]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/loop-iv.c
loop-iv.c (simplify_using_condition): A condition of the form (EQ REG CONST) can...
[thirdparty/gcc.git] / gcc / loop-iv.c
1 /* Rtl-level induction variable analysis.
2 Copyright (C) 2004, 2005, 2006, 2007, 2008, 2009
3 Free Software Foundation, Inc.
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it
8 under the terms of the GNU General Public License as published by the
9 Free Software Foundation; either version 3, or (at your option) any
10 later version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT
13 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
20
21 /* This is a simple analysis of induction variables of the loop. The major use
22 is for determining the number of iterations of a loop for loop unrolling,
23 doloop optimization and branch prediction. The iv information is computed
24 on demand.
25
26 Induction variables are analyzed by walking the use-def chains. When
27 a basic induction variable (biv) is found, it is cached in the bivs
28 hash table. When register is proved to be a biv, its description
29 is stored to DF_REF_DATA of the def reference.
30
31 The analysis works always with one loop -- you must call
32 iv_analysis_loop_init (loop) for it. All the other functions then work with
33 this loop. When you need to work with another loop, just call
34 iv_analysis_loop_init for it. When you no longer need iv analysis, call
35 iv_analysis_done () to clean up the memory.
36
37 The available functions are:
38
39 iv_analyze (insn, reg, iv): Stores the description of the induction variable
40 corresponding to the use of register REG in INSN to IV. Returns true if
41 REG is an induction variable in INSN. false otherwise.
42 If use of REG is not found in INSN, following insns are scanned (so that
43 we may call this function on insn returned by get_condition).
44 iv_analyze_result (insn, def, iv): Stores to IV the description of the iv
45 corresponding to DEF, which is a register defined in INSN.
46 iv_analyze_expr (insn, rhs, mode, iv): Stores to IV the description of iv
47 corresponding to expression EXPR evaluated at INSN. All registers used bu
48 EXPR must also be used in INSN.
49 */
50
51 #include "config.h"
52 #include "system.h"
53 #include "coretypes.h"
54 #include "tm.h"
55 #include "rtl.h"
56 #include "hard-reg-set.h"
57 #include "obstack.h"
58 #include "basic-block.h"
59 #include "cfgloop.h"
60 #include "expr.h"
61 #include "intl.h"
62 #include "output.h"
63 #include "toplev.h"
64 #include "df.h"
65 #include "hashtab.h"
66
67 /* Possible return values of iv_get_reaching_def. */
68
69 enum iv_grd_result
70 {
71 /* More than one reaching def, or reaching def that does not
72 dominate the use. */
73 GRD_INVALID,
74
75 /* The use is trivial invariant of the loop, i.e. is not changed
76 inside the loop. */
77 GRD_INVARIANT,
78
79 /* The use is reached by initial value and a value from the
80 previous iteration. */
81 GRD_MAYBE_BIV,
82
83 /* The use has single dominating def. */
84 GRD_SINGLE_DOM
85 };
86
87 /* Information about a biv. */
88
89 struct biv_entry
90 {
91 unsigned regno; /* The register of the biv. */
92 struct rtx_iv iv; /* Value of the biv. */
93 };
94
95 static bool clean_slate = true;
96
97 static unsigned int iv_ref_table_size = 0;
98
99 /* Table of rtx_ivs indexed by the df_ref uid field. */
100 static struct rtx_iv ** iv_ref_table;
101
102 /* Induction variable stored at the reference. */
103 #define DF_REF_IV(REF) iv_ref_table[DF_REF_ID(REF)]
104 #define DF_REF_IV_SET(REF, IV) iv_ref_table[DF_REF_ID(REF)] = (IV)
105
106 /* The current loop. */
107
108 static struct loop *current_loop;
109
110 /* Bivs of the current loop. */
111
112 static htab_t bivs;
113
114 static bool iv_analyze_op (rtx, rtx, struct rtx_iv *);
115
116 /* Dumps information about IV to FILE. */
117
118 extern void dump_iv_info (FILE *, struct rtx_iv *);
119 void
120 dump_iv_info (FILE *file, struct rtx_iv *iv)
121 {
122 if (!iv->base)
123 {
124 fprintf (file, "not simple");
125 return;
126 }
127
128 if (iv->step == const0_rtx
129 && !iv->first_special)
130 fprintf (file, "invariant ");
131
132 print_rtl (file, iv->base);
133 if (iv->step != const0_rtx)
134 {
135 fprintf (file, " + ");
136 print_rtl (file, iv->step);
137 fprintf (file, " * iteration");
138 }
139 fprintf (file, " (in %s)", GET_MODE_NAME (iv->mode));
140
141 if (iv->mode != iv->extend_mode)
142 fprintf (file, " %s to %s",
143 rtx_name[iv->extend],
144 GET_MODE_NAME (iv->extend_mode));
145
146 if (iv->mult != const1_rtx)
147 {
148 fprintf (file, " * ");
149 print_rtl (file, iv->mult);
150 }
151 if (iv->delta != const0_rtx)
152 {
153 fprintf (file, " + ");
154 print_rtl (file, iv->delta);
155 }
156 if (iv->first_special)
157 fprintf (file, " (first special)");
158 }
159
160 /* Generates a subreg to get the least significant part of EXPR (in mode
161 INNER_MODE) to OUTER_MODE. */
162
163 rtx
164 lowpart_subreg (enum machine_mode outer_mode, rtx expr,
165 enum machine_mode inner_mode)
166 {
167 return simplify_gen_subreg (outer_mode, expr, inner_mode,
168 subreg_lowpart_offset (outer_mode, inner_mode));
169 }
170
171 static void
172 check_iv_ref_table_size (void)
173 {
174 if (iv_ref_table_size < DF_DEFS_TABLE_SIZE())
175 {
176 unsigned int new_size = DF_DEFS_TABLE_SIZE () + (DF_DEFS_TABLE_SIZE () / 4);
177 iv_ref_table = XRESIZEVEC (struct rtx_iv *, iv_ref_table, new_size);
178 memset (&iv_ref_table[iv_ref_table_size], 0,
179 (new_size - iv_ref_table_size) * sizeof (struct rtx_iv *));
180 iv_ref_table_size = new_size;
181 }
182 }
183
184
185 /* Checks whether REG is a well-behaved register. */
186
187 static bool
188 simple_reg_p (rtx reg)
189 {
190 unsigned r;
191
192 if (GET_CODE (reg) == SUBREG)
193 {
194 if (!subreg_lowpart_p (reg))
195 return false;
196 reg = SUBREG_REG (reg);
197 }
198
199 if (!REG_P (reg))
200 return false;
201
202 r = REGNO (reg);
203 if (HARD_REGISTER_NUM_P (r))
204 return false;
205
206 if (GET_MODE_CLASS (GET_MODE (reg)) != MODE_INT)
207 return false;
208
209 return true;
210 }
211
212 /* Clears the information about ivs stored in df. */
213
214 static void
215 clear_iv_info (void)
216 {
217 unsigned i, n_defs = DF_DEFS_TABLE_SIZE ();
218 struct rtx_iv *iv;
219
220 check_iv_ref_table_size ();
221 for (i = 0; i < n_defs; i++)
222 {
223 iv = iv_ref_table[i];
224 if (iv)
225 {
226 free (iv);
227 iv_ref_table[i] = NULL;
228 }
229 }
230
231 htab_empty (bivs);
232 }
233
234 /* Returns hash value for biv B. */
235
236 static hashval_t
237 biv_hash (const void *b)
238 {
239 return ((const struct biv_entry *) b)->regno;
240 }
241
242 /* Compares biv B and register R. */
243
244 static int
245 biv_eq (const void *b, const void *r)
246 {
247 return ((const struct biv_entry *) b)->regno == REGNO ((const_rtx) r);
248 }
249
250 /* Prepare the data for an induction variable analysis of a LOOP. */
251
252 void
253 iv_analysis_loop_init (struct loop *loop)
254 {
255 basic_block *body = get_loop_body_in_dom_order (loop), bb;
256 bitmap blocks = BITMAP_ALLOC (NULL);
257 unsigned i;
258
259 current_loop = loop;
260
261 /* Clear the information from the analysis of the previous loop. */
262 if (clean_slate)
263 {
264 df_set_flags (DF_EQ_NOTES + DF_DEFER_INSN_RESCAN);
265 bivs = htab_create (10, biv_hash, biv_eq, free);
266 clean_slate = false;
267 }
268 else
269 clear_iv_info ();
270
271 for (i = 0; i < loop->num_nodes; i++)
272 {
273 bb = body[i];
274 bitmap_set_bit (blocks, bb->index);
275 }
276 /* Get rid of the ud chains before processing the rescans. Then add
277 the problem back. */
278 df_remove_problem (df_chain);
279 df_process_deferred_rescans ();
280 df_chain_add_problem (DF_UD_CHAIN);
281 df_set_blocks (blocks);
282 df_analyze ();
283 if (dump_file)
284 df_dump_region (dump_file);
285
286 check_iv_ref_table_size ();
287 BITMAP_FREE (blocks);
288 free (body);
289 }
290
291 /* Finds the definition of REG that dominates loop latch and stores
292 it to DEF. Returns false if there is not a single definition
293 dominating the latch. If REG has no definition in loop, DEF
294 is set to NULL and true is returned. */
295
296 static bool
297 latch_dominating_def (rtx reg, df_ref *def)
298 {
299 df_ref single_rd = NULL, adef;
300 unsigned regno = REGNO (reg);
301 struct df_rd_bb_info *bb_info = DF_RD_BB_INFO (current_loop->latch);
302
303 for (adef = DF_REG_DEF_CHAIN (regno); adef; adef = DF_REF_NEXT_REG (adef))
304 {
305 if (!bitmap_bit_p (df->blocks_to_analyze, DF_REF_BBNO (adef))
306 || !bitmap_bit_p (bb_info->out, DF_REF_ID (adef)))
307 continue;
308
309 /* More than one reaching definition. */
310 if (single_rd)
311 return false;
312
313 if (!just_once_each_iteration_p (current_loop, DF_REF_BB (adef)))
314 return false;
315
316 single_rd = adef;
317 }
318
319 *def = single_rd;
320 return true;
321 }
322
323 /* Gets definition of REG reaching its use in INSN and stores it to DEF. */
324
325 static enum iv_grd_result
326 iv_get_reaching_def (rtx insn, rtx reg, df_ref *def)
327 {
328 df_ref use, adef;
329 basic_block def_bb, use_bb;
330 rtx def_insn;
331 bool dom_p;
332
333 *def = NULL;
334 if (!simple_reg_p (reg))
335 return GRD_INVALID;
336 if (GET_CODE (reg) == SUBREG)
337 reg = SUBREG_REG (reg);
338 gcc_assert (REG_P (reg));
339
340 use = df_find_use (insn, reg);
341 gcc_assert (use != NULL);
342
343 if (!DF_REF_CHAIN (use))
344 return GRD_INVARIANT;
345
346 /* More than one reaching def. */
347 if (DF_REF_CHAIN (use)->next)
348 return GRD_INVALID;
349
350 adef = DF_REF_CHAIN (use)->ref;
351
352 /* We do not handle setting only part of the register. */
353 if (DF_REF_FLAGS (adef) & DF_REF_READ_WRITE)
354 return GRD_INVALID;
355
356 def_insn = DF_REF_INSN (adef);
357 def_bb = DF_REF_BB (adef);
358 use_bb = BLOCK_FOR_INSN (insn);
359
360 if (use_bb == def_bb)
361 dom_p = (DF_INSN_LUID (def_insn) < DF_INSN_LUID (insn));
362 else
