]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/loop-unroll.c
Eliminate BASIC_BLOCK macro.
[thirdparty/gcc.git] / gcc / loop-unroll.c
1 /* Loop unrolling and peeling.
2 Copyright (C) 2002-2013 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20 #include "config.h"
21 #include "system.h"
22 #include "coretypes.h"
23 #include "tm.h"
24 #include "rtl.h"
25 #include "tree.h"
26 #include "hard-reg-set.h"
27 #include "obstack.h"
28 #include "basic-block.h"
29 #include "cfgloop.h"
30 #include "params.h"
31 #include "expr.h"
32 #include "hash-table.h"
33 #include "recog.h"
34 #include "target.h"
35 #include "dumpfile.h"
36
37 /* This pass performs loop unrolling and peeling. We only perform these
38 optimizations on innermost loops (with single exception) because
39 the impact on performance is greatest here, and we want to avoid
40 unnecessary code size growth. The gain is caused by greater sequentiality
41 of code, better code to optimize for further passes and in some cases
42 by fewer testings of exit conditions. The main problem is code growth,
43 that impacts performance negatively due to effect of caches.
44
45 What we do:
46
47 -- complete peeling of once-rolling loops; this is the above mentioned
48 exception, as this causes loop to be cancelled completely and
49 does not cause code growth
50 -- complete peeling of loops that roll (small) constant times.
51 -- simple peeling of first iterations of loops that do not roll much
52 (according to profile feedback)
53 -- unrolling of loops that roll constant times; this is almost always
54 win, as we get rid of exit condition tests.
55 -- unrolling of loops that roll number of times that we can compute
56 in runtime; we also get rid of exit condition tests here, but there
57 is the extra expense for calculating the number of iterations
58 -- simple unrolling of remaining loops; this is performed only if we
59 are asked to, as the gain is questionable in this case and often
60 it may even slow down the code
61 For more detailed descriptions of each of those, see comments at
62 appropriate function below.
63
64 There is a lot of parameters (defined and described in params.def) that
65 control how much we unroll/peel.
66
67 ??? A great problem is that we don't have a good way how to determine
68 how many times we should unroll the loop; the experiments I have made
69 showed that this choice may affect performance in order of several %.
70 */
71
72 /* Information about induction variables to split. */
73
74 struct iv_to_split
75 {
76 rtx insn; /* The insn in that the induction variable occurs. */
77 rtx orig_var; /* The variable (register) for the IV before split. */
78 rtx base_var; /* The variable on that the values in the further
79 iterations are based. */
80 rtx step; /* Step of the induction variable. */
81 struct iv_to_split *next; /* Next entry in walking order. */
82 unsigned n_loc;
83 unsigned loc[3]; /* Location where the definition of the induction
84 variable occurs in the insn. For example if
85 N_LOC is 2, the expression is located at
86 XEXP (XEXP (single_set, loc[0]), loc[1]). */
87 };
88
89 /* Information about accumulators to expand. */
90
91 struct var_to_expand
92 {
93 rtx insn; /* The insn in that the variable expansion occurs. */
94 rtx reg; /* The accumulator which is expanded. */
95 vec<rtx> var_expansions; /* The copies of the accumulator which is expanded. */
96 struct var_to_expand *next; /* Next entry in walking order. */
97 enum rtx_code op; /* The type of the accumulation - addition, subtraction
98 or multiplication. */
99 int expansion_count; /* Count the number of expansions generated so far. */
100 int reuse_expansion; /* The expansion we intend to reuse to expand
101 the accumulator. If REUSE_EXPANSION is 0 reuse
102 the original accumulator. Else use
103 var_expansions[REUSE_EXPANSION - 1]. */
104 };
105
106 /* Hashtable helper for iv_to_split. */
107
108 struct iv_split_hasher : typed_free_remove <iv_to_split>
109 {
110 typedef iv_to_split value_type;
111 typedef iv_to_split compare_type;
112 static inline hashval_t hash (const value_type *);
113 static inline bool equal (const value_type *, const compare_type *);
114 };
115
116
117 /* A hash function for information about insns to split. */
118
119 inline hashval_t
120 iv_split_hasher::hash (const value_type *ivts)
121 {
122 return (hashval_t) INSN_UID (ivts->insn);
123 }
124
125 /* An equality functions for information about insns to split. */
126
127 inline bool
128 iv_split_hasher::equal (const value_type *i1, const compare_type *i2)
129 {
130 return i1->insn == i2->insn;
131 }
132
133 /* Hashtable helper for iv_to_split. */
134
135 struct var_expand_hasher : typed_free_remove <var_to_expand>
136 {
137 typedef var_to_expand value_type;
138 typedef var_to_expand compare_type;
139 static inline hashval_t hash (const value_type *);
140 static inline bool equal (const value_type *, const compare_type *);
141 };
142
143 /* Return a hash for VES. */
144
145 inline hashval_t
146 var_expand_hasher::hash (const value_type *ves)
147 {
148 return (hashval_t) INSN_UID (ves->insn);
149 }
150
151 /* Return true if I1 and I2 refer to the same instruction. */
152
153 inline bool
154 var_expand_hasher::equal (const value_type *i1, const compare_type *i2)
155 {
156 return i1->insn == i2->insn;
157 }
158
159 /* Information about optimization applied in
160 the unrolled loop. */
161
162 struct opt_info
163 {
164 hash_table <iv_split_hasher> insns_to_split; /* A hashtable of insns to
165 split. */
166 struct iv_to_split *iv_to_split_head; /* The first iv to split. */
167 struct iv_to_split **iv_to_split_tail; /* Pointer to the tail of the list. */
168 hash_table <var_expand_hasher> insns_with_var_to_expand; /* A hashtable of
169 insns with accumulators to expand. */
170 struct var_to_expand *var_to_expand_head; /* The first var to expand. */
171 struct var_to_expand **var_to_expand_tail; /* Pointer to the tail of the list. */
172 unsigned first_new_block; /* The first basic block that was
173 duplicated. */
174 basic_block loop_exit; /* The loop exit basic block. */
175 basic_block loop_preheader; /* The loop preheader basic block. */
176 };
177
178 static void decide_unrolling_and_peeling (int);
179 static void peel_loops_completely (int);
180 static void decide_peel_simple (struct loop *, int);
181 static void decide_peel_once_rolling (struct loop *, int);
182 static void decide_peel_completely (struct loop *, int);
183 static void decide_unroll_stupid (struct loop *, int);
184 static void decide_unroll_constant_iterations (struct loop *, int);
185 static void decide_unroll_runtime_iterations (struct loop *, int);
186 static void peel_loop_simple (struct loop *);
187 static void peel_loop_completely (struct loop *);
188 static void unroll_loop_stupid (struct loop *);
189 static void unroll_loop_constant_iterations (struct loop *);
190 static void unroll_loop_runtime_iterations (struct loop *);
191 static struct opt_info *analyze_insns_in_loop (struct loop *);
192 static void opt_info_start_duplication (struct opt_info *);
193 static void apply_opt_in_copies (struct opt_info *, unsigned, bool, bool);
194 static void free_opt_info (struct opt_info *);
195 static struct var_to_expand *analyze_insn_to_expand_var (struct loop*, rtx);
196 static bool referenced_in_one_insn_in_loop_p (struct loop *, rtx, int *);
197 static struct iv_to_split *analyze_iv_to_split_insn (rtx);
198 static void expand_var_during_unrolling (struct var_to_expand *, rtx);
199 static void insert_var_expansion_initialization (struct var_to_expand *,
200 basic_block);
201 static void combine_var_copies_in_loop_exit (struct var_to_expand *,
202 basic_block);
203 static rtx get_expansion (struct var_to_expand *);
204
205 /* Emit a message summarizing the unroll or peel that will be
206 performed for LOOP, along with the loop's location LOCUS, if
207 appropriate given the dump or -fopt-info settings. */
208
209 static void
210 report_unroll_peel (struct loop *loop, location_t locus)
211 {
212 struct niter_desc *desc;
213 int niters = 0;
214 int report_flags = MSG_OPTIMIZED_LOCATIONS | TDF_RTL | TDF_DETAILS;
215
216 if (loop->lpt_decision.decision == LPT_NONE)
217 return;
218
219 if (!dump_enabled_p ())
220 return;
221
222 /* In the special case where the loop never iterated, emit
223 a different message so that we don't report an unroll by 0.
