]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/lower-subreg.c
dumping cleanup phase 1 -- Removing TODO_dump_func
[thirdparty/gcc.git] / gcc / lower-subreg.c
1 /* Decompose multiword subregs.
2 Copyright (C) 2007, 2008, 2009, 2010 Free Software Foundation, Inc.
3 Contributed by Richard Henderson <rth@redhat.com>
4 Ian Lance Taylor <iant@google.com>
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
12
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
21
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "machmode.h"
26 #include "tm.h"
27 #include "rtl.h"
28 #include "tm_p.h"
29 #include "timevar.h"
30 #include "flags.h"
31 #include "insn-config.h"
32 #include "obstack.h"
33 #include "basic-block.h"
34 #include "recog.h"
35 #include "bitmap.h"
36 #include "dce.h"
37 #include "expr.h"
38 #include "except.h"
39 #include "regs.h"
40 #include "tree-pass.h"
41 #include "df.h"
42
43 #ifdef STACK_GROWS_DOWNWARD
44 # undef STACK_GROWS_DOWNWARD
45 # define STACK_GROWS_DOWNWARD 1
46 #else
47 # define STACK_GROWS_DOWNWARD 0
48 #endif
49
50 DEF_VEC_P (bitmap);
51 DEF_VEC_ALLOC_P (bitmap,heap);
52
53 /* Decompose multi-word pseudo-registers into individual
54 pseudo-registers when possible. This is possible when all the uses
55 of a multi-word register are via SUBREG, or are copies of the
56 register to another location. Breaking apart the register permits
57 more CSE and permits better register allocation. */
58
59 /* Bit N in this bitmap is set if regno N is used in a context in
60 which we can decompose it. */
61 static bitmap decomposable_context;
62
63 /* Bit N in this bitmap is set if regno N is used in a context in
64 which it can not be decomposed. */
65 static bitmap non_decomposable_context;
66
67 /* Bit N in this bitmap is set if regno N is used in a subreg
68 which changes the mode but not the size. This typically happens
69 when the register accessed as a floating-point value; we want to
70 avoid generating accesses to its subwords in integer modes. */
71 static bitmap subreg_context;
72
73 /* Bit N in the bitmap in element M of this array is set if there is a
74 copy from reg M to reg N. */
75 static VEC(bitmap,heap) *reg_copy_graph;
76
77 /* Return whether X is a simple object which we can take a word_mode
78 subreg of. */
79
80 static bool
81 simple_move_operand (rtx x)
82 {
83 if (GET_CODE (x) == SUBREG)
84 x = SUBREG_REG (x);
85
86 if (!OBJECT_P (x))
87 return false;
88
89 if (GET_CODE (x) == LABEL_REF
90 || GET_CODE (x) == SYMBOL_REF
91 || GET_CODE (x) == HIGH
92 || GET_CODE (x) == CONST)
93 return false;
94
95 if (MEM_P (x)
96 && (MEM_VOLATILE_P (x)
97 || mode_dependent_address_p (XEXP (x, 0))))
98 return false;
99
100 return true;
101 }
102
103 /* If INSN is a single set between two objects, return the single set.
104 Such an insn can always be decomposed. INSN should have been
105 passed to recog and extract_insn before this is called. */
106
107 static rtx
108 simple_move (rtx insn)
109 {
110 rtx x;
111 rtx set;
112 enum machine_mode mode;
113
114 if (recog_data.n_operands != 2)
115 return NULL_RTX;
116
117 set = single_set (insn);
118 if (!set)
119 return NULL_RTX;
120
121 x = SET_DEST (set);
122 if (x != recog_data.operand[0] && x != recog_data.operand[1])
123 return NULL_RTX;
124 if (!simple_move_operand (x))
125 return NULL_RTX;
126
127 x = SET_SRC (set);
128 if (x != recog_data.operand[0] && x != recog_data.operand[1])
129 return NULL_RTX;
130 /* For the src we can handle ASM_OPERANDS, and it is beneficial for
131 things like x86 rdtsc which returns a DImode value. */
132 if (GET_CODE (x) != ASM_OPERANDS
133 && !simple_move_operand (x))
134 return NULL_RTX;
135
136 /* We try to decompose in integer modes, to avoid generating
137 inefficient code copying between integer and floating point
138 registers. That means that we can't decompose if this is a
139 non-integer mode for which there is no integer mode of the same
140 size. */
141 mode = GET_MODE (SET_SRC (set));
142 if (!SCALAR_INT_MODE_P (mode)
143 && (mode_for_size (GET_MODE_SIZE (mode) * BITS_PER_UNIT, MODE_INT, 0)
144 == BLKmode))
145 return NULL_RTX;
146
147 /* Reject PARTIAL_INT modes. They are used for processor specific
148 purposes and it's probably best not to tamper with them. */
149 if (GET_MODE_CLASS (mode) == MODE_PARTIAL_INT)
150 return NULL_RTX;
151
152 return set;
153 }
154
155 /* If SET is a copy from one multi-word pseudo-register to another,
156 record that in reg_copy_graph. Return whether it is such a
157 copy. */
158
159 static bool
160 find_pseudo_copy (rtx set)
161 {
162 rtx dest = SET_DEST (set);
163 rtx src = SET_SRC (set);
164 unsigned int rd, rs;
165 bitmap b;
166
167 if (!REG_P (dest) || !REG_P (src))