363 dom_p = dominated_by_p (CDI_DOMINATORS, use_bb, def_bb);
364
365 if (dom_p)
366 {
367 *def = adef;
368 return GRD_SINGLE_DOM;
369 }
370
371 /* The definition does not dominate the use. This is still OK if
372 this may be a use of a biv, i.e. if the def_bb dominates loop
373 latch. */
374 if (just_once_each_iteration_p (current_loop, def_bb))
375 return GRD_MAYBE_BIV;
376
377 return GRD_INVALID;
378 }
379
380 /* Sets IV to invariant CST in MODE. Always returns true (just for
381 consistency with other iv manipulation functions that may fail). */
382
383 static bool
384 iv_constant (struct rtx_iv *iv, rtx cst, enum machine_mode mode)
385 {
386 if (mode == VOIDmode)
387 mode = GET_MODE (cst);
388
389 iv->mode = mode;
390 iv->base = cst;
391 iv->step = const0_rtx;
392 iv->first_special = false;
393 iv->extend = UNKNOWN;
394 iv->extend_mode = iv->mode;
395 iv->delta = const0_rtx;
396 iv->mult = const1_rtx;
397
398 return true;
399 }
400
401 /* Evaluates application of subreg to MODE on IV. */
402
403 static bool
404 iv_subreg (struct rtx_iv *iv, enum machine_mode mode)
405 {
406 /* If iv is invariant, just calculate the new value. */
407 if (iv->step == const0_rtx
408 && !iv->first_special)
409 {
410 rtx val = get_iv_value (iv, const0_rtx);
411 val = lowpart_subreg (mode, val, iv->extend_mode);
412
413 iv->base = val;
414 iv->extend = UNKNOWN;
415 iv->mode = iv->extend_mode = mode;
416 iv->delta = const0_rtx;
417 iv->mult = const1_rtx;
418 return true;
419 }
420
421 if (iv->extend_mode == mode)
422 return true;
423
424 if (GET_MODE_BITSIZE (mode) > GET_MODE_BITSIZE (iv->mode))
425 return false;
426
427 iv->extend = UNKNOWN;
428 iv->mode = mode;
429
430 iv->base = simplify_gen_binary (PLUS, iv->extend_mode, iv->delta,
431 simplify_gen_binary (MULT, iv->extend_mode,
432 iv->base, iv->mult));
433 iv->step = simplify_gen_binary (MULT, iv->extend_mode, iv->step, iv->mult);
434 iv->mult = const1_rtx;
435 iv->delta = const0_rtx;
436 iv->first_special = false;
437
438 return true;
439 }
440
441 /* Evaluates application of EXTEND to MODE on IV. */
442
443 static bool
444 iv_extend (struct rtx_iv *iv, enum rtx_code extend, enum machine_mode mode)
445 {
446 /* If iv is invariant, just calculate the new value. */
447 if (iv->step == const0_rtx
448 && !iv->first_special)
449 {
450 rtx val = get_iv_value (iv, const0_rtx);
451 val = simplify_gen_unary (extend, mode, val, iv->extend_mode);
452
453 iv->base = val;
454 iv->extend = UNKNOWN;
455 iv->mode = iv->extend_mode = mode;
456 iv->delta = const0_rtx;
457 iv->mult = const1_rtx;
458 return true;
459 }
460
461 if (mode != iv->extend_mode)
462 return false;
463
464 if (iv->extend != UNKNOWN
465 && iv->extend != extend)
466 return false;
467
468 iv->extend = extend;
469
470 return true;
471 }
472
473 /* Evaluates negation of IV. */
474
475 static bool
476 iv_neg (struct rtx_iv *iv)
477 {
478 if (iv->extend == UNKNOWN)
479 {
480 iv->base = simplify_gen_unary (NEG, iv->extend_mode,
481 iv->base, iv->extend_mode);
482 iv->step = simplify_gen_unary (NEG, iv->extend_mode,
483 iv->step, iv->extend_mode);
484 }
485 else
486 {
487 iv->delta = simplify_gen_unary (NEG, iv->extend_mode,
488 iv->delta, iv->extend_mode);
489 iv->mult = simplify_gen_unary (NEG, iv->extend_mode,
490 iv->mult, iv->extend_mode);
491 }
492
493 return true;
494 }
495
496 /* Evaluates addition or subtraction (according to OP) of IV1 to IV0. */
497
498 static bool
499 iv_add (struct rtx_iv *iv0, struct rtx_iv *iv1, enum rtx_code op)
500 {
501 enum machine_mode mode;
502 rtx arg;
503
504 /* Extend the constant to extend_mode of the other operand if necessary. */
505 if (iv0->extend == UNKNOWN
506 && iv0->mode == iv0->extend_mode
507 && iv0->step == const0_rtx
508 && GET_MODE_SIZE (iv0->extend_mode) < GET_MODE_SIZE (iv1->extend_mode))
509 {
510 iv0->extend_mode = iv1->extend_mode;
511 iv0->base = simplify_gen_unary (ZERO_EXTEND, iv0->extend_mode,
512 iv0->base, iv0->mode);
513 }
514 if (iv1->extend == UNKNOWN
515 && iv1->mode == iv1->extend_mode
516 && iv1->step == const0_rtx
517 && GET_MODE_SIZE (iv1->extend_mode) < GET_MODE_SIZE (iv0->extend_mode))
518 {
519 iv1->extend_mode = iv0->extend_mode;
520 iv1->base = simplify_gen_unary (ZERO_EXTEND, iv1->extend_mode,
521 iv1->base, iv1->mode);
522 }
523
524 mode = iv0->extend_mode;
525 if (mode != iv1->extend_mode)
526 return false;
527
528 if (iv0->extend == UNKNOWN && iv1->extend == UNKNOWN)
529 {
530 if (iv0->mode != iv1->mode)
531 return false;
532
533 iv0->base = simplify_gen_binary (op, mode, iv0->base, iv1->base);
534 iv0->step = simplify_gen_binary (op, mode, iv0->step, iv1->step);
535
536 return true;
537 }
538
539 /* Handle addition of constant. */
540 if (iv1->extend == UNKNOWN
541 && iv1->mode == mode
542 && iv1->step == const0_rtx)
543 {
544 iv0->delta = simplify_gen_binary (op, mode, iv0->delta, iv1->base);
545 return true;
546 }
547
548 if (iv0->extend == UNKNOWN
549 && iv0->mode == mode
550 && iv0->step == const0_rtx)
551 {
552 arg = iv0->base;
553 *iv0 = *iv1;
554 if (op == MINUS
555 && !iv_neg (iv0))
556 return false;
557
558 iv0->delta = simplify_gen_binary (PLUS, mode, iv0->delta, arg);
559 return true;
560 }
561
562 return false;
563 }
564
565 /* Evaluates multiplication of IV by constant CST. */
566
567 static bool
568 iv_mult (struct rtx_iv *iv, rtx mby)
569 {
570 enum machine_mode mode = iv->extend_mode;
571
572 if (GET_MODE (mby) != VOIDmode
573 && GET_MODE (mby) != mode)
574 return false;
575
576 if (iv->extend == UNKNOWN)
577 {
578 iv->base = simplify_gen_binary (MULT, mode, iv->base, mby);
579 iv->step = simplify_gen_binary (MULT, mode, iv->step, mby);
580 }
581 else
582 {
583 iv->delta = simplify_gen_binary (MULT, mode, iv->delta, mby);
584 iv->mult = simplify_gen_binary (MULT, mode, iv->mult, mby);
585 }
586
587 return true;
588 }
589
590 /* Evaluates shift of IV by constant CST. */
591
592 static bool
593 iv_shift (struct rtx_iv *iv, rtx mby)
594 {
595 enum machine_mode mode = iv->extend_mode;
596
597 if (GET_MODE (mby) != VOIDmode
598 && GET_MODE (mby) != mode)
599 return false;
600
601 if (iv->extend == UNKNOWN)
602 {
603 iv->base = simplify_gen_binary (ASHIFT, mode, iv->base, mby);
604 iv->step = simplify_gen_binary (ASHIFT, mode, iv->step, mby);
605 }
606 else
607 {
608 iv->delta = simplify_gen_binary (ASHIFT, mode, iv->delta, mby);
609 iv->mult = simplify_gen_binary (ASHIFT, mode, iv->mult, mby);
610 }
611
612 return true;
613 }
614
615 /* The recursive part of get_biv_step. Gets the value of the single value
616 defined by DEF wrto initial value of REG inside loop, in shape described
617 at get_biv_step. */
618
619 static bool
620 get_biv_step_1 (df_ref def, rtx reg,
621 rtx *inner_step, enum machine_mode *inner_mode,
622 enum rtx_code *extend, enum machine_mode outer_mode,
623 rtx *outer_step)
624 {
625 rtx set, rhs, op0 = NULL_RTX, op1 = NULL_RTX;
626 rtx next, nextr, tmp;
627 enum rtx_code code;
628 rtx insn = DF_REF_INSN (def);
629 df_ref next_def;
630 enum iv_grd_result res;
631
632 set = single_set (insn);
633 if (!set)
634 return false;
635
636 rhs = find_reg_equal_equiv_note (insn);
637 if (rhs)
638 rhs = XEXP (rhs, 0);
639 else
640 rhs = SET_SRC (set);
641
642 code = GET_CODE (rhs);
643 switch (code)
644 {
645 case SUBREG:
646 case REG:
647 next = rhs;
648 break;
649
650 case PLUS:
651 case MINUS:
652 op0 = XEXP (rhs, 0);
653 op1 = XEXP (rhs, 1);
654
655 if (code == PLUS && CONSTANT_P (op0))
656 {
657 tmp = op0; op0 = op1; op1 = tmp;
658 }
659
660 if (!simple_reg_p (op0)
661 || !CONSTANT_P (op1))
662 return false;
663
664 if (GET_MODE (rhs) != outer_mode)
665 {
666 /* ppc64 uses expressions like
667
668 (set x:SI (plus:SI (subreg:SI y:DI) 1)).
669
670 this is equivalent to
671
672 (set x':DI (plus:DI y:DI 1))
673 (set x:SI (subreg:SI (x':DI)). */
674 if (GET_CODE (op0) != SUBREG)
675 return false;
676 if (GET_MODE (SUBREG_REG (op0)) != outer_mode)
677 return false;
678 }
679
680 next = op0;
681 break;
682
683 case SIGN_EXTEND:
684 case ZERO_EXTEND:
685 if (GET_MODE (rhs) != outer_mode)
686 return false;
687
688 op0 = XEXP (rhs, 0);
689 if (!simple_reg_p (op0))
690 return false;
691
692 next = op0;
693 break;
694
695 default:
696 return false;
697 }
698
699 if (GET_CODE (next) == SUBREG)
700 {
701 if (!subreg_lowpart_p (next))
702 return false;
703
704 nextr = SUBREG_REG (next);
705 if (GET_MODE (nextr) != outer_mode)
706 return false;
707 }
708 else
709 nextr = next;
710
711 res = iv_get_reaching_def (insn, nextr, &next_def);
712
713 if (res == GRD_INVALID || res == GRD_INVARIANT)
714 return false;
715
716 if (res == GRD_MAYBE_BIV)
717 {
718 if (!rtx_equal_p (nextr, reg))
719 return false;
720
721 *inner_step = const0_rtx;
722 *extend = UNKNOWN;
723 *inner_mode = outer_mode;
724 *outer_step = const0_rtx;
725 }
726 else if (!get_biv_step_1 (next_def, reg,
727 inner_step, inner_mode, extend, outer_mode,
728 outer_step))
729 return false;
730
731 if (GET_CODE (next) == SUBREG)
732 {
733 enum machine_mode amode = GET_MODE (next);
734
735 if (GET_MODE_SIZE (amode) > GET_MODE_SIZE (*inner_mode))
736 return false;
737
738 *inner_mode = amode;
739 *inner_step = simplify_gen_binary (PLUS, outer_mode,
740 *inner_step, *outer_step);
741 *outer_step = const0_rtx;
742 *extend = UNKNOWN;
743 }
744
745 switch (code)
746 {
747 case REG:
748 case SUBREG:
749 break;
750
751 case PLUS:
752 case MINUS:
753 if (*inner_mode == outer_mode
754 /* See comment in previous switch. */
755 || GET_MODE (rhs) != outer_mode)
756 *inner_step = simplify_gen_binary (code, outer_mode,
757 *inner_step, op1);
758 else
759 *outer_step = simplify_gen_binary (code, outer_mode,
760 *outer_step, op1);
761 break;
762
763 case SIGN_EXTEND:
764 case ZERO_EXTEND:
765 gcc_assert (GET_MODE (op0) == *inner_mode
766 && *extend == UNKNOWN
767 && *outer_step == const0_rtx);
768
769 *extend = code;
770 break;
771
772 default:
773 return false;
774 }
775
776 return true;