224 This matches the equivalent message emitted during tree unrolling. */
225 if (loop->lpt_decision.decision == LPT_PEEL_COMPLETELY
226 && !loop->lpt_decision.times)
227 {
228 dump_printf_loc (report_flags, locus,
229 "loop turned into non-loop; it never loops.\n");
230 return;
231 }
232
233 desc = get_simple_loop_desc (loop);
234
235 if (desc->const_iter)
236 niters = desc->niter;
237 else if (loop->header->count)
238 niters = expected_loop_iterations (loop);
239
240 if (loop->lpt_decision.decision == LPT_PEEL_COMPLETELY)
241 dump_printf_loc (report_flags, locus,
242 "loop with %d iterations completely unrolled",
243 loop->lpt_decision.times + 1);
244 else
245 dump_printf_loc (report_flags, locus,
246 "loop %s %d times",
247 (loop->lpt_decision.decision == LPT_PEEL_SIMPLE
248 ? "peeled" : "unrolled"),
249 loop->lpt_decision.times);
250 if (profile_info)
251 dump_printf (report_flags,
252 " (header execution count %d",
253 (int)loop->header->count);
254 if (loop->lpt_decision.decision == LPT_PEEL_COMPLETELY)
255 dump_printf (report_flags,
256 "%s%s iterations %d)",
257 profile_info ? ", " : " (",
258 desc->const_iter ? "const" : "average",
259 niters);
260 else if (profile_info)
261 dump_printf (report_flags, ")");
262
263 dump_printf (report_flags, "\n");
264 }
265
266 /* Unroll and/or peel (depending on FLAGS) LOOPS. */
267 void
268 unroll_and_peel_loops (int flags)
269 {
270 struct loop *loop;
271 bool changed = false;
272
273 /* First perform complete loop peeling (it is almost surely a win,
274 and affects parameters for further decision a lot). */
275 peel_loops_completely (flags);
276
277 /* Now decide rest of unrolling and peeling. */
278 decide_unrolling_and_peeling (flags);
279
280 /* Scan the loops, inner ones first. */
281 FOR_EACH_LOOP (loop, LI_FROM_INNERMOST)
282 {
283 /* And perform the appropriate transformations. */
284 switch (loop->lpt_decision.decision)
285 {
286 case LPT_PEEL_COMPLETELY:
287 /* Already done. */
288 gcc_unreachable ();
289 case LPT_PEEL_SIMPLE:
290 peel_loop_simple (loop);
291 changed = true;
292 break;
293 case LPT_UNROLL_CONSTANT:
294 unroll_loop_constant_iterations (loop);
295 changed = true;
296 break;
297 case LPT_UNROLL_RUNTIME:
298 unroll_loop_runtime_iterations (loop);
299 changed = true;
300 break;
301 case LPT_UNROLL_STUPID:
302 unroll_loop_stupid (loop);
303 changed = true;
304 break;
305 case LPT_NONE:
306 break;
307 default:
308 gcc_unreachable ();
309 }
310 }
311
312 if (changed)
313 {
314 calculate_dominance_info (CDI_DOMINATORS);
315 fix_loop_structure (NULL);
316 }
317
318 iv_analysis_done ();
319 }
320
321 /* Check whether exit of the LOOP is at the end of loop body. */
322
323 static bool
324 loop_exit_at_end_p (struct loop *loop)
325 {
326 struct niter_desc *desc = get_simple_loop_desc (loop);
327 rtx insn;
328
329 if (desc->in_edge->dest != loop->latch)
330 return false;
331
332 /* Check that the latch is empty. */
333 FOR_BB_INSNS (loop->latch, insn)
334 {
335 if (NONDEBUG_INSN_P (insn))
336 return false;
337 }
338
339 return true;
340 }
341
342 /* Depending on FLAGS, check whether to peel loops completely and do so. */
343 static void
344 peel_loops_completely (int flags)
345 {
346 struct loop *loop;
347 bool changed = false;
348
349 /* Scan the loops, the inner ones first. */
350 FOR_EACH_LOOP (loop, LI_FROM_INNERMOST)
351 {
352 loop->lpt_decision.decision = LPT_NONE;
353 location_t locus = get_loop_location (loop);
354
355 if (dump_enabled_p ())
356 dump_printf_loc (TDF_RTL, locus,
357 ";; *** Considering loop %d at BB %d for "
358 "complete peeling ***\n",
359 loop->num, loop->header->index);
360
361 loop->ninsns = num_loop_insns (loop);
362
363 decide_peel_once_rolling (loop, flags);
364 if (loop->lpt_decision.decision == LPT_NONE)
365 decide_peel_completely (loop, flags);
366
367 if (loop->lpt_decision.decision == LPT_PEEL_COMPLETELY)
368 {
369 report_unroll_peel (loop, locus);
370 peel_loop_completely (loop);
371 changed = true;
372 }
373 }
374
375 if (changed)
376 {
377 calculate_dominance_info (CDI_DOMINATORS);
378 fix_loop_structure (NULL);
379 }
380 }
381
382 /* Decide whether unroll or peel loops (depending on FLAGS) and how much. */
383 static void
384 decide_unrolling_and_peeling (int flags)
385 {
386 struct loop *loop;
387
388 /* Scan the loops, inner ones first. */
389 FOR_EACH_LOOP (loop, LI_FROM_INNERMOST)
390 {
391 loop->lpt_decision.decision = LPT_NONE;
392 location_t locus = get_loop_location (loop);
393
394 if (dump_enabled_p ())
395 dump_printf_loc (TDF_RTL, locus,
396 ";; *** Considering loop %d at BB %d for "
397 "unrolling and peeling ***\n",
398 loop->num, loop->header->index);
399
400 /* Do not peel cold areas. */
401 if (optimize_loop_for_size_p (loop))
402 {
403 if (dump_file)
404 fprintf (dump_file, ";; Not considering loop, cold area\n");
405 continue;
406 }
407
408 /* Can the loop be manipulated? */
409 if (!can_duplicate_loop_p (loop))
410 {
411 if (dump_file)
412 fprintf (dump_file,
413 ";; Not considering loop, cannot duplicate\n");
414 continue;
415 }
416
417 /* Skip non-innermost loops. */
418 if (loop->inner)
419 {
420 if (dump_file)
421 fprintf (dump_file, ";; Not considering loop, is not innermost\n");
422 continue;
423 }
424
425 loop->ninsns = num_loop_insns (loop);
426 loop->av_ninsns = average_num_loop_insns (loop);
427
428 /* Try transformations one by one in decreasing order of
429 priority. */
430
431 decide_unroll_constant_iterations (loop, flags);
432 if (loop->lpt_decision.decision == LPT_NONE)
433 decide_unroll_runtime_iterations (loop, flags);
434 if (loop->lpt_decision.decision == LPT_NONE)
435 decide_unroll_stupid (loop, flags);
436 if (loop->lpt_decision.decision == LPT_NONE)
437 decide_peel_simple (loop, flags);
438
439 report_unroll_peel (loop, locus);
440 }
441 }
442
443 /* Decide whether the LOOP is once rolling and suitable for complete
444 peeling. */
445 static void
446 decide_peel_once_rolling (struct loop *loop, int flags ATTRIBUTE_UNUSED)
447 {
448 struct niter_desc *desc;
449
450 if (dump_file)
451 fprintf (dump_file, "\n;; Considering peeling once rolling loop\n");
452
453 /* Is the loop small enough? */
454 if ((unsigned) PARAM_VALUE (PARAM_MAX_ONCE_PEELED_INSNS) < loop->ninsns)
455 {
456 if (dump_file)
457 fprintf (dump_file, ";; Not considering loop, is too big\n");
458 return;
459 }
460
461 /* Check for simple loops. */
462 desc = get_simple_loop_desc (loop);
463
464 /* Check number of iterations. */
465 if (!desc->simple_p
466 || desc->assumptions
467 || desc->infinite
468 || !desc->const_iter
469 || (desc->niter != 0
470 && get_max_loop_iterations_int (loop) != 0))
471 {
472 if (dump_file)
473 fprintf (dump_file,
474 ";; Unable to prove that the loop rolls exactly once\n");
475 return;
476 }
477
478 /* Success. */
479 loop->lpt_decision.decision = LPT_PEEL_COMPLETELY;
480 }
481
482 /* Decide whether the LOOP is suitable for complete peeling. */
483 static void
484 decide_peel_completely (struct loop *loop, int flags ATTRIBUTE_UNUSED)
485 {
486 unsigned npeel;
487 struct niter_desc *desc;
488
489 if (dump_file)
490 fprintf (dump_file, "\n;; Considering peeling completely\n");
491
492 /* Skip non-innermost loops. */
493 if (loop->inner)
494 {
495 if (dump_file)
496 fprintf (dump_file, ";; Not considering loop, is not innermost\n");
497 return;
498 }
499
500 /* Do not peel cold areas. */
501 if (optimize_loop_for_size_p (loop))
502 {
503 if (dump_file)
504 fprintf (dump_file, ";; Not considering loop, cold area\n");
505 return;
506 }
507
508 /* Can the loop be manipulated? */
509 if (!can_duplicate_loop_p (loop))
510 {
511 if (dump_file)
512 fprintf (dump_file,
513 ";; Not considering loop, cannot duplicate\n");
514 return;
515 }
516
517 /* npeel = number of iterations to peel. */
518 npeel = PARAM_VALUE (PARAM_MAX_COMPLETELY_PEELED_INSNS) / loop->ninsns;
519 if (npeel > (unsigned) PARAM_VALUE (PARAM_MAX_COMPLETELY_PEEL_TIMES))
520 npeel = PARAM_VALUE (PARAM_MAX_COMPLETELY_PEEL_TIMES);
521
522 /* Is the loop small enough? */
523 if (!npeel)
524 {
525 if (dump_file)
526 fprintf (dump_file, ";; Not considering loop, is too big\n");
527 return;
528 }
529
530 /* Check for simple loops. */
531 desc = get_simple_loop_desc (loop);
532
533 /* Check number of iterations. */
534 if (!desc->simple_p
535 || desc->assumptions
536 || !desc->const_iter
537 || desc->infinite)
538 {
539 if (dump_file)
540 fprintf (dump_file,
541 ";; Unable to prove that the loop iterates constant times\n");
542 return;
543 }
544
545 if (desc->niter > npeel - 1)
546 {
547 if (dump_file)
548 {
549 fprintf (dump_file,
550 ";; Not peeling loop completely, rolls too much (");
551 fprintf (dump_file, HOST_WIDEST_INT_PRINT_DEC, desc->niter);
552 fprintf (dump_file, " iterations > %d [maximum peelings])\n", npeel);
553 }
554 return;
555 }
556
557 /* Success. */
558 loop->lpt_decision.decision = LPT_PEEL_COMPLETELY;
559 }
560
561 /* Peel all iterations of LOOP, remove exit edges and cancel the loop
562 completely. The transformation done:
563
564 for (i = 0; i < 4; i++)
565 body;
566
567 ==>
568
569 i = 0;
570 body; i++;
571 body; i++;
572 body; i++;
573 body; i++;
574 */
575 static void
576 peel_loop_completely (struct loop *loop)
577 {
578 sbitmap wont_exit;
579 unsigned HOST_WIDE_INT npeel;
580 unsigned i;
581 edge ein;
582 struct niter_desc *desc = get_simple_loop_desc (loop);
583 struct opt_info *opt_info = NULL;
584
585 npeel = desc->niter;
586
587 if (npeel)
588 {
589 bool ok;
590
591 wont_exit = sbitmap_alloc (npeel + 1);
592 bitmap_ones (wont_exit);
593 bitmap_clear_bit (wont_exit, 0);
594 if (desc->noloop_assumptions)
595 bitmap_clear_bit (wont_exit, 1);
596
597 auto_vec<edge> remove_edges;
598 if (flag_split_ivs_in_unroller)
599 opt_info = analyze_insns_in_loop (loop);
600
601 opt_info_start_duplication (opt_info);
602 ok = duplicate_loop_to_header_edge (loop, loop_preheader_edge (loop),
603 npeel,
604 wont_exit, desc->out_edge,
605 &remove_edges,
606 DLTHE_FLAG_UPDATE_FREQ
607 | DLTHE_FLAG_COMPLETTE_PEEL
608 | (opt_info
609 ? DLTHE_RECORD_COPY_NUMBER : 0));
610 gcc_assert (ok);
611
612 free (wont_exit);
613
614 if (opt_info)
615 {
616 apply_opt_in_copies (opt_info, npeel, false, true);
617 free_opt_info (opt_info);
618 }
619
620 /* Remove the exit edges. */
621 FOR_EACH_VEC_ELT (remove_edges, i, ein)
622 remove_path (ein);
623 }
624
625 ein = desc->in_edge;
626 free_simple_loop_desc (loop);
627
628 /* Now remove the unreachable part of the last iteration and cancel
629 the loop. */
630 remove_path (ein);
631
632 if (dump_file)
633 fprintf (dump_file, ";; Peeled loop completely, %d times\n", (int) npeel);
634 }
635
636 /* Decide whether to unroll LOOP iterating constant number of times
637 and how much. */
638
639 static void
640 decide_unroll_constant_iterations (struct loop *loop, int flags)
641 {
642 unsigned nunroll, nunroll_by_av, best_copies, best_unroll = 0, n_copies, i;
643 struct niter_desc *desc;
644 double_int iterations;
645
646 if (!(flags & UAP_UNROLL))
647 {
648 /* We were not asked to, just return back silently. */
649 return;
650 }
651
652 if (dump_file)
653 fprintf (dump_file,
654 "\n;; Considering unrolling loop with constant "
655 "number of iterations\n");
656
657 /* nunroll = total number of copies of the original loop body in
658 unrolled loop (i.e. if it is 2, we have to duplicate loop body once. */
659 nunroll = PARAM_VALUE (PARAM_MAX_UNROLLED_INSNS) / loop->ninsns;
660 nunroll_by_av
661 = PARAM_VALUE (PARAM_MAX_AVERAGE_UNROLLED_INSNS) / loop->av_ninsns;
662 if (nunroll > nunroll_by_av)
663 nunroll = nunroll_by_av;
664 if (nunroll > (unsigned) PARAM_VALUE (PARAM_MAX_UNROLL_TIMES))
665 nunroll = PARAM_VALUE (PARAM_MAX_UNROLL_TIMES);
666
667 if (targetm.loop_unroll_adjust)
668 nunroll = targetm.loop_unroll_adjust (nunroll, loop);
669
670 /* Skip big loops. */
671 if (nunroll <= 1)
672 {
673 if (dump_file)
674 fprintf (dump_file, ";; Not considering loop, is too big\n");
675 return;
676 }
677
678 /* Check for simple loops. */
679 desc = get_simple_loop_desc (loop);
680
681 /* Check number of iterations. */
682 if (!desc->simple_p || !desc->const_iter || desc->assumptions)
683 {
684 if (dump_file)
685 fprintf (dump_file,
686 ";; Unable to prove that the loop iterates constant times\n");
687 return;
688 }
689
690 /* Check whether the loop rolls enough to consider.