168 return false;
169
170 rd = REGNO (dest);
171 rs = REGNO (src);
172 if (HARD_REGISTER_NUM_P (rd) || HARD_REGISTER_NUM_P (rs))
173 return false;
174
175 if (GET_MODE_SIZE (GET_MODE (dest)) <= UNITS_PER_WORD)
176 return false;
177
178 b = VEC_index (bitmap, reg_copy_graph, rs);
179 if (b == NULL)
180 {
181 b = BITMAP_ALLOC (NULL);
182 VEC_replace (bitmap, reg_copy_graph, rs, b);
183 }
184
185 bitmap_set_bit (b, rd);
186
187 return true;
188 }
189
190 /* Look through the registers in DECOMPOSABLE_CONTEXT. For each case
191 where they are copied to another register, add the register to
192 which they are copied to DECOMPOSABLE_CONTEXT. Use
193 NON_DECOMPOSABLE_CONTEXT to limit this--we don't bother to track
194 copies of registers which are in NON_DECOMPOSABLE_CONTEXT. */
195
196 static void
197 propagate_pseudo_copies (void)
198 {
199 bitmap queue, propagate;
200
201 queue = BITMAP_ALLOC (NULL);
202 propagate = BITMAP_ALLOC (NULL);
203
204 bitmap_copy (queue, decomposable_context);
205 do
206 {
207 bitmap_iterator iter;
208 unsigned int i;
209
210 bitmap_clear (propagate);
211
212 EXECUTE_IF_SET_IN_BITMAP (queue, 0, i, iter)
213 {
214 bitmap b = VEC_index (bitmap, reg_copy_graph, i);
215 if (b)
216 bitmap_ior_and_compl_into (propagate, b, non_decomposable_context);
217 }
218
219 bitmap_and_compl (queue, propagate, decomposable_context);
220 bitmap_ior_into (decomposable_context, propagate);
221 }
222 while (!bitmap_empty_p (queue));
223
224 BITMAP_FREE (queue);
225 BITMAP_FREE (propagate);
226 }
227
228 /* A pointer to one of these values is passed to
229 find_decomposable_subregs via for_each_rtx. */
230
231 enum classify_move_insn
232 {
233 /* Not a simple move from one location to another. */
234 NOT_SIMPLE_MOVE,
235 /* A simple move from one pseudo-register to another. */
236 SIMPLE_PSEUDO_REG_MOVE,
237 /* A simple move involving a non-pseudo-register. */
238 SIMPLE_MOVE
239 };
240
241 /* This is called via for_each_rtx. If we find a SUBREG which we
242 could use to decompose a pseudo-register, set a bit in
243 DECOMPOSABLE_CONTEXT. If we find an unadorned register which is
244 not a simple pseudo-register copy, DATA will point at the type of
245 move, and we set a bit in DECOMPOSABLE_CONTEXT or
246 NON_DECOMPOSABLE_CONTEXT as appropriate. */
247
248 static int
249 find_decomposable_subregs (rtx *px, void *data)
250 {
251 enum classify_move_insn *pcmi = (enum classify_move_insn *) data;
252 rtx x = *px;
253
254 if (x == NULL_RTX)
255 return 0;
256
257 if (GET_CODE (x) == SUBREG)
258 {
259 rtx inner = SUBREG_REG (x);
260 unsigned int regno, outer_size, inner_size, outer_words, inner_words;
261
262 if (!REG_P (inner))
263 return 0;
264
265 regno = REGNO (inner);
266 if (HARD_REGISTER_NUM_P (regno))
267 return -1;
268
269 outer_size = GET_MODE_SIZE (GET_MODE (x));
270 inner_size = GET_MODE_SIZE (GET_MODE (inner));
271 outer_words = (outer_size + UNITS_PER_WORD - 1) / UNITS_PER_WORD;
272 inner_words = (inner_size + UNITS_PER_WORD - 1) / UNITS_PER_WORD;
273
274 /* We only try to decompose single word subregs of multi-word
275 registers. When we find one, we return -1 to avoid iterating
276 over the inner register.
277
278 ??? This doesn't allow, e.g., DImode subregs of TImode values
279 on 32-bit targets. We would need to record the way the
280 pseudo-register was used, and only decompose if all the uses
281 were the same number and size of pieces. Hopefully this
282 doesn't happen much. */
283
284 if (outer_words == 1 && inner_words > 1)
285 {
286 bitmap_set_bit (decomposable_context, regno);
287 return -1;
288 }
289
290 /* If this is a cast from one mode to another, where the modes
291 have the same size, and they are not tieable, then mark this
292 register as non-decomposable. If we decompose it we are
293 likely to mess up whatever the backend is trying to do. */
294 if (outer_words > 1
295 && outer_size == inner_size
296 && !MODES_TIEABLE_P (GET_MODE (x), GET_MODE (inner)))
297 {
298 bitmap_set_bit (non_decomposable_context, regno);
299 bitmap_set_bit (subreg_context, regno);
300 return -1;
301 }
302 }
303 else if (REG_P (x))
304 {
305 unsigned int regno;
306
307 /* We will see an outer SUBREG before we see the inner REG, so
308 when we see a plain REG here it means a direct reference to
309 the register.
310
311 If this is not a simple copy from one location to another,
312 then we can not decompose this register. If this is a simple
313 copy from one pseudo-register to another, and the mode is right
314 then we mark the register as decomposable.
315 Otherwise we don't say anything about this register --
316 it could be decomposed, but whether that would be
317 profitable depends upon how it is used elsewhere.