777 }
778
779 /* Gets the operation on register REG inside loop, in shape
780
781 OUTER_STEP + EXTEND_{OUTER_MODE} (SUBREG_{INNER_MODE} (REG + INNER_STEP))
782
783 If the operation cannot be described in this shape, return false.
784 LAST_DEF is the definition of REG that dominates loop latch. */
785
786 static bool
787 get_biv_step (df_ref last_def, rtx reg, rtx *inner_step,
788 enum machine_mode *inner_mode, enum rtx_code *extend,
789 enum machine_mode *outer_mode, rtx *outer_step)
790 {
791 *outer_mode = GET_MODE (reg);
792
793 if (!get_biv_step_1 (last_def, reg,
794 inner_step, inner_mode, extend, *outer_mode,
795 outer_step))
796 return false;
797
798 gcc_assert ((*inner_mode == *outer_mode) != (*extend != UNKNOWN));
799 gcc_assert (*inner_mode != *outer_mode || *outer_step == const0_rtx);
800
801 return true;
802 }
803
804 /* Records information that DEF is induction variable IV. */
805
806 static void
807 record_iv (df_ref def, struct rtx_iv *iv)
808 {
809 struct rtx_iv *recorded_iv = XNEW (struct rtx_iv);
810
811 *recorded_iv = *iv;
812 check_iv_ref_table_size ();
813 DF_REF_IV_SET (def, recorded_iv);
814 }
815
816 /* If DEF was already analyzed for bivness, store the description of the biv to
817 IV and return true. Otherwise return false. */
818
819 static bool
820 analyzed_for_bivness_p (rtx def, struct rtx_iv *iv)
821 {
822 struct biv_entry *biv =
823 (struct biv_entry *) htab_find_with_hash (bivs, def, REGNO (def));
824
825 if (!biv)
826 return false;
827
828 *iv = biv->iv;
829 return true;
830 }
831
832 static void
833 record_biv (rtx def, struct rtx_iv *iv)
834 {
835 struct biv_entry *biv = XNEW (struct biv_entry);
836 void **slot = htab_find_slot_with_hash (bivs, def, REGNO (def), INSERT);
837
838 biv->regno = REGNO (def);
839 biv->iv = *iv;
840 gcc_assert (!*slot);
841 *slot = biv;
842 }
843
844 /* Determines whether DEF is a biv and if so, stores its description
845 to *IV. */
846
847 static bool
848 iv_analyze_biv (rtx def, struct rtx_iv *iv)
849 {
850 rtx inner_step, outer_step;
851 enum machine_mode inner_mode, outer_mode;
852 enum rtx_code extend;
853 df_ref last_def;
854
855 if (dump_file)
856 {
857 fprintf (dump_file, "Analyzing ");
858 print_rtl (dump_file, def);
859 fprintf (dump_file, " for bivness.\n");
860 }
861
862 if (!REG_P (def))
863 {
864 if (!CONSTANT_P (def))
865 return false;
866
867 return iv_constant (iv, def, VOIDmode);
868 }
869
870 if (!latch_dominating_def (def, &last_def))
871 {
872 if (dump_file)
873 fprintf (dump_file, " not simple.\n");
874 return false;
875 }
876
877 if (!last_def)
878 return iv_constant (iv, def, VOIDmode);
879
880 if (analyzed_for_bivness_p (def, iv))
881 {
882 if (dump_file)
883 fprintf (dump_file, " already analysed.\n");
884 return iv->base != NULL_RTX;
885 }
886
887 if (!get_biv_step (last_def, def, &inner_step, &inner_mode, &extend,
888 &outer_mode, &outer_step))
889 {
890 iv->base = NULL_RTX;
891 goto end;
892 }
893
894 /* Loop transforms base to es (base + inner_step) + outer_step,
895 where es means extend of subreg between inner_mode and outer_mode.
896 The corresponding induction variable is
897
898 es ((base - outer_step) + i * (inner_step + outer_step)) + outer_step */
899
900 iv->base = simplify_gen_binary (MINUS, outer_mode, def, outer_step);
901 iv->step = simplify_gen_binary (PLUS, outer_mode, inner_step, outer_step);
902 iv->mode = inner_mode;
903 iv->extend_mode = outer_mode;
904 iv->extend = extend;
905 iv->mult = const1_rtx;
906 iv->delta = outer_step;
907 iv->first_special = inner_mode != outer_mode;
908
909 end:
910 if (dump_file)
911 {
912 fprintf (dump_file, " ");
913 dump_iv_info (dump_file, iv);
914 fprintf (dump_file, "\n");
915 }
916
917 record_biv (def, iv);
918 return iv->base != NULL_RTX;
919 }
920
921 /* Analyzes expression RHS used at INSN and stores the result to *IV.
922 The mode of the induction variable is MODE. */
923
924 bool
925 iv_analyze_expr (rtx insn, rtx rhs, enum machine_mode mode, struct rtx_iv *iv)
926 {
927 rtx mby = NULL_RTX, tmp;
928 rtx op0 = NULL_RTX, op1 = NULL_RTX;
929 struct rtx_iv iv0, iv1;
930 enum rtx_code code = GET_CODE (rhs);
931 enum machine_mode omode = mode;
932
933 iv->mode = VOIDmode;
934 iv->base = NULL_RTX;
935 iv->step = NULL_RTX;
936
937 gcc_assert (GET_MODE (rhs) == mode || GET_MODE (rhs) == VOIDmode);
938
939 if (CONSTANT_P (rhs)
940 || REG_P (rhs)
941 || code == SUBREG)
942 {
943 if (!iv_analyze_op (insn, rhs, iv))
944 return false;
945
946 if (iv->mode == VOIDmode)
947 {
948 iv->mode = mode;
949 iv->extend_mode = mode;
950 }
951
952 return true;
953 }
954
955 switch (code)
956 {
957 case REG:
958 op0 = rhs;
959 break;
960
961 case SIGN_EXTEND:
962 case ZERO_EXTEND:
963 case NEG:
964 op0 = XEXP (rhs, 0);
965 omode = GET_MODE (op0);
966 break;
967
968 case PLUS:
969 case MINUS:
970 op0 = XEXP (rhs, 0);
971 op1 = XEXP (rhs, 1);
972 break;
973
974 case MULT:
975 op0 = XEXP (rhs, 0);
976 mby = XEXP (rhs, 1);
977 if (!CONSTANT_P (mby))
978 {
979 tmp = op0;
980 op0 = mby;
981 mby = tmp;
982 }
983 if (!CONSTANT_P (mby))
984 return false;
985 break;
986
987 case ASHIFT:
988 op0 = XEXP (rhs, 0);
989 mby = XEXP (rhs, 1);
990 if (!CONSTANT_P (mby))
991 return false;
992 break;
993
994 default:
995 return false;
996 }
997
998 if (op0
999 && !iv_analyze_expr (insn, op0, omode, &iv0))
1000 return false;
1001
1002 if (op1
1003 && !iv_analyze_expr (insn, op1, omode, &iv1))
1004 return false;
1005
1006 switch (code)
1007 {
1008 case SIGN_EXTEND:
1009 case ZERO_EXTEND:
1010 if (!iv_extend (&iv0, code, mode))
1011 return false;
1012 break;
1013
1014 case NEG:
1015 if (!iv_neg (&iv0))
1016 return false;
1017 break;
1018
1019 case PLUS:
1020 case MINUS:
1021 if (!iv_add (&iv0, &iv1, code))
1022 return false;
1023 break;
1024
1025 case MULT:
1026 if (!iv_mult (&iv0, mby))
1027 return false;
1028 break;
1029
1030 case ASHIFT:
1031 if (!iv_shift (&iv0, mby))
1032 return false;
1033 break;
1034
1035 default:
1036 break;
1037 }
1038
1039 *iv = iv0;
1040 return iv->base != NULL_RTX;
1041 }
1042
1043 /* Analyzes iv DEF and stores the result to *IV. */
1044
1045 static bool
1046 iv_analyze_def (df_ref def, struct rtx_iv *iv)
1047 {
1048 rtx insn = DF_REF_INSN (def);
1049 rtx reg = DF_REF_REG (def);
1050 rtx set, rhs;
1051
1052 if (dump_file)
1053 {
1054 fprintf (dump_file, "Analyzing def of ");
1055 print_rtl (dump_file, reg);
1056 fprintf (dump_file, " in insn ");
1057 print_rtl_single (dump_file, insn);
1058 }
1059
1060 check_iv_ref_table_size ();
1061 if (DF_REF_IV (def))
1062 {
1063 if (dump_file)
1064 fprintf (dump_file, " already analysed.\n");
1065 *iv = *DF_REF_IV (def);
1066 return iv->base != NULL_RTX;
1067 }
1068
1069 iv->mode = VOIDmode;
1070 iv->base = NULL_RTX;
1071 iv->step = NULL_RTX;
1072
1073 if (!REG_P (reg))
1074 return false;
1075
1076 set = single_set (insn);
1077 if (!set)
1078 return false;
1079
1080 if (!REG_P (SET_DEST (set)))
1081 return false;
1082
1083 gcc_assert (SET_DEST (set) == reg);
1084 rhs = find_reg_equal_equiv_note (insn);
1085 if (rhs)
1086 rhs = XEXP (rhs, 0);
1087 else
1088 rhs = SET_SRC (set);
1089
1090 iv_analyze_expr (insn, rhs, GET_MODE (reg), iv);
1091 record_iv (def, iv);
1092
1093 if (dump_file)
1094 {
1095 print_rtl (dump_file, reg);
1096 fprintf (dump_file, " in insn ");
1097 print_rtl_single (dump_file, insn);
1098 fprintf (dump_file, " is ");
1099 dump_iv_info (dump_file, iv);
1100 fprintf (dump_file, "\n");
1101 }
1102
1103 return iv->base != NULL_RTX;
1104 }
1105
1106 /* Analyzes operand OP of INSN and stores the result to *IV. */
1107
1108 static bool
1109 iv_analyze_op (rtx insn, rtx op, struct rtx_iv *iv)
1110 {
1111 df_ref def = NULL;
1112 enum iv_grd_result res;
1113
1114 if (dump_file)
1115 {
1116 fprintf (dump_file, "Analyzing operand ");
1117 print_rtl (dump_file, op);
1118 fprintf (dump_file, " of insn ");
1119 print_rtl_single (dump_file, insn);
1120 }
1121
1122 if (CONSTANT_P (op))
1123 res = GRD_INVARIANT;
1124 else if (GET_CODE (op) == SUBREG)
1125 {
1126 if (!subreg_lowpart_p (op))
1127 return false;
1128
1129 if (!iv_analyze_op (insn, SUBREG_REG (op), iv))
1130 return false;
1131
1132 return iv_subreg (iv, GET_MODE (op));
1133 }
1134 else
1135 {
1136 res = iv_get_reaching_def (insn, op, &def);
1137 if (res == GRD_INVALID)
1138 {
1139 if (dump_file)
1140 fprintf (dump_file, " not simple.\n");
1141 return false;
1142 }
1143 }
1144
1145 if (res == GRD_INVARIANT)
1146 {
1147 iv_constant (iv, op, VOIDmode);
1148
1149 if (dump_file)
1150 {
1151 fprintf (dump_file, " ");
1152 dump_iv_info (dump_file, iv);
1153 fprintf (dump_file, "\n");
1154 }
1155 return true;
1156 }
1157
1158 if (res == GRD_MAYBE_BIV)
1159 return iv_analyze_biv (op, iv);
1160
1161 return iv_analyze_def (def, iv);
1162 }
1163
1164 /* Analyzes value VAL at INSN and stores the result to *IV. */
1165
1166 bool
1167 iv_analyze (rtx insn, rtx val, struct rtx_iv *iv)
1168 {
1169 rtx reg;
1170
1171 /* We must find the insn in that val is used, so that we get to UD chains.