691 Consult also loop bounds and profile; in the case the loop has more
692 than one exit it may well loop less than determined maximal number
693 of iterations. */
694 if (desc->niter < 2 * nunroll
695 || ((get_estimated_loop_iterations (loop, &iterations)
696 || get_max_loop_iterations (loop, &iterations))
697 && iterations.ult (double_int::from_shwi (2 * nunroll))))
698 {
699 if (dump_file)
700 fprintf (dump_file, ";; Not unrolling loop, doesn't roll\n");
701 return;
702 }
703
704 /* Success; now compute number of iterations to unroll. We alter
705 nunroll so that as few as possible copies of loop body are
706 necessary, while still not decreasing the number of unrollings
707 too much (at most by 1). */
708 best_copies = 2 * nunroll + 10;
709
710 i = 2 * nunroll + 2;
711 if (i - 1 >= desc->niter)
712 i = desc->niter - 2;
713
714 for (; i >= nunroll - 1; i--)
715 {
716 unsigned exit_mod = desc->niter % (i + 1);
717
718 if (!loop_exit_at_end_p (loop))
719 n_copies = exit_mod + i + 1;
720 else if (exit_mod != (unsigned) i
721 || desc->noloop_assumptions != NULL_RTX)
722 n_copies = exit_mod + i + 2;
723 else
724 n_copies = i + 1;
725
726 if (n_copies < best_copies)
727 {
728 best_copies = n_copies;
729 best_unroll = i;
730 }
731 }
732
733 loop->lpt_decision.decision = LPT_UNROLL_CONSTANT;
734 loop->lpt_decision.times = best_unroll;
735 }
736
737 /* Unroll LOOP with constant number of iterations LOOP->LPT_DECISION.TIMES times.
738 The transformation does this:
739
740 for (i = 0; i < 102; i++)
741 body;
742
743 ==> (LOOP->LPT_DECISION.TIMES == 3)
744
745 i = 0;
746 body; i++;
747 body; i++;
748 while (i < 102)
749 {
750 body; i++;
751 body; i++;
752 body; i++;
753 body; i++;
754 }
755 */
756 static void
757 unroll_loop_constant_iterations (struct loop *loop)
758 {
759 unsigned HOST_WIDE_INT niter;
760 unsigned exit_mod;
761 sbitmap wont_exit;
762 unsigned i;
763 edge e;
764 unsigned max_unroll = loop->lpt_decision.times;
765 struct niter_desc *desc = get_simple_loop_desc (loop);
766 bool exit_at_end = loop_exit_at_end_p (loop);
767 struct opt_info *opt_info = NULL;
768 bool ok;
769
770 niter = desc->niter;
771
772 /* Should not get here (such loop should be peeled instead). */
773 gcc_assert (niter > max_unroll + 1);
774
775 exit_mod = niter % (max_unroll + 1);
776
777 wont_exit = sbitmap_alloc (max_unroll + 1);
778 bitmap_ones (wont_exit);
779
780 auto_vec<edge> remove_edges;
781 if (flag_split_ivs_in_unroller
782 || flag_variable_expansion_in_unroller)
783 opt_info = analyze_insns_in_loop (loop);
784
785 if (!exit_at_end)
786 {
787 /* The exit is not at the end of the loop; leave exit test
788 in the first copy, so that the loops that start with test
789 of exit condition have continuous body after unrolling. */
790
791 if (dump_file)
792 fprintf (dump_file, ";; Condition at beginning of loop.\n");
793
794 /* Peel exit_mod iterations. */
795 bitmap_clear_bit (wont_exit, 0);
796 if (desc->noloop_assumptions)
797 bitmap_clear_bit (wont_exit, 1);
798
799 if (exit_mod)
800 {
801 opt_info_start_duplication (opt_info);
802 ok = duplicate_loop_to_header_edge (loop, loop_preheader_edge (loop),
803 exit_mod,
804 wont_exit, desc->out_edge,
805 &remove_edges,
806 DLTHE_FLAG_UPDATE_FREQ
807 | (opt_info && exit_mod > 1
808 ? DLTHE_RECORD_COPY_NUMBER
809 : 0));
810 gcc_assert (ok);
811
812 if (opt_info && exit_mod > 1)
813 apply_opt_in_copies (opt_info, exit_mod, false, false);
814
815 desc->noloop_assumptions = NULL_RTX;
816 desc->niter -= exit_mod;
817 loop->nb_iterations_upper_bound -= double_int::from_uhwi (exit_mod);
818 if (loop->any_estimate
819 && double_int::from_uhwi (exit_mod).ule
820 (loop->nb_iterations_estimate))
821 loop->nb_iterations_estimate -= double_int::from_uhwi (exit_mod);
822 else
823 loop->any_estimate = false;
824 }
825
826 bitmap_set_bit (wont_exit, 1);
827 }
828 else
829 {
830 /* Leave exit test in last copy, for the same reason as above if
831 the loop tests the condition at the end of loop body. */
832
833 if (dump_file)
834 fprintf (dump_file, ";; Condition at end of loop.\n");
835
836 /* We know that niter >= max_unroll + 2; so we do not need to care of
837 case when we would exit before reaching the loop. So just peel
838 exit_mod + 1 iterations. */
839 if (exit_mod != max_unroll
840 || desc->noloop_assumptions)
841 {
842 bitmap_clear_bit (wont_exit, 0);
843 if (desc->noloop_assumptions)
844 bitmap_clear_bit (wont_exit, 1);
845
846 opt_info_start_duplication (opt_info);
847 ok = duplicate_loop_to_header_edge (loop, loop_preheader_edge (loop),
848 exit_mod + 1,
849 wont_exit, desc->out_edge,
850 &remove_edges,
851 DLTHE_FLAG_UPDATE_FREQ
852 | (opt_info && exit_mod > 0
853 ? DLTHE_RECORD_COPY_NUMBER
854 : 0));
855 gcc_assert (ok);
856
857 if (opt_info && exit_mod > 0)
858 apply_opt_in_copies (opt_info, exit_mod + 1, false, false);
859
860 desc->niter -= exit_mod + 1;
861 loop->nb_iterations_upper_bound -= double_int::from_uhwi (exit_mod + 1);
862 if (loop->any_estimate
863 && double_int::from_uhwi (exit_mod + 1).ule
864 (loop->nb_iterations_estimate))
865 loop->nb_iterations_estimate -= double_int::from_uhwi (exit_mod + 1);
866 else
867 loop->any_estimate = false;
868 desc->noloop_assumptions = NULL_RTX;
869
870 bitmap_set_bit (wont_exit, 0);
871 bitmap_set_bit (wont_exit, 1);
872 }
873
874 bitmap_clear_bit (wont_exit, max_unroll);
875 }
876
877 /* Now unroll the loop. */
878
879 opt_info_start_duplication (opt_info);
880 ok = duplicate_loop_to_header_edge (loop, loop_latch_edge (loop),
881 max_unroll,
882 wont_exit, desc->out_edge,
883 &remove_edges,
884 DLTHE_FLAG_UPDATE_FREQ
885 | (opt_info
886 ? DLTHE_RECORD_COPY_NUMBER
887 : 0));
888 gcc_assert (ok);
889
890 if (opt_info)
891 {
892 apply_opt_in_copies (opt_info, max_unroll, true, true);
893 free_opt_info (opt_info);
894 }
895
896 free (wont_exit);
897
898 if (exit_at_end)
899 {
900 basic_block exit_block = get_bb_copy (desc->in_edge->src);
901 /* Find a new in and out edge; they are in the last copy we have made. */
902
903 if (EDGE_SUCC (exit_block, 0)->dest == desc->out_edge->dest)
904 {
905 desc->out_edge = EDGE_SUCC (exit_block, 0);
906 desc->in_edge = EDGE_SUCC (exit_block, 1);
907 }
908 else
909 {
910 desc->out_edge = EDGE_SUCC (exit_block, 1);
911 desc->in_edge = EDGE_SUCC (exit_block, 0);
912 }
913 }
914
915 desc->niter /= max_unroll + 1;
916 loop->nb_iterations_upper_bound
917 = loop->nb_iterations_upper_bound.udiv (double_int::from_uhwi (max_unroll
918 + 1),
919 TRUNC_DIV_EXPR);
920 if (loop->any_estimate)
921 loop->nb_iterations_estimate
922 = loop->nb_iterations_estimate.udiv (double_int::from_uhwi (max_unroll
923 + 1),
924 TRUNC_DIV_EXPR);
925 desc->niter_expr = GEN_INT (desc->niter);
926
927 /* Remove the edges. */
928 FOR_EACH_VEC_ELT (remove_edges, i, e)
929 remove_path (e);
930
931 if (dump_file)
932 fprintf (dump_file,
933 ";; Unrolled loop %d times, constant # of iterations %i insns\n",
934 max_unroll, num_loop_insns (loop));
935 }
936
937 /* Decide whether to unroll LOOP iterating runtime computable number of times
938 and how much. */
939 static void
940 decide_unroll_runtime_iterations (struct loop *loop, int flags)
941 {
942 unsigned nunroll, nunroll_by_av, i;
943 struct niter_desc *desc;
944 double_int iterations;
945
946 if (!(flags & UAP_UNROLL))
947 {
948 /* We were not asked to, just return back silently. */
949 return;
950 }
951
952 if (dump_file)
953 fprintf (dump_file,
954 "\n;; Considering unrolling loop with runtime "
955 "computable number of iterations\n");
956
957 /* nunroll = total number of copies of the original loop body in
958 unrolled loop (i.e. if it is 2, we have to duplicate loop body once. */
959 nunroll = PARAM_VALUE (PARAM_MAX_UNROLLED_INSNS) / loop->ninsns;
960 nunroll_by_av = PARAM_VALUE (PARAM_MAX_AVERAGE_UNROLLED_INSNS) / loop->av_ninsns;
961 if (nunroll > nunroll_by_av)
962 nunroll = nunroll_by_av;
963 if (nunroll > (unsigned) PARAM_VALUE (PARAM_MAX_UNROLL_TIMES))
964 nunroll = PARAM_VALUE (PARAM_MAX_UNROLL_TIMES);
965
966 if (targetm.loop_unroll_adjust)
967 nunroll = targetm.loop_unroll_adjust (nunroll, loop);
968
969 /* Skip big loops. */
970 if (nunroll <= 1)
971 {
972 if (dump_file)
973 fprintf (dump_file, ";; Not considering loop, is too big\n");
974 return;
975 }
976
977 /* Check for simple loops. */
978 desc = get_simple_loop_desc (loop);
979
980 /* Check simpleness. */
981 if (!desc->simple_p || desc->assumptions)
982 {
983 if (dump_file)
984 fprintf (dump_file,
985 ";; Unable to prove that the number of iterations "
986 "can be counted in runtime\n");
987 return;
988 }
989
990 if (desc->const_iter)
991 {
992 if (dump_file)
993 fprintf (dump_file, ";; Loop iterates constant times\n");
994 return;
995 }
996
997 /* Check whether the loop rolls. */
998 if ((get_estimated_loop_iterations (loop, &iterations)
999 || get_max_loop_iterations (loop, &iterations))
1000 && iterations.ult (double_int::from_shwi (2 * nunroll)))
1001 {
1002 if (dump_file)
1003 fprintf (dump_file, ";; Not unrolling loop, doesn't roll\n");
1004 return;
1005 }
1006
1007 /* Success; now force nunroll to be power of 2, as we are unable to
1008 cope with overflows in computation of number of iterations. */
1009 for (i = 1; 2 * i <= nunroll; i *= 2)
1010 continue;
1011
1012 loop->lpt_decision.decision = LPT_UNROLL_RUNTIME;
1013 loop->lpt_decision.times = i - 1;
1014 }
1015
1016 /* Splits edge E and inserts the sequence of instructions INSNS on it, and
1017 returns the newly created block. If INSNS is NULL_RTX, nothing is changed
1018 and NULL is returned instead. */
1019
1020 basic_block
1021 split_edge_and_insert (edge e, rtx insns)
1022 {
1023 basic_block bb;
1024
1025 if (!insns)
1026 return NULL;
1027 bb = split_edge (e);
1028 emit_insn_after (insns, BB_END (bb));
1029
1030 /* ??? We used to assume that INSNS can contain control flow insns, and
1031 that we had to try to find sub basic blocks in BB to maintain a valid
1032 CFG. For this purpose we used to set the BB_SUPERBLOCK flag on BB
1033 and call break_superblocks when going out of cfglayout mode. But it
1034 turns out that this never happens; and that if it does ever happen,
1035 the TODO_verify_flow at the end of the RTL loop passes would fail.