318
319 We only set bits in the bitmap for multi-word
320 pseudo-registers, since those are the only ones we care about
321 and it keeps the size of the bitmaps down. */
322
323 regno = REGNO (x);
324 if (!HARD_REGISTER_NUM_P (regno)
325 && GET_MODE_SIZE (GET_MODE (x)) > UNITS_PER_WORD)
326 {
327 switch (*pcmi)
328 {
329 case NOT_SIMPLE_MOVE:
330 bitmap_set_bit (non_decomposable_context, regno);
331 break;
332 case SIMPLE_PSEUDO_REG_MOVE:
333 if (MODES_TIEABLE_P (GET_MODE (x), word_mode))
334 bitmap_set_bit (decomposable_context, regno);
335 break;
336 case SIMPLE_MOVE:
337 break;
338 default:
339 gcc_unreachable ();
340 }
341 }
342 }
343 else if (MEM_P (x))
344 {
345 enum classify_move_insn cmi_mem = NOT_SIMPLE_MOVE;
346
347 /* Any registers used in a MEM do not participate in a
348 SIMPLE_MOVE or SIMPLE_PSEUDO_REG_MOVE. Do our own recursion
349 here, and return -1 to block the parent's recursion. */
350 for_each_rtx (&XEXP (x, 0), find_decomposable_subregs, &cmi_mem);
351 return -1;
352 }
353
354 return 0;
355 }
356
357 /* Decompose REGNO into word-sized components. We smash the REG node
358 in place. This ensures that (1) something goes wrong quickly if we
359 fail to make some replacement, and (2) the debug information inside
360 the symbol table is automatically kept up to date. */
361
362 static void
363 decompose_register (unsigned int regno)
364 {
365 rtx reg;
366 unsigned int words, i;
367 rtvec v;
368
369 reg = regno_reg_rtx[regno];
370
371 regno_reg_rtx[regno] = NULL_RTX;
372
373 words = GET_MODE_SIZE (GET_MODE (reg));
374 words = (words + UNITS_PER_WORD - 1) / UNITS_PER_WORD;
375
376 v = rtvec_alloc (words);
377 for (i = 0; i < words; ++i)
378 RTVEC_ELT (v, i) = gen_reg_rtx_offset (reg, word_mode, i * UNITS_PER_WORD);
379
380 PUT_CODE (reg, CONCATN);
381 XVEC (reg, 0) = v;
382
383 if (dump_file)
384 {
385 fprintf (dump_file, "; Splitting reg %u ->", regno);
386 for (i = 0; i < words; ++i)
387 fprintf (dump_file, " %u", REGNO (XVECEXP (reg, 0, i)));
388 fputc ('\n', dump_file);
389 }
390 }
391
392 /* Get a SUBREG of a CONCATN. */
393
394 static rtx
395 simplify_subreg_concatn (enum machine_mode outermode, rtx op,
396 unsigned int byte)
397 {
398 unsigned int inner_size;
399 enum machine_mode innermode, partmode;
400 rtx part;
401 unsigned int final_offset;
402
403 gcc_assert (GET_CODE (op) == CONCATN);
404 gcc_assert (byte % GET_MODE_SIZE (outermode) == 0);
405
406 innermode = GET_MODE (op);
407 gcc_assert (byte < GET_MODE_SIZE (innermode));
408 gcc_assert (GET_MODE_SIZE (outermode) <= GET_MODE_SIZE (innermode));
409
410 inner_size = GET_MODE_SIZE (innermode) / XVECLEN (op, 0);
411 part = XVECEXP (op, 0, byte / inner_size);
412 partmode = GET_MODE (part);
413
414 /* VECTOR_CSTs in debug expressions are expanded into CONCATN instead of
415 regular CONST_VECTORs. They have vector or integer modes, depending
416 on the capabilities of the target. Cope with them. */
417 if (partmode == VOIDmode && VECTOR_MODE_P (innermode))
418 partmode = GET_MODE_INNER (innermode);
419 else if (partmode == VOIDmode)
420 {
421 enum mode_class mclass = GET_MODE_CLASS (innermode);
422 partmode = mode_for_size (inner_size * BITS_PER_UNIT, mclass, 0);
423 }
424
425 final_offset = byte % inner_size;
426 if (final_offset + GET_MODE_SIZE (outermode) > inner_size)
427 return NULL_RTX;
428
429 return simplify_gen_subreg (outermode, part, partmode, final_offset);
430 }
431
432 /* Wrapper around simplify_gen_subreg which handles CONCATN. */
433
434 static rtx
435 simplify_gen_subreg_concatn (enum machine_mode outermode, rtx op,
436 enum machine_mode innermode, unsigned int byte)
437 {
438 rtx ret;
439
440 /* We have to handle generating a SUBREG of a SUBREG of a CONCATN.
441 If OP is a SUBREG of a CONCATN, then it must be a simple mode
442 change with the same size and offset 0, or it must extract a
443 part. We shouldn't see anything else here. */
444 if (GET_CODE (op) == SUBREG && GET_CODE (SUBREG_REG (op)) == CONCATN)
445 {
446 rtx op2;
447
448 if ((GET_MODE_SIZE (GET_MODE (op))
449 == GET_MODE_SIZE (GET_MODE (SUBREG_REG (op))))
450 && SUBREG_BYTE (op) == 0)
451 return simplify_gen_subreg_concatn (outermode, SUBREG_REG (op),
452 GET_MODE (SUBREG_REG (op)), byte);
453
454 op2 = simplify_subreg_concatn (GET_MODE (op), SUBREG_REG (op),
455 SUBREG_BYTE (op));
456 if (op2 == NULL_RTX)
457 {
458 /* We don't handle paradoxical subregs here. */
459 gcc_assert (GET_MODE_SIZE (outermode)
460 <= GET_MODE_SIZE (GET_MODE (op)));
461 gcc_assert (GET_MODE_SIZE (GET_MODE (op))
462 <= GET_MODE_SIZE (GET_MODE (SUBREG_REG (op))));
463 op2 = simplify_subreg_concatn (outermode, SUBREG_REG (op),
464 byte + SUBREG_BYTE (op));
465 gcc_assert (op2 != NULL_RTX);
466 return op2;
467 }
468
469 op = op2;
470 gcc_assert (op != NULL_RTX);
471 gcc_assert (innermode == GET_MODE (op));
472 }
473
474 if (GET_CODE (op) == CONCATN)
475 return simplify_subreg_concatn (outermode, op, byte);
