)
1868 curr_reg_pressure[ira_pressure_classes[i]] = 0;
1869 EXECUTE_IF_SET_IN_BITMAP (&curr_regs_live, 0, j, bi)
1870 change_pressure (j, true);
1871
1872 FOR_BB_INSNS (bb, insn)
1873 {
1874 if (! NONDEBUG_INSN_P (insn))
1875 continue;
1876
1877 mark_ref_regs (PATTERN (insn));
1878 n_regs_set = 0;
1879 note_stores (PATTERN (insn), mark_reg_clobber, NULL);
1880
1881 /* Mark any registers dead after INSN as dead now. */
1882
1883 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1884 if (REG_NOTE_KIND (link) == REG_DEAD)
1885 mark_reg_death (XEXP (link, 0));
1886
1887 /* Mark any registers set in INSN as live,
1888 and mark them as conflicting with all other live regs.
1889 Clobbers are processed again, so they conflict with
1890 the registers that are set. */
1891
1892 note_stores (PATTERN (insn), mark_reg_store, NULL);
1893
1894 #ifdef AUTO_INC_DEC
1895 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1896 if (REG_NOTE_KIND (link) == REG_INC)
1897 mark_reg_store (XEXP (link, 0), NULL_RTX, NULL);
1898 #endif
1899 while (n_regs_set-- > 0)
1900 {
1901 rtx note = find_regno_note (insn, REG_UNUSED,
1902 REGNO (regs_set[n_regs_set]));
1903 if (! note)
1904 continue;
1905
1906 mark_reg_death (XEXP (note, 0));
1907 }
1908 }
1909 }
1910 bitmap_clear (&curr_regs_live);
1911 if (flag_ira_region == IRA_REGION_MIXED
1912 || flag_ira_region == IRA_REGION_ALL)
1913 FOR_EACH_LOOP (loop, 0)
1914 {
1915 EXECUTE_IF_SET_IN_BITMAP (&LOOP_DATA (loop)->regs_live, 0, j, bi)
1916 if (! bitmap_bit_p (&LOOP_DATA (loop)->regs_ref, j))
1917 {
1918 enum reg_class pressure_class;
1919 int nregs;
1920
1921 pressure_class = get_regno_pressure_class (j, &nregs);
1922 LOOP_DATA (loop)->max_reg_pressure[pressure_class] -= nregs;
1923 }
1924 }
1925 if (dump_file == NULL)
1926 return;
1927 FOR_EACH_LOOP (loop, 0)
1928 {
1929 parent = loop_outer (loop);
1930 fprintf (dump_file, "\n Loop %d (parent %d, header bb%d, depth %d)\n",
1931 loop->num, (parent == NULL ? -1 : parent->num),
1932 loop->header->index, loop_depth (loop));
1933 fprintf (dump_file, "\n ref. regnos:");
1934 EXECUTE_IF_SET_IN_BITMAP (&LOOP_DATA (loop)->regs_ref, 0, j, bi)
1935 fprintf (dump_file, " %d", j);
1936 fprintf (dump_file, "\n live regnos:");
1937 EXECUTE_IF_SET_IN_BITMAP (&LOOP_DATA (loop)->regs_live, 0, j, bi)
1938 fprintf (dump_file, " %d", j);
1939 fprintf (dump_file, "\n Pressure:");
1940 for (i = 0; (int) i < ira_pressure_classes_num; i++)
1941 {
1942 enum reg_class pressure_class;
1943
1944 pressure_class = ira_pressure_classes[i];
1945 if (LOOP_DATA (loop)->max_reg_pressure[pressure_class] == 0)
1946 continue;
1947 fprintf (dump_file, " %s=%d", reg_class_names[pressure_class],
1948 LOOP_DATA (loop)->max_reg_pressure[pressure_class]);
1949 }
1950 fprintf (dump_file, "\n");
1951 }
1952 }
1953
1954 \f
1955
1956 /* Move the invariants out of the loops. */
1957
1958 void
1959 move_loop_invariants (void)
1960 {
1961 struct loop *loop;
1962
1963 if (flag_ira_loop_pressure)
1964 {
1965 df_analyze ();
1966 regstat_init_n_sets_and_refs ();
1967 ira_set_pseudo_classes (true, dump_file);
1968 calculate_loop_reg_pressure ();
1969 regstat_free_n_sets_and_refs ();
1970 }
1971 df_set_flags (DF_EQ_NOTES + DF_DEFER_INSN_RESCAN);
1972 /* Process the loops, innermost first. */
1973 FOR_EACH_LOOP (loop, LI_FROM_INNERMOST)
1974 {
1975 curr_loop = loop;
1976 /* move_single_loop_invariants for very large loops
1977 is time consuming and might need a lot of memory. */
1978 if (loop->num_nodes <= (unsigned) LOOP_INVARIANT_MAX_BBS_IN_LOOP)
1979 move_single_loop_invariants (loop);
1980 }
1981
1982 FOR_EACH_LOOP (loop, 0)
1983 {
1984 free_loop_data (loop);
1985 }
1986
1987 if (flag_ira_loop_pressure)
1988 /* There is no sense to keep this info because it was most
1989 probably outdated by subsequent passes. */
1990 free_reg_info ();
1991 free (invariant_table);
1992 invariant_table = NULL;
1993 invariant_table_size = 0;
1994
1995 #ifdef ENABLE_CHECKING
1996 verify_flow_info ();
1997 #endif
1998 }