1172 Since the function is sometimes called on result of get_condition,
1173 this does not necessarily have to be directly INSN; scan also the
1174 following insns. */
1175 if (simple_reg_p (val))
1176 {
1177 if (GET_CODE (val) == SUBREG)
1178 reg = SUBREG_REG (val);
1179 else
1180 reg = val;
1181
1182 while (!df_find_use (insn, reg))
1183 insn = NEXT_INSN (insn);
1184 }
1185
1186 return iv_analyze_op (insn, val, iv);
1187 }
1188
1189 /* Analyzes definition of DEF in INSN and stores the result to IV. */
1190
1191 bool
1192 iv_analyze_result (rtx insn, rtx def, struct rtx_iv *iv)
1193 {
1194 df_ref adef;
1195
1196 adef = df_find_def (insn, def);
1197 if (!adef)
1198 return false;
1199
1200 return iv_analyze_def (adef, iv);
1201 }
1202
1203 /* Checks whether definition of register REG in INSN is a basic induction
1204 variable. IV analysis must have been initialized (via a call to
1205 iv_analysis_loop_init) for this function to produce a result. */
1206
1207 bool
1208 biv_p (rtx insn, rtx reg)
1209 {
1210 struct rtx_iv iv;
1211 df_ref def, last_def;
1212
1213 if (!simple_reg_p (reg))
1214 return false;
1215
1216 def = df_find_def (insn, reg);
1217 gcc_assert (def != NULL);
1218 if (!latch_dominating_def (reg, &last_def))
1219 return false;
1220 if (last_def != def)
1221 return false;
1222
1223 if (!iv_analyze_biv (reg, &iv))
1224 return false;
1225
1226 return iv.step != const0_rtx;
1227 }
1228
1229 /* Calculates value of IV at ITERATION-th iteration. */
1230
1231 rtx
1232 get_iv_value (struct rtx_iv *iv, rtx iteration)
1233 {
1234 rtx val;
1235
1236 /* We would need to generate some if_then_else patterns, and so far
1237 it is not needed anywhere. */
1238 gcc_assert (!iv->first_special);
1239
1240 if (iv->step != const0_rtx && iteration != const0_rtx)
1241 val = simplify_gen_binary (PLUS, iv->extend_mode, iv->base,
1242 simplify_gen_binary (MULT, iv->extend_mode,
1243 iv->step, iteration));
1244 else
1245 val = iv->base;
1246
1247 if (iv->extend_mode == iv->mode)
1248 return val;
1249
1250 val = lowpart_subreg (iv->mode, val, iv->extend_mode);
1251
1252 if (iv->extend == UNKNOWN)
1253 return val;
1254
1255 val = simplify_gen_unary (iv->extend, iv->extend_mode, val, iv->mode);
1256 val = simplify_gen_binary (PLUS, iv->extend_mode, iv->delta,
1257 simplify_gen_binary (MULT, iv->extend_mode,
1258 iv->mult, val));
1259
1260 return val;
1261 }
1262
1263 /* Free the data for an induction variable analysis. */
1264
1265 void
1266 iv_analysis_done (void)
1267 {
1268 if (!clean_slate)
1269 {
1270 clear_iv_info ();
1271 clean_slate = true;
1272 df_finish_pass (true);
1273 htab_delete (bivs);
1274 free (iv_ref_table);
1275 iv_ref_table = NULL;
1276 iv_ref_table_size = 0;
1277 bivs = NULL;
1278 }
1279 }
1280
1281 /* Computes inverse to X modulo (1 << MOD). */
1282
1283 static unsigned HOST_WIDEST_INT
1284 inverse (unsigned HOST_WIDEST_INT x, int mod)
1285 {
1286 unsigned HOST_WIDEST_INT mask =
1287 ((unsigned HOST_WIDEST_INT) 1 << (mod - 1) << 1) - 1;
1288 unsigned HOST_WIDEST_INT rslt = 1;
1289 int i;
1290
1291 for (i = 0; i < mod - 1; i++)
1292 {
1293 rslt = (rslt * x) & mask;
1294 x = (x * x) & mask;
1295 }
1296
1297 return rslt;
1298 }
1299
1300 /* Checks whether register *REG is in set ALT. Callback for for_each_rtx. */
1301
1302 static int
1303 altered_reg_used (rtx *reg, void *alt)
1304 {
1305 if (!REG_P (*reg))
1306 return 0;
1307
1308 return REGNO_REG_SET_P ((bitmap) alt, REGNO (*reg));
1309 }
1310
1311 /* Marks registers altered by EXPR in set ALT. */
1312
1313 static void
1314 mark_altered (rtx expr, const_rtx by ATTRIBUTE_UNUSED, void *alt)
1315 {
1316 if (GET_CODE (expr) == SUBREG)
1317 expr = SUBREG_REG (expr);
1318 if (!REG_P (expr))
1319 return;
1320
1321 SET_REGNO_REG_SET ((bitmap) alt, REGNO (expr));
1322 }
1323
1324 /* Checks whether RHS is simple enough to process. */
1325
1326 static bool
1327 simple_rhs_p (rtx rhs)
1328 {
1329 rtx op0, op1;
1330
1331 if (CONSTANT_P (rhs)
1332 || (REG_P (rhs) && !HARD_REGISTER_P (rhs)))
1333 return true;
1334
1335 switch (GET_CODE (rhs))
1336 {
1337 case PLUS:
1338 case MINUS:
1339 op0 = XEXP (rhs, 0);
1340 op1 = XEXP (rhs, 1);
1341 /* Allow reg + const and reg + reg. */
1342 if (!(REG_P (op0) && !HARD_REGISTER_P (op0))
1343 && !CONSTANT_P (op0))
1344 return false;
1345 if (!(REG_P (op1) && !HARD_REGISTER_P (op1))
1346 && !CONSTANT_P (op1))
1347 return false;
1348
1349 return true;
1350
1351 case ASHIFT:
1352 op0 = XEXP (rhs, 0);
1353 op1 = XEXP (rhs, 1);
1354 /* Allow reg << const. */
1355 if (!(REG_P (op0) && !HARD_REGISTER_P (op0)))
1356 return false;
1357 if (!CONSTANT_P (op1))
1358 return false;
1359
1360 return true;
1361
1362 default:
1363 return false;
1364 }
1365 }
1366
1367 /* A subroutine of simplify_using_initial_values, this function examines INSN
1368 to see if it contains a suitable set that we can use to make a replacement.
1369 If it is suitable, return true and set DEST and SRC to the lhs and rhs of
1370 the set; return false otherwise. */
1371
1372 static bool
1373 suitable_set_for_replacement (rtx insn, rtx *dest, rtx *src)
1374 {
1375 rtx set = single_set (insn);
1376 rtx lhs = NULL_RTX, rhs;
1377
1378 if (!set)
1379 return false;
1380
1381 lhs = SET_DEST (set);
1382 if (!REG_P (lhs))
1383 return false;
1384
1385 rhs = find_reg_equal_equiv_note (insn);
1386 if (rhs)
1387 rhs = XEXP (rhs, 0);
1388 else
1389 rhs = SET_SRC (set);
1390
1391 if (!simple_rhs_p (rhs))
1392 return false;
1393
1394 *dest = lhs;
1395 *src = rhs;
1396 return true;
1397 }
1398
1399 /* Checks whether A implies B. */
1400
1401 static bool
1402 implies_p (rtx a, rtx b)
1403 {
1404 rtx op0, op1, opb0, opb1, r;
1405 enum machine_mode mode;
1406
1407 if (GET_CODE (a) == EQ)
1408 {
1409 op0 = XEXP (a, 0);
1410 op1 = XEXP (a, 1);
1411
1412 if (REG_P (op0))
1413 {
1414 r = simplify_replace_rtx (b, op0, op1);
1415 if (r == const_true_rtx)
1416 return true;
1417 }
1418
1419 if (REG_P (op1))
1420 {
1421 r = simplify_replace_rtx (b, op1, op0);
1422 if (r == const_true_rtx)
1423 return true;
1424 }
1425 }
1426
1427 if (b == const_true_rtx)
1428 return true;
1429
1430 if ((GET_RTX_CLASS (GET_CODE (a)) != RTX_COMM_COMPARE
1431 && GET_RTX_CLASS (GET_CODE (a)) != RTX_COMPARE)
1432 || (GET_RTX_CLASS (GET_CODE (b)) != RTX_COMM_COMPARE
1433 && GET_RTX_CLASS (GET_CODE (b)) != RTX_COMPARE))
1434 return false;
1435
1436 op0 = XEXP (a, 0);
1437 op1 = XEXP (a, 1);
1438 opb0 = XEXP (b, 0);
1439 opb1 = XEXP (b, 1);
1440
1441 mode = GET_MODE (op0);
1442 if (mode != GET_MODE (opb0))
1443 mode = VOIDmode;
1444 else if (mode == VOIDmode)
1445 {
1446 mode = GET_MODE (op1);
1447 if (mode != GET_MODE (opb1))
1448 mode = VOIDmode;
1449 }
1450
1451 /* A < B implies A + 1 <= B. */
1452 if ((GET_CODE (a) == GT || GET_CODE (a) == LT)
1453 && (GET_CODE (b) == GE || GET_CODE (b) == LE))
1454 {
1455
1456 if (GET_CODE (a) == GT)
1457 {
1458 r = op0;
1459 op0 = op1;
1460 op1 = r;
1461 }
1462
1463 if (GET_CODE (b) == GE)
1464 {
1465 r = opb0;
1466 opb0 = opb1;
1467 opb1 = r;
1468 }
1469
1470 if (SCALAR_INT_MODE_P (mode)
1471 && rtx_equal_p (op1, opb1)
1472 && simplify_gen_binary (MINUS, mode, opb0, op0) == const1_rtx)
1473 return true;
1474 return false;
1475 }
1476
1477 /* A < B or A > B imply A != B. TODO: Likewise
1478 A + n < B implies A != B + n if neither wraps. */
1479 if (GET_CODE (b) == NE
1480 && (GET_CODE (a) == GT || GET_CODE (a) == GTU
1481 || GET_CODE (a) == LT || GET_CODE (a) == LTU))
1482 {
1483 if (rtx_equal_p (op0, opb0)
1484 && rtx_equal_p (op1, opb1))
1485 return true;
1486 }
1487
1488 /* For unsigned comparisons, A != 0 implies A > 0 and A >= 1. */
1489 if (GET_CODE (a) == NE
1490 && op1 == const0_rtx)
1491 {
1492 if ((GET_CODE (b) == GTU
1493 && opb1 == const0_rtx)
1494 || (GET_CODE (b) == GEU
1495 && opb1 == const1_rtx))
1496 return rtx_equal_p (op0, opb0);
1497 }
1498
1499 /* A != N is equivalent to A - (N + 1) <u -1. */
1500 if (GET_CODE (a) == NE
1501 && GET_CODE (op1) == CONST_INT
1502 && GET_CODE (b) == LTU
1503 && opb1 == constm1_rtx
1504 && GET_CODE (opb0) == PLUS
1505 && GET_CODE (XEXP (opb0, 1)) == CONST_INT
1506 /* Avoid overflows. */
1507 && ((unsigned HOST_WIDE_INT) INTVAL (XEXP (opb0, 1))
1508 != ((unsigned HOST_WIDE_INT)1
1509 << (HOST_BITS_PER_WIDE_INT - 1)) - 1)
1510 && INTVAL (XEXP (opb0, 1)) + 1 == -INTVAL (op1))
1511 return rtx_equal_p (op0, XEXP (opb0, 0));
1512
1513 /* Likewise, A != N implies A - N > 0. */
1514 if (GET_CODE (a) == NE
1515 && GET_CODE (op1) == CONST_INT)
1516 {
1517 if (GET_CODE (b) == GTU
1518 && GET_CODE (opb0) == PLUS
1519 && opb1 == const0_rtx
1520 && GET_CODE (XEXP (opb0, 1)) == CONST_INT
1521 /* Avoid overflows. */
1522 && ((unsigned HOST_WIDE_INT) INTVAL (XEXP (opb0, 1))
1523 != ((unsigned HOST_WIDE_INT) 1 << (HOST_BITS_PER_WIDE_INT - 1)))
1524 && rtx_equal_p (XEXP (opb0, 0), op0))
1525 return INTVAL (op1) == -INTVAL (XEXP (opb0, 1));
1526 if (GET_CODE (b) == GEU
1527 && GET_CODE (opb0) == PLUS
1528 && opb1 == const1_rtx
1529 && GET_CODE (XEXP (opb0, 1)) == CONST_INT
1530 /* Avoid overflows. */
1531 && ((unsigned HOST_WIDE_INT) INTVAL (XEXP (opb0, 1))
1532 != ((unsigned HOST_WIDE_INT) 1 << (HOST_BITS_PER_WIDE_INT - 1)))
1533 && rtx_equal_p (XEXP (opb0, 0), op0))
1534 return INTVAL (op1) == -INTVAL (XEXP (opb0, 1));
1535 }
1536
1537 /* A >s X, where X is positive, implies A <u Y, if Y is negative. */
1538 if ((GET_CODE (a) == GT || GET_CODE (a) == GE)
1539 && GET_CODE (op1) == CONST_INT
1540 && ((GET_CODE (a) == GT && op1 == constm1_rtx)
1541 || INTVAL (op1) >= 0)
1542 && GET_CODE (b) == LTU
1543 && GET_CODE (opb1) == CONST_INT
1544 && rtx_equal_p (op0, opb0))
1545 return INTVAL (opb1) < 0;
1546
1547 return false;
1548 }
1549
1550 /* Canonicalizes COND so that
1551
1552 (1) Ensure that operands are ordered according to
1553 swap_commutative_operands_p.