476
477 ret = simplify_gen_subreg (outermode, op, innermode, byte);
478
479 /* If we see an insn like (set (reg:DI) (subreg:DI (reg:SI) 0)) then
480 resolve_simple_move will ask for the high part of the paradoxical
481 subreg, which does not have a value. Just return a zero. */
482 if (ret == NULL_RTX
483 && GET_CODE (op) == SUBREG
484 && SUBREG_BYTE (op) == 0
485 && (GET_MODE_SIZE (innermode)
486 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (op)))))
487 return CONST0_RTX (outermode);
488
489 gcc_assert (ret != NULL_RTX);
490 return ret;
491 }
492
493 /* Return whether we should resolve X into the registers into which it
494 was decomposed. */
495
496 static bool
497 resolve_reg_p (rtx x)
498 {
499 return GET_CODE (x) == CONCATN;
500 }
501
502 /* Return whether X is a SUBREG of a register which we need to
503 resolve. */
504
505 static bool
506 resolve_subreg_p (rtx x)
507 {
508 if (GET_CODE (x) != SUBREG)
509 return false;
510 return resolve_reg_p (SUBREG_REG (x));
511 }
512
513 /* This is called via for_each_rtx. Look for SUBREGs which need to be
514 decomposed. */
515
516 static int
517 resolve_subreg_use (rtx *px, void *data)
518 {
519 rtx insn = (rtx) data;
520 rtx x = *px;
521
522 if (x == NULL_RTX)
523 return 0;
524
525 if (resolve_subreg_p (x))
526 {
527 x = simplify_subreg_concatn (GET_MODE (x), SUBREG_REG (x),
528 SUBREG_BYTE (x));
529
530 /* It is possible for a note to contain a reference which we can
531 decompose. In this case, return 1 to the caller to indicate
532 that the note must be removed. */
533 if (!x)
534 {
535 gcc_assert (!insn);
536 return 1;
537 }
538
539 validate_change (insn, px, x, 1);
540 return -1;
541 }
542
543 if (resolve_reg_p (x))
544 {
545 /* Return 1 to the caller to indicate that we found a direct
546 reference to a register which is being decomposed. This can
547 happen inside notes, multiword shift or zero-extend
548 instructions. */
549 return 1;
550 }
551
552 return 0;
553 }
554
555 /* This is called via for_each_rtx. Look for SUBREGs which can be
556 decomposed and decomposed REGs that need copying. */
557
558 static int
559 adjust_decomposed_uses (rtx *px, void *data ATTRIBUTE_UNUSED)
560 {
561 rtx x = *px;
562
563 if (x == NULL_RTX)
564 return 0;
565
566 if (resolve_subreg_p (x))
567 {
568 x = simplify_subreg_concatn (GET_MODE (x), SUBREG_REG (x),
569 SUBREG_BYTE (x));
570
571 if (x)
572 *px = x;
573 else
574 x = copy_rtx (*px);
575 }
576
577 if (resolve_reg_p (x))
578 *px = copy_rtx (x);
579
580 return 0;
581 }
582
583 /* Resolve any decomposed registers which appear in register notes on
584 INSN. */
585
586 static void
587 resolve_reg_notes (rtx insn)
588 {
589 rtx *pnote, note;
590
591 note = find_reg_equal_equiv_note (insn);
592 if (note)
593 {
594 int old_count = num_validated_changes ();
595 if (for_each_rtx (&XEXP (note, 0), resolve_subreg_use, NULL))
596 remove_note (insn, note);
597 else
598 if (old_count != num_validated_changes ())
599 df_notes_rescan (insn);
600 }
601
602 pnote = &REG_NOTES (insn);
603 while (*pnote != NULL_RTX)
604 {
605 bool del = false;
606
607 note = *pnote;
608 switch (REG_NOTE_KIND (note))
609 {
610 case REG_DEAD:
611 case REG_UNUSED:
612 if (resolve_reg_p (XEXP (note, 0)))
613 del = true;
614 break;
615
616 default:
617 break;
618 }
619
620 if (del)
621 *pnote = XEXP (note, 1);
622 else
623 pnote = &XEXP (note, 1);
624 }
625 }
626
627 /* Return whether X can be decomposed into subwords. */
628
629 static bool
630 can_decompose_p (rtx x)
631 {
632 if (REG_P (x))
633 {
634 unsigned int regno = REGNO (x);
635
636 if (HARD_REGISTER_NUM_P (regno))
637 return (validate_subreg (word_mode, GET_MODE (x), x, UNITS_PER_WORD)
638 && HARD_REGNO_MODE_OK (regno, word_mode));
639 else
640 return !bitmap_bit_p (subreg_context, regno);
641 }
642
643 return true;
644 }
645
646 /* Decompose the registers used in a simple move SET within INSN. If
647 we don't change anything, return INSN, otherwise return the start
648 of the sequence of moves. */
649
650 static rtx
651 resolve_simple_move (rtx set, rtx insn)
652 {
653 rtx src, dest, real_dest, insns;
654 enum machine_mode orig_mode, dest_mode;
655 unsigned int words;
656 bool pushing;
657
658 src = SET_SRC (set);
659 dest = SET_DEST (set);
660 orig_mode = GET_MODE (dest);
661
662 words = (GET_MODE_SIZE (orig_mode) + UNITS_PER_WORD - 1) / UNITS_PER_WORD;
663 if (words <= 1)
664 return insn;
665
666 start_sequence ();
667
668 /* We have to handle copying from a SUBREG of a decomposed reg where
669 the SUBREG is larger than word size. Rather than assume that we
670 can take a word_mode SUBREG of the destination, we copy to a new
671 register and then copy that to the destination. */
672
673 real_dest = NULL_RTX;
674
675 if (GET_CODE (src) == SUBREG
676 && resolve_reg_p (SUBREG_REG (src))
677 && (SUBREG_BYTE (src) != 0
678 || (GET_MODE_SIZE (orig_mode)