1036
1037 There are two reasons why we expected we could have control flow insns
1038 in INSNS. The first is when a comparison has to be done in parts, and
1039 the second is when the number of iterations is computed for loops with
1040 the number of iterations known at runtime. In both cases, test cases
1041 to get control flow in INSNS appear to be impossible to construct:
1042
1043 * If do_compare_rtx_and_jump needs several branches to do comparison
1044 in a mode that needs comparison by parts, we cannot analyze the
1045 number of iterations of the loop, and we never get to unrolling it.
1046
1047 * The code in expand_divmod that was suspected to cause creation of
1048 branching code seems to be only accessed for signed division. The
1049 divisions used by # of iterations analysis are always unsigned.
1050 Problems might arise on architectures that emits branching code
1051 for some operations that may appear in the unroller (especially
1052 for division), but we have no such architectures.
1053
1054 Considering all this, it was decided that we should for now assume
1055 that INSNS can in theory contain control flow insns, but in practice
1056 it never does. So we don't handle the theoretical case, and should
1057 a real failure ever show up, we have a pretty good clue for how to
1058 fix it. */
1059
1060 return bb;
1061 }
1062
1063 /* Unroll LOOP for which we are able to count number of iterations in runtime
1064 LOOP->LPT_DECISION.TIMES times. The transformation does this (with some
1065 extra care for case n < 0):
1066
1067 for (i = 0; i < n; i++)
1068 body;
1069
1070 ==> (LOOP->LPT_DECISION.TIMES == 3)
1071
1072 i = 0;
1073 mod = n % 4;
1074
1075 switch (mod)
1076 {
1077 case 3:
1078 body; i++;
1079 case 2:
1080 body; i++;
1081 case 1:
1082 body; i++;
1083 case 0: ;
1084 }
1085
1086 while (i < n)
1087 {
1088 body; i++;
1089 body; i++;
1090 body; i++;
1091 body; i++;
1092 }
1093 */
1094 static void
1095 unroll_loop_runtime_iterations (struct loop *loop)
1096 {
1097 rtx old_niter, niter, init_code, branch_code, tmp;
1098 unsigned i, j, p;
1099 basic_block preheader, *body, swtch, ezc_swtch;
1100 sbitmap wont_exit;
1101 int may_exit_copy;
1102 unsigned n_peel;
1103 edge e;
1104 bool extra_zero_check, last_may_exit;
1105 unsigned max_unroll = loop->lpt_decision.times;
1106 struct niter_desc *desc = get_simple_loop_desc (loop);
1107 bool exit_at_end = loop_exit_at_end_p (loop);
1108 struct opt_info *opt_info = NULL;
1109 bool ok;
1110
1111 if (flag_split_ivs_in_unroller
1112 || flag_variable_expansion_in_unroller)
1113 opt_info = analyze_insns_in_loop (loop);
1114
1115 /* Remember blocks whose dominators will have to be updated. */
1116 auto_vec<basic_block> dom_bbs;
1117
1118 body = get_loop_body (loop);
1119 for (i = 0; i < loop->num_nodes; i++)
1120 {
1121 vec<basic_block> ldom;
1122 basic_block bb;
1123
1124 ldom = get_dominated_by (CDI_DOMINATORS, body[i]);
1125 FOR_EACH_VEC_ELT (ldom, j, bb)
1126 if (!flow_bb_inside_loop_p (loop, bb))
1127 dom_bbs.safe_push (bb);
1128
1129 ldom.release ();
1130 }
1131 free (body);
1132
1133 if (!exit_at_end)
1134 {
1135 /* Leave exit in first copy (for explanation why see comment in
1136 unroll_loop_constant_iterations). */
1137 may_exit_copy = 0;
1138 n_peel = max_unroll - 1;
1139 extra_zero_check = true;
1140 last_may_exit = false;
1141 }
1142 else
1143 {
1144 /* Leave exit in last copy (for explanation why see comment in
1145 unroll_loop_constant_iterations). */
1146 may_exit_copy = max_unroll;
1147 n_peel = max_unroll;
1148 extra_zero_check = false;
1149 last_may_exit = true;
1150 }
1151
1152 /* Get expression for number of iterations. */
1153 start_sequence ();
1154 old_niter = niter = gen_reg_rtx (desc->mode);
1155 tmp = force_operand (copy_rtx (desc->niter_expr), niter);
1156 if (tmp != niter)
1157 emit_move_insn (niter, tmp);
1158
1159 /* Count modulo by ANDing it with max_unroll; we use the fact that
1160 the number of unrollings is a power of two, and thus this is correct
1161 even if there is overflow in the computation. */
1162 niter = expand_simple_binop (desc->mode, AND,
1163 niter, gen_int_mode (max_unroll, desc->mode),
1164 NULL_RTX, 0, OPTAB_LIB_WIDEN);
1165
1166 init_code = get_insns ();
1167 end_sequence ();
1168 unshare_all_rtl_in_chain (init_code);
1169
1170 /* Precondition the loop. */
1171 split_edge_and_insert (loop_preheader_edge (loop), init_code);
1172
1173 auto_vec<edge> remove_edges;
1174
1175 wont_exit = sbitmap_alloc (max_unroll + 2);
1176
1177 /* Peel the first copy of loop body (almost always we must leave exit test
1178 here; the only exception is when we have extra zero check and the number
1179 of iterations is reliable. Also record the place of (possible) extra
1180 zero check. */
1181 bitmap_clear (wont_exit);
1182 if (extra_zero_check
1183 && !desc->noloop_assumptions)
1184 bitmap_set_bit (wont_exit, 1);
1185 ezc_swtch = loop_preheader_edge (loop)->src;
1186 ok = duplicate_loop_to_header_edge (loop, loop_preheader_edge (loop),
1187 1, wont_exit, desc->out_edge,
1188 &remove_edges,
1189 DLTHE_FLAG_UPDATE_FREQ);
1190 gcc_assert (ok);
1191
1192 /* Record the place where switch will be built for preconditioning. */
1193 swtch = split_edge (loop_preheader_edge (loop));
1194
1195 for (i = 0; i < n_peel; i++)
1196 {
1197 /* Peel the copy. */
1198 bitmap_clear (wont_exit);
1199 if (i != n_peel - 1 || !last_may_exit)
1200 bitmap_set_bit (wont_exit, 1);
1201 ok = duplicate_loop_to_header_edge (loop, loop_preheader_edge (loop),
1202 1, wont_exit, desc->out_edge,
1203 &remove_edges,
1204 DLTHE_FLAG_UPDATE_FREQ);
1205 gcc_assert (ok);
1206
1207 /* Create item for switch. */
1208 j = n_peel - i - (extra_zero_check ? 0 : 1);
1209 p = REG_BR_PROB_BASE / (i + 2);
1210
1211 preheader = split_edge (loop_preheader_edge (loop));
1212 branch_code = compare_and_jump_seq (copy_rtx (niter), GEN_INT (j), EQ,
1213 block_label (preheader), p,
1214 NULL_RTX);
1215
1216 /* We rely on the fact that the compare and jump cannot be optimized out,
1217 and hence the cfg we create is correct. */
1218 gcc_assert (branch_code != NULL_RTX);
1219
1220 swtch = split_edge_and_insert (single_pred_edge (swtch), branch_code);
1221 set_immediate_dominator (CDI_DOMINATORS, preheader, swtch);
1222 single_pred_edge (swtch)->probability = REG_BR_PROB_BASE - p;
1223 e = make_edge (swtch, preheader,
1224 single_succ_edge (swtch)->flags & EDGE_IRREDUCIBLE_LOOP);
1225 e->count = RDIV (preheader->count * REG_BR_PROB_BASE, p);
1226 e->probability = p;
1227 }
1228
1229 if (extra_zero_check)
1230 {
1231 /* Add branch for zero iterations. */
1232 p = REG_BR_PROB_BASE / (max_unroll + 1);
1233 swtch = ezc_swtch;
1234 preheader = split_edge (loop_preheader_edge (loop));
1235 branch_code = compare_and_jump_seq (copy_rtx (niter), const0_rtx, EQ,
1236 block_label (preheader), p,
1237 NULL_RTX);
1238 gcc_assert (branch_code != NULL_RTX);
1239
1240 swtch = split_edge_and_insert (single_succ_edge (swtch), branch_code);
1241 set_immediate_dominator (CDI_DOMINATORS, preheader, swtch);
1242 single_succ_edge (swtch)->probability = REG_BR_PROB_BASE - p;
1243 e = make_edge (swtch, preheader,
1244 single_succ_edge (swtch)->flags & EDGE_IRREDUCIBLE_LOOP);
1245 e->count = RDIV (preheader->count * REG_BR_PROB_BASE, p);
1246 e->probability = p;
1247 }
1248
1249 /* Recount dominators for outer blocks. */
1250 iterate_fix_dominators (CDI_DOMINATORS, dom_bbs, false);
1251
1252 /* And unroll loop. */
1253
1254 bitmap_ones (wont_exit);
1255 bitmap_clear_bit (wont_exit, may_exit_copy);
1256 opt_info_start_duplication (opt_info);
1257
1258 ok = duplicate_loop_to_header_edge (loop, loop_latch_edge (loop),
1259 max_unroll,
1260 wont_exit, desc->out_edge,
1261 &remove_edges,
1262 DLTHE_FLAG_UPDATE_FREQ
1263 | (opt_info
1264 ? DLTHE_RECORD_COPY_NUMBER
1265 : 0));
1266 gcc_assert (ok);
1267
1268 if (opt_info)
1269 {
1270 apply_opt_in_copies (opt_info, max_unroll, true, true);
1271 free_opt_info (opt_info);
1272 }
1273
1274 free (wont_exit);
1275
1276 if (exit_at_end)
1277 {