1554 (2) (LE x const) will be replaced with (LT x <const+1>) and similarly
1555 for GE, GEU, and LEU. */
1556
1557 rtx
1558 canon_condition (rtx cond)
1559 {
1560 rtx tem;
1561 rtx op0, op1;
1562 enum rtx_code code;
1563 enum machine_mode mode;
1564
1565 code = GET_CODE (cond);
1566 op0 = XEXP (cond, 0);
1567 op1 = XEXP (cond, 1);
1568
1569 if (swap_commutative_operands_p (op0, op1))
1570 {
1571 code = swap_condition (code);
1572 tem = op0;
1573 op0 = op1;
1574 op1 = tem;
1575 }
1576
1577 mode = GET_MODE (op0);
1578 if (mode == VOIDmode)
1579 mode = GET_MODE (op1);
1580 gcc_assert (mode != VOIDmode);
1581
1582 if (GET_CODE (op1) == CONST_INT
1583 && GET_MODE_CLASS (mode) != MODE_CC
1584 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
1585 {
1586 HOST_WIDE_INT const_val = INTVAL (op1);
1587 unsigned HOST_WIDE_INT uconst_val = const_val;
1588 unsigned HOST_WIDE_INT max_val
1589 = (unsigned HOST_WIDE_INT) GET_MODE_MASK (mode);
1590
1591 switch (code)
1592 {
1593 case LE:
1594 if ((unsigned HOST_WIDE_INT) const_val != max_val >> 1)
1595 code = LT, op1 = gen_int_mode (const_val + 1, GET_MODE (op0));
1596 break;
1597
1598 /* When cross-compiling, const_val might be sign-extended from
1599 BITS_PER_WORD to HOST_BITS_PER_WIDE_INT */
1600 case GE:
1601 if ((HOST_WIDE_INT) (const_val & max_val)
1602 != (((HOST_WIDE_INT) 1
1603 << (GET_MODE_BITSIZE (GET_MODE (op0)) - 1))))
1604 code = GT, op1 = gen_int_mode (const_val - 1, mode);
1605 break;
1606
1607 case LEU:
1608 if (uconst_val < max_val)
1609 code = LTU, op1 = gen_int_mode (uconst_val + 1, mode);
1610 break;
1611
1612 case GEU:
1613 if (uconst_val != 0)
1614 code = GTU, op1 = gen_int_mode (uconst_val - 1, mode);
1615 break;
1616
1617 default:
1618 break;
1619 }
1620 }
1621
1622 if (op0 != XEXP (cond, 0)
1623 || op1 != XEXP (cond, 1)
1624 || code != GET_CODE (cond)
1625 || GET_MODE (cond) != SImode)
1626 cond = gen_rtx_fmt_ee (code, SImode, op0, op1);
1627
1628 return cond;
1629 }
1630
1631 /* Tries to use the fact that COND holds to simplify EXPR. ALTERED is the
1632 set of altered regs. */
1633
1634 void
1635 simplify_using_condition (rtx cond, rtx *expr, regset altered)
1636 {
1637 rtx rev, reve, exp = *expr;
1638
1639 /* If some register gets altered later, we do not really speak about its
1640 value at the time of comparison. */
1641 if (altered
1642 && for_each_rtx (&cond, altered_reg_used, altered))
1643 return;
1644
1645 if (GET_CODE (cond) == EQ
1646 && REG_P (XEXP (cond, 0)) && CONSTANT_P (XEXP (cond, 1)))
1647 {
1648 *expr = simplify_replace_rtx (*expr, XEXP (cond, 0), XEXP (cond, 1));
1649 return;
1650 }
1651
1652 if (!COMPARISON_P (exp))
1653 return;
1654
1655 rev = reversed_condition (cond);
1656 reve = reversed_condition (exp);
1657
1658 cond = canon_condition (cond);
1659 exp = canon_condition (exp);
1660 if (rev)
1661 rev = canon_condition (rev);
1662 if (reve)
1663 reve = canon_condition (reve);
1664
1665 if (rtx_equal_p (exp, cond))
1666 {
1667 *expr = const_true_rtx;
1668 return;
1669 }
1670
1671 if (rev && rtx_equal_p (exp, rev))
1672 {
1673 *expr = const0_rtx;
1674 return;
1675 }
1676
1677 if (implies_p (cond, exp))
1678 {
1679 *expr = const_true_rtx;
1680 return;
1681 }
1682
1683 if (reve && implies_p (cond, reve))
1684 {
1685 *expr = const0_rtx;
1686 return;
1687 }
1688
1689 /* A proof by contradiction. If *EXPR implies (not cond), *EXPR must
1690 be false. */
1691 if (rev && implies_p (exp, rev))
1692 {
1693 *expr = const0_rtx;
1694 return;
1695 }
1696
1697 /* Similarly, If (not *EXPR) implies (not cond), *EXPR must be true. */
1698 if (rev && reve && implies_p (reve, rev))
1699 {
1700 *expr = const_true_rtx;
1701 return;
1702 }
1703
1704 /* We would like to have some other tests here. TODO. */
1705
1706 return;
1707 }
1708
1709 /* Use relationship between A and *B to eventually eliminate *B.
1710 OP is the operation we consider. */
1711
1712 static void
1713 eliminate_implied_condition (enum rtx_code op, rtx a, rtx *b)
1714 {
1715 switch (op)
1716 {
1717 case AND:
1718 /* If A implies *B, we may replace *B by true. */
1719 if (implies_p (a, *b))
1720 *b = const_true_rtx;
1721 break;
1722
1723 case IOR:
1724 /* If *B implies A, we may replace *B by false. */
1725 if (implies_p (*b, a))
1726 *b = const0_rtx;
1727 break;
1728
1729 default:
1730 gcc_unreachable ();
1731 }
1732 }
1733
1734 /* Eliminates the conditions in TAIL that are implied by HEAD. OP is the
1735 operation we consider. */
1736
1737 static void
1738 eliminate_implied_conditions (enum rtx_code op, rtx *head, rtx tail)
1739 {
1740 rtx elt;
1741
1742 for (elt = tail; elt; elt = XEXP (elt, 1))
1743 eliminate_implied_condition (op, *head, &XEXP (elt, 0));
1744 for (elt = tail; elt; elt = XEXP (elt, 1))
1745 eliminate_implied_condition (op, XEXP (elt, 0), head);
1746 }
1747
1748 /* Simplifies *EXPR using initial values at the start of the LOOP. If *EXPR
1749 is a list, its elements are assumed to be combined using OP. */
1750
1751 static void
1752 simplify_using_initial_values (struct loop *loop, enum rtx_code op, rtx *expr)
1753 {
1754 bool expression_valid;
1755 rtx head, tail, insn, cond_list, last_valid_expr;
1756 rtx neutral, aggr;
1757 regset altered, this_altered;
1758 edge e;
1759
1760 if (!*expr)
1761 return;
1762
1763 if (CONSTANT_P (*expr))
1764 return;
1765
1766 if (GET_CODE (*expr) == EXPR_LIST)
1767 {
1768 head = XEXP (*expr, 0);
1769 tail = XEXP (*expr, 1);
1770
1771 eliminate_implied_conditions (op, &head, tail);
1772
1773 switch (op)
1774 {
1775 case AND:
1776 neutral = const_true_rtx;
1777 aggr = const0_rtx;
1778 break;
1779
1780 case IOR:
1781 neutral = const0_rtx;
1782 aggr = const_true_rtx;
1783 break;
1784
1785 default:
1786 gcc_unreachable ();
1787 }
1788
1789 simplify_using_initial_values (loop, UNKNOWN, &head);
1790 if (head == aggr)
1791 {
1792 XEXP (*expr, 0) = aggr;
1793 XEXP (*expr, 1) = NULL_RTX;
1794 return;
1795 }
1796 else if (head == neutral)
1797 {
1798 *expr = tail;
1799 simplify_using_initial_values (loop, op, expr);
1800 return;
1801 }
1802 simplify_using_initial_values (loop, op, &tail);
1803
1804 if (tail && XEXP (tail, 0) == aggr)
1805 {
1806 *expr = tail;
1807 return;
1808 }
1809
1810 XEXP (*expr, 0) = head;
1811 XEXP (*expr, 1) = tail;
1812 return;
1813 }
1814
1815 gcc_assert (op == UNKNOWN);
1816
1817 e = loop_preheader_edge (loop);
1818 if (e->src == ENTRY_BLOCK_PTR)
1819 return;
1820
1821 altered = ALLOC_REG_SET (&reg_obstack);
1822 this_altered = ALLOC_REG_SET (&reg_obstack);
1823
1824 expression_valid = true;
1825 last_valid_expr = *expr;
1826 cond_list = NULL_RTX;
1827 while (1)
1828 {
1829 insn = BB_END (e->src);
1830 if (any_condjump_p (insn))
1831 {
1832 rtx cond = get_condition (BB_END (e->src), NULL, false, true);
1833
1834 if (cond && (e->flags & EDGE_FALLTHRU))
1835 cond = reversed_condition (cond);
1836 if (cond)
1837 {
1838 rtx old = *expr;
1839 simplify_using_condition (cond, expr, altered);
1840 if (old != *expr)
1841 {
1842 rtx note;
1843 if (CONSTANT_P (*expr))
1844 goto out;
1845 for (note = cond_list; note; note = XEXP (note, 1))
1846 {
1847 simplify_using_condition (XEXP (note, 0), expr, altered);
1848 if (CONSTANT_P (*expr))
1849 goto out;
1850 }
1851 }
1852 cond_list = alloc_EXPR_LIST (0, cond, cond_list);
1853 }
1854 }
1855
1856 FOR_BB_INSNS_REVERSE (e->src, insn)
1857 {
1858 rtx src, dest;
1859 rtx old = *expr;
1860
1861 if (!INSN_P (insn))
1862 continue;
1863
1864 CLEAR_REG_SET (this_altered);
1865 note_stores (PATTERN (insn), mark_altered, this_altered);
1866 if (CALL_P (insn))
1867 {
1868 int i;
1869
1870 /* Kill all call clobbered registers. */
1871 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1872 if (TEST_HARD_REG_BIT (regs_invalidated_by_call, i))
1873 SET_REGNO_REG_SET (this_altered, i);
1874 }
1875
1876 if (suitable_set_for_replacement (insn, &dest, &src))
1877 {
1878 rtx *pnote, *pnote_next;
1879
1880 *expr = simplify_replace_rtx (*expr, dest, src);
1881 if (CONSTANT_P (*expr))
1882 goto out;
1883
1884 for (pnote = &cond_list; *pnote; pnote = pnote_next)
1885 {
1886 rtx note = *pnote;
1887 rtx old_cond = XEXP (note, 0);
1888
1889 pnote_next = &XEXP (note, 1);
1890 XEXP (note, 0) = simplify_replace_rtx (XEXP (note, 0), dest,
1891 src);
1892 /* We can no longer use a condition that has been simplified
1893 to a constant, and simplify_using_condition will abort if
1894 we try. */
1895 if (CONSTANT_P (XEXP (note, 0)))
1896 {
1897 *pnote = *pnote_next;
1898 pnote_next = pnote;
1899 free_EXPR_LIST_node (note);
1900 }
1901 /* Retry simplifications with this condition if either the
1902 expression or the condition changed. */
1903 else if (old_cond != XEXP (note, 0) || old != *expr)
1904 simplify_using_condition (XEXP (note, 0), expr, altered);
1905 }
1906 }
1907 else
1908 /* If we did not use this insn to make a replacement, any overlap
1909 between stores in this insn and our expression will cause the
1910 expression to become invalid. */
1911 if (for_each_rtx (expr, altered_reg_used, this_altered))
1912 goto out;
1913
1914 if (CONSTANT_P (*expr))
1915 goto out;
1916
1917 IOR_REG_SET (altered, this_altered);
1918
1919 /* If the expression now contains regs that have been altered, we
1920 can't return it to the caller. However, it is still valid for
1921 further simplification, so keep searching to see if we can
1922 eventually turn it into a constant. */
1923 if (for_each_rtx (expr, altered_reg_used, altered))
1924 expression_valid = false;
1925 if (expression_valid)
1926 last_valid_expr = *expr;
1927 }
1928
1929 if (!single_pred_p (e->src)
1930 || single_pred (e->src) == ENTRY_BLOCK_PTR)
1931 break;
1932 e = single_pred_edge (e->src);
1933 }
1934
1935 out:
1936 free_EXPR_LIST_list (&cond_list);
1937 if (!CONSTANT_P (*expr))
1938 *expr = last_valid_expr;
1939 FREE_REG_SET (altered);
1940 FREE_REG_SET (this_altered);
1941 }
1942
1943 /* Transforms invariant IV into MODE. Adds assumptions based on the fact
1944 that IV occurs as left operands of comparison COND and its signedness
1945 is SIGNED_P to DESC. */
1946
1947 static void
1948 shorten_into_mode (struct rtx_iv *iv, enum machine_mode mode,
1949 enum rtx_code cond, bool signed_p, struct niter_desc *desc)
1950 {
1951 rtx mmin, mmax, cond_over, cond_under;
1952