679 != GET_MODE_SIZE (GET_MODE (SUBREG_REG (src))))))
680 {
681 real_dest = dest;
682 dest = gen_reg_rtx (orig_mode);
683 if (REG_P (real_dest))
684 REG_ATTRS (dest) = REG_ATTRS (real_dest);
685 }
686
687 /* Similarly if we are copying to a SUBREG of a decomposed reg where
688 the SUBREG is larger than word size. */
689
690 if (GET_CODE (dest) == SUBREG
691 && resolve_reg_p (SUBREG_REG (dest))
692 && (SUBREG_BYTE (dest) != 0
693 || (GET_MODE_SIZE (orig_mode)
694 != GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest))))))
695 {
696 rtx reg, minsn, smove;
697
698 reg = gen_reg_rtx (orig_mode);
699 minsn = emit_move_insn (reg, src);
700 smove = single_set (minsn);
701 gcc_assert (smove != NULL_RTX);
702 resolve_simple_move (smove, minsn);
703 src = reg;
704 }
705
706 /* If we didn't have any big SUBREGS of decomposed registers, and
707 neither side of the move is a register we are decomposing, then
708 we don't have to do anything here. */
709
710 if (src == SET_SRC (set)
711 && dest == SET_DEST (set)
712 && !resolve_reg_p (src)
713 && !resolve_subreg_p (src)
714 && !resolve_reg_p (dest)
715 && !resolve_subreg_p (dest))
716 {
717 end_sequence ();
718 return insn;
719 }
720
721 /* It's possible for the code to use a subreg of a decomposed
722 register while forming an address. We need to handle that before
723 passing the address to emit_move_insn. We pass NULL_RTX as the
724 insn parameter to resolve_subreg_use because we can not validate
725 the insn yet. */
726 if (MEM_P (src) || MEM_P (dest))
727 {
728 int acg;
729
730 if (MEM_P (src))
731 for_each_rtx (&XEXP (src, 0), resolve_subreg_use, NULL_RTX);
732 if (MEM_P (dest))
733 for_each_rtx (&XEXP (dest, 0), resolve_subreg_use, NULL_RTX);
734 acg = apply_change_group ();
735 gcc_assert (acg);
736 }
737
738 /* If SRC is a register which we can't decompose, or has side
739 effects, we need to move via a temporary register. */
740
741 if (!can_decompose_p (src)
742 || side_effects_p (src)
743 || GET_CODE (src) == ASM_OPERANDS)
744 {
745 rtx reg;
746
747 reg = gen_reg_rtx (orig_mode);
748 emit_move_insn (reg, src);
749 src = reg;
750 }
751
752 /* If DEST is a register which we can't decompose, or has side
753 effects, we need to first move to a temporary register. We
754 handle the common case of pushing an operand directly. We also
755 go through a temporary register if it holds a floating point
756 value. This gives us better code on systems which can't move
757 data easily between integer and floating point registers. */
758
759 dest_mode = orig_mode;
760 pushing = push_operand (dest, dest_mode);
761 if (!can_decompose_p (dest)
762 || (side_effects_p (dest) && !pushing)
763 || (!SCALAR_INT_MODE_P (dest_mode)
764 && !resolve_reg_p (dest)
765 && !resolve_subreg_p (dest)))
766 {
767 if (real_dest == NULL_RTX)
768 real_dest = dest;
769 if (!SCALAR_INT_MODE_P (dest_mode))
770 {
771 dest_mode = mode_for_size (GET_MODE_SIZE (dest_mode) * BITS_PER_UNIT,
772 MODE_INT, 0);
773 gcc_assert (dest_mode != BLKmode);
774 }
775 dest = gen_reg_rtx (dest_mode);
776 if (REG_P (real_dest))
777 REG_ATTRS (dest) = REG_ATTRS (real_dest);
778 }
779
780 if (pushing)
781 {
782 unsigned int i, j, jinc;
783
784 gcc_assert (GET_MODE_SIZE (orig_mode) % UNITS_PER_WORD == 0);
785 gcc_assert (GET_CODE (XEXP (dest, 0)) != PRE_MODIFY);
786 gcc_assert (GET_CODE (XEXP (dest, 0)) != POST_MODIFY);
787
788 if (WORDS_BIG_ENDIAN == STACK_GROWS_DOWNWARD)
789 {
790 j = 0;
791 jinc = 1;
792 }
793 else
794 {
795 j = words - 1;
796 jinc = -1;
797 }
798
799 for (i = 0; i < words; ++i, j += jinc)
800 {
801 rtx temp;
802
803 temp = copy_rtx (XEXP (dest, 0));
804 temp = adjust_automodify_address_nv (dest, word_mode, temp,
805 j * UNITS_PER_WORD);
806 emit_move_insn (temp,
807 simplify_gen_subreg_concatn (word_mode, src,
808 orig_mode,
809 j * UNITS_PER_WORD));
810 }
811 }
812 else
813 {
814 unsigned int i;
815
816 if (REG_P (dest) && !HARD_REGISTER_NUM_P (REGNO (dest)))
817 emit_clobber (dest);
818
819 for (i = 0; i < words; ++i)
820 emit_move_insn (simplify_gen_subreg_concatn (word_mode, dest,
821 dest_mode,
822 i * UNITS_PER_WORD),
823 simplify_gen_subreg_concatn (word_mode, src,
824 orig_mode,
825 i * UNITS_PER_WORD));
826 }
827
828 if (real_dest != NULL_RTX)
829 {
830 rtx mdest, minsn, smove;
831
832 if (dest_mode == orig_mode)
833 mdest = dest;
834 else
835 mdest = simplify_gen_subreg (orig_mode, dest, GET_MODE (dest), 0);
836 minsn = emit_move_insn (real_dest, mdest);
837
838 smove = single_set (minsn);
839 gcc_assert (smove != NULL_RTX);
840
841 resolve_simple_move (smove, minsn);
842 }
843
844 insns = get_insns ();
845 end_sequence ();
846
847 copy_reg_eh_region_note_forward (insn, insns, NULL_RTX);
848
849 emit_insn_before (insns, insn);
850
851 delete_insn (insn);
852
853 return insns;
854 }
855
856 /* Change a CLOBBER of a decomposed register into a CLOBBER of the
857 component registers. Return whether we changed something. */