1278 basic_block exit_block = get_bb_copy (desc->in_edge->src);
1279 /* Find a new in and out edge; they are in the last copy we have
1280 made. */
1281
1282 if (EDGE_SUCC (exit_block, 0)->dest == desc->out_edge->dest)
1283 {
1284 desc->out_edge = EDGE_SUCC (exit_block, 0);
1285 desc->in_edge = EDGE_SUCC (exit_block, 1);
1286 }
1287 else
1288 {
1289 desc->out_edge = EDGE_SUCC (exit_block, 1);
1290 desc->in_edge = EDGE_SUCC (exit_block, 0);
1291 }
1292 }
1293
1294 /* Remove the edges. */
1295 FOR_EACH_VEC_ELT (remove_edges, i, e)
1296 remove_path (e);
1297
1298 /* We must be careful when updating the number of iterations due to
1299 preconditioning and the fact that the value must be valid at entry
1300 of the loop. After passing through the above code, we see that
1301 the correct new number of iterations is this: */
1302 gcc_assert (!desc->const_iter);
1303 desc->niter_expr =
1304 simplify_gen_binary (UDIV, desc->mode, old_niter,
1305 gen_int_mode (max_unroll + 1, desc->mode));
1306 loop->nb_iterations_upper_bound
1307 = loop->nb_iterations_upper_bound.udiv (double_int::from_uhwi (max_unroll
1308 + 1),
1309 TRUNC_DIV_EXPR);
1310 if (loop->any_estimate)
1311 loop->nb_iterations_estimate
1312 = loop->nb_iterations_estimate.udiv (double_int::from_uhwi (max_unroll
1313 + 1),
1314 TRUNC_DIV_EXPR);
1315 if (exit_at_end)
1316 {
1317 desc->niter_expr =
1318 simplify_gen_binary (MINUS, desc->mode, desc->niter_expr, const1_rtx);
1319 desc->noloop_assumptions = NULL_RTX;
1320 --loop->nb_iterations_upper_bound;
1321 if (loop->any_estimate
1322 && loop->nb_iterations_estimate != double_int_zero)
1323 --loop->nb_iterations_estimate;
1324 else
1325 loop->any_estimate = false;
1326 }
1327
1328 if (dump_file)
1329 fprintf (dump_file,
1330 ";; Unrolled loop %d times, counting # of iterations "
1331 "in runtime, %i insns\n",
1332 max_unroll, num_loop_insns (loop));
1333 }
1334
1335 /* Decide whether to simply peel LOOP and how much. */
1336 static void
1337 decide_peel_simple (struct loop *loop, int flags)
1338 {
1339 unsigned npeel;
1340 double_int iterations;
1341
1342 if (!(flags & UAP_PEEL))
1343 {
1344 /* We were not asked to, just return back silently. */
1345 return;
1346 }
1347
1348 if (dump_file)
1349 fprintf (dump_file, "\n;; Considering simply peeling loop\n");
1350
1351 /* npeel = number of iterations to peel. */
1352 npeel = PARAM_VALUE (PARAM_MAX_PEELED_INSNS) / loop->ninsns;
1353 if (npeel > (unsigned) PARAM_VALUE (PARAM_MAX_PEEL_TIMES))
1354 npeel = PARAM_VALUE (PARAM_MAX_PEEL_TIMES);
1355
1356 /* Skip big loops. */
1357 if (!npeel)
1358 {
1359 if (dump_file)
1360 fprintf (dump_file, ";; Not considering loop, is too big\n");
1361 return;
1362 }
1363
1364 /* Do not simply peel loops with branches inside -- it increases number
1365 of mispredicts.
1366 Exception is when we do have profile and we however have good chance
1367 to peel proper number of iterations loop will iterate in practice.
1368 TODO: this heuristic needs tunning; while for complette unrolling
1369 the branch inside loop mostly eliminates any improvements, for
1370 peeling it is not the case. Also a function call inside loop is
1371 also branch from branch prediction POV (and probably better reason
1372 to not unroll/peel). */
1373 if (num_loop_branches (loop) > 1
1374 && profile_status != PROFILE_READ)
1375 {
1376 if (dump_file)
1377 fprintf (dump_file, ";; Not peeling, contains branches\n");
1378 return;
1379 }
1380
1381 /* If we have realistic estimate on number of iterations, use it. */
1382 if (get_estimated_loop_iterations (loop, &iterations))
1383 {
1384 if (double_int::from_shwi (npeel).ule (iterations))
1385 {
1386 if (dump_file)
1387 {
1388 fprintf (dump_file, ";; Not peeling loop, rolls too much (");
1389 fprintf (dump_file, HOST_WIDEST_INT_PRINT_DEC,
1390 (HOST_WIDEST_INT) (iterations.to_shwi () + 1));
1391 fprintf (dump_file, " iterations > %d [maximum peelings])\n",
1392 npeel);
1393 }
1394 return;
1395 }
1396 npeel = iterations.to_shwi () + 1;
1397 }
1398 /* If we have small enough bound on iterations, we can still peel (completely
1399 unroll). */
1400 else if (get_max_loop_iterations (loop, &iterations)
1401 && iterations.ult (double_int::from_shwi (npeel)))
1402 npeel = iterations.to_shwi () + 1;
1403 else
1404 {
1405 /* For now we have no good heuristics to decide whether loop peeling
1406 will be effective, so disable it. */
1407 if (dump_file)
1408 fprintf (dump_file,
1409 ";; Not peeling loop, no evidence it will be profitable\n");
1410 return;
1411 }
1412
1413 /* Success. */
1414 loop->lpt_decision.decision = LPT_PEEL_SIMPLE;
1415 loop->lpt_decision.times = npeel;
1416 }
1417
1418 /* Peel a LOOP LOOP->LPT_DECISION.TIMES times. The transformation does this:
1419
1420 while (cond)
1421 body;
1422
1423 ==> (LOOP->LPT_DECISION.TIMES == 3)
1424
1425 if (!cond) goto end;
1426 body;
1427 if (!cond) goto end;
1428 body;
1429 if (!cond) goto end;
1430 body;
1431 while (cond)
1432 body;
1433 end: ;
1434 */
1435 static void
1436 peel_loop_simple (struct loop *loop)
1437 {
1438 sbitmap wont_exit;
1439 unsigned npeel = loop->lpt_decision.times;
1440 struct niter_desc *desc = get_simple_loop_desc (loop);
1441 struct opt_info *opt_info = NULL;
1442 bool ok;
1443
1444 if (flag_split_ivs_in_unroller && npeel > 1)
1445 opt_info = analyze_insns_in_loop (loop);
1446
1447 wont_exit = sbitmap_alloc (npeel + 1);
1448 bitmap_clear (wont_exit);
1449
1450 opt_info_start_duplication (opt_info);
1451
1452 ok = duplicate_loop_to_header_edge (loop, loop_preheader_edge (loop),
1453 npeel, wont_exit, NULL,
1454 NULL, DLTHE_FLAG_UPDATE_FREQ
1455 | (opt_info
1456 ? DLTHE_RECORD_COPY_NUMBER
1457 : 0));
1458 gcc_assert (ok);
1459
1460 free (wont_exit);
1461
1462 if (opt_info)
1463 {
1464 apply_opt_in_copies (opt_info, npeel, false, false);
1465 free_opt_info (opt_info);
1466 }
1467
1468 if (desc->simple_p)
1469 {
1470 if (desc->const_iter)
1471 {
1472 desc->niter -= npeel;
1473 desc->niter_expr = GEN_INT (desc->niter);
1474 desc->noloop_assumptions = NULL_RTX;
1475 }
1476 else
1477 {
1478 /* We cannot just update niter_expr, as its value might be clobbered
1479 inside loop. We could handle this by counting the number into
1480 temporary just like we do in runtime unrolling, but it does not
1481 seem worthwhile. */
1482 free_simple_loop_desc (loop);
1483 }
1484 }
1485 if (dump_file)
1486 fprintf (dump_file, ";; Peeling loop %d times\n", npeel);
1487 }
1488
1489 /* Decide whether to unroll LOOP stupidly and how much. */
1490 static void
1491 decide_unroll_stupid (struct loop *loop, int flags)
1492 {
1493 unsigned nunroll, nunroll_by_av, i;
1494 struct niter_desc *desc;
1495 double_int iterations;
1496
1497 if (!(flags & UAP_UNROLL_ALL))
1498 {
1499 /* We were not asked to, just return back silently. */
1500 return;
1501 }
1502
1503 if (dump_file)
1504 fprintf (dump_file, "\n;; Considering unrolling loop stupidly\n");
1505
1506 /* nunroll = total number of copies of the original loop body in
1507 unrolled loop (i.e. if it is 2, we have to duplicate loop body once. */
1508 nunroll = PARAM_VALUE (PARAM_MAX_UNROLLED_INSNS) / loop->ninsns;
1509 nunroll_by_av
1510 = PARAM_VALUE (PARAM_MAX_AVERAGE_UNROLLED_INSNS) / loop->av_ninsns;
1511 if (nunroll > nunroll_by_av)
1512 nunroll = nunroll_by_av;
1513 if (nunroll > (unsigned) PARAM_VALUE (PARAM_MAX_UNROLL_TIMES))
1514 nunroll = PARAM_VALUE (PARAM_MAX_UNROLL_TIMES);
1515
1516 if (targetm.loop_unroll_adjust)
1517 nunroll = targetm.loop_unroll_adjust (nunroll, loop);
1518
1519 /* Skip big loops. */
1520 if (nunroll <= 1)
1521 {
1522 if (dump_file)
1523 fprintf (dump_file, ";; Not considering loop, is too big\n");
1524 return;
1525 }
1526
1527 /* Check for simple loops. */
1528 desc = get_simple_loop_desc (loop);
1529
1530 /* Check simpleness. */
1531 if (desc->simple_p && !desc->assumptions)
1532 {
1533 if (dump_file)
1534 fprintf (dump_file, ";; The loop is simple\n");
1535 return;
1536 }
1537
1538 /* Do not unroll loops with branches inside -- it increases number
1539 of mispredicts.