1953 get_mode_bounds (mode, signed_p, iv->extend_mode, &mmin, &mmax);
1954 cond_under = simplify_gen_relational (LT, SImode, iv->extend_mode,
1955 iv->base, mmin);
1956 cond_over = simplify_gen_relational (GT, SImode, iv->extend_mode,
1957 iv->base, mmax);
1958
1959 switch (cond)
1960 {
1961 case LE:
1962 case LT:
1963 case LEU:
1964 case LTU:
1965 if (cond_under != const0_rtx)
1966 desc->infinite =
1967 alloc_EXPR_LIST (0, cond_under, desc->infinite);
1968 if (cond_over != const0_rtx)
1969 desc->noloop_assumptions =
1970 alloc_EXPR_LIST (0, cond_over, desc->noloop_assumptions);
1971 break;
1972
1973 case GE:
1974 case GT:
1975 case GEU:
1976 case GTU:
1977 if (cond_over != const0_rtx)
1978 desc->infinite =
1979 alloc_EXPR_LIST (0, cond_over, desc->infinite);
1980 if (cond_under != const0_rtx)
1981 desc->noloop_assumptions =
1982 alloc_EXPR_LIST (0, cond_under, desc->noloop_assumptions);
1983 break;
1984
1985 case NE:
1986 if (cond_over != const0_rtx)
1987 desc->infinite =
1988 alloc_EXPR_LIST (0, cond_over, desc->infinite);
1989 if (cond_under != const0_rtx)
1990 desc->infinite =
1991 alloc_EXPR_LIST (0, cond_under, desc->infinite);
1992 break;
1993
1994 default:
1995 gcc_unreachable ();
1996 }
1997
1998 iv->mode = mode;
1999 iv->extend = signed_p ? SIGN_EXTEND : ZERO_EXTEND;
2000 }
2001
2002 /* Transforms IV0 and IV1 compared by COND so that they are both compared as
2003 subregs of the same mode if possible (sometimes it is necessary to add
2004 some assumptions to DESC). */
2005
2006 static bool
2007 canonicalize_iv_subregs (struct rtx_iv *iv0, struct rtx_iv *iv1,
2008 enum rtx_code cond, struct niter_desc *desc)
2009 {
2010 enum machine_mode comp_mode;
2011 bool signed_p;
2012
2013 /* If the ivs behave specially in the first iteration, or are
2014 added/multiplied after extending, we ignore them. */
2015 if (iv0->first_special || iv0->mult != const1_rtx || iv0->delta != const0_rtx)
2016 return false;
2017 if (iv1->first_special || iv1->mult != const1_rtx || iv1->delta != const0_rtx)
2018 return false;
2019
2020 /* If there is some extend, it must match signedness of the comparison. */
2021 switch (cond)
2022 {
2023 case LE:
2024 case LT:
2025 if (iv0->extend == ZERO_EXTEND
2026 || iv1->extend == ZERO_EXTEND)
2027 return false;
2028 signed_p = true;
2029 break;
2030
2031 case LEU:
2032 case LTU:
2033 if (iv0->extend == SIGN_EXTEND
2034 || iv1->extend == SIGN_EXTEND)
2035 return false;
2036 signed_p = false;
2037 break;
2038
2039 case NE:
2040 if (iv0->extend != UNKNOWN
2041 && iv1->extend != UNKNOWN
2042 && iv0->extend != iv1->extend)
2043 return false;
2044
2045 signed_p = false;
2046 if (iv0->extend != UNKNOWN)
2047 signed_p = iv0->extend == SIGN_EXTEND;
2048 if (iv1->extend != UNKNOWN)
2049 signed_p = iv1->extend == SIGN_EXTEND;
2050 break;
2051
2052 default:
2053 gcc_unreachable ();
2054 }
2055
2056 /* Values of both variables should be computed in the same mode. These
2057 might indeed be different, if we have comparison like
2058
2059 (compare (subreg:SI (iv0)) (subreg:SI (iv1)))
2060
2061 and iv0 and iv1 are both ivs iterating in SI mode, but calculated
2062 in different modes. This does not seem impossible to handle, but
2063 it hardly ever occurs in practice.
2064
2065 The only exception is the case when one of operands is invariant.
2066 For example pentium 3 generates comparisons like
2067 (lt (subreg:HI (reg:SI)) 100). Here we assign HImode to 100, but we
2068 definitely do not want this prevent the optimization. */
2069 comp_mode = iv0->extend_mode;
2070 if (GET_MODE_BITSIZE (comp_mode) < GET_MODE_BITSIZE (iv1->extend_mode))
2071 comp_mode = iv1->extend_mode;
2072
2073 if (iv0->extend_mode != comp_mode)
2074 {
2075 if (iv0->mode != iv0->extend_mode
2076 || iv0->step != const0_rtx)
2077 return false;
2078
2079 iv0->base = simplify_gen_unary (signed_p ? SIGN_EXTEND : ZERO_EXTEND,
2080 comp_mode, iv0->base, iv0->mode);
2081 iv0->extend_mode = comp_mode;
2082 }
2083
2084 if (iv1->extend_mode != comp_mode)
2085 {
2086 if (iv1->mode != iv1->extend_mode
2087 || iv1->step != const0_rtx)
2088 return false;
2089
2090 iv1->base = simplify_gen_unary (signed_p ? SIGN_EXTEND : ZERO_EXTEND,
2091 comp_mode, iv1->base, iv1->mode);
2092 iv1->extend_mode = comp_mode;
2093 }
2094
2095 /* Check that both ivs belong to a range of a single mode. If one of the
2096 operands is an invariant, we may need to shorten it into the common
2097 mode. */
2098 if (iv0->mode == iv0->extend_mode
2099 && iv0->step == const0_rtx
2100 && iv0->mode != iv1->mode)
2101 shorten_into_mode (iv0, iv1->mode, cond, signed_p, desc);
2102
2103 if (iv1->mode == iv1->extend_mode
2104 && iv1->step == const0_rtx
2105 && iv0->mode != iv1->mode)
2106 shorten_into_mode (iv1, iv0->mode, swap_condition (cond), signed_p, desc);
2107
2108 if (iv0->mode != iv1->mode)
2109 return false;
2110
2111 desc->mode = iv0->mode;
2112 desc->signed_p = signed_p;
2113
2114 return true;
2115 }
2116
2117 /* Tries to estimate the maximum number of iterations. */
2118
2119 static unsigned HOST_WIDEST_INT
2120 determine_max_iter (struct loop *loop, struct niter_desc *desc)
2121 {
2122 rtx niter = desc->niter_expr;
2123 rtx mmin, mmax, cmp;
2124 unsigned HOST_WIDEST_INT nmax, inc;
2125
2126 if (GET_CODE (niter) == AND
2127 && GET_CODE (XEXP (niter, 0)) == CONST_INT)
2128 {
2129 nmax = INTVAL (XEXP (niter, 0));
2130 if (!(nmax & (nmax + 1)))
2131 {
2132 desc->niter_max = nmax;
2133 return nmax;
2134 }
2135 }
2136
2137 get_mode_bounds (desc->mode, desc->signed_p, desc->mode, &mmin, &mmax);
2138 nmax = INTVAL (mmax) - INTVAL (mmin);
2139
2140 if (GET_CODE (niter) == UDIV)
2141 {
2142 if (GET_CODE (XEXP (niter, 1)) != CONST_INT)
2143 {
2144 desc->niter_max = nmax;
2145 return nmax;
2146 }
2147 inc = INTVAL (XEXP (niter, 1));
2148 niter = XEXP (niter, 0);
2149 }
2150 else
2151 inc = 1;
2152
2153 /* We could use a binary search here, but for now improving the upper
2154 bound by just one eliminates one important corner case. */
2155 cmp = gen_rtx_fmt_ee (desc->signed_p ? LT : LTU, VOIDmode, niter, mmax);
2156 simplify_using_initial_values (loop, UNKNOWN, &cmp);
2157 if (cmp == const_true_rtx)
2158 {
2159 nmax--;
2160
2161 if (dump_file)
2162 fprintf (dump_file, ";; improved upper bound by one.\n");
2163 }
2164 desc->niter_max = nmax / inc;
2165 return nmax / inc;
2166 }
2167
2168 /* Computes number of iterations of the CONDITION in INSN in LOOP and stores
2169 the result into DESC. Very similar to determine_number_of_iterations
2170 (basically its rtl version), complicated by things like subregs. */
2171
2172 static void
2173 iv_number_of_iterations (struct loop *loop, rtx insn, rtx condition,
2174 struct niter_desc *desc)
2175 {
2176 rtx op0, op1, delta, step, bound, may_xform, tmp, tmp0, tmp1;
2177 struct rtx_iv iv0, iv1, tmp_iv;
2178 rtx assumption, may_not_xform;
2179 enum rtx_code cond;
2180 enum machine_mode mode, comp_mode;
2181 rtx mmin, mmax, mode_mmin, mode_mmax;
2182 unsigned HOST_WIDEST_INT s, size, d, inv;
2183 HOST_WIDEST_INT up, down, inc, step_val;
2184 int was_sharp = false;
2185 rtx old_niter;
2186 bool step_is_pow2;
2187
2188 /* The meaning of these assumptions is this:
2189 if !assumptions
2190 then the rest of information does not have to be valid
2191 if noloop_assumptions then the loop does not roll
2192 if infinite then this exit is never used */
2193
2194 desc->assumptions = NULL_RTX;
2195 desc->noloop_assumptions = NULL_RTX;
2196 desc->infinite = NULL_RTX;
2197 desc->simple_p = true;
2198
2199 desc->const_iter = false;
2200 desc->niter_expr = NULL_RTX;
2201 desc->niter_max = 0;
2202
2203 cond = GET_CODE (condition);
2204 gcc_assert (COMPARISON_P (condition));
2205
2206 mode = GET_MODE (XEXP (condition, 0));
2207 if (mode == VOIDmode)
2208 mode = GET_MODE (XEXP (condition, 1));
2209 /* The constant comparisons should be folded. */
2210 gcc_assert (mode != VOIDmode);
2211
2212 /* We only handle integers or pointers. */
2213 if (GET_MODE_CLASS (mode) != MODE_INT
2214 && GET_MODE_CLASS (mode) != MODE_PARTIAL_INT)
2215 goto fail;
2216
2217 op0 = XEXP (condition, 0);
2218 if (!iv_analyze (insn, op0, &iv0))
2219 goto fail;
2220 if (iv0.extend_mode == VOIDmode)
2221 iv0.mode = iv0.extend_mode = mode;
2222
2223 op1 = XEXP (condition, 1);
2224 if (!iv_analyze (insn, op1, &iv1))
2225 goto fail;
2226 if (iv1.extend_mode == VOIDmode)
2227 iv1.mode = iv1.extend_mode = mode;
2228
2229 if (GET_MODE_BITSIZE (iv0.extend_mode) > HOST_BITS_PER_WIDE_INT
2230 || GET_MODE_BITSIZE (iv1.extend_mode) > HOST_BITS_PER_WIDE_INT)
2231 goto fail;
2232
2233 /* Check condition and normalize it. */
2234
2235 switch (cond)
2236 {
2237 case GE:
2238 case GT:
2239 case GEU:
2240 case GTU:
2241 tmp_iv = iv0; iv0 = iv1; iv1 = tmp_iv;
2242 cond = swap_condition (cond);
2243 break;
2244 case NE:
2245 case LE:
2246 case LEU:
2247 case LT:
2248 case LTU:
2249 break;
2250 default:
2251 goto fail;
2252 }
2253
2254 /* Handle extends. This is relatively nontrivial, so we only try in some
2255 easy cases, when we can canonicalize the ivs (possibly by adding some
2256 assumptions) to shape subreg (base + i * step). This function also fills
2257 in desc->mode and desc->signed_p. */
2258
2259 if (!canonicalize_iv_subregs (&iv0, &iv1, cond, desc))
2260 goto fail;
2261
2262 comp_mode = iv0.extend_mode;
2263 mode = iv0.mode;
2264 size = GET_MODE_BITSIZE (mode);
2265 get_mode_bounds (mode, (cond == LE || cond == LT), comp_mode, &mmin, &mmax);
2266 mode_mmin = lowpart_subreg (mode, mmin, comp_mode);
2267 mode_mmax = lowpart_subreg (mode, mmax, comp_mode);
2268
2269 if (GET_CODE (iv0.step) != CONST_INT || GET_CODE (iv1.step) != CONST_INT)
2270 goto fail;
2271
2272 /* We can take care of the case of two induction variables chasing each other
2273 if the test is NE. I have never seen a loop using it, but still it is
2274 cool. */
2275 if (iv0.step != const0_rtx && iv1.step != const0_rtx)
2276 {
2277 if (cond != NE)
2278 goto fail;
2279
2280 iv0.step = simplify_gen_binary (MINUS, comp_mode, iv0.step, iv1.step);
2281 iv1.step = const0_rtx;
2282 }
2283
2284 /* This is either infinite loop or the one that ends immediately, depending
2285 on initial values. Unswitching should remove this kind of conditions. */
2286 if (iv0.step == const0_rtx && iv1.step == const0_rtx)