858
859 static bool
860 resolve_clobber (rtx pat, rtx insn)
861 {
862 rtx reg;
863 enum machine_mode orig_mode;
864 unsigned int words, i;
865 int ret;
866
867 reg = XEXP (pat, 0);
868 if (!resolve_reg_p (reg) && !resolve_subreg_p (reg))
869 return false;
870
871 orig_mode = GET_MODE (reg);
872 words = GET_MODE_SIZE (orig_mode);
873 words = (words + UNITS_PER_WORD - 1) / UNITS_PER_WORD;
874
875 ret = validate_change (NULL_RTX, &XEXP (pat, 0),
876 simplify_gen_subreg_concatn (word_mode, reg,
877 orig_mode, 0),
878 0);
879 df_insn_rescan (insn);
880 gcc_assert (ret != 0);
881
882 for (i = words - 1; i > 0; --i)
883 {
884 rtx x;
885
886 x = simplify_gen_subreg_concatn (word_mode, reg, orig_mode,
887 i * UNITS_PER_WORD);
888 x = gen_rtx_CLOBBER (VOIDmode, x);
889 emit_insn_after (x, insn);
890 }
891
892 resolve_reg_notes (insn);
893
894 return true;
895 }
896
897 /* A USE of a decomposed register is no longer meaningful. Return
898 whether we changed something. */
899
900 static bool
901 resolve_use (rtx pat, rtx insn)
902 {
903 if (resolve_reg_p (XEXP (pat, 0)) || resolve_subreg_p (XEXP (pat, 0)))
904 {
905 delete_insn (insn);
906 return true;
907 }
908
909 resolve_reg_notes (insn);
910
911 return false;
912 }
913
914 /* A VAR_LOCATION can be simplified. */
915
916 static void
917 resolve_debug (rtx insn)
918 {
919 for_each_rtx (&PATTERN (insn), adjust_decomposed_uses, NULL_RTX);
920
921 df_insn_rescan (insn);
922
923 resolve_reg_notes (insn);
924 }
925
926 /* Checks if INSN is a decomposable multiword-shift or zero-extend and
927 sets the decomposable_context bitmap accordingly. A non-zero value
928 is returned if a decomposable insn has been found. */
929
930 static int
931 find_decomposable_shift_zext (rtx insn)
932 {
933 rtx set;
934 rtx op;
935 rtx op_operand;
936
937 set = single_set (insn);
938 if (!set)
939 return 0;
940
941 op = SET_SRC (set);
942 if (GET_CODE (op) != ASHIFT
943 && GET_CODE (op) != LSHIFTRT
944 && GET_CODE (op) != ZERO_EXTEND)
945 return 0;
946
947 op_operand = XEXP (op, 0);
948 if (!REG_P (SET_DEST (set)) || !REG_P (op_operand)
949 || HARD_REGISTER_NUM_P (REGNO (SET_DEST (set)))
950 || HARD_REGISTER_NUM_P (REGNO (op_operand))
951 || !SCALAR_INT_MODE_P (GET_MODE (op)))
952 return 0;
953
954 if (GET_CODE (op) == ZERO_EXTEND)
955 {
956 if (GET_MODE (op_operand) != word_mode
957 || GET_MODE_BITSIZE (GET_MODE (op)) != 2 * BITS_PER_WORD)
958 return 0;
959 }
960 else /* left or right shift */
961 {
962 if (!CONST_INT_P (XEXP (op, 1))
963 || INTVAL (XEXP (op, 1)) < BITS_PER_WORD
964 || GET_MODE_BITSIZE (GET_MODE (op_operand)) != 2 * BITS_PER_WORD)
965 return 0;
966 }
967
968 bitmap_set_bit (decomposable_context, REGNO (SET_DEST (set)));
969
970 if (GET_CODE (op) != ZERO_EXTEND)
971 bitmap_set_bit (decomposable_context, REGNO (op_operand));
972
973 return 1;
974 }
975
976 /* Decompose a more than word wide shift (in INSN) of a multiword
977 pseudo or a multiword zero-extend of a wordmode pseudo into a move
978 and 'set to zero' insn. Return a pointer to the new insn when a
979 replacement was done. */
980
981 static rtx
982 resolve_shift_zext (rtx insn)
983 {
984 rtx set;
985 rtx op;
986 rtx op_operand;
987 rtx insns;
988 rtx src_reg, dest_reg, dest_zero;
989 int src_reg_num, dest_reg_num, offset1, offset2, src_offset;
990
991 set = single_set (insn);
992 if (!set)
993 return NULL_RTX;
994
995 op = SET_SRC (set);
996 if (GET_CODE (op) != ASHIFT
997 && GET_CODE (op) != LSHIFTRT
998 && GET_CODE (op) != ZERO_EXTEND)
999 return NULL_RTX;
1000
1001 op_operand = XEXP (op, 0);
1002
1003 if (!resolve_reg_p (SET_DEST (set)) && !resolve_reg_p (op_operand))
1004 return NULL_RTX;
1005
1006 /* src_reg_num is the number of the word mode register which we
1007 are operating on. For a left shift and a zero_extend on little
1008 endian machines this is register 0. */
1009 src_reg_num = GET_CODE (op) == LSHIFTRT ? 1 : 0;
1010
1011 if (WORDS_BIG_ENDIAN
1012 && GET_MODE_SIZE (GET_MODE (op_operand)) > UNITS_PER_WORD)
1013 src_reg_num = 1 - src_reg_num;
1014
1015 if (GET_CODE (op) == ZERO_EXTEND)
1016 dest_reg_num = WORDS_BIG_ENDIAN ? 1 : 0;
1017 else
1018 dest_reg_num = 1 - src_reg_num;
1019
1020 offset1 = UNITS_PER_WORD * dest_reg_num;
1021 offset2 = UNITS_PER_WORD * (1 - dest_reg_num);
1022 src_offset = UNITS_PER_WORD * src_reg_num;
1023
1024 start_sequence ();
1025
1026 dest_reg = simplify_gen_subreg_concatn (word_mode, SET_DEST (set),
1027 GET_MODE (SET_DEST (set)),
1028 offset1);
1029 dest_zero = simplify_gen_subreg_concatn (word_mode, SET_DEST (set),
1030 GET_MODE (SET_DEST (set)),
1031 offset2);
1032 src_reg = simplify_gen_subreg_concatn (word_mode, op_operand,
1033 GET_MODE (op_operand),
1034 src_offset);
1035 if (GET_CODE (op) != ZERO_EXTEND)
1036 {
1037 int shift_count = INTVAL (XEXP (op, 1));
1038 if (shift_count > BITS_PER_WORD)
1039 src_reg = expand_shift (GET_CODE (op) == ASHIFT ?