1540 TODO: this heuristic needs tunning; call inside the loop body
1541 is also relatively good reason to not unroll. */
1542 if (num_loop_branches (loop) > 1)
1543 {
1544 if (dump_file)
1545 fprintf (dump_file, ";; Not unrolling, contains branches\n");
1546 return;
1547 }
1548
1549 /* Check whether the loop rolls. */
1550 if ((get_estimated_loop_iterations (loop, &iterations)
1551 || get_max_loop_iterations (loop, &iterations))
1552 && iterations.ult (double_int::from_shwi (2 * nunroll)))
1553 {
1554 if (dump_file)
1555 fprintf (dump_file, ";; Not unrolling loop, doesn't roll\n");
1556 return;
1557 }
1558
1559 /* Success. Now force nunroll to be power of 2, as it seems that this
1560 improves results (partially because of better alignments, partially
1561 because of some dark magic). */
1562 for (i = 1; 2 * i <= nunroll; i *= 2)
1563 continue;
1564
1565 loop->lpt_decision.decision = LPT_UNROLL_STUPID;
1566 loop->lpt_decision.times = i - 1;
1567 }
1568
1569 /* Unroll a LOOP LOOP->LPT_DECISION.TIMES times. The transformation does this:
1570
1571 while (cond)
1572 body;
1573
1574 ==> (LOOP->LPT_DECISION.TIMES == 3)
1575
1576 while (cond)
1577 {
1578 body;
1579 if (!cond) break;
1580 body;
1581 if (!cond) break;
1582 body;
1583 if (!cond) break;
1584 body;
1585 }
1586 */
1587 static void
1588 unroll_loop_stupid (struct loop *loop)
1589 {
1590 sbitmap wont_exit;
1591 unsigned nunroll = loop->lpt_decision.times;
1592 struct niter_desc *desc = get_simple_loop_desc (loop);
1593 struct opt_info *opt_info = NULL;
1594 bool ok;
1595
1596 if (flag_split_ivs_in_unroller
1597 || flag_variable_expansion_in_unroller)
1598 opt_info = analyze_insns_in_loop (loop);
1599
1600
1601 wont_exit = sbitmap_alloc (nunroll + 1);
1602 bitmap_clear (wont_exit);
1603 opt_info_start_duplication (opt_info);
1604
1605 ok = duplicate_loop_to_header_edge (loop, loop_latch_edge (loop),
1606 nunroll, wont_exit,
1607 NULL, NULL,
1608 DLTHE_FLAG_UPDATE_FREQ
1609 | (opt_info
1610 ? DLTHE_RECORD_COPY_NUMBER
1611 : 0));
1612 gcc_assert (ok);
1613
1614 if (opt_info)
1615 {
1616 apply_opt_in_copies (opt_info, nunroll, true, true);
1617 free_opt_info (opt_info);
1618 }
1619
1620 free (wont_exit);
1621
1622 if (desc->simple_p)
1623 {
1624 /* We indeed may get here provided that there are nontrivial assumptions
1625 for a loop to be really simple. We could update the counts, but the
1626 problem is that we are unable to decide which exit will be taken
1627 (not really true in case the number of iterations is constant,
1628 but no one will do anything with this information, so we do not
1629 worry about it). */
1630 desc->simple_p = false;
1631 }
1632
1633 if (dump_file)
1634 fprintf (dump_file, ";; Unrolled loop %d times, %i insns\n",
1635 nunroll, num_loop_insns (loop));
1636 }
1637
1638 /* Returns true if REG is referenced in one nondebug insn in LOOP.
1639 Set *DEBUG_USES to the number of debug insns that reference the
1640 variable. */
1641
1642 bool
1643 referenced_in_one_insn_in_loop_p (struct loop *loop, rtx reg,
1644 int *debug_uses)
1645 {
1646 basic_block *body, bb;
1647 unsigned i;
1648 int count_ref = 0;
1649 rtx insn;
1650
1651 body = get_loop_body (loop);
1652 for (i = 0; i < loop->num_nodes; i++)
1653 {
1654 bb = body[i];
1655
1656 FOR_BB_INSNS (bb, insn)
1657 if (!rtx_referenced_p (reg, insn))
1658 continue;
1659 else if (DEBUG_INSN_P (insn))
1660 ++*debug_uses;
1661 else if (++count_ref > 1)
1662 break;
1663 }
1664 free (body);
1665 return (count_ref == 1);
1666 }
1667
1668 /* Reset the DEBUG_USES debug insns in LOOP that reference REG. */
1669
1670 static void
1671 reset_debug_uses_in_loop (struct loop *loop, rtx reg, int debug_uses)
1672 {
1673 basic_block *body, bb;
1674 unsigned i;
1675 rtx insn;
1676
1677 body = get_loop_body (loop);
1678 for (i = 0; debug_uses && i < loop->num_nodes; i++)
1679 {
1680 bb = body[i];
1681
1682 FOR_BB_INSNS (bb, insn)
1683 if (!DEBUG_INSN_P (insn) || !rtx_referenced_p (reg, insn))
1684 continue;
1685 else
1686 {
1687 validate_change (insn, &INSN_VAR_LOCATION_LOC (insn),
1688 gen_rtx_UNKNOWN_VAR_LOC (), 0);
1689 if (!--debug_uses)
1690 break;
1691 }
1692 }
1693 free (body);
1694 }
1695
1696 /* Determine whether INSN contains an accumulator
1697 which can be expanded into separate copies,
1698 one for each copy of the LOOP body.
1699
1700 for (i = 0 ; i < n; i++)
1701 sum += a[i];
1702
1703 ==>
1704
1705 sum += a[i]
1706 ....
1707 i = i+1;
1708 sum1 += a[i]
1709 ....
1710 i = i+1
1711 sum2 += a[i];
1712 ....
1713
1714 Return NULL if INSN contains no opportunity for expansion of accumulator.
1715 Otherwise, allocate a VAR_TO_EXPAND structure, fill it with the relevant
1716 information and return a pointer to it.
1717 */
1718
1719 static struct var_to_expand *
1720 analyze_insn_to_expand_var (struct loop *loop, rtx insn)
1721 {
1722 rtx set, dest, src;
1723 struct var_to_expand *ves;
1724 unsigned accum_pos;
1725 enum rtx_code code;
1726 int debug_uses = 0;
1727
1728 set = single_set (insn);
1729 if (!set)
1730 return NULL;
1731
1732 dest = SET_DEST (set);
1733 src = SET_SRC (set);
1734 code = GET_CODE (src);
1735
1736 if (code != PLUS && code != MINUS && code != MULT && code != FMA)
1737 return NULL;
1738
1739 if (FLOAT_MODE_P (GET_MODE (dest)))
1740 {
1741 if (!flag_associative_math)
1742 return NULL;
1743 /* In the case of FMA, we're also changing the rounding. */
1744 if (code == FMA && !flag_unsafe_math_optimizations)
1745 return NULL;
1746 }
1747
1748 /* Hmm, this is a bit paradoxical. We know that INSN is a valid insn
1749 in MD. But if there is no optab to generate the insn, we can not
1750 perform the variable expansion. This can happen if an MD provides
1751 an insn but not a named pattern to generate it, for example to avoid
1752 producing code that needs additional mode switches like for x87/mmx.
1753
1754 So we check have_insn_for which looks for an optab for the operation
1755 in SRC. If it doesn't exist, we can't perform the expansion even
1756 though INSN is valid. */
1757 if (!have_insn_for (code, GET_MODE (src)))
1758 return NULL;
1759
1760 if (!REG_P (dest)
1761 && !(GET_CODE (dest) == SUBREG
1762 && REG_P (SUBREG_REG (dest))))
1763 return NULL;
1764
1765 /* Find the accumulator use within the operation. */
1766 if (code == FMA)
1767 {
1768 /* We only support accumulation via FMA in the ADD position. */
1769 if (!rtx_equal_p (dest, XEXP (src, 2)))
1770 return NULL;
1771 accum_pos = 2;
1772 }
1773 else if (rtx_equal_p (dest, XEXP (src, 0)))
1774 accum_pos = 0;
1775 else if (rtx_equal_p (dest, XEXP (src, 1)))
1776 {
1777 /* The method of expansion that we are using; which includes the
1778 initialization of the expansions with zero and the summation of
1779 the expansions at the end of the computation will yield wrong
1780 results for (x = something - x) thus avoid using it in that case. */
1781 if (code == MINUS)
1782 return NULL;
1783 accum_pos = 1;
1784 }
1785 else
1786 return NULL;
1787
1788 /* It must not otherwise be used. */
1789 if (code == FMA)
1790 {
1791 if (rtx_referenced_p (dest, XEXP (src, 0))
1792 || rtx_referenced_p (dest, XEXP (src, 1)))
1793 return NULL;
1794 }
1795 else if (rtx_referenced_p (dest, XEXP (src, 1 - accum_pos)))
1796 return NULL;
1797
1798 /* It must be used in exactly one insn. */
1799 if (!referenced_in_one_insn_in_loop_p (loop, dest, &debug_uses))
1800 return NULL;
1801
1802 if (dump_file)
1803 {
1804 fprintf (dump_file, "\n;; Expanding Accumulator ");
1805 print_rtl (dump_file, dest);
1806 fprintf (dump_file, "\n");
1807 }
1808
1809 if (debug_uses)
1810 /* Instead of resetting the debug insns, we could replace each
1811 debug use in the loop with the sum or product of all expanded
1812 accummulators. Since we'll only know of all expansions at the
1813 end, we'd have to keep track of which vars_to_expand a debug
1814 insn in the loop references, take note of each copy of the
1815 debug insn during unrolling, and when it's all done, compute
1816 the sum or product of each variable and adjust the original
1817 debug insn and each copy thereof. What a pain! */
1818 reset_debug_uses_in_loop (loop, dest, debug_uses);
1819
1820 /* Record the accumulator to expand. */
1821 ves = XNEW (struct var_to_expand);
1822 ves->insn = insn;
1823 ves->reg = copy_rtx (dest);
1824 ves->var_expansions.create (1);
1825 ves->next = NULL;
1826 ves->op = GET_CODE (src);
1827 ves->expansion_count = 0;
1828 ves->reuse_expansion = 0;
1829 return ves;
1830 }
1831
1832 /* Determine whether there is an induction variable in INSN that
1833 we would like to split during unrolling.
1834
1835 I.e. replace
1836
1837 i = i + 1;
1838 ...
1839 i = i + 1;
1840 ...
1841 i = i + 1;
1842 ...
1843
1844 type chains by
1845
1846 i0 = i + 1
1847 ...
1848 i = i0 + 1
1849 ...
1850 i = i0 + 2
1851 ...
1852
1853 Return NULL if INSN contains no interesting IVs. Otherwise, allocate
1854 an IV_TO_SPLIT structure, fill it with the relevant information and return a
1855 pointer to it. */
1856
1857 static struct iv_to_split *
1858 analyze_iv_to_split_insn (rtx insn)
1859 {
1860 rtx set, dest;
1861 struct rtx_iv iv;
1862 struct iv_to_split *ivts;
1863 bool ok;
1864
1865 /* For now we just split the basic induction variables. Later this may be
1866 extended for example by selecting also addresses of memory references. */
1867 set = single_set (insn);
1868 if (!set)
1869 return NULL;
1870
1871 dest = SET_DEST (set);
1872 if (!REG_P (dest))
1873 return NULL;
1874
1875 if (!biv_p (insn, dest))
1876 return NULL;
1877
1878 ok = iv_analyze_result (insn, dest, &iv);
1879
1880 /* This used to be an assert under the assumption that if biv_p returns
1881 true that iv_analyze_result must also return true. However, that
1882 assumption is not strictly correct as evidenced by pr25569.