2287 goto fail;
2288
2289 if (cond != NE)
2290 {
2291 if (iv0.step == const0_rtx)
2292 step_val = -INTVAL (iv1.step);
2293 else
2294 step_val = INTVAL (iv0.step);
2295
2296 /* Ignore loops of while (i-- < 10) type. */
2297 if (step_val < 0)
2298 goto fail;
2299
2300 step_is_pow2 = !(step_val & (step_val - 1));
2301 }
2302 else
2303 {
2304 /* We do not care about whether the step is power of two in this
2305 case. */
2306 step_is_pow2 = false;
2307 step_val = 0;
2308 }
2309
2310 /* Some more condition normalization. We must record some assumptions
2311 due to overflows. */
2312 switch (cond)
2313 {
2314 case LT:
2315 case LTU:
2316 /* We want to take care only of non-sharp relationals; this is easy,
2317 as in cases the overflow would make the transformation unsafe
2318 the loop does not roll. Seemingly it would make more sense to want
2319 to take care of sharp relationals instead, as NE is more similar to
2320 them, but the problem is that here the transformation would be more
2321 difficult due to possibly infinite loops. */
2322 if (iv0.step == const0_rtx)
2323 {
2324 tmp = lowpart_subreg (mode, iv0.base, comp_mode);
2325 assumption = simplify_gen_relational (EQ, SImode, mode, tmp,
2326 mode_mmax);
2327 if (assumption == const_true_rtx)
2328 goto zero_iter_simplify;
2329 iv0.base = simplify_gen_binary (PLUS, comp_mode,
2330 iv0.base, const1_rtx);
2331 }
2332 else
2333 {
2334 tmp = lowpart_subreg (mode, iv1.base, comp_mode);
2335 assumption = simplify_gen_relational (EQ, SImode, mode, tmp,
2336 mode_mmin);
2337 if (assumption == const_true_rtx)
2338 goto zero_iter_simplify;
2339 iv1.base = simplify_gen_binary (PLUS, comp_mode,
2340 iv1.base, constm1_rtx);
2341 }
2342
2343 if (assumption != const0_rtx)
2344 desc->noloop_assumptions =
2345 alloc_EXPR_LIST (0, assumption, desc->noloop_assumptions);
2346 cond = (cond == LT) ? LE : LEU;
2347
2348 /* It will be useful to be able to tell the difference once more in
2349 LE -> NE reduction. */
2350 was_sharp = true;
2351 break;
2352 default: ;
2353 }
2354
2355 /* Take care of trivially infinite loops. */
2356 if (cond != NE)
2357 {
2358 if (iv0.step == const0_rtx)
2359 {
2360 tmp = lowpart_subreg (mode, iv0.base, comp_mode);
2361 if (rtx_equal_p (tmp, mode_mmin))
2362 {
2363 desc->infinite =
2364 alloc_EXPR_LIST (0, const_true_rtx, NULL_RTX);
2365 /* Fill in the remaining fields somehow. */
2366 goto zero_iter_simplify;
2367 }
2368 }
2369 else
2370 {
2371 tmp = lowpart_subreg (mode, iv1.base, comp_mode);
2372 if (rtx_equal_p (tmp, mode_mmax))
2373 {
2374 desc->infinite =
2375 alloc_EXPR_LIST (0, const_true_rtx, NULL_RTX);
2376 /* Fill in the remaining fields somehow. */
2377 goto zero_iter_simplify;
2378 }
2379 }
2380 }
2381
2382 /* If we can we want to take care of NE conditions instead of size
2383 comparisons, as they are much more friendly (most importantly
2384 this takes care of special handling of loops with step 1). We can
2385 do it if we first check that upper bound is greater or equal to
2386 lower bound, their difference is constant c modulo step and that
2387 there is not an overflow. */
2388 if (cond != NE)
2389 {
2390 if (iv0.step == const0_rtx)
2391 step = simplify_gen_unary (NEG, comp_mode, iv1.step, comp_mode);
2392 else
2393 step = iv0.step;
2394 delta = simplify_gen_binary (MINUS, comp_mode, iv1.base, iv0.base);
2395 delta = lowpart_subreg (mode, delta, comp_mode);
2396 delta = simplify_gen_binary (UMOD, mode, delta, step);
2397 may_xform = const0_rtx;
2398 may_not_xform = const_true_rtx;
2399
2400 if (GET_CODE (delta) == CONST_INT)
2401 {
2402 if (was_sharp && INTVAL (delta) == INTVAL (step) - 1)
2403 {
2404 /* A special case. We have transformed condition of type
2405 for (i = 0; i < 4; i += 4)
2406 into
2407 for (i = 0; i <= 3; i += 4)
2408 obviously if the test for overflow during that transformation
2409 passed, we cannot overflow here. Most importantly any
2410 loop with sharp end condition and step 1 falls into this
2411 category, so handling this case specially is definitely
2412 worth the troubles. */
2413 may_xform = const_true_rtx;
2414 }
2415 else if (iv0.step == const0_rtx)
2416 {
2417 bound = simplify_gen_binary (PLUS, comp_mode, mmin, step);
2418 bound = simplify_gen_binary (MINUS, comp_mode, bound, delta);
2419 bound = lowpart_subreg (mode, bound, comp_mode);
2420 tmp = lowpart_subreg (mode, iv0.base, comp_mode);
2421 may_xform = simplify_gen_relational (cond, SImode, mode,
2422 bound, tmp);
2423 may_not_xform = simplify_gen_relational (reverse_condition (cond),
2424 SImode, mode,
2425 bound, tmp);
2426 }
2427 else
2428 {
2429 bound = simplify_gen_binary (MINUS, comp_mode, mmax, step);
2430 bound = simplify_gen_binary (PLUS, comp_mode, bound, delta);
2431 bound = lowpart_subreg (mode, bound, comp_mode);
2432 tmp = lowpart_subreg (mode, iv1.base, comp_mode);
2433 may_xform = simplify_gen_relational (cond, SImode, mode,
2434 tmp, bound);
2435 may_not_xform = simplify_gen_relational (reverse_condition (cond),
2436 SImode, mode,
2437 tmp, bound);
2438 }
2439 }
2440
2441 if (may_xform != const0_rtx)
2442 {
2443 /* We perform the transformation always provided that it is not
2444 completely senseless. This is OK, as we would need this assumption
2445 to determine the number of iterations anyway. */
2446 if (may_xform != const_true_rtx)
2447 {
2448 /* If the step is a power of two and the final value we have
2449 computed overflows, the cycle is infinite. Otherwise it
2450 is nontrivial to compute the number of iterations. */
2451 if (step_is_pow2)
2452 desc->infinite = alloc_EXPR_LIST (0, may_not_xform,
2453 desc->infinite);
2454 else
2455 desc->assumptions = alloc_EXPR_LIST (0, may_xform,
2456 desc->assumptions);
2457 }
2458
2459 /* We are going to lose some information about upper bound on
2460 number of iterations in this step, so record the information
2461 here. */
2462 inc = INTVAL (iv0.step) - INTVAL (iv1.step);
2463 if (GET_CODE (iv1.base) == CONST_INT)
2464 up = INTVAL (iv1.base);
2465 else
2466 up = INTVAL (mode_mmax) - inc;
2467 down = INTVAL (GET_CODE (iv0.base) == CONST_INT
2468 ? iv0.base
2469 : mode_mmin);
2470 desc->niter_max = (up - down) / inc + 1;
2471
2472 if (iv0.step == const0_rtx)
2473 {
2474 iv0.base = simplify_gen_binary (PLUS, comp_mode, iv0.base, delta);
2475 iv0.base = simplify_gen_binary (MINUS, comp_mode, iv0.base, step);
2476 }
2477 else
2478 {
2479 iv1.base = simplify_gen_binary (MINUS, comp_mode, iv1.base, delta);
2480 iv1.base = simplify_gen_binary (PLUS, comp_mode, iv1.base, step);
2481 }
2482
2483 tmp0 = lowpart_subreg (mode, iv0.base, comp_mode);
2484 tmp1 = lowpart_subreg (mode, iv1.base, comp_mode);
2485 assumption = simplify_gen_relational (reverse_condition (cond),
2486 SImode, mode, tmp0, tmp1);
2487 if (assumption == const_true_rtx)
2488 goto zero_iter_simplify;
2489 else if (assumption != const0_rtx)
2490 desc->noloop_assumptions =
2491 alloc_EXPR_LIST (0, assumption, desc->noloop_assumptions);
2492 cond = NE;
2493 }
2494 }
2495
2496 /* Count the number of iterations. */
2497 if (cond == NE)
2498 {
2499 /* Everything we do here is just arithmetics modulo size of mode. This
2500 makes us able to do more involved computations of number of iterations
2501 than in other cases. First transform the condition into shape
2502 s * i <> c, with s positive. */
2503 iv1.base = simplify_gen_binary (MINUS, comp_mode, iv1.base, iv0.base);
2504 iv0.base = const0_rtx;
2505 iv0.step = simplify_gen_binary (MINUS, comp_mode, iv0.step, iv1.step);
2506 iv1.step = const0_rtx;
2507 if (INTVAL (iv0.step) < 0)
2508 {
2509 iv0.step = simplify_gen_unary (NEG, comp_mode, iv0.step, mode);
2510 iv1.base = simplify_gen_unary (NEG, comp_mode, iv1.base, mode);
2511 }
2512 iv0.step = lowpart_subreg (mode, iv0.step, comp_mode);
2513
2514 /* Let nsd (s, size of mode) = d. If d does not divide c, the loop
2515 is infinite. Otherwise, the number of iterations is
2516 (inverse(s/d) * (c/d)) mod (size of mode/d). */
2517 s = INTVAL (iv0.step); d = 1;
2518 while (s % 2 != 1)
2519 {
2520 s /= 2;
2521 d *= 2;
2522 size--;
2523 }
2524 bound = GEN_INT (((unsigned HOST_WIDEST_INT) 1 << (size - 1 ) << 1) - 1);
2525
2526 tmp1 = lowpart_subreg (mode, iv1.base, comp_mode);
2527 tmp = simplify_gen_binary (UMOD, mode, tmp1, GEN_INT (d));
2528 assumption = simplify_gen_relational (NE, SImode, mode, tmp, const0_rtx);
2529 desc->infinite = alloc_EXPR_LIST (0, assumption, desc->infinite);
2530
2531 tmp = simplify_gen_binary (UDIV, mode, tmp1, GEN_INT (d));
2532 inv = inverse (s, size);
2533 tmp = simplify_gen_binary (MULT, mode, tmp, gen_int_mode (inv, mode));
2534 desc->niter_expr = simplify_gen_binary (AND, mode, tmp, bound);
2535 }
2536 else
2537 {
2538 if (iv1.step == const0_rtx)
2539 /* Condition in shape a + s * i <= b
2540 We must know that b + s does not overflow and a <= b + s and then we
2541 can compute number of iterations as (b + s - a) / s. (It might
2542 seem that we in fact could be more clever about testing the b + s
2543 overflow condition using some information about b - a mod s,
2544 but it was already taken into account during LE -> NE transform). */
2545 {
2546 step = iv0.step;
2547 tmp0 = lowpart_subreg (mode, iv0.base, comp_mode);
2548 tmp1 = lowpart_subreg (mode, iv1.base, comp_mode);
2549
2550 bound = simplify_gen_binary (MINUS, mode, mode_mmax,
2551 lowpart_subreg (mode, step,
2552 comp_mode));
2553 if (step_is_pow2)
2554 {
2555 rtx t0, t1;
2556
2557 /* If s is power of 2, we know that the loop is infinite if
2558 a % s <= b % s and b + s overflows. */
2559 assumption = simplify_gen_relational (reverse_condition (cond),
2560 SImode, mode,
2561 tmp1, bound);
2562
2563 t0 = simplify_gen_binary (UMOD, mode, copy_rtx (tmp0), step);
2564 t1 = simplify_gen_binary (UMOD, mode, copy_rtx (tmp1), step);
2565 tmp = simplify_gen_relational (cond, SImode, mode, t0, t1);
2566 assumption = simplify_gen_binary (AND, SImode, assumption, tmp);
2567 desc->infinite =
2568 alloc_EXPR_LIST (0, assumption, desc->infinite);
2569 }
2570 else
2571 {
2572 assumption = simplify_gen_relational (cond, SImode, mode,
2573 tmp1, bound);
2574 desc->assumptions =
2575 alloc_EXPR_LIST (0, assumption, desc->assumptions);
2576 }
2577
2578 tmp = simplify_gen_binary (PLUS, comp_mode, iv1.base, iv0.step);