1040 LSHIFT_EXPR : RSHIFT_EXPR,
1041 word_mode, src_reg,
1042 shift_count - BITS_PER_WORD,
1043 dest_reg, 1);
1044 }
1045
1046 if (dest_reg != src_reg)
1047 emit_move_insn (dest_reg, src_reg);
1048 emit_move_insn (dest_zero, CONST0_RTX (word_mode));
1049 insns = get_insns ();
1050
1051 end_sequence ();
1052
1053 emit_insn_before (insns, insn);
1054
1055 if (dump_file)
1056 {
1057 rtx in;
1058 fprintf (dump_file, "; Replacing insn: %d with insns: ", INSN_UID (insn));
1059 for (in = insns; in != insn; in = NEXT_INSN (in))
1060 fprintf (dump_file, "%d ", INSN_UID (in));
1061 fprintf (dump_file, "\n");
1062 }
1063
1064 delete_insn (insn);
1065 return insns;
1066 }
1067
1068 /* Look for registers which are always accessed via word-sized SUBREGs
1069 or via copies. Decompose these registers into several word-sized
1070 pseudo-registers. */
1071
1072 static void
1073 decompose_multiword_subregs (void)
1074 {
1075 unsigned int max;
1076 basic_block bb;
1077
1078 if (df)
1079 df_set_flags (DF_DEFER_INSN_RESCAN);
1080
1081 max = max_reg_num ();
1082
1083 /* First see if there are any multi-word pseudo-registers. If there
1084 aren't, there is nothing we can do. This should speed up this
1085 pass in the normal case, since it should be faster than scanning
1086 all the insns. */
1087 {
1088 unsigned int i;
1089
1090 for (i = FIRST_PSEUDO_REGISTER; i < max; ++i)
1091 {
1092 if (regno_reg_rtx[i] != NULL
1093 && GET_MODE_SIZE (GET_MODE (regno_reg_rtx[i])) > UNITS_PER_WORD)
1094 break;
1095 }
1096 if (i == max)
1097 return;
1098 }
1099
1100 if (df)
1101 run_word_dce ();
1102
1103 /* FIXME: When the dataflow branch is merged, we can change this
1104 code to look for each multi-word pseudo-register and to find each
1105 insn which sets or uses that register. That should be faster
1106 than scanning all the insns. */
1107
1108 decomposable_context = BITMAP_ALLOC (NULL);
1109 non_decomposable_context = BITMAP_ALLOC (NULL);
1110 subreg_context = BITMAP_ALLOC (NULL);
1111
1112 reg_copy_graph = VEC_alloc (bitmap, heap, max);
1113 VEC_safe_grow (bitmap, heap, reg_copy_graph, max);
1114 memset (VEC_address (bitmap, reg_copy_graph), 0, sizeof (bitmap) * max);
1115
1116 FOR_EACH_BB (bb)
1117 {
1118 rtx insn;
1119
1120 FOR_BB_INSNS (bb, insn)
1121 {
1122 rtx set;
1123 enum classify_move_insn cmi;
1124 int i, n;
1125
1126 if (!INSN_P (insn)
1127 || GET_CODE (PATTERN (insn)) == CLOBBER
1128 || GET_CODE (PATTERN (insn)) == USE)
1129 continue;
1130
1131 if (find_decomposable_shift_zext (insn))
1132 continue;
1133
1134 recog_memoized (insn);
1135 extract_insn (insn);
1136
1137 set = simple_move (insn);
1138
1139 if (!set)
1140 cmi = NOT_SIMPLE_MOVE;
1141 else
1142 {
1143 if (find_pseudo_copy (set))
1144 cmi = SIMPLE_PSEUDO_REG_MOVE;
1145 else
1146 cmi = SIMPLE_MOVE;
1147 }
1148
1149 n = recog_data.n_operands;
1150 for (i = 0; i < n; ++i)
1151 {
1152 for_each_rtx (&recog_data.operand[i],
1153 find_decomposable_subregs,
1154 &cmi);
1155
1156 /* We handle ASM_OPERANDS as a special case to support
1157 things like x86 rdtsc which returns a DImode value.
1158 We can decompose the output, which will certainly be
1159 operand 0, but not the inputs. */
1160
1161 if (cmi == SIMPLE_MOVE
1162 && GET_CODE (SET_SRC (set)) == ASM_OPERANDS)
1163 {
1164 gcc_assert (i == 0);
1165 cmi = NOT_SIMPLE_MOVE;
1166 }
1167 }
1168 }
1169 }
1170
1171 bitmap_and_compl_into (decomposable_context, non_decomposable_context);
1172 if (!bitmap_empty_p (decomposable_context))
1173 {
1174 sbitmap sub_blocks;
1175 unsigned int i;
1176 sbitmap_iterator sbi;
1177 bitmap_iterator iter;
1178 unsigned int regno;
1179
1180 propagate_pseudo_copies ();
1181
1182 sub_blocks = sbitmap_alloc (last_basic_block);
1183 sbitmap_zero (sub_blocks);
1184
1185 EXECUTE_IF_SET_IN_BITMAP (decomposable_context, 0, regno, iter)
1186 decompose_register (regno);
1187
1188 FOR_EACH_BB (bb)
1189 {
1190 rtx insn;
1191
1192 FOR_BB_INSNS (bb, insn)
1193 {
1194 rtx pat;
1195
1196 if (!INSN_P (insn))
1197 continue;
1198
1199 pat = PATTERN (insn);
1200 if (GET_CODE (pat) == CLOBBER)
1201 resolve_clobber (pat, insn);
1202 else if (GET_CODE (pat) == USE)
1203 resolve_use (pat, insn);
1204 else if (DEBUG_INSN_P (insn))
1205 resolve_debug (insn);
1206 else
1207 {
1208 rtx set;
1209 int i;
1210
1211 recog_memoized (insn);
1212 extract_insn (insn);
1213
1214 set = simple_move (insn);
1215 if (set)
1216 {
1217 rtx orig_insn = insn;
1218 bool cfi = control_flow_insn_p (insn);
1219
1220 /* We can end up splitting loads to multi-word pseudos
1221 into separate loads to machine word size pseudos.