1883
1884 Returning NULL when iv_analyze_result returns false is safe and
1885 avoids the problems in pr25569 until the iv_analyze_* routines
1886 can be fixed, which is apparently hard and time consuming
1887 according to their author. */
1888 if (! ok)
1889 return NULL;
1890
1891 if (iv.step == const0_rtx
1892 || iv.mode != iv.extend_mode)
1893 return NULL;
1894
1895 /* Record the insn to split. */
1896 ivts = XNEW (struct iv_to_split);
1897 ivts->insn = insn;
1898 ivts->orig_var = dest;
1899 ivts->base_var = NULL_RTX;
1900 ivts->step = iv.step;
1901 ivts->next = NULL;
1902 ivts->n_loc = 1;
1903 ivts->loc[0] = 1;
1904
1905 return ivts;
1906 }
1907
1908 /* Determines which of insns in LOOP can be optimized.
1909 Return a OPT_INFO struct with the relevant hash tables filled
1910 with all insns to be optimized. The FIRST_NEW_BLOCK field
1911 is undefined for the return value. */
1912
1913 static struct opt_info *
1914 analyze_insns_in_loop (struct loop *loop)
1915 {
1916 basic_block *body, bb;
1917 unsigned i;
1918 struct opt_info *opt_info = XCNEW (struct opt_info);
1919 rtx insn;
1920 struct iv_to_split *ivts = NULL;
1921 struct var_to_expand *ves = NULL;
1922 iv_to_split **slot1;
1923 var_to_expand **slot2;
1924 vec<edge> edges = get_loop_exit_edges (loop);
1925 edge exit;
1926 bool can_apply = false;
1927
1928 iv_analysis_loop_init (loop);
1929
1930 body = get_loop_body (loop);
1931
1932 if (flag_split_ivs_in_unroller)
1933 {
1934 opt_info->insns_to_split.create (5 * loop->num_nodes);
1935 opt_info->iv_to_split_head = NULL;
1936 opt_info->iv_to_split_tail = &opt_info->iv_to_split_head;
1937 }
1938
1939 /* Record the loop exit bb and loop preheader before the unrolling. */
1940 opt_info->loop_preheader = loop_preheader_edge (loop)->src;
1941
1942 if (edges.length () == 1)
1943 {
1944 exit = edges[0];
1945 if (!(exit->flags & EDGE_COMPLEX))
1946 {
1947 opt_info->loop_exit = split_edge (exit);
1948 can_apply = true;
1949 }
1950 }
1951
1952 if (flag_variable_expansion_in_unroller
1953 && can_apply)
1954 {
1955 opt_info->insns_with_var_to_expand.create (5 * loop->num_nodes);
1956 opt_info->var_to_expand_head = NULL;
1957 opt_info->var_to_expand_tail = &opt_info->var_to_expand_head;
1958 }
1959
1960 for (i = 0; i < loop->num_nodes; i++)
1961 {
1962 bb = body[i];
1963 if (!dominated_by_p (CDI_DOMINATORS, loop->latch, bb))
1964 continue;
1965
1966 FOR_BB_INSNS (bb, insn)
1967 {
1968 if (!INSN_P (insn))
1969 continue;
1970
1971 if (opt_info->insns_to_split.is_created ())
1972 ivts = analyze_iv_to_split_insn (insn);
1973
1974 if (ivts)
1975 {
1976 slot1 = opt_info->insns_to_split.find_slot (ivts, INSERT);
1977 gcc_assert (*slot1 == NULL);
1978 *slot1 = ivts;
1979 *opt_info->iv_to_split_tail = ivts;
1980 opt_info->iv_to_split_tail = &ivts->next;
1981 continue;
1982 }
1983
1984 if (opt_info->insns_with_var_to_expand.is_created ())
1985 ves = analyze_insn_to_expand_var (loop, insn);
1986
1987 if (ves)
1988 {
1989 slot2 = opt_info->insns_with_var_to_expand.find_slot (ves, INSERT);
1990 gcc_assert (*slot2 == NULL);
1991 *slot2 = ves;
1992 *opt_info->var_to_expand_tail = ves;
1993 opt_info->var_to_expand_tail = &ves->next;
1994 }
1995 }
1996 }
1997
1998 edges.release ();
1999 free (body);
2000 return opt_info;
2001 }
2002
2003 /* Called just before loop duplication. Records start of duplicated area
2004 to OPT_INFO. */
2005
2006 static void
2007 opt_info_start_duplication (struct opt_info *opt_info)
2008 {
2009 if (opt_info)
2010 opt_info->first_new_block = last_basic_block;
2011 }
2012
2013 /* Determine the number of iterations between initialization of the base
2014 variable and the current copy (N_COPY). N_COPIES is the total number
2015 of newly created copies. UNROLLING is true if we are unrolling
2016 (not peeling) the loop. */
2017
2018 static unsigned
2019 determine_split_iv_delta (unsigned n_copy, unsigned n_copies, bool unrolling)
2020 {
2021 if (unrolling)
2022 {
2023 /* If we are unrolling, initialization is done in the original loop
2024 body (number 0). */
2025 return n_copy;
2026 }
2027 else
2028 {
2029 /* If we are peeling, the copy in that the initialization occurs has
2030 number 1. The original loop (number 0) is the last. */
2031 if (n_copy)
2032 return n_copy - 1;
2033 else
2034 return n_copies;
2035 }
2036 }
2037
2038 /* Locate in EXPR the expression corresponding to the location recorded
2039 in IVTS, and return a pointer to the RTX for this location. */
2040
2041 static rtx *
2042 get_ivts_expr (rtx expr, struct iv_to_split *ivts)
2043 {
2044 unsigned i;
2045 rtx *ret = &expr;
2046
2047 for (i = 0; i < ivts->n_loc; i++)
2048 ret = &XEXP (*ret, ivts->loc[i]);
2049
2050 return ret;
2051 }
2052
2053 /* Allocate basic variable for the induction variable chain. */
2054
2055 static void
2056 allocate_basic_variable (struct iv_to_split *ivts)
2057 {
2058 rtx expr = *get_ivts_expr (single_set (ivts->insn), ivts);
2059
2060 ivts->base_var = gen_reg_rtx (GET_MODE (expr));
2061 }
2062
2063 /* Insert initialization of basic variable of IVTS before INSN, taking
2064 the initial value from INSN. */
2065
2066 static void
2067 insert_base_initialization (struct iv_to_split *ivts, rtx insn)
2068 {
2069 rtx expr = copy_rtx (*get_ivts_expr (single_set (insn), ivts));
2070 rtx seq;
2071
2072 start_sequence ();
2073 expr = force_operand (expr, ivts->base_var);
2074 if (expr != ivts->base_var)
2075 emit_move_insn (ivts->base_var, expr);
2076 seq = get_insns ();
2077 end_sequence ();
2078
2079 emit_insn_before (seq, insn);
2080 }
2081
2082 /* Replace the use of induction variable described in IVTS in INSN
2083 by base variable + DELTA * step. */
2084
2085 static void
2086 split_iv (struct iv_to_split *ivts, rtx insn, unsigned delta)
2087 {
2088 rtx expr, *loc, seq, incr, var;
2089 enum machine_mode mode = GET_MODE (ivts->base_var);
2090 rtx src, dest, set;
2091
2092 /* Construct base + DELTA * step. */
2093 if (!delta)
2094 expr = ivts->base_var;
2095 else
2096 {
2097 incr = simplify_gen_binary (MULT, mode,
2098 ivts->step, gen_int_mode (delta, mode));
2099 expr = simplify_gen_binary (PLUS, GET_MODE (ivts->base_var),
2100 ivts->base_var, incr);
2101 }
2102
2103 /* Figure out where to do the replacement. */
2104 loc = get_ivts_expr (single_set (insn), ivts);
2105
2106 /* If we can make the replacement right away, we're done. */
2107 if (validate_change (insn, loc, expr, 0))
2108 return;
2109
2110 /* Otherwise, force EXPR into a register and try again. */
2111 start_sequence ();
2112 var = gen_reg_rtx (mode);
2113 expr = force_operand (expr, var);
2114 if (expr != var)
2115 emit_move_insn (var, expr);
2116 seq = get_insns ();
2117 end_sequence ();
2118 emit_insn_before (seq, insn);
2119
2120 if (validate_change (insn, loc, var, 0))
2121 return;
2122
2123 /* The last chance. Try recreating the assignment in insn
2124 completely from scratch. */
2125 set = single_set (insn);
2126 gcc_assert (set);
2127
2128 start_sequence ();
2129 *loc = var;
2130 src = copy_rtx (SET_SRC (set));
2131 dest = copy_rtx (SET_DEST (set));
2132 src = force_operand (src, dest);
2133 if (src != dest)
2134 emit_move_insn (dest, src);
2135 seq = get_insns ();
2136 end_sequence ();
2137
2138 emit_insn_before (seq, insn);
2139 delete_insn (insn);
2140 }
2141
2142
2143 /* Return one expansion of the accumulator recorded in struct VE. */
2144
2145 static rtx
2146 get_expansion (struct var_to_expand *ve)
2147 {
2148 rtx reg;
2149
2150 if (ve->reuse_expansion == 0)
2151 reg = ve->reg;
2152 else
2153 reg = ve->var_expansions[ve->reuse_expansion - 1];
2154
2155 if (ve->var_expansions.length () == (unsigned) ve->reuse_expansion)
2156 ve->reuse_expansion = 0;
2157 else
2158 ve->reuse_expansion++;
2159
2160 return reg;
2161 }
2162
2163
2164 /* Given INSN replace the uses of the accumulator recorded in VE
2165 with a new register. */
2166
2167 static void
2168 expand_var_during_unrolling (struct var_to_expand *ve, rtx insn)
2169 {
2170 rtx new_reg, set;
2171 bool really_new_expansion = false;
2172
2173 set = single_set (insn);
2174 gcc_assert (set);
2175
2176 /* Generate a new register only if the expansion limit has not been
2177 reached. Else reuse an already existing expansion. */
2178 if (PARAM_VALUE (PARAM_MAX_VARIABLE_EXPANSIONS) > ve->expansion_count)
2179 {
2180 really_new_expansion = true;
2181 new_reg = gen_reg_rtx (GET_MODE (ve->reg));
2182 }
2183 else
2184 new_reg = get_expansion (ve);
2185
2186 validate_replace_rtx_group (SET_DEST (set), new_reg, insn);
2187 if (apply_change_group ())
2188 if (really_new_expansion)
2189 {
2190 ve->var_expansions.safe_push (new_reg);
2191 ve->expansion_count++;
2192 }
2193 }
2194
2195 /* Initialize the variable expansions in loop preheader. PLACE is the
2196 loop-preheader basic block where the initialization of the
2197 expansions should take place. The expansions are initialized with
2198 (-0) when the operation is plus or minus to honor sign zero. This
2199 way we can prevent cases where the sign of the final result is
2200 effected by the sign of the expansion. Here is an example to
2201 demonstrate this:
2202
2203 for (i = 0 ; i < n; i++)
2204 sum += something;
2205
2206 ==>
2207
2208 sum += something
2209 ....