2579 tmp = lowpart_subreg (mode, tmp, comp_mode);
2580 assumption = simplify_gen_relational (reverse_condition (cond),
2581 SImode, mode, tmp0, tmp);
2582
2583 delta = simplify_gen_binary (PLUS, mode, tmp1, step);
2584 delta = simplify_gen_binary (MINUS, mode, delta, tmp0);
2585 }
2586 else
2587 {
2588 /* Condition in shape a <= b - s * i
2589 We must know that a - s does not overflow and a - s <= b and then
2590 we can again compute number of iterations as (b - (a - s)) / s. */
2591 step = simplify_gen_unary (NEG, mode, iv1.step, mode);
2592 tmp0 = lowpart_subreg (mode, iv0.base, comp_mode);
2593 tmp1 = lowpart_subreg (mode, iv1.base, comp_mode);
2594
2595 bound = simplify_gen_binary (PLUS, mode, mode_mmin,
2596 lowpart_subreg (mode, step, comp_mode));
2597 if (step_is_pow2)
2598 {
2599 rtx t0, t1;
2600
2601 /* If s is power of 2, we know that the loop is infinite if
2602 a % s <= b % s and a - s overflows. */
2603 assumption = simplify_gen_relational (reverse_condition (cond),
2604 SImode, mode,
2605 bound, tmp0);
2606
2607 t0 = simplify_gen_binary (UMOD, mode, copy_rtx (tmp0), step);
2608 t1 = simplify_gen_binary (UMOD, mode, copy_rtx (tmp1), step);
2609 tmp = simplify_gen_relational (cond, SImode, mode, t0, t1);
2610 assumption = simplify_gen_binary (AND, SImode, assumption, tmp);
2611 desc->infinite =
2612 alloc_EXPR_LIST (0, assumption, desc->infinite);
2613 }
2614 else
2615 {
2616 assumption = simplify_gen_relational (cond, SImode, mode,
2617 bound, tmp0);
2618 desc->assumptions =
2619 alloc_EXPR_LIST (0, assumption, desc->assumptions);
2620 }
2621
2622 tmp = simplify_gen_binary (PLUS, comp_mode, iv0.base, iv1.step);
2623 tmp = lowpart_subreg (mode, tmp, comp_mode);
2624 assumption = simplify_gen_relational (reverse_condition (cond),
2625 SImode, mode,
2626 tmp, tmp1);
2627 delta = simplify_gen_binary (MINUS, mode, tmp0, step);
2628 delta = simplify_gen_binary (MINUS, mode, tmp1, delta);
2629 }
2630 if (assumption == const_true_rtx)
2631 goto zero_iter_simplify;
2632 else if (assumption != const0_rtx)
2633 desc->noloop_assumptions =
2634 alloc_EXPR_LIST (0, assumption, desc->noloop_assumptions);
2635 delta = simplify_gen_binary (UDIV, mode, delta, step);
2636 desc->niter_expr = delta;
2637 }
2638
2639 old_niter = desc->niter_expr;
2640
2641 simplify_using_initial_values (loop, AND, &desc->assumptions);
2642 if (desc->assumptions
2643 && XEXP (desc->assumptions, 0) == const0_rtx)
2644 goto fail;
2645 simplify_using_initial_values (loop, IOR, &desc->noloop_assumptions);
2646 simplify_using_initial_values (loop, IOR, &desc->infinite);
2647 simplify_using_initial_values (loop, UNKNOWN, &desc->niter_expr);
2648
2649 /* Rerun the simplification. Consider code (created by copying loop headers)
2650
2651 i = 0;
2652
2653 if (0 < n)
2654 {
2655 do
2656 {
2657 i++;
2658 } while (i < n);
2659 }
2660
2661 The first pass determines that i = 0, the second pass uses it to eliminate
2662 noloop assumption. */
2663
2664 simplify_using_initial_values (loop, AND, &desc->assumptions);
2665 if (desc->assumptions
2666 && XEXP (desc->assumptions, 0) == const0_rtx)
2667 goto fail;
2668 simplify_using_initial_values (loop, IOR, &desc->noloop_assumptions);
2669 simplify_using_initial_values (loop, IOR, &desc->infinite);
2670 simplify_using_initial_values (loop, UNKNOWN, &desc->niter_expr);
2671
2672 if (desc->noloop_assumptions
2673 && XEXP (desc->noloop_assumptions, 0) == const_true_rtx)
2674 goto zero_iter;
2675
2676 if (GET_CODE (desc->niter_expr) == CONST_INT)
2677 {
2678 unsigned HOST_WIDEST_INT val = INTVAL (desc->niter_expr);
2679
2680 desc->const_iter = true;
2681 desc->niter_max = desc->niter = val & GET_MODE_MASK (desc->mode);
2682 }
2683 else
2684 {
2685 if (!desc->niter_max)
2686 desc->niter_max = determine_max_iter (loop, desc);
2687
2688 /* simplify_using_initial_values does a copy propagation on the registers
2689 in the expression for the number of iterations. This prolongs life
2690 ranges of registers and increases register pressure, and usually
2691 brings no gain (and if it happens to do, the cse pass will take care
2692 of it anyway). So prevent this behavior, unless it enabled us to
2693 derive that the number of iterations is a constant. */
2694 desc->niter_expr = old_niter;
2695 }
2696
2697 return;
2698
2699 zero_iter_simplify:
2700 /* Simplify the assumptions. */
2701 simplify_using_initial_values (loop, AND, &desc->assumptions);
2702 if (desc->assumptions
2703 && XEXP (desc->assumptions, 0) == const0_rtx)
2704 goto fail;
2705 simplify_using_initial_values (loop, IOR, &desc->infinite);
2706
2707 /* Fallthru. */
2708 zero_iter:
2709 desc->const_iter = true;
2710 desc->niter = 0;
2711 desc->niter_max = 0;
2712 desc->noloop_assumptions = NULL_RTX;
2713 desc->niter_expr = const0_rtx;
2714 return;
2715
2716 fail:
2717 desc->simple_p = false;
2718 return;
2719 }
2720
2721 /* Checks whether E is a simple exit from LOOP and stores its description
2722 into DESC. */
2723
2724 static void
2725 check_simple_exit (struct loop *loop, edge e, struct niter_desc *desc)
2726 {
2727 basic_block exit_bb;
2728 rtx condition, at;
2729 edge ein;
2730
2731 exit_bb = e->src;
2732 desc->simple_p = false;
2733
2734 /* It must belong directly to the loop. */
2735 if (exit_bb->loop_father != loop)
2736 return;
2737
2738 /* It must be tested (at least) once during any iteration. */
2739 if (!dominated_by_p (CDI_DOMINATORS, loop->latch, exit_bb))
2740 return;
2741
2742 /* It must end in a simple conditional jump. */
2743 if (!any_condjump_p (BB_END (exit_bb)))
2744 return;
2745
2746 ein = EDGE_SUCC (exit_bb, 0);
2747 if (ein == e)
2748 ein = EDGE_SUCC (exit_bb, 1);
2749
2750 desc->out_edge = e;
2751 desc->in_edge = ein;
2752
2753 /* Test whether the condition is suitable. */
2754 if (!(condition = get_condition (BB_END (ein->src), &at, false, false)))
2755 return;
2756
2757 if (ein->flags & EDGE_FALLTHRU)
2758 {
2759 condition = reversed_condition (condition);
2760 if (!condition)
2761 return;
2762 }
2763
2764 /* Check that we are able to determine number of iterations and fill
2765 in information about it. */
2766 iv_number_of_iterations (loop, at, condition, desc);
2767 }
2768
2769 /* Finds a simple exit of LOOP and stores its description into DESC. */
2770
2771 void
2772 find_simple_exit (struct loop *loop, struct niter_desc *desc)
2773 {
2774 unsigned i;
2775 basic_block *body;
2776 edge e;
2777 struct niter_desc act;
2778 bool any = false;
2779 edge_iterator ei;
2780
2781 desc->simple_p = false;
2782 body = get_loop_body (loop);
2783
2784 for (i = 0; i < loop->num_nodes; i++)
2785 {
2786 FOR_EACH_EDGE (e, ei, body[i]->succs)
2787 {
2788 if (flow_bb_inside_loop_p (loop, e->dest))
2789 continue;
2790
2791 check_simple_exit (loop, e, &act);
2792 if (!act.simple_p)
2793 continue;
2794
2795 if (!any)
2796 any = true;
2797 else
2798 {
2799 /* Prefer constant iterations; the less the better. */
2800 if (!act.const_iter
2801 || (desc->const_iter && act.niter >= desc->niter))
2802 continue;
2803
2804 /* Also if the actual exit may be infinite, while the old one
2805 not, prefer the old one. */
2806 if (act.infinite && !desc->infinite)
2807 continue;
2808 }
2809
2810 *desc = act;
2811 }
2812 }
2813
2814 if (dump_file)
2815 {
2816 if (desc->simple_p)
2817 {
2818 fprintf (dump_file, "Loop %d is simple:\n", loop->num);
2819 fprintf (dump_file, " simple exit %d -> %d\n",
2820 desc->out_edge->src->index,
2821 desc->out_edge->dest->index);
2822 if (desc->assumptions)
2823 {
2824 fprintf (dump_file, " assumptions: ");
2825 print_rtl (dump_file, desc->assumptions);
2826 fprintf (dump_file, "\n");
2827 }
2828 if (desc->noloop_assumptions)
2829 {
2830 fprintf (dump_file, " does not roll if: ");
2831 print_rtl (dump_file, desc->noloop_assumptions);
2832 fprintf (dump_file, "\n");
2833 }
2834 if (desc->infinite)
2835 {
2836 fprintf (dump_file, " infinite if: ");
2837 print_rtl (dump_file, desc->infinite);
2838 fprintf (dump_file, "\n");
2839 }
2840
2841 fprintf (dump_file, " number of iterations: ");
2842 print_rtl (dump_file, desc->niter_expr);
2843 fprintf (dump_file, "\n");
2844
2845 fprintf (dump_file, " upper bound: ");
2846 fprintf (dump_file, HOST_WIDEST_INT_PRINT_DEC, desc->niter_max);
2847 fprintf (dump_file, "\n");
2848 }
2849 else
2850 fprintf (dump_file, "Loop %d is not simple.\n", loop->num);
2851 }
2852
2853 free (body);
2854 }
2855
2856 /* Creates a simple loop description of LOOP if it was not computed
2857 already. */
2858
2859 struct niter_desc *
2860 get_simple_loop_desc (struct loop *loop)
2861 {
2862 struct niter_desc *desc = simple_loop_desc (loop);
2863
2864 if (desc)
2865 return desc;
2866
2867 /* At least desc->infinite is not always initialized by
2868 find_simple_loop_exit. */
2869 desc = XCNEW (struct niter_desc);
2870 iv_analysis_loop_init (loop);
2871 find_simple_exit (loop, desc);
2872 loop->aux = desc;
2873
2874 if (desc->simple_p && (desc->assumptions || desc->infinite))
2875 {
2876 const char *wording;
2877
2878 /* Assume that no overflow happens and that the loop is finite.
2879 We already warned at the tree level if we ran optimizations there. */
2880 if (!flag_tree_loop_optimize && warn_unsafe_loop_optimizations)
2881 {
2882 if (desc->infinite)
2883 {
2884 wording =
2885 flag_unsafe_loop_optimizations
2886 ? N_("assuming that the loop is not infinite")
2887 : N_("cannot optimize possibly infinite loops");
2888 warning (OPT_Wunsafe_loop_optimizations, "%s",
2889 gettext (wording));
2890 }
2891 if (desc->assumptions)
2892 {
2893 wording =
2894 flag_unsafe_loop_optimizations
2895 ? N_("assuming that the loop counter does not overflow")
2896 : N_("cannot optimize loop, the loop counter may overflow");
2897 warning (OPT_Wunsafe_loop_optimizations, "%s",
2898 gettext (wording));
2899 }
2900 }
2901
2902 if (flag_unsafe_loop_optimizations)
2903 {
2904 desc->assumptions = NULL_RTX;
2905 desc->infinite = NULL_RTX;
2906 }
2907 }
2908
2909 return desc;
2910 }
2911
2912 /* Releases simple loop description for LOOP. */
2913
2914 void
2915 free_simple_loop_desc (struct loop *loop)
2916 {
2917 struct niter_desc *desc = simple_loop_desc (loop);
2918
2919 if (!desc)
2920 return;
2921
2922 free (desc);
2923 loop->aux = NULL;
2924 }