1222 When this happens, we first had one load that can
1223 throw, and after resolve_simple_move we'll have a
1224 bunch of loads (at least two). All those loads may
1225 trap if we can have non-call exceptions, so they
1226 all will end the current basic block. We split the
1227 block after the outer loop over all insns, but we
1228 make sure here that we will be able to split the
1229 basic block and still produce the correct control
1230 flow graph for it. */
1231 gcc_assert (!cfi
1232 || (cfun->can_throw_non_call_exceptions
1233 && can_throw_internal (insn)));
1234
1235 insn = resolve_simple_move (set, insn);
1236 if (insn != orig_insn)
1237 {
1238 recog_memoized (insn);
1239 extract_insn (insn);
1240
1241 if (cfi)
1242 SET_BIT (sub_blocks, bb->index);
1243 }
1244 }
1245 else
1246 {
1247 rtx decomposed_shift;
1248
1249 decomposed_shift = resolve_shift_zext (insn);
1250 if (decomposed_shift != NULL_RTX)
1251 {
1252 insn = decomposed_shift;
1253 recog_memoized (insn);
1254 extract_insn (insn);
1255 }
1256 }
1257
1258 for (i = recog_data.n_operands - 1; i >= 0; --i)
1259 for_each_rtx (recog_data.operand_loc[i],
1260 resolve_subreg_use,
1261 insn);
1262
1263 resolve_reg_notes (insn);
1264
1265 if (num_validated_changes () > 0)
1266 {
1267 for (i = recog_data.n_dups - 1; i >= 0; --i)
1268 {
1269 rtx *pl = recog_data.dup_loc[i];
1270 int dup_num = recog_data.dup_num[i];
1271 rtx *px = recog_data.operand_loc[dup_num];
1272
1273 validate_unshare_change (insn, pl, *px, 1);
1274 }
1275
1276 i = apply_change_group ();
1277 gcc_assert (i);
1278 }
1279 }
1280 }
1281 }
1282
1283 /* If we had insns to split that caused control flow insns in the middle
1284 of a basic block, split those blocks now. Note that we only handle
1285 the case where splitting a load has caused multiple possibly trapping
1286 loads to appear. */
1287 EXECUTE_IF_SET_IN_SBITMAP (sub_blocks, 0, i, sbi)
1288 {
1289 rtx insn, end;
1290 edge fallthru;
1291
1292 bb = BASIC_BLOCK (i);
1293 insn = BB_HEAD (bb);
1294 end = BB_END (bb);
1295
1296 while (insn != end)
1297 {
1298 if (control_flow_insn_p (insn))
1299 {
1300 /* Split the block after insn. There will be a fallthru
1301 edge, which is OK so we keep it. We have to create the
1302 exception edges ourselves. */
1303 fallthru = split_block (bb, insn);
1304 rtl_make_eh_edge (NULL, bb, BB_END (bb));
1305 bb = fallthru->dest;
1306 insn = BB_HEAD (bb);
1307 }
1308 else
1309 insn = NEXT_INSN (insn);
1310 }
1311 }
1312
1313 sbitmap_free (sub_blocks);
1314 }
1315
1316 {
1317 unsigned int i;
1318 bitmap b;
1319
1320 FOR_EACH_VEC_ELT (bitmap, reg_copy_graph, i, b)
1321 if (b)
1322 BITMAP_FREE (b);
1323 }
1324
1325 VEC_free (bitmap, heap, reg_copy_graph);
1326
1327 BITMAP_FREE (decomposable_context);
1328 BITMAP_FREE (non_decomposable_context);
1329 BITMAP_FREE (subreg_context);
1330 }
1331 \f
1332 /* Gate function for lower subreg pass. */
1333
1334 static bool
1335 gate_handle_lower_subreg (void)
1336 {
1337 return flag_split_wide_types != 0;
1338 }
1339
1340 /* Implement first lower subreg pass. */
1341
1342 static unsigned int
1343 rest_of_handle_lower_subreg (void)
1344 {
1345 decompose_multiword_subregs ();
1346 return 0;
1347 }
1348
1349 /* Implement second lower subreg pass. */
1350
1351 static unsigned int
1352 rest_of_handle_lower_subreg2 (void)
1353 {
1354 decompose_multiword_subregs ();
1355 return 0;
1356 }
1357
1358 struct rtl_opt_pass pass_lower_subreg =
1359 {
1360 {
1361 RTL_PASS,
1362 "subreg1", /* name */
1363 gate_handle_lower_subreg, /* gate */
1364 rest_of_handle_lower_subreg, /* execute */
1365 NULL, /* sub */
1366 NULL, /* next */
1367 0, /* static_pass_number */
1368 TV_LOWER_SUBREG, /* tv_id */
1369 0, /* properties_required */
1370 0, /* properties_provided */
1371 0, /* properties_destroyed */
1372 0, /* todo_flags_start */
1373 TODO_ggc_collect |
1374 TODO_verify_flow /* todo_flags_finish */
1375 }
1376 };
1377
1378 struct rtl_opt_pass pass_lower_subreg2 =
1379 {
1380 {
1381 RTL_PASS,
1382 "subreg2", /* name */
1383 gate_handle_lower_subreg, /* gate */
1384 rest_of_handle_lower_subreg2, /* execute */
1385 NULL, /* sub */
1386 NULL, /* next */
1387 0, /* static_pass_number */
1388 TV_LOWER_SUBREG, /* tv_id */
1389 0, /* properties_required */
1390 0, /* properties_provided */
1391 0, /* properties_destroyed */
1392 0, /* todo_flags_start */
1393 TODO_df_finish | TODO_verify_rtl_sharing |
1394 TODO_ggc_collect |
1395 TODO_verify_flow /* todo_flags_finish */
1396 }
1397 };