2210 i = i+1;
2211 sum1 += something
2212 ....
2213 i = i+1
2214 sum2 += something;
2215 ....
2216
2217 When SUM is initialized with -zero and SOMETHING is also -zero; the
2218 final result of sum should be -zero thus the expansions sum1 and sum2
2219 should be initialized with -zero as well (otherwise we will get +zero
2220 as the final result). */
2221
2222 static void
2223 insert_var_expansion_initialization (struct var_to_expand *ve,
2224 basic_block place)
2225 {
2226 rtx seq, var, zero_init;
2227 unsigned i;
2228 enum machine_mode mode = GET_MODE (ve->reg);
2229 bool honor_signed_zero_p = HONOR_SIGNED_ZEROS (mode);
2230
2231 if (ve->var_expansions.length () == 0)
2232 return;
2233
2234 start_sequence ();
2235 switch (ve->op)
2236 {
2237 case FMA:
2238 /* Note that we only accumulate FMA via the ADD operand. */
2239 case PLUS:
2240 case MINUS:
2241 FOR_EACH_VEC_ELT (ve->var_expansions, i, var)
2242 {
2243 if (honor_signed_zero_p)
2244 zero_init = simplify_gen_unary (NEG, mode, CONST0_RTX (mode), mode);
2245 else
2246 zero_init = CONST0_RTX (mode);
2247 emit_move_insn (var, zero_init);
2248 }
2249 break;
2250
2251 case MULT:
2252 FOR_EACH_VEC_ELT (ve->var_expansions, i, var)
2253 {
2254 zero_init = CONST1_RTX (GET_MODE (var));
2255 emit_move_insn (var, zero_init);
2256 }
2257 break;
2258
2259 default:
2260 gcc_unreachable ();
2261 }
2262
2263 seq = get_insns ();
2264 end_sequence ();
2265
2266 emit_insn_after (seq, BB_END (place));
2267 }
2268
2269 /* Combine the variable expansions at the loop exit. PLACE is the
2270 loop exit basic block where the summation of the expansions should
2271 take place. */
2272
2273 static void
2274 combine_var_copies_in_loop_exit (struct var_to_expand *ve, basic_block place)
2275 {
2276 rtx sum = ve->reg;
2277 rtx expr, seq, var, insn;
2278 unsigned i;
2279
2280 if (ve->var_expansions.length () == 0)
2281 return;
2282
2283 start_sequence ();
2284 switch (ve->op)
2285 {
2286 case FMA:
2287 /* Note that we only accumulate FMA via the ADD operand. */
2288 case PLUS:
2289 case MINUS:
2290 FOR_EACH_VEC_ELT (ve->var_expansions, i, var)
2291 sum = simplify_gen_binary (PLUS, GET_MODE (ve->reg), var, sum);
2292 break;
2293
2294 case MULT:
2295 FOR_EACH_VEC_ELT (ve->var_expansions, i, var)
2296 sum = simplify_gen_binary (MULT, GET_MODE (ve->reg), var, sum);
2297 break;
2298
2299 default:
2300 gcc_unreachable ();
2301 }
2302
2303 expr = force_operand (sum, ve->reg);
2304 if (expr != ve->reg)
2305 emit_move_insn (ve->reg, expr);
2306 seq = get_insns ();
2307 end_sequence ();
2308
2309 insn = BB_HEAD (place);
2310 while (!NOTE_INSN_BASIC_BLOCK_P (insn))
2311 insn = NEXT_INSN (insn);
2312
2313 emit_insn_after (seq, insn);
2314 }
2315
2316 /* Strip away REG_EQUAL notes for IVs we're splitting.
2317
2318 Updating REG_EQUAL notes for IVs we split is tricky: We
2319 cannot tell until after unrolling, DF-rescanning, and liveness
2320 updating, whether an EQ_USE is reached by the split IV while
2321 the IV reg is still live. See PR55006.
2322
2323 ??? We cannot use remove_reg_equal_equiv_notes_for_regno,
2324 because RTL loop-iv requires us to defer rescanning insns and
2325 any notes attached to them. So resort to old techniques... */
2326
2327 static void
2328 maybe_strip_eq_note_for_split_iv (struct opt_info *opt_info, rtx insn)
2329 {
2330 struct iv_to_split *ivts;
2331 rtx note = find_reg_equal_equiv_note (insn);
2332 if (! note)
2333 return;
2334 for (ivts = opt_info->iv_to_split_head; ivts; ivts = ivts->next)
2335 if (reg_mentioned_p (ivts->orig_var, note))
2336 {
2337 remove_note (insn, note);
2338 return;
2339 }
2340 }
2341
2342 /* Apply loop optimizations in loop copies using the
2343 data which gathered during the unrolling. Structure
2344 OPT_INFO record that data.
2345
2346 UNROLLING is true if we unrolled (not peeled) the loop.
2347 REWRITE_ORIGINAL_BODY is true if we should also rewrite the original body of
2348 the loop (as it should happen in complete unrolling, but not in ordinary
2349 peeling of the loop). */
2350
2351 static void
2352 apply_opt_in_copies (struct opt_info *opt_info,
2353 unsigned n_copies, bool unrolling,
2354 bool rewrite_original_loop)
2355 {
2356 unsigned i, delta;
2357 basic_block bb, orig_bb;
2358 rtx insn, orig_insn, next;
2359 struct iv_to_split ivts_templ, *ivts;
2360 struct var_to_expand ve_templ, *ves;
2361
2362 /* Sanity check -- we need to put initialization in the original loop
2363 body. */
2364 gcc_assert (!unrolling || rewrite_original_loop);
2365
2366 /* Allocate the basic variables (i0). */
2367 if (opt_info->insns_to_split.is_created ())
2368 for (ivts = opt_info->iv_to_split_head; ivts; ivts = ivts->next)
2369 allocate_basic_variable (ivts);
2370
2371 for (i = opt_info->first_new_block; i < (unsigned) last_basic_block; i++)
2372 {
2373 bb = BASIC_BLOCK_FOR_FN (cfun, i);
2374 orig_bb = get_bb_original (bb);
2375
2376 /* bb->aux holds position in copy sequence initialized by
2377 duplicate_loop_to_header_edge. */
2378 delta = determine_split_iv_delta ((size_t)bb->aux, n_copies,
2379 unrolling);
2380 bb->aux = 0;
2381 orig_insn = BB_HEAD (orig_bb);
2382 FOR_BB_INSNS_SAFE (bb, insn, next)
2383 {
2384 if (!INSN_P (insn)
2385 || (DEBUG_INSN_P (insn)
2386 && TREE_CODE (INSN_VAR_LOCATION_DECL (insn)) == LABEL_DECL))
2387 continue;
2388
2389 while (!INSN_P (orig_insn)
2390 || (DEBUG_INSN_P (orig_insn)
2391 && (TREE_CODE (INSN_VAR_LOCATION_DECL (orig_insn))
2392 == LABEL_DECL)))
2393 orig_insn = NEXT_INSN (orig_insn);
2394
2395 ivts_templ.insn = orig_insn;
2396 ve_templ.insn = orig_insn;
2397
2398 /* Apply splitting iv optimization. */
2399 if (opt_info->insns_to_split.is_created ())
2400 {
2401 maybe_strip_eq_note_for_split_iv (opt_info, insn);
2402
2403 ivts = opt_info->insns_to_split.find (&ivts_templ);
2404
2405 if (ivts)
2406 {
2407 gcc_assert (GET_CODE (PATTERN (insn))
2408 == GET_CODE (PATTERN (orig_insn)));
2409
2410 if (!delta)
2411 insert_base_initialization (ivts, insn);
2412 split_iv (ivts, insn, delta);
2413 }
2414 }
2415 /* Apply variable expansion optimization. */
2416 if (unrolling && opt_info->insns_with_var_to_expand.is_created ())
2417 {
2418 ves = (struct var_to_expand *)
2419 opt_info->insns_with_var_to_expand.find (&ve_templ);
2420 if (ves)
2421 {
2422 gcc_assert (GET_CODE (PATTERN (insn))
2423 == GET_CODE (PATTERN (orig_insn)));
2424 expand_var_during_unrolling (ves, insn);
2425 }
2426 }
2427 orig_insn = NEXT_INSN (orig_insn);
2428 }
2429 }
2430
2431 if (!rewrite_original_loop)
2432 return;
2433
2434 /* Initialize the variable expansions in the loop preheader
2435 and take care of combining them at the loop exit. */
2436 if (opt_info->insns_with_var_to_expand.is_created ())
2437 {
2438 for (ves = opt_info->var_to_expand_head; ves; ves = ves->next)
2439 insert_var_expansion_initialization (ves, opt_info->loop_preheader);
2440 for (ves = opt_info->var_to_expand_head; ves; ves = ves->next)
2441 combine_var_copies_in_loop_exit (ves, opt_info->loop_exit);
2442 }
2443
2444 /* Rewrite also the original loop body. Find them as originals of the blocks
2445 in the last copied iteration, i.e. those that have
2446 get_bb_copy (get_bb_original (bb)) == bb. */
2447 for (i = opt_info->first_new_block; i < (unsigned) last_basic_block; i++)
2448 {
2449 bb = BASIC_BLOCK_FOR_FN (cfun, i);
2450 orig_bb = get_bb_original (bb);
2451 if (get_bb_copy (orig_bb) != bb)
2452 continue;
2453
2454 delta = determine_split_iv_delta (0, n_copies, unrolling);
2455 for (orig_insn = BB_HEAD (orig_bb);
2456 orig_insn != NEXT_INSN (BB_END (bb));
2457 orig_insn = next)
2458 {
2459 next = NEXT_INSN (orig_insn);
2460
2461 if (!INSN_P (orig_insn))
2462 continue;
2463
2464 ivts_templ.insn = orig_insn;
2465 if (opt_info->insns_to_split.is_created ())
2466 {
2467 maybe_strip_eq_note_for_split_iv (opt_info, orig_insn);
2468
2469 ivts = (struct iv_to_split *)
2470 opt_info->insns_to_split.find (&ivts_templ);
2471 if (ivts)
2472 {
2473 if (!delta)
2474 insert_base_initialization (ivts, orig_insn);
2475 split_iv (ivts, orig_insn, delta);
2476 continue;
2477 }
2478 }
2479
2480 }
2481 }
2482 }
2483
2484 /* Release OPT_INFO. */
2485
2486 static void
2487 free_opt_info (struct opt_info *opt_info)
2488 {
2489 if (opt_info->insns_to_split.is_created ())
2490 opt_info->insns_to_split.dispose ();
2491 if (opt_info->insns_with_var_to_expand.is_created ())
2492 {
2493 struct var_to_expand *ves;
2494
2495 for (ves = opt_info->var_to_expand_head; ves; ves = ves->next)
2496 ves->var_expansions.release ();
2497 opt_info->insns_with_var_to_expand.dispose ();
2498 }
2499 free (opt_info);
2500 }